2,158 research outputs found

    Developing a Robust Acquisition System for Fringe Projection Profilometry

    Get PDF
    Since Fringe Projection Profilometry (FPP) is an intensity-based coding strategy, it is prone to improper optical setup arrangement, surface texture and reflectance, uneven illumination distribution, among others. These conditions introduce errors in phase retrieval which lead to an inaccurate 3-D reconstruction. In this paper, we describe a dynamic approach toward a robust FPP acquisition in challenging scenes and objects. Our aim is to acquire the best possible fringe pattern image by adjusting the object closer to an ideal system-object setup. We describe the software implementation of our method and the interface design using LabVIEW. Experimental results demonstrate that the proposed method greatly reduces sources of error in 3-D reconstruction. © Published under licence by IOP Publishing Ltd.Universidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 538871552485 Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASThis work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. Authors thank Dirección de Investigaciones, Universidad Tecnológica de Bolívar for the support. J. Pineda thanks Universidad Tecnológica de Bolívar for a Masters degree scholarship

    State-of-the-art active optical techniques for three-dimensional surface metrology: a review [Invited]

    Get PDF
    This paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.Purdue Universit

    Adaptive polarization-difference transient imaging for depth estimation in scattering media

    Get PDF
    Introducing polarization into transient imaging improves depth estimation in participating media, by discriminating reflective from scattered light transport and calculating depth from the former component only. Previous works have leveraged this approach under the assumption of uniform polarization properties. However, the orientation and intensity of polarization inside scattering media is nonuniform, both in the spatial and temporal domains. As a result of this simplifying assumption, the accuracy of the estimated depth worsens significantly as the optical thickness of the medium increases. In this Letter, we introduce a novel adaptive polarization-difference method for transient imaging, taking into account the nonuniform nature of polarization in scattering media. Our results demonstrate a superior performance for impulse-based transient imaging over previous unpolarized or uniform approaches

    Improving SLI Performance in Optically Challenging Environments

    Get PDF
    The construction of 3D models of real-world scenes using non-contact methods is an important problem in computer vision. Some of the more successful methods belong to a class of techniques called structured light illumination (SLI). While SLI methods are generally very successful, there are cases where their performance is poor. Examples include scenes with a high dynamic range in albedo or scenes with strong interreflections. These scenes are referred to as optically challenging environments. The work in this dissertation is aimed at improving SLI performance in optically challenging environments. A new method of high dynamic range imaging (HDRI) based on pixel-by-pixel Kalman filtering is developed. Using objective metrics, it is show to achieve as much as a 9.4 dB improvement in signal-to-noise ratio and as much as a 29% improvement in radiometric accuracy over a classic method. Quality checks are developed to detect and quantify multipath interference and other quality defects using phase measuring profilometry (PMP). Techniques are established to improve SLI performance in the presence of strong interreflections. Approaches in compressed sensing are applied to SLI, and interreflections in a scene are modeled using SLI. Several different applications of this research are also discussed

    Multi-View Neural Surface Reconstruction with Structured Light

    Full text link
    Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision. DR-based methods minimize the difference between the rendered and target images by optimizing both the shape and appearance and realizing a high visual reproductivity. However, most approaches perform poorly for textureless objects because of the geometrical ambiguity, which means that multiple shapes can have the same rendered result in such objects. To overcome this problem, we introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses. More specifically, our framework leverages the correspondences between pixels in different views calculated by structured light as an additional constraint in the DR-based optimization of implicit surface, color representations, and camera poses. Because camera poses can be optimized simultaneously, our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration, which is required for conventional SL-based methods. Experiment results on both synthetic and real data demonstrate that our system outperforms conventional DR- and SL-based methods in a high-quality surface reconstruction, particularly for challenging objects with textureless or shiny surfaces.Comment: Accepted by BMVC 202

    Primal-dual coding to probe light transport

    Get PDF
    We present primal-dual coding, a photography technique that enables direct fine-grain control over which light paths contribute to a photo. We achieve this by projecting a sequence of patterns onto the scene while the sensor is exposed to light. At the same time, a second sequence of patterns, derived from the first and applied in lockstep, modulates the light received at individual sensor pixels. We show that photography in this regime is equivalent to a matrix probing operation in which the elements of the scene's transport matrix are individually re-scaled and then mapped to the photo. This makes it possible to directly acquire photos in which specific light transport paths have been blocked, attenuated or enhanced. We show captured photos for several scenes with challenging light transport effects, including specular inter-reflections, caustics, diffuse inter-reflections and volumetric scattering. A key feature of primal-dual coding is that it operates almost exclusively in the optical domain: our results consist of directly-acquired, unprocessed RAW photos or differences between them.Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Massachusetts Institute of Technology. Media Laboratory (Consortium Members
    corecore