
Internet-Draft David Chadwick

AAAarch RG University of Salford

Intended Category: Informational

Expires: 11 October 2002 11 April 2002

The PERMIS X.509 Based Privilege Management Infrastructure

 <draft-irtf-aaaarch-permis-00.txt>

STATUS OF THIS MEMO

This document is an Internet-Draft and is in full conformance with

all the provisions of Section 10 of RFC2026 [1].

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF), its areas, and its working groups. Note that other

groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at

http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

This Internet-Draft expires on 11 October 2002.

Comments and suggestions on this document are encouraged. Comments on

this document should be sent to the AAAarch working group discussion

list:

 aaaarch@fokus.gmd.de

or directly to the author.

ABSTRACT

This document describes the PERMIS X.509 Based Privilege Management

Infrastructure, which is a trust management system as described in

RFC 2704 [2]. The PERMIS Infrastructure is compared with the AAA

Authorisation Framework described in RFC 2904 [4], and is shown to be

compatible with it.

1. Introduction

RFC 2704 describes the KeyNote trust management system, which

provides a unified approach to specifying and interpreting

authorisation policies, credentials, and relationships for use by

Internet services.

RFC 2904 provides an architectural framework for understanding the

authorisation of Internet resources and services.

Version 4 of X.509 [3] describes a Privilege Management

Infrastructure that uses attribute certificates to store a user's

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/92062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

privileges/credentials. X.509 PMIs can provide some of the components

for trust management systems.

ISO/IEC 10181-3 [5] describes an access control framework for use by

open systems, and separates the authorisation gatekeeping function

into two components, the application dependent Access Control

Enforcement Function (AEF) and the application independent Access

Control Decision Function (ADF).

The EC PERMIS project has built a trust management system for use by

Internet applications that is based on an X.509 PMI and the above

frameworks. The access control decision function (ADF) is written in

Java, whilst the authorisation policy is written in XML. The policy

and the attribute certificates are stored in LDAP directories so that

they can be accessed via the Internet. This allows the administration

of privileges to be widely distributed over the Internet, and for

authorisation decisions to be delegated to external organisations.

This InternetDraft/RFC is one of a set of three documents. It

describes the PERMIS PMI, and shows how it relates to and is

consistent with the prior work in RFCs 2904 and 2704. The other two

documents describe the XML policy DTD [7], and the Java API [8] in

detail.

2. A brief introduction to X.509 PMIs.

In order to control access to a resource, both authentication and

authorization are needed. Early versions of the ITU-T X.509 standard

[3] have concentrated on standardizing strong authentication

techniques, based on digital signatures, public key certificates, and

Public Key Infrastructures (PKIs). The latest version of X.509, due

to be published in 2002, is the first edition to standardize an

authorization technique and this is based on attribute certificates

and Privilege Management Infrastructures (PMIs). A PMI is to

authorization what a PKI is to authentication. Consequently there are

many similar concepts shared between PKIs and PMIs.

A public key certificate (PKC) is used for authentication and

maintains a strong binding between a user's name and his public key,

whilst an attribute certificate (AC) is used for authorization and

maintains a strong binding between a user's name and one or more

privilege attributes. The entity that digitally signs a public key

certificate is called a Certification Authority (CA), whilst the

entity that digitally signs an attribute certificate is called an

Attribute Authority (AA). The root of trust of a PKI is sometimes

called the root CA or the trust anchor, whilst the root of trust of a

PMI is called the Source of Authority (SOA). CAs may have

subordinate CAs that they trust, and to which they delegate the

powers of authentication and certification. Similarly, SOAs may

delegate their powers of authorization to trusted subordinate AAs. If

a user needs to have his signing key revoked, a CA will issue a

certificate revocation list (CRL). Similarly if a user needs to have

his authorization permissions revoked, an AA will issue an attribute

certificate revocation list (ACRL).

3. Trust Management

RFC 2704 says that a trust-management system has five basic

components:

i) A language for describing `actions', which are operations

with security consequences that are to be controlled by the

system.

ii) A mechanism for identifying `principals', which are entities

that can be authorized to perform actions.

iii) A language for specifying application `policies', which

govern the actions that principals are authorized to

perform.

iv) A language for specifying `credentials', which allow

principals to delegate authorization to other principals.

v) A `compliance checker', which provides a service to

applications for determining how an action requested by

principals should be handled, given a policy and a set of

credentials.

X.509 attribute certificates specify mechanisms for ii) and iv).

Principals are the holders of ACs and can be identified by their

X.500/LDAP distinguished names [6][9] or by reference to their public

key certificates (issuer name and serial number). Credentials are

specified as X.500 attributes [6], which comprise an attribute type

and value. The PERMIS policy (iii) and action (i) language have been

specified in XML, and the DTD for these is described in [7]. The

compliance checker (v) is actually the same as the ADF of ISO/IEC

10181-3. The PERMIS compliance checker is written in Java, and the

API to this is briefly described in section 7 and more fully in [8].

4. Authorisation Frameworks

RFC 2904 describes the different entities in an authorisation

infrastructure, these being:

i) the user who wants to access a resource

ii) the user's home organisation (UHO) that authorises the user

to access the resource

iii) the service provider of the resource, comprising

iii A) the resource's AAA Server which authorizes the user's

service request based on an agreement with the UHO, but

without specific knowledge of the individual user

iii B) the resource's Service Equipment that provides the service

itself. This might, for example, be a print server in the

Internet Printing service.

RFC 2904 further describes the interactions between the entities when

a) the UHO and service provider are in the same domain, and

b) the user is roaming, and the UHO and service provider are

in different domains.

ISO/IEC 10181-3 further breaks down the AAA server into the

application dependent Access Control Enforcement Function (AEF) and

application independent Access Control Decision Function (ADF). As

previously stated, the ADF is the compliance checker of a trust

management system.

5. The PERMIS Privilege Management Infrastructure

The PERMIS PMI is described primarily using terminology from the AAA

Authorisation Framework. The UHO is the entity that allocates

privileges to users, in the form of digitally signed X.509 attribute

certificates. The UHO is a privilege allocator in PERMIS terminology

and an SOA in X.509 terminology. Once created, the ACs may either be

stored in an LDAP directory local to the UHO (the pull model), or

given to the user for him to use as required (the push model). If the

UHO supports delegation, then there may be subordinate AAs within the

UHO, who are also authorised to issue ACs to users. The privileges,

or authorisations within the ACs, are allocated in the form of X.500

attributes, comprising an attribute type and value. As PERMIS has

implemented a role based access control infrastructure, the

attributes are considered to be roles. For any given attribute type,

for example, "employment role", the role values may form a role

hierarchy, for example: director > departmental manager > project

leader > team leader > employee. Then the privileges given to the

subordinate roles are automatically inherited by the superior roles.

The authorisation policy dictates which roles have which access

privileges.

The concept of a role within PERMIS has been generalised to cover any

title, certificate, membership or other role that can be given to a

user. So for example, a university degree is considered to be a role

(where the UHO is the university, the attribute type is "degree", and

the attribute value is the degree classification); an ISO 9000

certificate can be a role (where the UHO is the certification body

assessing the organisational unit, the user is the organisational

unit that was assessed, the attribute type is "ISO certified" and the

attribute value is the number of the ISO standard against which the

organisational unit was assessed); membership of the Internet Society

can be a role (where the UHO is the Internet Society, the attribute

type is "membership number" and the attribute value is the membership

number). In general, Service Providers will determine which roles are

required for access to their Service Equipment, and will authorise

UHOs to allocate them. The act of authorisation takes place by some

inter-organisational contract, and is technically enabled when

details of the UHO and its roles are written into the role assignment

policy (see later) that controls access to the service.

One can immediately see that PERMIS allows multiple UHOs to be

associated with a single service. This is because users may be given

different roles by different UHOs. (For example, I have a frequent

flyer card allocated by my favourite airline, another one from the

hotel chain I use, and a credit card from Visa. I might need all

these when making a hotel booking across the Internet. Once all of

these exist electronically as X.509 ACs, I should no longer need to

carry the plastic cards around with me.)

When the user tries to access a service, his request is either

intercepted by the AAA server (as in Figure 1), or relayed to it by

the service equipment. Either way, it is the AAA Server that makes

the authorisation decision (and the authentication and accounting

decisions as well, but these are not discussed further in this

document).

The AAA Server is decomposed in Figure 1 into its constituent parts

according to the ISO 10181-3 framework. The AEF is passed the user's

request, and this is first authenticated by the authentication

service. If authentication is successful, the user's X.500/LDAP

distinguished name is passed to the ADF via the PERMIS Java API. The

PERMIS Java API is briefly described in section 6 below.

The PERMIS model is the same for the single domain case and the

roaming user case. The only difference is that in the single domain

case, the ADF will only retrieve ACs from the local LDAP server,

whereas in the roaming user case, the ADF will retrieve ACs from both

the local and remote LDAP servers. The list of LDAP servers is passed

to the ADF at API construction time.

 +------+ +---------+

 | | ACs | UHO / |

 | LDAP |<----------|Privilege|

 | | |Allocator|

 +------+ | |

 | +---------+

 |

 | AAA Server

 | +----------------------+

 | |Authentication Service|

 | | -^- - -|- - - - - - -|

 +------+ | | | | |

 | | | | | | AEF | +---------+

 | User |------>|--/ | | | Target/ |

 | | | | | | | Service |

 +------+ | |Decision| ^ |--->|Equipment|

 | | Request| |Decision | +---------+

 | | v | |

 | |- - - - - - - - - - - |

 | | PERMIS Java API |

 | |- - - - - - - - - - - |

 Remote | | |

 ACs \->| ADF |

 +----------------------+

 ^

 +------+ |Policy AC

 | | |Local ACs

 | LDAP |-------/ +------+

 | |<------------------| UHO |

 +------+ | |

 +------+

Figure 1. The PERMIS Infrastructure

6. The PERMIS Authorisation Policy

The authorization policy specifies who has what type of access to

which targets, and under what conditions. Domain wide policy

authorization is far more preferable than having separate

discretionary access control (DAC) lists configured into each target.

The latter is hard to manage, duplicates the effort of the

administrators (since the task has to be repeated for each target),

and is less secure since it is very difficult to keep track of which

access rights any particular user has across the whole domain. Policy

based authorization on the other hand allows the domain administrator

(the local SOA/UHO) to specify the authorization policy for the whole

domain, and all targets will then be controlled by the same set of

rules.

The PERMIS authorisation policy uses the hierarchical RBAC model for

specifying authorizations. RBAC has the advantage of scalability over

DAC, and can easily handle large numbers of users, which is

especially important for Internet applications, as there are

typically far fewer roles than users.

The PERMIS project decided to use XML as the policy specification

language, since there are lots of tools around that support XML, it

is fast becoming an industry standard, and raw XML can be read and

understood by many technical people.

The Data Type Definition (DTD) for the PERMIS X.500 PMI RBAC Policy

comprises the following components:

- SubjectPolicy – this specifies the subject domains i.e. only users

from a specified subject domain may be authorized to access

resources covered by this policy.

- RoleHierarchyPolicy – this specifies the different roles

recognised by this policy and their hierarchical relationships to

each other.

- SOAPolicy – this specifies which SOAs are trusted to allocate

roles, and permits the distributed managements of role allocation

to take place. The first SOA in the list is the one for the local

domain, and subsequent SOAs are from trusted remote domains. This

is actually a form of cross certification of remote authorisation

domains.

- RoleAssignmentPolicy – this specifies which roles may be allocated

to which subjects by which SOAs, whether delegation of roles may

take place or not, and how long the roles may be assigned for.

- TargetPolicy – this specifies the target domains covered by this

policy.

- ActionPolicy – this specifies the actions (or methods) supported

by the targets, along with the parameters that should be passed

along with each action e.g. action Open with parameter Filename.

- TargetAccessPolicy – this specifies which roles have permission to

perform which actions on which targets, and under which

conditions. Conditions are specified using Boolean logic and might

contain constraints such as "IF time is GT 9am AND time is LT 5pm

OR IF Calling IP address is a subset of 125.67.x.x". All actions

that are not specified in a Target Access Policy are denied.

A full description of the policy can be found in [7].

7. The PERMIS Java API

The PERMIS Java API comprises 3 simple methods: GetCreds, Decision,

and Shutdown, and a Constructor. The Constructor builds the PERMIS

API Java object. For construction, the AEF passes the name of the

local UHO (the SOA that is the root of trust for authorisation), the

Object Identifier of the authorisation policy, and a list of LDAP

URIs from where the ADF can retrieve the policy AC and role ACs. The

first URI in the list must be that of the local LDAP server. The

policy AC is always retrieved from the first URI in the list, from

the entry with the LDAP DN [9] of the SOA. The Constructor is usually

called immediately the AEF starts up. After construction of the API

has completed, the ADF will have read in and validated the XML policy

that will control all future decisions that it makes.

When a user initiates a call to the target, the AEF authenticates the

user, then passes the LDAP DN of the user to the ADF through a call

to GetCreds. If the user authenticated by digitally signing the

opening message, verification of the signature will yield the user's

LDAP DN from the user's PKC. If the user authenticated by another

method, then the AEF will need to map the user's authenticated name

into an LDAP DN. The ADF uses this DN to retrieve all the role ACs of

the user from the list of LDAP URIs passed at initialisation time

(the "pull" model). The role ACs are validated against the policy

e.g. to check that the DN is within a valid subject domain, and to

check that the ACs are within the validity time of the policy etc.

Invalid role ACs are discarded, whilst the roles from the valid ACs

are extracted and kept for the user, and returned to the AEF as a

subject object. GetCreds also supports the "push" model, whereby the

AEF can pass a set of ACs to the ADF, instead of the ADF retrieving

them from the LDAP directories.

Once the user has been successfully authenticated he will attempt to

perform certain actions on the target. At each attempt, the AEF

passes the subject object, the target name, and the attempted action

along with its parameters, to the ADF via a call to Decision.

Decision checks if the action is allowed for the roles that the user

has, taking into account all the conditions specified in the

TargetAccessPolicy. If the action is allowed, Decision returns

Granted, if it is not allowed it returns Denied. The user may attempt

an arbitrary number of actions on different targets, and Decision is

called for each one. In order to stop the user keeping the connection

open for an infinite amount of time (for example until after his ACs

have expired), the PERMIS API supports the concept of a session time

out. On the call to GetCreds the AEF can say how long the session may

stay open before the credentials should be refreshed. If the session

times out, then Decision will throw an exception, telling the AEF to

either close the user's connection or call GetCreds again.

Shutdown can be called by the AEF at any time. Its purpose is to

terminate the ADF and cause the current policy to be discarded. This

could happen when the application is gracefully shutdown, or if the

SOA wants to dynamically impose a new authorisation policy on the

domain. The AEF can follow the call to Shutdown with a new

Constructor call, and this will cause the ADF to read in the latest

authorisation policy and be ready to make access control decisions

again.

A full description of the PERMIS Java API can be found in [8].

8. Acknowledgements

The author would like to thank the European Union for partially

funding this project under the Information Society Initiative For

Standardization (ISIS) program Contract Number 503163.

9. Copyright

Copyright (C) The Internet Society (date). All Rights Reserved.

This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it

or assist in its implementation may be prepared, copied, published

and distributed, in whole or in part, without restriction of any

kind, provided that the above copyright notice and this paragraph are

included on all such copies and derivative works. However, this

document itself may not be modified in any way, such as by removing

the copyright notice or references to the Internet Society or other

Internet organizations, except as needed for the purpose of

developing Internet standards in which case the procedures for

copyrights defined in the Internet Standards process must be

followed, or as required to translate it into languages other than

English.

The limited permissions granted above are perpetual and will not be

revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an

"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

10. References

[1] S. Bradner. "The Internet Standards Process -- Revision 3", RFC

2026, October 1996.

[2] Blaze, M., Feigenbaum, J., Ioannidis, J. "The KeyNote Trust-

Management System Version 2", RFC 2704, September 1999

[3] ITU-T Rec. X.509(2001) The Directory: Authentication Framework

[4] J.Vollbrecht et al. "AAA Authorization Framework", RFC 2904,

August 2000

[5] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 "Security

Frameworks for open systems: Access control framework"

[6] ITU-T Rec. X.501(1993) The Directory: Models

[7] Chadwick, D.W., Otenko, A. "RBAC Policies in XML for X.509 Based

Privilege Management" to be presented at IFIP SEC 2002, Egypt, May

2002

[8] Chadwick, D.W., Otenko, A. "The PERMIS Java Authorisation API".

Internet Draft to be written.

[9] Wahl, M., Kille, S., Howes, T. "Lightweight Directory Access

Protocol (v3): UTF-8 String Representation of Distinguished Names",

RFC2253, December 1997

[10] D. Chadwick, S.Legg. "Internet X.509 Public Key Infrastructure -

Additional LDAP Schema for PKIs and PMIs", Internet Draft <draft-

pkix-ldap-schema-01.txt>, September 2000

11. Authors Address

David Chadwick

IS Institute

University of Salford

Salford M5 4WT

England

Email: d.w.chadwick@salford.ac.uk

Tel: +44 161 295 5351

