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Abstract This paper presents an algorithm for near-real time registration of
airborne video sequences with reference images from a different sensor type.
Phase-correlation using Fourier-Melin Invariant (FMI) descriptors allow to
retrieve the rigid transformation parameters in a fast and non-iterative way. The
robustness to multi-sources images is obtained by an enhanced image represen-
tation based on the gradient norm and by the extrapolation of registration
parameters by motion estimation between frames. A phase-correlation score,
indicator of the registration quality, is introduced to regulate between frame-to-
reference image registration and extrapolation from previous frames only. Our
Robust Phase-Correlation based registration algorithm using Motion Estimation
(RPCME) is compared with a Mutual Information (MI) algorithm for the regis-
tration of two different panchromatic airborne videos with Geoeye reference
images. The RPCME algorithm registered most of the frames accurately,
retrieving much better orientation than MI. It shows robustness and good accuracy
to multisource images with the advantage of being a direct (non-iterative) method.
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1 Introduction

In the management of natural hazards, the quick assessment of the damaged areas
is essential to help the coordination of the rescue teams. An airborne vehicle (like
Unmanned Aerial Vehicle) equipped with an optical sensor could be launched
quickly after the disaster and provide up-to-date images allowing a comparison
with the reference images available from any source (space or airborne sensors).
The analysis and fusion of remote sensing images requires an accurate registration,
i.e. finding the parameters of a transformation that matches each pixel of the
images to the physical reality. Thus, the comparison between airborne video
frames and reference images requires a registration robust to the differences in
sensor sensitivity, weather and light conditions, lens distortions, view angles as
well as temporal changes on the ground. A near-real time registration onboard
could allow for live damage detection and let the airplane dynamically focus on
damaged areas.

The general problem of registration has been extensively investigated in the
literature for remote sensing (e.g. fusion of multi-temporal or multimodal images),
medical imaging (e.g. fusion of CT and MRI images) and computer vision (Zitova
and Flusser 2003). Two main categories of registration can be separated: affine
registration (preserving straight lines) and non-affine registration (where local
distortions are allowed). In this wide range of methods, focus has been set on affine
registration methods which are potentially faster for near-real time scenarios and
accurate enough once perspective and lens distortions are corrected.

In the particular case of airborne video registration, the registration of a frame
with a reference image can be helped by the previous frames. The motion between
consecutive frames can be easily retrieved using standard registration techniques,
since they are extremely redundant. In Cannata et al. (2000), a Kalman filter allows
for an online registration based on a certain number of previous frames. In Shastry
et al. (2005), airborne video registration for traffic-flow monitoring is done using
fixed features and helicopter movements are removed from inter-frame registra-
tion. In Wu and Luo (2008), a prediction model of the camera movement allows to
remove outliers in feature points matching by taking advantage of the relationships
among consecutive video frames. A global optimization problem involving frame-
to-reference and frame-to-frame constraints can be minimized to get the regis-
tration parameters (Kumar et al. 2000, Hirvonen et al. 2001).

However the appearance between the frame and the reference image is often
dissimilar from temporal changes and different sensor sensitivity. A more robust
representation of the images is needed in order to see these methods working with
images from different sources. In Hirvonen et al. (2001), Oriented energy image
pyramids are used to register video frames having a different appearance than the
reference image. However in this case the registration is obtained by solving a
minimization problem which does not guarantee the method to be fast.

This paper motivated by the mentioned limitations aims at presenting a fast
registration method for airborne video platforms having a potential for near-real

38 F. de Morsier et al.



time registration and being robust to video having strong differences with the
available reference image. The phase-correlation (PC), a non-iterative method,
allows to retrieve the affine rigid transformation parameters between two images
(rotation, scaling and translation) with low computational complexity (Kuglin and
Hines 1975). The PC is sensitive to images differences, therefore robustness to
changes and multi-sources images is obtained by an enhanced image representa-
tion and by the extrapolation of registration parameters using the inter-frame
motion.

2 Methodology

This section introduces the methodology for the robust registration of airborne
video frames with a reference image having a different appearance. Two different
pixel-based approaches for registering images with a subpixel accuracy are pre-
sented: Mutual Information and Phase-Correlation. Both are evaluated and com-
pared for the registration of different airborne videos in Sect. 3.

2.1 Mutual Information Registration

The Mutual Information registration algorithm (MI) is a standard registration
approach based on image intensities and not on local image features. This regis-
tration method is introduced here for comparisons with our proposed algorithm
based on phase-correlation (see Sect. 2.2). Mutual information measures the
amount of information that one variable contains about the other, i.e. it expresses
the probability that the pixels are reflecting the same physical reality in both
images. It is really often used in multi-source/multimodal registration because
handling well non-linear transformations (no a priori on intensity relationship).
Therefore we selected this pixel-based method for comparison with our phase-
correlation based algorithm. Analogous to the Kullback–Leibler expression, the
mutual information is defined as follows:

MI =
X

I1;I2

p(I1; I
0
2Þlog

p(I1; I02Þ
p(I1ÞpðI02Þ

ð1Þ

with I02 being the image after affine transformations, pðI1Þ the marginal distribution
of I1 and pðI1; I02Þ the joint probability distribution. These probabilities can be
computed from their normalized joint histogram. The registration is based on
maximizing the mutual information between the image I1 and the transformed
image I02. The implementation has been realized using the HPV interpolation and
the Powell’s Direction set method, for more details see Lu et al. (2008).
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2.2 Phase-Correlation Registration

The phase-correlation (PC) exploits the Fourier shift properties. An image I1ðx; yÞ
translated of ðx0; y0Þ becomes I2ðx; yÞ ¼ I1ðx� x0; y� y0Þ and can be expressed in
the Fourier domain as: Î2ðg; nÞ ¼ e�j2pðgx0þny0Þ � Î1ðg; nÞ. The normalized cross
power spectrum Rðg; nÞ between these two images is a phase change in the Fourier
domain.

Rðg; nÞ ¼ Î1 � Î�2
Î1 � Î�2
�� �� ¼ e�j2pðgx0þny0Þ ð2Þ

with Î� the complex conjugate of Î2.
The phase-correlation PCðx; yÞ; being the inverse Fourier transform of Rðg; nÞ;

is ideally a delta function shifted from the center of ðx0; y0Þ : PCðx; yÞ ¼ R̂ðx; yÞ ¼
dðxþ x0; yþ y0Þ: Therefore the localization of the PC maximum peak yields to the
horizontal and vertical shifts existing between the two images.

Using the same properties, one can retrieve rotation and scaling differences
using the Fourier-Melin Invariant descriptors (FMI) of the images. The FMI of an
image corresponds to its Fourier transform magnitude mapped in the log-polar
space. The magnitude of the Fourier transform is invariant to shifts and the log-
polar space maps rotation and scaling into horizontal and vertical shifts (Gibson
et al. 2001).

For subpixel displacements between the images, the delta function of the PC is
spread over a small neighborhood, corresponding to a Dirichlet kernel (Foroosh
et al. 2002). The zero-padding of the normalized cross power spectrum Rðg; nÞ; as
suggested by (Marcel et al. 1997), involves the inverse Fourier transform of a large
matrix. A computationally costless approach for subpixel accuracy is the inter-
polation of the peak position using its neighborhood pixels values (Gibson et al.
2001). Let the maximum peak subpixel position be PCðx0 þ Dx; y0 þ DyÞ:

Dx ¼ PCðx0 þ 1; y0Þ � PCðx0 � 1; y0Þ
PCðx0; y0Þ þ PCðx0 þ 1; y0Þ þ PCðx0 � 1; y0Þ

ð3Þ

Dy ¼ PCðx0; y0 þ 1Þ � PCðx0; y0 � 1Þ
PCðx0; y0Þ þ PCðx0; y0 þ 1Þ þ PCðx0; y0 � 1Þ ð4Þ

In real situations, the PC result is noisy from image non-rigid distortions and
temporal differences, and can result in a wrong location of the maximum peak.
However a concentration of high-values are present in the neighborhood of the real
peak location. Therefore the peak localization is improved by low-pass filtering the
PC with a Gaussian kernel (standard deviation of the Gaussian low-pass filter set to
2 pixels for all the experiments with a PC size of 1,024 9 1,024 pixels). A PC
result is presented in Fig. 1 before and after low-pass filtering.
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2.3 Robust Image Representation

The differences in illumination from the sunlight, weather conditions and sensors
sensitivity disturb the registration process. These changes are mainly concentrated
in the low frequencies of the image and can be attenuated by using a high-
frequency image representation. The gradient representation rI was used by
Argyriou and Vlachos (2004) with the vertical derivative mapped to the imaginary
part. We assessed that this representation was sensitive to changes between the
images and preferred to use the more robust Euclidian norm of the gradient:

Gðx; yÞ ¼ rIj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oxIð Þ2þ oyI

� �2
q

.

The gradient norm representation introduces artifacts in the FMI descriptor,
because of the edges cutted at the image boundaries. This introduces high fre-
quency values in the Fourier magnitude which are alterating the FMI descriptor
and would result in registering the frame of the images. However these artifacts
can be attenuated by applying a Tukey window on the gradient representation
(Vandewalle et al. 2006). The Tukey window is a truncated Gaussian letting
unchanged the central part of the image and attenuating only the borders.

The log-polar transformation, applied on the Fourier transform magnitude of
the gradient norm image, maps the low frequencies into an important part of the
log-polar image. These low frequencies gives not much information on orientation
and are too distorted to be useful for scaling. Reddy and Chatterji (1996) suggested
to use a high-pass filter before the log-polar mapping to discard low frequencies.

2.4 Registration Extrapolation from Inter-Frame Motion

The consecutive frames of a video sequence are highly redundant and extremely
similar. The important overlapping part between two consecutive frames allows
the estimation of motion parameters between them. The motion between con-
secutive frames can be efficiently represented by a rigid transformation (rotation,

Fig. 1 Phase-correlation result before a and after b low-pass filtering. The maximum peak
corresponding to the translation between two images is more accurate after smoothing
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scaling and shifts). Therefore PC can be used between video frames to estimate the
inter-frame motion parameters. This is often used for video blocks motion in video
compression applications (Argyriou and Vlachos 2004), however here we consider
the entire image and not several blocks. The motion between video frames allows
to extrapolate the parameters of previous frame-to-reference image registrations.
Therefore the registration between a video frame and the reference image gets an
accurate initialization from the extrapolated registration parameters of the previous
frame. If important changes occured between a frame and the reference image the
registration between them could rely only on the extrapolated registration
parameters. The next section present a PC score allowing to decide whether the
registration parameters should only be extrapolated or not (Fig. 2).

2.5 A Phase-Correlation Score for Registration Quality
Assessment

The algorithm works at two levels: inter-frame registration (motion estimation
between consecutive video frames) and frame-to-reference registration (registra-
tion of a video frame with a reference image). The inter-frame registration is used
to initialize the frame-to-reference image registration. The maximum peak search
in the PC plane is restricted to a certain window, avoiding to get extreme values
corresponding to incoherent parameters. The search window is defined by the
maximum angle, scaling and translation values estimated possible between two
consecutive frames.

The introduction of a PC score at the frame-to-reference translation level allows
to regulate the registration. The PC score is derived from the normalized PC peak
power. The peak can be spread over several pixels around the maximum (Dirichlet
kernel), as seen in Sect. 2.2 therefore the PC score is defined as

score ¼
P1

i¼�1

P1
j¼�1; jj j6¼ ij j PCðx0 þ i; y0 þ jÞ2
PN

i¼1

PM
j¼1 PCði; jÞ2

ð5Þ

The score reflects directly the quality of the registration. In case of a low score,
under a user-defined limit, the frame-to-reference parameters are discarded and

Fig. 2 Schematic representation of frame-to-frame and frame-to-reference registrations
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only the initial parameters, obtained by extrapolation from the previous frame, are
used for registration.

3 Experimental Setup

Performances of our Robust Phase-Correlation algorithm using Motion Estimation
(RPCME) have been assessed and compared in an experimental setup made of two
airborne videos and airborne reference images from GeoEye at high-resolution
(*50 cm). One reference image and the corresponding video frames registered are
represented and overlayed in Fig. 3.

The airborne videos were taken at constant altitude with a fixed field of view.
They have an angle of view close-to-vertical and have been corrected for per-
spective distortion (some residual distortions are remaining in video n�2 from
inaccurate angle of view information). The video camera has a single panchro-
matic band ranging up to near-infrared wavelengths with a resolution of
567 9 720 pixels resulting in pixels with a resolution around 50 cm and a
monochrome depth of 8 bits. The sensitivity to near-infrared gives an appearance
not similar to the Geoeye products, which is important to assess the robustness of
our algorithm to different sources.

The video n�1 is a straight flight over agricultural fields and roads with a cloud
partially covering frames 20–50. The video n�2 is a right-turning flight over urban
and agricultural areas with important urban changes between frame 15–25: (Fig. 3).

The RPCME algorithm is compared with the Mutual Information maximization
algorithm (MI), having an important robustness to multi-sources images
(Lu et al. 2008).

Both RPCME and MI have the same initializations from registration parameters
extrapolated using the inter-frame motion estimated by phase-correlation. There-
fore, only the frame-to-reference registration changes between the two algorithms

Fig. 3 Reference image (left), video n�2 frames (middle) and overlay of the registration (right)
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and the image representation (pixel intensities for MI). The MI algorithm always
perform a frame-to-reference registration since the regulation is done using the PC
score.

The registration positions and orientations are compared with a flight track
obtained from coarse GPS flight positions. Hence the position accuracy assessment
can only be done on the across-track position.

4 Experimental Results

In Fig. 4, the position of the registered frames from video n�1 are compared
relatively to the flight track. RPCME is extremely robust to the cloud partial
occlusion between frames 25 and 50 compared to the MI algorithm. The frames
having a PC score lower than the score limit, can be observed in light blue dots.
Already between the frames 25 and 35 the RPCME is more accurate than MI,
without resorting to regulation (score above the score limit). This robustness is
obtained from the gradient norm representation of the images. In Fig. 5, the
influence of the score regulation on the position error can be well observed. The
score regulation avoids the position error to increase when the cloud is present by
stopping the frame-to-reference registration.

The position accuracy in video n�2 is equivalent for both algorithms, except the
position error increasing for the RPCME algorithm from frame 15–20 (Fig. 6).
Some perspective distortions that could not be corrected between these frames led
to inaccurate registration positions. The errors common to both algorithms
observed between frames 20–40 are due to the flight track interpolation (Figs. 6
and 7).

Concerning the orientation accuracy, the RPCME algorithm is more accurate
along the flight than MI (Fig. 8). After the frame 20 the MI algorithm cannot get
back the correct orientation and propagates an orientation error through the frames.
It is important to notice that the reference orientation can be locally less accurate,
since derived from the interpolated flight track. The end of the flight is over
agricultural land having less distinct structures causing trouble to the algorithms to
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Fig. 4 Video n�1 registration results: position of the registered frames with RPCME and MI
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Fig. 5 Video n�1 registration results: RPCME position errors with and without score regulation
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Fig. 6 Video n�2 registration results: position of the registered frames with RPCME and MI
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Fig. 7 Video n�2 registration results: 2D view of the position of the registered frames
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get an accurate position and orientation. A visual assessment of the accuracy
between RPCME and MI on Red-Green overlays is presented in Fig. 9.

The main limitation are still coming from the presence of structures in the data.
Our RPCME method is pixel-based but exploit the gradient norm of the images
which keeps only structure in the data. This is a tradeoff between multisource
robustness and the required amount of distinct features in the images.

In terms of computation time, RPCME is performing more than five time faster
than MI. RPCME requires 8 FFT ? 4 FFT-1 ? 2 rotations ? 4 log-polar inter-
polations. This shows the potential for implementing this algorithm in hardware
for near-real time registration. The RPCME algorithm shows accurate position for
most of the registered frames and is very accurate on frame orientation compared
to the MI algorithm.

5 Conclusion

We have presented how Phase-Correlation (PC) can be used for the registration of
airborne video frames with a reference image from a different sensor in the
presence of temporal changes. The robustness is obtained from an enhanced image
representation based on the gradient norm, from a low-pass filtering of the phase-
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Fig. 8 Video n�2 registration results: orientation errors of the registered frames

Fig. 9 Video n�1 frame 26: registration results for a RPCME, b MI. Video n�2 frame 25:
registration results for c RPCME, d MI

46 F. de Morsier et al.



correlation and from the extrapolation of the registration parameters between video
frames to initialize or replace the video-to-reference registration when not reliable
(indicated by a low Phase-Correlation score).

Globally, the Robust Phase-Correlation registration using Motion Estimation
(RPCME) algorithm shows robustness and good accuracy to multi-sources images
with the advantage of being a fast, non-iterative method. This combination of
rapidity and robustness can be particularly interesting for the registration of videos
from unmanned aerial vehicles (UAV), allowing some further on-board post
processing of the images. It would be particularly interesting to test the algorithm
on more airborne videos having higher groundtruth accuracy for a better
assessment.

Further perspectives are on the automatic tuning of the score threshold limit,
based on the images content and the extension to other types of image modalities.
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