764 research outputs found

    Traffic monitoring using image processing : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Information and Telecommunications Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Traffic monitoring involves the collection of data describing the characteristics of vehicles and their movements. Such data may be used for automatic tolls, congestion and incident detection, law enforcement, and road capacity planning etc. With the recent advances in Computer Vision technology, videos can be analysed automatically and relevant information can be extracted for particular applications. Automatic surveillance using video cameras with image processing technique is becoming a powerful and useful technology for traffic monitoring. In this research project, a video image processing system that has the potential to be developed for real-time application is developed for traffic monitoring including vehicle tracking, counting, and classification. A heuristic approach is applied in developing this system. The system is divided into several parts, and several different functional components have been built and tested using some traffic video sequences. Evaluations are carried out to show that this system is robust and can be developed towards real-time applications

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Vehicle Detection and Tracking Techniques: A Concise Review

    Get PDF
    Vehicle detection and tracking applications play an important role for civilian and military applications such as in highway traffic surveillance control, management and urban traffic planning. Vehicle detection process on road are used for vehicle tracking, counts, average speed of each individual vehicle, traffic analysis and vehicle categorizing objectives and may be implemented under different environments changes. In this review, we present a concise overview of image processing methods and analysis tools which used in building these previous mentioned applications that involved developing traffic surveillance systems. More precisely and in contrast with other reviews, we classified the processing methods under three categories for more clarification to explain the traffic systems

    Background Subtraction in Video Surveillance

    Get PDF
    The aim of thesis is the real-time detection of moving and unconstrained surveillance environments monitored with static cameras. This is achieved based on the results provided by background subtraction. For this task, Gaussian Mixture Models (GMMs) and Kernel density estimation (KDE) are used. A thorough review of state-of-the-art formulations for the use of GMMs and KDE in the task of background subtraction reveals some further development opportunities, which are tackled in a novel GMM-based approach incorporating a variance controlling scheme. The proposed approach method is for parametric and non-parametric and gives us the better method for background subtraction, with more accuracy and easier parametrization of the models, for different environments. It also converges to more accurate models of the scenes. The detection of moving objects is achieved by using the results of background subtraction. For the detection of new static objects, two background models, learning at different rates, are used. This allows for a multi-class pixel classification, which follows the temporality of the changes detected by means of background subtraction. In a first approach, the subtraction of background models is done for parametric model and their results are shown. The second approach is for non-parametric models, where background subtraction is done using KDE non-parametric model. Furthermore, we have done some video engineering, where the background subtraction algorithm was employed so that, the background from one video and the foreground from another video are merged to form a new video. By doing this way, we can also do more complex video engineering with multiple videos. Finally, the results provided by region analysis can be used to improve the quality of the background models, therefore, considerably improving the detection results

    Detecting and Shadows in the HSV Color Space using Dynamic Thresholds

    Get PDF
    The detection of moving objects in a video sequence is an essential step in almost all the systems of vision by computer. However, because of the dynamic change in natural scenes, the detection of movement becomes a more difficult task. In this work, we propose a new method for the detection moving objects that is robust to shadows, noise and illumination changes. For this purpose, the detection phase of the proposed method is an adaptation of the MOG approach where the foreground is extracted by considering the HSV color space. To allow the method not to take shadows into consideration during the detection process, we developed a new shade removal technique based on a dynamic thresholding of detected pixels of the foreground. The calculation model of the threshold is established by two statistical analysis tools that take into account the degree of the shadow in the scene and the robustness to noise.  Experiments undertaken on a set of video sequences showed that the method put forward provides better results compared to existing methods that are limited to using static thresholds

    Moving Cast Shadow Detection

    Get PDF

    Moving cast shadows detection methods for video surveillance applications

    Get PDF
    Moving cast shadows are a major concern in today’s performance from broad range of many vision-based surveillance applications because they highly difficult the object classification task. Several shadow detection methods have been reported in the literature during the last years. They are mainly divided into two domains. One usually works with static images, whereas the second one uses image sequences, namely video content. In spite of the fact that both cases can be analogously analyzed, there is a difference in the application field. The first case, shadow detection methods can be exploited in order to obtain additional geometric and semantic cues about shape and position of its casting object (’shape from shadows’) as well as the localization of the light source. While in the second one, the main purpose is usually change detection, scene matching or surveillance (usually in a background subtraction context). Shadows can in fact modify in a negative way the shape and color of the target object and therefore affect the performance of scene analysis and interpretation in many applications. This chapter wills mainly reviews shadow detection methods as well as their taxonomies related with the second case, thus aiming at those shadows which are associated with moving objects (moving shadows).Peer Reviewe

    Detecting and Shadows in the HSV Color Space Using Dynamic Thresholds

    Get PDF
    The detection of moving objects in a video sequence is an essential step in almost all the systems of vision by computer. However, because of the dynamic change in natural scenes, the detection of movement becomes a more difficult task. In this work, we propose a new method for the detection moving objects that is robust to shadows, noise and illumination changes. For this purpose, the detection phase of the proposed method is an adaptation of the MOG approach where the foreground is extracted by considering the HSV color space. To allow the method not to take shadows into consideration during the detection process, we developed a new shade removal technique based on a dynamic thresholding of detected pixels of the foreground. The calculation model of the threshold is established by two statistical analysis tools that take into account the degree of the shadow in the scene and the robustness to noise.  Experiments undertaken on a set of video sequences showed that the method put forward provides better results compared to existing methods that are limited to using static thresholds

    Vision-based Detection, Tracking and Classification of Vehicles using Stable Features with Automatic Camera Calibration

    Get PDF
    A method is presented for segmenting and tracking vehicles on highways using a camera that is relatively low to the ground. At such low angles, 3D perspective effects cause significant appearance changes over time, as well as severe occlusions by vehicles in neighboring lanes. Traditional approaches to occlusion reasoning assume that the vehicles initially appear well-separated in the image, but in our sequences it is not uncommon for vehicles to enter the scene partially occluded and remain so throughout. By utilizing a 3D perspective mapping from the scene to the image, along with a plumb line projection, a subset of features is identified whose 3D coordinates can be accurately estimated. These features are then grouped to yield the number and locations of the vehicles, and standard feature tracking is used to maintain the locations of the vehicles over time. Additional features are then assigned to these groups and used to classify vehicles as cars or trucks. The technique uses a single grayscale camera beside the road, processes image frames incrementally, works in real time, and produces vehicle counts with over 90% accuracy on challenging sequences. Adverse weather conditions are handled by augmenting feature tracking with a boosted cascade vehicle detector (BCVD). To overcome the need of manual camera calibration, an algorithm is presented which uses BCVD to calibrate the camera automatically without relying on any scene-specific image features such as road lane markings
    • …
    corecore