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Figure 1: Left to right: Scene under white illumination, global illumination component captured in just a single RAW photograph (no
processing), and direct component from subtracting the middle image from the left image. The global image was captured using 512 primal
and dual patterns during one 30-second exposure. Notice that the objects embedded within the wax disk are only visible in the global image.

Abstract

We present primal-dual coding, a photography technique that en-
ables direct fine-grain control over which light paths contribute to
a photo. We achieve this by projecting a sequence of patterns onto
the scene while the sensor is exposed to light. At the same time,
a second sequence of patterns, derived from the first and applied
in lockstep, modulates the light received at individual sensor pix-
els. We show that photography in this regime is equivalent to a
matrix probing operation in which the elements of the scene’s trans-
port matrix are individually re-scaled and then mapped to the photo.
This makes it possible to directly acquire photos in which specific
light transport paths have been blocked, attenuated or enhanced.
We show captured photos for several scenes with challenging light
transport effects, including specular inter-reflections, caustics, dif-
fuse inter-reflections and volumetric scattering. A key feature of
primal-dual coding is that it operates almost exclusively in the op-
tical domain: our results consist of directly-acquired, unprocessed
RAW photos or differences between them.
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1 Introduction

A common assumption in computer graphics and computer vision
is that photos from a standard photographic camera always satisfy
the light transport equation [Ng et al. 2003]:

p = T i (1)

where p is a photo represented as a column vector of
pixels, T is the scene’s N × M transport matrix, and
i is a vector representing the scene’s incident illumination.
This relation underlies a large body of work, from precom-
puted radiance transfer [Sloan et al. 2002] to image-based re-
lighting [Debevec et al. 2000; Wang et al. 2009], computational
photography [Sen et al. 2005] and computational light trans-
port [Chandraker et al. 2010; O’Toole and Kutulakos 2010].

In this paper we observe that a much more general imaging regime
exists for photography with off-the-shelf cameras. This regime,
which we call primal-dual coding, enables direct acquisition of
photos that violate the scene’s light transport equation. These pho-
tos have a bilinear, rather than a linear, relationship to conventional
photographs and appear as though the transport matrix of the scene
itself has been manipulated (Figure 1). Unlike techniques that rely
on exotic technologies [Kirmani et al. 2011], primal-dual coding is
realized with standard components—a camera, a projector and an
LCD panel.

More specifically, primal-dual coding acquires photos governed by
the following transport probing equation (Figure 2):

p = (Π⊙T) 1 (2)

where the symbol ⊙ denotes the element-wise multiplication of two
equal-sized matrices. According to this equation, a photo is formed
by multiplying element-wise the scene’s transport matrix with a
probing matrix Π and then multiplying the result with a constant
vector of all ones. Intuitively, the probing matrix can be thought
of as a generalized illumination condition: it is under the complete
control of the image acquisition process, it is known, and can be ar-
bitrary. In contrast to conventional photography where there are M
degrees of freedom for controlling the output photo (i.e., the size
of the illumination vector i), the probing matrix has N × M de-
grees of freedom (the number of elements it contains). This gives
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Figure 2: The transport probing equation.

tremendous flexibility over image acquisition, well beyond what is
implied by the light transport equation.

To achieve this, primal-dual coding exerts simultaneous control
over two aspects of the image formation process: it controls the
scene’s illumination (the primal domain) and it modulates the light
arriving at individual pixels on the camera’s sensor (the dual do-
main). To acquire a photo, we project a sequence of patterns onto
the scene while the sensor is exposed to light. At the same time,
a second sequence of patterns, derived from the first and applied
in lockstep, modulates the light received at individual sensor pixels
(Figure 3). Capturing a photo by primal-dual coding therefore in-
volves two basic choices—what primal-domain patterns to use for
scene illumination and how to convert them into dual-domain pat-
terns for modulating the sensor. As we will see later, the former
determines the quality of the captured photo whereas the latter im-
plicitly determines the probing matrix. Most of our paper is about
a detailed analysis of these two choices.

Primal-dual coding is most closely related to confocal imaging
[Corle and Kino 1996], aperture correlation [Wilson et al. 1996]
and differential spinning disk microscopy [Mertz 2011]. These
methods are a special case of primal-dual coding where the primal-
and dual-domain patterns are binary, and either coincide or are com-
plements of each other. To our knowledge, they have not been
used for one-shot imaging in standard photography settings, al-
though “synthetic” implementations of aperture correlation have
been demonstrated by Levoy and colleagues [Levoy et al. 2004;
Fuchs et al. 2008]. These implementations keep optical processing
to a minimum and rely on substantial image acquisition and com-
putational processing to synthesize individual photos. In contrast,
we rely almost exclusively on optical processing; analyze the gen-
eral case, where primal and dual codes may differ; and introduce
the transport probing equation as a general image formation model
for primal-dual coding. This equation characterizes the space of
possible photos and their relationship to a scene’s transport matrix.

Primal-dual coding can also be thought of as a combina-
tion of illumination coding, which operates exclusively in the
primal domain [Veeraraghavan et al. 2011; Schechner et al. 2007;
O’Toole and Kutulakos 2010] and coded-exposure photography,
which operates in the dual [Hitomi et al. 2011; Nayar et al. 2004;
Wetzstein et al. 2010]. These coding techniques have been applied
very successfully in recent years but have not been combined for
one-shot photo acquisition. Like many coded-exposure methods,
we use relay optics and a display panel to modulate the light arriv-
ing at sensor pixels without having to access the camera’s interior.

From a mathematical perspective, both the transport probing equa-
tion and our overall analysis involve straightforward extensions of
elementary results in matrix probing. This is a topic of numeri-
cal mathematics concerned with the efficient estimation of the trace
or diagonal of very large unobservable matrices [Bekas et al. 2007;
Tang and Saad 2012]. The relation of these methods to imaging has
apparently not been noted, although they are highly relevant. For
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Figure 3: Photo and diagram of our primal-dual coding prototype.
We use a pair of relay lenses and an LCD panel with its backlight
removed to modulate the light reaching the camera’s sensor. To
acquire a primal-dual coded photo, we project a sequence of il-
lumination patterns onto the scene and simultaneously display a
sequence of modulation patterns on the LCD panel. The camera’s
shutter remains open throughout this process.

instance, aperture correlation implements an efficient stochastic di-
agonal estimator of the transport matrix.

As an initial feasibility test of the primal-dual coding framework,
we present results from a prototype system where a camera and
a projector share the same viewpoint. We show how to capture
photos where the direct component of light transport is missing,
and where components of direct or indirect illumination are selec-
tively attenuated or enhanced. Compared to recent primal-domain
methods with similar goals [Nayar et al. 2006; Seitz et al. 2005;
Zhang and Nayar 2006], a major advantage of our approach is that
it is independent of the frequency content of light transport, the re-
flectance of the scene’s surfaces, and the rank of its transport matrix.
It thus applies to fully-general scenes where a mixture of indirect
transport phenomena may occur—including specular and diffuse
inter-reflections, caustics, sub-surface scattering, etc.

Our investigation is limited in two respects, however, one concep-
tual and one practical. On the conceptual side, while primal-dual
coding and the transport probing equation apply to any camera-
projector arrangement, all our experimental results except one rely
on the camera and projector being coaxial. As such, use of the
primal-dual coding framework in a non-coaxial arrangement (e.g.,
for 3D shape recovery [Gupta et al. 2011]) is not yet well under-
stood. From a practical standpoint, our reliance on off-the-shelf
hardware significantly restricted the rate by which primal- and dual-
domain patterns change in our prototype. We compensated by cap-
turing photos with an exposure of several seconds, with all the dis-
advantages this entails (slightly-increased noise, static scenes, etc.)

2 Probing Light Transport

We begin by taking a closer look at the transport probing equation
and its relation to light transport analysis. The question of how to
implement it is considered in the following sections.
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Figure 4: Basic light transport paths. (a), (b) Element Tnm of
the transport matrix takes takes into account all light paths that
begin at projector pixel m and terminate at sensor pixel n. Two
such paths are shown, one due to inter-reflections (blue) and one
due to sub-surface scattering (red). (c) For coaxial arrangements,
the direct transport path (red) always contributes to the diagonal
element, Tnn. This element may also include contributions from
back-scattering (blue) and retro-reflection paths (green) which also
begin and end at the same pixel. (d) In coaxial arrangements it is
also possible to distinguish between long- and short-range trans-
port paths by the distance |n−m| between their endpoints.

In a typical photography setting we may know very little—or noth-
ing at all—about how the scene transports incident light. This
black-box view of the scene and of its transport matrix leaves just
one way to get information about them, i.e., by capturing one or
more photos. Unfortunately, there is a fundamental dimensionality
gap between the transport matrix T and the photos it can produce:
the transport matrix has N ×M elements whereas each photo can
only provide N measurements.1 We therefore have an extremely
limited bandwidth for acquiring information about T. The key ad-
vantage of the transport probing equation is the control it offers over
how the elements of T are mapped onto a photo’s limited pixels.

To gain further intuition about the space of allowable mappings, it
is helpful to consider the probing equation in the special case when
the probing matrix is binary and has only one non-zero element per
row (dark squares in Figure 2). Multiplying element-wise such a
matrix with T leaves only one non-zero element on each row, equal
to the corresponding element of the transport matrix. Multiplica-
tion with a constant vector then transfers it unaltered to the photo.
Thus, by choosing different binary probing matrices we can directly
acquire different N -dimensional slices of the N×M transport ma-
trix. Table 1 shows several such examples, along with other probing
operations made possible with non-binary probing matrices.

Probing matrices for light transport calculations Observe that
we can re-write the transport probing equation as

p = T̂ 1 (3)

1This gap may be reduced by measuring physical properties be-

yond irradiance such as polarization state [Ghosh et al. 2010], phase

[Popoff et al. 2010] and temporal irradiance variation [Kirmani et al. 2011].

We do not consider such measurements here.

by setting T̂ = Π ⊙ T. This brings it into the familiar form of
Equation 1 and suggests a physical interpretation for the acquired
photo: p is the photo we would have captured by conventional pho-
tography if the scene had transport matrix Π ⊙ T and was illumi-
nated uniformly. Viewed this way, Π re-scales the elements of the
transport matrix individually for the purpose of image acquisition.

Each element of the transport matrix describes the transport of radi-
ance along a distinct collection of light paths from the illumination
source to the sensor (Figures 4 and 5). By re-scaling these ele-
ments, the probing matrix gives the ability to directly acquire pho-
tos in which light transport along specific paths has been enhanced,
attenuated, or blocked entirely. See Table 2 for several examples of
imaging tasks, along with their associated probing matrices.

3 Photography by Primal-Dual Coding

Let us now look at how to capture photos governed by the transport
probing equation. The key ingredient is an ability to simultane-
ously modulate light at its source (the projector) and its destination
(the sensor). We first consider a naive algorithm that serves as an
existence proof and illustrates the basic properties of the approach.

3.1 Naive Approach: Path Isolation

Since we have complete control over which projector pixels emit
light and which sensor pixels receive it, we can control in a very
precise way the light transport paths that contribute to a photo. In
particular, by turning on a single projector pixel and unmasking a
single sensor pixel we guarantee that only the transport paths be-
tween those two pixels will contribute to the photo. The naive
algorithm, shown in Figure 7, applies this basic idea in a time-
multiplexed fashion: it allocates a time slice τ within the exposure
period to every possible combination of projector pixel m and sen-
sor pixel n, and uses Πnm for the projector pixel’s intensity during
that time slice. This ensures that transport paths that are “active”
during a particular time slice will contribute irradiance to the final
photo precisely as described in Equation (2).

Path isolation is an extremely inefficient approach for two rea-
sons. Firstly, every element of the probing matrix gets equal time
even though its value may be zero. Since many probing matri-
ces of interest are sparse (e.g., see Tables 1 and 2), the sensor
would not be integrating any light at all for much of the exposure
time. An obvious improvement is to allocate time proportionally
to Πnm. This solution, for the special case where the Π is the
identity matrix, describes the basic confocal microscopy technique2

[Corle and Kino 1996]. A second—much more serious—issue is
that only one pixel integrates light at any given point in time. Given
that a typical image may contain millions of pixels, the short time
slices mean that light received at a pixel would fall well below the
additive noise floor under typical photography conditions.

3.2 Optical Matrix Probing

Acquisition schemes that make efficient use of the sensor are highly
desirable. For this, we turn to work in numerical linear algebra
[Bekas et al. 2007]. Let {ik} and {mk} be two sequences of col-
umn vectors corresponding to a decomposition of the probing ma-
trix into a sum of rank-1 matrices:

Π =

K
∑

k=1

m
k(ik)

T
(4)

2The coaxial arrangements used in confocal imaging guarantee that the

diagonal of the transport matrix contains all direct (a.k.a. in-focus) paths.



Probing Objective Transport Probing Equation Expression for Expression for

Element Πnm Photo Pixel pn

Capture a conventional photo un-
der illumination i (Equation 1)

× i
∑

m
Tnm im

Capture a conventional photo un-
der illumination i (Equation 2)

⊙ ×1

i
i

i
i

i
i

i
i

im

∑

m
Πnm Tnm

=
∑

m
im Tnm

Capture the diagonal of T ⊙ ×1 δ(n−m)

∑

m
Πnm Tnm

= Tnn

Capture the wth off-diagonal of T ⊙ ×1 δ(n−m+ w) Tn(n+w)

Sample one element from each
row of T according to a given
sampling vector a

⊙ ×1 δ(an −m) Tnan

Capture a linear combination of
two elements in each row, accord-
ing to sampling vectors a and b

⊙ ×1 a δ(an −m)

+ b δ(bn −m)
a Tnan

+ b Tnbn

Capture a photo that simulates
conventional photography under
illumination i of a scene whose
transport matrix is A⊙T

⊙ ⊙ ×1

i
i

i
i

i
i

i
i

A Anm im
∑

m
(Anm Tnm) im

Table 1: Probing the transport matrix. Rows 1 and 2: Relation between the light transport equation and the transport probing equation.
The last column shows that the two equations coincide when Πnm = im. Rows 3-7: Probing makes it possible to compute general linear
mappings from transport matrix elements to camera pixels without having to capture (or even approximate) the full transport matrix first.

Acquisition Goal Expression for Element Πnm

Capture direct plus retro-reflection and back-scattering (Figure 4c) (n = m)

Capture all other indirect (Figure 4a) (n 6= m)

Capture long-range indirect (Figure 4d) (|n−m| > w)

Capture short-range indirect (Figure 4d) (|n−m| ≤ w) ∧ (n 6= m)

Transport masking: block all light paths from object B to object A but leave other paths unaffected (n 6∈ A) ∨ (m 6∈ B)

Local de-scattering: capture direct plus high-frequency retro-reflection and back-scattering (n = m)− (n = m+ 1)

Transport-domain filtering: use a filter kernel f to modulate transport paths according to their distance
from the direct component

(n = m+ w)fw

Table 2: Probing matrices useful for light transport calculations in coaxial arrangements. We slightly abuse notation in the expressions
for Πnm: logical operations (equality, inequality, set membership) are treated as functions returning 1 if true and 0 if false. For transport
masking, we assume that the objects A and B are specified as sets of pixels on the image plane. The first five operations can be thought of as
applying a binary mask to the transport matrix (e.g., the matrix shown in Figure 5b). The last two operations involve cross-correlations along
rows of the matrix. Note that unlike methods that rely on assumptions about the frequency content of light transport [Nayar et al. 2006], none
of the above operations do so, with the exception of local de-scattering. The de-scattering expression was proposed by Fuchs et al. [2008] to
remove back-scattering contributions that are constant in the neighborhood of the direct component. To our knowledge, transport masking
and filtering have not been considered previously. For non-coaxial arrangements, the same relations apply with one modification: m must
be equal to an, where vector a encodes stereo correspondences. These relations are less useful when stereo correspondences are unknown.
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Figure 6: Image formation pipeline for a single photo captured by primal-dual coding. The primal and dual sequences, {ik} and {mk},
are computed in a preprocessing step. Patterns in the primal and dual domains are changed synchronously.

This decomposition allows us to re-write the transport probing
equation as a sum identical to the pipeline in Figure 6:

(Π⊙T) 1 =

K
∑

k=1

M
∑

m=1

m
k
i
k
m ⊙Tm =

K
∑

k=1

m
k ⊙T i

k
(5)

Here we used Tm to denote the m-th column of T. It follows that
every decomposition of the probing matrix into a sum of rank-1 ma-
trices provides a candidate sequence of illumination patterns {ik}
and masks {mk} for primal-dual coding.

Stochastic diagonal estimators Not all rank-1 decompositions
are equally efficient. Bekas et al. [2007] study this problem for the
case where the probing matrix is the identity. This matrix allows us
to acquire the diagonal of T (third row of Table 1 and first row of
Table 2). The main idea is to consider rank-1 decompositions of the
identity matrix created by an infinite sequence of random vectors
{ik} drawn from a distribution with mean zero and unit variance:

(I ⊙ T) 1 = lim
K→∞

1

K

K
∑

k=1

i
k ⊙Ti

k
(6)

They show that the provably-optimal convergence rate is achieved
by vectors drawn from the Rademacher distribution, whose ele-

ments have a 50% chance of being +1 or −1.3 Moreover, as shown
in the Supplemental Material, the variance of a K-term estimate of
diagonal element Tnn is

1

K

M
∑

m=1,n 6=m

T
2
nm (7)

Therefore, to double the accuracy of our estimate of Tnn we must
use twice as many vectors. Importantly, Equation (7) tells us that
this accuracy depends on the transport matrix itself and thus on the
type of global transport within a scene: it is low when the total
intensity of non-zero elements along a row of T is distributed over
many elements (e.g., diffuse inter-reflections) and high when it is
concentrated at a few isolated ones (e.g., caustics).

Stochastic estimators for general probing Generalizing the
above estimator to the case of a general probing matrix Π is triv-
ial in some respects and non-trivial in others. On the trivial side,
extracting the wth off-diagonal of T, as shown in the fourth row of

3Although not described in these terms, aperture correlation

[Wilson et al. 1996] uses this sequence for extracting the diagonal of

T. This was proposed well before its optimality was established.



Path isolation:

In: exposure time E, probing matrix Π

Out: photo equal to (Π ⊙ T) 1

1: τ = E/NM

2: open camera shutter

3: for n = 1 to N
4: unmask pixel n
5: for m = 1 to M

6:
turn on projector pixel m for

time τ with intensity Πnm

7: mask all pixels

8: close shutter

9: return captured photo

Optical matrix probing:

In: exposure time E, probing matrix Π,

K illumination vectors {ik}
Out: photo equal to (Π ⊙ T) 1

1: τ = E/K

2: open camera shutter

3: for k = 1 to K
4: apply mask m

k = Π i
k

5: project vector ik for time τ

6: close shutter

7: return captured photo

Figure 7: Basic algorithms for primal-dual coding photography.

Table 1, simply requires a mask that is a w-shifted version of the
illumination pattern:

(Π ⊙ T) 1 = lim
K→∞

1

K

K
∑

k=1

shift(ik, w)⊙Ti
k

(8)

More generally, left-multiplying both sides of Equation (6) by Π
gives the equivalent expression for general probing matrices:

(Π ⊙ T) 1 = lim
K→∞

1

K

K
∑

k=1

Πi
k ⊙Ti

k
(9)

This expression is straightforward to implement optically (see Fig-
ure 7). Unfortunately, it is not known if the optimality guarantees
of the Rademacher distribution extend to general probing matrices.

Negative values Up to now we have ignored the fact that the
illuminations and masks may contain negative values which are not
physically realizable. Negative values may occur because of the
random vector sequence being used or because Π itself contains
negative values. Correct treatment of such cases requires capturing
at most two photos followed by a (computational) subtraction. In

particular, by expressing ik and mk as a difference of two non-
negative vectors, it is possible to break each term in Equation (4)
into four terms, two of which are positive and two of which are
negative. The first two terms are used during the exposure period
of the positive photo and the last two of the negative one:

positive terms

︷ ︸︸ ︷

[ m
k

+(i
k

+)
T

︸ ︷︷ ︸

#1

+ m
k

−

(i
k

−

)
T

︸ ︷︷ ︸

#2

] −

negative terms

︷ ︸︸ ︷

[ m
k

−

(i
k

+)
T

︸ ︷︷ ︸

#3

+ m
k

+(i
k

−

)
T

︸ ︷︷ ︸

#4

] (10)

where ik = ik+ − ik− and mk = mk
+ − mk

−. It follows that
implementing a K-vector primal-dual coding sequence with both
positive and negative values requires capturing two photos using a
2K-long sequence during each photo’s exposure.

Fortunately, useful probing matrices exist that produce strictly non-
negative illuminations and masks. This makes it possible to probe
efficiently with just one photo. Two important examples are cap-
turing an indirect-only photo of the scene (second row in Table 2)
and capturing the direct component plus one-half the indirect (i.e.,
contrast-enhancing the direct component). See the Supplemental
Materials for a brief derivation of how Rademacher sequences can
be replaced by non-negative Bernoulli sequences in such cases.4

4According to Equation (4), if Π’s rank is low applying non-negative

factorization also yields efficient non-negative illuminations and masks.

4 Implementation

Hardware Figure 3 illustrates our hardware setup. We use an
Epson PowerLite G5000 3-LCD projector with a linear polarizer
placed in front, a disassembled Barco E-2320 PA monochrome
LCD panel positioned between two linear polarizing sheets, a
50R/50T Edmund Optics beam splitter, two spherical plano-convex
relay lenses, a Canon EOS Rebel XSi camera, a 2.67 GHz Intel
Core i7 workstation with 3 GB of RAM and two NVIDIA GeForce
9500GT graphics cards. We operate the projector at resolution
1024 × 768 and use two vsync-enabled borderless OpenGL
windows to control the projector and LCD at a 60 Hz refresh rate.
Pattern generation and display are done through MATLAB.

The rightmost relay lens in Figure 3 focuses light from the scene
onto the plane of the LCD display. The display attenuates this
incident light using a 1600× 1200-resolution pattern. The leftmost
relay lens, along with the camera’s own 50mm lens, is then used
to capture a focused image of the LCD display. The focal length
of the leftmost relay lens was 330mm in all experiments; the other
relay lens was 330mm in all experiments except one (Figure 9),
where a 220mm lens was used. These relay lenses were slightly
larger than the active area of the LCD display (15cm versus
10cm) and positioned asymmetrically, with the leftmost one much
closer to the display. We align the projector and camera using a
beamsplitter to ensure a coaxial arrangement.

Calibration All experiments except the one in Figure 11 require
a coaxial camera and projector and aligned projector and LCD
patterns. We do this as follows. We temporarily place a diffuser
on the LCD panel; focus the image of the scene onto the diffuser
by adjusting the position of the rightmost relay lens; align the
projector to produce a coaxial arrangement; and move and resize
the OpenGL windows so that the pixels of the projector and LCD
panel overlap from the camera’s perspective. Since we relied on
binary patterns for our experiments, no radiometric calibration
was required. For more general probing experiments, where
illuminations and/or masks are not binary, radiometric calibration
of both the LCD panel and projector becomes necessary.

Codes robust to misalignment Even after calibration, the
illumination and mask patterns in our prototype are not aligned
with pixel accuracy. Moreover, despite driving the projector and the
LCD panel with the same vertical synchronization signal, the two
devices do not refresh in perfect synchrony. These misalignments
forced us to operate at a reduced spatio-temporal resolution. To
account for temporal misalignment, we interleave black images
on the LCD panel before and after displaying each mask pattern,
reducing the effective primal-dual coding display rate to 20 Hz.
To deal with pixel misalignment, we rely on reduced-resolution,
64× 48 primal-dual coding sequences and use four times as many
codes (included in our code counts for experiments). In particular,
we replace every pair ik,mk in the primal-dual coding sequence
with a four-code sequence ikl ,m

k
l , that eliminates artifacts due

to misaligned pixel boundaries. This sequence exposes the
center 1

4
-th of reduced-resolution pixels and then shifts both

the illumination pattern and the mask three times to expose the
complete coarse-resolution pixels. The sum of the four mask
patterns, mk

l , produces the original dual code mk. Together with
the black masks, this results in the following twelve-code sequence:

Primal: ik1 ik1 ik1 ik2 ik2 ik2 ik3 ik3 ik3 ik4 ik4 ik4
Dual: 0 mk

1 0 0 mk
2 0 0 mk

3 0 0 mk
4 0

See the Supplementary Material for an example. For high code
resolutions, the center 1

4
-th of each pixel may no longer mask the

misaligned pixels. This imposes a maximum working resolution to
any primal-dual coding setup (ours is 64× 48). This means that all
light paths within a coarse pixel are clumped together in the photos
we capture.
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Figure 8: Contrast-enhancing the direct component of a coke bottle filled with milky water, which strongly scatters light. Left to right: A
photo of the scene lit by white illumination contains full direct and indirect; the scene with 50% indirect illumination uses 64 primal-dual
codes; 25% indirect illumination uses 128 codes, 12.5% indirect uses 256 codes, and 6.25% indirect uses 512 codes. The plot on the right
examines the intensity of two points in the scene, a point lit mostly by indirect (green), and a point lit mostly by direct (red). As we reduce
the percentage of indirect light, the intensity of the point on the background decreases slightly, indicating a small indirect component. In
contrast, the intensity of the point on the bottle diminishes, an indication of the strong indirect transport effects within the bottle.

Image capture and adjustment We capture 4272 × 2848-
resolution RAW photos and decode them using DCRAW. We then
rotate, flip, tone map and white balance the photos. We use gamma
correction with γ = 2.2 for tone mapping and manually choose
a white object in each photo to set the white point through MAT-
LAB.

5 Results

Single-photo enhancement of direct component We first con-
sider the problem of capturing single photos in which the direct
component has been contrast-enhanced. Figure 8 shows the cap-
tured RAW images for a scene containing a coke bottle filled with
milky water. The milky medium scatters light entering within the
coke bottle, producing a strong indirect lighting effect.

To do this, we generate a sequence of primal-dual codes using the
Bernoulli distribution as described in the Supplementary Materials.
These codes satisfy ik = mk, have elements that are 1 with
probability p and 0 with probability 1 − p, and converge to a
probing matrix with value p along the diagonal and p2 everywhere
else. Since this matrix attenuates the direct component by a factor
of p, the mean brightness of direct-enhanced photos changes with p
too. To keep it approximately constant in Figure 8, we compensate
for reductions in p by increasing exposure time, i.e., using more
codes.

Separating indirect and direct components in the presence of

high-frequency indirect transport Figure 12 shows several ex-
amples of capturing photos that contain indirect- or direct-only con-
tributions. Each scene contains a variety of effects, including sub-
surface scattering, caustics, specular reflections, and diffuse inter-
reflections. Note that identifying the high-frequency indirect com-
ponent in a scene is not possible with existing methods—regardless
of the number of input images—because they assume that indirect
transport is a low-frequency phenomenon [Nayar et al. 2006]. In
contrast, here we correctly capture such effects in one shot. Di-
rect images are computed by subtracting the global image from an
image of the scene under white illumination.

The primal-dual codes are similar to those used for direct enhance-
ment: ik is drawn from the Bernoulli distribution and mk = 1−ik,
resulting in a probing matrix that has 0 along the diagonal and
p(p − 1) everywhere else. We use p = 0.5 in our experiments
because it maximizes the magnitude of the probing matrix.

De-scattering from two shots Fuchs et al. [2008] describe an
approach for imaging through scattering media that combines con-

focal imaging and de-scattering. It requires scanning a line across
the scene and capturing, storing and analyzing many photos. We do
this in just two shots by implementing their procedure optically.

For this experiment, we replace the 330mm lens with a 220mm lens
and focus the camera and projector onto a resolution chart through
a tank of milky water (Figure 9). We then take two photos in or-
der to implement the probing matrix for local de-scattering in Ta-
ble 2. The first photo captures the direct-enhanced component, cor-
responding to the direct plus 1

16
th indirect, as in Figure 8. The

second captures the first off-diagonal of the transport matrix plus
1
16

th of contributions not on that off-diagonal (Equation 8). The
difference of the two photos corresponds to a matrix with 1 on the
diagonal and −1 on the first off-diagonal. Note that this difference
greatly enhances the contrast relative to the floodlit image.

Just like in our direct enhancement experiment, we control the
exposure level of our photos by the number of primal-dual codes
used to capture them. Since we expect the diagonal entries of the
transport matrix to be smaller than those of Figure 8 because of
scattering, we double the total exposure time using 1024 codes.

Separating low- and high-frequency indirect transport We
can use our probing technique to analyze the transport matrix while
blocking the direct component. The indirect-only probing matrix
(Table 2) removes any influence of the diagonal on images from
the scene. To further analyze the indirect component, we apply the
approach of Nayar et al. [2006] only to the indirect component. To
do this, we use probing to optically “simulate” conventional pho-
tography on the indirect-only transport matrix, as described in the
last row of Table 1. Capturing the indirect component under illu-
mination i requires slightly modifying the primal-dual codes of the
indirect-only probing matrix; we modulate the primal patterns by
the illumination pattern i.

This allows us to separate high-frequency indirect light (spec-
ularities and caustics) from low-frequency indirect light (inter-
reflections and sub-surface scattering) from a total of four photos
of a shifting high-frequency illumination pattern, plus four “black”
photos used to counteract the transmissivity of the LCD panel.

Figure 10 shows that our algorithm successfully separates the high-
frequency specular reflections of the disco ball from the low-
frequency inter-reflections and sub-surface scattering of the book
and the scattering wax disk, respectively. The number of the primal-
dual codes for this experiment was 128 per photo.
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Figure 9: Imaging a resolution chart through a tank of milky water using a pair of primal-dual coded photos. (a) A tank filled with water
and a small amount of milk scatters light. The objective is to image a resolution chart taped to the back side of the tank using no more than
two photos. (b) Illuminating the scene with a white illumination pattern produces an image with poor contrast because of back-scattering.
(c) A contrast-enhanced direct photo, obtained using the same procedure as in Figure 8, uses 1024 primal-dual codes. This produces a photo
where the global component is reduced. (d) Enhancing the first off-diagonal of the transport matrix involves using a shifted version of the
primal-dual codes used in (c), according to Equation (8). (e) By subtracting the off-diagonal-enhanced photo in (d) from the direct-enhanced
photo in (c), we obtain a de-scattered confocal photo. This significantly enhances contrast relative to the original floodlit image in (b).
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Figure 10: (a) A disco ball ornament placed on top of a wax disk and in front of an open book. The scene is lit by projecting a white
pattern. Observe that the open book causes diffuse inter-reflections, the wax disk exhibits strong sub-surface scattering, whereas the disco
ball produces specular reflections across the scene. (b) Primal-dual coding produces a direct component from two photos. This removes light
due to inter-reflections, sub-surface scattering and specular inter-reflections even though significant high-frequency light transport effects are
present. (c) We also obtain the indirect component in a single RAW photo; correcting for the black level in this figure requires an additional
photo. By capturing the indirect illumination of the scene under shifted high-frequency patterns, it is possible to separate (d) high-frequency
indirect transport (due to specularities) from (e) low-frequency indirect transport (due to inter-reflections and sub-surface scattering).

6 Discussion

Limitations of our prototype Our system is fixed to an optical
bench, limited to displaying primal-dual codes at 20 Hz, has spher-
ical aberrations, and uses a relatively low-contrast projector and
LCD. There is also a small amount of light that transmits through
the LCD panel which becomes visible over long exposures; com-
pensating for this light requires a second photo with the mask set
to black. Our single-photo experiments assume no ambient light,
though ambient light can be eliminated using two photos.

Existing technologies such as digital micro-mirror devices (DMD),
liquid crystal on silicon (LCoS) and micro-shutters can speed up
primal-dual coding by over two orders of magnitude. DMDs, for
instance, can operate at over 10000Hz for binary patterns, opening
the possibility of primal-dual coded video. Performing on-chip op-
erations on the camera sensor before read-out would eliminate the
need for a mask. Designs for capturing both the light that is blocked
by a mask and the light that is unblocked [Heintzmann et al. 2001]
can speed up optical processing even more.

Comparison to mask-less multi-image acquisition An
alternative way of implementing primal-dual coding is to capture
a separate photo for each illumination pattern without using any
mask, and then perform masking and integration computationally
rather than optically. Such an approach might seem advantageous
because it does not require hardware for optical masking and
because individually-captured photos might be useful for other
purposes. In the Appendix we use an example to show that the

utility of such photos is far less clear when acquisition time is taken
into account. This is because high-speed multi-image acquisition
is limited by additive sensor noise whereas primal-dual coding
is photon limited, and mainly constrained by the display rate
of projectors and masks. Looking forward, we expect display
technologies to improve much faster than additive sensor noise,
conferring further advantage to our all-optical approach. Indeed,
using a DMD for masking could enable far higher display rates
without moving outside our photon-limited regime.

Primal-dual coding with non-coaxial systems Although our
focus has been on analyzing light transport in coaxial systems,
primal-dual coding confers new imaging capabilities to non-coaxial
systems as well. For instance, in Figure 11 we demonstrate the
ability to capture photos where all direct light is blocked from a
selected 3D region of physical space. We are currently exploring
several such extensions of primal-dual coding.

Future work Finding the optimal patterns for the general probing
case is still an unsolved problem. We are exploring optimal decom-
positions of general probing matrices with optional binary and/or
non-negativity constraints. Moreover, although our patterns are
currently scene independent, efficiency of numerical matrix prob-
ing increases substantially when the structure of the matrix being
probed (e.g., its sparsity) is known [Bekas et al. 2007].

On the conceptual side, the basic approach can be extended in sev-
eral directions. These include extending the basic 2D approach to
the case of 4D light fields [Levoy et al. 2006]; exploring its use
for 3D reconstruction; using primal-dual coded photos as input
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Figure 11: Optical z-keying by primal-dual coding. In non-coaxial configurations, the transport matrix encodes both geometry and light
transport. By blocking light from a selected range of stereo disparities (Figure 4b) we can capture photos that receive no contribution from
objects within the corresponding range of distances. (a) An overview of the scene. Dashed lines (b)-(g) correspond to the position of the
front plane of the red box in photos (b)-(g). Before taking these primal-dual coded photos, we computed the homography that maps projector
pixels to camera pixels for a vertical plane positioned at (e). We then proceeded to probe the transport matrix that maps homography-warped
projector pixels to camera pixels (this was done by pre-warping the primal codes before displaying them). The diagonal of this matrix,
corresponding to a stereo disparity of 0, represents direct transport paths due to points on the vertical plane at (e). To block light from these
paths, we probe with a matrix that excludes the diagonal, i.e., the same probing matrix we used to capture the indirect-only photos in Figures 1
and 12. (b)-(g) Primal-dual coded RAW photos taken with exactly the camera settings and the same probing matrix but with the red box at
different distances from the camera: (b) The box is far from the camera and its front plane is fully visible. (c), (d) As the box approaches the
zero-disparity plane it appears increasingly “vignetted” and disappears completely at (e). (f), (g) It reappears again after moving away from
the zero-disparity plane. Note that this was achieved without any information about the geometry or appearance of the red box.

to vision algorithms; and using the basic transport probing tech-
nique to efficiently acquire transport matrices for relighting appli-
cations [Wang et al. 2009; Sen and Darabi 2009; Peers et al. 2009;
Garg et al. 2006].

Finally, note that since many probing matrices require a single shot
with no processing, primal-dual coding does not strictly need a
camera to operate—it can be a see-through device.

7 Concluding Remarks

In this paper, we introduced primal-dual coding as a general imag-
ing technique that offers fine-grain control over how light paths con-
tribute to a photo. We showed that this greatly increases the avail-
able degrees of freedom in photography and that it allows direct
acquisition of photos that cannot be captured efficiently by conven-
tional methods. Importantly, the technique operates in the optical
domain and requires little or no post-processing after acquisition.
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Appendix: One-shot primal-dual coding versus mask-

less multi-image acquisition

We consider the following hypothetical procedures:

• PDC: Capture one optimally-exposed photo with 512 primal-
dual codes and a 30-second exposure time at ISO 50 (i.e.,
slightly more time than needed for a 20 Hz display rate).

• MI: Capture 512 photos without a mask, each exposed for
30/512 seconds at ISO 50 or ISO 1600 (i.e., same total ex-
posure time as PDC and therefore the same total incoming
photons).

• PDC×10 and MI×10: Reduce exposure time by a factor of
10 and use ISO 1600 for both PDC and MI.

These procedures represent the idealized cases of a conventional
high-speed system that captures and transfers photos with no over-
head and of a spatiotemporally-aligned primal-dual coding system
with 100% mask transmissivity (about twice that of our LCD, as
afforded by DLP masks). We compare their signal-to-noise ratio
(SNR) for a specific camera—the Canon EOS 1D MarkII—whose
noise characteristics have been studied in detail [Clark 2007].

For a given pixel, the SNR can be expressed as

10 log10
intensity × gain

√

intensity × gain + (additive)2 + (thermal × time)2

where pixel intensity is measured in digital numbers; gain is mea-
sured in electrons per digital number and depends on the camera’s
ISO setting; and the terms in the denominator represent the variance
of photon noise, additive noise and thermal noise, respectively. Ac-
cording to Clark [2007], the gain at ISO 50 is 26.03 electrons per
12-bit digital number, the standard deviation of the pre-gain readout
component of additive noise is 30.62 electrons and thermal noise
has an approximate upper bound of 0.25 electrons per second.

To calculate the SNR for the PDC procedure, we assume that the
mean intensity of the optimally-exposed primal-dual coded photo
is 407.66 12-bit digital numbers. This corresponds to 13% of the
maximum possible intensity of 3135.9 and is in accordance with
general auto-exposure criteria [Iso 2721:1982 ]. The mean number
of electrons is 10611.57 in this case (against an additive floor of
30.62), yielding an SNR equal to 19.9 dB.



Since a sensor pixel is masked by approximately half the primal-
dual codes on average, the electrons in a PDC photo are due to
256 of those codes. This means that these electrons are distributed
across 256 photos in the MI procedure, or 41.45 electrons per photo
(against the additive floor of 30.62 electrons). Thus, the MI proce-
dure is dominated by additive noise and has an extremely low SNR,
just 1.22 dB. This makes the captured photos practically unusable
on their own. Even at ISO 1600, which has the lowest pre-gain
readout noise at 3.9, the SNR is just 7.4 dB.

We now examine the SNR of their masked sum according to Equa-
tion 5. Since only 256 photos contribute to this sum on average,
we must count the contribution of additive noise only from those
photos. The standard deviation of additive noise will therefore be
16 times larger, or 489.92 electrons at ISO 50 and 62.4 at ISO
1600. This yields an SNR of 13.2 dB at ISO 50 and 19.4 dB at ISO
1600. Thus, despite the significant computational burden of acquir-
ing, transferring and storing 512 individual photos, these photos are
not very useful on their own and do not offer an SNR gain over a
well-engineered primal-dual coding system.

Finally, applying PDC×10 and MI×10 means that ten times fewer
electrons contribute to a pixel. While the resulting under-exposed
photo has an SNR of 15.1 dB under PDC×10, MI×10’s reduction
to 11.8 dB for the masked sum is much more severe.
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scene under white light global component direct + back-scattering + retro-reflection

Figure 12: Left to right: Photo of scene under white light, global component of scene captured by a single RAW photo, direct component
computed by subtracting the global image from the scene under white light. No processing was done on the photos, other than a resize,
flip, white balance, gamma correction and crop. All scenes use 512 primal-dual codes, with the exception of Row 4 which uses 1024 codes.
Row 1: A disco ball produces high frequency light transport across the scene, with diffuse inter-reflections occurring near the edge of the
floor. Primal-dual coding cleanly separates the photo into its direct component and its global component, which contains inter-reflections
and specularities. Row 2: A scene composed of two styrofoam balls inside a glass container generates specular reflections, sub-surface
scattering and caustics. We used small aperture to photograph this scene in order to avoid pixel saturation due to caustics. The photo is
slightly noisier as a result. Row 3: A coke bottle filled with milky water strongly scatters light that enters the bottle. Row 4: Observe that the
direct component contains none of the light that is reflected by the mirror (left) onto the vase (right) and the wall. However, the mirror does
not appear black in the direct photo even though it has little to no direct component. This is because of back-scattering and retro-reflection
(Figure 4c): light leaves a projector pixel, hits the mirror at a point, diffusely reflects off the wall, then hits the mirror at the same point,
and returns to the same pixel. This light path will always contribute to the diagonal of the transport matrix and cannot be distinguished
from direct illumination using methods that rely purely on intensity, and without regard to arrival time or polarization. Note that according
to Equation 7, the variance of stochastic diagonal estimation may be higher for indirect specular transport than for diffuse transport. To
compensate for this, we used 1024 primal-dual codes for this scene.


