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Abstract

A method is presented for segmenting and tracking vehicles on highways using a

camera that is relatively low to the ground. At such low angles, 3D perspective effects

cause significant appearance changes over time, as well as severe occlusions by vehicles

in neighboring lanes. Traditional approaches to occlusionreasoning assume that the vehi-

cles initially appear well-separated in the image, but in our sequences it is not uncommon

for vehicles to enter the scene partially occluded and remain so throughout. By utilizing

a 3D perspective mapping from the scene to the image, along with a plumb line projec-

tion, a subset of features is identified whose 3D coordinatescan be accurately estimated.

These features are then grouped to yield the number and locations of the vehicles, and

standard feature tracking is used to maintain the locationsof the vehicles over time. Ad-

ditional features are then assigned to these groups and usedto classify vehicles as cars or

trucks. The technique uses a single grayscale camera besidethe road, processes image

frames incrementally, works in real time, and produces vehicle counts with over 90% ac-

curacy on challenging sequences. Adverse weather conditions are handled by augmenting

feature tracking with a boosted cascade vehicle detector (BCVD). To overcome the need

of manual camera calibration, an algorithm is presented which uses BCVD to calibrate the

camera automatically without relying on any scene-specificimage features such as road

lane markings.
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Chapter 1

Introduction

Traffic data such as vehicle counts, speeds, and classification are important in traffic

engineering applications, transportation planning, and Intelligent Transportation Systems

(ITS). Collecting traffic data manually by direct observations of human observers has a

number of drawbacks [4] including high cost, extreme weather and difficulties imposed

by staffing limitations. These data can be acquired automatically using one of the many

available sensor technologies summarized in Table1.

While in-road technologies such as inductive loop detectorsoffer good accuracy for

counts and presence detection, their installation and maintenance causes traffic disruption.

Sensors that are placed on the pavements (magnetometers, road tubes) can be damaged by

snow removal equipment or street sweepers. As mentioned in [4] at times it is difficult to

obtain accurate counts using intrusive technologies due toroadway geometry (e.g., geom-

etry where there are significant lane changes or where vehicles do not follow a set path in

making turns). Some of the non-intrusive roadside sensors might be prohibitive due to high

cost (e.g., laser) or low precision (e.g., microwave). Infrared sensors have an advantage of

day/night operation and perform better than visible wavelength sensors in fog. However, in

addition to the problem of unstable detection zones, for reliable operation at least one sen-
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sor is required in each traffic lane (a notable exception is the TIRTL sensor [1]). Ultrasonic

sensors exhibit difficulty in detecting snow-covered vehicles and are sensitive to changes

in ambient temperature and humidity. In addition, the problem of detecting motorcycles

remains elusive for the sensors described above.

The output of these sensors is a poor description of the traffic events. This is a seri-

ous limitation in case of a critical situation, where a humanoperator is required to make a

decision based on the sensor data. In such cases, video sensors provide the information in

the form of live video of the scene. In addition, a single video sensor placed at an appropri-

ate position provides wide area coverage making it possibleto detect incidents in multiple

lanes simultaneously. The same is the case in calculating queue lengths. Another advan-

tage of video is that it provides sufficient information for vehicle tracking to be feasible,

which is useful for detecting events such as sudden lane changes, vehicles moving in the

wrong direction, stalled vehicles etc.

1.1 Video detection and vision-based tracking

The use of video image processing for traffic monitoring was initiated in the mid

1970s in the United States and abroad, most notably in Japan,France, Australia, England,

and Belgium [50]. The hardware and the algorithms used for estimating traffic parameters

have seen a great improvement over the years. All video detection systems used for traffic

monitoring can be broadly classified in two categories:1) Systems which rely on local-

ized incident detections, and2) Systems which track individual vehicles. The advantage

of the first is that the computational requirements are quitelow, and algorithms are rela-

tively simple. In the case of vehicle tracking systems, sophisticated algorithms are needed

and are usually computationally demanding. Vehicle tracking systems offer more accurate

estimation of microscopic traffic parameters like lane changes, erratic motion etc. By the

2



Type Advantages Disadvantages

Inductive
loop
detector

• Low per-unit cost
• Large experience base
• Relatively good performance

• Installation and maintenance require
traffic disruption

• Easily damaged by heavy vehicles,
road repairs, etc.

Microwave
(Radar)

• Installation and repair do not require
traffic disruption

• Direct measurement of speed
• Multilane operation
• Compact size

• May have vehicle masking in multi-
lane application

• Resolution impacted by Federal
Communications Commission
(FCC) approved transmit frequency

• Relatively low precision
Laser • Can provide presence, speed, and

length data
• May be used in an along-the-road or

an across-the-road orientation with a
twin detector unit

• Affected by poor visibility and heavy
precipitation

• High cost

Infrared • Day/night operation
• Installation and repair do not require

traffic disruption
• Better than visible wavelength sen-

sors in fog
• Compact size

• Sensors have unstable detection zone
• May require cooled IR detector for

high sensitivity
• Susceptible to atmospheric obscu-

rants and weather
• One per lane required

Ultrasonic • Can measure volume, speed, occu-
pancy, presence, and queue length

• Subject to attenuation and distortion
from a number of environmental fac-
tors (changes in ambient tempera-
ture, air turbulence, and humidity)

• Difficult to detect snow-covered ve-
hicles

Magneto-
meter

• Suitable for installation in bridge
decks or other hard concrete surfaces
where loop detectors cannot be in-
stalled

• Limited application
• Medium cost

Video
image
process-
ing

• Provides live image of traffic (more
information)

• Multiple lanes observed
• No traffic interruption for installation

and repair
• Vehicle tracking

• Live video image requires expensive
data communication equipment

• Different algorithms usually re-
quired for day and night use

• Possible errors in traffic data transi-
tion period

• Susceptible to atmospheric obscu-
rants and adverse weather

Table 1.1: Performance comparison among existing incidentdetection technologies [47].
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late 1980s, video-detection systems for traffic surveillance generated sufficient interest to

warrant research to determine their viability as an inductive loop replacement [51]. At

present, there are a number of commercial systems being usedthroughout U.S. for manual

as well as automatic traffic monitoring and incident detection. Majority of these systems

use localized detection zones for counting vehicles. Once the detection zones are marked

on the image, the pixel values in each detection zone is monitored for a change over time.

Combining this simple technique with some heuristics gives accurate vehicle counts in fa-

vorable conditions (camera placement high above the ground, head-on view, free flowing

traffic, clear weather and absence of shadows).

In case of non-ideal camera placement, spillover (due to camera perspective, the

image of a tall vehicle spills over into neighboring lanes) results into false detections. Fig-

ure 1.1 illustrates an examples of this problem where a large vehicle wrongfully triggers

multiple detection zones in a popular commercial system. Another instance where such a

simple approach fails is in the case of shadows. As shown in Figure1.2 shadow of a car

triggers the detection zone and is counted as a vehicle in another commercial system (Iteris

vantage). In case of a busy intersection, such a false alarms(especially in left-turn lanes)

would have an adverse effect on the signal timing coordination.

Such errors can be avoided by expanding the goal of the systemto detect and track

vehicles over time as opposed to local change-detection methods (simple image processing

techniques). In addition vehicle tracking makes it possible to detect traffic events such as

near crashes and hazardous driving patterns. With availability of powerful and low-cost

computing resources, using computer vision for detection and tracking of vehicles is now

feasible for practical applications.
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Figure 1.1: An example where large vehicles trigger multiple detection zones resulting in
over counting. The output is from a popular commercial system (Autoscope). It should be
noted that the commercial system is not designed to handle such a situation and it produces
good results when the camera is placed high above the ground (40 feet or higher) with
sufficient tilt angle.

Figure 1.2: Shadow of a car incorrectly triggers a detectionin neighboring lane.
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1.2 Previous work

Tracking vehicles using computer vision has been an interesting topic of research

[6, 46, 13, 15, 44, 12, 22, 65, 43, 31, 8, 35, 34, 36, 37]. Number of different approaches

have been proposed in the past, each having its own advantages and shortcomings. Ap-

proaches which assume that objects to be tracked (vehicles)have already been initialized

are not considered in the following discussions, since suchsystems can not be used in auto-

matic traffic analysis. Techniques used for vehicle detection and tracking can be classified

into following popular approaches:

Background subtraction: Background subtraction is a popular technique used by many

vehicle-tracking systems to detect and track vehicles whenthey are well-separated in the

image [6, 46, 13, 15, 44, 12]. Many advancements have been made in recent years in adapt-

ing the background image to lighting changes [12, 22, 30, 65] and in reducing the effects of

shadows [28, 38]. A well-known challenge for background subtraction (as well as with the

closely-related approach of frame differencing [17, 58, 39, 48, 14]) occurs when vehicles

overlap in the image, causing them to merge into a single foreground blob. Koller et al. [43]

use 2D splines to solve this occlusion problem, while other researchers employ graph as-

sociation or split-and-merge rules to handle partial or complete occlusions [22, 48, 49, 30].

Although these solutions can disambiguate vehicles after an occlusion occurs, they require

the vehicle to either enter the scene unoccluded or to becomeunoccluded at some point

during its trajectory in the camera field of view. In congested traffic, such may never be the

case.

Active contours: A closely related approach to blob tracking is based on tracking active

contours (popularly knows assnakes) representing an object’s boundary. Vehicle tracking
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using active contour models has been reported in [43]. Contour tracked is guided by in-

tensity and motion boundaries. A contour is initialized fora vehicle using a background

difference image. Tracking is achieved using two Kalman filters, one for estimating the

affine motion parameters, and the other for estimating the shape of the contour. An explicit

occlusion detection step is performed by intersecting the depth ordered regions associated

to the objects. The intersection is excluded in the shape andmotion estimation. Results

are shown on real world sequences without shadows or severe occlusions. The algorithm

is limited to tracking cars.

Wireframe models: An alternative to using temporal information is to match wireframe

models to video images [70, 42, 62, 23]. Ferryman et al. [19] combine a 3D wireframe

model with an intensity model of a vehicle to learn the appearance of the vehicle over time.

Kim and Malik [41] match vehicle models with line features from mosaic imagescaptured

from cameras on top of a 30-story building next to the freewayin order to recover detailed

trajectories of the vehicles. Alessandretti et al. [5] employ a simpler model, namely the

2D symmetry of the appearance of a vehicle in an image. One of the major drawbacks to

model-based tracking is the large number of models needed due to differing vehicle shapes

and camera poses.

Markov random field: An algorithm for segmenting and tracking vehicles in low angle

frontal sequences has been proposed in [31]. In their work, the image is divided into8 × 8

pixel blocks, and a spatiotemporal Markov random field (ST-MRF) is used to update an

object map using the current and previous image. Motion vectors for each block are calcu-

lated, and the object map is determined by minimizing a functional combining the number

of overlapping pixels, the amount of texture correlation, and the neighborhood proximity.

The algorithm does not yield 3D information about vehicle trajectories in the world coor-
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dinate system, and to achieve accurate results it is run on the sequence in reverse so that

vehicles recede from the camera. The authors found that the low-angle scenario is indeed a

challenging problem, although the accuracy of their results increased two folds, when they

processed the sequence in reverse.

Color and pattern: Chachich et al. [11] use color signatures in quantized RGB space

for tracking vehicles. In this work, vehicle detections areassociated with each other by

combining color information with driver behavior characteristics and arrival likelihood.

In addition to tracking vehicles from a stationary camera, apattern recognition-based ap-

proach to on-road vehicle detection has been studied in [67]. The camera is placed inside

a vehicle looking straight ahead, and vehicle detection is treated as a pattern classification

problem using support vector machines (SVMs).

Feature points: A third alternative that has been employed is the tracking ofpoint fea-

tures. Beymer et al. [8] describe a system that tracks features throughout the video se-

quence, then groups the features according to motion cues inorder to segment the vehicles.

Because the camera is high above the ground, a single homography is sufficient to map the

image coordinates of the features to the road plane, where the distances between pairs of

features and their velocities are compared. In another approach, Saunier et al. [55] use

feature points to track vehicles through short-term occlusions, such as poles or trees. Like

the background subtraction systems mentioned above, theirapproach has difficulty initial-

izing and tracking partially occluded vehicles. Recently Kim [40] proposed an approach

of combining background subtraction with dynamic multi-level feature grouping for track-

ing vehicles. However, grouping parameters are computed using semi-supervised learning

which needs manual intervention.

All of this previous work applies to cameras that are relatively high above the
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ground. At such heights, the problems of occlusion and vehicle overlap are mitigated, thus

making the problem easier. One exception to this rule is the work of Kamijo et al. [32],

in which a spatiotemporal Markov random field is used to update an object map using the

current and previous images. Motion vectors for each image region are calculated, and the

object map is determined by minimizing a functional combining the number of overlapping

pixels, the amount of texture correlation, and the neighborhood proximity. To achieve ac-

curate results, the algorithm is run on the image sequence inreverse so that vehicles recede

from the camera. Extending the work of Beymer et al. [8] to the case of low-angle cameras,

a simple but effective technique is introduced for estimating the 3D coordinates of features

in an incremental fashion. The contribution of this research is an effective combination

of background subtraction and feature tracking to handle occlusions, even when vehicles

remain occluded during their entire visible trajectory. Unlike their work, the approach pre-

sented in this dissertation handles features that cannot betracked continually throughout

the trajectory, which is a common occurrence in dense trafficconditions.

1.3 Calibration of traffic monitoring cameras

Camera calibration is an essential step in such systems to measure speeds, and it

often improves the accuracy of tracking techniques for obtaining vehicles counts as well.

Typically, calibration is performed by hand, or at least semi-automatically. For example, an

algorithm for interactive calibration of a Pan-Tilt-Zoom (PTZ) camera has been proposed

in [64]. Bas and Crisman [7] use the known height and the tilt angle of the camera for

calibration using a single set of parallel lines (along the road edges) drawn by the user, while

Lai [45] removes the restriction of known height and tilt angle by using an additional line

of known length perpendicular to the road edges. The technique of Fung et al. [21], which

uses the pavement markings and known lane width, is robust against small perturbations in
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the markings, but it requires the user to draw a rectangle formed by parallel lane markings

in adjacent lanes. The problem of ill-conditioned vanishing points (i.e., parallel lines in

the world appearing parallel in the image) has been addressed by He et al. [26] using

known length and width of road lane markings. Additional techniques for manual camera

calibration are described in [22, 8].

Recently the alternative of automatic camera calibration has gained some attention.

Automatic calibration would not only reduce the tediousness of installing fixed cameras,

but it would also enable the use of PTZ cameras without manually recalibrating whenever

the camera moves. Dailey et al. [17] relate pixel displacement to real-world units by fitting

a linear function to scaling factors obtained using a known distribution of typical length

of vehicles. Sequential image frames are subtracted, and vehicles are tracked by matching

the centroids of the resulting blobs. At low camera heights,the resulting spillover and

occlusion cause blobs to be merged, which renders such tracking ineffective. In follow-

up research, Schoepflin and Dailey [58] dynamically calibrate PTZ cameras using lane

activity maps which are computed by frame-differencing. Asnoted in their paper, spillover

is a serious problem for moderate to large pan angles, and this error only increases with low

camera heights. During experiments it was found that estimating lanes using activity maps

is impossible with pan angles as small as10◦ when the camera is placed20 feet above the

ground, due to the large amount of spillover and occlusion that occur due to tall vehicles.

In an alternate approach, Song et al. [60] use edge detection to find the lane markings

in the static background image, from which the vanishing point is estimated by assuming

that the camera height and lane width are known in advance. The method requires the lane

markings to be visible, which may not be true under poor lighting or weather conditions. In

addition, estimating the static background is not always possible when the traffic is dense,

it requires time to acquire a good background image, and background subtraction does not

work well at low camera heights due to occlusion and spillover, as noted above. More
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Figure 1.3: Left: Operator sets up detection zones (thick lines) along the lane centers (long
thin lines) to count vehicles and measure speeds. Right: Evenafter a small PTZ movement
of the camera, the detection zones are no longer along the lane centers.

recently Zhang et al. [69] presented an approach using three vanishing points to estimate

the calibration parameters. However, their approach relies on the presence of sufficient

vertical structures or pedestrians in the scene to recover the vanishing point perpendicular

to the road plane.

A system for automatic calibration of road-side traffic monitoring cameras will be

presented that overcomes several of the limitations mentioned above. The approach does

not require pavement markings or prior knowledge of the camera height or lane width; it is

unaffected by spillover, occlusion, and shadows; and it works in dense traffic and different

lighting and weather conditions.

1.4 Outline

The outline for the rest of the dissertation is as follows. A vehicle detection, track-

ing and classification system based on feature tracking is discussed in Chapter2. This

work has been published in the IEEE Transactions on Intelligent Transportation Systems

[35]. Chapter3 focuses on the recent efforts to augment the feature tracking based vehicle

detection with pattern recognition. Camera calibration is an essential step for tracking and
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measuring speeds of vehicles. Different techniques of calibrating a camera from the video

are presented in Chapter4 and finally an algorithm to calibrate the camera automatically

using a pattern detector is presented in Chapter5. The work on automatic calibration has

been presented at the 87th annual meeting of the Transportation Research Board (TRB)

[33].
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Chapter 2

Detection and tracking of vehicles using

feature points

A system for detection, tracking and classification of vehicles based on feature point

tracking is presented in this chapter. An overview of the system is shown in Figure2.1.

Feature points are automatically detected and tracked through the video sequence, and

features lying on the background or on shadows are removed bybackground subtraction,

leaving only features on the moving vehicles. These features are then separated into two

categories: stable and unstable. Using a plumb line projection (PLP), the 3D coordinates

of the stable features are computed, these stable features are grouped together to provide a

segmentation of the vehicles, and the unstable features arethen assigned to these groups.

The final step involves eliminating groups that do not appearto be vehicles, establishing

correspondence between groups detected in different imageframes to achieve long-term

tracking, and classifying vehicles based upon the number ofunstable features in the group.

The details of these steps are described in the following subsections.
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Figure 2.1: Overview of the system for detection and tracking of vehicles using stable
features.

2.1 Algorithm description

2.1.1 Calibration

According to a pinhole camera model, a world pointp = [ x y z]T projects onto

a pointu = [ u v]T on an image plane through the equation

ŭ = Cp̆, (2.1)

whereC is a3×4 camera calibration matrix, and̆u = [ uw vw w]T andp̆ = [ x y z 1 ]T

are homogeneous coordinates of the image and world points, respectively [24]. Sincew is

an arbitrary nonzero scale factor,C has 11 unique parameters. Thus, the correspondence

of at least six points in a non-degenerate configuration leads to an overdetermined system

that can be solved for these parameters.

To calibrate the system, the user manually draws two lines along the edges of the
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Figure 2.2: Manual camera calibration. LEFT: The user draws three lines, two along the
edges of the road (solid) and one perpendicular to the direction of travel (dashed). The lines
can be of arbitrary length. RIGHT: The 3D tracking zone is automatically computed.

road and one line perpendicular to the direction of travel, as shown in Figure2.2. The

latter line is estimated by sequencing through the video andfinding the intensity edge

between the windshield and hood of a light-colored vehicle.These three lines yield two

vanishing points, from which the internal and external camera parameters are computed

automatically using the mathematical formulation described in chapter4. The remaining

six vertices of the cuboid defining the 3D tracking zone are then computed from the user-

specified lane width, number of lanes, and desired length andheight of the cuboid. For

the world coordinate system,y-axis points along the direction of travel along the road, the

z-axis is perpendicular to the road plane with the positive axis pointing upward andz = 0

on the road surface, and thex-axis is chosen to form a right-hand coordinate system.

Because the overall system is insensitive to small inaccuracies in the calibration

(quantified in Section2.2), this process is widely applicable to prerecorded sequences cap-

tured from unknown cameras. Note that the calibration procedure recovers a full 3D to 2D

perspective mapping, which is necessary to handle the perspective effects encountered at

low camera angles, unlike previous 2D to 2D calibration tools that recover only a planar

mapping between the road surface and image plane [8]. Also note that perspective projec-
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tion leads to more robust results than the multi-layer homography used in [37], due to the

reduced number of free parameters.

2.1.2 Background subtraction

The background of the scene is learned by storing the averagegray level of each

pixel over a fixed period of time. For the experimental sequences, 20 seconds of video was

found to be sufficient for this task, but a higher traffic density would require proportionally

more time to adequately remove the effects of the dynamic foreground objects. Since this

learning is performed only once, it is applicable to any stretch of road for which the traffic

is moderately dense for some period of time.

Once the background is learned off-line, the technique of background subtraction,

including morphological operations and thresholding, is applied to each image of the se-

quence to yield a binary foreground mask that indicates whether each pixel is foreground

or background. To cope with lighting and environmental changes, the background is adap-

tively updated as the sequence is processed, using this maskto preclude inadvertently

adapting to foreground intensities [22]. One of the serious problems in using background

subtraction for object tracking is the distraction caused by moving shadows, which mis-

takenly appear as foreground pixels. It is not uncommon for shadows to cause multiple

nearby vehicles to merge into a single blob, or for the shadows to be detected as separate

vehicles themselves. Although the problem of shadow detection has been addressed by

many researchers, a general solution remains elusive [53, 27, 54, 16, 29, 52, 61, 63].

Background subtraction is used to perform a simple filtering operation on the fea-

tures, as shown in Figure2.3. Any feature that lies in the background region is immediately

discarded from further processing, leaving only the features that lie on foreground objects.

To reduce the effects of shadows, any feature that lies within a small distanceτs from a
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Figure 2.3: LEFT: The foreground mask resulting from background subtraction. RIGHT:
The features being tracked in this frame of video, divided into three kinds: (1) those that
lie on the background (shown as small dots), (2) those that lie within τs pixels of the back-
ground (shown as small squares), and (3) those on moving vehicles (shown as large circles).
Only the latter features are considered in further processing, thus reducing the potential dis-
traction from the background or shadows.

background pixel is ignored. (τs = 2 pixels in all experiments.) This simple procedure

removes many of the features due shadow edges alone, since the road surface tends to be

fairly untextured, while removing only a small fraction of legitimate foreground features.

2.1.3 Plumb line projections

Feature points are automatically selected and tracked using the Lucas-Kanade fea-

ture tracker [59]. The OpenCV implementation of the feature tracker which uses the Sharr

gradient operator [10] was used for all the experiments. A coarse-to-fine pyramidal strat-

egy allow for large image motions, and features are automatically selected, tracked, and

replaced.

Because of the dimension loss in projecting the 3D world to a 2Dimage, it is im-

possible to uniquely determine the coordinates of the corresponding world point from the

image coordinates of a feature point. However, if one of the world coordinates is known

from some additional source of information, then the other two coordinates can be com-
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puted. In this section a method is presented for exploiting this capability.

Suppose we have a feature pointu and a binary foreground maskF from back-

ground subtraction, as shown in Figure2.4. Projectingu downward in the image plane to

the first encountered background pixel yields the pointv that we call theplumb line pro-

jection (PLP)of u. Let v = ψF(u) denote this transformation. In addition, letp = Φ(u)

denote the preimage ofu (i.e., the world point whose projection onto the image isu), and

let q = Φ(v) be the preimage ofv. Under certain assumptions whose validity we shall

examine in a moment,p andq have the samex andy coordinates as each other, andq lies

on the road surface, thus providing us with the constraints that we need to compute the

world coordinates ofp.

Letϕz : R
2 → R

3 be the mapping from a 2D image point to its corresponding world

point at heightz. In other words, an image pointu could arise from any world point along

the projection ray passing throughu and the camera focal point, andp = ϕz(u) is the one

whose third coordinate isz. Expanding and rearranging (2.1) yields the inhomogeneous

equation:

ϕz(u) = K−1(u)tz(u), (2.2)

where

K (u) =





c31u− c11 c32u− c12 0

c31v− c21 c32v− c22 0

0 0 1




(2.3)

tz(u) =





c14 − u + z(c13 − c33u)

c24 − v + z(c23 − c33v)

z




, (2.4)

u = [ u v]T is the projection ofp, andcij is theij th element ofC. (See AppendixA for

the derivation.)
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Figure 2.4: TOP: An image (left) and foreground maskF (right) with a feature pointu and
its PLPv = ψF(u). BOTTOM: The 3D coordinates of the preimagep = Φ(u) of the feature
can be computed under the assumption thatq = Φ(v) lies directly belowp on the surface
of the road. The pointsp0 andpM are the intersections of the projection ray with the top
and bottom of the calibration box.
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Since the world coordinate system is oriented so thatz = 0 is the road plane, we

can compute the world coordinates ofq asϕ0(v), which also yields thex andy coordinates

of p. To compute the 3D coordinates ofp, then, all we need is to compute itsz coordinate,

which is done by solving (2.1) in a least squares manner:

z̃ =
hT

p hc

hT
p hp

, (2.5)

where

hp =




u c33 − c13

v c33 − c23





hc =




c14 − u c34 + (c11 − u c31) x + (c12 − u c32) y

c24 − v c34 + (c21 − v c31) x + (c22 − v c32) y



,

andx andy are the first two coordinates ofp andq. z̃ denotes the estimated height ofp.

2.1.4 Identifying and grouping stable features

The technique just presented for computing the 3D coordinates of the preimage of a

feature pointu from its plumb line projection relies upon three assumptions: (1) the world

pointsp = Φ(u) andq = Φ(v) lie on the same vertical axis, (2) thezth coordinate ofq

is zero, and (3) the foreground maskF perfectly labels the pixels directly underu (in the

image). In other words, the method assumes that the vehicle is shaped like a box, that the

features lie on one of the four surfaces of the box orthogonalto the road plane, and that

there are no occluding vehicles or shadows in the vicinity. Let us now examine the validity

of these assumptions.

Figure2.5 shows the side view of a vehicle with three feature pointss, t, andu

having preimagesS, T, andU, respectively, on the surface of the vehicle. Suppose the third
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Figure 2.5: Three points on the surface of a vehicle viewed bya camera, with their esti-
mated coordinates using PLP. The points lower to the ground yield less error.

assumption is satisfied, so thatv = ψF(s) = ψF(t) = ψF(u), i.e., all three points share the

same PLP, and the estimated pointṼ = ϕ0(v) is the actual pointV. Using the coordinates

Ṽ, the technique previously described can be used to estimatethe world coordinates̃S,

T̃, andŨ. From the figure, it is evident that the error in prediction ofworld coordinates

is generally greater for points that are higher above the road plane. More precisely, let

us defineΩ as the set of vehicle shapes such that the slope of the contourat any point

never exceeds the boundµ
max

(x, z) (see Appendix for the derivation). Then we have the

following observation:

Observation 1 For any two pointsS = (xS, yS, zS) andU = (xU, yU, zU) on the surface of

a vehicle such that zS > zU, the Euclidean error in the estimatẽS will not be less than that

of Ũ, i.e.,|| S̃ − S ||≥|| Ũ − U ||, as long as the vehicle shape is inΩ.

Thus, the Euclidean error in estimating the world coordinates of a point on the

vehicle is a monotonically non-decreasing function of the height of the point. Keep in

mind that the setΩ encompasses nearly all actual vehicle shapes, so that this observation is

widely applicable. Only a vehicle with a severe concavity would be outside the setΩ.
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Another important observation regards the effect of the height of the estimates on

the maximum possible error:

Observation 2 For any two estimated points̃S = (x̃S, ỹS, z̃S) and Ũ = (x̃U, ỹU, z̃U) such

that zS > zU, the maximum possible Euclidean error in the estimateS̃ is greater than that

of Ũ, i.e.,max || S̃ − S ||> max || Ũ − U ||.

To see the validity of this observation, notice from Figure2.5 that the estimated

heightz̃ of a point will always be greater than or equal to its actual height (as long as the

point does not extend past the front of the vehicle). Now consider two vehicles traveling

side by side as shown in Figure2.6, where the camera in 3D is aimed toward the front of

the vehicles at an oblique angle. LetS̃ andŨ be the 3D estimates of two preimages using

the PLP procedure, with̃S higher above the road thañU. Using the upper boundztrue ≤ z̃,

the range of possible locations for the actual preimage is much less for the point lower to

the ground, i.e., the maximum possible erroreu is less than the maximum possible errores.

In the example shown, even the maximum error would not cause the estimate point̃U to

leave the vehicle, whereas with̃S the point could be assigned to the wrong vehicle. Both

observations lead to the conclusion that points close to theroad plane generally exhibit less

error.

In addition to the height of a feature, it is also important toconsider the side of

the vehicle on which the feature lies. For each featureu = [ u v]T, the PLP of the two

points obtained by perturbing the feature horizontally in the image plane is computed (See

Figure2.7): u+ = ψF([ u + δ v ]T) andu− = ψF([ u− δ v ]T). The 3D coordinates of

the preimages are given byp+
u = [ x+, y+, z+ ] = ϕ0(u+) andp−

u = [ x−, y−, z− ] = ϕ0(u−).

If the absolute value of the slope in the road planeξ =| (y+ − y−)/(x+ − x−) | is small,

then the point is more likely to be on the front of the vehicle rather than the side. Since the

shadows on the side tend to be more severe than those on the front, the points on the front
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Figure 2.6: Estimated coordinates of two points using PLP. Because the estimated height is
nearly always greater than the true height, the higher feature is more likely to be assigned
to the wrong vehicle.

are less likely to violate the third assumption and hence aremore reliable.

Putting this analysis together, two kinds of features are obtained, namely,stableand

unstable. A feature pointu is classified as stable if it satisfies the following two conditions:

z̃< ǫz and ξ < ǫslope,

whereǫz andǫslopeare positive, constant parameters of the system. In other words, features

are stable if they lie on the frontal face of the vehicle closeto the road plane. Note that

these criteria require only a single image frame, are robustwith respect to shadows on the

side of the vehicle, and are not affected by errors in featuretracking, unlike the criteria used

in [37].

Once the stable features have been identified, they are grouped in the road plane

(xy-plane) as shown in Figure2.8. Because of the criteria used in selecting stable features,

points belonging to the same vehicle generally have a small deviation in their world coor-
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Figure 2.7: TOP: An image (left) and foreground mask (right), with two unrelated feature
points (u andv) and the PLPs (u+, u−, v+, andv−) of their perturbations. BOTTOM: Points
on the front of the vehicle yield a smaller slope in the road plane than points on the side of
the vehicle.
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(a) (b)

Figure 2.8: Stable features are grouped in the road plane using a region growing algorithm
that compares theiry coordinates.

dinates along they-axis (axis along the length of the road). As a result, a simple region

growing algorithm is sufficient to correctly segment the stable features.

The procedure iterates through the points, adding each point to an existing group

in the same lane if its predictedy-coordinate is withinǫy of the mean of they-coordinates

of all the features in the group. If no such group is found, then a new group is created.

To handle vehicles that straddle two lanes (such as vehiclesthat are changing lanes), two

groups whose means iny differ by no more thanǫy are combined into a single group if their

combined width (along thex-axis) is no more than the lane widthwlane.

This approach is much more computationally efficient and less sensitive to tracking

errors than the technique used in [37], and it operates on a single image frame which facil-

itates incremental processing of the video. It should be noted that only one stable feature

per vehicle is needed in order for the vehicle to be correctlydetected, although in practice

groups with fewer than three features are discarded to reduce the number of spurious false

detections.ǫy = ǫz = 0.4wlane, ǫslope = 1.5, andδ = 3 pixels for all experiments, where

wlane is the width of a lane computed during the calibration step.
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2.1.5 Grouping unstable features

After grouping the stable features, the unstable features are assigned to these groups

using a combination of PLP and motion coherence. Suppose we have two features that are

tracked from locationsu ands in one image frame tou′ ands′ in another (not necessarily

consecutive) image frame. Letpz = ϕz(u) andqz = ϕz(s) denote their possible preimages

in the first frame at heightz, and letp′

z = ϕz(u′) andq′

z = ϕz(s′) denote their possible

preimages in the other frame. Ifs is a stable feature, then we know the coordinates of the

preimagesq = Φ(s) andq′ = Φ(s′), which can then be used to estimate the preimages

p = Φ(u) andp′ = Φ(u′) in the following manner.

The scenario is shown in Figure2.9, with z = 0 the road plane andz = M the top of

the calibration box. If we assume thatp andq are points on the same rigid vehicle that is

only translating, then the motion vectors of the two points are the same:p′−p = q′−q. This

is the motion coherence assumption. Now each point can be represented parametrically as

follows:

p = p0 + α(pM − p0) (2.6)

p′ = p′

0 + α′(p′

M − p′

0),

whereα, α′ ∈ R are the fractional distances along the ray. If we further assume that the

road is horizontally flat, then thez component ofp andp′ are equal, from which it can

easily be shown thatα = α′. Substituting these parametric equations intop′ − p = q′ − q

and solving forα in a least squares manner yields

α =
(∆pM − ∆p0)

T(∆q − ∆p0)

(∆pM − ∆p0)
T(∆pM − ∆p0)

, (2.7)

where∆pM = p′

M −pM, ∆p0 = p′

0 −p0, and∆q = q′−q. As a result, the estimated point
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Figure 2.9: Featuresp andq on a vehicle travel top′ andq′ at a different time. If the
vehicle travels parallel to the road plane, then the coordinates of the unstable featurep can
be computed from the coordinates of the stable featureq.

is given by

p̂ = p0 +
(∆pM − ∆p0)

T(∆q − ∆p0)

(∆pM − ∆p0)
T(∆pM − ∆p0)

(pM − p0) (2.8)

and similarly forp′. All of the quantities on the right hand side are known, sincep0 = ϕ0(u)

andpM = ϕM(u).

Let qi = [ xi
q yi

q zi
q ]T be the coordinates of the centroid of the stable features

in group i. For each unstable featurep the above procedure is used to estimate the world

coordinates of its preimage with respect to groupi by assuming motion coherence with

qi to yield p̂i = [ x̂i
p ŷi

p ẑi
p ]T. In addition, the world coordinates are estimated using

the PLP procedure described in Section2.1.4 to yield p̃ = [ x̃p ỹp z̃p ]T. Using these

estimates, and assuming conditional independence along the different dimensions, a score

is then computed indicating whetherp belongs to groupi:

Li
p = Li

xLi
yLi

zLi
ℓLi

h, (2.9)

where
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Li
x = exp

[
−(xi

q − x̂i
p)

2/σ2
x

]
(2.10)

Li
y =






exp
[
−(yi

q − ŷi
p)

2/σ2
y

]
if ŷi

p > yi
q

exp
[
−(ŷi

p − yi
q + λℓ)

2/σ2
y

]
if ŷi

p < (yi
q − λℓ)

1 otherwise

(2.11)

Li
z =






exp
[
−(ẑi

p)
2/σ2

z

]
if ẑi

p < 0

exp
[
−(z̃p − ẑi

p)
2/σ2

z

]
if ẑi

p > z̃p

1 otherwise

(2.12)

Li
ℓ = exp

[
−(1 − ℓi)2/σ2

ℓ

]
(2.13)

Li
h = exp

[
−(1 − hi)2/σ2

h

]
(2.14)

The first three factors compute a modified Mahalanobis distance from the estimated

coordinates to the centroid of theith vehicle. Li
x favors features which lie close to the

centroid along thex-axis. Since the stable features generally lie on the front of the vehicle,

Li
y assumes that the vehicle occupies a portion of the road betweeny = yi

q andy = yi
q −λℓ,

whereλℓ is the minimum truck length and the positivey axis points in the direction of

traffic flow. Points outside this region are compared with thenearest edge. In the vertical

direction, the vehicle is assumed to occupy the space between z = 0 andz = z̃p, based upon

the upper bound ofztrue mentioned in Section2.1.4.

The last two factors increase the score of larger vehicles, ignoring the actual point

p. Three points are considered: the centroidqi = [ xi
q yi

q zi
q ]T of the stable features

in the group, and two points shifted from the centroid along the y and z axes,qi
ℓ =

[ xi
q yi

q − λℓ zi
q ]T and qi

h = [ xi
q yi

q zi
q + λh ]T. The valuesλℓ andλh are the mini-

mum length and height for a vehicle to be considered a truck. Let the projections of these

points onto the image be denoted byui, ui
ℓ, andui

h, respectively. Let the fraction of pixels
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along a straight line betweenui andui
ℓ that are foreground pixels (in the foreground mask)

beℓi, and let the same fraction along the line betweenui andui
h behi, so that0 ≤ ℓi,hi ≤ 1.

In other words,ℓi andhi indicate the fractional length and height of the vehicle compared

with the minimum truck length and height, respectively. As aresult, the factorsLi
ℓ andLi

h

encourage features that are high off the ground (i.e., unstable features) to be grouped with

larger vehicles (i.e., those with large values ofℓi andhi).

Let a andb be the groups that yield the highest and second highest values, respec-

tively, for the score of this feature. Then the feature is assigned to groupa if La > Lmin

andLa/Lb > Lratio. In other words, these conditions assign an unstable feature to a stable

group if the feature is likely to belong to that group (controlled by Lmin) and at the same

time unlikely to belong to other groups (controlled byLratio). σx = σy = σz = 5 feet,

σℓ = σh = 0.1 pixels,λℓ = 1.2wlane, λh = 0.8wlane, Lmin = 0.8, andLratio = 2 for all

experiments.

2.1.6 Correspondence, validation and classification

The correspondence between the feature groups segmented inthe current frame

and the vehicles (i.e., feature groups) already being tracked is established by computing

the number of stable features shared between the groups. Each vehicle is matched with the

segmented feature groups in the current frame and is associated with the group having the

maximum number of stable features in common. If a vehicle hasno features in common

with any of the groups, then its status is updated as “missing”, and its location in subsequent

frames is updated using its current velocity. For each vehicle a count is kept of the total

number of frames that it was tracked successfully (ηt) and the number of recent consecutive

frames that it has been missing (ηm).

After finding a match for all non-missing vehicles, the remaining unassociated fea-
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ture groups in the current frame are matched with the missingvehicles based on the closest

Euclidean distance between the centroids of the groups in world coordinates. Each missing

vehicle is associated, one at a time, with the closest feature group if that group is within

a distance ofτx andτy in thex andy axes, respectively. Then the remaining unassociated

feature groups in the current frame are initialized as new vehicles.

When a vehicle exits the tracking zone, it is discarded if it has not been tracked for

a sufficient number of frames, i.e.,ηt < τη. This can be viewed as a simplified temporal

filtering to remove spurious and fragmented vehicle detections. In addition, a vehicle is

discarded ifηm > κηt, whereκ ≥ 0, which is important to prevent momentary false

detections from being retained.

To classify a vehicle as a car or truck, (for the experiments,a car is defined as a

vehicle with two axles, and a truck as a vehicle with more thantwo axles). the number

of unstable features associated with that vehicle over all the frames that the vehicle is

tracked is summed. Vehicles with more thanntruck unstable features are classified as trucks,

while the rest are considered cars. Only unstable features are used because they are rarely

associated with cars due to their low height, whereas the number of stable features for

cars and trucks tends to be about the same. The number of unstable features associated

with trucks is usually much greater than that of cars (typically five to ten times higher).

τx = 0.3wlane, τy = 0.5wlane, τη = 4, κ = 2, andntruck = 20 for all experiments.

2.2 Experimental Results

The system presented in this chapter was tested on eleven grayscale video sequences

captured by a 30 Hz camera placed on an approximately nine meter pole on the side of the

road and digitized at320 × 240 resolution. No additional preprocessing was performed

to suppress shadows or to stabilize the occasional camera jitter. For each sequence, an

30



initial calibration step was used to provide an approximatemapping between 2D image

coordinates and 3D world coordinates, as described in Section 2.1.1. After the calibration,

the system was fully automatic, outputting the lane counts,vehicle trajectories, and vehicle

classification (car/truck) in real time.

To convey the variety of conditions in the processed videos,sample image frames

from the sequences are shown in Figure2.10. As can be seen, these sequences differ by the

camera placement, field of view, direction of traffic flow, variations in lighting conditions

(including long shadows), curved roads, scale and angle changes, and number of lanes.

The “long” sequences L1-L7 are 10 minutes each (18,000 imageframes), while the “short”

sequences S8 and S9 are approximately 30 seconds each (900 image frames). Sequences

S1 and S4 were extracted from the same video from which L1 and L4, respectively, were

extracted, with no overlap in image frames between the shortand long versions. Due to

lack of space, S9 is not shown in the figure but closely resembles S8 in terms of road shape,

number of lanes, and camera angle. As mentioned earlier, thesame parameter values were

used in processing all the sequences.

A quantitative assessment of the algorithm’s performance on these sequences is

presented in Table2.1. The segmentation and tracking performance exceeded 90% onall

the sequences, and the classification accuracy was more than95%. The false positive rate

exhibited variation, ranging from 1% to 7% of the total vehicles in all the sequences except

S9, where long shadows caused the rate to reach 12%. The lowerdetection rate in the L3

sequence is due to the vehicles receding from the camera, which reduces the number of

features successfully detected and tracked because of the relatively low texture on the rear

of the vehicles.

Figures2.11through2.13show the results of the algorithm on some example image

frames from the sequences, with the images slightly brightened to increase the contrast of

the annotations. Overlaid on each image are all the features(stable and unstable) of that
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L1 L2

L3 L4

L5 L6

L7 S8

Figure 2.10: Sample image frames from the eleven sequences used in evaluating the algo-
rithm, showing the variety of scenarios considered. S1 and S4 exhibit the same conditions
as L1 and L4, respectively; and S9, which is omitted due to lack of space, closely resembles
S8.

32



Seq. Vehicles Segmented FP Classified
(Trucks) & Tracked

L1 627 (50) 610 (97%) 3 99.2% (4/1)
L2 492 (56) 481 (98%) 18 97.3% (2/11)
L3 325 (38) 298 (92%) 6 97.2% (5/4)
L4 478 (57) 456 (95%) 8 98.5% (3/4)
L5 217 (14) 209 (96%) 7 98.1% (1/3)
L6 102 (20) 97 (95%) 1 98.0% (2/0)
L7 157 (29) 146 (93%) 6 96.8% (3/2)
S1 104 (7) 98 (94%) 5 97.1% (2/1)
S4 43 (3) 39 (91%) 3 97.6% (1/0)
S8 113 (8) 107 (95%) 4 98.2% (1/1)
S9 51 (5) 47 (92%) 6 94.1% (1/2)

Table 2.1: Quantitative results for all the test sequences.From left to right the columns
indicate the sequence name, the total number of vehicles in the sequence (the number
of trucks in parentheses), the number of vehicles correctlysegmented and tracked, the
number of false positives, and the classification rate. In the last column the numbers in
parentheses indicate the number of cars misclassified as trucks, followed by the number of
trucks misclassified as cars.

frame, with the convex hull of each group indicated by a thin black line. The number next

to each group indicates the number of that vehicle, and the letter T is placed next to each

vehicle classified as a truck. The vehicles that are labeled but have no features have already

been successfully detected and classified but have already left the tracking zone though

they have not yet left the image.

Figure2.11demonstrates the ability of the system to segment vehicles which are

severely occluded, often by larger vehicles traveling in adjacent lanes. In (a) the van (#135)

traveling in the middle lane is detected and tracked by the algorithm despite the fact that it

is largely occluded by the truck (#131) throughout the tracking zone. In (c) the car (#542)

is detected in the frame shown as it is coming out from being occluded by the truck, just as

(#541) was detected in a previous frame while it was still partially occluded by the truck.

Similarly, in (d) the vehicle (#5) is detected as it is being disoccluded by the truck in front.

In (e) all the vehicles (#25 - #28) appear as a single blob in the foreground mask and yet
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the algorithm correctly segments them. Traditionally, separating vehicles in such scenarios

has been impossible for background subtraction approaches.

Figure2.12shows sample results for vehicles traveling away from the camera in (a)

through (d), and for a curved road in (e) and (f). In (a) and (b), the algorithm successfully

detects and tracks the vehicles traveling close to each other despite the presence of long

shadows. For (c) and (d), vehicles are moving at a low speed and close to each other due

to the lane closure but are nevertheless tracked correctly.Notice in (e) that the car (#14) is

detected as it is coming out of occlusion from the truck in front. In (f) the cars that were not

yet segmented in (e) (i.e., those behind#13) are successfully detected even though they

are partially occluded.

Some examples involving large tractor-trailers are shown in Figure2.13. In (a) both

the vehicles (#103 and#105) that are occluded by the white van (#101) are correctly de-

tected and tracked. Similarly, the dark colored SUV (#107) traveling adjacent to the truck

(#106) in (b) is detected after a few frames, once a sufficient number of stable features

is found. In (c), (d), and (f), the ability of the algorithm tocorrectly segment and track

vehicles that enter the field of view partially occluded and remain occluded throughout the

tracking zone is again demonstrated. In (e), the features ofa large tractor-trailer are all

correctly grouped into one vehicle despite the large extentthat they cover in the image.

Note that it is the algorithm’s identification of large vehicles (trucks) that enables it to pre-

vent declaring false positives in such cases, when the spillover of vehicles into neighboring

lanes would confuse traditional 2D algorithms. The algorithm also works when the camera

is placed in the center of the road as shown in Figure2.16.

To convey a sense of the limitations of the algorithm, some mistakes are shown in

Figure2.14. In (a) the algorithm fails to detect the car traveling in thefirst lane (indicated

with the letterM, for “missing”). Due to the heavy traffic and its being in the far lane, the

base of the car remain partially occluded by the vehicle in front (#465) throughout the
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Figure 2.11: Results of the algorithm on some image frames, showing the ability of the
algorithm to handle severe occlusions. Below each image is the sequence name and frame
number.
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Figure 2.12: Additional experimental results on sequencesin which the vehicles are moving
away from the camera or the road is curved.
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Figure 2.13: More experimental results demonstrating the performance of the algorithm
when large tractor-trailers occlude other vehicles.
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Figure 2.14: Some instances in which the algorithm makes a mistake.

tracking zone, so that none of the features on the vehicle qualify as stable features. In (b)

the shadow of the tractor-trailer is mistakenly detected asa car (#165), thus yielding a false

positive. In (c) the algorithm fails to detect a car traveling in isolation because of the lack

of a sufficient number of feature points on the vehicle arising from the poor contrast. In (d)

the algorithm misinterprets two motorcycles traveling side by side as a single car, an error

that could be avoided by including a model for motorcycles and measuring the foreground

evidence to validate each vehicle.

In Figure2.15, the number of vehicles detected by the algorithm is compared with

ground truth obtained manually for the S2 sequence. Note that accuracy in the two nearby

lanes is quite good, with accuracy in the farthest lane significantly lower due to the in-

creased amount of partial and complete occlusion in that lane. The plot in the middle of

the figure shows the trajectories of some vehicles displayedin the road plane. In addition,

the mean speed of the vehicles in each lane (computed over one-minute intervals) is plotted
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versus time, which corresponds with the general trend evidence in the video sequence.

The detection accuracy was found to be fairly insensitive tothe calibration para-

meters. To quantify this conclusion, each of the end points of the lines corresponding to

lane markings was perturbed with additive Gaussian noise with a standard deviation of two

pixels in a random direction. Additive Gaussian noise having standard deviation of three

pixels was added to the end points of the line perpendicular to the direction of traffic flow.

For five different trials on each of the L1 and L4 sequences, the maximum drop in the

detection rate was less than 6% of the total number of vehicles (e.g., 97% detection rate

became 91%), and the maximum increase in false positives (for L4) was found to be 4 ve-

hicles. (Note that an average user, with a little practice, is able to consistently click within

one pixel of the desired location.)

The algorithm was implemented in C++ using the Blepo computer vision library

(http://www.ces.clemson.edu/˜stb/blepo) and the OpenCV Lucas-Kanade tracker [9]. On

a 2.8 GHz P4 laptop computer with512 MB of memory, the average processing time for

a single image frame was 32 ms, which is slightly faster than frame rate. To achieve

this speed, the background was updated every 60 frames (two seconds), new features were

detected every five frames, and binary morphological operations (dilation and erosion) were

performed on subsampled images (by a factor of two in each direction).
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Figure 2.15: Plots displaying the results of the algorithm.TOP: Total vehicles detected
in each lane versus time in the S2 sequence, with Lanes 2 and 3 offset by 40 and 60 for
viewing clarity. MIDDLE : Some of the vehicle trajectories for L1 as seen in a top-down
view, with vehicles that are changing lanes clearly visible. BOTTOM: Mean speed (in miles
per hour) for the vehicles in L1 computed over one-minute intervals.
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Figure 2.16: Vehicles can be detected and tracked when the camera is mounted in the
middle of the road as opposed to the situation in previous experimental results where the
camera is on the side of the road.
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Chapter 3

Pattern recognition-based detection of

vehicles

Pattern recognition is a classification (or labeling) problem where the input data (a

pattern) is analyzed to find a suitable class (label) for it based on statistical information ex-

tracted from the data or a priori knowledge about the data. Some of the challenges, training

methodologies, algorithms and applications in pattern recognition are discussed in [57, 18].

Most supervised pattern recognition systems have at least three stages as shown in Figure

3.1. In the first stage the input data (pattern) is acquired from asensor (e.g., a camera) and

may be pre-processed (contrast stretching, extraction of foreground objects etc.). The raw

data acquired from the sensor is usually of high dimension and thus using this data directly

as the input of a classifier can result into a significant degradation of performance. A fea-

ture extraction stage transforms the raw sensor data into a low-dimensional representation

(2D in our example).
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Figure 3.1: A typical pattern recognition system consists of sensor input, feature extraction
and a classifier. In this example an image captured by a camerais the raw input. Two fea-
tures (average pixel intensity, and roundness) are extracted in the feature extraction stage.
The classifier finds a decision surface (a dashed line in this example) using the training data
(white circles represent training images for apples and white rectangles represent training
images for bananas). Black circle and rectangle is the decision of the classifier on a new
(previously not seen in the training data) input image.
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3.1 Boosted cascade vehicle detector (BCVD)

The problem of pattern recognition has been studied extensively for many years,

giving rise to a variety of approaches such as neural networks, support vector machines

(SVMs), and Bayesian classifiers. A relatively new approach using a cascade of simple

features to detect patterns in images was developed by Violaand Jones [66]. In their ap-

proach each image sub-window is passed through a series of tests of increasing difficulty,

known as a cascade. The goal of each stage in the cascade is to evaluate the sub-window

using a set of image features to decide whether to reject the sub-window as containing the

object of interest. Subsequent stages perform more detailed analyses using larger and more

discriminating sets of features, with each stage trained toachieve a high detection rate (e.g.,

99%) and a liberal false alarm rate (e.g., 50%). Sub-windowsin the image which are easily

distinguishable as non-vehicles (e.g., an image patch withlittle or no texture) are discarded

in the initial stages of the cascade, resulting in faster processing, so that the complete set

of features needs to be evaluated for only the small fractionof sub-windows that reach the

final stage of the cascade. The training process ensures thatthe classification errors in each

stage are independent of each other.

3.1.1 Training with integral images and Haar like features

The Viola-Jones algorithm achieves real-time processing not only with the cascade

architecture, but also because it uses simple image difference features that are quickly

computed using an integral image. The features used in [66] are simply arithmetic additions

and subtractions of pixel intensities in a detection window. An example of such a feature

is shown in Figure3.3 where the value of a feature is computed by subtracting the sum

of pixel intensities inside black rectangles from the sum ofpixel intensities inside white

rectangles. Given a set of labeled training images (vehicles and non-vehicles), the training
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Figure 3.2: Training of boosted cascade vehicle detector (BCVD).
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a b c d

e

Figure 3.3: Example of rectangular features used for training the pattern detector. A (scalar)
value of a single feature is computed by subtracting the sum of pixel intensities in black rec-
tangles from the sum of pixel intensities in the white rectangles. (a) Vertical two-rectangle
feature (b) horizontal two-rectangle feature (c) verticalthree-rectangle feature (d) a four-
rectangle feature. (e) A horizontal three-rectangle feature is overlaid on an image-window
of a car for illustration.

process first finds a feature (from a large pool of rectangularfeatures) and a corresponding

threshold on the value of the feature that performs best on the training data. A single feature

in essence acts as a weak classifier whose decision is at leastslightly better than random

chance. The idea behind boosting is to combine several such weak classifiers in a way

such that the final strong classifier meets the performance requirements. After training,

vehicles are detected by sliding the strong classifier over the input image and computing

the decision (vehicle or non-vehicle) at each sub-window inthe image. To detect vehicles

at different scales, the feature set (and in effect the detection window) is scaled (rather than

the more traditional approach of resampling of the input image), which further reduces the

computational load.

Viola and Jones [66] introduce the idea of integral images which enables computing
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Figure 3.4: Computing a value of feature using an integral image. The sum of pixels within
rectangle D can be computed with four array references. The value of integral image at
locationa (ii[a] ) is the sum of pixels in rectangle A,ii[b] is A + B, ii[c] is A + C, andii[d]
is A + B + C + D. The sum within D can be computed asii[d]-ii[b]-ii[c]+ii[a] . Image
adapted from [66].

the values of features described above in efficient manner. The integral image at location

x, y is the sum of pixels above and to the left ofx, y including the value ofx, y itself.

3.1.2 Detection, filtering and tracking using BCVD

Each image of the video sequence is scanned exhaustively at multiple scales by

the BCVD to detect vehicles. The output of the BCVD is a rectangle for each detected

vehicle, and the midpoint along the bottom edge of the rectangle is retained as the location

of the vehicle for the purpose of computing proximity to other vehicles. Vehicles from

the previous image frame are tracked by searching among nearby detections in the current

image frame. In case a match is not found, the vehicle is flagged as missing and its location

is updated by means of a standard template matching mechanism using normalized cross-

correlation. If a vehicle is missing for several consecutive frames, it is discarded for the

lack of sufficient evidence. Meanwhile, new vehicles are initialized for all the detections

that did not yield a match. This straightforward tracking procedure augments the position

information of the vehicles with their image trajectories.

To reduce the amount of false positives a foreground mask is used (obtained by
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background subtraction as described in Section2.1.2) to eliminate detections that belong

to the stationary background. In addition we use calibration information to estimate the

expected size of the detection rectangle based on the location of the rectangle in the image.

A detection is ignored if the size of the detection (corresponding rectangular bounding box)

varies significantly from the estimated size at that location.

3.2 Combining BCVD with feature tracking

As seen in Chapter2, vehicle detection is based on segmenting stable feature points.

In a situation as shown in Figure3.5(b), when the base (corresponding to the side facing

the camera) of a vehicle (vehicle B in our example) is occluded by another vehicle in

back-to-back manner, the feature points close to the base ofvehicle A would be incorrectly

projected at a height greater than their true height from theroad. However, in such scenar-

ios the BCVD is likely to detected the vehicle since most of the symmetric features on the

vehicle still remain visible in the image. On the other hand in a situation of lateral occlusion

as illustrated in Figure3.5(a), BCVD will fail to detect the vehicle (lateral occlusion hides

symmetric features) but stable features can be found on occluded vehicle (using plumb line

projection) as long as the vehicle is not occluded completely.

BCVD was combined with feature tracking in following manner:

1. Two sets of vehicles are independently detected using stable features and BCVD.

2. Vehicles that are currently being tracked are matched with detections in the current

frame.

3. Unmatched vehicles in the current frame which were detected using stable features

are initialized as new detections.
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a b

Figure 3.5: In (a) vehicle B undergoes a partial lateral occlusion by vehicle A. In this
case points on both vehicles (white circles) will be detected as stable features even though
BCVD fails to detect B (dashed rectangle). In another situation shown in (b), vehicle B
is traveling behind A. As a result point on B (black circle) will not be detected as a stable
feature due to its wrong plumb line projection (dashed arrow) on the base of vehicle A.
As such, feature tracking based approach misses vehicle B, however BCVD successfully
detects it (solid rectangle).

4. A new vehicle is initialized from each unmatched vehicle detected using BCVD only

if there are no other vehicles (either an existing vehicle being tracked or a new detec-

tion in current frame) in its vicinity.

3.3 Experimental results

Performance of two BCVD detectors was evaluated, one for detecting both cars and

trucks and the other for detecting motorcycles. Figure3.6shows the four sequences used to

extract the positive samples for training the car/truck detector. Total of800 samples were

manually extracted from the training sequences which were then randomly distorted (rota-

tion on either side within 2 degrees, brightness change within 10%, change in dimensions

within 5%) to generate a total of6, 400 positive training samples. The detector was trained

using the Haar-training module of the OpenCV [2] library with 16×12 detector size and14
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Figure 3.6: Four training sequences for BCVD to detect cars andtrucks.

stages in the cascade. A large number (5, 000) of randomly selected high-resolution images

were used as a negative training set.

Some examples of training images are shown in Figure3.7. Figure3.8 shows a

sample output frame from each of the test sequences. Quantitative analysis is presented

in Table 3.1. For each test sequence the second column indicates the ground truth, i.e.

the actual number of total vehicles in the sequence. Three sets of results are shown in

the table for each of the sequence. In the first case a sequencewas processed using stable

features as described in Chapter2. Next, the sequence was processed using only the BCVD.

Finally a combination of BCVD and stable features (as described in the previous section)

was used to process the same sequence. In each case, TP indicates the number of correct

vehicle detections (true positives) and FP indicates the number of spurious detections (false
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Figure 3.7: Sample positive and negative training images for car/truck BCVD. The original
images are16 × 12 pixels in size.

C1 C2

C3 C4

Figure 3.8: Four test sequences to evaluate accuracy of BCVD. C4was captured on a rainy
day.
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Seq. Vehicles Stable features BCVD Stable features
+

BCVD
TP FP TP FP TP FP

C1 260 210(81%) 7 213(82%) 13 224(86%) 18
C2 312 275(88%) 2 278(89%) 9 287(92%) 8
C3 146 134(92%) 5 114(78%) 7 137(94%) 12
C4 187 124(66%) 5 143(76%) 24 153(81%) 23

Table 3.1: Results comparing performance of stable features, BCVD and combined sys-
tem. TP is the number of correct detections (true positives). FP is the number of spurious
detections (false positives)

positives). A detection is considered a TP only if the vehicle is detected and tracked till it

exits the detection zone. Similarly a detection is considered a FP only if it leads to a vehicle

exiting the detection zone.

Note that in some cases the number of false positives for combined detection is less

than the sum of false detections in the other two. As mentioned in the previous section, in

the combined detection mode two sets of vehicles are independently detected using stable

features and BCVD, so intuitively the false positives should add up. However, if a BCVD

detection (a false detection for example) is in the vicinityof another detection (a detection

by stable features for example) then the detection is discarded. The same BCVD detection

would have resulted into a false positive if the sequence wasbeing processed using only the

BCVD. So for the combined detection, the number of false positives is between the false

positives of stable features and the sum of false positives of stable features and BCVD.

3.4 Detecting motorcycles

BCVD can be trained to detect other types of vehicles apart fromcars and trucks.

A motorcycle detector was trained using a very limited amount of existing data and tested

it at two different locations. Since the number of motorcycles in a typical traffic scene
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Figure 3.9: Sequences used to train a motorcycle detector.

Figure 3.10: Examples of positive training images for motorcycle detector. Original images
are20 × 20 in size.

is very small (less than 1%), gathering sufficient training data was time consuming. The

training sequences shown in Figure3.9have32 motorcycles in total. A total300 instances

of those motorcycles were extracted from the sequence to generate a total2400 positive

training samples using small distortions (similar to the case of car/truck detector). A14

stage,20 × 20 size detector was trained using the OpenCV library.

Figure3.11 shows a sample frame from each test sequence. The test sequences

were captured at special events organized for motorcyclists. From Table3.2 it appears that

the performance of the motorcycle detector is less than thatfor a car/truck detector (when
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M1 M2

M3

Figure 3.11: Test sequences for motorcycle detector.

compared to the results of3.1). It is plausible that more training data will improve the

accuracy of the detector.

Seq. Motorcycles TP FP
M1 80 65 (81%) 11
M2 40 31 (77%) 5
M3 70 59 (84%) 8

Table 3.2: Quantitative results of motorcycle detection.

54



Chapter 4

Calibration of traffic monitoring

cameras

Camera calibration is an essential step in a vision-based vehicle tracking system.

Camera calibration involves estimating a projective matrixwhich describes the mapping of

points in the world onto the image plane. A calibrated cameraenables us to relate pixel-

measurements to measurements in real world units (e.g., feet) which is useful to handle

scale changes (as vehicles approach or recede from the camera) and to measure speeds. It

is important to note that the calibration methods describedbelow do not require knowledge

about the camera specifications (if the information is available, it can be easily incorporated

to improve the calibration accuracy).

A method for directly estimating the projective matrix is described in the first sec-

tion of this chapter using point correspondences between points in the image plane and

respective points in the world coordinate system. In a situation where obtaining such point-

correspondences is difficult, camera model can be simplifiedunder reasonable assumptions

to estimate parameters of the assumed camera model and then the projective matrix can be

computed from the estimated parameters. In this approach some information about the
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scene such as a known measurement along the road surface or prior information about

height of the camera is required. Different scenarios for the type of information that is

available are discussed in the second section of this chapter.

4.1 Direct estimation of projective matrix

A perspective-projective pinhole camera model is assumed.The general relation-

ship between an object point measured with respect to a user-selected world coordinate

system and its image plane point is denoted by a3×4 homogeneous transformation matrix

[56, 24]. This matrix will be referred as the camera calibration matrix C.

p̂ = C P̂ , (4.1)

wherep̂ = [ uw vw w]T andP̂ = [ x y z 1 ]T are vectors containing homogeneous

coordinates of image point,p = [ u v]T and world pointP = [ x y z]T respectively.

Representing the matrix with corresponding entries, we get

[ uw vw w] =





c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34




[ x y z 1 ] . (4.2)

The homogeneous transformation matrixC is unique only up to a scale factor. We normal-

izeC by fixing the scale factorc34 = 1.

Expanding the above equation, yields

u =
c11x + c12y + c13z+ c14

w
(4.3)

v =
c21x + c22y + c23z+ c24

w
(4.4)
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w = c31x + c32y + c33z+ 1 . (4.5)

Substitutingw into first two equations and rearranging leads to,

u = x c11 + y c12 + z c13 + c14 − u x c31 − u y c32 − u z c33 (4.6)

v = x c21 + y c22 + z c23 + c24 − v x c31 − v y c32 − v z c33 . (4.7)

The two equations above define a mapping from the world coordinates to the image coor-

dinates.

For a point in the world, we can calculate its image coordinates if we know the

location of that point in terms of the user-defined world-coordinate system and camera

calibration matrix,C. The camera calibration matrixC consists of11 unknown parameters.

Knowing the world coordinates and the image coordinates of asingle point yields two

equations of the form (4.6) & (4.7). Six or more points in a non-degenerate configuration

lead to an over-determined system:





x1 y1 z1 1 0 0 0 0 −u1 x1 −u1 y1 −u1 z1

0 0 0 0 x1 y1 z1 1 −v1 x1 −v1 y1 −v1 z1

x2 y2 z2 1 0 0 0 0 −u2 x2 −u2 y2 −u2 z2

0 0 0 0 x2 y2 z2 1 −v2 x2 −v2 y2 −v2 z2

...
...

...
...

...
...

...
...

...
...

...

xn yn zn 1 0 0 0 0 −un xn −un yn −un zn

0 0 0 0 xn yn zn 1 −vn xn −vn yn −vn zn









c11

c12

c13

c14

c21

...

c33





=





u1

v1

u2

v2

...

un

vn





(4.8)

which can be solved using a standard least squares technique.

The offline calibration process depends upon the user-specified point correspon-
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Figure 4.1: Camera calibration tool.

dences for the calibration process. For improving the accuracy, it is desired that the world

coordinates are derived from the actual measurements of thescene e.g., having place mark-

ers at known distances. For cases where this information is not available (e.g. pre-recorded

data), an approximation can be done using standard specifications such the width of a lane,

length of a truck etc.

An example of the calibration process is shown in Figure4.2. First, a marker is

placed across the width of the road and perpendicular to the lane markings as shown in (a).

With the marker position unchanged, sequence is advanced till the rear end of the truck

appears to align with the marker position on the ground. A newmarker is placed to align

with the height of the truck (b). In the same frame a marker is placed on the ground to align

with the front end of the truck (c). Once again, the sequence is advanced till the marker

placed on the ground in (c) appears to align with the read end of the truck. This is shown in

(d). For the same frame, the marker is realigned with the front end of the truck as shown in

(e). A new marker is placed across the width of the road (f). One more time, the sequence

is advanced for the new marker to appear aligning with the truck’s rear end. An additional

marker is placed as shown in (g) in such a way that it appears tobe aligned with the height
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of the truck. The result looks as shown in (h). Using the dimensions of a known type

of vehicle is an approximate method for estimating world coordinates of control points.

The table below lists lengths of some of the common vehicle types found on the road. In

addition to this, the information about lane width (e.g.,12 feet on an interstate) and number

of lanes is used.

The imaging process maps a point in three dimensional space into a two dimen-

sional image plane. The loss of dimension results into an non-invertible mapping. Given

the calibration parameters for the camera and the image coordinates of a single point, the

best we can do is to determine a ray in space passing through the optical center and the

unknown point in the world.

To measure distances in the road plane, we can substitutez = 0 in above equations

to get the mapping of points from the image plane(u, v) to corresponding points in the

road plane(x, y):




x

y



 =




c11 − uc31 c12 − uc32

c21 − vc31 c22 − vc32





−1


u

v



 . (4.9)

4.2 Parameter-based estimation of projective matrix

As in [45, 58, 60], a pinhole camera model is adopted assuming flat road surface,

zero roll angle, and square pixels. In addition, image center is assumed to be the principal

point. These are the same assumptions made in [58]. The roll angle of the camera (which

does not change with pan-tilt movements) can be easily compensated by rotating the image

about its center. The user can manually specify roll angle bydrawing a lines in the image

along a structure known to be perpendicular to the road planein real world (e.g., vertical

edges of a container behind a tractor trailer). With these assumptions, four parameters

are needed to map between pixel distances (measured in the image) and corresponding
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Camera calibration process for direct estimation of projective matrix.
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(a) Top view of the scene (b)Same scene viewed from the left side

Figure 4.3: Camera is placed at heighth feet above the road with down/tilt angleφ and pan
angleθ. X, Y, Z is the world coordinate system whileXc, Yc, Zc is the camera coordinate
system. The optical axis of the camera intersects theY axis of the world coordinate system
athcotφ. The optical axis of the camera intersects the road plane at R.

distances on the road (measured in Euclidean world units): Focal length (f ), tilt angle (φ),

pan angle (θ), and height of the camera measured from the road surface (h).

A point X = [ x y z 1 ]T in world coordinate frame is related to its image coor-

dinatesx = [ wu wv w]T as follows:

x = PX





wu

wv

w




=





f 0 0 0

0 −f sinφ −f cosφ fhcosφ

0 cosφ − sinφ hsinφ









x

y

z

1





, (4.10)

where

P = KR[I3×3 | −T]
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K =





f 0 0

0 f 0

0 0 1





R =





1 0 0

0 − sinφ − cosφ

0 cosφ − sinφ




.

K is the camera calibration matrix,R is the rotation matrix corresponding to a rota-

tion of (90◦ + φ◦) around the X-axis,I is the3 × 3 identity matrix andT = [ 0 0 h ]T

is the translation of the camera from the origin of the world coordinate system.[I3×3 | −T]

is concatenation ofI andT. Notice that assuming square pixels, zero skew and principal

point as the image center results into a single internal calibration parameterf . Using (4.10)

we can express the relationship between the world coordinates (x, y) of a point on the road

(z = 0) to its image coordinates (u, v) as follows:

u =
wu
w

=
fx

ycosφ+ hsinφ
(4.11)

v =
wv
w

=
fhcosφ− fysinφ

ycosφ+ hsinφ
. (4.12)

Rearranging above equations, we get:

x =
hucosφ(1 + tan2 φ)

v + f tanφ
(4.13)

y =
h(f − vtanφ)

v + f tanφ
. (4.14)

For any two points in the road plane having the same coordinates along the y-axis,
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we can relate the pixel difference in their u-coordinates with the distance between the points

along the x-axis in world coordinates using (4.11)

∆u =
f∆x

ycosφ+ hsinφ
. (4.15)

It is clear that the y-coordinate of any point in the world corresponding to a point

on the u-axis in the image can be obtained by substitutingv = 0 in (4.12):

yv=0 = hcotφ . (4.16)

4.2.1 Two vanishing points and known camera height (VVH)

Vanishing points are independent of camera’s location and depend on the internal

parameters of the camera and its pose [25]. Two vanishing points (one along the direction of

flow of traffic and another in a direction orthogonal to it) yield three equations (assumption

of zero camera roll leads to identical coordinates along thev-axis) inf , φ, andθ. In homo-

geneous coordinates the vanishing pointp0 = [ su0 sv0 s]T corresponding to the vanish-

ing line l0 = [− tan θ 1 0 0 ]T is obtained asp0 = Pl0. Similarly, the vanishing point

p1 = [ su1 sv1 s]T corresponding to the vanishing linel1 = [−1 − tan θ 0 0 ]T is

obtained asp1 = Pl1.





su0

sv0

s




=





f 0 0 0

0 −f sinφ −f cosφ fhcosφ

0 cosφ − sinφ hsinφ









− tan θ

1

0

0




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(a) Points of interest and measurements in the world coordinate system

(b) Corresponding measurements in the image plane

Figure 4.4: (a) Measurements in the road plane. (b) Measurements in the image plane.
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



su1

sv1

s




=





f 0 0 0

0 −f sinφ −f cosφ fhcosφ

0 cosφ − sinφ hsinφ









−1

− tan θ

0

0





.

Note thatl0 and l1 correspond to the direction along the length of the road and

perpendicular to the length of the road respectively.

By expanding the above equations, we obtain:

u0 =
−f tan θ

cosφ
(4.17)

v0 = v1 = −f tanφ (4.18)

u1 =
f

cosφ tan θ
. (4.19)

Solving these three equations gives us

f =
√

[− (v2
0 + u0u1)] (4.20)

φ = tan−1

(
−v0

f

)

(4.21)

θ = tan−1

(
−u0 cosφ

f

)

. (4.22)

4.2.2 Two vanishing points and known width (VVW)

As seen in the previous subsection, two vanishing points lead to three equations

which can be solved to findf , φ andθ. At least one measurement in the road plane to solve

for the unknown camera heighth.

A known distance∆x along they = hcotφ axis corresponding to the pixel distance
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∆u along the u-axis can be used to solve forh. From (4.15)

h =
(

f
∆x
∆u

− ycosφ
)

1

sinφ
.

Using (4.16) we substitute fory:

h =
f ∆x sinφ

∆u
. (4.23)

Either the lane width (wr) or the average vehicle width (wv) can be used to solve

for h. As shown in Figure4.4, the length of a segment connecting the intersections of two

adjacent lanes with any axis parallel to the X-axis iswr sec θ. Similarly the projection of

vehicle’s width on the X-axis iswv cos θ. Substituting∆x = wr sec θ and∆u = ∆ur in

(4.23) we obtain an expression for the heighth of the camera using two vanishing points

(which yieldf ,φ, andθ) and known lane width.

h =
f wr cos θ sinφ

∆ur
. (4.24)

Similarly substituting∆x = wv cos θ and∆u = ∆uv in (4.23) we obtain an expres-

sion for the heighth using average vehicle width:

h =
f wv cos θ sinφ

∆uv
. (4.25)

4.2.3 Two vanishing points and known length (VVL)

As shown in Figure4.4, length information (lv) can be easily incorporated using

the equations derived in the previous subsection by observing that∆x = lv sin θ and∆u =
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∆uL.

h =
f lv sin θ sinφ

∆uL
. (4.26)

However, asθ approaches0, ∆uL reduces to a point. Another way to incorporate length

information is by using (4.14). Assuming thaty coordinate of the point on the road corre-

sponding to the pointpf = [ uf vf ]T in the image isyf , then it can be seen from Figure

4.4 that they coordinate of the point corresponding to the image pointpb = [ ub vb ]T is

yf + lv cos θ. Substituting in4.14we get:

yf =
h(f + vf tanφ)

vf + f tanφ

yf =
h(f + vb tanφ)

vb + f tanφ
− lv cos θ .

Equating the two equations above and solving forh yields

h =
f lv cos θ(vf − v0)(vb − v0)

(vf − vb)(f 2 + v2
0)

. (4.27)

4.2.4 One vanishing point, known width and length (VWL)

Estimating the vanishing point in the direction orthogonalto the direction of traffic

flow is much harder compared to estimating the vanishing point in the direction of traffic

flow. Let us now derive the equations for calibrating the camera using a single vanishing

point (u0, v0), a known length measurement (measurement along the direction of traffic

flow) and a known width measurement (along the direction orthogonal to traffic flow).

Equations (4.17) and (4.18) can be used to derive following relationships:

sin2 φ = v2
0/(f

2 + v2
0) (4.28)
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cos2 φ = f 2/(f 2 + v2
0) (4.29)

sin2 θ = u2
0/(u

2
0 + f 2 + v2

0) (4.30)

cos2 θ = (f 2 + v2
0)/(u

2
0 + f 2 + v2

0) . (4.31)

Now by equating (4.24) and (4.27) we derive a fourth order equation inf as follows:

f 4 + f 2

[

2(u2
0 + v2

0) −
k2
1

v2
0

]

+
[
u4

0 + v4
0 + 2u2

0v
2
0 − k2

1

]
= 0 (4.32)

where

k1 =
∆ur(vf − v0)(vb − v0)lv

wr(vf − vb)
.

The above equation is quadratic inf 2 and can be solved to estimate the focal length.

It is straight forward to computeφ andθ from (4.17) and (4.18). Finally, heighth of the

camera can be found by using either (4.24), (4.25), or (4.27). It should be noted that (4.32)

which was derived for lane widthwr also holds true for vehicle width by substitutingwv in

place ofwr and∆uv in place of∆ur .

4.2.5 One vanishing point, known width and camera height(VWH)

A camera placed at a known height above the road plane can be calibrated using

a single vanishing pointp0 (in the direction of traffic flow) and a measurement along the

width of the road i.e. (wr , ∆ur) or (wv, ∆uv).

Squaring both sides of (4.24) and rearranging using (4.28)-(4.31) we get

(1 − k2
2)f

4 +
[
2v2

0 − k2
2(u

2
0 + v2

0)
]

f 2 + v4
0 = 0 (4.33)
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Algorithm Known quantities Vanishing
points

Image measure-
ments

Comments

VVH camera height p0, p1 none works even in dense traffic
conditions

VVW lane/vehicle width p0, p1 ∆ur or ∆uv

VVL length measurement p0, p1 pf , pb works in moderate traffic
VWL lane/vehicle width and

length measurement
p0 pf , pb and∆ur or

∆uv

VWH lane/vehicle width and cam-
era height

p0 ∆ur or ∆uv works even for head-on view
and also in dense traffic con-
ditions

VLH length measurement and
camera height

p0 pf , pb works in moderate traffic

Table 4.1: Comparison between different method of calibrating a traffic monitoring camera.

where

k2 =
wrv0

h∆ur
.

4.2.6 One vanishing point, known length and camera height(VLH)

The last scenario that is considered here estimatesf using a single length measure-

ment (along the length of the road) when the height of the camera and vanishing pointp0

is known.

Squaring both sides of (4.27) and rearranging using (4.28)-(4.31) we get

f 4 + f 2

[

u2
0 + 2v2

0 −
l2vk2

3

h2

]

+
[
v2
0(u

2
0 + v2

0)
]

= 0 (4.34)

where

k3 =
(vf − v0)(vb − v0)

(vf − vb)
.
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Chapter 5

Automatic calibration of traffic

monitoring cameras

In this chapter, an algorithm to automatically calibrate a road-side traffic monitoring

camera is presented that overcomes several of the limitations of previous approaches [17,

60, 58]. The algorithm does not require pavement markings or priorknowledge of the

camera height or lane width; it is unaffected by spillover, occlusion, and shadows; and it

works in dense traffic and different lighting and weather conditions. The key to the success

of the system is a BCVD described in Chapter3. Since vehicles are detected and tracked

using their intensity patterns in the image, the algorithmdoes not suffer from the well-

known drawbacks of background subtraction or frame differencing. The technique uses the

vehicle trajectories in the image and the intensity gradient along the vehicle windshield to

compute the two vanishing points in the image, from which thecamera parameters (height,

focal length, and pan and tilt angles) are estimated.
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Figure 5.1: Overview of the algorithm for automatic camera calibration.

5.1 Proposed approach

Figure 1 presents an overview of the implemented system. Thebulk of the process-

ing is performed by the BCVD (as described in Chapter3), which is used to detect and track

vehicles. The resulting vehicle tracks are then used to estimate the first vanishing point in

the direction of travel, while strong gradients near vehicle windshields (in daytime) or the

lines joining the two headlights (at night) are used to compute the second vanishing point

in the direction perpendicular to the direction of travel. The Random Sample Consensus

(RANSAC) algorithm [20] is used to eliminate outliers resulting from noise and/or image

compression artifacts. From the vanishing points, the camera is calibrated, which then

enables the speed of vehicles to be computed by mapping pixelcoordinates to world dis-

tances. The only parameter of the system is the mean vehicle width, which is assumed to

be 7 feet [3].

One useful characteristic of the approach based on two vanishing points and vehicle-

width measurement is that the system is calibrated incrementally. In other words, only two
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images of a single vehicle are needed in principle to calibrate the system, thus providing

a nearly instantaneous solution to the problem. This uniquebehavior eliminates the delay

inherent in background subtraction techniques, which makes the system amenable for use

by PTZ cameras whose parameters are continually changing. In practice, although the first

vehicle is used to obtain initial calibration parameters, those parameters are refined over

time as more vehicles are detected and tracked in order to obtain more accurate estimates.

Additional advantages of the approach include its immunityto shadows (Note that Dailey

et al. [17] observed more than10% error in mean speed estimates due to shadows), as

well as its insensitivity to spillover and/or dense traffic,since vehicles are detected using a

discriminative set of features as opposed to simple foreground blobs.

5.1.1 Estimating the vanishing point in the direction of traffic flow

Lines which are parallel to each other in the real world generally do not appear par-

allel in the image (except when they are parallel to the imageplane). As an example, con-

sider an aerial photograph of rail-road tracks with the camera looking straight down. The

tracks will appear parallel to each other in the image. If another image is taken standing in

the middle of the tracks and pointing the camera straight ahead (camera looking towards

horizon), the tracks will appear to meet at a finite point in the image plane. This point of

intersection is called a vanishing point. A vanishing pointis defined only by the direction

of lines, in other words, all parallel lines in a particular direction will appear to converge at

a single unique location in the image. The vanishing pointp0 = [ u0 v0 ]T in the direction

of travel is estimated using vehicle tracks. A line is fitted passing through bottom-left and

bottom-right image coordinates of all the detection windows for a vehicle. Estimating the

vanishing point directly from the vehicle tracks avoids using computationally expensive

Hough transform. Figure 3 (a) illustrates a scenario where avehicle changing lanes (rep-
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Figure 5.2: Estimation of the vanishing point in the direction of traffic flow.

resented by darker rectangle) results into an outlier. In addition, tracking and localization

errors can lead to outliers. RANSAC was used for removing the bias in the estimation of

vanishing points resulting from outliers.

5.1.2 Estimating the vanishing point orthogonal to the direction of

traffic flow

To estimate the vanishing pointp1 = [ u1 v1 ]T in the direction perpendicular to

traffic-flow, strong image gradients found on light colored vehicles are employed. Apparent

slope of a line in an image (corresponding to a line in real world along the direction perpen-

dicular to traffic-flow) is inversely proportional to its distance from the camera. Estimating

p1 as the intersection of two lines in its direction is very sensitive to measurement errors.

With the assumption that the camera has zero roll,p1 can be found as the intersection of

v = v0 and a line corresponding to the perpendicular direction. The detection window that

is closest to the camera (close to the bottom edge of an image)is used to search for a hinge

point, which is a point of maximum gradient magnitude and lies along the vertical axis

passing through the center of the window (along the dashed line). Next, a line is searched
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(a) (b)

Figure 5.3: Estimation of the vanishing point in the direction orthogonal to the direction of
traffic flow. (a) Strong gradients near windshield are used for daytime (b) Estimated centers
of headlights are used for nighttime.

passing through the hinge point and having a slope that maximizes the sum of gradients

along that line. In Figure5.3(a), the white circle indicates the location of the hinge point.

Among all the candidates, the line that coincides with the edge of the windshield of the ve-

hicle (line #2) is used to computep1. In case of absence of any ambient light, headlights are

used to estimatep1. The hinge point is found along a vertical axis shifted to left by quarter

of detection window width as shown in Figure5.3(b). Note that raw pixel intensities are

used in this case as opposed to gradient magnitude image usedearlier.

5.1.3 Computing calibration parameters

Oncep0 andp1 are estimated, for each vehicle detection pointsp2 = [ u2 0 ]T and

p3 = [ u3 0 ]T can be found as intersection ofu-axis with the lines connectingp0 to the

two bottom vertices of the detection rectangle. Now using the equations derived in Section

4.2.2, the focal lengthf in pixels, the tilt angleφ, the pan angleθ and the height of the

camerah in feet can be computed using following equations:

f =
√

[− (v2
0 + u0u1)]
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Figure 5.4: Calibration parameters are computed using the four points shown above and
from assumed mean width of a vehicle.

φ = tan−1

(
−v0

f

)

θ = tan−1

(
−u0 cosφ

f

)

h =
fwr cos θ sinφ

| u3 − u2 |

As more vehicles are detected, estimates ofp0 and p1 are recomputed from all

previous detections using RANSAC and estimate of| u3 − u2 | is recomputed as mean of

all previous| u3 − u2 | measurements.

Once the camera has been calibrated, the pixel location of a vehicle in the image

(u, v) can be mapped into a location on the road(x, y) using following equations:

x =
hucosφ(1 + tan2 φ)

v + f tanφ

y =
h(f + vtanφ)

v + f tanφ
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(a) (b)

(c) (d)

Figure 5.5: Training sequences for the BCVD, (a)-(c) daytime (d) nighttime.

5.2 Experimental results

Two BCVDs were trained (one for the daytime, and one for the nighttime) using the

training sequences shown in Figure5.5. At run time, the system automatically selects the

proper detector (day or night) based on the average pixel intensity in the images. To test the

system, four image sequences were captured, three during daylight conditions and one at

night, using an inexpensive off-the-shelf web camera (Logitech Orbitz) mounted at the top

of an adjustable pole. An image from each sequence is shown inFigure5.6. The images

were captured at 15 frames per second at 320x240 pixel resolution. Note that different

cameras were used for capturing the training and test sequences, and that the cameras were

not placed in the same location, thus demonstrating the robustness of the system.
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Figure5.6also shows the results overlaid on the images. The rectangles outline the

detected vehicles; the false negatives are not a problem since the goal here is mean speed

rather than vehicle counts. The white circle indicates the first vanishing point, which is

only visible in two of the four test sequences. The second vanishing point is very far from

the image and is given by the intersection of the horizon lineand the other line drawn. It

should be noted that the slope of the line corresponding to the second vanishing point is

determined by the image gradients computed near windshields of vehicles and does not

depend on the road lane markings.

The sequences were approximately 10 minutes long each. A radar was used to

compare the mean speed over the entire sequence for three of the sequences, with the results

displayed in the table below. Treating the radar as ground truth, the error of the system

ranged from 3 to 6 mph, with a slightly greater standard deviation than the radar. Figure

5.7shows the error in the distance estimate (displayed as a percentage) versus the amount

of data that the algorithm was allowed to use. As mentioned previously, the algorithm

instantaneously yields initial estimate, which improves over time as more information is

gathered. In two of the sequences the estimate stabilized after only ten vehicles, while the

poor weather conditions of the third sequence caused the estimate to require more data.

Table5.1 shows the accuracy of the estimation of the camera parameters for the

four sequences. Accuracy was computed by comparing with camera parameters obtained

using the same equations but with hand-labeled vanishing points.

Table5.2displays the speed error for twenty individual vehicles in each of the four

sequences. The average error ranges from3 to 6 mph. For the three daytime sequences,

speed of every20th vehicle which was tracked for at least50 feet was compared with the

ground truth speed. For T4 (which is a night time sequence) speed of every10th vehicle was

compared since the sequence contained fewer vehicles. Ground truth speed was measured

by advancing the sequence frame by frame to measure time and using markers placed at
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(T1) (T2)

(T3) (T4)

Figure 5.6: (T1)-(T4) Four test sequences. (T1) Sequence 1,h = 15 feet, clear day. (T2)
Sequence 2, h = 30 feet, clear day. (T3) Sequence 3, h = 30 feet,rain with headlight
reflections. (T4) Sequence 4, h = 20 feet, night time, no ambient lighting. The white circle
shows the estimated location ofp0 vanishing point. The vanishing pointp1 lies outside the
image (intersection of the two lines) and hence could not be shown in the above results.
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Figure 5.7: Calibration error decreases with increasing number of vehicle detections.

known distances in the scene to measure the distance traveled by the vehicle. Instances

where there is a large discrepancy between the speed estimated by the algorithm and the

ground truth speed are due to tracking errors (e.g., vehicle184 and387 in Sequence T3).

Note that vehicle numbers (ID) do not increase by a fixed amount since some of the spurious

detections are discarded during tracking and only vehicleswhich are tracked for more than

50 feet are retained for speed comparison.

To judge the feasibility of the assumptions made about the camera (square pixels,

principal point at image center, and zero skew) we calibrated two cameras (Logitech Orbit

MP webcam and a PTZ270 high speed dome camera) in the lab usinga calibration target

(chess-board pattern). The algorithm for calibrating a camera using a planar target was

proposed by Zhang [68]. The implementation of Zhang’s algorithm by Jean-Yves Bouguet

was used to compute the intrinsic camera parameters. The signal from the dome camera

was digitized at320 × 240 pixel resolution using VideoHome GrabBeeX-light USB video
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Sequence T1 Sequence T2 Sequence T3 Sequence T4
Manual Algorithm Manual Algorithm Manual Algorithm Manual Algorithm

f
(pixels)

367.28 327.52 342.71 368.92 312.56 348.21 386.21 360.32

ϕ

(degrees)
8.14 ◦ 7.21 ◦ 16.71 ◦ 14.26 ◦ 13.71 ◦ 12.68 ◦ 7.52 ◦ 8.17 ◦

θ

(degrees)
13.77 ◦ 14.19 ◦ 20.42 ◦ 18.61 ◦ 22.38 ◦ 19.74 ◦ 17.26 ◦ 18.93 ◦

h (feet) 13.70 14.2 31.86 29.69 31.17 28.83 20.56 18.62
Sequence T1 Sequence T2 Sequence T3
Radar Algorithm Radar Algorithm Radar Algorithm

µ 61.81 63.92 62.22 61.62 54.3 51.66
σ 4.42 5.97 3.77 4.78 3.7 5.12
N 187 520 235 491 196 416

Table 5.1: Accuracy of the estimated parameters compared with parameters computed man-
ually. f is the focal length,φ is the tilt angle,θ is the pan angle,h is the camera height.µ,
σ andN are mean speed for the entire sequence, standard deviation of speeds and number
of observations used for computation.

capture device. Images obtained from the Logitech camera have the same resolution (320×

240). As shown in Table5.3both the square pixel assumption and the zero skew assumption

cause negligible errors in both the cameras. The principal point is off center by about7,

and5 pixels in u andv directions, respectively, for the Logitech camera. For thedome

camera the principal point is off center by about10 and24 pixels in theu andv directions,

respectively.
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Sequence T1 Sequence T2
Vehicle
ID

Lane Measured
Speed

Algorithm
Speed

Vehicle
ID

Lane Measured
Speed

Algorithm
Speed

1 1 53 51 2 2 58 55
27 2 54 58 24 3 62 60
52 1 55 51 47 2 55 56
78 2 58 63 69 1 54 54
101 1 62 59 92 1 57 56
127 1 57 53 115 2 62 64
149 1 59 55 137 3 64 61
172 2 64 68 160 2 53 51
195 2 63 68 183 3 61 56
207 2 58 63 205 1 53 51
229 1 56 53 229 1 57 55
252 1 52 51 254 2 58 57
273 1 55 58 275 3 63 58
298 2 62 57 298 4 68 61
320 2 59 55 321 4 62 57
344 2 61 58 346 3 57 52
367 1 53 50 368 3 61 59
392 2 61 57 392 4 66 62
415 1 62 58 413 3 58 55
439 1 56 52 436 4 62 58

Mean absolute error
(mph)

3.7 Mean absolute error
(mph)

3.0

Sequence T3 Sequence T4
1 2 56 51 1 2 53 55
22 3 62 56 7 2 55 58
45 1 54 51 13 1 48 47
69 2 58 53 20 2 53 57
93 3 63 59 26 1 47 44
116 1 53 50 32 1 46 45
138 1 58 53 39 2 58 59
161 2 61 57 46 1 51 51
184 3 64 49 51 2 56 58
214 2 60 55 58 2 53 56
236 1 56 53 64 1 50 48
263 3 65 61 71 1 52 51
288 1 59 56 77 2 64 68
312 4 67 60 82 1 54 52
335 3 62 59 87 1 49 44
364 1 54 50 93 1 50 51
387 4 63 38 100 2 63 65
411 1 51 48 106 2 67 70
436 2 53 46 112 2 58 62
463 2 56 52 117 1 48 46

Mean absolute error
(mph)

5.9 Mean absolute error
(mph)

2.3

Table 5.2: Ground-truth speeds were measured manually by observing the video with the
help of markers placed in the scene. Vehicles were chosen at fixed intervals to compare
accuracy of speed estimation.

Camera fx fy Aspect ratio Skew Principal point

Logitech Orbit MP 295.31 287.71 1.03 0.00 [153.42, 115.58]
PTZ270 Dome camera437.08 434.05 1.01 0.00 [170.20, 144.55]

Table 5.3: Intrinsic parameters for the two cameras.
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Chapter 6

Conclusion

Previous approaches to segmenting and tracking vehicles using video generally re-

quire the camera to be placed high above the ground in order tominimize the effects of

occlusion and spillover. A technique was presented that overcomes this limitation, work-

ing when the camera is relatively low to the ground and besidethe road. The approach is

based upon identifying and grouping feature points in each image frame whose 3D coordi-

nates can be computed in a manner that is relatively immune tothe effects of perspective

projection. The novelty of the work includes an incremental, on-line, real-time algorithm to

estimate the heights of features using a combination of background subtraction, perturbed

plumb line projections, projective transformation, and a region-based grouping procedure.

Experimental results on a variety of image sequences demonstrate the ability of the algo-

rithm to automatically segment, track, and classify vehicles in low-angle sequences. These

results include situations involving severe occlusions inwhich the vehicle remains par-

tially occluded throughout the sequence, which has proved to be a particularly challenging

scenario for previous approaches.

The ability to track vehicles using low-angle cameras opensseveral possibilities

for highway monitoring, such as supporting automated transient traffic studies in locations
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unable to afford the infrastructure necessary for mountingcameras high above the ground.

In addition, by addressing the important problem of occlusion, many of the concepts con-

tained in this work are directly applicable to existing high-angle scenarios with a large

number of traffic lanes, in which large trucks often occlude neighboring vehicles.

To alleviate the requirement of calibrating the camera manually, a method for au-

tomatic calibration of roadside traffic monitoring cameraswas presented using a Boosted

Cascade Vehicle Detector (BCVD). The BCVD detects vehicles in images by comparing

the 2D intensity patterns with a model acquired during an off-line, one-time training phase.

The training does not have to be performed on images capturedat the same location or by

the same camera as those used at run-time. The technique overcomes many of the limi-

tations of the common approaches of background subtractionor frame differencing. For

example, an estimate is available immediately upon detecting and tracking a single vehi-

cle between two image frames, thus supporting applicationssuch as Pan-Tilt-Zoom (PTZ)

cameras in which it may not be feasible to allow the algorithmto learn the background

model every time the camera is moved. In addition, the technique is insensitive to shad-

ows, spillover, occlusion, and environmental conditions,and it is applicable in daytime or

nighttime scenarios.

It is evident from the results presented in Chapter2 that the system for detection

and tracking of vehicles using stable features works under wide variety of camera place-

ment. However the approach based on stable features has its limitations, one of them being

the inability to detect vehicles due to headlight reflections. On the other hand BCVD per-

formed better than stable features in adverse weather conditions, however BCVD performs

poorly when the camera placement is considerably differentfrom that during training. By

definition, stable features are detected on either the frontside or the back side of the vehi-

cle. The pixel-area in the image corresponding to the front side of an approaching vehicle

(back side in case of a receding vehicle) decreases as the panangle increases. As a result
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the performance of tracking using stable feature degrades for large pan angles, whereas for

very small pan angles measuring lengths of vehicles becomeschallenging. The accuracy

of tracking is also affected by distance of the camera from the closest lane. A larger pan

angle is required to cover all lanes when the camera is placedfar from the closest lane, so

the camera should be placed as close to the closest lane as possible. For the experiments

conducted during this research the highest placement of thecamera was about30 feet from

the ground which was sufficient to cover four12-feet lanes. In all experimental results, pan

and tilt angles were in the range of10 ◦ to 30 ◦ and distance of the camera from the closest

lane was10-20 feet. It should be noted that the algorithm presented for automatic camera

calibration fails for the case of zero pan angle because the vanishing point orthogonal to

the direction of travel goes to infinity. In practice the height of the camera computed dur-

ing non-zero pan angle can be used to calibrate the camera when the pan angle is zero (as

shown in4.2.5).

To further improve this work and enhance its applicability,future work should be

aimed at reducing the effects of shadows, supporting continued operation in the presence of

changing weather and environmental conditions and more robust strategies for modelling

and maintaining the background. Expecting a single patterndetector to perform well under

significant variations in vehicle appearances is unrealistic. From the experience of this

work, we envision a bank of pattern detectors trained over a small number pan angle, tilt

angle, and camera height to cover a wide range of appearance changes. With availability of

more processing power, color information can be incorporated for suppressing shadows and

for computing feature similarity. Expanding the automaticcalibration technique to work

with rear-facing vehicles receding from the camera, augmenting the pattern detector with

other modalities to decrease convergence time, and introducing partial calibration when

some camera parameters are already known from previous iterations of the algorithm.

We believe that this work demonstrates the potential for combining feature tracking-
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based and pattern detection-based approaches to detect andtrack vehicles in highway sce-

narios, and that it enhances the usefulness of cameras by obviating the need for tedious

manual calibration procedures.
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Appendix A

Derivations

A.1 Derivation for equations of plumb line projections

To derive Equation2.2from Equation2.1, expanding the latter:





uw

vw

w




=





c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34









x

y

z

1





. (A.1)

In inhomogeneous coordinates, this is

u =
uw
w

=
c11x + c12y + c13z+ c14

c31x + c32y + c33z+ c34

(A.2)

v =
vw
w

=
c21x + c22y + c23z+ c24

c31x + c32y + c33z+ c34

. (A.3)

Rearranging terms yields:

c11x + c12y + c13z+ c14 = c31xu+ c32yu+ c33zu+ c34u (A.4)
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c21x + c22y + c23z+ c24 = c31xv+ c32yv+ c33zv+ c34v (A.5)

or

(c31u− c11)x + (c32u− c12)y = (c13 − c33u)z+ (c14 − c34u) (A.6)

(c31v− c21)x + (c32v− c22)y = (c23 − c33v)z+ (c24 − c34v). (A.7)

Without loss of generality (because the projection matrix is only defined up to a scale

factor) settingc34 = 1. Rearranging terms again yields





c31u− c11 c32u− c12 0

c31v− c21 c32v− c22 0

0 0 1









x

y

z




=





c14 − u + z(c13 − c33u)

c24 − v + z(c23 − c33v)

z




, (A.8)

which is the desired result.

To derive Equation2.5 from Equation2.1, rearranging the terms in EquationsA.6

andA.7 to yield




uc33 − c13

vc33 − c23



 z =




c14 − u c34 + (c11 − u c31) x + (c12 − u c32) y

c24 − v c34 + (c21 − v c31) x + (c22 − v c32) y



 (A.9)

or

hpz = hc. (A.10)

To solve forz, then, left-multiplying both sides byhT
p , yields

z = (hT
php)

−1hT
phc, (A.11)

which is the desired result.
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Figure A.1: Derivation of the maximum slope which defines thesetΩ.

A.2 Derivation of Maximum Slope DefiningΩ

To defineΩ, consider a pinhole camera viewing a vehicle, as shown in FigureA.1.

Let us set the origin to the camera focal point, with the positive x axis to the right and the

positivez axis up. Select an arbitrary point(x, z) on the vehicle whose estimated location

using PLP is the point(x̃, z̃). Let d be the horizontal distance from the camera focal point

to the plumb line (i.e., the distancẽx), h the vertical distance from the camera focal point

to the point(x̃, z̃), andr the distance along the projection ray between the actual point and

the estimated point. For convenience, definem =
√

d2 + h2.

The point(x, z) is the intersection of the projection ray with a circle centered at

location(d,−h) of radiusr:

(x, z) =
(

d(1 +
r
m

),−h(1 +
r
m

)
)
.

In order for the error to be a monotonically non-decreasing function ofz, another point

(x′, z′) higher on the vehicle (i.e.,z′ > z) must have a radiusr ′ ≥ r,

wherer =
√

(x− x̃)2 + (z− z̃)2 is the Euclidean error in the estimate. As a result, con-
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sider another circle at location(d,−(h− ∆h)), whose intersection with the corresponding

projection ray yields the other point:

(x′, z′) =

(

d(1 +
r ′

m′
),−h′(1 +

r ′

m′
)

)

,

whereh′ = h− ∆h, m′ =
√

d2 + h′2, andr ′ =
√

(x′ − x̃′)2 + (z′ − z̃′)2.

The slope of the curve is given bydz
dx = lim∆h→0

z′−z
x′−x. To achieve the maximum

bound on the allowed slope, settingr ′ = r, yielding

dz
dx

≤ µ
max

(x, z) = lim
∆h→0

∆h(1 + r
m′

) − rh( 1

m′
− 1

m)

dr( 1

m′
− 1

m)

= lim
∆h→0

∆h + (r∆h− rh)(m2 − 2∆hh+ (∆h)2)−1/2 + rh/m
dr(m2 − 2∆hh+ (∆h)2)−1/2 − dr/m

= lim
∆h→0

1 + rA−1/2 + (r∆h− rh)A−3/2(−1/2)(−2h + 2∆h)

−1

2
drA−3/2(−2h + (∆h)2)

= lim
∆h→0

1 + rm−1 + rh2m−3

−1

2
dr(m2)−3/2(−2h)

=
m3 + rm2 − rh2

2drh

=
m3 + r(d2 + h2) − rh2

2drh

=
m3 + rd2

drh
,

where the last equality is obtained by l’Hôpital’s rule, and whereA = (m2−2∆hh+(∆h)2).

As long as the slope of the vehicle shape is bounded by this number, the estimation error by

PLP is a monotonically non-decreasing function of height. This bound includes all convex

shapes not crossing the plumb line, as well as many shapes with significant concavities,

thus covering nearly all vehicles encountered in practice.
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