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Abstract

We investigate the quality of structured light 3D scanning on pig skin, muscle and fat. These
particular materials are interesting in a number of industrial and medical use-cases, and somewhat
challenging because they exhibit subsurface light scattering. Our goal therefor is to quantify the
amount of error that various encoding strategies show, and propose an error correcting model, which
can bring down the measurement bias considerably. Samples of raw and unprocessed pig tissue were
used with the number of sampled surface points Nmeat = 1.2·106, Nskin = 4.0·106 and Nfat = 2.1·106
from 8 different pieces of tissue. With the standard N-step phase shifting method, the bias and RMS
errors were found to be 0.45±0.22mm (muscle), 0.51±0.19mm (skin) and 0.14±0.16mm (fat). After
applying a linear correction model containing view, light angles and point distances, the bias was
almost completely removed on test data, and standard deviations slightly reduced. To our knowledge
this is the first quantitative study of the measurement error of structured light with biological tissue.

1 Introduction
Structured light has become a very popular and versatile method for 3D acquisition of complicated scenes.
Many applications have emerged in science and in industry, ranging from 3D model acquisition, to motion
capture and high performance metrology. This is due to it’s versatility from high accuracy to high speed,
in some cases reaching real-time performance [20]. Most structured light methods however rely on the
assumption of Lambertian (diffusely reflecting) surfaces and only direct illumination. This means that
global lighting effects such as intra-reflections, translucency and subsurface scattering disrupts structured
light based surface scanning, causing biased, noisy or missing data.

Human and animal tissue is interesting in a number of structured light applications, including head
tracking for medical motion correction [16], to robotic handling of meat in industrial settings. Each tissue
type exhibits different reflection and scattering properties that can potentially disrupt a structured light
scan. This paper documents the degree to which subsurface effects alter the accuracy of structured light
scans in three biological tissue types; pork muscle, pork skin and pork fat. We show, that the scan error
consists in part of a large deterministic part, which can be removed by means of a simple statistical error
model.

2 Structured Light 3D Scanning
The structured light principle uses a calibrated camera-projector pair to identify feature correspondences
and triangulate surface points, see figure 1. A large number of encoding strategies exist (see [5,6,18] for
recent reviews). Most current high-accuracy methods are either based on binary coding schemes such as
Gray codes [17] or based on sinusoidal patterns in so-called ”phase shifting” [19], with many alterations
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Figure 1: The structured light principle: a number of patterns are projected onto the scene, and images
are captured by a camera. Correspondences are determined by different encoding algorithms, and used
to triangulate points on the object surface. In this example, 3-step phase shifting patterns are shown.

and improvements to increase their accuracy, robustness or speed. Owing to the epipolar constraint in
a calibrated projector-camera pair, encoding needs only to be done along one spatial direction (close to
parallel to epipolar lines). With a pattern budget of N patterns, binary methods can uniquely encode
2N lines. Phase shifting methods use at least N = 3 to fully encode the scene at every camera pixel.
Additional patterns are used to increase the SNR, most often by projecting multiple phases of a sinusoid,
and additional patterns to disambiguate between these phases in ”temporal phase unwrapping”. Binary
coding methods are considered robust against many unwanted illumination effects, but do not make very
efficient use of the pattern budget, and also fail once light stripes become too narrow. Phase shifting
methods make efficient use of patterns, but provide no general means of identifying encoding errors,
possibly leading to noise or outliers.

3 Global lighting effects
Under ideal circumstances, objects to be scanned with structured light exhibit only direct reflection on
the object surface. Also, in order to not introduce under or over-saturation or bias in feature detection,
the surface reflectance ideally is high, and Lambertian, i.e. diffusely reflecting into all directions. Under
real conditions, most interesting objects exhibit global lighting effects, that is light does not reach the
camera after a single scattering event on the object surface, but does so after reflecting from a distant
scene point or is scattered below the surface (so-called sub surface scattering).

While some solutions have been proposed to mitigate subsurface scattering, defocus and global il-
lumination effects [1, 2, 7], such effects are still considered harmful, and many object surfaces need to
be treated by spraying them with ”dulling spray” in order to make structured light possible. An even
more effective way of reducing global lighting effects is by using chalk spray, which makes surfaces highly
reflective and diffuse. figure 2 shows sample images of structured light patterns projected onto our
samples before and after treatment with chalk-spray.

In particular the muscle samples show large degrees of subsurface scattering, which blurs and distorts
the structured light patterns.

4 Related works
The issue of global lighting effects in the context of structured light has been recognised by many authors,
e.g. in the acquisition of a human face reflectance field [4]. In order to reduce these in structured light
scans, polarisation has been exploited in [1]. Some recent attempts have been to design structured
light encoding strategies such that they are less susceptible to global lighting effects. The underlying
observation is, that with high-frequent patterns, global lighting effects can be considered constant, and
independent of the actual pattern. This allows for efficient separation of the observed light intensities
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(a) Raw muscle. (b) Muscle with chalk coating.

(c) Raw skin. (d) Skin with chalk coating.

(e) Raw fat. (f) Fat with chalk coating.

Figure 2: Fine grained binary structured light pattern projected onto various types of tissues. The effect
of subsurface scattering is clearly seen the pattern becomes blurred without chalk coating.

into direct and global light [15]. In modulated phase shifting [2], structured light patterns are modulated
by means of carrier patterns, such that they become high-frequent in both spatial dimensions, thereby
improving their separation power. Micro Phase Shifting [9] makes use of sinusoidal patterns in a narrow
high-frequency band, promising robustness to global lighting effects and stable phase unwrapping with an
optimal number of patterns. A newer approach is ”unstructured light” [3], in which the pattern frequency
can be high in both dimensions, however the number of patterns is not ideal, and the matching procedure
rather cumbersome. For binary boundary methods, exclusively high or low-frequency pattern schemes
can be considered robust against different global illumination effects [8].

An approach to compensate for the measurement error in isotropic semi-transparent material caused
by subsurface scattering was presented in [13]. Similarly to our approach, this work empirically deter-
mines the measurement error and explains it by means of a single variable (the projected light angle),
albeit only with a single verification object and structured light method. In [12], a Monte-Carlo sim-
ulation of the measurement situation was presented, which gives some insight into the error forming
process.

In [10], an analytical derivation of the measurement error is given for the phase shifting methods.
This error model predicts the error to decrease with increased spatial frequency of the pattern, agreeing
with the theory of direct-global illumination. The model does not however take into account the loss of
amplitude at higher frequency patterns, which increases noise in the measurement data.

Computer simulations of structured light scans were performed by [14] to benchmark encoding meth-
ods with respect to various parameters, and were found to have similar robustness to subsurface effects.
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5 Experiments
A single camera-projector system as shown in figure 1 was used for our experiments. Surface scans were
obtained from three separate tissue classes: pork muscle, pork skin and pork fat. All samples were
unprocessed and not heat-treated. For each class, 8 distinct tissue samples were measured, once in their
raw form, and once with chalk-spray applied. These samples were distinct placed independently in the
scan volume and spanned all possible view and light angles, and also varied in their distance to the
projector from approximately 200mm to 400mm. See figure 4 for an illustration of these parameters.
The latter measurements served as a reference for the evaluation of measurement error. While we cannot
assume the chalk-prepared surfaces to be noise-free, we consider them the gold-standard as they provide
very clear contrast, and virtually no subsurface effects are visible (see figure 2).

In order to verify that this procedure does not alter surface geometry, we applied two separate layers
of chalk to a sample object, and compared the scan result after each layer. The mean signed distance
was 0.037mm, indicating that chalk spraying the surfaces does not bias the result.

We analyse four different structured light methods, and use 12 patterns in each:

• Binary Gray coding [17]: one completely lit and one completely dark image were used to define the
binary threshold individually in each camera pixel. The remaining patterns were used to encode
210 = 1024 individual lines on the object surface.

• N-step phase shifting was used with 9 shifts of a high-frequency sinusoid of frequency 1/76 px−1,
corresponding to approximately 1/10mm on the object surface. Three additional patterns were
used for phase-unwrapping [11].

• Micro phase shifting [9] using the frequency vector

[1/75.02, 1/70.00, 1/71.32, 1/72.47, 1/73.72, 1/76.23, 1/77.35, 1/78.40, 1/79.22, 1/80.00] px−1

These frequencies corresponds to a spatial frequency on the object surface of approximately 1/10mm.
Slightly different from [9], the specific values were determined using a derivative free non-linear
pattern search.

• Modulated phase shifting [2] with three shifts of a sinusoid of frequency 1/76 px−1 (1/10mm on the
object surface). Each of these sinusoids was modulated in the orthogonal direction using a sinusoidal
carrier with the same frequency. Three additional patterns were used for phase-unwrapping.

Figure 3 shows the pattern sequences used in our experiments.

Gray Coding N-step PS Micro PS Modulated PS

Figure 3: Structured light patterns used in our experiments. In each case, 12 patterns were used.

While binary Gray coding and N-step phase shifting can be considered well-established ”reference”
methods, the other two phase shifting based methods are state-of-the-art and specifically designed to
mitigate subsurface effects. For every sample, we defined a binary mask within which all possible surface
points were reconstructed. This ensured that the exact same surface region was used in the evaluation
of each method.

Analysis consisted in determining the error in each surface point, by determining its’ signed distance
to the corresponding point in the chalk-sprayed reference. For Gray-code measurement, we determine
the point-to-surface distance as given in the following,

sj = min
i

[ni · (pj − pi)] , (1)
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where,

pj is the jth point in the raw point cloud,
pi is the ith point in the reference point cloud,
ni is the ith normal in the reference point cloud,
sj is the signed error at jth data point.

So for each a point we find its’ nearest neighbour in the reference cloud in terms of normal distances.
This is done as the reconstructed points are not defined in the regular camera pixel grid. As this is the
case with the other methods we can simply match points using their position in the pixel grid.

5.1 Error Model
Our principle assumption is that the error is composed of a deterministic part, which once determined
can be subtracted from future scans, in order to improve the accuracy. Previous work gives some hints as
to which parameters to include [10,13]. Considering the scan setup, as shown in figure 4, we include three
variables in our error model: the view angle (relative to the surface normal) θview, the light angle θlight,
and the distance from projector to object, d. We have tried to include many other variables, including
reflected light to view angle and coding direction normal vector angles. These variables are inspired by
the analytical error model of [10], but did not explain sufficient variance to include them in our model.

Object

Projector Camera

Figure 4: The structured light scanning setup with the parameters of our error model. The surface
normal is n, view direction v, light direction l and the projector-surface distance is d.

We construct the following linear model:

y = β0 + β1 · θview + β2 · θlight + β3 · d ,

for each of the tissue types, and fit it to a training set consisting of 90% of all observations. A test set
composed of the remaining 10% was then corrected using the predetermined model.

6 Results
The parameters obtained after fitting the error model to our data are seen in tables 1, 2, and 3. These
tables also show the mean signed distance before applying the model, εtraining. After applying the linear
model, the mean of residuals naturally is zero. We also show the standard deviation of errors before
correction using the model, σtraining, and after, σcorrected.

Figures 5, 6 and 7 show the signed error on a single sample visually before and after applying the
correction model. We see qualitatively in the signed errors of Figures 5 – 7, that a clear positive bias is
present in all scans (the raw surface is observed further away from the camera). This effect is especially
pronounced in the muscle and skin tissue classes and with the N-step phase shifting method (this is a
general observation in all muscle and skin samples). Tables 1 and 2 show that the observed bias is
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Figure 5: Signed distance (sd) between scan and reference on a single sample of muscle. Top row: before
applying the linear correction model. Bottom row: after correction.
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Figure 6: Signed distance (sd) between scan and reference on a single sample of fat. Top row: before
applying the linear correction model. Bottom row: after correction.
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Figure 7: Signed distance (sd) between scan and reference on a single sample of skin. Top row: before
applying the linear correction model. Bottom row: after correction.
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Gray Coding N-step PS Micro PS Modulated PS
Intercept 0.25 0.55 0.45 0.39
θview -0.064 -0.21 -0.15 -0.0032
θlight 0.03 0.053 0.025 -0.048
d 0.00023 3.9×10−5 5.1×10−5 −7.1×10−5

εtraining 0.32 0.45 0.38 0.33
σtraining 0.27 0.22 0.23 0.27
εcorrected -0.00097 -0.00094 0.0006 -0.0014
σcorrected 0.27 0.22 0.23 0.26

Table 1: Estimated parameters for the linear correction model for muscle and the mean bias ε and
standard deviation σ of the training set and the corrected test data set. The number of training samples
was Ntraining = 1122 534 and the number of test samples Ntraining = 124 726.

Gray Coding N-step PS Micro PS Modulated PS
Intercept 0.038 0.89 1.00 0.76
θview -0.0026 -0.15 -0.15 -0.06
θlight -0.24 -0.14 -0.12 -0.14
d 0.0013 -0.00062 -0.0011 -0.00068

εtraining 0.35 0.51 0.48 0.41
σtraining 0.19 0.19 0.2 0.22
εcorrected 0.00039 −3.7×10−5 -0.00045 0.00078
σcorrected 0.19 0.18 0.19 0.22

Table 2: Estimated parameters for the linear correction model for skin and the mean bias ε and standard
deviation σ of the training set and the corrected test data set. The number of training samples was
Ntraining = 3603 495 and the number of test samples Ntraining = 400 388.

Gray Coding N-step PS Micro PS Modulated PS
Intercept 0.082 0.041 0.04 0.07
θview -0.083 -0.19 -0.12 -0.081
θlight -0.019 0.092 0.041 0.026
d 0.00018 0.00037 0.00028 0.00014

εtraining 0.087 0.14 0.11 0.097
σtraining 0.25 0.16 0.16 0.17
εcorrected 0.00075 0.00037 5.1×10−5 -0.00046
σcorrected 0.24 0.16 0.16 0.17

Table 3: Estimated parameters for the linear correction model for fat and the mean bias ε and standard
deviation σ of the training set and the corrected test data set. The number of training samples was
Ntraining = 1868 574 and the number of test samples Ntraining = 207 619.

around 0.6mm for phase shifting based methods in muscle and skin, while it is only 0.32mm for Gray
coding. The same superiority of Gray coding is observed in the fat tissue class, albeit with generally
much lower numbers. This is presumably due to the fact that fat appears more optically dense (see
figure 2).

While some spatial structure is visible in the bias seen on Figures 5 – 7, the included variables, θview,
θlight, d, did only explain a small part of the variance. Hence, εcorrected is reduced significantly from
εtraining, while that is not the case with σcorrected and σtraining.

7 Conclusion
In this work, we performed structured light scans of biological tissue, pork muscle, pork skin and pork
fat, with a selection of reference and modern structured light methods. We used a linear error model
to describe measurement error, and found it to be composed of a significant bias (≈ 0.5mm for muscle,
≈ 0.3mm for skin, and ≈ 0.1mm for fat), which can be corrected easily. This methodology allowed us
to improve the accuracy of structured light scans, given the specific tissue type. The error correction
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method proposed is applicable to any type of homogenous material. While the linear parameters need
to be determined beforehand, and vary widely between materials, many applications do involve only
homogenous material with uniform optical properties. We also undertook an analysis of the impact of
illumination spectrum on scanner accuracy. We found that blue light in general outperforms green and
red when 3D scanning biological tissue.

As such, we consider our finding interesting information on the accuracy that can be obtained with
structured light in general, and our methodology to apply in many common scenarios.
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