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Improving SLI Performance in Optically Challenging Environments

The construction of 3D models of real-world scenes using non-contact methods is
an important problem in computer vision. Some of the more successful methods
belong to a class of techniques called structured light illumination (SLI). While SLI
methods are generally very successful, there are cases where their performance is poor.
Examples include scenes with a high dynamic range in albedo or scenes with strong
interreflections. These scenes are referred to as optically challenging environments.

The work in this dissertation is aimed at improving SLI performance in optically
challenging environments. A new method of high dynamic range imaging (HDRI)
based on pixel-by-pixel Kalman filtering is developed. Using objective metrics, it is
show to achieve as much as a 9.4 dB improvement in signal-to-noise ratio and as much
as a 29% improvement in radiometric accuracy over a classic method. Quality checks
are developed to detect and quantify multipath interference and other quality defects
using phase measuring profilometry (PMP). Techniques are established to improve
SLI performance in the presence of strong interreflections. Approaches in compressed
sensing are applied to SLI, and interreflections in a scene are modeled using SLI.
Several different applications of this research are also discussed.
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Chapter 1 Introduction

The research in this dissertation aims to improve the performance of 3D modeling
using structured light illumination (SLI) in optically challenging environments. One
type of optically challenging environment considered in this dissertation occurs when
the dynamic range in scene albedo exceeds what can be captured by an image sensor
using a single integration time. Another optically challenging environment examined
in this dissertation occurs when multipath interference is present in a scene.

Before discussing details about the research performed in this dissertation, this
introduction focuses on providing the reader with broad, non-technical information
in order to better understand this topic, the challenges being addressed, and the
techniques utilized in developing solutions. This begins with understanding the goals
of machine vision.

What is Machine Vision?

Human vision is a highly developed sense. The visual cortex is the largest system in
the human brain, and it allows many complex tasks to be performed with seemingly
little effort. However, while humans excel at tasks associated with vision, it is
machines which excel at tedious, high-throughput tasks associated with automation
and inspection. Consequently, there is much interest in allowing computers to “see.”

Consider the image shown in Figure 1.1. A human observer has little diffi-
culty identifying this scene as a culture of cells, and can easily differentiate between
background clutter and healthy cell colonies. Based on this, one might believe
that allowing computers to “see” should be an easy task. However, consider the
boxed region of Figure 1.1 presented as it would be “seen” by a computer, shown
in Figure 1.2. Although both regions contain the same information, when this
information is presented in a manner which makes it inaccessible to the human visual
cortex, the identification of healthy cell colonies becomes an extremely challenging
task for humans, and the difficulty of giving computers “sight” becomes apparent.

Sometimes distinctions are drawn between several closely related disciplines. The
field of image processing aims to alter and enhance the way the information in an
image gets presented to the human visual cortex. For example, the contrast between
cell colonies and background can be increased, or cell colony edges can be enhanced.
Computer vision uses techniques from the field of artificial intelligence to allow a
computer to “understand” an image. For example, a set of features describing cell
colonies can be created using attributes such as shape and color, and techniques from
pattern analysis and machine learning can be used to differentiate healthy cell colonies
from background clutter and undesirable colonies. The field of machine vision does
not aim to make computers “understand” images, but rather focuses on making high
fidelity measurements useful for applications such as remote sensing or industrial
inspection. While these fields may appear to be separate disciplines, in practice there
are no clear-cut boundaries between these areas, and many applications require the

1



Figure 1.1: An image of a culture of cells presented in a form accessible to the human
visual cortex.

use of all three disciplines.
The research in this dissertation focuses on machine vision, specifically techniques

for acquiring high fidelity radiance and depth measurements.

3D Capture Technologies

The acquisition of 3D scenes has been an important problem in machine vision
for several decades, with many approaches having been explored. Following the
organization in [85], these approaches may be classified as

• single camera,

• multi-camera,

• holographic,

• pattern projection, and

• time-of-flight approaches.

Holographic techniques use a coherent light source and capture interference pat-
terns between a reference beam and light scattered by the object. Since they are
based on light interference, holographic approaches can offer excellent measurement

2
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Figure 1.2: The boxed region of Figure 1.1 presented in a form not accessible to the
human visual cortex. Both images contain the same information.

accuracy. However, holography still largely uses analog approaches, and while ad-
vances in digital holography have been made, resolution, data storage, and speed are
just some of the issues preventing its widespread use [85].

The many single camera techniques available can be broadly classified as shape-
from-shading [98], shape-from-texture [43], shape-from-focus [101], and shape-from-
motion [62]. Each of these methods has its own advantages and disadvantages.
However, 3D recovery from one view is an ill-posed problem, and the performance of
these approaches is very much dependent on the validity of their assumptions. While
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Figure 1.3: An illustration of optical triangulation in a structured light scanner. From
[1].

these techniques may be appropriate and useful in some applications, for measurement
applications performed under general conditions other techniques are preferable.

3D reconstruction from multi-camera stereovision has received much attention,
and one review on the subject is [78]. In these approaches, 3D reconstruction is
performed using triangulation between the cameras. After camera calibration, cor-
respondences must be established between pixels in the two cameras. Unfortunately,
this can be a very challenging task, especially in low texture environments.

Like the multi-camera approaches, pattern projection methods, also referred to
as structured light illumination (SLI) methods, recover 3D coordinates using trian-
gulation between a camera and a projector, shown in Figure 1.3. Correspondences
between camera and projector pixels are established by projecting, detecting, and
decoding coded patterns, thus overcoming the correspondence problem present in
multi-camera stereovision. A number of coded patterns exist, with many summarized
in [75, 4]. Some popular approaches are based on projecting binary patterns such as
gray codes. Also popular are techniques which project phase-shifted sinusoids such
as phase measuring profilometry (PMP). Good surveys on the subject can be found
in [4] and [75].

Several time-of-flight systems, also referred to as light detection and ranging
(LIDAR) systems, exist. Pulse LIDAR is based upon fast electronics and reconstructs
range from

T =
2d

c
(1.1)

where T is the measured delay between pulse generation and detection, d is range,
and c is the speed of light. One such system, described in [61], uses an avalanche
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photodiode array capable of single photon counting and performs range reconstruction
with sub-millimeter accuracy. When fast electronics are not required, frequency mod-
ulated continuous wave (FMCW) or amplitude modulated continuous wave (AMCW)
systems can be used. In FMCW systems, the emitted signal increases in frequency at
a constant rate and the frequency shift between emitted and detected signal is used to
yield time of flight, with range again determined from (1.1). An example of AMCW
is the Equinox sensor described in [25], which uses two photodetectors per pixel, one
modulated in-phase and the other out-of-phase with the emitted sinusoidal signal, to
estimate the phase delay between emitted and received signals. Phase delay is then
used to calculate time-of-flight and range.

For most measurement applications, 3D reconstruction is performed using either
SLI or LIDAR. LIDAR has received considerable attention in recent years because
of its high accuracy, high speed, low power requirements, and mechanical simplic-
ity [2]. However, projector-camera range sensors also have high accuracy, use low-cost
commodity hardware, have a fairly simple system design, and can achieve real-time
performance [45], so they too are widely used as 3D scanning systems.

1.1 SLI in Optically Challenging Environments

Although SLI techniques are generally very successful, there are some cases where
their performance is poor and the intense illumination of the projector can create or
exacerbate some problems. Because SLI techniques assume direct path illumination
will result in a stronger detected response than interreflections, as is the case with
Lambertian surfaces, specular surfaces pose considerable problems. Scenes with
strong interreflections create problems because a projected code can be detected at
multiple locations in scene, resulting in correspondence ambiguities. Additionally, the
decreased SNR can lead to decode errors when binary patterns are used, and cause
phase shifts when sinusoidal patterns are used. Additional challenges exist when the
dynamic range in albedo exceeds what is captured by the camera. Quantization and
saturation can result in a partial or total loss of the projected signal, and due to the
blooming effect where electrons in saturated pixels leak to neighboring pixel sites,
neighboring pixels may also be affected. For this reason, scenes with non-Lambertian
scattering, strong interreflections, and high dynamic range in albedo are referred to
collectively as optically challenging environments.

An example where the dynamic range in scene intensity exceeds what is captured
by the image sensor is shown in Figure 1.4. One of the captured patterns is shown
in Figure 1.4a, with over-exposed and under-exposed regions clearly visible. Several
defects in the reconstructed surface are visible in Figure 1.4b–Figure 1.4d. Many of
the points in the corrugated aluminum foil are completely lost due to signal saturation.
The shape of the polished, conical piece of aluminum is not correctly reconstructed,
and many surfaces which should be flat are not. There are numerous other problems
such as isolated points at the wrong locations.

Another example of an optically challenging scene is shown in Figure 1.5, where
PMP is used to scan a scene containing a mirror and a compact disk placed in front of
a uniform white screen. The first defects are due to non-Lambertian scattering by the
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(a) (b)

(c) (d)

Figure 1.4: Images of (a) an optically challenging scene with high dynamic range in
scene intensity, and (b)-(d) several views of the 3D reconstruction.

mirror. Almost all of the direct-path projector illumination incident on mirror (B) is
reflected onto the screen at (C) and very little is reflected into the camera. Instead,
light from region (A) is reflected by the mirror into the camera. Since the strongest
detected codes do not correspond to direct path illumination, the reconstructed depth
of the mirror (B) is incorrect. Region (C) has direct-path projector illumination, but
also has a strong reflection from the mirror (B). Since the projected patterns are
sinusoidal, multipath interference results in a phase shift which is related to the
difference in the path lengths. This results in incorrect reconstruction at (C). In
(D), reflections along a piece of aluminum are so bright that the dynamic range
of the camera is exceeded. The image sensor becomes saturated, and much of the
projected sinusoidal pattern is lost, causing poor phase estimates. In (E), codes from
other locations in the image are detected due to a reflection on the table surface.
Consequently many points which receive no direct illumination are also modeled.
Finally, in (F) interreflections are strong in the corner, resulting in a distortion of the
shape.

Some efforts have been made to address the problems associated with SLI scanning
in optically challenging environments, including approaches dealing with the high
dynamic range (HDR) in scene albedo, and approaches which address interreflections.
Before discussing interreflections, we examine HDR imaging and range sensing, topics
which will first require an understanding of image sensors.
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Figure 1.5: Several views of an optically challenging scene with some defects labeled.

Image Sensors

If computers are to “see,” then cameras must be their eyes, and if one is focused
on measurement applications, knowledge of cameras and image sensors is essential.
Many cameras are unsuitable for use in measurement applications for a number of
reasons. They may have a non-linear response designed to mimic the response of
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Figure 1.6: Direct integration in an image sensor pixel. From [21].

analog film. Precise control of camera parameters such as exposure time or sensor
gain may not be possible. Compression may be applied to the images, and color
or image processing operations may be performed for artistic effect resulting in a
loss of signal fidelity. While these cameras may be excellent choices for photography
applications, machine vision cameras are designed specifically for use in measurement
and automation applications. They have a linear response, often are monochromatic,
allow precise user control of camera parameters, are high speed, and have features
such as networking designed to make them easy to interface with computers.

Assuming a machine vision camera is selected for an application, one should un-
derstand the properties image sensor being used. Two common classes are the charge
coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) active
pixel sensor (APS) image sensor designs. Both CCD and CMOS sensors use reverse
biased PN junction photodiodes as photodetectors, converting incident light into a
very small amount of photocurrent, usually femtoamperes. As seen in Figure 1.6
(a) after reset to the diode voltage VD, the current from the photodiode is inte-
grated across the diode capacitance CD, resulting in (b) charge being accumulated
as integration time tint increases. Depending on integration time and light level,
the pixel well can attain its maximum capacity Qmax and saturate, with additional
charge leaking to neighboring pixels. In APS, each pixel has a source follower which
performs the charge-to-voltage conversion and isolates the accumulated charge from
sensor circuitry.

After integration, sensor readout is performed, shown in Figure 1.7. In a CCD
sensor, charge is transferred along both vertical and horizontal charge coupled devices
to achieve a raster readout of charge, which is then converted to voltage and digitized.
Readout for a CMOS sensor is performed much in the same way as computer random
access memory (RAM) using row and column select circuits. Each column of pixels
has a separate amplifier and analog-to-digital converter (ADC) .

Each sensor has its own advantages and disadvantages, with many ideas and
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Figure 1.7: Readout design for (a) CCD and (b) CMOS image sensors. From [21].

architectures having been developed [21]. In general, CCD image sensors have smaller
pixel sizes and better signal uniformity due to the single amplifier and ADC, but
require high power to transfer charge and are slower since an image is read serially.
Due to their pixel amplifiers and row and column select transistors, CMOS sensors
with APS have larger pixel sizes with smaller photodiode fill factors. Due to their
many active circuit elements, column amplifiers, and column ADCs, CMOS sensors
also have much greater non-uniformity. However, CMOS sensors are high speed, low
power, and are generally lower cost due to their simpler fabrication process.

As just mentioned, CMOS image sensors are generally noisier than CCD image
sensors due mainly to the presence of the many column amplifiers and active circuits,
and, to a lesser degree, the presence of the read circuitry. Nevertheless, both CCD and
CMOS image sensors have temporal noise from a number of sources such as shot noise,
reset noise, readout noise, and quantization noise. Fixed pattern noise is also present
in these sensors due to variations in dark current, column amplifiers, ADCs, and
even non-uniformities in manufacturing. Fixed pattern noise sources are classified as
having dark signal non-uniformity (DSNU) if they result in non-uniformity in sensor
response offsets, or photo-response non-uniformity (PRNU) if the noise source creates
non-uniformities in response gains. The dominant noise source and signal-to-noise
ratio (SNR) are dependent on light level, as seen in Figure 1.8.

Another source of fixed pattern noise is due to pixel vignetting [11, 21]. As shown
in Figure 1.9, the height of the image sensor results in only perpendicular light striking
the photodetector. Due to the nature of many types of camera lens systems, this effect
increases for pixels further away from the optical axis, and can be exacerbated by
the microlens array placed on the sensor, shown in Figure 1.10. Geometrical optics
contributes to this problem and introduces other sources of non-uniformity such as
optical vignetting.

The field of solid state image sensors is large, and many details have been omitted
from this discussion. An excellent resource on solid state devices is [69], and good
starting points on CCD and CMOS image sensors are [21] and [44].
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Figure 1.8: SNR as a function of photocurrent for an image sensor showing the
dominant noise sources. From [21].

Figure 1.9: An illustration of how pixel vignetting can occur when light is not normal
to the sensor. From [21].

Based on this understanding of image sensors, we now examine the challenges
which arise when a scene has a dynamic range in intensity beyond that which can be
captured by the image sensor. We also examine several strategies which have been
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Figure 1.10: A SEM image of the cross section of an image sensor showing the
microlens array. From [21].

devised to increase the dynamic range of image sensors.

HDR Imaging

As seen in Figure 1.6, under sufficiently strong illumination, the charge storing
capacity of a pixel can be reached, resulting in both saturation, and leakage of
charge into neighboring pixel wells, a condition known as “blooming.” On the other
hand, the signal received by pixels under weak illumination may be lost entirely due
to quantization in the ADC. These problems can occur simultaneously at different
locations in an image sensor, and when this happens the scene is said to have a high
dynamic range of intensities.

Several CMOS sensor designs have been developed to address this, and they are
categorized in [84] as

• companding sensors,

• multimode sensors,

• clipping sensors,

• frequency based sensors,

• time-to-saturation sensors,

• global-control-over-integration-time sensors, and
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• autonomous-control-over-integration-time sensors.

Companding sensors extend the dynamic range of the sensor by using pixels which
have a logarithmic pixel response. Multimode sensors have a linear response in low
light, but under high illumination have a logarithmic response. Clipping sensors
change pixel capacitance during integration. Pixels in frequency based sensors emit
pulses when saturated and then reset. Thus, they produce a series of pulses whose
frequency is a function of light intensity. Time-to-saturation sensors record the inte-
gration time at which a pixel becomes saturated. Global-control-over-integration-time
sensors acquire multiple images at different integration times and use the pixel value
at the maximum non-saturating integration time to construct a HDR image. Finally,
autonomous-control-over-integration-time sensors detect pixels which are about to
saturate, reset them, and record the fact that the pixel has “rolled over.”

Clearly, many sensor-based approaches to HDR imaging exist, and with so many
HDR sensors, most HDR application requirements can probably be met through
appropriate sensor selection. For example, a sensor presented in [36] has a dynamic
range of 120 dB and operates at up to 1000 frames per second, which should be
sufficient for all but the most demanding applications. Despite this, HDR image
sensors are not yet common in most cameras, so HDR imaging (HDRI) must be
performed using multiple exposure approaches. These techniques construct HDR
images by acquiring multiple low dynamic range images at varying integration times.
Multi-exposure approaches are examined in more detail in Chapter 2.

Scenes with high dynamic range in intensity are common in photography, but also
arise in SLI due to the high intensity light being introduced by the projector. Thus,
HDR range sensing has also been studied.

HDR Range Sensing

Some approaches have been developed to improve SLI performance when a scene
has a high dynamic range in albedo, and one of the simplest is the work of Zhang
and Yao [99]. A PMP scan is performed and the pattern sequence captured by the
camera is examined to see if saturation has occurred in any of the camera pixels. If
saturation occurred, a new PMP scan is performed with projector intensity reduced
globally. This process continues until saturation has been avoided in every camera
pixel. Since pixels are processed independently in PMP, phase is determined at each
pixel location using only the patterns from the scan in which the pixel has the greatest
non-saturating intensity.

Skocaj and Leonardis [82] perform SLI using binary stripe patterns. By projecting
stripe patterns with varying projector intensities and performing radiometric calibra-
tion of both the camera and the projector, HDR images are constructed for each
pattern. These HDR images are then used as inputs to the decoder instead of the
usual low dynamic range images, and 3D reconstruction is then performed, resulting
in a greatly improved 3D model.

Prior to projecting sinusoidal illumination patterns, Koninckx et al. [40] perform
a radiometric calibration for both camera and projector, and establish the minimum
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and maximum projector intensities for each camera pixel so that under- and overex-
posure can be avoided. This information is then used along with iterative updates
of surface shape to locally adapt the projected patterns to the scene and thus avoid
over- or under-exposure, thus allowing patterns to be captured in a single camera
image.

While these techniques show that high dynamic range in albedo can be ad-
dressed by regulating projector intensity, these approaches have drawbacks. In [99],
the problem of under-exposure is not addressed, and addressing it may ultimately
require adjustments in camera parameters such as sensitivity and exposure time.
Furthermore, no HDR albedo image is formed. Both [82] and [40] require radiometric
calibration of both camera and projector, and the locally adaptive patterns in [40]
require additional computational cost to generate geometry and pattern updates.

While these approaches reduce the dynamic range of the scene by decreasing
illumination from the projector, an alternative would be to increase the dynamic
range of the image sensor. This is the approach examined in Chapter 2.

As mentioned earlier, dynamic range is only one issue which can result in an
optically challenging environment. Another is the presence of multipath interference
in the scene, which often occurs as a result of interreflections.

Scene Interreflections

As seen in Figure 1.5, interreflections can cause errors in SLI scanning. Some ap-
proaches have been developed to improve SLI robustness in the presence of interreflec-
tions. Xu and Aliaga [95] use an adaptive approach based on masked time-multiplexed
gray codes, where patterns and their binary inverses are projected, and the brighter
of two determines if a pixel is classified as “on” or “off.” The difference between
the two intensities determines the quality of the measurement. A large difference in
pixel values between the “on” and “off” states indicates a good measurement, while
little difference between the two suggests corruption due to an interreflection, and the
pixel is then classified as uncertain. Scanning proceeds iteratively with only uncertain
pixels being projected. This reduces the global illumination on each pass leading to
improvement in SNR for the remaining uncertain pixels.

Other approaches are based on constraint testing. Trucco and Fisher [89] perform
SLI using multiple cameras and consistency checks to detect false range data. These
consistency checks are based several ideas. The same code should not be detected
at multiple locations in the image. A camera can not detect a code from a location
on a specular surface whose normal is not oriented towards the camera. If a code
is observed by multiple cameras, each should yield a consistent reconstructed point.
Finally, a code detected in one camera should be detected in other cameras unless
there is an occlusion. These constraints allow a specular surface with concave holes
to be successfully scanned.

Park and Kak [65] develop the technique of multipeak range imaging to store
multiple candidate range measurements, and then use numerous constraint and con-
sistency tests on scans performed from many viewpoints to differentiate between true
range data and spurious reflections. This approach is shown to be successful for many
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types of optically challenging objects.
Also noteworthy are approaches based on illumination with polarized light. Clark

et al. [14] use changes in linear polarization to differentiate between specular reflec-
tions and direct illumination. Scanning is performed with a linearly polarized laser
stripe and a camera with a polarizing filter, with images captured at multiple angles
of polarization. Chen et al. [13] combine polarization analysis with another tech-
nique [57] to separate direct illumination from subsurface scattering in the scanning
of translucent objects.

Although these techniques can allow SLI to be performed in the presence of
interreflections, they may require non-standard hardware or have added complexity
due to constraint checks or adaptive feedback control. None of these approaches
consider illumination with sinusoids. Furthermore, multipath interference may result
from more than just interreflections. For example, a single pixel may be illuminated
by both foreground and background surfaces due to fractional pixel filling at the edge
of an object. Both foreground and background surfaces may also be detected if some
motion occurs during scanning.

Finally, a commonly employed solution which addresses both HDR in albedo and
scene interreflections is to apply a coating with better optical characteristics to the
object being scanned. However, this may introduce surface defects, and in many
cases may be impractical or even impossible. Additionally, in computer graphics
SLI is used to create light transport models, and in these applications altering the
reflectance properties of the target object is unacceptable.

Light Transport and Compressed Sensing

Thus far we have examined SLI as a tool used in machine vision. However, as
previously mentioned, it is also used in other fields such as computer graphics. Since
accurate models of light transport are required for realistic computer renderings of
scenes, these models are developed from real-world scenes imaged under controlled
illumination, thus leading to the use of SLI in these applications.

An example of this is the work of Debevec et al. [17] in which renderings of the
human face are generated from images captured with a light stage. The authors
also raise a fundamental problem: light transport at a surface is described by an
eight-dimensional quantity called the reflectance field and sampling it poses enormous
measurement and storage requirements. Much work is devoted to addressing this chal-
lenge. One approach is to simplify the light transport model. In [17], the reflectance
field is approximated with a non-local reflectance field of lower dimensionality.

In other works [57, 55] an even simpler light transport model is used where the
intensity of a camera pixel is attributed to a single component describing the effects
of direct illumination and another term describing global illumination effects.

Some works model light transport as a matrix relating each projector pixel to
each camera pixel. Switz et al. [79] discuss how this light transport matrix can
be determined through impulse sampling and show how it can be used to cancel
interreflections. This approach, however, still has considerable sampling and storage
requirements, so instead of impulse sampling, others [80, 67] use compressive sampling
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approaches to reduce these costs.
These light transport models, while useful in computer graphics, do not aim to

reconstruct 3D surfaces. However, they do serve as a basis for our goal of simultane-
ously obtaining both 3D surface and light transport information. For example, they
suggest that compressed sensing approaches can be utilized to reduce the storage and
measurement requirements associated with modeling light transport.

Compressed sensing (CS) is a rapidly developing field which aims to reduce the
number of measurements required to recover a signal when the signal has a sparse
representation in some basis. To better understand CS, we first examine some basic
concepts in data compression and then examine the measurement process.

In data compression, a compressible signal x can be projected into a new basis Φ
with a new representation X. This may be written as

x = ΦX, (1.2)

where each row of Φ is a basis vector. With a suitable choice of basis, X will have a
large number of negligible coefficients which can then be truncated to achieve com-
pression. In the appropriate basis, compression can reduce storage and transmission
requirements by many orders of magnitude. For example, in image compression x

is a 2D signal obtained from an image sensor, often with several million elements.
However, in the wavelet basis only a few thousand terms in X are required to suitably
reconstruct x.

Of course performing dense, evenly spaced sampling only to then discard most of
the resulting data is a very inefficient process. It can also be undesirable when there
is a cost associated with sampling. For example, attaining high sampling rates can
be both difficult and expensive, and in cases such as x-ray computed tomography
(CT) imaging, a poor sampling strategy subjects a patient to unnecessary radiation
exposure. Reducing the number of required measurements is essential.

The measurement process can be represented as

y = Ax+ n, (1.3)

where y is a set of measurements, x is a signal or state, A is a measurement matrix,
and n is additive noise. The fundamental theorem of linear algebra states that for a
noise free system, (1.3) can not be solved unless the number of equations is equal to
the number of unknowns, and even more equations are required for the solution to be
robust to noise. However, under-determined systems are quite common. The field of
regularization theory focuses on solving (1.3) when the system is under-determined
by introducing a priori knowledge, usually gained from physical reasoning about the
problem, to supply enough additional constraints to solve the system.

Compressed sensing takes a different approach. As with (1.2), if x were a com-
pressible signal and a suitable basis were known, only a small number of measurements
would be required to recover x. As will be discussed in more detail in Chapter 4, when
the matrix A is chosen such that certain properties are satisfied, x can be recovered
using an optimally minimal number of measurements.

CS has been applied successfully in many fields. However, to date the only
application of CS in SLI is [30], where an inhomogeneous participating media is
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examined. This application is very different than traditional SLI performed in 3D
surface reconstruction. As such, the suitability of CS in traditional SLI is examined
in Chapter 4.

1.2 Overview of Dissertation

As we have seen, the use of SLI methods to perform 3D surface reconstruction is
widespread and is generally very successful, but performance problems can occur in
optically challenging environments. HDR in albedo and multipath interference are
two such challenges encountered in SLI scanning. Few solutions have been developed
to address these problems, and many of them have significant drawbacks which
may make them unsuitable for many applications. Furthermore, these effects can
sometimes be subtle and not easily anticipated, raising the concern that defects might
go undetected. Additionally, none of these approaches attempt to incorporate any
modeling of light transport into the scanning process.

The research in this dissertation aims to address these problems. Unlike other
approaches, we postulate that HDR imaging methods used in measurement appli-
cations should be based on image sensor models and state estimation approaches.
We seek to develop an approach to detect and quantify the presence of multipath
interference in PMP. Additionally, we aim to improve SLI performance in the presence
of interreflections while also constructing a light transport model. Finally, we examine
how recent advances in CS can be applied in SLI.

As previously mentioned, one type of optically challenging scene occurs when
the dynamic range in scene albedo results in a range of intensities beyond what
can be captured by a image sensor using a single integration time. With sensor-
based solutions not yet commonplace, Chapter 2 examines strategies which extend
the dynamic range of the image sensor by acquiring multiple images at different inte-
gration times, focusing on the suitability of these techniques for use in machine vision
applications. Several common and state-of-the-art techniques are presented in detail.
We then develop a new approach to HDRI which is based on an understanding of
image sensors and pixel-by-pixel Kalman filtering, with model parameters determined
through calibration. We then construct objective performance metrics to assess the
accuracy and precision of these different HDRI approaches. It is shown that the
Kalman filtering based approach achieves as much as a 9.4 dB improvement in SNR,
and as much as a 29% improvement in radiometric accuracy over a classic method.
Additionally, the effect of sampling strategy on the performance of HDRI techniques
is explored.

We have seen that another type of optically challenging scene is one with multipath
interference. While other approaches either use a non-standard scanning system or
obtain some robustness to interreflections through the use of adaptive binary coding,
commonly used sinusoidal patterns are not considered. Consequently, in Chapter 3
we review the process of range reconstruction using PMP. We extend a quality metric
from [77] to develop tests which can identify and quantify the presence of multipath
interference in PMP scanning. We detect multipath interference arising from a
number of sources, specifically interreflections, fractional pixel filling, and motion
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during scanning. This allows an operator to detect and quantify the presence of
these quality degrading effects and improve the setup of the scene. This information
can also be used to suppress or weight noisy measurements in post-processing steps.

As already discussed, SLI is used in areas other than just machine vision. With
the goal of achieving realistic appearance of synthetic scenes, the measurement of
light transport in real-world scenes is driving the use of SLI in computer graphics.
Chapter 4 builds on work in computer graphics to develop an approach which can
improve the robustness of 3D reconstruction in the presence of interreflections, while
also allowing a model of light transport to be constructed. Both improved robustness
and light transport measurement capabilities are demonstrated with a scene contain-
ing strong interreflections. We also examine how advances in CS can be utilized in
SLI, discuss when these CS techniques may be practical, and show typical results.

Finally, conclusions and extensions of this work are discussed in Chapter 5. An
approach to HDR video based on a fading memory filter and weighted pixel voting is
used to adaptively determine camera integration times. The Kalman filter based
HDRI method of Chapter 2 has been used to perform multispectral imaging of
metallic objects of historical significance, so applications related to art conservation
are discussed. The Kalman filter based HDRI method has also been used as a core
technology in an automated assay selection system. Additionally, the use HDRI in
some computer vision algorithms, such as scale invariant feature transform (SIFT) is
discussed. Application of SLI approaches developed in Chapter 3 and Chapter 4 to
other optically challenging environments, such as those with sub-surface scattering,
is also discussed.

To summarize, SLI is a class of approaches used to perform 3D reconstruction of
surfaces. In general, it is very successful and widely used. It is not, however, without
some limitations. Among these are challenging scenes due to a high dynamic range
in albedo and multipath interference resulting from effects such as interreflections.
The research in this dissertation develops approaches to robust performance in these
optically challenging environments. It also shows how SLI can be used to model light
transport due to interreflections, a result useful in computer graphics applications.
The use of compressed sensing in SLI is also studied. Some of the research undertaken
in this dissertation has already been employed in various machine vision applications.
While the research in this dissertation allows SLI to be performed under less restrictive
conditions, it is anticipated that this research can be utilized in applications other
than those considered in this work, such as the scanning of translucent objects [23],
or objects with strong subsurface scattering such as marble sculptures, which is
an area of interest to the digital Michelangelo project [38, 39, 41]. This project
aims to provide users with a remote and interactive means of exploring sculptures of
great cultural significance, while also helping conservationists ensure these works are
preserved.
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Chapter 2 High Dynamic Range Imaging

It is common in photography for the dynamic range of a real world scene to exceed
what can be captured by an image sensor with a single integration time, and this can
result in images with under- or over-exposed areas. An example of this from [18] is
shown in Figure 2.1.

The brightness of a scene is described by the radiometric quantity radiance, which
is the radiant power subtended by a solid angle incident upon a surface in a given
direction. Expressed differently, radiance describes the radiant power emitted from a
patch in a scene captured by an imaging system with a particular field of view, imaging
area, and orientation. Irradiance is the density of radiant power incident upon some
surface area. Spectral radiance describes the radiant power at a particular wavelength
emitted by a source captured by the imaging system, and spectral irradiance is the
radiant power at a particular wavelength incident on a surface area.

The photoresponse of solid state image sensors is wavelength dependent, and is
referred to as the quantum efficiency of the sensor. This dissertation follows the
convention of [18], where radiance is understood to mean this spectral irradiance
weighted by the quantum efficiency of the sensor. Additionally, since camera and
image sensor properties such as pixel area, orientation, and field of view are fixed
during use, precise radiometric definitions are not required. Since radiance and
irradiance are directly proportional, they are used interchangeably in the literature,
and either of these quantities may be referred to as intensity. Additionally, absolute
radiance is difficult to establish, so radiance is usually understood to be relative to
some reference, a convention which this dissertation will also adopt.

Exposure refers to the quantity of light detected by an image sensor pixel, and
is related to both radiance and integration time. Similar to the relation in physics
between power and work,

X = rT, (2.1)

where X is exposure, r is radiance, and T is integration time. The reciprocity relation
states that if r and T are varied such that X remains constant, the same digital pixel
value will result. In common usage, exposure also refers to the image produced
by a sensor using a specific integration time. To avoid confusion with X , in this
dissertation the term exposure-image will be used.

The dynamic range of a scene describes the ratio of the greatest radiance to
lowest radiance, usually expressed in decibels. There is no precise definition of what
constitutes high and low dynamic range. In this dissertation, a scene which can be
captured by an image sensor with a single integration time without over- or under-
exposure is referred to as having low dynamic range (LDR) , and scenes which can
not be captured using a single integration time are referred to has having HDR. HDR
images are sometimes referred to as radiance maps, but this dissertation refers to
them as HDR images.
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Figure 2.1: Exposure-images from a HDR sequence in [18].
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2.1 Summary of HDRI Technologies

Early work aiming to increase the dynamic range of analog cameras was performed by
Charles Wyckoff, who created three-layered films with each layer having a different
ISO rating [94]. Each layer could be developed independently, and often false color
was used to produce HDR images with color coded scene radiance. Famous examples
of this were HDR images of nuclear explosions taken during hydrogen bomb testing
which appeared on popular magazine covers.

With the shift to digital imaging, many authors [47, 96, 49, 50, 48, 18, 54, 22, 90,
74, 28, 29, 64, 73, 42, 10, 37] replicate Wyckoff’s approach by acquiring multiple LDR
exposure-images of a static scene using multiple integration times and then fusing
them digitally into a single composite HDR image. These methods are referred to
collectively as multi-exposure approaches [24].

One of the earliest approaches to HDRI using digital cameras is the work of
Mann and Picard [49]. Integration time ratios and digital pixel value mappings
between exposure-images are used to obtain a parametric camera response function,
and exposure-image fusion is performed using a weighted average. Since confidence
in the accuracy of a measurement is related to the derivative of the response function,
the derivative of the camera response function is called the certainty function, and
these certainty functions are used as weights in exposure-image fusion. Mitsunaga and
Nayar [54] also use a parametric response model with model parameters determined
through constrained minimization. Some improvements include the use of weighting
based on SNR, the requirement that only approximate integration times be known,
and the construction of a camera response function using only from pixels not affected
by vignetting.

In another early approach, Debevec and Malik [18] use the reciprocity relation,
integration times, and smoothness constraints to construct an objective function.
Minimization of this objective function is used to construct a non-parametric camera
response function. Exposure-image fusion is then performed using a weighted average
of the exposure-images. Both response recovery and exposure-image fusion make use
of a weighting function which gives maximum weight to middle digital pixel values
and linearly decreases to zero at the maximum and minimum.

More recently, Robertson et al. [74] use a maximum likelihood (ML) approach
for response recovery and exposure-image fusion. A non-parametric camera response
function is obtained using constrained minimization. Weights used in exposure-image
fusion use certainty functions computed from a smoothed response function, with
smoothing performed using cubic splines.

Other works of note include Tsin et al. [90], which recovers a camera response
function in the presence of camera white balancing. Noise sources receive thorough
treatment, and radiance uncertainties are estimated based on the statistics of pooled
pixels. Exposure-image fusion is performed by iteratively updating radiance estimates
and using a weighting term based on the estimated noise variance. Pal et al. [64]
develop an approach based on Bayesian estimation. This approach produces iterative
estimates of scene radiance and radiance uncertainties and does not assume the
camera response function must remain constant between exposure-images. Unlike
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other techniques, in the work of Akyuz and Reinhard [3] the goal is not to recover a
camera response function, but rather to achieve noise reduction. This is done with
an approach based on frame averaging.

Lastly, Richards and Cromwell [73] devise an HDRI technique specifically for
temperature measurement with infrared cameras. The camera response function of
an InSb image sensor is obtained through calibration using blackbodies of controlled
temperatures and emissivities. HDR images are constructed by estimating scene
radiance at each pixel solely from the exposure-image with the longest integration
time in which the pixel is not saturated. This approach is referred to as superframing
and, although designed for use in infrared applications, Madden [47] and Yamada et
al. [96] show that similar approaches can be successfully applied to visible light
sensors.

Some of the more common and state-of-the-art HDR methods are used as bench-
marks in performance analysis. These selected approaches are now presented with
more detail.

Debevec and Malik

A popular approach in HDRI is the work of Debevec and Malik [18]. The key to
this approach is reciprocity and postulating that the digital pixel response Z of an
arbitrary pixel is a function of the product of scene radiance r and integration time
T ,

Z = f(rT ), (2.2)

where f is a camera response function mapping rT into digital pixel values. The
camera response function is assumed to be identical for all sensor pixels. Since
increasing values of rT are expected to result in increasing values of Z, the camera
response function is assumed to be monotonic and have an inverse f−1. Thus,

f−1(Z) = rT, (2.3)

and
ln f−1(Z) = ln r + lnT, (2.4)

and with g(·) = ln f−1(·),
g(Z) = ln r + lnT. (2.5)

Solving (2.5) in the least squares sense means minimizing the sum of the squares
of the errors (SSE) . Accounting for all camera pixels i and exposures-images j, the
objective function O may be written as

O =
∑

i

∑

j

(g(Zij)− lnRi − lnTj)
2
. (2.6)

A smoothness constraint is imposed on the second derivative of g, with λ being a
smoothness parameter,

O =
∑

i

∑

j

(g(Zij)− lnRi − lnTj)
2 + λ

Zmax−1∑

z=Zmin+1

g′′(z)2, (2.7)
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where Zmin and Zmax are the minimum and maximum digital pixel values and g′′(z)
is approximated with g′′(z) = g(z − 1)− 2g(z) + g(z + 1). It is assumed that digital
pixel values near Zmin and Zmax have greater measurement errors than middle digital
pixel values. Thus a weighting function w is applied, with

w(z) =

{
z − Zmin, z ≤ 1

2
(Zmin + Zmax)

Zmax − z, z > 1
2
(Zmin + Zmax) .

(2.8)

Thus,

O =
∑

i

∑

j

(w(Zij) [g(Zij)− lnRi − lnTj ])
2 + λ

Zmax−1∑

z=Zmin+1

[w(z)g′′(z)]
2
. (2.9)

Since Z takes on only discrete values, g may be obtained by solving a linear least
squares system with the form Ax = B with the partitioned structure



0 w(Zij) 0 0 −w(Zij) 0
...

...
0 1 0 0

0 w(Zij) −2w(Zij) w(Zij) 0 0
...

...







g(Zmin)
...

g(Zmax)
lnRi

...




=

(
w(Zij) lnTj

...

)
,

(2.10)

where 0 represents a row of zero or more zeros. It is evident how the system (2.10)
corresponds to the terms in (2.9), except for the middle partitioned row in A. Since
this technique only finds relative radiance, this row sets the gauge such that R = 0
for the middle value Z. The over-determined system (2.10) can then be solved using
a standard least squares technique such as singular value decomposition (SVD).

Of course solving (2.10) for every pixel would be impractical, so pixels must be
sampled from the image such that the system is sufficiently overdetermined. Once g

is obtained, ln ri can be obtained for each pixel using a weighted average

ln ri =

∑
j w(Zij)(g(Zij)− lnTj)∑

j w(Zij)
. (2.11)

Mitsunaga and Nayar

Another common HDRI technique is the work of Mitsunaga and Nayar [54]. This
technique assumes that a digital pixel value Z is related to exposure X through the
camera response function f ,

Z = f(X), (2.12)

with the goal being to find the inverse function f−1 so that (2.12) can be inverted. A
fundamental assumption of this approach is that f−1 may be modeled as a low order
polynomial,

X = f−1(Z) =

N∑

n=0

cnZ
n, (2.13)
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where cn are the polynomial coefficients and the polynomial order N is an adjustable
parameter judiciously chosen using a priori knowledge. Different integration times
Tq and Tq+1 have the ratio Rq,q+1 =

Tq

Tq+1
, and so

Rq,q+1 =
Eq

Eq+1
(2.14)

=
f−1(Zq)

f−1(Zq+1)
(2.15)

=

∑N

n=0 cnZ
n
q∑N

n=0 cnZ
n
q+1

. (2.16)

With Q pairs of integration times and P pixels, the sum of the squares of the errors
in (2.16) is

O =

Q−1∑

q=1

P∑

p=1

(
N∑

n=0

cnZ
n
p,q − Rq,q+1

N∑

n=0

cnZ
n
p,q+1

)2

. (2.17)

Proceeding to minimize O in the usual way,

∂O

∂cn
= 0, (2.18)

and with f(1) = 1 as a choice of gauge,

cN = 1−
N−1∑

n=0

cn. (2.19)

The polynomial coefficients may be recovered by solving the resulting linear system
which has the form Ax = B.

With
z(n, p, q) = Zn

p,q − rq,q+1Z
n
p,q+1, (2.20)

each element Ai,j of A can be expressed as

Ai,j =
N−1∑

n=0

Q∑

q=1

P∑

p

((z(i, p, q)− z(N, p, q)) (z(j, p, q)− z(N, p, q))) , (2.21)

each element Bi of B may be expressed as

Bi =

Q=1∑

q=1

P∑

p

z(N, p, q) (z(i, p, q)− z(N, p, q)) , (2.22)

and the vector x containing the polynomial coefficients can be obtained using a linear
least squares approach such as SVD.

With the f−1 polynomial model recovered, HDRI creation proceeds by obtaining

Xp,q = f−1(Zp,q). (2.23)
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Then normalizing by the integration time,

rp,q =
Xp,q

Tq

. (2.24)

Radiance is then determined by the weighted average of all integration times,

rp =

∑Q

q=1w(Zp,q)rp,q∑Q

q=1w(Zp,q)
, (2.25)

with the weighting function w defined as

w(Z) =
f−1(Z)

f−1′(Z)
, (2.26)

a weighting function which is based on assigning greater weight where r is not sensitive
to small variations in Z.

Robertson et al.

The HDRI method developed by Robertson et al. [74] is a probabilistic approach
based on ML estimation. With Z being a digital pixel value in some exposure-image
at an arbitrary pixel location, the camera response function f maps the exposure X

into a digital pixel value according to

Z = f(X), (2.27)

with
X = rT + n, (2.28)

where r is the radiance at that pixel site, T is the integration time, and n is additive
noise. Since in digital imaging there are a number of noise sources, a zero-mean
Gaussian model is used for n, with a variance σ2.

Known Response Function

Temporarily assume that f is known. In this case we use the terminology

Xm = f−1(m) (2.29)

to mean the exposure when the digital pixel value is m. With noise being considered,
X and Z are random variables. In fact the exposure XZij

and digital pixel values
Zij at each pixel site j in each exposure-image i are considered to be independent
identically distributed (IID) random variables. Temporarily defining a weight w = 1

σ2 ,
the probability P for the entire set of acquired exposure-images is

P ∝ exp

(
−
1

2

∑

i,j

w(rjTi −Xzij)
2

)
. (2.30)
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Since maximizing P is same as minimizing − lnP ,

O =
∑

i,j

w(rjTi −Xzij ). (2.31)

Minimizing this objective function O with respect to the radiance rj leads to the ML
estimate r̂j,

r̂j =

∑
iwTiXzij∑

iwT
2
i

. (2.32)

Unknown Response Function

When the camera response function is not known, a Gauss-Seidel like approach is
used, using (2.31) to first produce an estimate of Xm, and then using this value to
estimate rj.

To avoid the difficulty of also having to estimating the weight function, a fixed
functional form is assumed,

w(x) = exp

(
−
4(x− V

2
)2

(V
2
)2

)
, (2.33)

where x ranges from the minimum pixel value 0 to the maximum pixel value V .

Based on minimizing (2.31) with respect to Xm, on iteration l the estimate X̂ l
m is

X̂ l
m =

∑
i,j;zij=mw(m)Tir̂

l−1
j∑

i,j;zij=m w(m)
, (2.34)

where the summation is performed only over pixels whose digital pixel value ism, and

r̂l−1
j is the estimate of rj obtained on the previous iteration. Since w(m) is constant
for a specific digital pixel value m,

X̂ l
m =

1

Nm

∑

i,j;zij=m

Tir̂
l−1
j , (2.35)

with Nm being the number of occurrences of digital pixel value m in the exposure-
image set. Then minimizing (2.31) with respect to rj,

r̂lj =

∑
i w(zij)TiX̂ l

zij∑
iw(zij)T

2
i

. (2.36)

Iterations then continue until convergence, which is based on the rate of decrease of
the objective function.
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Akyuz and Reinhard

Unlike other approaches, Akyuz and Reinhard [3] do not specify a HDRI technique.
Rather, they demonstrate the benefits of performing a frame averaging operation to
a window of exposure-images in the exposure-image sequence.

With a known camera response function f , the digital pixel value Z at an arbitrary
site in exposure-image i is given by

Zi = f(rTi), (2.37)

where r is radiance and Ti is the integration time of the exposure-image. Thus,

r =
f−1(Zi)

Ti

. (2.38)

If an average value r were to be estimating using a weighted average from N subse-
quent exposure-images with a known weight w,

r =

∑N

i=1
f−1(Zi)w(Zi)

Ti∑N

i=1w(Zi)
. (2.39)

For each exposure-image in the sequence, the computed r can then be replaced
with r computed from the subsequent N exposure-images, leading to a new digital
pixel value Z ′

i,
Z ′

i = f(rTi), (2.40)

with the process then repeated for each exposure-image in the sequence.
The weight function employed in this technique is fairly sophisticated, combining

a traditional weight function with Hermite polynomial interpolation to decrease the
weight of pixels near saturation even further. So (2.39) becomes

r =

∑N

i=1
f−1(Zi)g(Zi)

Ti∑N

i=1 g(Zi)
. (2.41)

For Z ranging from 0 to 255,

g(Zi) =

{
w(Zi) i = 1
w(Zi)τ(Zi) i 6= 1

(2.42)

τ(Z) =





1 0 ≤ Z < 200
1− 3h(Z)2 + 2h(Z)3 200 ≤ Z < 250
0 250 ≤ Z ≤ 255

(2.43)

h(Z) = 1−
250− Z

50
(2.44)

w(Z) = f−1(Z)f ′(Z)

(
1−

(
Z

127.5
− 1

)12
)
. (2.45)
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Richards and Cromwell

The approach of Richards and Cromwell [73] is designed for use in infrared (IR)
imaging systems, and uses the principle of superframing. Unlike other approaches,
for a pixel at an arbitrary location j, rj is not estimated by combining Zj from multiple
exposure-images, but rather is estimated only using the largest non-saturated digital
pixel value Zmax

j in the exposure-image sequence and Tmax is the integration time of
the exposure-image where Zj = Zmax

j . In other words,

Zmax
i = f(riTmax), (2.46)

so

ri =
f−1(Zmax

i )

Tmax
. (2.47)

Of course this requires knowing f and f−1, which is done through an off-line
calibration step. In this IR application the calibration targets are temperature
controlled laboratory blackbodies, though if this technique were applied to visible
solid state image sensors, a chart such as a white balance card could be used.

HDRI in Temperature Measurement Applications

Central to many HDRI techniques is the recovery of the camera response function or
its inverse, where the inverse response function is then used to map pixel values back
to scene radiance. Although weighted by the quantum efficiency of the image sensor,
if imaging were performed using a single wavelength, the camera response function
would map digital pixel values to true spectral radiances. For this reason, HDRI
techniques have been used in thermographic applications.

In addition to the superframing approach of [73], HDRI techniques have been used
in thermographic applications in Zhao et al. [100], where the method in [18] is used
to estimate the spectral radiance of a combustion flame. The three-color method of
non-contact temperature measurement is then used to combine these spectral radiance
estimates with knowledge of blackbody radiation to generate temperature estimates.
This allows the temperature profile of the flame to be generated.

While these applications show how HDRI techniques can be useful in measurement
applications, most HDRI techniques [47, 96, 49, 50, 48, 18, 54, 22, 90, 74, 28, 29, 64,
42, 10, 37] are not designed for this purpose. For example, several techniques [49, 18,
54, 50, 48, 22, 90, 74, 28, 64] focus on the recovery of unknown and general camera
response functions directly from scene exposure-images rather than a calibration
using specific targets such as color charts, an approach desirable for computational
photography with consumer cameras, but less suitable for measurement applications.
Others [29, 42, 37] determine the camera response function based on a previously
constructed database of camera response functions. The camera response function is
assumed to be constant across the sensor. Although most HDRI techniques try to
be robust in the presence of noise, few approaches [90, 64] form a noise model based
on calibration. For convenience and generality, weighting is often performed with
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certainty functions, which are not based on an understanding of solid state image
sensor models as developed in [21] or [32].

To overcome some of these limitations, a new method of HDRI is introduced in Sec-
tion 2.2, which is postulated to be better suited for use in measurement applications.
This performance of this method is compared to techniques discussed previously in
this chapter in Section 2.3, where objective metrics are developed to evaluate both
the accuracy and precision of these techniques. We show that the Kalman filtering
based approach achieves as much as a 9.4 dB improvement in SNR and as much as a
29% improvement in radiometric accuracy over other established methods.

2.2 A Kalman Filtering Approach to High Dynamic Range Imaging for

Measurement Applications

Although possibly suitable for photography applications, several of the HDRI meth-
ods discussed previously in this chapter are not ideal for use in measurement applica-
tions. For example, solid state image sensors suffer from fixed pattern non-uniformity
both in response and in noise power. Current approaches do not address this. The
weights used in exposure-image fusion should reflect the actual noise power present in
the exposure-images, whereas existing approaches are based on certainty functions.
For measurement applications, the uncertainty in a measurement also needs to be
estimated, a consideration neglected in existing approaches.

Some of these issues are addressed by allowing the camera response function to
vary independently across pixel locations on the image sensor, perhaps making “pixel
response functions” the more descriptive term. In developing this approach, first
pixelwise variations in non-uniformity and measurement noise power are modeled
and corrected, thus improving performance of the sensor array. Other shortcomings
are addressed through the use of the well established technique of Kalman filtering,
which is applied independently at each pixel location to generate radiance estimates.

Camera Calibration

As with many measurement techniques, this approach requires sensor calibration,
which is performed using a spectrally flat white balance card. There are several
advantages to performing calibration with a balance card. Since it has spatially
uniform reflectance, it can be used to correct spatial non-uniformities which may
exist due to variations in illumination, optical vignetting, or sensor non-uniformities.
Since it is spectrally flat, calibration is insensitive to the type of illuminant used.
The balance card defines a reference radiance, and the radiance estimates generated
by this Kalman filtering-based HDRI approach are relative to this reference. Thus,
reflectance measurements are not sensitive to illuminant intensity. As should be
expected, changes in illumination, the optical system, or some camera settings may
necessitate re-calibration.

For the HDR applications in this dissertation, we choose a camera known to have
a linear camera response. A simple exposure-image taken with this digital camera is
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Figure 2.2: An exposure-image of a uniform target taken using a 10 bit camera.
Non-uniformities are evident.

shown in Figure 2.2. Spatial non-uniformities due to lighting, vignetting fall-off, and
sensor fixed pattern noises are all apparent.

Neglecting noise, the response of each pixel will have the form

z = ATr +B, (2.48)

where z is the digital pixel value at a particular pixel site, T is the integration time,
r is the scene radiance at this pixel location, and A and B are the parameters to
be determined for each pixel through calibration. A white balance card defines the
reference radiance r = 1 at each pixel, and by normalizing measurements to this
reference, spatial non-uniformities are folded into the pixel gain and offset coefficients.

By acquiring exposure-images of the calibration card with different integration
times, A and B, shown in Figure 2.3a and Figure 2.3b respectively, can be computed
at each pixel location using linear regression. Acquiring repeated exposure-images
of the calibration card at the same integration time allows the sample variance of z
can be calculated at each pixel. Following the approach outlined in [70], knowing the
sample variance of z allows A, B, and their uncertainties to be estimated. A goodness-
of-fit calculation can also be performed, and in these experiments the validity of the
linear pixel model was supported.

Dark current and PRNU are noise sources which can be corrected by folding them
into the gain and offset terms of the pixel response functions. Once corrected, only
zero-mean noise remains. This noise is due to shot noise and sensor read noise, which
includes quantization noise. As seen in Figure 2.4, this noise is not uniform across

29



 

 

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1
x 10

5Sensor Gain (pixel values/s)

(a)

 

 

−80

−70

−60

−50

−40

−30

Sensor Offset (pixel values)

(b)

Figure 2.3: The (a) gain and (b) offset coefficients of the pixel response functions.

the sensor, motivating a pixelwise model of sensor noise power. The power of shot
and read noise can be modeled as a linear function of Tr [21, 32], so at a particular
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pixel location
R = CTr +D, (2.49)

with the calibration card again defining r = 1. R is the measurement noise power and
C and D, shown in Figure 2.5, are parameters to be determined at each pixel location
through linear regression. Noise power can be estimated with the experimentally
determined sample variance, s2z, computed using multiple exposure-images taken
with the same integration time. As before, performing the fit according to [70]
requires knowing the variance of s2z. This can be determined by assuming pixel
outputs are corrupted by Gaussian noise of variance σ2

z , approximating σ2
z with s2z,

and applying the variance of sample variance formula given in [92]. Again, based on
the uncertainties on the fitted parameters and a goodness-of-fit test, we determine
the pixel noise models to be acceptable for our system.

Adding both process noise w and measurement noise n to the pixel response
model,

z = AT (r + w) +B + n, (2.50)

and so
σ2
z = A2T 2Q+R, (2.51)

where Q is the process noise power at a particular pixel location. If σ2
z is again

approximated with s2z and R is determined from the pixel noise model (2.49), then
any residual error between s2z and R can be attributed to A2T 2Q. So process noise
power can be estimated from this residual error. Although Q can be modeled as
a function of signal level, a simpler approach is used in which it is assumed to be
constant. It is estimated as the maximum residual error between R and s2z. In other
words, it is assumed that there is always sufficient process noise to account for all
of the discrepancies between R as determined by the model and the experimentally
determined s2z. The magnitude of the resulting process noise power is shown in
Figure 2.6. In this simple approach, any outlier in the calibration data can result in
a large estimate of process noise power, which did occasionally occur in some isolated
pixels. If desired, more advanced models for estimating process noise can be used
and further discussion of this can be found in [76], [97], and [93], among others.

A shot noise process is described by a Poisson distribution, and, as shown in
Figure 2.7, as the expected number of occurrences increases, the Poisson distribution
quickly begins to resemble a Gaussian distribution. If the lowest pixel values were
omitted and only the linear region of the pixel response functions were used, the
system would have a linear measurement model corrupted by what is approximately
additive white Gaussian noise. The Kalman filter is known to be an optimal state
estimator under these conditions, so this approach performs radiance estimation based
on pixel-by-pixel Kalman filtering, and directs us in our of choice of cameras to select
one with a linear camera response function.

The camera selected was a Prosilica GC640 [72] with a Micron MT9V203 CMOS
image sensor [53]. Since this is a monochrome camera which can operate in a fully
manual mode, it eliminates the need to compensate for features such as automatic
exposure control, automatic gain control, and automatic white balance. The 10-bit
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raw image output helps reduce quantization noise and does not introduce compression
artifacts. Integration times are controlled with microsecond resolution, and since
CMOS image sensors have anti-blooming capabilities [44], blooming is not addressed
in the image processing software. The GC640 also has a camera response function
that is linear over nearly all of its operating range. Measurements falling outside of
this linear operating region simply are not used. Although we use a monochrome
camera, color camaras can be accommodated by simply applying the calibration and
radiance estimation procedures to each color channel independently.

Radiance Estimation

Having selected a camera with a linear response function and using an operating
region where a Gaussian noise model may be applied, we base this HDRI approach
on Kalman filtering since it is known to be an optimal state estimator under these
assumptions. In state estimation, the state x of a linear system, expressed in state
space form, evolves from discrete time k − 1 to k according to the process model

xk = Φk−1xk−1 + Γk−1uk−1 +wk−1, (2.52)

where Φ governs the time evolution of the system, Γ is a weight applied to the
control u, and w is additive white Gaussian process noise. A measurement of the
state performed at time k is given by the measurement model

zk = Hkxk + vk, (2.53)

where z is an observation vector, H relates state to observation, and v is additive
white Gaussian measurement noise. When E

{
wkw

T
k

}
= Qk, E

{
vkv

T
k

}
= Rk, and

E
{
vkw

T
k

}
= 0, where E{·} is the expected value operator, optimal estimates of

the system state x̂ may be generated recursively with a Kalman filter, commonly
expressed as

x̂k(−) = Φk−1x̂k−1(+) + Γk−1uk−1 (2.54)

Pk(−) = Φk−1Pk−1(+)ΦT
k−1 +Qk−1 (2.55)

Kk = Pk(−)HT
k

(
HkPk(−)HT

k +Rk

)−1
(2.56)

x̂k(+) = x̂k(−) +Kk (zk −Hkx̂k(−)) (2.57)

Pk(+) = (I−KkHk)Pk(−) (I−KkHk)
T

+KkRkK
T
k (2.58)

where the (−) and (+) designations refer to a priori and a posteriori estimates
respectively, P is an estimate of the covariance E{(x− x̂)(x− x̂)T}, I is the identity
matrix, and K is the Kalman gain. With (2.58) expressed in Joseph form, Pk(+) will
remain correct even if non-optimal Kalman gains are used.

The reciprocity relation states that the response of a pixel is a function of the
product of radiance r and integration time T [18]. With the assumptions of a static
scene, independent pixel responses, static offset and gain parameters, and lack of
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control signals, the general process and measurement models given in (2.52) and
(2.53) take on simpler scalar forms,

rk = rk−1 + wk−1, (2.59)

and
zk = ATkr +B + nk, (2.60)

where A and B are gain and offset parameters of a particular pixel in the sensor
determined through calibration. These simplifications in process and measurement
models lead to simplifications in the Kalman filter which can be used to estimate the
radiance at this pixel location,

r̂k(−) = r̂k−1(+) (2.61)

Pk(−) = Pk−1(+) +Qk−1 (2.62)

Kk = ATkPk(−)
(
A2T 2

kPk(−) +Rk

)−1
(2.63)

r̂k(+) = r̂k(−) +Kk (zk − ATkr̂k(−)−B) (2.64)

Pk(+) = (1−KkATk)
2
Pk(−) +K2

kRk. (2.65)

When many exposure-images are available, initial estimates of r̂ and P are less
important, but when working with a small exposure-image sequence, starting with
reasonable initial estimates will greatly increase the rate of convergence.

In applying this approach at a given pixel location, the first valid measurement
is used to generate an initial state estimate by directly computing radiance using
(2.48), and taking P = R

A2T 2 , as computed from (2.63), and (2.65) with Pk(−) = ∞.
New pixel measurements obtained from subsequent exposures-images are then fed
into the scalar Kalman filter given by (2.61)-(2.65). This procedure is performed
independently for each pixel, each with its own Kalman filter. The filter given
by (2.61)-(2.65) is a computationally efficient way to generate recursive estimates
of scene radiance and its uncertainty at a particular pixel location. Like other
HDRI techniques, after certain one-time-cost initializations have been performed,
constructing the HDR images requires only a simple calculation at each pixel for
each exposure-image in the sequence. Thus, computational complexity is O(NM),
where N is the number of pixels in an exposure-image and M is the number of
exposure-images in the sequence.

2.3 Performance Analysis

Since the techniques of [18] and [73] have been used in measurement applications, we
seek to compare the performance of the proposed method developed in Section 2.2
to these and other methods developed in Section 2.1. In evaluating performance, an
exposure-image sequence of a Gretag-Macbeth color chart, illuminated by a 60 watt
incandescent source, is used. This exposure-image sequence is shown in Figure 2.8.
Performance is assessed using objective metrics, with SNR used as a measure of
precision and a radiance ratio test used as a measure of accuracy.
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In applying [18], high frequency noise is observed in the response function when
the tunable smoothness parameter λ is not sufficiently large. To avoid introducing this
high frequency noise into the resulting HDR image, λ = 100 is used in all subsequent
analysis. Because of prohibitive computational costs, data reduction was performed
in response recovery. The response curve was constructed using 500 randomly selected
pixel locations having at least 250 unique pixel values. The linear system had a rank
of 1,401.

In [74], the unsmoothed, non-parametric response was found to be essentially
linear. Rather than smoothing the non-parametric response with a cubic spline
approximation, the response was smoothed using linear regression. This smoothing
operation was required to avoid introduction of high frequency noise present in the
recovered response into both certainty functions and the resulting HDR image.

In applying [54], only a first order polynomial was required to model the response
function. Care was taken to select only pixels free of vignetting for response recovery.
However, we note that the use of a single camera response function applied at all
pixel locations will not remove any non-uniformities which may be present.

In [3], the response function obtained from [18] was used. A cluster size of 4 was
used, and the weighting functions used in Hermite interpolation were scaled so they
would be appropriate for our 10-bit camera.

These camera response functions are shown in Figure 2.9. These responses are
similar to those presented in [100], which also appear to be linear with very little
high frequency noise, though their responses appear to deviate from a linear model
at the lowest pixel values. Since [100] makes no mention of non-uniformity correction
having been performed, we apply [18, 74, 54, 3] directly to the input exposure-images
without correction and, since these approaches do not have a measurement noise
power model, that information is unused.

In applying [73], we note that infrared cameras commonly employ non-uniformity
correction techniques such as calibration-based approaches [68] or scene-based meth-
ods [31, 87]. For this reason, we apply non-uniformity correction and compute
radiance according to (2.48). Since [73] also does not have a measurement noise
power model, this information is again unused.

In all techniques, radiance is estimated using only pixel values which fall within the
same region of the camera response (pixel values between 10 and 1000 inclusively) and
pixels values outside this range are not used. Consequently, not all exposure-images
have usable pixel values at all pixel sites. The number of usable samples at each
pixel location in the exposure-image sequence in Figure 2.8 is shown in Figure 2.10.
The resulting HDR images are shown in Figure 2.11. The uncertainty estimates also
generated by the Kalman approach are shown in Figure 2.12.

Differences between the HDR images in Figure 2.11 are subtle, and all methods
would probably be acceptable to a human observer. However, since these methods
are being considered for use in measurement applications, objective metrics should
be applied. Uniformity is first assessed using SNR. Specifically, we take the mean of
the radiance, r, of the six fully visible patches in the first row of the input images as
signal amplitude, and the standard deviation of the radiance, σr, is taken to be the
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Table 2.1: SNR of the exposures shown in Figure 2.8.

Patch
Exposure
time (ms) 1 2 3 4 5 6

0.5 – – – – 5.4401 18.2712
1.0 – – – 14.2343 21.5028 26.7798
2.5 – – 21.6881 28.8705 31.5550 34.5962
5.0 – 21.2310 29.5692 34.7955 35.6194 –
6.5 10.2332 25.6217 32.5179 37.2303 36.9629 –
8.0 15.3800 27.5444 33.8581 39.0126 – –
15.5 24.6397 33.5083 38.2832 – – –
23.0 27.7790 35.6693 – – – –
35.5 29.3652 38.8439 – – – –
65.5 30.9778 – – – – –

Table 2.2: SNR of HDR images generated from the sequence in Figure 2.8.

Patch
1 2 3 4 5 6

Debevec 30.3454 34.6026 35.4377 37.6564 34.4921 33.2228
Akyuz 29.1482 34.7759 37.7086 39.7170 37.6245 34.2089

Mitsunaga 30.7343 36.8106 36.9837 38.1079 36.3369 33.6362
Robertson 30.5381 36.6753 37.2196 39.3475 36.2155 33.8717
Richards 31.4998 40.4434 41.2946 42.6610 42.4634 38.9171
Kalman 31.5019 40.5026 41.5586 43.4604 43.9762 41.5586
Kalman 29.4480 40.1853 42.0776 34.9087 39.2212 39.1335

(no process noise)

noise amplitude. The SNR is then computed as

SNR = 20 log10

(
r

σr

)
. (2.66)

Table 2.1 lists the SNRs of the original exposure-image sequence while Table 2.2
shows the SNRs of the various HDRI techniques.

Examining Table 2.1, the SNR improves as exposure time increases until samples
fall outside the usable linear region of the camera response function. This makes
the weighting function in [18] seem inappropriate and could explain why the SNR
of this technique is actually less than the SNR of the last available single exposure-
image. With [3, 54, 74] using either the same or very similar response functions
as [18], we suspect their improved SNR performance over [18] is due to both im-
proved weighting and exposure-image fusion models. On the other hand, since [73]
generates its radiance estimates using only the samples with maximum integration
times prior to saturation, the improvement in SNR over the best individual exposure-
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Table 2.3: The Weighted SNR of each patch for the input exposures shown in
Figure 2.8.

Patch
1 2 3 4 5 6

Kalman 59.1533 67.9350 69.8581 71.5991 73.2186 68.3230
Kalman 45.1755 64.5994 70.3566 56.0852 63.5300 67.5510

(no process noise)

images can only be attributed to non-uniformity correction. In the Kalman filtering
approach, some improvement can be achieved over [73] if the process noise considered
in Figure 2.6a is applied. Kalman filtering provides as much as a 9.4 dB improvement
in SNR over the classic method of [18].

It is worth noting that not all of the information provided by the Kalman filter
has been utilized. In addition to radiance estimates, the Kalman filter provides
estimates of the uncertainty in pixel radiance. For reasons such as non-uniformities
in measurement noise power or an outlier in the exposure-image sequence, equal
confidence in pixel radiance should not be assumed. Rather than giving all pixels
equal weight, some applications may benefit from weighting pixels by the inverse of
their Kalman filter variance estimates. This weighted average and weighted variance
can be used in a weighted SNR metric, given in Table 2.3.

Looking now at the accuracy of the radiance estimates, since relative radiance
is easier to obtain than absolute radiance, we have devised a radiance ratio test
comparing our measured luminance values to the known CIELAB coordinates of the
Gretag-Macbeth color chart. These L* values were converted to relative luminance
according to [26] and averaged over each patch. Dividing these relative luminances
by the lightest reference checker yielded a ratio independent of the white point
normalization factor. Since radiance is proportional to luminance at every pixel, the
experimentally determined radiance ratios were compared to the known luminance
ratios, which served as ground truth.

Examining Table 2.4, Kalman filtering with and without process noise appears to
perform roughly equivalently, as does [73]. However, [18, 3, 54, 74] all yield radiance
ratios which are consistently larger than ground truth, and we see the Kalman based
approach offers as much as a 29% improvement in accuracy over [18]. We also see
that, for all but the darkest patch, the accuracy of both the Kalman and superframing
approaches appear to be similar to that of an I1 spectrophotometer, a measurement
tool commonly used in color science applications.

We note that, from examining Figure 2.12 and Figure 2.11f, it seems the uncer-
tainty in relative radiance is closely related to the relative radiance itself. To explore
this, we let Pk(−) = P0, and by substituting (2.63) into (2.65) and iterating k times,

Pk(+) =
P0

∏k

i=1Ri

P0A2
(∏k

i=1Ri

)(∑k

i=1
T 2
i

Ri

)
+
∏j

i=1Ri

. (2.67)
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Table 2.4: Relative reflectances of HDR images generated from the sequence in
Figure 2.8.

Patch
1 2 3 4 5 6

Debevec 0.0587 0.1271 0.2495 0.4500 0.6718 1.0000
Akyuz 0.0569 0.1257 0.2485 0.4487 0.6613 1.0000

Mitsunaga 0.0584 0.1267 0.2503 0.4504 0.6648 1.0000
Robertson 0.0576 0.1257 0.2466 0.4446 0.6604 1.0000
Richards 0.0481 0.1030 0.2050 0.3798 0.5946 1.0000
Kalman 0.0488 0.1045 0.2082 0.3861 0.6028 1.0000
Kalman 0.0494 0.1060 0.2106 0.3834 0.6054 1.0000

(no process noise)
I1 0.0270 0.0960 0.2030 0.3780 0.6110 1.0000

Published Ratios 0.0340 0.0967 0.2098 0.3978 0.6454 1.0000

Dividing by P0 and then letting P0 = ∞ results in

Pk(+) =

∏k

i=1Ri

A2
(∏k

i=1Ri

)(∑k

i=1
T 2
i

Ri

) , (2.68)

which further simplifies to

Pk(+) =
1

A2
∑k

i=1
T 2
i

Ri

. (2.69)

Referring back to (2.49), we experimentally verified that D is typically less than 1%
of CTr such that

Pk(+) =
C

A2
∑k

i=1 Ti

. (2.70)

So it is now evident that the uncertainties of the radiance estimates are influenced
by the integration times, and the maximum integration time that can be used is
determined by the scene radiance itself, explaining the similarity between Figure 2.12
and Figure 2.11f.

One common way of sampling a HDR scene is to double the integration time
between each exposure-image. In this case, (2.70) simplifies to

Pk(+) =
C

A2 (2k+1 − 1) T1
. (2.71)

Here we see that samples obtained from the longest integration time alone are re-
sponsible for almost half of the reduction in variance. When employing this sampling
strategy, it would not be surprising for the performance of the superframing approach
to be similar to that of the Kalman filtering based approach.

Since it appears the suitability of the superframing approach is closely related
to the sampling strategy employed, we consider a different sampling strategy. Fig-
ure 2.13 shows a sequence of exposure-images with a much lower dynamic range,
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Table 2.5: SNR of exposures shown in Figure 2.13.

Patch
Exposure
Time (ms) 3 4 5 6

2.0 18.0096 26.7564 30.9232 33.0210
2.0 18.3829 26.8251 30.7348 33.3043
2.0 17.5777 26.2512 30.7608 32.6487
2.5 21.6881 28.8705 31.5550 34.5962
2.5 21.6647 29.3805 31.6248 35.3026
2.5 20.5622 29.0543 31.1387 34.2279

Table 2.6: The SNR of HDR images generated from the input sequence in Figure2.13.

Patch
3 4 5 6

Debevec 28.7037 33.1889 34.2265 35.2383
Akyuz 26.5613 31.4348 33.8282 35.6908

Mitsunaga 26.7198 32.1197 34.0297 36.0123
Robertson 28.7348 32.7417 34.1816 35.2534
Richards 28.2253 34.0987 36.7021 39.7394
Kalman 29.6610 37.0182 39.8893 44.2158
Kalman 35.1463 41.1453 42.6616 45.2699

(no process noise)

and integration times are repeated. The SNRs of these input exposure-images are
shown in Table 2.5. Table 2.6 shows the SNRs of the different HDRI approaches, and
Table 2.7 shows the results of the radiance ratio test.

Once again, [18, 3, 54, 74] generally did not achieve the same performance as [73]
or Kalman approaches in either SNR or radiance ratio. While both [73] and Kalman
filtering appear to perform similarly in radiance ratio, improvements in SNR can be
seen in the Kalman filtering approach which are, once again, very much dependent
on the process noise power assumed to be present. We attribute this improvement
in SNR to the data smoothing properties of the Kalman filter. Figure 2.14 and
Figure 2.15 show the relative radiance estimates generated for an individual pixel
across the exposure-image sequence. Data smoothing can be clearly seen, especially
in the absence of process noise. Without process noise, the reduction in radiance
uncertainty due to increased sampling is also apparent.

In summary, while many HDRI applications may be suitable for use in compu-
tational photography, they are not appropriate for use in measurement and machine
vision applications. As such, a Kalman filtering based approach was developed in
Section 2.2, and compared to several other HDRI approaches in Section 2.3, with
the Kalman filter based approach generally offering improved performance. The
importance of sensor calibration has been shown, and the influence of sampling
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Table 2.7: Relative reflectances of HDR images generated from the sequence in
Figure 2.13.

Patch
1 2 3 4 5 6

Debevec – – 0.2509 0.4548 0.6754 1.0000
Akyuz – – 0.2310 0.4438 0.6724 1.0000

Mitsunaga – – 0.2133 0.4308 0.6641 1.0000
Robertson – – 0.2498 0.4547 0.6754 1.0000
Richards – – 0.2053 0.3913 0.6177 1.0000
Kalman – – 0.2027 0.3880 0.6150 1.0000
Kalman – – 0.2056 0.3912 0.6184 1.0000

(no process noise)
I1 0.0270 0.0960 0.2030 0.3780 0.6110 1.0000

Published Ratios 0.0340 0.0967 0.2098 0.3978 0.6454 1.0000

strategy on HDRI performance has been explored. It is likely no single HDRI
technique will prove ideal for all applications. However, the maturity and flexibility
of state estimation techniques is likely to help facilitate the use of HDRI in a variety
of measurement applications.
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Figure 2.4: The (a) variance of a sequence of 49 exposure-images taken with identical
camera parameters. This non-uniformity motivates a pixelwise measurement noise
power model. Shown in (b) are a few isolated pixels with large variances which were
suppressed in (a).
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Figure 2.5: The (a) gain and (b) offset coefficients of the measurement noise power
model.
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Figure 2.6: The (a) estimated process noise power Q. Like r, Q is also normalized by
the reference radiance. Shown in (b) are isolated pixels whose process noise power
was suppressed in (a).

42



0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Poisson and Gaussian Probability Density Functions

Figure 2.7: The probability density function of a Poisson distribution (open circles)
overlaid with the probability density function of a Gaussian distribution. Both
distributions have a mean and variance of 10.
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Figure 2.8: The exposure-images used as inputs to HDRI algorithms. Integration
times were 0.5, 1.0, 2.5, 5.0, 6.5, 8.0, 15.5, 23.0, 35.5, and 65.5 ms.
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Figure 2.9: The camera response functions computed by the Debevec, Mitsunaga,
and Robertson methods.
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Figure 2.10: The number of usable samples in the exposure-image sequence at each
pixel site.
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Figure 2.11: Radiance estimates generated using (a) Debevec, (b) Akyuz, (c)
Robertson, (d) Mitsunaga, (e) Richards, and (f) Kalman filtering.
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Figure 2.12: Estimates of the uncertainty in relative radiance generated by the
Kalman filtering approach.
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Figure 2.13: A second set of exposure-images used as inputs to the different HDRI
techniques. Integration times are 2, 2, 2, 2.5, 2.5, and 2.5 ms.
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Figure 2.14: Relative radiance estimates of the Kalman filtering approach.
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Figure 2.15: Relative radiance estimates of the Kalman filtering approach with no
process noise.
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Chapter 3 Detecting Multipath Scattering in PMP

PMP is a highly successful and commonly employed technique used to perform 3D
surface reconstruction. However, defects can occur when multipath interference is
present in a scene. Multipath interference may result from interreflections, or from
other sources. For example, when there is an abrupt discontinuity in surface height,
such as at a step edge or occlusion, due to fractional pixel filling a pixel may be
partially illuminated by both foreground and background surfaces. Both foreground
and background surfaces may also illuminate a pixel if some motion occurs during
scanning. Consequently, multipath interference can be difficult to anticipate and
control. The resulting distortions can be subtle, raising the possibility that these
effects may be undetected during scanning.

After introducing range reconstruction and PMP, we build on a quality metric
used in [77], and demonstrate that multipath scattering can be both identified and
quantified in PMP scanning.

Range Reconstruction

In SLI, a range sensor is formed using a calibrated camera-projector system. When
a pinhole model holds, the relationship between camera coordinates and world coor-
dinates is

Xc = MwcXw, (3.1)

with

Xc =




xc

yc
wc


 , (3.2)

and

Xw =




xw

yw
zw
1


 . (3.3)

The 3D world coordiates are (xw, yw, zw), the camera coordinates are (xc, yc), wc is
a scale factor, and Mwc is a 3x4 matrix determined through calibration. Similarly,
projector coordinates and world coordinates are related according to

Xp = MwpXw, (3.4)

with

Xc =




xp

yp
wp


 , (3.5)

where (xp, yp) are projector coordinates, wp is a scale factor, and Mwp is another 3x4
matrix determined through calibration.
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From (3.1) and (3.4),

xc =
mwc

11 xw +mwc
12 yw +mwc

13 zw +mwc
14

mwc
31 xw +mwc

32 yw +mwc
33 zw +mwc

34

(3.6)

yc =
mwc

21 xw +mwc
22 yw +mwc

23 zw +mwc
24

mwc
31 xw +mwc

32 yw +mwc
33 zw +mwc

34

(3.7)

xp =
m

wp
11 xw +m

wp
12 yw +m

wp
13 zw +m

wp
14

m
wp
31 xw +m

wp
32 yw +m

wp
33 zw +m

wp
34

(3.8)

yp =
m

wp
21 xw +m

wp
22 yw +m

wp
23 zw +m

wp
24

m
wp
31 xw +m

wp
32 yw +m

wp
33 zw +m

wp
34

. (3.9)

With

C =




mwc
11 −mwc

31 xc mwc
12 −mwc

32 xc mwc
13 −mwc

33 xc

mwc
21 −mwc

31 yc mwc
22 −mwc

32 yc mwc
23 −mwc

33 yc
m

wp
11 −m

wp
31 xp m

wp
12 −m

wp
32 xp m

wp
13 −m

wp
33 xp

m
wp
21 −m

wp
31 yp m

wp
22 −m

wp
32 yp m

wp
23 −m

wp
33 yp


 (3.10)

and

D =




mwc
34 xc −mwc

14

mwc
34 yc −mwc

24

m
wp
34 xp −m

wp
14

m
wp
34 yp −m

wp
24


 , (3.11)

we see that world coordinates can be recovered as the solution to

C




xw

yw
zw


 = D. (3.12)

Since (3.12) is overdetermined, it can be solved using techniques such as pseudoin-
verse, but the system can also be solved with only one of xp or yp, so scanning need
only be performed in one dimension, thus reducing the number of required patterns.

PMP

In PMP, a scene is illuminated by a projected sequence of 1D sinusoidal patterns Pn.
Assuming scanning is performed in the x direction,

Pn = A sin
(
2πfxp − 2π

n

N

)
+ A, (3.13)

where A represents both the DC offset and the amplitude of the projected sinusoid, f
represents the spatial frequency of the projected pattern, xp is the projector column,
n is the pattern number, and N is the total number of patterns in the sequence. In
this paper we use the convention that f is an integer, with it understood to be divided
by the projector width. In the literature, sometimes the quantity 2π n

N
is termed the

phase of the sinusoid, with PMP being referred to as a phase shifting technique. It is
also common to refer to 2πfxp as the phase of the sinusoid, and this is the convention
which is used in this dissertation.
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For each projected pattern Pn, a camera pixel measurement yn must be obtained
for each camera pixel location. The radiance at an arbitrary location in the scene is

BA sin
(
2πfxp − 2π

n

N

)
+BA+ F, (3.14)

where B is the albedo and F is the ambient background radiance at that scene
location. With a linear camera response and background intensity subtraction, the
camera pixel measurement at an arbitrary location is

yn = C sin
(
2πfxp − 2π

n

N

)
+ C, (3.15)

with C being magnitude in camera pixel values. The camera pixel measurement yn
may correspond to raw data from the camera, or it may be obtained using HDR
imaging techniques, which may be advisable since these techniques can perform noise
reduction, eliminate saturation and quantization effects, and compensate for a non-
linear camera response.

In order to perform surface reconstruction, xp must be determined for each camera
pixel location. Expanding (3.15),

yn = C sin (2πfxP ) cos
(
−2π

n

N

)
+

C cos (2πfxp) sin
(
−2π

n

N

)
+ C. (3.16)

The measurement sequence at this camera pixel location can be expressed as

Y = AX, (3.17)

where

Y =




y1
y2
...
yN


 , (3.18)

A =




cos
(
−2π 1

N

)
sin
(
−2π 1

N

)
1

cos
(
−2π 2

N

)
sin
(
−2π 2

N

)
1

...
...

...
cos
(
−2πN

N

)
sin
(
−2πN

N

)
1


 , (3.19)

and

X =




X1

X2

X3


 =




C sin (2πfxp)
C cos (2πfxp)

C


 . (3.20)

Assuming a sufficient number of patterns are used, (3.17) can be solved using standard
techniques such as pseudoinverse, and xp can then be found according to

xp =
1

2πf
arctan

(
X1

X2

)
, (3.21)
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noting that phase unwrapping must also be used if f > 1. Many approaches to phase
unwrapping have been developed, and some resources on the subject can be found
in [34, 6, 52]. Having determined xp, (3.12) may be solved and 3D world coordinates
obtained for each camera pixel.

3.1 Identifying Multipath Effects in PMP

Absent multipath scattering, the state estimates obtained using PMP can be arranged
to form an invariant quantity. Examining (3.20),

X2
1 +X2

2

X2
3

=
C2 sin2 (2πfxp) + C2 cos2 (2πfxp)

C2

= 1. (3.22)

As phase is varied (3.22) will map to the unit circle, so we refer to this quality measure
as the unit circle metric. In [77], deviations from unity are used to assess the quality
of the sinusoidal fit.

Suppose instead of being illuminated by a single projector column xp, multipath
scattering caused a camera pixel to be illuminated by two projector columns. With x1

and x2 the projector columns and with C and D the response magnitudes, following
the PMP process would result in the estimated state

X =




C sin (2πfx1) +D sin (2πfx2)
C cos (2πfx1) +D cos (2πfx2)

C +D


 . (3.23)

The numerator of the unit circle metric would be

X2
1 +X2

2 = (C sin (2πfx1) +D sin (2πfx2))
2 +

(C cos (2πfx1) +D cos (2πfx2))
2

= C2 +D2 + 2CD cos (2πf (x1 − x2)) . (3.24)

With a third projector column x3 of camera pixel intensity E detected, the PMP
process would estimate the state

X =




C sin (2πfx1) +D sin (2πfx2) + E sin (2πfx3)
C cos (2πfx1) +D cos (2πfx2) + E cos (2πfx3)

C +D + E


 , (3.25)

and the numerator of the unit circle metric would be

X2
1 +X2

2 = C2 +D2 + E2 +

2CD cos (2πf (x1 − x2)) +

2CE cos (2πf (x1 − x3)) +

2DE cos (2πf (x2 − x3)) . (3.26)
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A similar structure exists for any number of multipaths. In addition to the unit circle
metric, X2

1+X2
2 is expected to remain constant as frequency is varied unless multipath

interference is present. We refer to this quantity as the magnitude-constancy metric,
and it allows the presence of multipath interference to be detected by performing
PMP using multiple spatial frequencies.

In summary, from (3.24) and (3.26) we see that the presence of signal corruption
can be identified in a PMP scan with the use of the unit circle metric. Multipath
interference can be specifically identified by examining the magnitude-constancy
metric obtained from PMP scans at multiple spatial frequencies. Furthermore, since
(3.24) resembles the classic beats formula A cos 2π(f2 − f1)t, by varying spatial
frequency in fixed intervals, it would be possible to estimate the difference between
the projector coordinates of the two paths using the fast Fourier transform (FFT).

3.2 Experiments and Results

Having introduced PMP quality metrics, we now discuss experiments designed to
detect and quantify multipath interference. In these experiments, PMP is performed
using a calibrated camera-projector system [33, 72] using the Kalman filtering based
HDRI method developed in Chapter 2. As discussed previously, since only one pro-
jector coordinate needs to be determined to perform surface reconstruction, scanning
is performed only in the xp direction.

Interreflections

The scene being imaged consists of a mirror placed in front of a flat surface with an
interreflection clearly visible. Magnitude, phase, and unit circle metric from a scan
using f = 1 are shown in Figure 3.1.

PMP is also performed while f is varied from 4 to 64 in steps of 4. Some of
the resulting magnitude images are shown in Figure 3.2, some of the resulting phase
images are shown in Figure 3.3, and some of the unit circle metric images are shown
in Figure 3.4.

With PMP performed at 16 evenly spaced frequencies, the FFT is performed in
order to examine the magnitude-constancy metric. The magnitudes of the first few
FFT bins are shown in Figure 3.5, and the greatest non-DC component is shown in
Figure 3.6.

Sub-Pixel Multipath Effects

This experiment aims to detect and quantify multipath scattering due to sub-pixel
imaging, where a foreground object and a background object both fill only a fraction
of the same pixel. The foreground object in the scene is a fine thread, less than a
single pixel thick along most of its length, and the background object is a solid white
foam board. The distance between foreground and background objects increases from
bottom to top. Magnitude, phase, and unit circle metric from a scan using f = 1 are
shown in Figure 3.7, with an area of thread and shadow enlarged in Figure 3.8.
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Figure 3.1: The (a) magnitude, (b) phase, and (c) unit circle metric of a scene with
an interreflection sampled using f = 1.

As before, PMP scanning is also performed varying f from 4 to 64 in steps of 4.
The unit circle metric for f = 64 is shown in Figure 3.9, and Figure 3.10 shows the
greatest non-DC FFT bins of the magnitude-constancy metric.

Motion Multipath Effects

This experiment seeks to detect multipath effects resulting from motion during scan-
ning. The scene being imaged uses a toy truck as the foreground object and a white
foam board as the background object. The truck is displaced from left to right during
scanning. Magnitude, phase, and unit circle metric from a scan with f = 1 are shown
in Figure 3.11.
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Discussion

The phase corruption which can occur in PMP scanning due to multipath scattering is
evident in Figure 3.1b, with the distortion especially clear at the −π, π discontinuity.
These corrupted pixels are also evident in Figure 3.1c.

In Figure 3.2, magnitude varies little during the frequency sweep. In Figure 3.3,
distortion due to the interreflection is evident in all frequencies, and this is also seen
in Figure 3.4. Additionally, even though an interreflection is present, when the path
length difference is an integer multiple of 2π, the two paths are in phase and the
interreflection can not be detected by simply applying the unit circle metric at a
single frequency. However, phase distortion does not occur where the interreflection
has the same phase as the direct path.

In Figure 3.5, we see that even small path length differences can be seen in
Figure 3.5a. The background, which is prominent in Figure 3.5a, becomes much
less apparent as the path length difference increases, being barely discernible in
Figure 3.5h. This demonstrates that some diffuse scattering is present in foam board.

In Figure 3.6, the magnitude of the path length difference in projector coordinates
between the interreflection and the direct path has been determined, although well
understood aliasing effects are evident. Each FFT bin represents a path length
difference of 16 projector columns, with a maximum detectable path length difference
of 128 projector columns.

As seen in Figure 3.7 and Figure 3.8, sub-pixel multipath effects can also cause
artifacts in PMP scanning. In Figure 3.8c and Figure 3.9, the unit circle metric
shows PMP artifacts due to sub-pixel multipath scattering and the shadow. In
Figure 3.10, performing PMP using multiple frequencies reveals an increasing path
length difference between foreground and background moving upward. As before,
each FFT bin represents a path length difference of 16 projector columns, with a
maximum detectable path length difference of 128 projector columns.

Finally, Figure 3.11 shows how inter-frame motion can induce multipath scattering
artifacts in PMP scanning. These artifacts can be detected with the unit circle metric,
with some pixels in Figure 3.11c showing a significant deviation from unity.

In summary, in this chapter we have seen that PMP performed in the presence
of multipath interference is optically challenging. We have also seen that multipath
interference can occur in numerous subtle ways, making it difficult to anticipate and
control. To help detect and quantify the presence of quality problems in PMP, we have
developed constraint checks and have demonstrated them to be effective in several
optically challenging scenes.
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Figure 3.2: Magnitudes for the first few frequencies as f was varied from 4 to 64 in
steps of 4.
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Figure 3.3: Phase of the first few frequencies as f was varied from 4 to 64 in steps of
4.
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Figure 3.4: The unit circle metric of the first few frequencies as f was varied from 4
to 64 in steps of 4.
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Figure 3.5: The magnitudes of the first few FFT bins.
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Figure 3.6: The path length differences of projector coordinates in FFT bins. Each
bin corresponds to a path length difference of 16 projector columns, and the maximum
detectable path length difference is 128 projector columns.
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Figure 3.7: The (a) magnitude, (b) phase, and (c) unit circle metric of a scene with
a sub-pixel foreground object acquired using f = 1.
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Figure 3.8: An enlarged view of Figure 3.7 in a region containing both the foreground
object (left) and its shadow (right).
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Figure 3.10: The path length differences between foreground and background objects
in FFT bins. Each bin corresponds to a path length difference of 16 projector columns,
and the maximum detectable path length difference is 128 projector columns.

 

 

0

200

400

600

800

1000

1200

Magnitude

(a)

 

 

−2

−1

0

1

2

3
Phase

(b)

 

 

1

2

3

4

5

6

7

8

9

10
Unit Circle Metric

(c)

Figure 3.11: The (a) magnitude, (b) phase, and (c) unit circle metric of a scene with
motion occurring between frames of a scan acquired using f = 1.
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Chapter 4 Modeling Multipath Scattering in Structured Light Scanning

SLI methods are commonly utilized techniques in machine vision. However, in general
they do not perform well when interreflections are present in a scene, and the few SLI
approaches which can be successful in these environments have significant drawbacks.
Building on SLI techniques used in computer graphics, we develop methods which
can improve the robustness of 3D reconstruction in the presence of interreflections
and demonstrate how recent advances in compressed sensing can be applied to SLI.
We also demonstrate how interreflections in a scene can be modeled, which brings us
to a discussion of light transport.

Light Transport

With ambient light subtracted and an appropriate HDR technique employed, a linear
relation exists between scene radiance and camera pixel response. If any existing
non-linearities in the projector are corrected then this linear relation can be extended
to include the projector and the relation between the intensity of projector pixels and
camera pixels can be expressed as

C = TP, (4.1)

where C is a vector of camera pixel responses, P is a vector of projector pixel
intensities, and T is known as the transport matrix.

Since usually there are millions of pixels in cameras and projectors, T requires
trillions of bytes of storage. However, as discussed in Chapter 3, range reconstruction
only requires identifying the correspondence between camera pixels and projector
rows or columns. Thus, only one dimensional signals need to be projected either
along projector columns, Px, or projector rows, Py. Using these one dimensional
signals, the light transport model can be simplified to

Cx = TxPx (4.2)

and
Cy = TyPy, (4.3)

where Cx and Cy are vectors containing the reponse of each camera pixel to Px and
Py, and Tx and Ty are transfer matricies relating camera pixel responses to projector
columns and rows. Since projectors commonly have a width and height of about a
thousand pixels, the storage requirements for Tx and Ty are practical to achieve.

In SLI applications, the projected signals Px and Py are known, Cx and Cy are
measured, and Tx and Ty are to be determined. Tx and Ty may be found one row
at a time by solving

Ri = QTi (4.4)

for each camera pixel i, where Ri is a vector containing the camera pixel measure-
ments, each row of Q is the pattern projected during a measurement, and Ti is
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the unknown row of Tx or Ty. Of course finding Tx or Ty from (4.4) using a
general approach for most projectors would require sampling with approximately one
thousand patterns, but recognizing that Tx and Ty are expected to be mostly sparse
allows the number of patterns to be reduced through compressed sensing techniques.

Compressed Sensing

Compressed sensing (CS) aims to reduce the number of equations required to solve
a linear system by applying sparsity assumptions. Compressed sensing also gives
guidance on how measurement acquisition should be performed.

Solving the matrix equation
y = Ax+ n (4.5)

where y, x, and n are column vectors andA is a matrix is fundamental to many fields.
Commonly, y represents measurements, x represents states to be estimated, A is a
measurement matrix, and n represents additive noise. The fundamental theorem of
linear algebra states that for a noise free system, (4.5) can not be solved unless the
number of equations is equal to the number of unknowns, and even more equations are
required for the solution to be robust to noise. However, under-determined systems
are quite common.

The field of regularization theory seeks to solve these ill-posed problems by intro-
ducing a priori knowledge, usually gained from physical reasoning about the problem.
For a least-squares solution, the residual error is to be minimized,

min
x

||Ax− y||22 . (4.6)

where the subscript of 2 indicates the Euclidean norm, since the general p-norm is
defined as

||x||p =

(
N∑

j=1

|xj |
p

) 1

p

(4.7)

where N is the length of x. When the system is under-determined, additional
equations can be introduced by applying constraints,

||Γx||22 . (4.8)

Γx is often called the stabilizing functional. The matrix Γ imposes a priori assump-
tions, commonly made about the smoothness, stability, or likelihood of a solution [71].
Both (4.6) and (4.8) can be combined,

min
x

||Ax− y||22 + λ ||Γx||22 . (4.9)

This allows a trade-off between residual error and a property such as smoothness to
be made in proportion according to the regularization parameter λ. This has already
been seen exactly in this context in Chapter 2 in the fitting of camera response
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functions. A very common approach to this problem is Tikhonov regularization [60],
where the function to be minimized is

||Ax− y||22 + ||Γx||22 . (4.10)

Note that if Γ is the identity matrix, we are seeking a minimum Euclidean norm
solution.

In several applications, the goal is to find the sparsest solution,

min
x

||x||0 s.t. y = Ax. (4.11)

Unfortunately solving (4.11) has been proven to be NP-hard [56]. However, it has
been shown [19] that for most cases (4.11) is equivalent to minimizing the L1 norm,

min
x

||x||1 s.t. y = Ax. (4.12)

This is called the least absolute shrinkage and selection operator (LASSO) [86] or
basis pursuit [12], and

min
x

||y −Ax||22 + λ||x||1 (4.13)

is referred to as basis pursuit denoising [12]. These problems can be solved by tech-
niques in linear or convex programming, such as the well known simplex method [12,
7]. This is shown graphically in Figure 4.1. The linear system is solved when solutions
with progressively larger norms are considered and the norm intersects the constraint
surface. Note how for L1 and concave norms like L 1

2

this leads to a sparser solution,
which is not the case for higher order norms.

Another useful approximation to (4.11) is

min
x

||y −Ax||2 s.t. ||x||0 ≤ k (4.14)

for a given number of non-zero terms k. Among the approaches which solve (4.14) is
orthogonal matching pursuit (OMP) [88] . There are many variants of OMP designed
to have improved theoretical properties [59, 20, 58]. These methods are collectively re-
ferred to as greedy algorithms, and are the most computationally efficient approaches
available.

While these works show that sparse signals can be recovered using L1 minimization
or greedy approaches, several questions remain. For example, how many equations
are required to find a solution with k non-zero terms? How sensitive is the solution
to noise? Under what conditions can exact recovery be accomplished? While some
specifics depend on the problem instance, the work in [9, 8, 15, 27] has shown that
optimal reconstruction will occur when A satisfies the restricted isometry property
(RIP),

(1− δk) ||x||
2
2 ≤ ||Ax||22 ≤ (1 + δk) ||x||

2
2 , (4.15)

for all possible solutions x with k non-zero terms, called k-sparse solutions, for
some constant δk ∈ (0, 1). Basically, RIP is satisfied when the columns of A are
approximately orthogonal, the length of x is preserved by A, and δk is not too close

68



x

y

x

y

x

y

y

x

Figure 4.1: Unit balls for the (a) L 1

2
, (b) L1, (c) L2, and (d) L∞ norms. The blue

line represents a constraint surface.

to 1. Equivalently, the nullspace property states that optimal recovery can occur
when there are no sparse vectors in the nullspace of A. At the time of writing, the
only matrices known to satisfy RIP and the nullspace property are random matrices,
such as Gaussian, Bernoulli, and random partial Fourier matrices. Whether any other
matrices exist which satisfy the RIP is an open question.

The significance of this work to measurement applications is not to be understated.
Consider an application such as photography. In general, photographs are compress-
ible in the wavelet domain and generally a few thousand wavelet coefficients are
sufficient to produce a satisfactory image. However, many millions of measurements
are performed in a rectangular array, transformed into the wavelet basis, and then the
vast majority of the data is lost due to truncation. This extremely inefficient process
can be very undesirable when there is a cost associated with these measurements,
such as the sampling rates of detectors, or radiation exposure to patients in the
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case of x-ray computed tomography (CT) imaging. Compressed sensing directs us
how to acquire measurements in the compressed domain such that the number of
measurements can be minimized while still allowing suitable reconstruction to occur
when the solution is expected to be sparse.

OMP

OMP is a particularly efficient approach to CS. Using OMP, a k-sparse vector x with
a total vector length of d can be recovered with O(k ln d) total measurements. It’s
speed and simple implementation make it an attractive CS technique, and it is a
method selected for use in this research.

Referring again to (4.5), in applying OMP, A is known and also satisfies certain
properties [88], y is obtained from measurements, and the sparsity level k of x is
known from a priori knowledge. OMP proceeds in a number of steps.

1. A residual error vector r is initialized as r0 = y. A k-dimensional vector Λ,
which will be used to store the index of non-zero entries in x, is initialized to
empty. AN×k matrixΦ, which is used to store rows ofA, is initialized to zeros.
If the columns ofA, denoted asAj, are not normalized, then normalization must
also be performed. The iteration counter t is initialized to one.

2. The columns of A are correlated with rt−1 to find the index of the column with
the greatest response, λt,

λt = argmax
j

|〈rt−1,Aj〉| . (4.16)

3. With λt identified, it is saved at location t in Λ, and the corresponding column
Aλt

is saved in column t of Φ.

4. The current estimate of the solution xt is obtained by seeking a solution with
minimum residual error,

st = argmin
s

||y − Φs||2 . (4.17)

5. Update the residual error,
rt = y −Φst. (4.18)

6. Increment t and return to Step 2 while the t < k.

When this algorithm has finished, the estimate x̂ has non-zero values at the indices
in Λ. These non-zero values are the corresponding entries in st.

Since we are seeking a sparse solution, the efficiency of solving the least squares
problem in Step 4 can be improved using an algorithm such as LSQR [63], though
the performance limiting factor is the matched filter of Step 3, which is O(Nd) since
A is a dense matrix.
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To date, the only application of CS in SLI is [30], where an inhomogeneous
participating media is examined. This application is very different than traditional
SLI performed in 3D surface reconstruction. As such, the suitability of CS in tra-
ditional SLI is examined. We now describe and present results from an experiment
designed to perform robust surface reconstruction using SLI in the presence of strong
interreflections. A compressed sensing approach is used. We discuss its performance,
and compare results to those obtained from a least squares approach.

4.1 Compressive SLI

A range sensor is formed in the usual way from a calibrated camera-projector sys-
tem [33, 72]. As discussed in Chapter 2, due to the dynamic range of scene ra-
diance, patterns are captured using the Kalman filtering HDRI method developed
in Chapter 2. As mentioned in Chapter 3, only xp need be determined to perform
surface reconstruction, so patterns are based on illuminating projector columns. Since
interreflections are present, light transport is modeled as (4.2), thus accounting for
the fact that camera pixels may be illuminated by multiple projector columns. With
a priori knowledge that Tx is expected to be sparse, OMP, with a LSQR solver [63],
is used to solve for the light transport model from (4.4). In the projected patters,
column intensities are fully on or fully off according to a Bernoulli distribution, thus
ensuring RIP holds while also eliminating the need to perform gamma correction in
the projector.

The scene being imaged consists of a mirror placed in front of a flat white foam
board, with interreflections clearly visible. A HDR background image of the scene
acquired with all projector pixels having an intensity of 0. This ambient background,
shown in Figure 4.2 is subtracted from all subsequent measurements so (4.2) holds.

Again, the solution vector Tx represents the response of a camera pixel to each
projector column. While the strongest response is usually due to projector direct
path illumination, due to diffuse scattering projector columns neighboring those of
the direct path may also induce a strong response, and this causes peak broadening
in Tx. In determining the magnitude and location of the strongest response, a peak
finding strategy is employed where maximum response is taken as the peak location,
and magnitude is found by integrating over the peak. It is assumed that maximum
intensity corresponds to direct path illumination, and that remaining peaks are due
to interreflections.

In solving for Tx, two systems are considered. In the first, (4.2) is a system with
100 patterns solved for 10 non-zero entries, and in the second the system has 400
patterns used to solve for 20 non-zero entries. Additionally, a performance benchmark
is obtained by solving (4.2) using SVD to obtain a least squares solution to a full rank
system obtained using 1024 patterns.

The response Tx obtained for the 100 pattern, 400 pattern, and 1024 pattern least
squares approaches is shown for a single representative pixel location in Figure 4.3.

After Tx has been determined for each camera pixel in the image, peak analysis is
performed to find the magnitude and projector column location of the three strongest
peaks, shown in Figure 4.4, Figure 4.5, and Figure 4.6.
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Figure 4.2: A scene with strong interreflection used in the compressive SLI
experiment. This image represents the ambient background intensity of the scene,
with camera pixel intensities shown in logarithmic scale.

In examining these results, it is clear that OMP with 100 patterns is not sufficient
to yield acceptable results. In Figure 4.3a, the noise floor is very high and the
location of the strongest peak does not correspond to the projector column of direct
path illumination. In the decoded image Figure 4.4d, we expect to see a smooth
progression in projector columns from left to right. This can be observed, but there
is a high level of noise, again indicating that identifying the code corresponding to
direct path illumination was difficult. In Figure 4.4b and Figure 4.4c there is only
slight evidence that an interreflection is be present in the scene. In Figure 4.4e and
Figure 4.4f there appears to be no success in identifying the code of the interreflection.

The results for OMP with 400 patterns are much better. In Figure 4.3a, the
location of the strongest peak correctly corresponds to the projector column of direct
path illumination, and this peak is well above the noise floor. In Figure 4.5a, we see
that the interreflections have been successfully separated from direct path illumina-
tion. This is also evident in Figure 4.5d, where we see that the codes corresponding
to direct path illumination have been successfully recovered. Furthermore, beyond
the ability to remove the corrupting effects of multipath scattering, in Figure 4.5b
and Figure 4.5e we see some success in identifying both the magnitude and code of
the interreflection, though Figure 4.5c and Figure 4.5f show that the interreflections
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Figure 4.3: Sparse solution vectors for pixel (250, 400) based on (a) 100 patterns with
10 non-zero entries, (b) 400 patterns with 20 non-zero entries, and (c) 1024 patterns
using a full rank least squares approach.

do not only appear as the second peak, but also in the third peak as well.
In Figure 4.3c, we see that the least squares approach can also recover the location

of the peak corresponding to direct illumination, although the noise floor is high.
Unlike OMP, negative solutions are common. From Figure 4.6a and Figure 4.6d we
see that interreflections have been removed from the direct path illumination and the
codes corresponding to direct illumination have been recovered, though some noise
is present. In Figure 4.6b, Figure 4.6c, Figure 4.6e, and Figure 4.6f it is clear that
virtually no information about the presence of the interreflection has been recovered.

Clearly, given sufficient measurements, the results from OMP can be impressive.
Unfortunately its computational costs are considerable, with the required computa-
tions generally taking many hours, if not days, to complete on a single processor
computer depending on sparsity and the number of patterns selected. A priori
knowledge about the expected sparsity of the solution is a very powerful constraint
which can help OMP deliver better results with fewer measurements than a least
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Figure 4.4: The magnitude and projector columns of the three greatest peaks obtained
with 100 patterns and 10 non-zero entries.
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Figure 4.5: The magnitude and projector columns of the three greatest peaks obtained
with 400 patterns and 20 non-zero entries.
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Figure 4.6: The magnitude and projector columns of the three greatest peaks obtained
with 1024 patterns using a least squares approach.
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squares approach in this application. Unfortunately, due in part to the peak broad-
ening due to diffuse scattering, there is a limit on the sparsity of the solution.
This and computational requirements make compressed sensing approaches somewhat
impractical for this application. Building on the success of OMP in recovering
information about the reflection, we present a light stripe based approach designed
not just to improve surface reconstruction, but also to model the interreflections
present in a scene.

4.2 Modelling Interreflections using SLI

As in Section 4.1, a range sensor is formed using the same camera-projector system
using the same HDR imaging methods. However, unlike before, modeling inter-
reflections requires establishing correspondences between camera pixels and projector
pixels, not just projector columns. To avoid having a code for each projector pixel, we
assume projector pixel coordinates can be obtained by pairing response peaks from a
horizontal and a vertical scan, thus greatly reducing the number of required patterns.
Of course this requires the responses due direct and indirect illumination have the
same magnitude ordering in both the horizontal and vertical scan, an assumption
which is reasonable. Also unlike before, where the responses Tx and Ty would be
obtained by solving (4.2) and (4.3), scans are performed by turning on only one
projector row or column at a time. In this way light stripe scanning allows Tx and
Ty to be directly measured.

With Tx and Ty having been obtained for each camera pixel, the same peak
finding approach discussed in Section 4.1 is applied. The magnitudes of the strongest
peaks in Tx and Ty are averaged and their locations paired to form the magnitude
of the response corresponding to direct illumination from a specific projector pixel.
The same is done for remaining peaks to find the magnitude and projector pixel
coordinates corresponding to indirect illumination.

After establishing the magnitudes and projector coordinates corresponding to
both direct and indirect illumination for each camera pixel location, correspondences
are established between pairs of camera pixels. This is done by searching for the
best match between the projector coordinate of direct illumination at one camera
pixel location and the projector coordinate of indirect illumination at another pixel
location. If the Euclidean distance between these projector coordinates is less than a
threshold, an interreflection between the two camera pixels is recorded. When world
coordinates are obtained for this camera pixel pair, a 3D vector of light transport at
this interreflection is obtained.

The scene being imaged is formed by an aluminum box placed in a corner. As
in Section 4.1, a HDR image of the background ambient illumination is created and
shown in Figure 4.7. Interreflections are clearly visible between the box and both
sides of the corner. Additionally, reflections are evident on the table top surface,
though these pixels do not receive any direct illumination from the projector.

The responses Tx and Ty obtained from the horizontal and vertical light stripe
scans is shown for a single representative pixel in Figure 4.8.
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Figure 4.7: A HDR image of the ambient intensity of a scene with strong
interreflections used in the impulse sampling experiment.
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Figure 4.8: Response of pixel (300, 400) based on (a) horizontal light stripe scanning,
and (b) vertical light stripe scanning.

With Tx and Ty determined for each camera pixel in the image, peak analysis is
performed to find the magnitude and projector column location of the three strongest
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peaks, shown in Figure 4.9 and Figure 4.10.
Some of the interreflections found in the scene are shown in Figure 4.11.
In Figure 4.8, we see a very clear primary peak corresponding to direct illumination

and a smaller, broader peak due to an interreflection in both Tx and Ty. As
expected, peak broadening is especially pronounced in the peak corresponding to
the interreflection. These directly measured responses show much improved SNR
over those responses obtained as solutions to linear systems.

In both Figure 4.9a and Figure 4.10a we see that interreflections have been
completely separated from direct illumination. Reflections are clearly visible in
the table top since this area is not directly illuminated by the projector, making
the reflections from the screen the strongest peaks. We see in Figure 4.9d and
Figure 4.10d that the detected codes have not been corrupted by the presence of
interreflections. Interreflections are clearly evident in Figure 4.9b and Figure 4.10b,
especially between the aluminum box and screen and in the corner region. The codes
of these interreflections can be seen in Figure 4.9e and Figure 4.10e. In Figure 4.9c
and Figure 4.10c, the intensity of the third peak is a few decibels below the second
peak with noise clearly present. Thus, in constructing interreflections only the first
two response peaks are used.

The results of the correspondence search used to model interreflections is shown
in Figure 4.11, with only a few of the interreflections being shown. The reflections
of the screen on the table top is very evident, as are the interreflections between the
screen and the aluminum box, and some interreflections can be seen in the corner
region. Interestingly, at the top of the box a couple of false interreflections are also
shown. The top of the interreflection on right screen should correspond with the very
top edge of the metal box. However, the area of the left screen just above the shadow
has very similar projector coordinates to the top edge of the box, and it has a greater
intensity under direct illumination than the box, so it has been selected as the source
of the interreflection.

In summary, optically challenging scenes may have strong interreflections. Tra-
ditional SLI approaches seek to perform 3D surface reconstruction and generally do
not perform well when interreflections are present. SLI approaches used in computer
graphics model light transport with a transfer matrix and do not seek to perform
3D surface reconstruction. Building on these approaches, we have demonstrated how
both 3D surfaces and interreflections can be obtained using SLI, and we have seen
how CS can be used to reduce storage requirements required in this approach.
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Figure 4.9: The magnitude and projector columns of the three greatest response
peaks obtained from horizontal scanning.

80



 

 

4

6

8

10

12

14

16

18

20

22

24

Magnitude of Peak 1 in Ty (dB)

(a)

 

 

4

6

8

10

12

14

16

18

Magnitude of Peak 2 in Ty (dB)

(b)

 

 

4

6

8

10

12

14

Magnitude of Peak 3 in Ty (dB)

(c)

 

 

0

100

200

300

400

500

600

700

Projector Row of Peak 1 in Ty

(d)

 

 

0

100

200

300

400

500

600

700

Projector Row of Peak 2 in Ty

(e)

 

 

0

100

200

300

400

500

600

700

Projector Row of Peak 3 in Ty

(f)

Figure 4.10: The magnitude and projector rows of the three greatest response peaks
obtained from vertical scanning.
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Chapter 5 Conclusions and Future Work

This chapter concludes the research performed in this dissertation. In this chap-
ter several current applications of the technologies developed in this research are
discussed. These include HDR video, multispectral HDRI for artifact conservation,
HDRI and non-uniformity correction in an assay systems, and multispectral HDRI
and computer graphics operators. Additionally, we discussion future applications
such as the 3D capture of scenes with significant sub-surface scattering.

5.1 Fading Memory Filter and HDR Video

HDR video using multi-exposure techniques is particularly challenging since it re-
quires balancing competing demands. Since the scene has high dynamic range, not
all pixels can be sampled with each exposure-image. Furthermore, dark pixels require
long integration times, which reduces the frame rate of the camera. Even worse is
the fact that, since motion is occurring, establishing pixel correspondences between
exposure-images requires motion estimation, and motion estimators generally require
integration time to be constant, a requirement which can not be satisfied with tradi-
tional multi-exposure HDR methods. Few approaches have been developed to achieve
multi-exposure HDR video [35, 91].

In [35], an exposure control algorithm is used. Based on histogram analysis, the
exposure control algorithm attempts to capture the entire dynamic range of a scene
using two exposure-images of differing integration times, referred to as the long and
short exposure-images. Video sampling is performed by alternating between long and
short integration times. Motion estimation and image warping are performed prior
to exposure-image fusion. Finally, tone mapping is performed so that the image can
be viewed on a display. Only exposure-image acquisition and the histogram based
exposure control algorithm are performed in real time.

In [91], histogram based techniques are used to perform calibration, response
function estimation, HDR reconstruction, registration, and ghost removal. A key
idea behind these techniques is that, even though pixel values may differ between
exposure-images with different integration times, the monotonic ordering of pixel
values in exposure-image histograms is preserved.

Unlike these approaches, we propose a technique based on the Kalman-like fading
memory filter and use the differences between predicted and actual measurements,
the innovations, as a cue of motion. Using a controller based on weighted pixel
voting, integration times are selected such that dense sampling is performed for
moving objects, while sparser sampling occurs for objects deemed to be stationary.

Fading Memory Filter

As discussed in [81], a fading memory filter weights recent measurements more heavily
than prior measurements. With the same process and measurement models as (2.52)
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and (2.53), the fading memory filter is

x̂k(−) = Φk−1x̂k−1(+) + Γk−1uk−1 (5.1)

Pk(−) = α2Φk−1Pk−1(+)ΦT
k−1 +Qk−1 (5.2)

Kk = Pk(−)HT
k

(
HkPk(−)HT

k +Rk

)−1
(5.3)

x̂k(+) = x̂k(−) +Kk (zk −Hkx̂k(−)) (5.4)

Pk(+) = (I−KkHk)Pk(−) (I−KkHk)
T

+KkRkK
T
k . (5.5)

In other words, the fading memory filter in (5.1)-(5.5) is the same as the Kalman
filter in (2.54)-(2.58) except that in (5.2), a priori covariance estimates are scaled by
α2. With this scaling, P is no longer the estimate of the uncertainty of x, but when
P is increased by scaling, a priori state estimates are assigned greater uncertainty.
This places greater weight on new measurements.

As with (2.61)-(2.65), the fading memory filter used in this application takes on
a simpler form,

r̂k(−) = r̂k−1(+) (5.6)

Pk(−) = α2Pk−1(+) +Qk−1 (5.7)

Kk = ATkPk(−)
(
A2T 2

kPk(−) +Rk

)−1
(5.8)

r̂k(+) = r̂k(−) +Kk (zk − ATkr̂k(−)−B) (5.9)

Pk(+) = (1−KkATk)
2
Pk(−) +K2

kRk. (5.10)

The weight α was chosen as

α = 15 +

∣∣∣∣
∣∣∣∣
zk −ATkr̂k(−)−B

ATkr̂k(−) +B

∣∣∣∣
∣∣∣∣
2

, (5.11)

a value strongly related to the measurement innovations.

Pixel States

As just discussed, in HDR video one can not expect a pixel to receive usable mea-
surement updates in each exposure-image. Consequently, a pixel may be in one
of three states: actively tracking, tracking partially lost, and tracking completely
lost. A pixel in the actively tracking state receives measurement updates with every
exposure-image, and this pixel has its state information updated according to (5.6)-
(5.10). A pixel with tracking completely lost is assumed to have no usable state
information since a measurement update has not occurred for some time. In this
implementation a pixel is classified as having tracking completely lost if it has not
received a usable measurement update from the last 5 measurements. The state is
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completely re-initialized on the next usable measurement update according to

r =
z − B

AT
(5.12)

R = CTr +D (5.13)

P =
R

A2T 2
(5.14)

α = 1.01 (5.15)

and is then re-classified as tracking. A pixel with tracking partially lost is one which
has not received a usable measurement update, but does not meet the criteria for
being considered completely lost. It’s state estimates are assumed to be valid.

Pixel Voting

After all pixel states are updated, a controller must decide what integration time to
select for the next exposure-image. This is done by voting in a discrete parameter
space, with 64 choices of integration time. Votes are weighted by innovations and
increase exponentially the longer a pixel goes without a measurement update. Pixels
which are classified as having tracking completely lost initially vote for the shortest
integration time, and progressively vote for longer integration times until they re-
ceive a useful measurement update. This procedure aims to balance the competing
demands inherent in HDR video.

HDR video is generated for a scene with a moving matchbox and a scene of a
flickering candle having dynamic ranges of 70 dB and 95 dB respectively. Frame
rates were generally 10-20 fps, and video frames were tonemapped according to [66].
Figure 5.1 shows representative exposure-images from the two videos and Figure 5.2
shows the integration times selected for the video frames. Note that integration times
are generally chosen to expose pixels corresponding to the moving object, with other
pixels relying on a priori information for their radiance estimates. The dominant
artifacts in the HDR videos are discontinuous motion and ghosting. These artifacts
are to be expected since pixels affected by motion do not always receive immediate
measurement updates. Unlike other approaches, a motion estimator is not used,
though it could be used to predict the time evolution of the scene. This would likely
to improve performance of the technique.

5.2 Multispectral HDRI of Metallic Artifacts

Another application for the HDRI methods developed in this dissertation is in the
area of art and artifact conservation. As discussed in [5] and [16], in art conservation
applications there is much interest in performing multispectral image analysis. Mul-
tispectral information can not only be used to provide highly accurate color informa-
tion, but can also be useful in analysis, authentication, and restoration applications.
While multispectral imaging may be desirable, this is difficult to accomplish using
traditional methods when a scene has a high dynamic range of intensities. One such

85



(a)

(b)

Figure 5.1: Frames from a from a HDR video sequence of (a) a moving matchbox
and (b) a candle.

scene is a copper scroll of historical significance, and another is a gold foil with
embossed text, shown in Figure 5.3 and Figure 5.4.

In this application scene illumination can be controlled and calibration is permissi-
ble, which makes the Kalman filtering based HDRI method of Chapter 2 an excellent
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Figure 5.2: Integration times chosen for the (a) matchbox and (b) candle videos
sequences.
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approach to achieving multispectral HDRI. In this application, HDRI is performed
as described in Chapter 2, except that multiple interference filters are used. These
interference filters each have a 20 nm spectral bandwidth, with the set ranging from
400 nm to 700 nm. Since a uniform target is used to correct for spatial non-uniformity
in illumination and since the calibration is known to be spectrally flat under different
illuminants, multispectral HDRI can be achieved in a manner which is independent of
illumination conditions. Based on the calibration target, different spectral channels
can be appropriately scaled, thus compensating for both the quantum efficiency of the
image sensor and the spectral power of the illuminant. Furthermore, non-uniformity
correction in the Kalman filtering based HDRI approach allows for robustness in the
presence of non-uniformities, which may be caused by optical vignetting or be due to
other sources such as dirt on lenses and filters.

5.3 HDRI in an Assay System

The Kalman filtering based HDRI approach has also been used as a component
technology in a assay selection system. This application is designed to detect healthy
cell colonies while rejecting both poor cell colonies and background clutter. Much of
this project is rooted in pattern analysis and machine learning. However, the non-
uniformity correction in the Kalman filtering based HDRI approach is an important
pre-processing step. Improved uniformity improves the performance of many other
image processing operations such as edge detection, resulting in fewer spurious edges.
Since image processing operations are also performed using radiance estimates with
floating point precision, image processing algorithms also have improved performance
due to the reduction of quantization noise.

5.4 Multispectral HDRI and SIFT

Another application of the Kalman filter based HDRI approach is [83], where multi-
spectral HDRI is performed on a pig heart, shown in Figure 5.6. This work postulates
that multispectral HDRI can lead to an increased number of features detected with
the local scale-invariant feature transform (SIFT) [46]. This feature detection is
important in biomedical applications, such as the modeling heart dynamics. Results
demonstrate that multispectral HDRI can yield an increased number of detected
features, and an optimal set of wavelengths is determined.

In this dissertation defects which can occur when performing SLI in optically
challenging environments are shown. One such environment is a scene with a high
dynamic range in albedo. In addressing this issue it is demonstrated that many
existing HDRI approaches, which are suitable for use in computational photography,
are not ideal for measurement or machine vision applications. For this reason a HDRI
technique is developed based on image sensor models and Kalman filtering. The
precision and accuracy of the Kalman filtering approach is assessed and compared to
five reference techniques and to ground truths, including an I1 spectrophotometer.
This dissertation shows the importance of sensor calibration and non-uniformity
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correction, and examines how the performance of a technique can be influenced by
the sampling strategy employed.

One of the strengths of Kalman filtering is the number of extensions and variants
which have been devised. While a basic Kalman filter may not be appropriate for all
applications, it can usually be extended to meet the needs of these new challenges.
The problem of HDR video is an example of this. This dissertation also shows
the Kalman filtering based HDRI approach applied to several problems, including
multispectral HDRI in a artifact conservation application. It is particularly well
suited for this application.

While different SLI approaches can be used when the environment is known to be
optically challenging, as shown earlier, some problems, such as multipath interference,
can occur in subtle ways, making them difficult to anticipate and control. To help
detect the presence of quality problems in PMP, tests are developed which allow
quality problems such as multipath interference to be detected and quantified.

As has also been shown, optically challenging scenes may have strong inter-
reflections, and some applications require these interreflections to be modeled. This
dissertation develops a SLI approach based on light stripe scanning which is robust
in the presence of interreflections and demonstrates how this approach can be used to
model light transport. Also examined are newly developed approaches in compressed
sensing which are utilized in SLI. For these reasons, it is likely that this approach
can be useful in modeling light transport in other optically challenging scenes such
as translucent objects, such as in [23].

All of the research in this dissertation was performed with the goal of advancing
the state-of-the art in SLI scanning so that SLI approaches, with their long history
of successes, can also be applied to optically challenging environments. This goal is
important for future computer graphics, machine vision, and measurement applica-
tions.
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(a)

(b)

Figure 5.3: A HDR image of a piece of a gold artifact tonemapped (a) according
to [51], and (b) according to [66].
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(a)

(b)

Figure 5.4: An HDR image of a different piece of the gold artifact in Figure 5.3,
tonemapped (a) according to [51], and (b) according to [66].
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(a)

(b)

Figure 5.5: Two images of cell colonies from the assay system. Red outlines indicate
colonies classified as “good.”
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(a)

(b)

Figure 5.6: Two multispectral HDR images of a different view of a pig heart,
tonemapped according to [51].
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