63,192 research outputs found

    アフィン動きパラメータのロバスト推定に基づく動領域の統合

    Get PDF
    金沢大学理工研究域電子情報学系Moving object extraction in video sequences has been studied from various technical viewpoints. We propose a region-merging method for moving object extraction based on robust motion estimation. An over-segmented image is obtained by means of morphological watershed algorithm, and a robust motion estimation method using feature points and an evaluation function composed of motion estimation errors is then applied. Computer simulations demonstrated the merging precision of the proposed method

    Motion estimation and video coding

    Get PDF
    Over the last ten years. research on the analysis of visual motion has come to play a key role in the fields of data compression for visual communication as well as computer vision. Enormous efforts have been made on the design of various motion estimation algorithms. One of the fundamental tasks in motion estimation is the accurate measurement of 2-D dense motion fields. For this purpose. we devise and present in this dissertation a multiattribute feedback computational framework. In this framework for each pixel in an image. instead of a single image intensity. multiple image attributes are computed as conservation information. To enhance the estimation accuracy. feedback technique is applied. Besides. the proposed algorithm needs less differentiation and thus is more robust to various noises. With these features. the estimation accuracy is improved considerably. Experiments have demonstrated that the proposed algorithm outperforms most of the existing techniques that compute 2-D dense motion fields in terms of accuracy. The estimation of 2-D block motion vector fields has been dominant among techniques in exploiting the temporal redundancy in video coding owing to its straightforward implementation and reasonable performance. But block matching is still a computational burden in real time video compression. Hence. efficient block matching techniques remain in demand. Existing block matching methods including full search and multiresolution techniques treat every region in an image domain indiscriminately no matter whether the region contains complicated motion or not. Motivated from this observation. we have developed two thresholding techniques for block matching in video coding. in which regions experiencing relatively uniform motion are withheld from further processing via thresholfing. thus saving compu­tation drastically. One is a thresholding multiresolution block matching. Extensive experiments show that the proposed algorithm has a consistent performance for sequences with different motion complexities. It reduces the processing time ranging from 14% to 20% while maintaining almost the same quality of the reconstructed image (only about 0.1 dB loss in PSNR). compared with the fastest existing multiresolution technique. The other is a thresholding hierarchical block matching where no pyramid is actually formed. Experiments indicate that for sequences with less motion such as videoconferencing sequences. this algorithm works faster and has much less motion vectors than the thresholding multiresolution block matching method

    SO(3)-invariant asymptotic observers for dense depth field estimation based on visual data and known camera motion

    Full text link
    In this paper, we use known camera motion associated to a video sequence of a static scene in order to estimate and incrementally refine the surrounding depth field. We exploit the SO(3)-invariance of brightness and depth fields dynamics to customize standard image processing techniques. Inspired by the Horn-Schunck method, we propose a SO(3)-invariant cost to estimate the depth field. At each time step, this provides a diffusion equation on the unit Riemannian sphere that is numerically solved to obtain a real time depth field estimation of the entire field of view. Two asymptotic observers are derived from the governing equations of dynamics, respectively based on optical flow and depth estimations: implemented on noisy sequences of synthetic images as well as on real data, they perform a more robust and accurate depth estimation. This approach is complementary to most methods employing state observers for range estimation, which uniquely concern single or isolated feature points.Comment: Submitte

    1D camera geometry and its application to the self-calibration of circular motion sequences

    Get PDF
    This paper proposes a novel method for robustly recovering the camera geometry of an uncalibrated image sequence taken under circular motion. Under circular motion, all the camera centers lie on a circle and the mapping from the plane containing this circle to the horizon line observed in the image can be modelled as a 1D projection. A 2×2 homography is introduced in this paper to relate the projections of the camera centers in two 1D views. It is shown that the two imaged circular points of the motion plane and the rotation angle between the two views can be derived directly from such a homography. This way of recovering the imaged circular points and rotation angles is intrinsically a multiple view approach, as all the sequence geometry embedded in the epipoles is exploited in the estimation of the homography for each view pair. This results in a more robust method compared to those computing the rotation angles using adjacent views only. The proposed method has been applied to self-calibrate turntable sequences using either point features or silhouettes, and highly accurate results have been achieved. © 2008 IEEE.published_or_final_versio

    Robust Phase-Correlation based Registration of Airborne Videos using Motion Estimation

    Get PDF
    This paper presents a robust algorithm for the registration of airborne video sequences with reference images from a different source (airborne or satellite), based on phase-correlation. Phase-correlations using Fourier-Melin Invariant (FMI) descriptors allow to retrieve the rigid transformation parameters in a fast and non-iterative way. The robustness to multi-sources images is improved by an enhanced image representation based on the gradient norm and the extrapolation of registration parameters between frames by motion estimation. A phase-correlation score, indicator of the registration quality, is introduced to regulate between motion estimation only and frame-toreference image registration. Our Robust Phase-Correlation registration algorithm using Motion Estimation (RPCME) is compared with state-of-the-art Mutual Information (MI) algorithm on two different airborne videos. RPCME algorithm registered most of the frames accurately, retrieving much better orientation than MI. Our algorithm shows robustness and good accuracy to multisource images with the advantage of being a direct (non-iterative) method

    Imitrob: Imitation Learning Dataset for Training and Evaluating 6D Object Pose Estimators

    Full text link
    This paper introduces a dataset for training and evaluating methods for 6D pose estimation of hand-held tools in task demonstrations captured by a standard RGB camera. Despite the significant progress of 6D pose estimation methods, their performance is usually limited for heavily occluded objects, which is a common case in imitation learning where the object is typically partially occluded by the manipulating hand. Currently, there is a lack of datasets that would enable the development of robust 6D pose estimation methods for these conditions. To overcome this problem, we collect a new dataset (Imitrob) aimed at 6D pose estimation in imitation learning and other applications where a human holds a tool and performs a task. The dataset contains image sequences of three different tools and six manipulation tasks with two camera viewpoints, four human subjects, and left/right hand. Each image is accompanied by an accurate ground truth measurement of the 6D object pose, obtained by the HTC Vive motion tracking device. The use of the dataset is demonstrated by training and evaluating a recent 6D object pose estimation method (DOPE) in various setups. The dataset and code are publicly available at http://imitrob.ciirc.cvut.cz/imitrobdataset.php

    Fast Video Stabilization Algorithms

    Get PDF
    A fast and robust electronic video stabilization algorithm is presented in this thesis. It is based on a two-dimensional feature-based motion estimation technique. The method tracks a small set of features and estimates the movement of the camera between consecutive frames. It is used to characterize the motions accurately including camera rotations between two imaging instants. An affine motion model is utilized to determine the parameters of translation and rotation between images. The determined affine transformation is then exploited to compensate for the abrupt temporal discontinuities of input image sequences. Also, a frequency domain approach is developed to estimate translations between two consecutive frames in a video sequence. Finally, a jitter detection technique to isolate vibration affected subsequence of an image sequence is presented. The experimental results of using both simulated and real images have revealed the applicability of the proposed techniques. In particular, the emphasis has been to develop real time implementable algorithms, suitable for unmanned vehicles with severe payload constraints

    Optical flow estimation using steered-L1 norm

    Get PDF
    Motion is a very important part of understanding the visual picture of the surrounding environment. In image processing it involves the estimation of displacements for image points in an image sequence. In this context dense optical flow estimation is concerned with the computation of pixel displacements in a sequence of images, therefore it has been used widely in the field of image processing and computer vision. A lot of research was dedicated to enable an accurate and fast motion computation in image sequences. Despite the recent advances in the computation of optical flow, there is still room for improvements and optical flow algorithms still suffer from several issues, such as motion discontinuities, occlusion handling, and robustness to illumination changes. This thesis includes an investigation for the topic of optical flow and its applications. It addresses several issues in the computation of dense optical flow and proposes solutions. Specifically, this thesis is divided into two main parts dedicated to address two main areas of interest in optical flow. In the first part, image registration using optical flow is investigated. Both local and global image registration has been used for image registration. An image registration based on an improved version of the combined Local-global method of optical flow computation is proposed. A bi-lateral filter was used in this optical flow method to improve the edge preserving performance. It is shown that image registration via this method gives more robust results compared to the local and the global optical flow methods previously investigated. The second part of this thesis encompasses the main contribution of this research which is an improved total variation L1 norm. A smoothness term is used in the optical flow energy function to regularise this function. The L1 is a plausible choice for such a term because of its performance in preserving edges, however this term is known to be isotropic and hence decreases the penalisation near motion boundaries in all directions. The proposed improved L1 (termed here as the steered-L1 norm) smoothness term demonstrates similar performance across motion boundaries but improves the penalisation performance along such boundaries

    Bayesian inference of models and hyper-parameters for robust optic-flow estimation

    Get PDF
    International audienceSelecting optimal models and hyper-parameters is crucial for accurate optic-flow estimation. This paper provides a solution to the problem in a generic Bayesian framework. The method is based on a conditional model linking the image intensity function, the unknown velocity field, hyper-parameters and the prior and likelihood motion models. Inference is performed on each of the three-level of this so-defined hierarchical model by maximization of marginalized \textit{a posteriori} probability distribution functions. In particular, the first level is used to achieve motion estimation in a classical a posteriori scheme. By marginalizing out the motion variable, the second level enables to infer regularization coefficients and hyper-parameters of non-Gaussian M-estimators commonly used in robust statistics. The last level of the hierarchy is used for selection of the likelihood and prior motion models conditioned to the image data. The method is evaluated on image sequences of fluid flows and from the ''Middlebury" database. Experiments prove that applying the proposed inference strategy yields better results than manually tuning smoothing parameters or discontinuity preserving cost functions of the state-of-the-art methods
    corecore