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Abstract

A method is presented for segmenting and tracking vehiatesighways using a
camera that is relatively low to the ground. At such low asgl@D perspective effects
cause significant appearance changes over time, as wele® s&clusions by vehicles
in neighboring lanes. Traditional approaches to occlusgasoning assume that the vehi-
cles initially appear well-separated in the image, but insrguences it is not uncommon
for vehicles to enter the scene partially occluded and rersaithroughout. By utilizing
a 3D perspective mapping from the scene to the image, alotigamplumb line projec-
tion, a subset of features is identified whose 3D coordinea@sbe accurately estimated.
These features are then grouped to yield the number anddosatf the vehicles, and
standard feature tracking is used to maintain the locatidrise vehicles over time. Ad-
ditional features are then assigned to these groups andastassify vehicles as cars or
trucks. The technique uses a single grayscale camera bbsdead, processes image
frames incrementally, works in real time, and producesatetdounts with over 90% ac-
curacy on challenging sequences. Adverse weather consliéice handled by augmenting
feature tracking with a boosted cascade vehicle detector (BCVo overcome the need
of manual camera calibration, an algorithm is presente@¢vhises BCVD to calibrate the
camera automatically without relying on any scene-speaiiige features such as road

lane markings.
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Chapter 1

Introduction

Traffic data such as vehicle counts, speeds, and classificate important in traffic
engineering applications, transportation planning, ardlligent Transportation Systems
(ITS). Collecting traffic data manually by direct observasaof human observers has a
number of drawbacks4] including high cost, extreme weather and difficulties ire@d
by staffing limitations. These data can be acquired aut@alftiusing one of the many
available sensor technologies summarized in Table

While in-road technologies such as inductive loop deteddfies good accuracy for
counts and presence detection, their installation andter@mce causes traffic disruption.
Sensors that are placed on the pavements (magnetometatsub®s) can be damaged by
snow removal equipment or street sweepers. As mentioned at fimes it is difficult to
obtain accurate counts using intrusive technologies dueadway geometry (e.g., geom-
etry where there are significant lane changes or where &shild not follow a set path in
making turns). Some of the non-intrusive roadside sens@istrne prohibitive due to high
cost (e.g., laser) or low precision (e.g., microwave).drdd sensors have an advantage of
day/night operation and perform better than visible wawgile sensors in fog. However, in

addition to the problem of unstable detection zones, faaléd operation at least one sen-



sor is required in each traffic lane (a notable exceptiondSiIRTL sensor 1]). Ultrasonic
sensors exhibit difficulty in detecting snow-covered vesand are sensitive to changes
in ambient temperature and humidity. In addition, the peablof detecting motorcycles
remains elusive for the sensors described above.

The output of these sensors is a poor description of thedmfénts. This is a seri-
ous limitation in case of a critical situation, where a hurogerator is required to make a
decision based on the sensor data. In such cases, videaspr®ade the information in
the form of live video of the scene. In addition, a single widensor placed at an appropri-
ate position provides wide area coverage making it possibdietect incidents in multiple
lanes simultaneously. The same is the case in calculatiagegglengths. Another advan-
tage of video is that it provides sufficient information faghicle tracking to be feasible,
which is useful for detecting events such as sudden lanegelsarehicles moving in the

wrong direction, stalled vehicles etc.

1.1 Video detection and vision-based tracking

The use of video image processing for traffic monitoring wasated in the mid
1970s in the United States and abroad, most notably in J&pance, Australia, England,
and Belgium $0]. The hardware and the algorithms used for estimating ¢rptirameters
have seen a great improvement over the years. All video tietesystems used for traffic
monitoring can be broadly classified in two categorigsSystems which rely on local-
ized incident detections, arg) Systems which track individual vehicles. The advantage
of the first is that the computational requirements are doite and algorithms are rela-
tively simple. In the case of vehicle tracking systems, sipdated algorithms are needed
and are usually computationally demanding. Vehicle traglgystems offer more accurate

estimation of microscopic traffic parameters like lane ¢fea) erratic motion etc. By the



Type Advantages Disadvantages
Inductive e Low per-unit cost Installation and maintenance require
loop e Large experience base traffic disruption
detector e Relatively good performance Easily damaged by heavy vehicles,
road repairs, etc.
Microwave Installation and repair do not require May have vehicle masking in multit
(Radar) traffic disruption lane application
e Direct measurement of speed Resolution impacted by Federal
e Multilane operation Communications Commission
e Compact size (FCC) approved transmit frequency
¢ Relatively low precision
Laser Can provide presence, speed, and e Affected by poor visibility and heavy
length data precipitation
May be used in an along-the-road pr High cost
an across-the-road orientation with a
twin detector unit
Infrared e Day/night operation e Sensors have unstable detection zone
¢ Installation and repair do not require e May require cooled IR detector far
traffic disruption high sensitivity
Better than visible wavelength sen- Susceptible to atmospheric obscu-
sors in fog rants and weather
e Compact size e One per lane required
Ultrasonic Can measure volume, speed, occu- Subject to attenuation and distortion
pancy, presence, and queue length from a number of environmental fag-
tors (changes in ambient tempera-
ture, air turbulence, and humidity)
Difficult to detect snow-covered ve-
hicles
Magneto- Suitable for installation in bridge e Limited application
meter decks or other hard concrete surfages e Medium cost
where loop detectors cannot be ip-
stalled
Video Provides live image of traffic (more Live video image requires expensive
image information) data communication equipment
process- e Multiple lanes observed Different algorithms usually re
ing ¢ No traffic interruption for installation quired for day and night use

and repair
Vehicle tracking

Possible errors in traffic data transi-

tion period

Susceptible to atmospheric obscu-

rants and adverse weather

Table 1.1: Performance comparison among existing incidetgction technologiegy].



late 1980s, video-detection systems for traffic survedéagenerated sufficient interest to
warrant research to determine their viability as an indctoop replacementfl]. At
present, there are a number of commercial systems beinghisedjhout U.S. for manual
as well as automatic traffic monitoring and incident detectiMajority of these systems
use localized detection zones for counting vehicles. Oneealetection zones are marked
on the image, the pixel values in each detection zone is m@uitfor a change over time.
Combining this simple technique with some heuristics givasieate vehicle counts in fa-
vorable conditions (camera placement high above the grdueatl-on view, free flowing
traffic, clear weather and absence of shadows).

In case of non-ideal camera placement, spillover (due toecarperspective, the
image of a tall vehicle spills over into neighboring lane=jults into false detections. Fig-
ure 1.1 illustrates an examples of this problem where a large vehiecbngfully triggers
multiple detection zones in a popular commercial systenotier instance where such a
simple approach fails is in the case of shadows. As shownguarEil.2 shadow of a car
triggers the detection zone and is counted as a vehicle itheancommercial system (lteris
vantage). In case of a busy intersection, such a false al@spgcially in left-turn lanes)
would have an adverse effect on the signal timing coordinati

Such errors can be avoided by expanding the goal of the systdetect and track
vehicles over time as opposed to local change-detectiohadst(simple image processing
techniques). In addition vehicle tracking makes it pogstbldetect traffic events such as
near crashes and hazardous driving patterns. With avistyabi powerful and low-cost
computing resources, using computer vision for detectrahteacking of vehicles is now

feasible for practical applications.



Figure 1.1: An example where large vehicles trigger mudtigbtection zones resulting in
over counting. The output is from a popular commercial sysf@utoscope). It should be
noted that the commercial system is not designed to handleassituation and it produces
good results when the camera is placed high above the greithéeét or higher) with

sufficient tilt angle.

Figure 1.2: Shadow of a car incorrectly triggers a deteatiameighboring lane.



1.2 Previous work

Tracking vehicles using computer vision has been an iniageopic of research
[6, 46, 13, 15, 44, 12, 22, 65, 43, 31, 8, 35, 34, 36, 37]. Number of different approaches
have been proposed in the past, each having its own advanaageshortcomings. Ap-
proaches which assume that objects to be tracked (vehlwdes) already been initialized
are not considered in the following discussions, since systems can not be used in auto-
matic traffic analysis. Techniques used for vehicle deteciind tracking can be classified

into following popular approaches:

Background subtraction: Background subtraction is a popular technique used by many
vehicle-tracking systems to detect and track vehicles whey are well-separated in the
image B, 46, 13, 15, 44, 12]. Many advancements have been made in recent years in adapt-
ing the background image to lighting chang#®, 22, 30, 65] and in reducing the effects of
shadows 28, 38]. A well-known challenge for background subtraction (adlas with the
closely-related approach of frame differenciidg,[58, 39, 48, 14]) occurs when vehicles
overlap in the image, causing them to merge into a singlgforend blob. Koller et al.43]

use 2D splines to solve this occlusion problem, while otlesearchers employ graph as-
sociation or split-and-merge rules to handle partial or plete occlusionsZ2, 48, 49, 30.
Although these solutions can disambiguate vehicles aft@calusion occurs, they require
the vehicle to either enter the scene unoccluded or to becmmecluded at some point
during its trajectory in the camera field of view. In congégtaffic, such may never be the

case.

Active contours: A closely related approach to blob tracking is based on ingcéctive

contours (popularly knows amake¥representing an object’s boundary. Vehicle tracking



using active contour models has been reportedt8j [Contour tracked is guided by in-
tensity and motion boundaries. A contour is initialized &ovehicle using a background
difference image. Tracking is achieved using two Kalmaerltf one for estimating the
affine motion parameters, and the other for estimating thpesiof the contour. An explicit
occlusion detection step is performed by intersecting #ptdordered regions associated
to the objects. The intersection is excluded in the shapenastébn estimation. Results
are shown on real world sequences without shadows or seeehesmns. The algorithm

is limited to tracking cars.

Wireframe models: An alternative to using temporal information is to matchefriame
models to video images{, 42, 62, 23]. Ferryman et al. 19] combine a 3D wireframe
model with an intensity model of a vehicle to learn the appeee of the vehicle over time.
Kim and Malik [41] match vehicle models with line features from mosaic imaggstured
from cameras on top of a 30-story building next to the freewmayrder to recover detailed
trajectories of the vehicles. Alessandretti et &] ¢dmploy a simpler model, namely the
2D symmetry of the appearance of a vehicle in an image. Onleeofnigjor drawbacks to
model-based tracking is the large number of models needetbdiiffering vehicle shapes

and camera poses.

Markov random field: An algorithm for segmenting and tracking vehicles in low lang
frontal sequences has been propose@ih [In their work, the image is divided int® x 8

pixel blocks, and a spatiotemporal Markov random field (SRl is used to update an
object map using the current and previous image. Motionoredbr each block are calcu-
lated, and the object map is determined by minimizing a fionel combining the number
of overlapping pixels, the amount of texture correlatiomg #he neighborhood proximity.

The algorithm does not yield 3D information about vehickgdctories in the world coor-

7



dinate system, and to achieve accurate results it is run@sdfjuence in reverse so that
vehicles recede from the camera. The authors found thavth@hgle scenario is indeed a
challenging problem, although the accuracy of their resaltreased two folds, when they

processed the sequence in reverse.

Color and pattern: Chachich et al. 11] use color signatures in quantized RGB space
for tracking vehicles. In this work, vehicle detections associated with each other by
combining color information with driver behavior charattécs and arrival likelihood.

In addition to tracking vehicles from a stationary camerpatiern recognition-based ap-
proach to on-road vehicle detection has been studie@dn The camera is placed inside
a vehicle looking straight ahead, and vehicle detectiorestéd as a pattern classification

problem using support vector machines (SVMs).

Feature points: A third alternative that has been employed is the trackingaft fea-
tures. Beymer et al. 8] describe a system that tracks features throughout theo\sde
guence, then groups the features according to motion cuedén to segment the vehicles.
Because the camera is high above the ground, a single honmygeagufficient to map the
image coordinates of the features to the road plane, wherdigtiances between pairs of
features and their velocities are compared. In anotheroagpr Saunier et al.5p] use
feature points to track vehicles through short-term ogohss such as poles or trees. Like
the background subtraction systems mentioned above,appioach has difficulty initial-
izing and tracking partially occluded vehicles. Recentlyn4Q] proposed an approach
of combining background subtraction with dynamic multidefeature grouping for track-
ing vehicles. However, grouping parameters are computied semi-supervised learning
which needs manual intervention.

All of this previous work applies to cameras that are re#yivhigh above the

8



ground. At such heights, the problems of occlusion and \eloeerlap are mitigated, thus
making the problem easier. One exception to this rule is thekwf Kamijo et al. B2,

in which a spatiotemporal Markov random field is used to up@at object map using the
current and previous images. Motion vectors for each imagm®n are calculated, and the
object map is determined by minimizing a functional combgiihe number of overlapping
pixels, the amount of texture correlation, and the neighbod proximity. To achieve ac-
curate results, the algorithm is run on the image sequenewanse so that vehicles recede
from the camera. Extending the work of Beymer et 8].t$ the case of low-angle cameras,
a simple but effective technique is introduced for estingithe 3D coordinates of features
in an incremental fashion. The contribution of this reskascan effective combination
of background subtraction and feature tracking to handtdusmns, even when vehicles
remain occluded during their entire visible trajectory.likatheir work, the approach pre-
sented in this dissertation handles features that cannttblked continually throughout

the trajectory, which is a common occurrence in dense tredinditions.

1.3 Calibration of traffic monitoring cameras

Camera calibration is an essential step in such systems tsumespeeds, and it
often improves the accuracy of tracking techniques foriabtg vehicles counts as well.
Typically, calibration is performed by hand, or at least saatomatically. For example, an
algorithm for interactive calibration of a Pan-Tilt-ZoofTZ) camera has been proposed
in [64]. Bas and Crisman7] use the known height and the tilt angle of the camera for
calibration using a single set of parallel lines (along theeredges) drawn by the user, while
Lai [45] removes the restriction of known height and tilt angle byngsan additional line
of known length perpendicular to the road edges. The tedend Fung et al.31], which

uses the pavement markings and known lane width, is robaststgsmall perturbations in



the markings, but it requires the user to draw a rectanghaddrby parallel lane markings
in adjacent lanes. The problem of ill-conditioned vanighpoints (i.e., parallel lines in
the world appearing parallel in the image) has been addidsgdie et al. P6] using
known length and width of road lane markings. Additionahteiques for manual camera
calibration are described i22, 8].

Recently the alternative of automatic camera calibratiecngzaned some attention.
Automatic calibration would not only reduce the tediousnekinstalling fixed cameras,
but it would also enable the use of PTZ cameras without mantedalibrating whenever
the camera moves. Dailey et al.7] relate pixel displacement to real-world units by fitting
a linear function to scaling factors obtained using a knowatriution of typical length
of vehicles. Sequential image frames are subtracted, dmndlgs are tracked by matching
the centroids of the resulting blobs. At low camera heigttis, resulting spillover and
occlusion cause blobs to be merged, which renders suchinitasieffective. In follow-
up research, Schoepflin and Dailéy8] dynamically calibrate PTZ cameras using lane
activity maps which are computed by frame-differencing.n@ged in their paper, spillover
is a serious problem for moderate to large pan angles, amétitar only increases with low
camera heights. During experiments it was found that esitignéganes using activity maps
is impossible with pan angles as smalll@ when the camera is plac@d feet above the
ground, due to the large amount of spillover and occlusia dlccur due to tall vehicles.
In an alternate approach, Song et ab0[use edge detection to find the lane markings
in the static background image, from which the vanishingipis estimated by assuming
that the camera height and lane width are known in advancemiéthod requires the lane
markings to be visible, which may not be true under poor lighor weather conditions. In
addition, estimating the static background is not alwayssiiade when the traffic is dense,
it requires time to acquire a good background image, anddrvaakd subtraction does not

work well at low camera heights due to occlusion and spillpas noted above. More

10



PTZ change

Figure 1.3: Left: Operator sets up detection zones (thiwkd) along the lane centers (long
thin lines) to count vehicles and measure speeds. Right: &tena small PTZ movement
of the camera, the detection zones are no longer along tbectarters.

recently Zhang et al.g9] presented an approach using three vanishing points imati
the calibration parameters. However, their approachgsaiethe presence of sufficient
vertical structures or pedestrians in the scene to recbeevanishing point perpendicular
to the road plane.

A system for automatic calibration of road-side traffic ntoring cameras will be
presented that overcomes several of the limitations meati@bove. The approach does
not require pavement markings or prior knowledge of the earheight or lane width; it is
unaffected by spillover, occlusion, and shadows; and ike&an dense traffic and different

lighting and weather conditions.

1.4 Outline

The outline for the rest of the dissertation is as follows.ehiele detection, track-
ing and classification system based on feature trackingsisudsed in Chaptet. This
work has been published in the IEEE Transactions on InggiliJransportation Systems
[35]. Chapter3 focuses on the recent efforts to augment the feature trgdiased vehicle

detection with pattern recognition. Camera calibratiomigssential step for tracking and

11



measuring speeds of vehicles. Different techniques dbi@lng a camera from the video
are presented in Chaptérand finally an algorithm to calibrate the camera automadyical
using a pattern detector is presented in Chaptérhe work on automatic calibration has
been presented at the B7annual meeting of the Transportation Research Board (TRB)

[33].

12



Chapter 2

Detection and tracking of vehicles using

feature points

A system for detection, tracking and classification of viedsdased on feature point
tracking is presented in this chapter. An overview of theeaysis shown in Figur@.1
Feature points are automatically detected and trackedighrohe video sequence, and
features lying on the background or on shadows are removédxhdiyground subtraction,
leaving only features on the moving vehicles. These featare then separated into two
categories: stable and unstable. Using a plumb line pioje¢PLP), the 3D coordinates
of the stable features are computed, these stable featergsauped together to provide a
segmentation of the vehicles, and the unstable featurebaneassigned to these groups.
The final step involves eliminating groups that do not appedre vehicles, establishing
correspondence between groups detected in different iffragees to achieve long-term
tracking, and classifying vehicles based upon the numbenstable features in the group.

The details of these steps are described in the followingesttions.

13



Image frame

Feature Background
tracking subtraction
A\ 4
| Filtering II

¥ ¥ Group stable features I—
| PLP estimation
A 4

h A

Correspondence,
—» Validation and
Classification

N Group unstable
features

Calibration

Vehicle trajectories
and data

Figure 2.1: Overview of the system for detection and tragkoh vehicles using stable
features.

2.1 Algorithm description

2.1.1 Calibration

According to a pinhole camera model, a world pgnt [x Yy z]T projects onto

a pointu = [u V}T on an image plane through the equation

i = Cp, (2.1)

whereC is a3x4 camera calibration matrix, and= [uw vw w'andp=[x y z 1]

are homogeneous coordinates of the image and world poasgsectively 24]. Sincew is

an arbitrary nonzero scale fact@,has 11 unique parameters. Thus, the correspondence
of at least six points in a non-degenerate configurationsléa@n overdetermined system
that can be solved for these parameters.

To calibrate the system, the user manually draws two line@sgathe edges of the
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Figure 2.2: Manual camera calibrationEET: The user draws three lines, two along the
edges of the road (solid) and one perpendicular to the direof travel (dashed). The lines
can be of arbitrary length. IRHT: The 3D tracking zone is automatically computed.
road and one line perpendicular to the direction of travelslaown in Figure.2 The
latter line is estimated by sequencing through the video farding the intensity edge
between the windshield and hood of a light-colored vehidleese three lines yield two
vanishing points, from which the internal and external canparameters are computed
automatically using the mathematical formulation destin chaptedt. The remaining
six vertices of the cuboid defining the 3D tracking zone asmttomputed from the user-
specified lane width, number of lanes, and desired lengthhaight of the cuboid. For
the world coordinate systengaxis points along the direction of travel along the road, th
z-axis is perpendicular to the road plane with the positivie arinting upward and = 0
on the road surface, and tkeaxis is chosen to form a right-hand coordinate system.
Because the overall system is insensitive to small inacesan the calibration
(quantified in Sectio.2), this process is widely applicable to prerecorded secesoap-
tured from unknown cameras. Note that the calibration ptocerecovers a full 3D to 2D
perspective mapping, which is necessary to handle the @erep effects encountered at
low camera angles, unlike previous 2D to 2D calibration 4dbkt recover only a planar

mapping between the road surface and image plané\Jso note that perspective projec-
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tion leads to more robust results than the multi-layer harolgy used in37], due to the

reduced number of free parameters.

2.1.2 Background subtraction

The background of the scene is learned by storing the avepayelevel of each
pixel over a fixed period of time. For the experimental segeen20 seconds of video was
found to be sufficient for this task, but a higher traffic dgngiould require proportionally
more time to adequately remove the effects of the dynamegfmund objects. Since this
learning is performed only once, it is applicable to anytstref road for which the traffic
is moderately dense for some period of time.

Once the background is learned off-line, the technique ok@@und subtraction,
including morphological operations and thresholding,pgpleed to each image of the se-
guence to yield a binary foreground mask that indicates évretach pixel is foreground
or background. To cope with lighting and environmental ¢jes the background is adap-
tively updated as the sequence is processed, using this togsleclude inadvertently
adapting to foreground intensitie2]. One of the serious problems in using background
subtraction for object tracking is the distraction causgdroving shadows, which mis-
takenly appear as foreground pixels. It is not uncommon fadsws to cause multiple
nearby vehicles to merge into a single blob, or for the shadowe detected as separate
vehicles themselves. Although the problem of shadow detedtas been addressed by
many researchers, a general solution remains elus8/&F, 54, 16, 29, 52, 61, 63].

Background subtraction is used to perform a simple filteripgration on the fea-
tures, as shown in Figu23. Any feature that lies in the background region is immedyate
discarded from further processing, leaving only the fesguhat lie on foreground objects.

To reduce the effects of shadows, any feature that lies nvahsmall distances from a
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Figure 2.3: LEFT: The foreground mask resulting from background subtractiRGHT:
The features being tracked in this frame of video, dividdd three kinds: (1) those that
lie on the background (shown as small dots), (2) those thatithin 75 pixels of the back-
ground (shown as small squares), and (3) those on movinglest{shown as large circles).
Only the latter features are considered in further proogss$ius reducing the potential dis-
traction from the background or shadows.

background pixel is ignored.7{ = 2 pixels in all experiments.) This simple procedure
removes many of the features due shadow edges alone, secesith surface tends to be

fairly untextured, while removing only a small fraction efjitimate foreground features.

2.1.3 Plumb line projections

Feature points are automatically selected and tracked tisenLucas-Kanade fea-
ture tracker $9. The OpenCV implementation of the feature tracker whichsube Sharr
gradient operatorl[0] was used for all the experiments. A coarse-to-fine pyrahsttat-
egy allow for large image motions, and features are autaalftiselected, tracked, and
replaced.

Because of the dimension loss in projecting the 3D world to ar@éyge, it is im-
possible to uniquely determine the coordinates of the spoerding world point from the
image coordinates of a feature point. However, if one of tleeldvcoordinates is known

from some additional source of information, then the other toordinates can be com-
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puted. In this section a method is presented for exploitigdapability.

Suppose we have a feature poinand a binary foreground magk from back-
ground subtraction, as shown in Figiel. Projectingu downward in the image plane to
the first encountered background pixel yields the puittiat we call theplumb line pro-
jection (PLP)of u. Letv = v(u) denote this transformation. In addition, fet= ®(u)
denote the preimage of (i.e., the world point whose projection onto the image)isand
let g = ®(v) be the preimage of. Under certain assumptions whose validity we shall
examine in a momenp andq have the same andy coordinates as each other, anties
on the road surface, thus providing us with the constralmis we need to compute the
world coordinates op.

Letp, : R? — R3 be the mapping from a 2D image point to its correspondingavorl
point at heightz. In other words, an image poiatcould arise from any world point along
the projection ray passing throughand the camera focal point, apd= ¢,(u) is the one
whose third coordinate iz Expanding and rearranging.() yields the inhomogeneous
equation:

pa(U) = K™H(u)t,(u), (2.2)
where

[C33U—C;; CppU—Cip O

K(u) = |Cav—=Cu GCpv—=Cn 0 (2.3)
0 0 1
[Cia — U+ Z(Cy3 — C33u)
t,(u) = |Cu—V+2Z(Cy—CsV) |, (2.4)
Z

u=[u v]T is the projection op, andc; is theij th element ofC. (See AppendiA for

the derivation.)
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Figure 2.4: OP: An image (left) and foreground masgk(right) with a feature pointi and

its PLPv = ¢¢(u). BoTTOM: The 3D coordinates of the preimage= ®(u) of the feature
can be computed under the assumption that ®(v) lies directly belowp on the surface
of the road. The pointp, andp,, are the intersections of the projection ray with the top
and bottom of the calibration box.
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Since the world coordinate system is oriented so #hat 0 is the road plane, we
can compute the world coordinatesgpisy,(Vv), which also yields the andy coordinates
of p. To compute the 3D coordinatesfthen, all we need is to compute #soordinate,

which is done by solving2.1) in a least squares manner:

(2.5)

where
UGs — Ci3

VGC3 — Co3

h Cia — UGy + (€13 — UG )X+ (Cla —UGCs2) Y
c— 5
Coq — VG + (Co1 —VGa1) X+ (Co2 — VGC32) Y

andx andy are the first two coordinates pfandq. zdenotes the estimated heightof

2.1.4 Identifying and grouping stable features

The technique just presented for computing the 3D coordgaftthe preimage of a
feature poinu from its plumb line projection relies upon three assumggiqi) the world
pointsp = ®(u) andg = ®(v) lie on the same vertical axis, (2) tlzth coordinate ofy
is zero, and (3) the foreground makkperfectly labels the pixels directly under(in the
image). In other words, the method assumes that the vekisleaiped like a box, that the
features lie on one of the four surfaces of the box orthogtaméhe road plane, and that
there are no occluding vehicles or shadows in the vicinigt. us now examine the validity
of these assumptions.

Figure 2.5 shows the side view of a vehicle with three feature posts andu

having preimages, T, andU, respectively, on the surface of the vehicle. Suppose ife th
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Figure 2.5: Three points on the surface of a vehicle viewed lbgmera, with their esti-
mated coordinates using PLP. The points lower to the groueid ess error.

assumption is satisfied, so that :(s) = ¥&(t) = e (u), i.e., all three points share the
same PLP, and the estimated pdiht= ¢, (V) is the actual poinV. Using the coordinates
V, the technique previously described can be used to estithateorld coordinates,

T, andU. From the figure, it is evident that the error in predictionaafrld coordinates

is generally greater for points that are higher above thd mlane. More precisely, let
us define(2 as the set of vehicle shapes such that the slope of the coatany point
never exceeds the bound . (x,z) (see Appendix for the derivation). Then we have the

following observation:

Observation 1 For any two pointsS = (Xs, Ys, zs) andU = (xy, Yu, Zy) on the surface of
a vehicle such thatsz> z,, the Euclidean error in the estimag&will not be less than that

of U,i.e.,|| S—S||>|| U — U ||, as long as the vehicle shape isfin

Thus, the Euclidean error in estimating the world coordiratf a point on the
vehicle is a monotonically non-decreasing function of tlegght of the point. Keep in
mind that the sef2 encompasses nearly all actual vehicle shapes, so thateswation is

widely applicable. Only a vehicle with a severe concavityuddbe outside the sétl.
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Another important observation regards the effect of thgliteof the estimates on

the maximum possible error:

Observation 2 For any two estimated poinS = (Xs, Vs, Zs) and U= (%y,Yu, 2y) such
that z > z,, the maximum possible Euclidean error in the estingie greater than that

of U, i.e.max || S~ S|[> max || U—U||.

To see the validity of this observation, notice from Fig@ré that the estimated
heightz of a point will always be greater than or equal to its actuagiiie(as long as the
point does not extend past the front of the vehicle). Now mrswo vehicles traveling
side by side as shown in Figuge6, where the camera in 3D is aimed toward the front of
the vehicles at an oblique angle. L®andU be the 3D estimates of two preimages using
the PLP procedure, witB higher above the road thah Using the upper bountl.e < z,
the range of possible locations for the actual preimage ishnhess for the point lower to
the ground, i.e., the maximum possible emrgrs less than the maximum possible eregr
In the example shown, even the maximum error would not céhesestimate point) to
leave the vehicle, whereas wighthe point could be assigned to the wrong vehicle. Both
observations lead to the conclusion that points close todhe plane generally exhibit less
error.

In addition to the height of a feature, it is also importanttmsider the side of
the vehicle on which the feature lies. For each feature [u V|7, the PLP of the two
points obtained by perturbing the feature horizontallyhi@ image plane is computed (See
Figure2.7): u™ = ¢e([u+4d v]|") andu™ = ¢e([u—4d v]"). The 3D coordinates of
the preimages are given lpy = [x",y",z" | = go(u™) andp; =[x,y ,Z | = wo(u™).

If the absolute value of the slope in the road plane| (y™ —y)/(xt —x7) | is small,
then the point is more likely to be on the front of the vehi@gher than the side. Since the

shadows on the side tend to be more severe than those on tihetfi® points on the front
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Figure 2.6: Estimated coordinates of two points using PLBaBse the estimated height is
nearly always greater than the true height, the higher feasumore likely to be assigned
to the wrong vehicle.

are less likely to violate the third assumption and hencerame reliable.

Putting this analysis together, two kinds of features ataiobd, namelystableand

unstable A feature poinu is classified as stable if it satisfies the following two cdiahis:

2 < EZ and f < €s|ope,

wheree, andegope are positive, constant parameters of the system. In othetsyteatures
are stable if they lie on the frontal face of the vehicle clas¢he road plane. Note that
these criteria require only a single image frame, are roiiktrespect to shadows on the
side of the vehicle, and are not affected by errors in fedtacking, unlike the criteria used
in [37].

Once the stable features have been identified, they are egaapthe road plane
(xy-plane) as shown in Figuiz8. Because of the criteria used in selecting stable features,

points belonging to the same vehicle generally have a sregiaton in their world coor-
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Figure 2.7: ©P: An image (left) and foreground mask (right), with two umateld feature
points ( andv) and the PLPsy(", u—, v, andv~) of their perturbations. BTToM: Points
on the front of the vehicle yield a smaller slope in the roahplthan points on the side of

the vehicle.

24



X
(a) (b)

Figure 2.8: Stable features are grouped in the road plang asiegion growing algorithm

that compares they coordinates.

dinates along thg-axis (axis along the length of the road). As a result, a stmpgion

growing algorithm is sufficient to correctly segment thébtgdeatures.

The procedure iterates through the points, adding each fman existing group
in the same lane if its predictgdcoordinate is withire, of the mean of thg-coordinates
of all the features in the group. If no such group is foundnthenew group is created.
To handle vehicles that straddle two lanes (such as vehitégésare changing lanes), two
groups whose means yrdiffer by no more tham, are combined into a single group if their
combined width (along the-axis) is no more than the lane widif,ne.

This approach is much more computationally efficient ansl $emisitive to tracking
errors than the technique used 8], and it operates on a single image frame which facil-
itates incremental processing of the video. It should bechthat only one stable feature
per vehicle is needed in order for the vehicle to be corretghgcted, although in practice
groups with fewer than three features are discarded to estiiecnumber of spurious false
detections.e; = €; = 0.4Wiane, €siope = 1.5, andd = 3 pixels for all experiments, where

Wiane IS the width of a lane computed during the calibration step.
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2.1.5 Grouping unstable features

After grouping the stable features, the unstable featuseassigned to these groups
using a combination of PLP and motion coherence. Supposawettvo features that are
tracked from locationsi andsin one image frame ta’ ands' in another (not necessarily
consecutive) image frame. Lpt = ¢,(u) andq, = ¢,(s) denote their possible preimages
in the first frame at height, and letp, = ¢,(U’) andq, = ¢,(S) denote their possible
preimages in the other frame. diis a stable feature, then we know the coordinates of the
preimages) = ®(s) andq’ = &(s), which can then be used to estimate the preimages
p = ®(u) andp’ = ®(U’) in the following manner.

The scenario is shown in Figuge9, with z = 0 the road plane anzl= M the top of
the calibration box. If we assume thaiandq are points on the same rigid vehicle that is
only translating, then the motion vectors of the two poimésthe samep’—p = q'—q. This
is the motion coherence assumption. Now each point can besepted parametrically as

follows:

P = Po+alPu—Po) (2.6)

p" = py+ (P — Po),

wherea, o/ € R are the fractional distances along the ray. If we furtheuamsthat the
road is horizontally flat, then thecomponent ofp andp’ are equal, from which it can
easily be shown that = /. Substituting these parametric equations pite- p = q' — q

and solving forx in a least squares manner yields

o — (Apy — Apy)"(Aq — Apy) 2.7)

(Apy — Apy)T(Apy — Apy)’

whereApy = py — Pw, APy = P, — Py, andAQ = g’ — g. As a result, the estimated point
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Figure 2.9: Featurep andq on a vehicle travel t@’ andqg’ at a different time. If the
vehicle travels parallel to the road plane, then the coatésof the unstable featupecan
be computed from the coordinates of the stable feajure

is given by
(Apy — Apy)"(Aq — Apy)
Apy — Apy)T(Apy — Apy)

and similarly forp’. All of the quantities on the right hand side are known, sipice- o (u)

p=p,+ ( (Pm — Po) (2.8)

andpy, = pu(u).
Letq = [x; Yy Z]" be the coordinates of the centroid of the stable features
in groupi. For each unstable featupethe above procedure is used to estimate the world
coordinates of its preimage with respect to grougy assuming motion coherence with
g to yield p' = (%, ¥, 2,]". In addition, the world coordinates are estimated using
the PLP procedure described in Sectba.4to yieldp = [%, ¥, Z]". Using these
estimates, and assuming conditional independence alengjfferent dimensions, a score

is then computed indicating whethgibelongs to grou:
b = LLVLLLL, (2.9)

where
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L, = exp|—(X —%)?/o7] (2.10)

exp|— (Y — ¥b)2/02] it 9>y
Ly = { exp[—(%h— Y4+ )20 if < (¥y—2) (2.11)
1 otherwise
exp|—(2)?/0?] if 2 <0
L, = exp[—(ip — %)2/03} if 2>z (2.12)
1 otherwise
L, = exp|—(1-0)/o7| (2.13)
L, = exp|—(1—h)*/op] (2.14)

The first three factors compute a modified Mahalanobis distérom the estimated
coordinates to the centroid of thith vehicle. £ favors features which lie close to the
centroid along the-axis. Since the stable features generally lie on the frotite@vehicle,
L, assumes that the vehicle occupies a portion of the road betyve yi, andy =y, — \,,
where ), is the minimum truck length and the positiveaxis points in the direction of
traffic flow. Points outside this region are compared withriearest edge. In the vertical
direction, the vehicle is assumed to occupy the space bateved) andz = z,, based upon
the upper bound df,,. mentioned in Sectio.1.4

The last two factors increase the score of larger vehiojggring the actual point
p. Three points are considered: the centrgid= [x, Y, %" of the stable features
in the group, and two points shifted from the centroid alohgyt and z axes,q, =
(X, Yo—A, Z]Tanday, = [X; VY, Z+X,]". The values\, and )\, are the mini-
mum length and height for a vehicle to be considered a truekthe projections of these

points onto the image be denoted idyu),, andul, respectively. Let the fraction of pixels
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along a straight line betweern andu, that are foreground pixels (in the foreground mask)
be/', and let the same fraction along the line betwaeandul, beh', so that) < ¢, h' < 1.

In other words/' andh' indicate the fractional length and height of the vehicle pared
with the minimum truck length and height, respectively. A=sult, the factor<!, and £},
encourage features that are high off the ground (i.e., blesteatures) to be grouped with
larger vehicles (i.e., those with large valueg'cdindh').

Let a andb be the groups that yield the highest and second highestsjakespec-
tively, for the score of this feature. Then the feature isgesd to groupa if £2 > Lnin
and£?/LP > L. In other words, these conditions assign an unstable fe&dux stable
group if the feature is likely to belong to that group (cofigd by £.,;y) and at the same
time unlikely to belong to other groups (controlled Byio). ox = oy = 0, = 5 feet,
o; = op = 0.1 pixels, A\, = 1.2Wiane, A, = 0.8Wiane, Lmin = 0.8, and Lo = 2 for alll

experiments.

2.1.6 Correspondence, validation and classification

The correspondence between the feature groups segmentied aurrent frame
and the vehicles (i.e., feature groups) already being ¢&wak established by computing
the number of stable features shared between the groups.vEhicle is matched with the
segmented feature groups in the current frame and is agsdewth the group having the
maximum number of stable features in common. If a vehiclertwafeatures in common
with any of the groups, then its status is updated as “missamgl its location in subsequent
frames is updated using its current velocity. For each Veldaaount is kept of the total
number of frames that it was tracked successfujlydnd the number of recent consecutive
frames that it has been missing,J.

After finding a match for all non-missing vehicles, the reniag unassociated fea-
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ture groups in the current frame are matched with the misshicles based on the closest
Euclidean distance between the centroids of the groupsiildwoordinates. Each missing
vehicle is associated, one at a time, with the closest feaoup if that group is within

a distance ofy andr, in thex andy axes, respectively. Then the remaining unassociated
feature groups in the current frame are initialized as newcles.

When a vehicle exits the tracking zone, it is discarded if & hat been tracked for
a sufficient number of frames, i.ey, < 7,. This can be viewed as a simplified temporal
filtering to remove spurious and fragmented vehicle dedesti In addition, a vehicle is
discarded ifpy, > k7, wherex > 0, which is important to prevent momentary false
detections from being retained.

To classify a vehicle as a car or truck, (for the experimeatsar is defined as a
vehicle with two axles, and a truck as a vehicle with more ttvem axles). the number
of unstable features associated with that vehicle overhallftames that the vehicle is
tracked is summed. Vehicles with more thafe unstable features are classified as trucks,
while the rest are considered cars. Only unstable featuesgs®d because they are rarely
associated with cars due to their low height, whereas thebeurof stable features for
cars and trucks tends to be about the same. The number oblen&atures associated
with trucks is usually much greater than that of cars (tylhicive to ten times higher).

Tx = 0.3Wianes Ty = 0.5Wiane, 7, = 4, £ = 2, andnyyex = 20 for all experiments.

2.2 Experimental Results

The system presented in this chapter was tested on elewstgtavideo sequences
captured by a 30 Hz camera placed on an approximately ninerpele on the side of the
road and digitized a320 x 240 resolution. No additional preprocessing was performed

to suppress shadows or to stabilize the occasional cantema jFor each sequence, an
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initial calibration step was used to provide an approxintatpping between 2D image
coordinates and 3D world coordinates, as described in@e2il.1 After the calibration,
the system was fully automatic, outputting the lane cowmsicle trajectories, and vehicle
classification (car/truck) in real time.

To convey the variety of conditions in the processed videas)ple image frames
from the sequences are shown in FigRr&Q As can be seen, these sequences differ by the
camera placement, field of view, direction of traffic flow, ieéions in lighting conditions
(including long shadows), curved roads, scale and anglagds and number of lanes.
The “long” sequences L1-L7 are 10 minutes each (18,000 irfragees), while the “short”
sequences S8 and S9 are approximately 30 seconds each @98 firames). Sequences
S1 and S4 were extracted from the same video from which L1 d@nddspectively, were
extracted, with no overlap in image frames between the siratlong versions. Due to
lack of space, S9 is not shown in the figure but closely reses®8 in terms of road shape,
number of lanes, and camera angle. As mentioned earliesatine parameter values were
used in processing all the sequences.

A quantitative assessment of the algorithm’s performantehese sequences is
presented in Tabl2.1 The segmentation and tracking performance exceeded 908/ on
the sequences, and the classification accuracy was mor@5anThe false positive rate
exhibited variation, ranging from 1% to 7% of the total véésin all the sequences except
S9, where long shadows caused the rate to reach 12%. Thedetesmtion rate in the L3
sequence is due to the vehicles receding from the camerahwéduces the number of
features successfully detected and tracked because dltiwely low texture on the rear
of the vehicles.

Figures2.11through2.13show the results of the algorithm on some example image
frames from the sequences, with the images slightly brigdddo increase the contrast of

the annotations. Overlaid on each image are all the feafstakle and unstable) of that
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Figure 2.10: Sample image frames from the eleven sequeseesmu evaluating the algo-
rithm, showing the variety of scenarios considered. S1 ahexBibit the same conditions
as L1 and L4, respectively; and S9, which is omitted due to ¢tdspace, closely resembles

S8.
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Seq.| Vehicles| Segmented FP | Classified
(Trucks) | & Tracked

L1 | 627 (50)| 610 (97%)| 3 | 99.2% (4/1)
L2 | 492 (56)| 481 (98%)| 18 || 97.3% (2/11)
L3 | 325(38)| 298 (92%)| 6 | 97.2% (5/4)
L4 | 478 (57)|| 456 (95%)| 8 | 98.5% (3/4)
L5 | 217 (14)| 209 (96%)| 7 | 98.1% (1/3)
L6 | 102 (20)| 97 (95%) | 1 | 98.0% (2/0)
L7 | 157 (29)| 146 (93%)| 6 | 96.8% (3/2)
S1 | 104(7) | 98(94%) | 5 || 97.1% (2/1)
S4 | 43(3) 39 (91%) | 3 | 97.6% (1/0)
S8 | 113(8) | 107 (95%)| 4 | 98.2% (1/1)
S9 | 51(5) || 47(92%) | 6 | 94.1% (1/2)

Table 2.1: Quantitative results for all the test sequené&em left to right the columns
indicate the sequence name, the total number of vehicleseirséquence (the number
of trucks in parentheses), the number of vehicles correstlymented and tracked, the
number of false positives, and the classification rate. éldst column the numbers in
parentheses indicate the number of cars misclassified@sstriollowed by the number of
trucks misclassified as cars.

frame, with the convex hull of each group indicated by a tHactk line. The number next
to each group indicates the number of that vehicle, and ther [Bis placed next to each
vehicle classified as a truck. The vehicles that are labeletdve no features have already
been successfully detected and classified but have alredidthé tracking zone though
they have not yet left the image.

Figure2.11 demonstrates the ability of the system to segment vehicleshware
severely occluded, often by larger vehicles traveling jaeeht lanes. In (a) the vag#(35)
traveling in the middle lane is detected and tracked by therdhm despite the fact that it
is largely occluded by the truck4131) throughout the tracking zone. In (c) the c#42)
is detected in the frame shown as it is coming out from beirgduoied by the truck, just as
(#541) was detected in a previous frame while it was still paiakécluded by the truck.
Similarly, in (d) the vehicle#5) is detected as it is being disoccluded by the truck in front.

In (e) all the vehicles#25 - #28) appear as a single blob in the foreground mask and yet
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the algorithm correctly segments them. Traditionally,gsafing vehicles in such scenarios
has been impossible for background subtraction approaches

Figure2.12shows sample results for vehicles traveling away from timeera in (a)
through (d), and for a curved road in (e) and (f). In (a) and g algorithm successfully
detects and tracks the vehicles traveling close to each ddspite the presence of long
shadows. For (c) and (d), vehicles are moving at a low speddlase to each other due
to the lane closure but are nevertheless tracked corréatlyce in (e) that the car14) is
detected as it is coming out of occlusion from the truck imfran (f) the cars that were not
yet segmented in (e) (i.e., those behi#d3) are successfully detected even though they
are partially occluded.

Some examples involving large tractor-trailers are showfigure2.13 In (a) both
the vehicles#103 and#105) that are occluded by the white va##101) are correctly de-
tected and tracked. Similarly, the dark colored SUM()7) traveling adjacent to the truck
(#106) in (b) is detected after a few frames, once a sufficient nurobstable features
is found. In (c), (d), and (f), the ability of the algorithm torrectly segment and track
vehicles that enter the field of view partially occluded aawchain occluded throughout the
tracking zone is again demonstrated. In (e), the featureslafge tractor-trailer are all
correctly grouped into one vehicle despite the large exteait they cover in the image.
Note that it is the algorithm’s identification of large velei (trucks) that enables it to pre-
vent declaring false positives in such cases, when thespillof vehicles into neighboring
lanes would confuse traditional 2D algorithms. The aldnitalso works when the camera
is placed in the center of the road as shown in Figui&

To convey a sense of the limitations of the algorithm, som&takes are shown in
Figure2.14 In (a) the algorithm fails to detect the car traveling in tinst lane (indicated
with the letterM for “missing”). Due to the heavy traffic and its being in tlte& fane, the

base of the car remain partially occluded by the vehicle amtfr(#465) throughout the
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(a) L1: 03516 (b) L1: 10302

(c) L1: 15440 (d) L2: 00134

(e) L2: 00913 (f) L2: 11960

Figure 2.11: Results of the algorithm on some image framesyisig the ability of the
algorithm to handle severe occlusions. Below each imagesiseéquence name and frame
number.
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(c) L5: 00439 (d) L5: 02618

(e) L6: 01098 (f) L6: 01190

Figure 2.12: Additional experimental results on sequencesich the vehicles are moving
away from the camera or the road is curved.
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(e) S8: 00078 (f) S8: 00506

Figure 2.13: More experimental results demonstrating #rdopmance of the algorithm
when large tractor-trailers occlude other vehicles.

37



(a) L2: 13854 (b) L3: 06216

(c) L3: 10940 (d) L6: 07240

Figure 2.14: Some instances in which the algorithm makesstake.

tracking zone, so that none of the features on the vehicléfgaa stable features. In (b)
the shadow of the tractor-trailer is mistakenly detectea @ ¢£165), thus yielding a false
positive. In (c) the algorithm fails to detect a car travglin isolation because of the lack
of a sufficient number of feature points on the vehicle ag$mm the poor contrast. In (d)
the algorithm misinterprets two motorcycles travelingediy side as a single car, an error
that could be avoided by including a model for motorcycles er@asuring the foreground
evidence to validate each vehicle.

In Figure2.15 the number of vehicles detected by the algorithm is contpasth
ground truth obtained manually for the S2 sequence. Noteatt@iracy in the two nearby
lanes is quite good, with accuracy in the farthest lane 8aaritly lower due to the in-
creased amount of partial and complete occlusion in that 18me plot in the middle of
the figure shows the trajectories of some vehicles display#tk road plane. In addition,

the mean speed of the vehicles in each lane (computed ovanimge intervals) is plotted
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versus time, which corresponds with the general trend ecelé the video sequence.

The detection accuracy was found to be fairly insensitivéheocalibration para-
meters. To quantify this conclusion, each of the end poihte@lines corresponding to
lane markings was perturbed with additive Gaussian noieawtandard deviation of two
pixels in a random direction. Additive Gaussian noise hgwstandard deviation of three
pixels was added to the end points of the line perpendicaltre direction of traffic flow.
For five different trials on each of the L1 and L4 sequences,ntaximum drop in the
detection rate was less than 6% of the total number of vehi@ey., 97% detection rate
became 91%), and the maximum increase in false positiveg4jowvas found to be 4 ve-
hicles. (Note that an average user, with a little practie@file to consistently click within
one pixel of the desired location.)

The algorithm was implemented in C++ using the Blepo computaow library
(http://www.ces.clemson.edu/"stb/blepo) and the Open@Q¥ak-Kanade tracke®]. On
a 2.8 GHz P4 laptop computer with12 MB of memory, the average processing time for
a single image frame was 32 ms, which is slightly faster tramé rate. To achieve
this speed, the background was updated every 60 frames émonds), new features were
detected every five frames, and binary morphological omersi{dilation and erosion) were

performed on subsampled images (by a factor of two in eaettiin).
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Figure 2.15: Plots displaying the results of the algorithimop: Total vehicles detected
in each lane versus time in the S2 sequence, with Lanes 2 affde? by 40 and 60 for
viewing clarity.

view, with vehicles that are changing lanes clearly visildeTToOM: Mean speed (in miles
per hour) for th

MIDDLE: Some of the vehicle trajectories for L1 as seen in a top-down

e vehicles in L1 computed over one-minuterivdls.
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Figure 2.16: Vehicles can be detected and tracked when tinereais mounted in the
middle of the road as opposed to the situation in previougmxental results where the
camera is on the side of the road.
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Chapter 3

Pattern recognition-based detection of

vehicles

Pattern recognition is a classification (or labeling) peoblwhere the input data (a
pattern) is analyzed to find a suitable class (label) for $globon statistical information ex-
tracted from the data or a priori knowledge about the dateneSaf the challenges, training
methodologies, algorithms and applications in patterngaion are discussed iB7, 19].
Most supervised pattern recognition systems have at leeest stages as shown in Figure
3.1 In the first stage the input data (pattern) is acquired frasaresor (e.g., a camera) and
may be pre-processed (contrast stretching, extractioare§found objects etc.). The raw
data acquired from the sensor is usually of high dimensiatlans using this data directly
as the input of a classifier can result into a significant ddgfan of performance. A fea-
ture extraction stage transforms the raw sensor data irdev-@imensional representation

(2D in our example).
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- ’ Feature extraction' - Classification

s

Training

Intensity ~ Roundness
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A
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Figure 3.1: Atypical pattern recognition system consi$tgsenmsor input, feature extraction
and a classifier. In this example an image captured by a castra raw input. Two fea-
tures (average pixel intensity, and roundness) are egtitantthe feature extraction stage.
The classifier finds a decision surface (a dashed line in Xais\ple) using the training data
(white circles represent training images for apples andem@ctangles represent training
images for bananas). Black circle and rectangle is the deciHi the classifier on a new
(previously not seen in the training data) input image.
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3.1 Boosted cascade vehicle detector (BCVD)

The problem of pattern recognition has been studied extellysior many years,
giving rise to a variety of approaches such as neural nesya@bpport vector machines
(SVMs), and Bayesian classifiers. A relatively new approagihgia cascade of simple
features to detect patterns in images was developed by ®ralaJonesd6]. In their ap-
proach each image sub-window is passed through a seriestsfaieincreasing difficulty,
known as a cascade. The goal of each stage in the cascadevaduate the sub-window
using a set of image features to decide whether to rejecuthr@vindow as containing the
object of interest. Subsequent stages perform more detailalyses using larger and more
discriminating sets of features, with each stage trainegheve a high detection rate (e.g.,
99%) and a liberal false alarm rate (e.g., 50%). Sub-windawise image which are easily
distinguishable as non-vehicles (e.g., an image patchlittlthor no texture) are discarded
in the initial stages of the cascade, resulting in fastec@ssing, so that the complete set
of features needs to be evaluated for only the small fracdf@ub-windows that reach the
final stage of the cascade. The training process ensurehéheassification errors in each

stage are independent of each other.

3.1.1 Training with integral images and Haar like features

The Viola-Jones algorithm achieves real-time processotignly with the cascade
architecture, but also because it uses simple image diiferéeatures that are quickly
computed using an integral image. The features usébjrafe simply arithmetic additions
and subtractions of pixel intensities in a detection windéw example of such a feature
is shown in Figure3.3 where the value of a feature is computed by subtracting the su
of pixel intensities inside black rectangles from the sunpigkl intensities inside white

rectangles. Given a set of labeled training images (vehitel non-vehicles), the training
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Offline training of the detector

. Lo Vehicles detected in new images
using training images

Positive training
samples

Negative training
samples

Cascade architecture

Stage 1  Stage 2 Stagen  Detection

@)= @.E

34 4 34
Example of a B F—
rectangular feature ‘ -

Rejected sub-windows

Figure 3.2: Training of boosted cascade vehicle detector (BCV
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e

Figure 3.3: Example of rectangular features used for tngithe pattern detector. A (scalar)
value of a single feature is computed by subtracting the dupixel intensities in black rec-
tangles from the sum of pixel intensities in the white regtas. (a) Vertical two-rectangle
feature (b) horizontal two-rectangle feature (c) vertitake-rectangle feature (d) a four-
rectangle feature. (e) A horizontal three-rectangle feaigioverlaid on an image-window
of a car for illustration.

process first finds a feature (from a large pool of rectandak#tures) and a corresponding
threshold on the value of the feature that performs bestetraiming data. A single feature
in essence acts as a weak classifier whose decision is asliegntly better than random
chance. The idea behind boosting is to combine several seelk wlassifiers in a way
such that the final strong classifier meets the performargaireanents. After training,
vehicles are detected by sliding the strong classifier dweririput image and computing
the decision (vehicle or non-vehicle) at each sub-windotheimage. To detect vehicles
at different scales, the feature set (and in effect the tletewindow) is scaled (rather than
the more traditional approach of resampling of the inputge)awhich further reduces the
computational load.

Viola and Jonesd6] introduce the idea of integral images which enables comgut
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Figure 3.4: Computing a value of feature using an integrabend he sum of pixels within
rectangle D can be computed with four array references. Bhe\of integral image at
locationa (ii[a] ) is the sum of pixels in rectangle Alb] is A + B, ii[c] is A + C, andii[d]

is A+ B+ C + D. The sum within D can be computed igd]-ii[b]-ii[c]+ii[a] . Image
adapted fromg6.

the values of features described above in efficient manrtee. ifitegral image at location

X, y is the sum of pixels above and to the lefbofy including the value ok, y itself.

3.1.2 Detection, filtering and tracking using BCVD

Each image of the video sequence is scanned exhaustivelylaiple scales by
the BCVD to detect vehicles. The output of the BCVD is a rectangteeshch detected
vehicle, and the midpoint along the bottom edge of the rgttais retained as the location
of the vehicle for the purpose of computing proximity to atlhrehicles. Vehicles from
the previous image frame are tracked by searching amongydatections in the current
image frame. In case a match is not found, the vehicle is flhggenissing and its location
is updated by means of a standard template matching meahasiag normalized cross-
correlation. If a vehicle is missing for several conseaiframes, it is discarded for the
lack of sufficient evidence. Meanwhile, new vehicles ar@ahzed for all the detections
that did not yield a match. This straightforward trackinggedure augments the position
information of the vehicles with their image trajectories.

To reduce the amount of false positives a foreground maskas (obtained by
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background subtraction as described in SecBdn? to eliminate detections that belong
to the stationary background. In addition we use calibraiidormation to estimate the
expected size of the detection rectangle based on thedoaaitthe rectangle in the image.
A detection is ignored if the size of the detection (correspog rectangular bounding box)

varies significantly from the estimated size at that logatio

3.2 Combining BCVD with feature tracking

As seen in Chapté?, vehicle detection is based on segmenting stable featuméespo
In a situation as shown in Figu5b), when the base (corresponding to the side facing
the camera) of a vehicle (vehicle B in our example) is ocdubdg another vehicle in
back-to-back manner, the feature points close to the basshatle A would be incorrectly
projected at a height greater than their true height fronrdlad. However, in such scenar-
ios the BCVD is likely to detected the vehicle since most of yrammetric features on the
vehicle still remain visible in the image. On the other hamd situation of lateral occlusion
as illustrated in Figur8.5(a), BCVD will fail to detect the vehicle (lateral occlusiordies
symmetric features) but stable features can be found ondedlvehicle (using plumb line
projection) as long as the vehicle is not occluded completel

BCVD was combined with feature tracking in following manner:

1. Two sets of vehicles are independently detected usitdesfisatures and BCVD.

2. Vehicles that are currently being tracked are matchekd detections in the current

frame.

3. Unmatched vehicles in the current frame which were detkeasing stable features

are initialized as new detections.
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Figure 3.5: In (a) vehicle B undergoes a partial lateral wsion by vehicle A. In this
case points on both vehicles (white circles) will be detéete stable features even though
BCVD fails to detect B (dashed rectangle). In another sitmasioown in (b), vehicle B
is traveling behind A. As a result point on B (black circle)Iwiiot be detected as a stable
feature due to its wrong plumb line projection (dashed ayrowthe base of vehicle A.
As such, feature tracking based approach misses vehiclevigsvieo BCVD successfully
detects it (solid rectangle).

4. A new vehicle is initialized from each unmatched vehiadéedted using BCVD only

if there are no other vehicles (either an existing vehiciadp&racked or a new detec-

tion in current frame) in its vicinity.

3.3 Experimental results

Performance of two BCVD detectors was evaluated, one for tietdooth cars and
trucks and the other for detecting motorcycles. Fidifisshows the four sequences used to
extract the positive samples for training the car/trucledetr. Total ofS00 samples were
manually extracted from the training sequences which wese tandomly distorted (rota-
tion on either side within 2 degrees, brightness changewit%, change in dimensions
within 5%) to generate a total 6f 400 positive training samples. The detector was trained

using the Haar-training module of the OpenC¥Ijbrary with 16 x 12 detector size anti4
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Figure 3.6: Four training sequences for BCVD to detect cardranéis.

stages in the cascade. A large numtsef(0) of randomly selected high-resolution images
were used as a negative training set.

Some examples of training images are shown in Figure Figure3.8 shows a
sample output frame from each of the test sequences. atamitnalysis is presented
in Table3.1 For each test sequence the second column indicates thedgtauh, i.e.
the actual number of total vehicles in the sequence. Threeofeesults are shown in
the table for each of the sequence. In the first case a sequesggrocessed using stable
features as described in ChapzeNext, the sequence was processed using only the BCVD.
Finally a combination of BCVD and stable features (as desdribeéhe previous section)
was used to process the same sequence. In each case, TResmtheanumber of correct

vehicle detections (true positives) and FP indicates timetyan of spurious detections (false
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Figure 3.7: Sample positive and negative training imagesdotruck BCVD. The original
images ard6 x 12 pixels in size.

Figure 3.8: Four test sequences to evaluate accuracy of BCVWaS4aptured on a rainy
day.

51



Seq. | Vehicles Stable features BCVD Stable features
+

BCVD
P|TP FP| TP FP
213(82%) | 13 | 224(86%) | 18
278(89%) | 9 | 287(92%) | 8
114(78%) | 7 | 137(94%) | 12
143(76%) | 24 | 153(81%) | 23

TP
Cl | 260 | 210(81%)
C2 |312 | 275(88%)
C3 | 146 | 134(92%)
C4 | 187 | 124(66%)

g oI NN T

Table 3.1: Results comparing performance of stable fegtB€¥D and combined sys-
tem. TP is the number of correct detections (true positiveB)is the number of spurious
detections (false positives)
positives). A detection is considered a TP only if the vehisldetected and tracked till it
exits the detection zone. Similarly a detection is congdexFP only if it leads to a vehicle
exiting the detection zone.

Note that in some cases the number of false positives for cwdlwetection is less
than the sum of false detections in the other two. As mentianéhe previous section, in
the combined detection mode two sets of vehicles are indkgpely detected using stable
features and BCVD, so intuitively the false positives should ap. However, if a BCVD
detection (a false detection for example) is in the vicimtynother detection (a detection
by stable features for example) then the detection is diechrThe same BCVD detection
would have resulted into a false positive if the sequencebsasy processed using only the
BCVD. So for the combined detection, the number of false pastis between the false

positives of stable features and the sum of false positif/etable features and BCVD.

3.4 Detecting motorcycles

BCVD can be trained to detect other types of vehicles apart frara and trucks.
A motorcycle detector was trained using a very limited amairexisting data and tested

it at two different locations. Since the number of motoregcin a typical traffic scene
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Figure 3.10: Examples of positive training images for mogote detector. Original images
are20 x 20 in size.
is very small (less than 1%), gathering sufficient trainirgadwas time consuming. The
training sequences shown in Figl8® have32 motorcycles in total. A totad00 instances
of those motorcycles were extracted from the sequence tergena total400 positive
training samples using small distortions (similar to theecaf car/truck detector). A4
stage20 x 20 size detector was trained using the OpenCYV library.

Figure 3.11 shows a sample frame from each test sequence. The test seguen
were captured at special events organized for motorcgcksbm Table3.2 it appears that

the performance of the motorcycle detector is less thanféinat car/truck detector (when
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Figure 3.11: Test sequences for motorcycle detector.

compared to the results &1). It is plausible that more training data will improve the

accuracy of the detector.

Seq. Motorcycles TP FP
M1 80 65 (81%) |11
M2 40 31(77%) |5
M3 70 59 (84%) |8

Table 3.2: Quantitative results of motorcycle detection.
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Chapter 4

Calibration of traffic monitoring

cameras

Camera calibration is an essential step in a vision-baseidlgahacking system.
Camera calibration involves estimating a projective matitikch describes the mapping of
points in the world onto the image plane. A calibrated canegi@bles us to relate pixel-
measurements to measurements in real world units (e.d),viksch is useful to handle
scale changes (as vehicles approach or recede from theaaamerto measure speeds. It
is important to note that the calibration methods descrileddw do not require knowledge
about the camera specifications (if the information is aldd, it can be easily incorporated
to improve the calibration accuracy).

A method for directly estimating the projective matrix issdabed in the first sec-
tion of this chapter using point correspondences betweamntpm the image plane and
respective points in the world coordinate system. In a 8dnavhere obtaining such point-
correspondences is difficult, camera model can be simplifietdr reasonable assumptions
to estimate parameters of the assumed camera model andhéhprofective matrix can be

computed from the estimated parameters. In this approacie soformation about the
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scene such as a known measurement along the road surfaceromformation about
height of the camera is required. Different scenarios fertifpe of information that is

available are discussed in the second section of this ahapte

4.1 Direct estimation of projective matrix

A perspective-projective pinhole camera model is assuriiée. general relation-
ship between an object point measured with respect to asedected world coordinate
system and its image plane point is denoted Byal homogeneous transformation matrix

[56, 24]. This matrix will be referred as the camera calibration nxat.

p=CP, (4.1)

wherep = [uw vw w'andP =[x y z 1]  are vectors containing homogeneous
coordinates of image poind,= [u v]" and world pointP = [x y Z]" respectively.

Representing the matrix with corresponding entries, we get

Ci1 G2 Ci3 Cyiy
UV VW W = | Cy Cpy Cum Cu |[X Y Z 1]. (4.2)

C31 C32 C33 Csy

The homogeneous transformation mattixs unique only up to a scale factor. We normal-
ize C by fixing the scale factots, = 1.

Expanding the above equation, yields

U Ci11X+ CioyY + Ci3Z+ Ciy

W (4.3)
V— Co1 X+ 022ij Co3Z+ Coy (4.4)
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W = C3;1X+ C32y + C33Z+ 1. (4.5)

Substitutingw into first two equations and rearranging leads to,

U=XC1+YCa+2ZC3+Ciy—UXG —UYGs —UZG;3 (4.6)

V=XC1+YCo+2ZG3+Cu—VXG —VYGy —VZG3. (4.7)

The two equations above define a mapping from the world coates to the image coor-
dinates.

For a point in the world, we can calculate its image coordisat we know the
location of that point in terms of the user-defined world+cloate system and camera
calibration matrixC. The camera calibration matr consists ofi 1 unknown parameters.
Knowing the world coordinates and the image coordinates sihgle point yields two
equations of the form4(6) & (4.7). Six or more points in a non-degenerate configuration

lead to an over-determined system:

Xxty1 z1 0 0 0 0 —uwx —Wwyr —Wz Ci1 U
0 0 0 0 X VY1 31 —viXy —wviy1 —Vviz Cio 1
Xo Yo Z2 1 0 0 0 0 —UyXy —UYs —Uy2Z Ci3 Us
0 0 0 0 X Yo 2o 1 —VoXo —VoVo —VoZ || Cu | = | W (4.8)
Co1
X» Yn Zv 1 0 0 0 0 —UyXs —UnYn —UnZ : U,
I 0 0 0 0 X Vn Zn 1 —VoXyp —Va¥n —Wnzy 11 Cs3 ] i Vi ]

which can be solved using a standard least squares technique

The offline calibration process depends upon the user{fgg@goint correspon-
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Figure 4.1: Camera calibration tool.

dences for the calibration process. For improving the aayyit is desired that the world

coordinates are derived from the actual measurements etére e.g., having place mark-
ers at known distances. For cases where this informatiootiavailable (e.g. pre-recorded
data), an approximation can be done using standard spéoifisauch the width of a lane,

length of a truck etc.

An example of the calibration process is shown in Fighi2 First, a marker is
placed across the width of the road and perpendicular tatierarkings as shown in (a).
With the marker position unchanged, sequence is advanitedetirear end of the truck
appears to align with the marker position on the ground. A mewker is placed to align
with the height of the truck (b). In the same frame a markelasqxd on the ground to align
with the front end of the truck (c). Once again, the seques@avanced till the marker
placed on the ground in (c) appears to align with the read étitedruck. This is shown in
(d). For the same frame, the marker is realigned with thetfead of the truck as shown in
(e). A new marker is placed across the width of the road (fle Gwre time, the sequence
is advanced for the new marker to appear aligning with thektsurear end. An additional

marker is placed as shown in (g) in such a way that it appedrs sdigned with the height
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of the truck. The result looks as shown in (h). Using the disi@ms of a known type
of vehicle is an approximate method for estimating worldrdatates of control points.
The table below lists lengths of some of the common vehiglesyfound on the road. In
addition to this, the information about lane width (el@.feet on an interstate) and number
of lanes is used.

The imaging process maps a point in three dimensional spageaitwo dimen-
sional image plane. The loss of dimension results into animagrtible mapping. Given
the calibration parameters for the camera and the imagelic@des of a single point, the
best we can do is to determine a ray in space passing throegbptical center and the
unknown point in the world.

To measure distances in the road plane, we can substitut@in above equations
to get the mapping of points from the image planev) to corresponding points in the
road plangXx, y):

-1

X _ Ci1 — UG Cio — UGse u . (4.9)

y Co1 — VG31 Coo — VG2 \Y

4.2 Parameter-based estimation of projective matrix

As in [45, 58, 60], a pinhole camera model is adopted assuming flat road syrfac
zero roll angle, and square pixels. In addition, image aaatassumed to be the principal
point. These are the same assumptions mad&8dn The roll angle of the camera (which
does not change with pan-tilt movements) can be easily cosgted by rotating the image
about its center. The user can manually specify roll angldryving a lines in the image
along a structure known to be perpendicular to the road ptaneal world (e.g., vertical
edges of a container behind a tractor trailer). With theseiagtions, four parameters

are needed to map between pixel distances (measured in #ge)jmand corresponding
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(9) (h)

Figure 4.2: Camera calibration process for direct estimatigprojective matrix.
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h cot ¢

[000]T [000]"
(a) Top view of the scene (b)Same scene viewed from the bidt si

Figure 4.3: Camera is placed at heigleet above the road with down/tilt angleand pan
anglef. X, Y, Z is the world coordinate system whilg, Y, Z; is the camera coordinate
system. The optical axis of the camera intersect¥thgis of the world coordinate system
athcot ¢. The optical axis of the camera intersects the road plane at R.

distances on the road (measured in Euclidean world unit®alHength {), tilt angle ),

pan angled), and height of the camera measured from the road surfgce (

ApointX =[x y z 1]"inworld coordinate frame is related to its image coor-

dinatesx = [wu wv W' as follows:

X = PX
e
wu f 0 0 0
y
W | =10 —fsing —fcos¢ fhcoso ; (4.10)
z
w 0 cos¢p —sing hsing .

where

P = KRllzxs | —T]
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f 0 0
K = (0 f 0
10 0 1
1 0 0
R = [0 —sing —coso
|0 cos¢ —sing

K is the camera calibration matril, is the rotation matrix corresponding to a rota-
tion of (90° 4 ¢°) around the X-axis| is the3 x 3 identity matrix andT = [0 0 h]"
is the translation of the camera from the origin of the woddrclinate systemls,; | —T|
is concatenation of andT. Notice that assuming square pixels, zero skew and prihcipa
point as the image center results into a single internabtion parametdr. Using @.10
we can express the relationship between the world cooelirfaty) of a point on the road

(z= 0) to its image coordinatesi(V) as follows:

wu fx
“Sw T ycos ¢ + hsin ¢ (4.11)
wv fhcos ¢ — fysin ¢
= — . 412
Y w ycos ¢ + hsin ¢ ( )
Rearranging above equations, we get:
hucos ¢(1 + tan? ¢)
v+ ftan ¢ (4.13)
h(f — vtan ¢)
y v+ f tan ¢ (4.14)

For any two points in the road plane having the same coomelrebng the y-axis,
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we can relate the pixel difference in their u-coordinates wie distance between the points

along the x-axis in world coordinates using11)

f Ax

Au = .
! ycos ¢ 4 hsin ¢

(4.15)

It is clear that the y-coordinate of any point in the worldresponding to a point

on the u-axis in the image can be obtained by substitwiag) in (4.12:

Yv—o = hcot ¢. (4.16)

4.2.1 Two vanishing points and known camera height (VVH)

Vanishing points are independent of camera’s location ampdd on the internal
parameters of the camera and its p&&.[ Two vanishing points (one along the direction of
flow of traffic and another in a direction orthogonal to it) Igi¢hree equations (assumption
of zero camera roll leads to identical coordinates alongthgis) inf, ¢, andd. In homo-
geneous coordinates the vanishing ppint [su, Sw s]T corresponding to the vanish-
ing linely =[—tan® 1 0 0] is obtained ag, = Pl,. Similarly, the vanishing point
P = [Su Sv s]T corresponding to the vanishing like=[—1 —tanf 0 O]T is

obtained ap, = Pl;.

[ —tan 6]
SW f 0 0 0 |
Sw| = 0 —fsing —fcos¢ fheoso 0
S 0 cos¢p —sing hsing 0
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Figure 4.4: (a) Measurements in the road plane. (b) Measmenin the image plane.
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S
SU f 0 0 0
—tanf
svi| = 0 —fsing —fcos¢g fhcoso 0
S 0 cos¢p —sing hsing 0

Note thatl, andl; correspond to the direction along the length of the road and
perpendicular to the length of the road respectively.

By expanding the above equations, we obtain:

by — —tanf (4.17)
cos ¢
Vo = Vi = —f tangzﬁ (418)
f
= — 4.19
t cos ¢ tanf ( )

Solving these three equations gives us

f = \/[—(v3+u0u1)] (4.20)
¢ = tan”' <—va> (4.21)
6 — tan! (W) (4.22)

4.2.2 Two vanishing points and known width (VVW)

As seen in the previous subsection, two vanishing pointd teahree equations
which can be solved to finld ¢ andd. At least one measurement in the road plane to solve
for the unknown camera height

A known distance\x along they = hcot ¢ axis corresponding to the pixel distance

65



Au along the u-axis can be used to solvelioFrom @.15

AX 1
h = (fAu—ycos¢> o’

Using @.16) we substitute foy:

~ fAxsing

h
Au

(4.23)

Either the lane widthw;) or the average vehicle widtlw() can be used to solve
for h. As shown in Figurel.4, the length of a segment connecting the intersections of two
adjacent lanes with any axis parallel to the X-axisvisec 6. Similarly the projection of
vehicle’s width on the X-axis isw cosf. SubstitutingAx = w; sec# andAu = Au, in
(4.23 we obtain an expression for the heidghof the camera using two vanishing points

(which yieldf,¢, andf) and known lane width.

~ fw cosfsing

d Au,

(4.24)

Similarly substitutingAx = w, cos # andAu = Auy in (4.23 we obtain an expres-

sion for the heighh using average vehicle width:

~ fwycosfsing

h Auy

(4.25)

4.2.3 Two vanishing points and known length (VVL)

As shown in Figured.4, length information I() can be easily incorporated using

the equations derived in the previous subsection by obsgthiatAx = |, sin § andAu =
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AUL.
~ flysinfsing

h
AUL

(4.26)

However, ag) approache$, Au_ reduces to a point. Another way to incorporate length
information is by using4.14. Assuming thay coordinate of the point on the road corre-

sponding to the pointr = [ v ]" in the image isy;, then it can be seen from Figure

4.4 that they coordinate of the point corresponding to the image ppint |u, vb]T is

Yt + |y cos 6. Substituting ind.14we get:

h(f + v; tan ¢)
V¢ + f tan ¢
h(f + vy tan ¢)

= — 0.
Y Vp + f tan ¢ veos

Vi =

Equating the two equations above and solvinghfgrelds

ho flycosO(vs — Vo) (Vb — Vo)
(Vi — Vo) (F2 4 v5)

(4.27)

4.2.4 One vanishing point, known width and length (VWL)

Estimating the vanishing point in the direction orthogateethe direction of traffic
flow is much harder compared to estimating the vanishingtpoithe direction of traffic
flow. Let us now derive the equations for calibrating the camsesing a single vanishing
point (Uy, Vo), @ known length measurement (measurement along the idineat traffic
flow) and a known width measurement (along the directionagtimal to traffic flow).

Equations4.17) and @.18 can be used to derive following relationships:

sinfg = V2/(F2+V2) (4.28)
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cosg = f2/(f2+ V) (4.29)
sin® = uy/(uy+f2+vp) (4.30)

cos?’d = (F2+V2) /(W +f>+V2). (4.31)

Now by equating4.24) and @.27) we derive a fourth order equationfiras follows:
k2

f+f2 [2(u3 +V3) — V%] - [ug1 vy 2uVE - K =0 (4.32)

where

AU (VF — Vo) (Vb — Vo)ly
W (Vi — Vp)

ki, =

The above equation is quadraticfinand can be solved to estimate the focal length.
It is straight forward to compute andd from (4.17) and @.18. Finally, heighth of the
camera can be found by using eithér24), (4.25, or (4.27). It should be noted that(32
which was derived for lane width;, also holds true for vehicle width by substituting in

place ofw;, andAu, in place ofAu;.

4.2.5 One vanishing point, known width and camera height(VWH)

A camera placed at a known height above the road plane canlibeated using
a single vanishing poin, (in the direction of traffic flow) and a measurement along the
width of the road i.e. W, Au;) or (wy, Auy).

Squaring both sides o#(24) and rearranging using(28-(4.31) we get

(1= 1)+ [2v% — IG(ug + V)] F2 + v = 0 (4.33)
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Algorithm| Known quantities Vanishing Image measurer Comments
points ments
VVH camera height Po, P1 none works even in dense traffic
conditions
VVW lane/vehicle width Po, P1 Au, or Auy
VVL length measurement Po, P1 Pr, Po works in moderate traffic
VWL lane/vehicle  width and pg Pr, P and Au, or
length measurement Auy
VWH lane/vehicle width and cami- p, Au; or Auy works even for head-on view
era height and also in dense traffic con-
ditions
VLH length measurement andp, Pr, Po works in moderate traffic
camera height

Table 4.1: Comparison between different method of calibggditraffic monitoring camera.
where

Wr VO
hAuU, -

ko

4.2.6 One vanishing point, known length and camera height(VLH)

The last scenario that is considered here estinfatsing a single length measure-
ment (along the length of the road) when the height of the caraed vanishing poirgy
is known.

Squaring both sides of4(27) and rearranging using(28-(4.31) we get

2
\

k2
f4 4 f2 luﬁ + 22 — 3] + MW +vg)] =0 (4.34)

h2

where

(f = Vo)(Vo — Vo)
(f =Vb)
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Chapter 5

Automatic calibration of traffic

monitoring cameras

In this chapter, an algorithm to automatically calibratead-side traffic monitoring
camera is presented that overcomes several of the lirm&abbprevious approache$,
60, 58]. The algorithm does not require pavement markings or kimwledge of the
camera height or lane width; it is unaffected by spillovexglasion, and shadows; and it
works in dense traffic and different lighting and weatherdibons. The key to the success
of the system is a BCVD described in ChapBerSince vehicles are detected and tracked
using their intensity patterns in the image, the algoritbesinot suffer from the well-
known drawbacks of background subtraction or frame diffeirey. The technique uses the
vehicle trajectories in the image and the intensity gradiong the vehicle windshield to
compute the two vanishing points in the image, from whichddumera parameters (height,

focal length, and pan and tilt angles) are estimated.
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Figure 5.1: Overview of the algorithm for automatic cameableation.

5.1 Proposed approach

Figure 1 presents an overview of the implemented systembiilkeof the process-
ing is performed by the BCVD (as described in Cha@)ewhich is used to detect and track
vehicles. The resulting vehicle tracks are then used tonasti the first vanishing point in
the direction of travel, while strong gradients near vahigindshields (in daytime) or the
lines joining the two headlights (at night) are used to cotapie second vanishing point
in the direction perpendicular to the direction of traveheTRandom Sample Consensus
(RANSAC) algorithm RQ] is used to eliminate outliers resulting from noise andfmage
compression artifacts. From the vanishing points, the cansecalibrated, which then
enables the speed of vehicles to be computed by mappingqoretinates to world dis-
tances. The only parameter of the system is the mean vehidta,which is assumed to
be 7 feet 8].

One useful characteristic of the approach based on twohiagipoints and vehicle-

width measurement is that the system is calibrated incréatignn other words, only two
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images of a single vehicle are needed in principle to cakbtiae system, thus providing

a nearly instantaneous solution to the problem. This unimgiavior eliminates the delay
inherent in background subtraction techniques, which m#ke system amenable for use
by PTZ cameras whose parameters are continually changimpgattice, although the first
vehicle is used to obtain initial calibration parametehgse parameters are refined over
time as more vehicles are detected and tracked in order &nofiore accurate estimates.
Additional advantages of the approach include its immutatghadows (Note that Dailey

et al. [17] observed more thamh0% error in mean speed estimates due to shadows), as
well as its insensitivity to spillover and/or dense traffiz)ce vehicles are detected using a

discriminative set of features as opposed to simple foregtdolobs.

5.1.1 Estimating the vanishing point in the direction of traffic flow

Lines which are parallel to each other in the real world geltyedo not appear par-
allel in the image (except when they are parallel to the indgee). As an example, con-
sider an aerial photograph of rail-road tracks with the ganh@oking straight down. The
tracks will appear parallel to each other in the image. ltaabimage is taken standing in
the middle of the tracks and pointing the camera straigha@tieamera looking towards
horizon), the tracks will appear to meet at a finite point ie tmage plane. This point of
intersection is called a vanishing point. A vanishing pasndefined only by the direction
of lines, in other words, all parallel lines in a particularedtion will appear to converge at
a single unique location in the image. The vanishing ppint [uy Vo ]T in the direction
of travel is estimated using vehicle tracks. A line is fittedging through bottom-left and
bottom-right image coordinates of all the detection winddar a vehicle. Estimating the
vanishing point directly from the vehicle tracks avoidsngscomputationally expensive

Hough transform. Figure 3 (a) illustrates a scenario wherehacle changing lanes (rep-
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Figure 5.2: Estimation of the vanishing point in the direntof traffic flow.

resented by darker rectangle) results into an outlier. thteah, tracking and localization
errors can lead to outliers. RANSAC was used for removing tas im the estimation of

vanishing points resulting from outliers.

5.1.2 Estimating the vanishing point orthogonal to the direction of

traffic flow

To estimate the vanishing poipt = [u; vl]T in the direction perpendicular to
traffic-flow, strong image gradients found on light colorethicles are employed. Apparent
slope of a line in an image (corresponding to a line in realadvalong the direction perpen-
dicular to traffic-flow) is inversely proportional to its tisice from the camera. Estimating
p; as the intersection of two lines in its direction is very sevesto measurement errors.
With the assumption that the camera has zero plian be found as the intersection of
vV =V and a line corresponding to the perpendicular directiore détection window that
is closest to the camera (close to the bottom edge of an ingegd to search for a hinge
point, which is a point of maximum gradient magnitude and kéong the vertical axis

passing through the center of the window (along the dashedl INext, a line is searched
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(@) (b)
Figure 5.3: Estimation of the vanishing point in the direntorthogonal to the direction of
traffic flow. (a) Strong gradients near windshield are used&ytime (b) Estimated centers
of headlights are used for nighttime.
passing through the hinge point and having a slope that maggrthe sum of gradients
along that line. In Figur®.3(a), the white circle indicates the location of the hingenpoi
Among all the candidates, the line that coincides with thgesaf the windshield of the ve-
hicle (line #2) is used to compupg. In case of absence of any ambient light, headlights are
used to estimatp,. The hinge point is found along a vertical axis shifted to Ibgf quarter
of detection window width as shown in Figuse3(b). Note that raw pixel intensities are

used in this case as opposed to gradient magnitude imageaden.

5.1.3 Computing calibration parameters

Oncep, andp; are estimated, for each vehicle detection pomts- | u, O]T and
p; = [us 0]" can be found as intersection wfaxis with the lines connecting, to the
two bottom vertices of the detection rectangle. Now usimgdatiuations derived in Section
4.2.2 the focal lengthf in pixels, the tilt anglep, the pan anglé and the height of the

cameréah in feet can be computed using following equations:

fo= [~ (2 +uou)]
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Figure 5.4: Calibration parameters are computed using tliedoints shown above and
from assumed mean width of a vehicle.

¢ = tan ™ <_TVO>

0 = e ()
f

fw; cos @ sin ¢
| Uz — Us |

As more vehicles are detected, estimateppfind p; are recomputed from all
previous detections using RANSAC and estimaté of — u, | is recomputed as mean of
all previous| us — u, | measurements.

Once the camera has been calibrated, the pixel location ehicle in the image

(u, v) can be mapped into a location on the r@ady) using following equations:

hucos ¢(1 + tan? ¢)
v+ ftano
h(f + vtan ¢)
v+ ftan¢
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(d)
Figure 5.5: Training sequences for the BCVD, (a)-(c) daytidjen{ghttime.

5.2 Experimental results

Two BCVDs were trained (one for the daytime, and one for thettilgke) using the
training sequences shown in Figwé. At run time, the system automatically selects the
proper detector (day or night) based on the average pixaisitly in the images. To test the
system, four image sequences were captured, three durytiglttaconditions and one at
night, using an inexpensive off-the-shelf web camera (temdji Orbitz) mounted at the top
of an adjustable pole. An image from each sequence is showigiure5.6. The images
were captured at 15 frames per second at 320x240 pixel tesuoluNote that different
cameras were used for capturing the training and test segagand that the cameras were

not placed in the same location, thus demonstrating thestobas of the system.
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Figure5.6also shows the results overlaid on the images. The rectaogténe the
detected vehicles; the false negatives are not a problere #ie goal here is mean speed
rather than vehicle counts. The white circle indicates tre# fianishing point, which is
only visible in two of the four test sequences. The secondstaamg point is very far from
the image and is given by the intersection of the horizon éind the other line drawn. It
should be noted that the slope of the line correspondingdsétond vanishing point is
determined by the image gradients computed near windshedlgehicles and does not
depend on the road lane markings.

The sequences were approximately 10 minutes long each. & reals used to
compare the mean speed over the entire sequence for thireesgfduences, with the results
displayed in the table below. Treating the radar as groumth,tthe error of the system
ranged from 3 to 6 mph, with a slightly greater standard dmnahan the radar. Figure
5.7 shows the error in the distance estimate (displayed as am@ge) versus the amount
of data that the algorithm was allowed to use. As mentionedipusly, the algorithm
instantaneously yields initial estimate, which improvegsratime as more information is
gathered. In two of the sequences the estimate stabilizedatfly ten vehicles, while the
poor weather conditions of the third sequence caused theagstto require more data.

Table 5.1 shows the accuracy of the estimation of the camera parasnietethe
four sequences. Accuracy was computed by comparing witteaparameters obtained
using the same equations but with hand-labeled vanishimggo

Table5.2displays the speed error for twenty individual vehiclesacteof the four
sequences. The average error ranges f8dm6 mph. For the three daytime sequences,
speed of ever)‘eoth vehicle which was tracked for at le&asi feet was compared with the
ground truth speed. For T4 (which is a night time sequena®dpf ever)AOth vehicle was
compared since the sequence contained fewer vehiclesnGtouth speed was measured

by advancing the sequence frame by frame to measure timesamgl markers placed at
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T3) (T4)

Figure 5.6: (T1)-(T4) Four test sequences. (T1) Sequenbe=115 feet, clear day. (T2)
Sequence 2, h = 30 feet, clear day. (T3) Sequence 3, h = 30réaetywith headlight
reflections. (T4) Sequence 4, h = 20 feet, night time, no amlighting. The white circle
shows the estimated location j@f vanishing point. The vanishing poipt lies outside the
image (intersection of the two lines) and hence could notiogva in the above results.
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Figure 5.7: Calibration error decreases with increasingbarof vehicle detections.

known distances in the scene to measure the distance wavglthe vehicle. Instances
where there is a large discrepancy between the speed edlimwatthe algorithm and the
ground truth speed are due to tracking errors (e.g., vehileand387 in Sequence T3).
Note that vehicle numbers (ID) do not increase by a fixed atsinne some of the spurious
detections are discarded during tracking and only vehiglgsh are tracked for more than
50 feet are retained for speed comparison.

To judge the feasibility of the assumptions made about tineeca (square pixels,
principal point at image center, and zero skew) we caliloréte® cameras (Logitech Orbit
MP webcam and a PTZ270 high speed dome camera) in the lab aisialipration target
(chess-board pattern). The algorithm for calibrating a e@nusing a planar target was
proposed by ZhandB]. The implementation of Zhang's algorithm by Jean-Yves Baig
was used to compute the intrinsic camera parameters. Thal$igm the dome camera

was digitized aB20 x 240 pixel resolution using VideoHome GrabBeeX-light USB video
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Sequence T1 Sequence T2 Sequence T3 Sequence T4
Manual| Algorithm | Manual| Algorithm | Manual| Algorithm | Manual| Algorithm
f 367.28 | 327.52 342.71 | 368.92 312.56 | 348.21 386.21 | 360.32
(pixels)
© 8.14° 7.21° 16.71° | 14.26° 13.71° | 12.68° 7.52° 8.17°
(degrees)
0 13.77° | 14.19° 20.42° | 18.61° 22.38° | 19.74° 17.26° | 18.93°
(degrees)
h (feet) | 13.70 | 14.2 31.86 | 29.69 31.17 | 28.83 20.56 | 18.62
Sequence T1 Sequence T2 Sequence T3
Radar | Algorithm | Radar | Algorithm | Radar | Algorithm
1 61.81 | 63.92 62.22 | 61.62 54.3 51.66
o 4.42 5.97 3.77 4.78 3.7 5.12
N 187 520 235 491 196 416
Table 5.1: Accuracy of the estimated parameters compartbgarameters computed man-

ually. f is the focal length¢ is the tilt anglep is the pan angleh is the camera heighj,

o andN are mean speed for the entire sequence, standard deviaspeexs and number

of observations used for computation.

capture device. Images obtained from the Logitech camematha same resolutioBZ0 x

240). As shown in Tabl®.3both the square pixel assumption and the zero skew assumptio

cause negligible errors in both the cameras. The principaltps off center by about,

andb5 pixels inu andv directions, respectively, for the Logitech camera. Fordbene

camera the principal point is off center by aba0tand24 pixels in theu andv directions,

respectively.
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Sequence T1 Sequence T2
Vehicle Lane Measured | Algorithm Vehicle Lane Measured | Algorithm
ID Speed Speed ID Speed Speed
1 1 53 51 2 2 58 55
27 2 54 58 24 3 62 60
52 1 55 51 47 2 55 56
78 2 58 63 69 1 54 54
101 1 62 59 92 1 57 56
127 1 57 53 115 2 62 64
149 1 59 55 137 3 64 61
172 2 64 68 160 2 53 51
195 2 63 68 183 3 61 56
207 2 58 63 205 1 53 51
229 1 56 53 229 1 57 55
252 1 52 51 254 2 58 57
273 1 55 58 275 3 63 58
298 2 62 57 298 4 68 61
320 2 59 55 321 4 62 57
344 2 61 58 346 3 57 52
367 1 53 50 368 3 61 59
392 2 61 57 392 4 66 62
415 1 62 58 413 3 58 55
439 1 56 52 436 4 62 58
Mean absolute error 3.7 Mean absolute error | 3.0
(mph) (mph)
Sequence T3 Sequence T4
1 2 56 51 1 2 53 55
22 3 62 56 7 2 55 58
45 1 54 51 13 1 48 a7
69 2 58 53 20 2 53 57
93 3 63 59 26 1 47 44
116 1 53 50 32 1 46 45
138 1 58 53 39 2 58 59
161 2 61 57 46 1 51 51
184 3 64 49 51 2 56 58
214 2 60 55 58 2 53 56
236 1 56 53 64 1 50 48
263 3 65 61 71 1 52 51
288 1 59 56 7 2 64 68
312 4 67 60 82 1 54 52
335 3 62 59 87 1 49 44
364 1 54 50 93 1 50 51
387 4 63 38 100 2 63 65
411 1 51 48 106 2 67 70
436 2 53 46 112 2 58 62
463 2 56 52 117 1 48 46
Mean absolute error 5.9 Mean absolute error | 2.3
(mph) (mph)

Table 5.2: Ground-truth speeds were measured manually $srang the video with the
help of markers placed in the scene. Vehicles were choseredt ifitervals to compare
accuracy of speed estimation.

| Camera | fc | f, | Aspectratio| Skew| Principal point |
Logitech Orbit MP | 295.31| 287.71 1.03 0.00 | [153.42, 115.58]
PTZ270 Dome camera437.08| 434.05 1.01 0.00 | [170.20, 144.55]

Table 5.3: Intrinsic parameters for the two cameras.
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Chapter 6

Conclusion

Previous approaches to segmenting and tracking vehicieg visleo generally re-
quire the camera to be placed high above the ground in ordeirtonize the effects of
occlusion and spillover. A technique was presented thatcowees this limitation, work-
ing when the camera is relatively low to the ground and betsideoad. The approach is
based upon identifying and grouping feature points in eadge frame whose 3D coordi-
nates can be computed in a manner that is relatively immutieeteffects of perspective
projection. The novelty of the work includes an incremeraatline, real-time algorithm to
estimate the heights of features using a combination ofdracikd subtraction, perturbed
plumb line projections, projective transformation, aneégion-based grouping procedure.
Experimental results on a variety of image sequences denatsshe ability of the algo-
rithm to automatically segment, track, and classify vedsch low-angle sequences. These
results include situations involving severe occlusionsvhiich the vehicle remains par-
tially occluded throughout the sequence, which has prowée ta particularly challenging
scenario for previous approaches.

The ability to track vehicles using low-angle cameras opsveral possibilities

for highway monitoring, such as supporting automated tesmgraffic studies in locations
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unable to afford the infrastructure necessary for mountargeras high above the ground.
In addition, by addressing the important problem of ocdasmany of the concepts con-
tained in this work are directly applicable to existing higingle scenarios with a large
number of traffic lanes, in which large trucks often occludeghboring vehicles.

To alleviate the requirement of calibrating the camera rafiyjua method for au-
tomatic calibration of roadside traffic monitoring camewass presented using a Boosted
Cascade Vehicle Detector (BCVD). The BCVD detects vehicles igeadby comparing
the 2D intensity patterns with a model acquired during adin#, one-time training phase.
The training does not have to be performed on images capairde same location or by
the same camera as those used at run-time. The technigummes many of the limi-
tations of the common approaches of background subtraotidrame differencing. For
example, an estimate is available immediately upon detgetnd tracking a single vehi-
cle between two image frames, thus supporting applicasach as Pan-Tilt-Zoom (PTZ)
cameras in which it may not be feasible to allow the algoritionkearn the background
model every time the camera is moved. In addition, the teglais insensitive to shad-
ows, spillover, occlusion, and environmental conditicary] it is applicable in daytime or
nighttime scenarios.

It is evident from the results presented in Cha@ehat the system for detection
and tracking of vehicles using stable features works undée wariety of camera place-
ment. However the approach based on stable features hasiitgibns, one of them being
the inability to detect vehicles due to headlight reflectio®n the other hand BCVD per-
formed better than stable features in adverse weatherteamsglihowever BCVD performs
poorly when the camera placement is considerably difféfrem that during training. By
definition, stable features are detected on either the #idetor the back side of the vehi-
cle. The pixel-area in the image corresponding to the fratg of an approaching vehicle

(back side in case of a receding vehicle) decreases as thengénincreases. As a result

83



the performance of tracking using stable feature degramtdariye pan angles, whereas for
very small pan angles measuring lengths of vehicles becairedkenging. The accuracy
of tracking is also affected by distance of the camera froendlbsest lane. A larger pan
angle is required to cover all lanes when the camera is placdcom the closest lane, so
the camera should be placed as close to the closest lane siblposor the experiments
conducted during this research the highest placement afimera was abogt feet from
the ground which was sufficient to cover foi-feet lanes. In all experimental results, pan
and tilt angles were in the range tf ° to 30 ° and distance of the camera from the closest
lane wasl0-20 feet. It should be noted that the algorithm presented fasraatic camera
calibration fails for the case of zero pan angle because dhéeking point orthogonal to
the direction of travel goes to infinity. In practice the Heigf the camera computed dur-
ing non-zero pan angle can be used to calibrate the camemativbgan angle is zero (as
shown in4.2.5.

To further improve this work and enhance its applicabifitgure work should be
aimed at reducing the effects of shadows, supporting coetimperation in the presence of
changing weather and environmental conditions and morastdirategies for modelling
and maintaining the background. Expecting a single pattetector to perform well under
significant variations in vehicle appearances is unrealistrom the experience of this
work, we envision a bank of pattern detectors trained ovenallsnumber pan angle, tilt
angle, and camera height to cover a wide range of appearbhaoges. With availability of
more processing power, color information can be incorgarédr suppressing shadows and
for computing feature similarity. Expanding the automatidibration technique to work
with rear-facing vehicles receding from the camera, audmgnhe pattern detector with
other modalities to decrease convergence time, and intnogiypartial calibration when
some camera parameters are already known from previoasiates of the algorithm.

We believe that this work demonstrates the potential forlmiomg feature tracking-
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based and pattern detection-based approaches to detecaeksehicles in highway sce-
narios, and that it enhances the usefulness of cameras lgtiogvthe need for tedious

manual calibration procedures.
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Appendix A

Derivations

A.1 Derivation for equations of plumb line projections

To derive Equatior2.2from Equation2.1, expanding the latter:

]
uw Ci1 Ci2 Ciz Cyiy
y
VW[ = [Cy Co2 Co3 Cyy . (A.1)
V4
w C31 Cz2 C3z3 Cgy
1

In inhomogeneous coordinates, this is

UW  C;1 X+ CpoY + C13Z+ Ciy

u = = (A.2)
w C31X + C32Y + C33Z+ C3y
VW  CyiX + Cy3Z+
v = W_ & + CooY + Co3 C24. (A3)
w C31X+ C32Y + C33Z+ C34
Rearranging terms yields:
C11X+ Cioy + C13Z+ Ci4 = C31XU~+ C32YU+ C33ZU+ C34U (A.4)
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Co1X+ Coo¥ + C3Z+ Coy = C31XV+ CayV + C33ZV+ C3aV (A.5)

or

(C31U— C11)X+ (C32U— Cr2)y = (Ci3 — C33U)Z+ (Ci4 — CaqU) (A.6)

(C31V — Ca1)X+ (C32V — C2)y = (Co3 — C33V)Z+ (Coq — C34V). (A.7)

Without loss of generality (because the projection matsiomnly defined up to a scale

factor) settingcs, = 1. Rearranging terms again yields

C31U — Ci;  CszoU — Cyo 0 X Ciy —U-+ 2(013 — C33U)
C3V—Cy C3V—Cxp O |Y|=|Cu—V+ZCy—CsV) |, (A.8)
0 0 1 z Z

which is the desired resull
To derive Equatior2.5from Equation2.1, rearranging the terms in EquatioA$5
andA.7 to yield

UGz — Ci3 Cia — UGy + (€13 — UG )X+ (Cl2 —UGCs)Y
VG33 — Cog Cos — VG + (Co1 —VG31) X+ (Co2 — VGCs2) Y
or
hpz = he. (A.10)
To solve forz, then, left-multiplying both sides by, yields
z= (hyhp)~'hihe, (A.11)

which is the desired resu
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plumb line

Figure A.1: Derivation of the maximum slope which definesgh&).

A.2 Derivation of Maximum Slope Defining(?

To definef?, consider a pinhole camera viewing a vehicle, as shown iarEig.1.
Let us set the origin to the camera focal point, with the peosit axis to the right and the
positivez axis up. Select an arbitrary poifi, z) on the vehicle whose estimated location
using PLP is the pointx, z). Letd be the horizontal distance from the camera focal point
to the plumb line (i.e., the distanég, h the vertical distance from the camera focal point
to the point(X, ), andr the distance along the projection ray between the actuat poid
the estimated point. For convenience, defime: /d? + h2,

The point(x, z) is the intersection of the projection ray with a circle ceateat

location(d, —h) of radiusr:

r r
(x,2) = (d(l + ), —h(1+ m)) .

In order for the error to be a monotonically non-decreasungcfion of z, another point

(X, Z) higher on the vehicle (i.ez > z) must have a radius > r,

wherer = \/(x— X)2 + (z— 2)? is the Euclidean error in the estimate. As a result, con-
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sider another circle at locatidqul, —(h — Ah)), whose intersection with the corresponding

projection ray yields the other point:

X,Z) = (d(l + rrr;)’ —h'(1+ r:;)) ;

whereh = h— Ah, m' = v/d? + 2, andr’ = \/(x’ —X)?+(Z-7)%
The slope of the curve is given t%i = limap_o % To achieve the maximum

bound on the allowed slope, settirg= r, yielding

r 1 1
Si S fna(X2) = Himg s +d:v(,>}v —”:11()”1 .
iy Aht (rAh— rh)(m? — 2Ahh+ (Ah)?)=Y/2 4 rh/m
Ah=0 dr(m? — 2Ahh 4 (Ah)2)-1/2 —dr/m
g L rA=1/2 + (rAh —rh)A=3/2(—1/2)(—2h + 2Ah)
Ah=0 —L1drA-3/2(—2h + (Ah)?)

. 1+ rm=! +rh?m-3
An=0 —1dr(m?)—3/2(—2h)
m’® + rm? — rh?
2drh
m’ + r(d* + h?) — rh?
2drh

m® + rd?

drh ’

where the last equality is obtained by BHital's rule, and wher@ = (m? —2Ahh+(Ah)?).

As long as the slope of the vehicle shape is bounded by thidayrihe estimation error by
PLP is a monotonically non-decreasing function of heigtiisbound includes all convex
shapes not crossing the plumb line, as well as many shapkssigitificant concavities,

thus covering nearly all vehicles encountered in practice.
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