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Introducing polarization into transient imaging im-
proves depth estimation in participating media, by dis-
criminating reflective from scattered light transport,
and calculating depth from the former component
only. Previous works have leveraged this approach,
under the assumption of uniform polarization proper-
ties. However, the orientation and intensity of polar-
ization inside scattering media is non-uniform, both
in the spatial and temporal domains. As a result of
this simplifying assumption, the accuracy of the esti-
mated depth worsens significantly as the optical thick-
ness of the medium increases. In this letter, we intro-
duce a novel adaptive polarization-difference method
for transient imaging, taking into account the nonuni-
form nature of polarization in scattering media. Our re-
sults demonstrate a superior performance for impulse-
based transient imaging over previous unpolarized or
uniform approaches. © 2017 Optical Society of America

OCIS codes: (010.1350) Backscattering; (110.5405) Polarimetric
imaging; (150.0155) Machine vision optics; (110.1758) Computational
imaging.
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Transient imaging has recently allowed researchers to capture
and visualize large-scale light transport effects at extreme tem-
poral resolutions. Representative transient imaging setups in-
clude a streak camera [1], single-photon avalanche detectors
(SPADs) [2], Michelson interferometer [4], amplitude modulated
continuous wave (AMCW) systems [3, 5], laser-gated system
[6], or hybrid sensor systems [7]. This development of transient
imaging has in turn triggered many applications in scene un-
derstanding, computer vision, or computer graphics (see [8] for
an in-depth survey on the field). For example, it is possible to
estimate scene depth from the first peak of the temporal profiles
that describe surface reflection. However, these transient imag-
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ing setups fail in the presence of participating media, due to the
large number of scattering effects.

As light travels through participating media, the reflected and
scattered light rays become mixed in a complex manner; it thus
becomes difficult to extract the surface reflection component,
which encodes scene depth. Several setups have been proposed
to improve visibility in the presence of scattering media for
steady-state [11, 12], or transient imaging [6, 9, 13]. Within these
setups, the use of polarization has been proven to be a pow-
erful approach for improving visibility in media. Polarization-
difference imaging (PDI) takes two frames in mutually orthog-
onal polarization states (Imax and Imin respectively) to analyze
the scattering effect of the medium [14, 15]. Ni and Alfano [10]
used both circularly and linearly polarized light to improve con-
trast in time-resolved imaging in turbid media. Wu et al. [16]
proposed to incorporate polarization into time-of-flight AMCW
sensors, achieving robust depth estimation. However, since their
method relies on Treibitz and Schechner’s [15] method for de-
hazing, it assumes radiance integrated in time, and therefore
cannot be used with direct recording setups, e.g. streak cam-
eras or SPADs. More importantly, the authors assume uniform
linear polarization across the whole image. This assumption
does not hold in most real scenes [17], especially in the transient
regime. As a result, it fails to estimate depth in the presence of
optically-thick media.

Fig. 1 illustrates the non-uniformity of polarization in a scat-
tering medium. For the highlighted region (yellow rectangle) in
the displayed frame, we show the degree of polarization (DOP)1

and orientation of linear polarization, for a set of points uni-
formly distributed in the image plane. It can be clearly seen how
both the DOPs and polarization direction are spatially varying.
Moreover, the polarization properties are also time-varying.

In this letter, we take this spatio-temporal, non-uniform na-
ture of polarization into account, and propose a novel approach
for robust, high quality depth estimation in the presence of
scattering media, targeting imaging systems capable to directly
capture time-resolved light transport. Different from traditional
PDI methods, we fix a linear polarizer in front of the sensor and

1Throughout the text we use “DOP” as “linear DOP” for simplicity.
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Fig. 1. Polarization in scattering media is non-uniform. Left:
Intensity image. Right: Polarization for the region highlighted
in yellow. The double arrows indicate the polarization (inten-
sity and direction). At each point, the ratio of the module of
longest arrow to the sum of modules of all arrows indicates
the degree of polarization (DOP; see the zoomed-in red rectan-
gle for more detail).

acquire a set of three images, each at different arbitrary orienta-
tion. From them, we obtain the polarization properties of each
pixel at each instant in time. Last, we use both the images and
polarization properties to separate the scattering component
from the reflection component, from which we estimate depth
of the scene.

We first introduce our adaptive de-scattering algorithm for
steady-state imaging, and then extend it to transient state. As-
suming that surface interreflections are not dominant and can
be neglected, the total incoming radiance I(x) in the sensor’s
pixel x can be decomposed into two parts: the direct component
ID(x), and the scattered component IS(x), as

I(x) = ID(x) + IS(x). (1)

In the following, we skip the spatial dependency x for clarity.
The direct component ID is

ID = IC T(d). (2)

Here IC represents the clear image (without the scattering
medium) with direct reflection from a surface at distance d, and
T(d) is the transmittance. Assuming a homogeneous medium,
T(d) follows the Beer-Lambert law as T(d) = exp(−µt d), with
µt being the extinction coefficient of such medium. Assuming
steady-state, T(d) can be approximated as [15]

T(d) ≈ 1− IS
IS∞

, (3)

where IS∞ is the scattering intensity of the medium without
objects (i.e. assuming ID = 0, and therefore I = IS), which
needs to be acquired as a post-process in the empty medium.

Assuming that the degree of polarization of IC is pC ≈ 0, we
can approximate the scattering component IS as

IS ≈ I
p

pS∞

, (4)

where p and pS∞ are the degrees of polarization of I and IS∞

respectively.
Unfortunately, we cannot disambiguate the contribution of

the direct and the scattering terms in Eq. 1 from Eqs. 2 and 4
alone. Following Trebititz and Schechner [15], we can define the
DOP of I and IS respectively as

p = I−1 (Imax − Imin) and pS∞ = I−1
S∞

(Imax
S∞
− Imin

S∞
). (5)

Fig. 2. Intensities of a given frame I(α) after passing through
a linear polarized at orientations (from left to right) α =
(π/18, 8π/18, 3π/4)

The terms (·)min and (·)max are acquired from two orthogonal
polarizer orientations with minimum and maximum intensity
respectively, where I = Imax + Imin and IS∞ = Imax

S∞
+ Imin

S∞
. Com-

bining Eqs. 1 to 5, we obtain the clear image IC as

IC = I(1− p
pS∞

) (1− I · p
IS∞ · pS∞

)−1. (6)

This formulation implicitly assumes both steady-state light
transport, and that the polarization direction is the same for
all pixels. Unfortunately, this assumption does not hold in real
scenes (see [17] and Fig. 1).

To address this spatial dependence, we rely on the Stokes
formulation of polarized light transport. The Stokes vector com-
pactly describes polarized light as S = [I Q U V]T [19], where I,
Q, U and V are the Stokes polarization parameters, and vT is the
transpose operator for vector v. Specifically, I is the intensity
of light, while Q and U represent the linear polarization at two
different rotations: Q is aligned with the axis of the optical sys-
tem, while U is rotated 45 degrees with respect to Q. Finally, V
models the amount of circular polarization. Note that the Stokes
vector is dependent on the wavelength; for clarity, we consider
monochromatic light and remove this dependence. We can now
compute the linear DOP of S as

p =

√
Q2 + U2

I
. (7)

We compute the per-pixel DOP p from a set of measurements
taken using a linear polarizer in front of the camera with differ-
ent arbitrary orientations. For each polarizer orientation α, we
capture an image I(α) defined as [20]

I(α) =
1
2
(I + Q cos(2α) + U sin(2α)). (8)

Taking three different images I(α) under different orientations α
allows us to build a linear equation system for every pixel. From
it, we can calculate I, Q and U, which are used to compute p
following Eq. 7. Note that the direction of linear polarization can
also be obtained since I, Q and U are known, although only the
DOP is necessary in our work. Fig. 2 shows three measurements
I(α) for the scene shown in Fig.1, measured through a linear
polarizer in three orientations α = (π/18, 8π/18, 3π/4).

So far we have defined our problem in steady-state. How-
ever, the adaptivity is even more challenging for time-resolved
imaging, where the direction of linear polarization is also time-
varying, so that an exact DOP for each pixel-frame is required.
To extend our pixel-wise adaptive method to transient-state,
we need to also take into account the time dependency of the
captured data, turning Eq. 8 into

I(t, α) =
1
2
(I(t) + Q(t) cos(2α) + U(t) sin(2α)). (9)
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Fig. 3. Left: Schematic view of the scene used in our exper-
iments. Right: Ground truth depth map of the scene (color
codes depth).

This allows us to compute the DOP for every pixel-frame p(t),
by capturing three transient images and building a linear system
for each pixel-frame. With p(t) we can now solve the pixel-frame
version of Eq. 1, and remove the scattering term IS(x, t), which
allows us to compute the direct term as

ID(t) = I(t)
(

1− p(t)
pS∞ (t)

)
. (10)

Note that, as opposed to Eq. 6, we are not extracting the clear
term IC(t), but the attenuated one ID(t) = IC(t) T(d). The
reason is that Eq. 3 does not hold on transient state, and therefore
cannot be applied here. However, ID(t) is sufficiently good for
recovering high-quality depth, as we will show later.

In theory, Eq. 10 will give us the attenuated surface reflection,
from which we can obtain the depth by selecting the first strong
peak τ(x) in the temporal profile. However, we have found that
real measurements might present some noise resulting in numer-
ical problems when solving Eq. 10. To reduce such numerical
artifacts, we threshold ID(t) as

ID(t) =

{
I(t)

(
1− p(t)

pS∞ (t)

)
, if p(t)

pS∞ (t) ≥ ε

0, otherwise
(11)

where ε represents the threshold value. In our tests we use
ε = 0.3, which we found to give good results.

Finally, knowing the positions of the camera O and the light
source S, we can compute the depth of a surface point X, by
tracking the time of arrival τ(x) of the first reflection at X in
pixel x [21], and solving∣∣∣−→SX

∣∣∣+ ∣∣∣−→OX
∣∣∣ = c τ(x), (12)

where c is the speed of light in the medium. By using simple
trigonometry, the depth d(x) at pixel x can be calculated as

d(x) =
∣∣∣−→OX

∣∣∣ =
∣∣∣−→OS

∣∣∣2 − (c τ(x))2

2
∣∣∣−→OS

∣∣∣ cos θ − 2(c τ(x))
, (13)

with θ =<
−→
OS,
−→
OX > the angle between

−→
OS and

−→
OX.

Given that we target direct time-resolved imaging techniques
(e.g. femto-photography [1] or laser-gated techniques [6]), we
validate our approach against time profiles matching these imag-
ing devices. For self-containment and benchmarking, we re-
sort to synthetic data. Specifically, we use a publicly available
time-resolved renderer [22] with support for polarized light [23],
which allows precise control on the scattering parameters as
well as ground truth depth. The experimental setup is sketched
in Fig. 3. We assume a homogeneous medium, filled with milk
diluted in water (medium’s index of refraction η = 1.33). Within

the medium we place two planes at different depths, as well as
a more complex geometry (a bunny), all of them Lambertian
(perfect depolarizers) with a high surface albedo Λ = 0.8. We
also add a floor and a large wall placed at d = 2 m. We compute
the medium phase functions using Lorentz-Mie theory [24], with
a log-normal particles size distribution of mean 2µm [25]. We
assume a linearly polarized point light source placed outside
the medium at ~S = {−60, 25, 0} cm. The camera is also outside
the medium, at ~O = {−60, 20, 0} cm and with a field of view
of 30◦, directed towards the center of the medium {40, 20, 0}
cm. The output is a set of time-resolved Stokes images, with
temporal resolution 0.5cm ∗ c−1 s/frame. Based on the Stokes
images, we generate three measurements I(t, α) according to
Eq. 9 (α = (π/18, 8π/18, 3π/4)), while ID(t) per pixel-frame is
calculated using Eq. 11.

From the above data, we compare with both the non-adaptive
transient PDI method [15, 16], and directly recovering the
depth map from the original transient image, to demonstrate
the effectiveness of the proposed approach. For a fair com-
parison, we adopt the same layout of the illumination and
camera in all experiments, as well as the same depth esti-
mation algorithm after separating the reflectance component
in both polarization-aware methods. We evaluate the perfor-
mance of the three methods for six different medium densities
µt = (0.0213, 0.1064, 0.2128, 0.4255, 1.0638, 2.1277) m−1, corre-
sponding to roughly 0.1, 0.5, 1, 2, 5 and 10 times the mean free
path (mfp) from the center of the scene. The scattering albedo is
set to 0.9966 in all cases, as given by Lorentz-Mie theory.

Figure 4 shows the depth reconstruction results of our ap-
proach compared against the non-adaptive transient PDI and
the naive depth reconstruction. Visually, at low media densi-
ties (µt ≤ 1 mfp) all methods are able to recover nearby objects
within the medium, although our method performs better re-
covering the details of the surfaces geometry and is significantly
more robust to noise. As the density of the medium increases,
the performance of both the naive and the non-adaptive method
decreases, while our method remains fairly stable. Finally, for
very high densities close to diffusion regime (µt = 10 mfp), our
method is still able to reconstruct the objects in the media, while
the other two methods fail.

We also conduct a quantitative analysis to assess the recon-
struction accuracy of our method across media densities, as
shown in Fig. 5. The results shows the same trend shown in
Fig. 4: In scenes with strongly non-uniform polarization prop-
erties (the ones with high density in our experiment), both pre-
vious transient PDI methods and the naive one fail, while our
method still obtains depth within reasonable accuracy.

In conclusion, we have introduced a novel transient PDI
method, which leverages the assumption of uniform polariza-
tion properties. Our method takes into account non-uniform
polarization, both in the spatial and temporal domains, allow-
ing for robust depth estimation using time-resolved imaging.
We have shown that our method increases the range of appli-
cability of such methods to more challenging scenarios with
optically-thick media, where existing non-adaptive or unpolar-
ized methods failed since they were unable to disambiguate
between surface reflection and scattering. Our method targets
imaging devices with high temporal resolution for reconstruct-
ing depth; this limits its applicability to higher-end imaging
systems such as streak cameras or SPADs. An interesting av-
enue of future work is to generalize our adaptive method to
cheaper setups, such as time-of-flight cameras. Since our sim-
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Fig. 4. Recovered depth maps for increasing media densities [from left to right µt = (0.0213, 0.1064, 0.2128, 0.4255, 1.0638, 2.1277)
m−1], with our method (top), the non-adaptive transient PDI method (middle), and the naive unpolarized approach (bottom). The
ground truth depth map can be found in Fig. 3, while Fig. 5 shows the mean absolute error for each image.

ulations come from highly accurate physical simulations, with
scattering properties based on measured data, we believe they
can provide a benchmark for quantitative comparisons for other
future algorithms2 .
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Fig. 5. Mean absolute error for each method, for increasing
media density. Additional details on the error as a function of
distance can be found in the supplemental material.
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