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ABSTRACT

MOTION ESTIMATION AND VIDEO CODING

by
Xiaochun Xia

Over the last ten years, research on the analysis o f v isua l m o tion  has come to 

p lay a key role in the fields o f da ta  compression for visua l com m un ica tion  as well as 

com puter vision. Enorm ous efforts have been made on the design o f various m otion  

es tim a tion  a lgorithm s.

One o f the fundam enta l tasks in  m otion es tim a tion  is the accurate measurement 

o f 2-D dense m otion fields. For th is  purpose, we devise and present in th is  d issertation 

a m u lt ia ttr ib u te  feedback com puta tiona l fram ework. In th is  fram ew ork for each 

p ixe l in an image, instead o f a single image in tensity , m u lt ip le  image a ttr ib u te s  are 

com puted as conservation in fo rm a tio n . To enhance the es tim a tion  accuracy, feedback 

technique is applied. Besides, the  proposed a lgo rithm  needs less d iffe re n tia tio n  and 

thus is more robust to various noises. W ith  these features, the es tim a tion  accuracy is 

im proved considerably. E xperim ents  have dem onstrated th a t the proposed a lgorithm  

outperform s most o f the ex is ting  techniques tha t com pute  2-D dense m o tion  fields 

in  term s o f accuracy.

The estim ation  o f 2-D  b lock m otion  vector fields has been dom inant among 

techniques in  exp lo iting  the  tem pora l redundancy in  video coding ow ing to  its 

s tra igh tfo rw ard  im p lem en ta tion  and reasonable perform ance. B u t b lock m atch ing is 

s t i l l  a com puta tiona l burden in real tim e  video compression. Hence, effic ient block 

m atch ing  techniques rem ain in  dem and. Existing  block m atch ing  m ethods inc lud ing 

fu ll search and m u ltire so lu tion  techniques treat every region in  an image dom ain 

in d isc rim ina te ly  no m a tte r w hether the region contains com plica ted  m o tion  or not. 

M o tiva ted  from  th is observation, we have developed two thresho ld ing  techniques for 

b lock m atching in video coding, in which regions experiencing re la tive ly  un ifo rm
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m otion  are w ith h e ld  from  fu rthe r processing v ia  thresho ld ing , thus saving com pu­

ta tio n  d ra s tica lly . One is a thresholding m u ltire so lu tio n  block m atching. Extensive  

experim ents show th a t the proposed a lg o rith m  has a consistent perform ance fo r 

sequences w ith  d iffe rent m otion com plexities. I t  reduces the  processing tim e  ranging 

from  14% to  20% w hile  m a in ta in ing  alm ost th e  same q u a lity  o f the reconstructed 

image (o n ly  abou t 0.1 dB loss in PSNR). com pared w ith  the fastest ex is ting  m u ltire s ­

o lu tio n  techn ique. The o ther is a th resho ld ing  h ie rarch ica l block m atch ing where 

no p y ra m id  is a c tu a lly  formed. Experim ents in d ica te  tha t for sequences w ith  less 

m o tion  such as videoconferencing sequences, th is  a lg o rith m  works faster and has 

much less m o tio n  vectors than the th resho ld ing  m u ltire so lu tion  block m a tch ing  

m ethod.
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CHAPTER 1 

INTRODUCTION

The m o tio n  e s tim a tio n  from  image sequences is o f  cruc ia l im portance in  im age 

sequence processing [2]. Over the past two decades, enormous efforts have been 

made on the  design o f a lgorithm s tha t ex trac t m o tio n  in fo rm a tion  from  a sequence 

o f images [6] [34] [60].

One fie ld  in  w h ich  m o tion  estim ation  plays a dom ina n t role is com pute r vis ion 

[48]. the  u lt im a te  goals o f which are vision system s w ith  the a b ility  to  discern 

objects, ascerta in  th e ir  m o tion , and navigate in  3-D  space. Such vision systems are 

required in  app lica tions  such as the autom atic  tra c k in g  and recognition o f m oving  

objects in  tra ffic  m o n ito r in g  and defense research, the  autonomous nav iga tion  o f 

m obile  vehicles, the  inspection o f moving objects in  robotics , the in te rp re ta tio n  and 

p red ic tion  o f a tm ospheric  process from  sa te llite  im age sequences. The fundam enta l 

problem  in  these app lica tions is the ex trac tion  o f 3-D  m otion  and s tru c tu re  in fo r­

m ation  to  p red ic t the position  and o rien ta tion  o f the  m oving ob jec t(s ). In  th is  

process, the d e te rm in a tio n  o f 2-D m otion  fie ld, a p ro jec tio n  o f the 3-D m o tion  o f 

objects on to  the  im age plane, is considered to  be an essential step.

The o the r fie ld  in which m otion es tim a tion  is a v ita l issue is video coding 

[21]. the task o f w h ich  is data compression for the  transm ission or storage o f image 

sequences. The  dem and fo r image transm ission and storage has g rea tly  increased 

due to  factors such as the increased a va ilab ility  o f personal workstations, m u ltim e d ia , 

and the in fo rm a tio n  society requiring  more com m un ica tion . The app lica tion  o f visua l 

com m unica tion  ranges from  the low b it-ra te  transm iss ion  o f videophone, v ideocon­

ference to  the h igh  b it-ra te  transm ission o f d ig ita l T V  and H D T V . The a pp lica tio n  o f 

d ig ita l image storage system involves the storage o f  m ed ica l images, sa te llite  images 

and etc. The com m on problem  of these app lica tions is the transm ission o r storage

1
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of image sequences as effic ient as possible at a ce rta in  accepted loss o f im age q ua lity . 

The inclusion o f m o tio n  models is one o f the  most recent im p o rta n t developm ents 

in  video coding fie ld  [34]. W ith o u t m otion  com pensation, it  would be im possib le  to 

ob ta in  a reasonable q u a lity  image at a low o r very low transm ission b itra te s  [26]. 

In the most recent in te rna tio na l video compression standards [42], m o tio n  com pen­

sation has been u tiliz e d  as a powerful too l to  reduce the  tem pora l redundancy o f 

video images.

In add itio n  to  the  fields o f com puter v is ion  and video coding, m o tio n  es tim a tion  

technique has a va rie ty  o f o ther app lications in  image sequence processing [28]. For 

instance, by e s tim a tin g  m otion  fie ld, we can create a new image fram e between 

two adjacent ex is tin g  frames through in te rp o la tio n . By m otion  e s tim a tio n , we 

can estim ate  the  m o tio n  fie ld and id e n tify  regions in  d ifferent frames when image 

in tensities are expected to  be the same or s im ila r. Tem poral f ilte r in g  can then be 

perform ed in these regions for image restoration .

In  the various areas ou tlined  above, the com m on problem  invo lved is the  com pu­

ta tio n  o r es tim a tion  o f m otion  from  a sequence o f images recorded from  a 3-D scene. 

Because o f the great im portance  o f the m o tion  es tim a tion , various a lg o rith m s have 

been developed to  com pute  3-D and 2-D m o tio n  from  image sequences fo r the  w ide 

range o f app lica tions since early  70s. and others continue to appear.

Th is  d isserta tion  is m a in ly  concerned w ith  the design of 2-D m o tio n  es tim a tion  

a lgorithm s w ith  a pp lica tion  in  the areas o f com pute r vision and video coding.

1.1 Motion Estimation and Computer Vision

The research on com pute r vision is m otiva ted  by a broad set o f app lica tions such as 

robotics, autom ous nav igation, track ing  o f m oving  ob ject and etc. For such a p p li­

cations. vision systems have to ex trac t the m o tio n  and s truc tu ra l in fo rm a tio n  about 

the 3-D scene. The  results o f th is firs t step o f processing are then used for h igher

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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F ig u re  1.1 The  recovery o f 3-D s truc tu re  and m otion  o f scene
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levels tasks such as nav iga tion  in  the environm ent, m a n ipu la tio n  o f objects, and 

object recognition as well as scene in te rp re ta tion . To ob ta in  the  s tru c tu re  and m otion  

in fo rm a tion  o f the  3-D scene, we resort to  the 2-D images.

I f  an ob ject is m oving  in  the 3-D scene, its  3-D pos ition  and o rie n ta tio n  w ill 

change in  tim e . Due to  the  p ro jec tion  o f the 3-D scene onto  the  im age plane, these 

changes w ill be reflected in  the  image plane as well. Th is  means tha t the  re la tive  

m otion  between objects in  a 3-D scene and a camera gives rise to  m o tion  o f objects 

in a sequence o f images. Hence, we usually derive the 3-D m o tion  o f the objects in 

the scene th rough  the  analysis o f the m otion  in fo rm a tion  associated w ith  objects in 

the sequence o f images.

F igure 1.1 gives a func tiona l description o f the process o f recovering 3-D 

m otion  and s tru c tu re  from  image sequences [46]. As shown, there are tw o  d is tinc t 

approaches: feature correspondence approach and op tica l flow  approach. In each 

one o f these approaches, there are two stages: measurement and in te rp re ta tio n .

In feature correspondence approach, the measurement stage is responsible for 

iden tify in g  a set o f d is tin c tive  2-D features in  two o r more frames o f an image sequence 

and m atching them  across the  images. The ou tpu t o f the m easurement stage gives 

the position o f various features in  a set o f images. The in te rp re ta tio n  stage uses th is 

results to  derive the 3-D position  o f a ll the points tha t correspond to the features 

and velocities o f the  rig id  objects tha t contain these points. In  essence, th is  approach 

provides 3-D in fo rm a tio n  fo r on ly  a sparse set o f points.

In op tica l flow approach, the measurement stage involves construc ting  a 2- 

D op tica l flow fie ld from  an image sequence. O p tica l flow can be regarded as an 

approx im a tion  to  a 2-D m o tion  fie ld tha t depicts the p ro jec tion  o f the  3-D m otion  of 

the scene. The in te rp re ta tio n  stage takes the op tica l flow fie ld  as its  in p u t to  extract 

in fo rm a tion  about the depth and the ve locity o f every po in t in the 3-D scene.
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O ptica l flow approach usually computes 2-D m o tio n  fie ld  along a p ixe l g rid . 

There is no need fo r feature e x trac tion  and m atch ing . However, they  face fo llow ing 

problems. F irs t, m o tio n  es tim a tion  by the op tica l flow approach can be affected by 

aperture problem . T he  apertu re  problem  means tha t w h ile  co m p u tin g  the m o tion  

for a given p ixe l, o n ly  the  com ponent o f the m otion  vecto r norm a l to  the  underly ing  

contour can be u n ivo ca lly  de term ined by using in fo rm a tio n  in  a sm a ll neighborhood 

o f the p ixe l. G enera lly, the  aperture  problem  exists in  regions o f an image tha t 

have s trong ly  orien ted  in ten s ity  gradients, say edges. Since the m o tio n  es tim a tion  by 

op tica l flow approach is usua lly  carried out in  a sm all sp a tia l-te m p o ra l neighborhood 

o f a p ixe l under considera tion , the aperture problem  is inherent in every op tica l flow 

techniques. To overcom e the  aperture  problem , neighborhood in fo rm a tion  should 

be u tilize d . Second, to  pursue a close approx im ation  to  the  true  2-D m otion  fie ld, 

op tica l flow approach u tilizes  very sophisticated m a them atica l too l and as a resu lt, 

needs an enormous am ount o f com puta tion . T h ird , in image acqu is ition  and d ig it i­

zation. noises may be generated. Th is noise can affect the accuracy o f op tica l flow 

com puta tion . For instance, gradient-based technique can suffer from  h igh noise sensi­

t iv i t y  because o f th e ir  dependence on spatia l-tem pora l gradients. Fourth , since the 

in terfram e m otion  is res tric ted  to  be sm all, the estim ated  m o tion  is lim ite d  w ith in  

sm all range.

Feature correspondence approach allows e ithe r sm a ll o r large m o tion , it  does 

not suffer from  the p rob lem  o f varying image in ten s ity  since the  d is tin c t features 

is re la tive ly  m ore s tab le  than  in tens ity  values. However, th is  approach also has its 

problems. The tasks o f e x tra c tin g  features and estab lish ing feature correspondence 

are n o n tr iv ia l, so fa r o n ly  p a rtia l solutions su itab le  fo r s im p lis tic  s itua tions  have been 

developed [2].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T ra n sm itte r

Source

images

Channel

R econstructed

Images
Image decoder

Channel encoder

Channel decoder

Image encoder

Receiver

F ig u re  1 .2  A typ ica l system for image com m unication

The firs t part o f th is  d issertation research is about the 2-D m otion  e s tim a tion  

by using the op tica l flow approach. In F igure  1.1. th is  work can be classified in  the 

lower le ft box.

1 .2  M o t io n  C o m p e n s a t io n  a n d  Im a g e  C o d in g

Recently, the  need for image com m unication  and image storage has been g row ing 

enorm ously. The key problem  o f these tw o app lica tions is to  m in im ize  the am ount o f 

in fo rm a tion  necessary to  adequately represent represent an image. F igure 1.2 shows 

a typ ica l system  for image com m unication [28]. The d ig ita l image is encoded by an 

image encoder. The o u tp u t o f the image encoder is a s tring  o f b its tha t represents the 

source image. The channel encoder transform s the s tring  o f b its to a form  su itab le  

for transm ission over a com m unication channel th rough some form  o f m o d u la tio n . 

The m odula ted  signal is then tra nsm itte d  over a com m unication  channel. A t the 

receiver, the received signal is dem odulated and transform ed back in to  a s tr in g  o f
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b its by a channel decoder. The image decoder reconstructs the im age from  the 

s trin g  o f b its . In contrast to  the com m un ica tion  app lica tion  described in  F igure 

1.2. no com m un ica tion  channel is invo lved  in  app lica tion  o f image coding fo r storage 

purpose. In  storage applications, the s tr in g  o f b its  from  the image encoder is stored 

in  proper fo rm a t on a recording m ed ium , ready fo r fu tu re  re trieva l.

For b o th  applications, the conventional coding scheme like  p red ic tive , transfo rm  

and in te rp o la tiv e  coding strategies can create an annoying flicker o r je rk iness when 

the reconstructed frames are displayed as a video sequence, which is a sequence 

o f s t i l l  frames th a t are displayed in a rap id  succession. In a d d itio n , b lu rr in g  in 

the m oving  boundary may also appear. These d is tortions can be la rge ly  reduced 

by using m a them a tica l models describ ing the m otion  of objects. T he  fram e rate 

necessary to  achieve proper m otion ren d itio n  is usually high enough to  ensure a 

great deal o f tem pora l redundancy am ong adjacent frames. M uch o f the  va ria tion  in 

in ten s ity  fro m  one frame to the next is due to  ob ject m otion. C onsidering the m otion  

in fo rm a tio n  ex trac ted  from  the image sequence, we can im prove the  effic iency o f the 

image sequence coding. Compression image sequence accounting for the  presence o f 

m o tion  is referred to  as m otion-com pensated (M C ) image sequence coding. I t  should 

be noted th a t m o tion  compensation consists o f two steps. The firs t step involves a 

2-D m o tion  es tim a tion  technique which predicts the m otion o f an ob jec t between 

frames. T he  second step uses the estim ated  m otion  vector o p tim a lly  to  provide 

m otion  com pensation at the decoder, w ith  a m in im um  amount o f da ta  tra nsm itte d .

In m otion-com pensated pred ic tive  coding, the current fram e is p red ic ted  from  

the previous fram e by estim ating  the m o tion  between the two frames and com pen­

sating fo r the  m otion . The difference between the current frame and the  p red ic tion  

o f the cu rren t fram e is called the m otion-com pensated p red iction  ( M C P )  error. To 

the exten t th a t the in tens ity  change between the current and previous frames is 

due to  m o tio n  and tha t the m otion  can be estim ated accurately, the e rro r obta ined
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by using m o tio n  compensation w ill have sm a lle r m agnitude than the in tensities o f 

o rig in a l image. As a result, a sm aller num ber o f coding b its w ill be required  w ith  

m o tio n  com pensation than they would w ith o u t m o tion  compensation.

There  are tw o kinds o f schemes in  im p lem en ting  M C  predictive  coding as shown 

in  F igures 1.3 and 1.4. tha t is. forw ard  M C  p red ic tive  scheme and backw ard M C  

p re d ic tive  scheme [14]. In the forw ard  M C  p red ic tive  scheme in  F igure 1.3. the 

m o tion  e s tim a tio n  is perform ed on the cu rren t fram e and the reconstructed previous 

fram e. Since the  current frame is not availab le at the  decoder, the m otion  in fo rm a tio n  

has to  be tra n sm itte d . This scheme can give an adequately estim ated m o tio n , but 

the  lower bound o f the b itra te  is de te rm ined  by the  m otion  in fo rm ation  to  be trans­

m itte d . To reduce the amount o f m o tion  vectors tra nsm itte d , block-based m otion  

com pensation a lgorithm s are used to  compensate m o tion  in th is  scheme. In  backward 

M C  p re d ic tive  coding scheme in F igure 1.4. m o tion  es tim a tion  is perform ed on ly  on 

the  reconstructed frames. Therefore, th is  coding scheme does not require the  trans­

m ission o f any m otion  in form ation . Therefore, pel-based m otion com pensation is 

app lied  here. However this scheme has its  own disadvantage, too. The  decoder 

grows m ore com plex since it has to  conta in  a m o tion  estim a tion  u n it, and the  coding 

e rro r also g re a tly  influences the es tim a tion  accuracy o f the m otion fie ld.

A lth o u g h  a c r it ic a l evaluation o f forw ard  versus backward scheme using the 

same b itra te  has not yet been reported, the forw ard  M C  scheme has dom ina ted  

the  m o tio n  com pensation employed and has been recommended by m any video 

com pression standards.

T he  second part o f this research deals w ith  block-based m otion e s tim a tion  for 

forw ard  M C  p red ic tive  coding, which corresponds to  the m otion es tim a tion  box in 

F igure  1.3.
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1.3 Dissertation Overview

This chapter (C hap te r 1) introduces general background o f m y research work and 

the rest parts o f the  d isserta tion  are organized as follows.

In  C hapte r 2. we give a b rie f overview o f some representative m o tion  estim ation  

techniques and evaluate th e ir performances. To meet the  needs o f d iversified 

requirem ents in  d iffe ren t app lica tion  areas, numerous m o tion  es tim a tion  a lgorithm s 

have been presented in  the  lite ra tu re . For com puter vis ion a pp lica tion , m any tasks 

require tha t the com puted m otion  fie ld be accurate and dense, p rov id ing  a close 

app rox im a tion  to  the true  2-D m otion  field. W h ile  for im age coding app lica tion , 

m any visual app lica tions require tha t coding a lgorithm s be im plem ented in real 

tim e . The  com pu ta tiona l com p lex ity  is an im p o rta n t fac to r in  the derivation  o f 

m o tion  es tim a tion  a lgorithm s. In th is  chapter, we firs t review  m a jo r re lated optica l 

flow es tim a tion  techniques from  the past research, i.e.. gradient-based technique, 

corre lation-based technique and m u ltip le  a ttr ib u te  technique. Then, two m ain 

classes o f m o tion  es tim a tion  a lgorithm s in video coding area, nam ely block-based 

approach and pel-recursive approach, are summarized.

In  C hapte r 3. based on an analysis of both  advantages and disadvantages o f 

tw o new ly  developed a lgorithm s by Weng et al. [52] and Pan et al. [40]. we present 

a m u lt ia t tr ib u te  feedback approach to  determ ine op tica l flow fie ld. In th is  approach 

for each p ixe l in  an image plane, instead o f a single image a ttr ib u te  (im age in tens ity ), 

m u ltip le  m o tion  inva rian t image a ttribu tes  are com puted as conserved in form ation . 

The es tim a tion  o f o p tica l flow is carried out in  two steps, i.e.. conservation step and 

propagation step. Feedback technique is u tilized  to  enhance the  es tim a tion  accuracy. 

F in a lly , we present experim ents perform ed on three testing  sequences to show the 

su pe rio rity  o f the  presented a lgo rithm  over the most o f the ex is ting  a lgorithm s in 

com puting  op tica l flow fie ld  in  term s o f estim ation  accuracy.
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The next tw o  chapters are devoted to  two new thresho ld ing  techniques for block 

m atch ing  u tiliz e d  in  video coding. M o tion  co m p lex ity  fo r d iffe ren t regions w ith in  

an image is usua lly  d iffe ren t. Regions experiencing com plex m o tio n  deserve more 

com puta tiona l resources than  those w ith  slow m o tion . Based on th is  observation, we 

w ith h o ld  regions conta in ing  re la tive ly  un ifo rm  m o tion  fro m  fu r th e r processing via 

threshold ing, thus saving com puta tion .

In  C hap te r 4. we present a new thresho ld ing  m u ltire so lu tio n  b lock m atching 

a lgo rithm , in  which thresho ld ing  technique is applied to  m u ltire so lu tio n  block 

m atching. In  extensive experim ents w ith  qu ite  d iffe ren t m o tion  com plexities, the 

developed a lg o rith m  outperform s the fastest ex is ting  m u ltire so lu tio n  b lock m atching 

a lgo rithm  w h ile  m a in ta in in g  almost the same q u a lity  o f reconstructed images.

In C hapte r 5. we show deta ils o f our new ly developed th resho ld ing  h ierarchical 

block m atch ing  a lg o rith m . In th is  a lgorithm , a ll levels in  a h ie rarchy have the same 

resolution. No m u ltire so lu tion  pyram id  is form ed. E xperim ents have dem onstrated 

tha t for videoconferencing sequences, th is a lg o rith m  ou tperfo rm s the fastest existing 

m u ltireso lu tion  b lock m atch ing  a lgo rithm  w hile  m a in ta in in g  a lm ost the  same q ua lity  

o f reconstructed images.

In  C hapte r 6. we sum m arize the results o f the  research presented in  th is  disser­

ta tion  and o u tlin e  the fu rth e r questions which can be considered as the  subjects of 

our fu tu re  research.
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CH APTER 2 

M AJOR RELATED 2-D M OTION ESTIMATION APPROACHES

The strong  in terest in  estim ation  o f m o tio n  from  image sequences is m o tiva ted  by 

its  various app lica tions. These broad applications have d iffe rent requirem ents on 

the m o tio n  es tim a tion  a lgorithm s, w h ich  include the predefined e s tim a tion  accuracy, 

co m p u ta tion a l com plexity , econom ical feasib ility . In  th is  chapter, we w il l give a 

deta iled  descriptions to some m o tion  es tim a tion  a lgorithm s th a t are re la ted  to  this 

research.

In Section 2.1. m otion  es tim a tion  by op tica l flow is discussed, and three specific 

a lgo rithm s upon which the firs t pa rt o f  the  thesis work is based are in troduced. In 

Section 2.2. tw o groups of m o tion  e s tim a tio n  approaches developed for video coding 

are presented, the most im p o rta n t a lgo rithm s o f these two groups are dealt w ith  in 

Sections 2.2.1 and 2.2.2. respectively.

2.1 Motion Estimation - Optical Flow Determ ination

The o p tica l flow approach usua lly com putes 2-D m otion  fie ld on an image grid. 

There is no need fo r exp lic it feature e x trac tion  and m atch ing . I t  can p o te n tia lly  

derive dense dep th  maps for tasks such as 3-D structure  and m o tion  analysis. Much 

o f the cu rren t w ork in the co m pu ta tion  o f op tica l flow can be classified as one o f 

the th ree  categories: gradient-based techniques [20] [31][3oj[50]. corre lation-based 

techniques [3][46][40] and spa tio -tem pora l energy based techniques [18 ][o l],

2.1.1 Gradient-based Techniques

The gradient-based techniques are based on the assum ption th a t for a given 3-D 

scene p o in t, the in tens ity  /  at the corresponding po in t image point rem ains constant 

over tim e . T h a t is. i f  a 3-D scene p o in t projects onto the image po in t ( x . y )  at tim e

13
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t and on to  the image point (x +  A x . y  +  A y)  a t t im e  (t -f- A / ) ,  we can w r ite

I{x.  y . t )  =  [ ( x  +  A  x . y  +  A  y . t  +  At )  (2.1)

where I ( x . y . t )  is the image in tens ity  at the p o in t { x . y )  in  the image at t im e  t. Th is

equa tion  is called in tens ity  constant equation.

E xpand ing  the  righ t-hand side by a T a y lo r series about (x . y . t ) and ignoring  

the second and h igher order term s, we ob ta in

81  81 8 1
/ ( x +  A  x . y  -fi A  y . t  +  A t )  =  I { x . y . t )  +  A x —  +  A y —  +  A t —  (2.2)

o x  ay  a t

C o m b in in g  the two equations results in  the  fo llo w in g  expression:

D iv id in g  th roughou t by A f .  tak ing  the l im it  as A i  ->  0 and denoting the  p a rtia l 

deriva tives o f I  by [x . [ y. and I t . we get the in te n s ity  constant constra in t

Ixu +  Iyv +  It =  0 ( - - I )

where u =  ̂  and v =  i '  =  ( u . v ) is the flow  vector associated w ith  the  po in t

under consideration. The co llection  o f flow vectors U  =  {u. v )  for the e n tire  image 

c o n s titu te  the op tica l flow fie ld  for the  image.

E qua tion  (2.4) embodies two unknowns u and v.  and is not suffic ient by its e lf 

to  specify  the o p tica l flow uniquely. B u t. it  does constra in  the solution. To com pute  

o p tica l flow  for images using th is  constra in t equa tion , some add itiona l assum ptions 

m ust be made.

2.1.1.1 Horn and Schunck’s Approach H orn  and Schunck [20] assumed tha t 

the  o p tic a l flow fie ld varies sm ooth ly  across an im age plane. A smoothness e rro r . 

denoted bv E s m .  is defined as

E s m =  J  J ( \  V  “ I2 +  i V  t f VE- d y
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where V  stands for gradient opera tion . From  the smoothness assum ption , the 

smoothness e rro r E s m  should be sm all.

A n  in te n s ity  e rror. E i n t .  is defined as

Eint =  J  J  ( V ^ -  +  h ) 2dxdy  (2.6)

From the in ten s ity  constant constra in t in  E qua tion  (2.4). the  in te n s ity  e rro r should

be sm all, too.

The problem  o f com puting  a dense o p tica l flow fie ld  is defined as th a t o f 

m in im iz in g  a weighted sum o f the  tw o errors.

J  J [ ( S 7 l  ■ E  +  It )2 +  a 2{\ S? u\2 +  \ S7  r \ - ) }dxdy  (2.7)

where a 2 determ ines the re lative co n tribu tio ns  o f the two errors. H orn  and Schunck

derived an ite ra tive  m ethod to ca lcu la te  the o p tica l flow by

k + 1  - k  +  I y L '  ' +  I t ]

“  =  “ --------------- p T p ----------
r  ' y

k + 1  - k  I ’j [ I r Ll +  l y  C +  I t ]  ( 0  S i

n  +  q

where k  denotes the ite ra tion  num ber. u° and v° denote in it ia l ve lo c ity  estim ate  

which is set to  zero, and uk and c k denote neighborhood averages o f uk and c k.

Horn and Schunck were among the  firs t to  estim ate a 2-D dense m o tio n  fie ld  by

using the o p tica l flow approach. T h is  a lg o rith m  has a very fast convergence speed. 

The p rim a ry  d ifficu lties  w ith  th is  a lg o rith m  are:

1. I t  is on ly  su itab le  when the d isplacem ents are small respect to  the  scale o f the 

image in tens ity  variations. In  a d d itio n , any change in  illu m in a tio n  o r contrast 

between frames can cause the in te n s ity  constancy assum ption to  be v io la ted .

2. Th is m ethod heavily depends on the  gradient ca lcu la tion , as ind ica ted  in 

E quation  (2.8). Due to noises in  d ig itize d  images, it  is im possible to  accurate ly
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the p a rtia l derivatives (Ir . Iy. and It ) and hence, th is  approach is sensitive to 

various noises

3. Horn and Schunck's smoothness constra in t m ay not be va lid  at image m otion  

boundaries.

2.1.1.2 N agel’s Approach The same as Horn and Schunck's a lgorithm . Xagel 

[35] also fo rm u la ted  the problem  o f com puting  an o p tic a l flow as tha t o f m in im iz in g  

the  sum o f an in ten s ity  e rro r Eint and a smoothness e rro r E STr.- He observed tha t 

smoothness e rro r E sm used by Horn and Schunck sm ooths out the flow field o m n id i­

re c tio n a lly  in  a ll d irections. The te rm  corresponding to  smoothness e rro r in  Horn 

and Schunck's fo rm u la tion  (E quation(2 .o )) can be re w ritte n  as

Esm =  J  J  t race{ { Sj U) T{ \ j l ' ) d x d y  (2.9)

The V  te rm  expresses the partia l derivatives o f the  tw o  com ponents o f ve loc ity  in  a 

m a tr ix  form

vf = ( I 1 ) (2.10)
V : >y -Iy )

Xagel m od ified  the smoothness e rro r asO

Es m =  J  f  t r a c e ( ( \ / E ) TW(S7i ' )dxcl!j  (2.1

where IT  is a 2 x 2  positive-defin ite  m a tr ix  defined as follows:

F
IT  = ---------- —  (2.12)

t race{F)

w ith

p _ ( Iy + 32(Iry + Iyy) - / r / y  -  32Iry([rx ~ I,jy) \

t  - \ - i j y - 3̂ l y ( i xr +  i yy) r;  +  32(i'-T + i ' 2ry) J l - L >
The change in  smoothness error - tha t is. se ttin g  IT  =  F j t r a c t ( F )  instead o f 

an id e n titv  m a tr ix  used bv Horn and Schunck - has the fo llow ing effect. In regions
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w ith  strong second-order in te n s ity  variations, say corners, the smoothness constra in t 

is enforced very weakly and the  flow  fie ld  is allowed to  be nonsm ooth. F u rthe r, in the 

v ic in ity  o f edges, the smoothness constra in t is enforced s tro n g ly  along the  d irec tion  

o f the unde rly ing  contour and weakly across the contour. Because o f these features. 

Xagel term ed his smoothness constra in t an oriented smoothness constra in t.

Nagel's approach overcomes the drawbacks o f Horn and Schunck's smoothness 

constra in t. T h a t is. it  does not b lu r the flow fie ld at m o tio n  boundaries and it 

gives the flow  fie ld everywhere, not ju s t at the contours. However, it  has p rac tica l 

lim ita tio n s . I t  is based on the  second-order spatia l p a rtia l deriva tives o f the  image 

in tensity . Noise and quan tiza tion  errors associated w ith  d ig itized  images make the 

com puta tion  o f second-order deriva tive  error prone.

2.1.2 Correlation-based Techniques

In contrast to  the gradient-based techniques where the ca lcu la tion  o f pa rtia l 

derivatives o f image in te n s ity  is required, in  corre lation-based techniques, there 

is no need for num erica l d iffe re n tia tio n . To determ ine a ve loc ity  associated w ith  

a p ixe l under consideration, correlation-based techniques consider a sm all region 

around the p ixe l in  an im age fram e and search fo r the "best m a tch ” among a ll 

possible regions in an adjacent frame. The re la tive  pos ition  o f these tw o corre­

sponding regions gives a flow estim ate. Thus, corre lation-based techniques are less 

sensitive to noises. Since a sm a ll region instead o f a single im age po in t is used w hile  

perfo rm ing  m atch ing, the com puta tion  o f the corre lation-based techniques is very 

tim e  consuming.

In correlation-based approaches, the ve loc ity  C  =  { u . v )  is estim ated  by 

m in im iz in g  a m atch ing  e rro r which is given by

E  =  ^2  ^2  E[I{. r.  y . t ) .  I ( . r + u A t . y  - f  c A / . /  -i- A / ) ]  (2.14)
( - r .y )e /?
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where C [-.- j is a corre la tion  measure th a t indicates the amount o f d is s im ila r ity  

between two argum ents. R  is the  local spa tia l region used to  estim a te  ( u . v ) .  It 

is assumed tha t (u.  v) is constant over the  region R.

The size o f R  is d ic ta ted  by several considerations. I f  i t  is chosen too large, the 

assum ption th a t ( u . v) is app ro x im a te ly  constant over the region R  m ay not be va lid  

and evaluation o f the e rro r expression require  m ore com putations. I f  it  is chosen too 

sm all, the estim ates m ay become very sensitive to  noise. Reasonable choices based 

on these consideration are a 5 x 5  o r 3 x 3  p ixe l region.

There are m any possible choices fo r the  corre la tion  measure C '[-.-]. T h e  most 

com m only used co rre la tion  measures are lis ted  below.

1. D irect co rre la tion , in which the image in ten s ity  values o f the correspond ing 

pixels in the regions R  are m u lt ip lie d  and summed.

2. Mean norm alized co rre la tion , in  which the  average in tens ity  o f each region is 

subtracted from  the in te n s ity  values o f each pixel in  tha t region before m u lt i­

p lica tion  and sum m ing.

3. Variance norm alized co rre la tion , in  w h ich  the corre la tion sum is d iv id e d  by the 

product o f the  variances o f the  in tensities in  each region.

4. Sum of squared differences, in  which the  sum of the square o f the differences 

between the in tensities at corresponding p ixe l is calculated.

•5. Sum of absolute difference, w h ich  is s im ila r to sum o f squared differences, 

except th a t the absolute values o f the differences are used instead o f th e ir  

squares.

2 .1 .2 .1  S in g h ’s A p p ro a c h  In  Singh's approach [46]. the op tica l flow  fie ld  is 

estim ated in tw o  steps: i.e.. conservation step and propagation step.
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In the conservation step, flow vectors are estim ated based on the assum ption o f 

conservation o f local in te n s ity  d is tr ib u tio n . For each p ixe l p( x . y )  at loca tion  ( x . y )  

in the firs t image I \.  a co rre la tion  w indow W c o f size ('In +  1) x  (2n +  1) is form ed 

around the p ixe l. The search w indow W , o f size (2.V +  I )  x  (2.Y +  1) is established 

around the p ixe l at loca tion  ( x . y )  in the second image / 2. For each cand ida te  in  

U's. ( 2 X + l) x ( 2 X + L )  samples o f e rror d is tr ib u tio n  are com puted using the sum -of- 

squared difference (SSD) as

E ( A x . A y )  =  ( E ( x  +  i . y  +  j )  -  h ( x  +  i +  A x . y  +  j  +  A y ) ) ’ (2.15)
i"= — n j  =  — n

where —.V <  A x . A y  <  .V.

Then the (2.Y +  1) x  (2.Y +  1) samples o f response d is tr ib u tio n  are com puted  

as follows:

R c( A x . A y )  =  e - kE(Ax-*y) ( 2 . 16)

where — .V <  A x .  A y <  .Y. k is chosen so as to  make R c(-. ■) vary between zero and 

u n ity  over the entire  range o f error.

An estim ate o f flow vector at the conservation step, denoted by i 'c =  ( uc. r c ) 

where c stands fo r conservation, is obtained by using a so-called weighted least square 

estim ation  technique [46] as follows:

E a x E a ,  R ( A x .  A y ) A x
u.~ =

E a x E a *  R ( A x . A y)

_  E a x E a v  R( A x .  A y ) A y  

l ’C E a x E a  y R ( A x . A y )

where the sum m ation  is ca rried  out over —.Y <  A x .  A y  <  .Y. Each estim ate  g iven

above is associated w ith  a covariance m a tr ix

=

(  H a x  R A ± - Z . ± y ) { ± x - U c ) 2 H a x  S I a . ,  f i f l A x . A j j l A x - u c K A j - L - c l  ^

U ax L 'aj,
f i c ( A x . A i / ) ( A x - U c ) ( A v - L c )  X I a x  H a v  f i c f A x . A y K A y - i v ) -

V E,xL„«^x.AS) J
:2.1s)

The covariance m a tr ix  measures the dev ia tion  o f the estim ate L\. from  the  tru e  

ve locitv and is used as a confidence measure for the estim ate  f  ...
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In the  propagation step, the estim ate  from  the  conservation step is propagated 

by using the  neighborhood in fo rm a tion . The  ve loc ity  estim ate  at th is step, denoted 

by Un =  [un. v n) where n stands for neighborhood, can be derived from  velocities 

L'i =  (u,-. Vi) in its local (2ic +  1) x  (2w  +  1) neighborhood as follows:

J2i Rn{Ui.Vi)Ui
U n  =

2 2 i  R n { U i .  L' i )

v ,  =  (2.19)
2 2 i  R n ( U i .  L ' i )

where both  R n{ui. v t ) and =  (u,-. r ,)  are assumed to  be known in  advance from  an 

independent source. The corresponding covariance m a tr ix  is

S n =

/  f i n ( u , . l . - ,  ) ( l l , - U n ) 2 f i n ( U | - l - ,i ) ( u . - U n ) ( U | - l . - n )  \

£ 2 ,  R n ( u i . l ' i )  5 Z ,  R n ( u . - t ' i )J2, f t n ( u . . f . ) ( u , - U n ) ( t . - | - L ' n )  22,
V 22, ^  )

12. 2 0 )

Also, the  covariance m a tr ix  S n gives a measure o f the  dev ia tion  o f the estim ate  Cn 

from  the true  ve loc ity  and is used as a confidence measure for the estim ate Un.

It is obvious tha t the ve loc ity  estim ates L c and C n are erroneous. The e rro r at 

the conservation step is given by

( U - l ' c)TS : l ( U - U c) (2.21)

w hile  the  e rro r at the propagation step is given by

( t ' - r n)r S - l ( t ' - t ’n) (2.22)

where L~ is the true  ve locity o f the p ixe l under consideration.

The fina l ve loc ity  estim ate. C  =  [ u. v ) .  is dete rm ined  by m in im iz ing  the sum

o f errors o f the conservation step and the propagation step as

J  J [ ( U -  Un)TS~n \ L - - C n) +  ( f  -  L'e )TS - l [ C  -  L'c )]dxdy -  Mi n  (2.23)

Singh derived the estim ate from  th is  equation by using a calculus o f variations 

ite ra tiv e ly  as

=  [ s r '  +  s y r ' l s r ' C .  +  i V T ' f - t ]

t '°  =  C. 12.241
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where I'., and are known from  the conservation step (and fixed) for each p ixe l. 

On the  o ther hand. Cn and S n are derived from  the assum ption th a t the ve locity  o f 

each p ixe l in  the neighborhood is known in advance from  an independent source. In 

practice, th is  assum ption is inva lid . In  his im p lem en ta tion . Singh obta ins and i 'n 

from  the neighborhood ve loc ity  from  the previous ite ra tion .

A  sign ificant co n tr ib u tio n  o f Singh's w ork is an es tim a tion -theo re tic  fram ework 

to  com pute  o p tica l flow. O bserving tha t estim ated op tica l flow cannot be exactly  

the same as true  2-D m o tion  fie ld . Singh treated the problem  o f o p tica l flow recovery 

as th a t o f param eter es tim a tion , where the estim ated param eter is a flow estim ate 

accompanied by a covariance m a tr ix  for each p ixe l in  the image. The second 

m a jo r co n trib u tio n  is tha t S ingh gave a un ified  perspective fo r a ll ex is ting  op tica l 

flow techniques. He showed tha t a ll o f the op tica l flow techniques consist o f two 

d is tin c t step: conservation step and propagation step. The conservation step sets up 

constra in ts based on conservation o f image properties. The propagation step uses 

conservation constra in ts along w ith  some neighborhood in fo rm a tion  to  recover true  

op tica l flow field.

1. L ike a ll o f the  co rre la tion  based techniques, in  Singh's a lg o rith m , the assum ption 

th a t the in te n s ity  d is tr ib u tio n  w ith in  the corre la tion  w indow  rem ains unchanged 

over tim e  can be inva lid  at m otion  boundaries and causes great errors.

2. As ind ica ted  in  E quation  (2.24). the fina l estim ate consists o f two parts. The 

i'c and 5 C are estim ated flow vector and its  associated covariance m a tr ix  which 

are derived from  the o rig ina l image in ten s ity  at the conservation step and are 

fixed for each p o in t, w h ile  Un and Sn are derived from  the previous ite ra tion  by 

using neighborhood in fo rm a tion . Thus, in  Singh's a lg o rith m , the in fo rm a tion  

in  o rig ina l images is u tilize d  on ly  once at the conservation step. A t the propa­

gation  step, the estim ate  is refined repeatedly by e xp lo itin g  the neighborhood 

in fo rm a tion .
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3. In  th is  m ethod , subpixel problem  is not addressed.

2 .1 .2 .2  P a n , S h i a n d  S h u ’s A p p ro a c h  M otiva ted  from  the above discussion 

about the  drawbacks o f Singh's a lg o rith m . Pan et al. [40] developed a co rre la tion - 

feedback approach to com pute the o p tica l flow which enhances the es tim a tion  

accuracy o f o p tica l flow by fu lly  e xp lo itin g  the  in fo rm ation  o f the o rig ina l images. 

Pan et a l.'s  a lgo rithm  consists o f tw o  stages: corre la tion  stage and propagation

stage.

O n the co rre la tion  stage, ve loc ity  is estim ated based on the co rre la tion  in fo r­

m a tio n  between the neighboring images. Let I\ and / 2 denote the image at m om ent 

1 and 2. respectively. Let U n =  ( un. v n) denote the estim ated flow vector at the  n th  

ite ra tio n . Then at the n +  Lth ite ra tio n , fo r each p ixe l p ( x . y )  at loca tion  ( x . y )  in 

the im age U.  a corre la tion  w indow H'c o f  size (2n -f 1) x  (2n 4- 1) is form ed around 

the p ixe l p ( x . y ) .  The search w indow \VS established at the image is o f variable  

size. T he  pos ition  o f the candidates w ith in  W s. denoted by ( A t .  A ij). satisfies the 

fo llow ing

A x  €  ( un ~  un/ 2.  un -  un/ 4. u \  un +  un/4 . un +  un/ 2)

A y  €  ( v n ~  t-7 2 . c n -  c 7 4 .  c \  v n +  cn/A. c n +  i*7 2 ) (2.25)

There  are to ta l 5 x  0  candidates w ith in  l-Fa. For each candidate, the m a tch ing  e rro r 

is com puted  using SSD as

n n

£"( A .r .  Ay/) =  ^ 2  J 2  (l ' i* +  x - j  +  ! j ) ~ f ( i Jr J +  A . r . j  + y  +  A y ) ) 2 (2.2 6)
r = —n y = —n

where A .r . A y  sa tis fy  Equation (2.25). / ( - . - )  is an in terpo la ted  image and is given 

by

/ ( / +  x  +  A t .  j  +  y  +  A y ) =  (1 — a)[( 1 — 6 )/> (L y ) 4- b x  /.>(/. j ' +  I )]

4-a[( 1 — b)I-2{i +  l . j ) -f A x  />( / -r l . y  -i- 1 (12.27)
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where / =  [/ +  x +  A x ] : j  =  [j +  y  +  A y ]: a =  i +  x  +  A .r — i:b =  j  +  y  - f  A // — j :[x]  

means th a t o n ly  the integer part o f x  is re tained. By using the  in terpo la ted  image, 

the  ve lo c ity  estim ate  w ill not be restricted  to  be integers and the e rro r caused by 

subp ixe l p rob lem  can be reduced.

T h e  same as Equation (2.16). the 5 x 5 samples o f m a tch ing  errors are converted 

in to  a p ro b a b ility  d is tr ib u tio n  using

R ( A x . A y )  =  e~kE{Al-Ay] (2.2$)

where A- is chosen so as to make R  be a num ber close to u n ity .

T h en  the  ve loc ity  estim ate on the co rre la tion  stage, denoted by  L ' =  (u'. r').  

is g iven by

, _  Z a x Z a ; ,  R( A x .  A y ) A x  

Z a x Z a  ̂ ( A - r . A i / )

/ _  Z A x Z A y  R ( A x . A y ) A x  

Z a x  Z a v  A .r .  A y )

O n the  propagation stage, the  estimates from  the co rre la tion  stage are fu rthe r

im proved  by using the neighborhood in fo rm a tion , based on the assum ption tha t

ve lo c ity  at the local neighborhood should be s im ila r. The estim a te  at the n +  1th

ite ra tio n , denoted by £ 'n+1 =  (u a+1. cn+1). is g iven by

. Y  . V

un+l =  Y ,  u-'(x-y) * u'(i  +  * - j  +  y)
r — —. X  y =  — X

X  X

t’n+L =  Y  5 1  w ( x . y ) *  i'’{i +  x . j  +  y)  (2.30)
X =  — . V  y =  — X

where w ( x . y )  is a 3 x  3 Gaussian mask as shown in Figure 2.1.

C om pared w ith  Singh's a lgo rithm . Pan et al.'s a lg o rith m  has the follow ing 

characte ris tics . F irs t, the refinem ent o f estim ated flow fie ld  is based on the orig ina l 

images. In  the a lgorithm , the flow  estim ate from  the last ite ra tio n  is fedback to  the 

a lg o rith m . T h is  flow vector together w ith  its  pertu rbed values (refer to  Equation

(2.25)) is u tilize d  as m atch ing  candidate for the  next ite ra tio n . The larger the
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-1 0 L
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m atch ing  erro r, the  sm aller the  co n trib u tio n  o f the m atch ing  cand idate  to  the flow 

estim ate . Thus the  estim ate is repeatedly refined by fu lly  e xp lo itin g  the in fo r­

m a tio n  o f the o rig in a l images. Second, the incorpora tion  o f the b ilinea r in te rpo ­

la tio n  technique la rge ly reduces the e rro r caused by subpixe l p rob lem . However, th is  

a lg o rith m  has some problems, too.

1. The same as Singh's a lg o rith m , th is  a lgo rithm  assumes the conservation o f 

in ten s ity  d is tr ib u tio n  w ith in  a corre la tion window. A t m o tion  boundaries, th is 

assum ption can be v io la ted  and cause great errors.

2. In app ly ing  the  m otion  smoothness constra in t, th is  a lg o rith m  does not consider 

m otion  d iscontinu ities . As in  Equation  (2.30). the flow estim a te  on the propa­

gation stage is a weighted mean o f those over a sm all neighborhood. The weight 

is s im p ly  a Gaussian fun c tio n  and does not take in to  account d iscontinu ities.

0.25*0.25 0.5*0.25 0.25*0.25

0.25*0.5 0.5*0.5 0.25*0.5

0.25*0.25 0.5*0.25 0.25*0.5

F ig u re  2 .1  Gaussian mask
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2 .1 .3  M u l t ip le  A t t r ib u t e s  T e c h n iq u e

In a ll above-m entioned methods, on ly  the im age in tens ity  is used as the  conser­

vation in fo rm a tio n . Based on an analysis in d ica tin g  tha t using image in te n s ity  as a 

single a ttr ib u te  is not enough in accurate m a tch ing  for image points. W eng. A hu ja  

and Huang [52] have proposed a m u ltip le  im age a ttr ib u te  technique to  im age po in t 

m atch ing . A lth o u g h  th is  approach perform s image m atch ing instead o f com pu ting  

the o p tica l flow  e x p lic it ly , the perform ed image m atch ing  am ounts to  o p tica l flow 

fie ld co m p u ta tion  since i t  calculates a d isplacem ent fie ld  for each po in t in  the  image 

plane which is essentia lly  a flow field i f  the tim e  in te rva l between two d iffe ren t images 

is known.

In the a lg o rith m , fo r each image po in t, m u ltip le  image a ttr ib u te s  are defined, 

which inc lude im age in tens ity , edgeness. negative cornerness and positive  cornerness. 

These image a ttr ib u te s  are m otion invarian t and com puted as conserved in fo rm a tio n . 

They are b r ie fly  in troduced  as follows.

In te n s i t y

The im age in ten s ity  at a point p  in  an image / .  denoted by / ( p ). is equal to 

/ ( p ). i.e.. i'(p ) =  U p ) .

E dgeness

The edgeness at a po in t p  . denoted by e (p ). is given by

d l (  p )
e(P l = d p

(2.31)

i.e.. the edgeness is defined as the m agnitude o f the  gradient o f image in tens ity . 

C o rn e rn e s s

The pos itive  cornerness and negative cornerness at a point p . denoted by cP(p j

and c „ (p ) .  respective ly, are defined by

( /  e( P ) f !  ~  f l  “  ang l e ( a . b )  *  { 2 / —} | } 0 <  angle(a.  b ) <  -
Cp |  0 otherw ise

j  e (p ) {  1 -  |1 +  ancf le(a.b)  * { 2 / t t }  | } - - <  angl t (  a . b ) < 0  
C“ ( P , =  0 otherw ise l2 - 121
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where a  and b are in ten s ity  gradients at points p  - f  r a. and p  - f  n,. respectively.

a r  =
d l ( s )

ds s= p + ra

T <9/(s)
b 2 =

ds s= p + r6

and j| ra[| =  i|n,|| =  r.  r a and r*  are such tha t

d l ( v )
d v

*  r x  =  m in
d i ( w )

v = p + ra =r d v
* r

v = p + r

d i { v )
d v

X ^ / (v )
*  r r  =  max — -—

||r||=r d v
* r x

v = p + r6 " " ” ' v = p + r

The superscript _L denotes the corresponding perpend icu la r vector, i.e.. i f  

r  =  ( r u. r \ . ) T. then r x  =  ( - r v. r u).

In  o rder to take those regions in to  consideration where no s ign ificant in tens ity  

va ria tion  occurs, add itiona l local smoothness constra in ts are also imposed. Nam ely, 

bo th  am p litud e  and o rien ta tion  o f the displacement vector o f the po in t under consid­

e ra tion  should be s im ila r to  those displacement vectors in  the  v ic in ity  o f th is  po in t. 

Let d (p 0) denote the displacem ent vector field in the v ic in ity  o f the  po in t p0. Then. 

d(Po) is com puted as

d(Po) =  [  [  J Jo<
ic (r /,)d (p )d p (2.331

0 < t |P “ P o ||< r

where 0 <  J|p — p 0|| <  r denotes a region around po- u'(-) is a w e ighting function

and is g iven by

c +  k i l
(2.34)

where t/; =  | / ( p )  — /(p o ) |.  e is a sm all positive num ber to  prevent the denom inator 

from  zeroing, and c is a no rm a liza tion  constant th a t makes the  sum m ation  o f weights 

equal to  1. Obviously, the weight is inversely p ropo rtiona l to  the in ten s ity  difference 

between the point po and the  surrounding points p. T he  larger the difference in
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in te n s ity  is. the  more like ly  the tw o po in ts come from  d iffe ren t regions, and the 

sm a lle r the  weight w ill be. Hence, the  weight im p lic it ly  takes in to  account m otion  

d iscon tinu ities . Consequently, to  a ce rta in  ex ten t, the  local smoothness constra in t 

preserves d iscon tinu ities  in  the d isp lacem ent fie ld.

To measure the  s im ila r ity  o f a ttr ib u te s  between the  corresponding points in 

tw o  images, a set o f residual functions are defined. The residual o f in tens ity  at a 

po in t p  w ith  a displacement vector d (p )  is defined by

r t- (p .d )  =  / , ( p  +  d) -  / 1(p ) (2.35)

In  the  same way. the residual o f edgeness re(p . d) .  th a t o f positive  cornerness 

rCp( P - d  ). and th a t o f negative cornerness rCn(p . d)  are dete rm ined . A measure o f 

s im ila r ity  between the displacement vecto r at a po in t p and the  vector d(p) is given 

by o rie n ta tio n  residual and am p litud e  residual, which are defined as

||d (p )  x  d (p )||

r“( p-d , =  p p i i i  |2 - !b'

and

r rf( p .d )  =  ||d (p )  — d (p ) | |  (2.37)

Let s denote a weighted sum o f squares o f residuals at the  po in t p. i.e.. s (d ) =

£ { r f  +  Aer 2 +  APr jp +  A „ r :n - f  A0r 2 +  Adr ] } .  then the d isplacem ent estim ate at the

p o in t p  is de te rm ined  such tha t the fo llow ing  is m in im ized

s (d ) —j- m in  (2.38)

where Ae. Ap. An. \ 0. \,j are w eighting param eters.

To solve for d (p ) .  th is m ethod resorts to  num erica l d iffe ren tia tion . The 

e s tim a te  can be recursive ly obta ined by

6d =  ~ { J T A 2 J ) ~ l J T A 2 s (d ) (2.39)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

where

A =  diag{ 1 .1. Ae. ACp. ACn. \ 0. \ d) (2.40)

and

_  d s (d ) 

d d
d i n  d i n  
d r  d y  

d e n  d e n  
d r  d y  

d p n  d p ?  
d r  d y

—  0 Tin d f l n

- d j i m l / m
10
01

— — 7* —

where (dr . d y ) =  d . and the  p a rtia l derivative ^  denotes the  p a rtia l deriva tive  o f

i-2{ x . y )  w ith  respect to  x  at the po in t p +  d. and so on.

The a lg o rith m  by Weng et al. takes advantages o f b o th  o p tic a l flow approach 

and feature correspondence approach. F irst, compared w ith  o p tic a l flow approach 

where a single image a ttr ib u te  (im age in tens ity) is u tilize d , m u lt ip le  a ttr ibu tes  

associated w ith  each image po in t are employed to de te rm ine  the  displacem ent fie ld 

on a po in t g r id  and makes image po in t m atching more robust. Second, in  contrast 

to  the fea ture  correspondence approach, this a lgo rithm  has essentia lly  avoided the 

problems o f feature e x trac tion  and m atching by considering dense m otion  vector 

fie ld. T h ird , th is  m ethod can deal w ith  large m otion. However, th is  a lgo rithm  has 

some problem s, too.

1. The im age a ttr ib u te s , edgeness and cornerness defined in  Equations (2.31) 

and (2.32) need the com puta tion  o f the spatia l grad ient o f the  o rig in a l image 

in tens ity . Due to  various noises, the computed a ttr ib u te  images can be noisy.

2. In so lv ing  for the displacem ent field, this m ethod resorts to  num erica l d iffe r­

e n tia tio n  again. The estim ated displacement vectors are updated based on the
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co m pu ta tion  o f the pa rtia l derivatives o f the  noisy a ttr ib u te  images (re fe r to

E qua tion  (2.39)).

3. T h is  a lg o rith m  does not address the  subp ixe l problem.

2.2 Motion Estimation for Image Coding

For im age coding app lica tion, the ex trac ted  m o tion  in fo rm a tion  is u tiliz e d  for 

im p ro v in g  the bandw id th  reduction o f im age sequences. In add itio n  to  the  q u a lity  

o f p re d ic tio n , the  com puta tiona l co m p lex ity  is an im po rtan t facto r in  the  de riva tion  

o f m o tio n  es tim a tion  a lgorithm s due to  the  rea l-tim e  im p lem en ta tion  requirem ent 

o f the  MC’ coding scheme. Most m o tion  es tim a tion  a lgorithm s designed fo r image 

coding es tim a te  on ly  a special m otion  th a t is 2-D transla tion .

T he  m o tion  estim ation  a lgorithm s developed fo r image coding can basica lly  be 

classified in to  two groups which are know n as block-based approach and pel-recursive 

approach. In  th is  section, the most im p o rta n t block-based approach is discussed in 

section 2.2.1. w h ile  the pel-recursive approach is b rie fly  sum m arized in  section 2.2.2.

2.2.1 Block-based Approach

In  b lock-based m otion  estim ation  technique, the present frame o f an image sequence 

is d iv id ed  in to  rectangular or square blocks o f p ixels. It is assumed th a t a ll pixels 

w ith in  one b lock are o f the same m o tion  vector. Hence each block has o n ly  one 

m o tion  vector. For a block in  the cu rren t fram e, we look for the  b lock o f p ixe ls in 

the previous fram e tha t gives the best m atch in  term s o f a predefined c rite rio n . Th is 

best m atched block is then used as a p re d ic to r fo r the present block. The re la tive  

pos ition  o f these two blocks defines a m o tio n  vector associated w ith  the present 

b lock. The  co llection  o f a ll m otion  vectors defines a m otion fie ld and is sent to 

the receiver. Compared w ith  the corre lation-based techniques in  section 1.1.2 which
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estim ate dense m otion  vector fields, the block-based approach here estimates block 

m otion  vector fields.

A m ong the various c r ite r ia  for b lock m atching, the  mean square e rro r (M SE) 

and the mean absolute difference (M A D ) are m ostly  used [34]. Let In( i . j )  denote 

the  frame o f an image sequence at present moment n.  We refer to  a block o f bx x  by 

pixels by the coordinate ( i . j )  o f its  upper le ft corner. The  m o tio n  vector o f the  block 

{ i . j )  is denoted by V { i . j )  =  ( u. c). The MSE and M A D  between the block { i . j )  o f 

the current fram e and the  b lock (i +  u . j  +  v) o f the previous fram e can be defined 

as follows, respectively.

J  b z  —  1 b y  — I

M S  c) =  t -------— 5 2  52  ( Ad* +  A-J +  0  — Ai—i ( i +  k +  u . j  +  I +  v))~ (2.41)
bx x  by k_Q [=Q

and

j b x  —  I b y  — I

MAD[ i ' j ) { u. v )  =  - ------— 52  11.  I Ad* +  k . j  +  1) -  L - i [ i  +  k +  u . j  +  / +  c)| (2.42)
x  X  k= 0  1=0 

The m otion  vector \ { i . j )  o f the block ( i . j )  is given by

V ( i . j )  =  arg min. \ [SE{i ' j ) [  u. c)  (2.43)

or

V ( i . j )  =  a r g m i n M A D ^ j ) ( u .  v)  (2.44)

For each location in  the  previous frame to  be tested, the ca lcu la tion  o f the 

MSE requires 2br by add itions and bxby m u ltip lica tions  w h ile  the  ca lcu la tion  o f M A D  

requires on ly  2bxby add itions. Since the M A D  requires no m u lt ip lic a tio n  and gives 

s im ila r perform ance as the  M SE. the M A D  is favored in  most b lock m otion  estim a tion  

a lgorithm s.

Figure 2.2 gives an illu s tra tio n  o f the technique o f block-based m otion  

estim ation .
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Figure 2.2 Basics o f block-based approach
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2 .2 .1 .1  F u ll S ea rch  B lo c k  M a tc h in g  Full search b lock m atch ing  (F B M ) is 

also called exhaustive b lock m a tch ing  and has been recommended by various video 

compression standards. T h is  technique computes the M A D  (o r M SE) at a ll the 

possible locations w ith in  the  search area to find the o p tim a l m o tion  vector. Let 

w denote the m ax im um  d isplacem ent which can be estim a ted  in  bo th  horizon ta l 

and vertica l d irections, there are (2 w  - f  I ) 2 locations fo r th e  F B M  to  search fo r the 

best m atch to  the current b lock ( i . j ) .  To perform  m o tio n  es tim a tion  in  real tim e , 

the  num ber o f operations required  by the F B M  is o ften  too  high. To reduce the 

com puta tiona l com plexity , a num ber o f fast search a lgo rithm s have been proposed.

2 .2 .1 .2  T h re e -s te p  S e a rch  Based upon the assum ption  tha t w ith in  a prede­

te rm ined  search area, the M A D  has a single peak and the average m atch ing  d is to rtio n  

increases m onoton ica lly  in  d irec tions o ther than the ac tua l d isp lacem ent, the three- 

step a lgo rithm  [24] s im p lified  the search procedure for m o tio n  es tim a tion .

As shown in F igure 2.3. three d ifferent sets o f param eters are used in  the  m otion  

es tim a tion . In the first step, e ight coarsely spaced points are tested except fo r the 

cen tra l point ( x = i.y = j) .  Searching the  m in im um  o f the M A D  func tion . The first 

approx im ation  o f the disp lacem ent vector is obta ined w h ich  is the po in t A ( i+ 3 .  j+ 3 )  

in  F igure 2.3. In a second step, again eight search po in t are spaced, bu t less coarsely 

around the po in t which was chosen in  the first step. A ga in  using the M A D  crite rio n , 

the po in t B(i-i-3. j-ho) is found to  be the best m atch. T he  second step is repeated 

u n t il the required accuracy is achieved. In this case (d m = 6 ). the  th ird  step gives the 

fina l approx im ation  o f the disp lacem ent vector C’( i+ 2 . j+ 6 ) .

This s im plified  search a lg o rith m  works well i f  the assum ptions hold. U n fo rtu ­

nate ly. however, these assum ptions are not always true , especia lly in  the s ituations 

where image contains h ig h ly  de ta iled  tex tu re  and com plica ted  m otion . Most o ften  a
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non-op tim a l o r even e rro r es tim ation  can be the m atch ing  results ancl tha t w ill have 

a serious effect on the coding q u a lity  and efficiency.

2.2.1.3 M ultiresolution Block Matching M u ltire so lu tio n  block m atch ing  

technique reduces the com puta tion  o f m otion  es tim a tion  by tak ing  advantage o f 

pyram id  s tru c tu re . In  a so-called top-down m u ltire so lu tio n  technique [49]. pyram ids 

are form ed before m atch ing. The bottom  level L o f the  p y ra m id  contains the inpu t 

image. The  image a t any level I =  L — 1. • • • .0  is generated by app ly ing  a low-pass 

f ilte r  to  the  im age at level / +  1 and subsampling the filte re d  image. The low-pass 

f ilte r in g  is achieved through convolution w ith  a separable f ilte r  w ith  5 x  5 point 

im pulse response h ( m. n )  given by

h( m.  n) =  h( m) h{ n)  (2.45)

where h(0) = q . / j ( 1 0  =  h( — 1) =  \ . h ( 2 )  =  / / (—2) =  1 — The constant o is a free 

param eter and is chosen ty p ic a lly  between 0.3 and 0.6.

The sam pling  is done s im p ly  by selecting every 2nd p ixe l in  both horizonta l 

and ve rtica l d irections. M atch ing  is first conducted at the  top  level o f the pyram id  

to  ob ta in  an in it ia l estim a tion  o f the m otion fie ld: the com puted  m otion  filed is then 

propagated to  the  next pyram id  level. In  the variable b lock size m ethod (refer to 

M ethod L in  [49]). the size o f the block varies w ith  the pyram id  levels. That is. i f  

the block size a t level / is bx x  by . at level / - f  1 it  becomes 2br  x  2by . Therefore, i f  

V l( i . j )  is the com puted m otion  vector for the block ( i . j )  at level / o f the pyram id , 

the propagated m o tion  vector for the same block at level / +  1 is l ' l+l (2 i . 2 j )  and is 

given by

V 1+l(2i . 2j )  =  2 V l( i . j )  (2.46)

A t level / +  I .  th is  propagated m otion vector is corrected and again propagated to 

the next level u n t il the bo ttom  level of the pyram id  is reached. F igure 2.4 shows a
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i-6 i-5 i-4 i-3 i-2 i-1 i i+ 1  i+ 2  i+ 3  i+ 4  i+ o

j+4

j+ 1

L: search po in t in the firs t step

2: search po in t in the second step

3: search po in t in the th ird  step

Figure 2 .3  Three-step search
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top level increase ot’ resolution

bo ttom  level

F ig u re  2 .4  2-level py ram id  s tru c tu re

T a b le  2 .1  T he  ty p ic a l set o f parameters for 2-level m u ltire so lu tio n  block m atch ing

Param eters at level Top level B o tto m  level
Search range 4x4 lx l
B lock size 4x4 3x8
M o tio n  estim ation  accuracy 1 0.5

2-level p y ra m id  s tru c tu re  for block m atch ing  used in  M e thod  L and Table 2.1 lists 

the corresponding set o f parameters.

2 .2 .1 .4  H ie r a r c h ic a l  B lo c k  M a tc h in g  The re lia b ility  o f m otion  es tim a tion  

depends upon the  chosen size o f blocks and the  am ount o f m otion. Large blocks 

give m ore re liab le  m o tio n  estim ation in the case o f large displacement w h ile  sm all 

blocks are m ore su itab le  for small d isplacem ent. Based upon th is  observation, a 

h ie rarch ica l b lock m a tch ing  a lgorithm  was proposed by B ie rlin g  [7].

In th is  m e thod , the m otion estim a tion  s ta rts  w ith  large blocks at the highest 

level o f a h ierarchy. From  one level to the next, the size o f blocks is decreased. 

The m o tion  es tim a te  is obtained recursively, i.e.. at each level o f the hierarchy, the
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T a b le  2 .2  The typ ica l set o f param eters fo r h ierarchical b lock m a tch ing

Parameters at level 1 2 3
M axim um  displacem ent 
Block size

±  7 
64x64

±  3 
28x28

±  1 
12x12

re su lting  estim ate  serves as an in it ia l guess fo r the  next lower level. T he  firs t h ie rar­

ch ica l level serves to estim ate  the large part o f m o tion , whereas the last level serves 

to  es tim a te  the rem ain ing part o f the  m otion . The  fina l estim ated m o tio n  vector is 

the  sum  o f the estimates from  a ll h ie rarch ica l levels. Figure shows the  p rin c ip le  of 

h ie ra rch ica l b lock m atching w ith  3 levels. The associated set o f param eters is lis ted in 

Table . In  th is  example, the firs t level is to  estim ate  the m a jo r part o f the  displacem ent 

o f m ax im um  ± 7  pixels using large blocks o f size 64 x  64 pixels. A t the  second level, 

an a dd itio n a l displacement o f m ax im um  ± 3  pixe ls can be estim ated using a block 

size o f 28 x  28 pixels, and the second h ierarch ica l level starts m o tio n  es tim a tion  

using the  result o f the firs t level. A t the  th ird  level, the m axim um  d isp lacem ent is 

± 1  p ixe l and the  block size is 12 x  12 pixels. The m axim um  displacem ent w h ich  can 

be estim ated in  to ta l is ±11  pixels.

2 .2 .2  P e l- re c u rs iv e  A p p ro a c h

T he  pel-recursive approach estim ates the  m o tion  between consecutive frames on a 

p ixe l-b y -p ixe l basis. Let I ( x . y . t )  denote the image in tens ity  at a p o in t ( x . y )  in 

the  image at t im e  t. We seek to find the  corresponding pixel in the previous frame 

at a d isplacem ent D =  (dx. d y ). In  the pel-recursive approach, the d isp lacem ent is 

es tim a ted  recursively. Let D k =  (dk. d k) denote the estim ate o f the displacem ent 

D  a fte r the Icth. ite ra tion  . the estim ate  o f D  a fte r the k +  1th ite ra tio n . D k+l =  

(dk+l . d k + l ). is obta ined by

D k+l =  D k - f  i ' k+l (2.47)
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fram e at moment n- L

fram e at m om ent n

F ig u re  2 .5  P rincip le  o f h ierarch ica l b lock m atching
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where D k is an in it ia l estim ate o f D k+l and L'k+l is the  update  o f D k to make it 

more accurate.

T he  c rite rio n  used to  estim ate  D  is the d isplacem ent fram e difference (D F D ). 

which is defined as

D F D ( i . j . D k ) =  I ( x . y . t ) - [ ( x - d k. y - d k. t -  I)  (2.48)

B y m in im iz in g  the  D FD . we can m axim ize  the  accuracy o f the  displacem ent estim ate  

D k.

X e tra va li and Robbins [37] were the  firs t to  develop a pel-recursive m otion  

es tim a tion  a lg o rith m  for image sequence coding. They proposed th a t the estim ated 

disp lacem ent D k be the one which m in im izes the square value o f the D FD . T ha t is.

\ D F D ( x . y . D k)\2 mi n  (2.49)

To solve fo r the  estim ate D k recursively, they used the steepest descent m ethod

p k + 1 =  p k  _  L e^ D[ D F D ( x . y .  D k )}2 (2.50)

where e is a positive  constant, and V  is the gradient w ith  respect to  the  displacement 

D.  The  gradient V q can be calcu lated using the de fin itio n  o f D FD  in  Equation (2.48) 

and no ting  tha t

V D( D F D ( x . y . D k ) ) = V I ( x - d k. y - d k. t -  I)  (2.51)

where V  is the gradient w ith  respect to  x  and y.  Th is  leads to

D k+1 =  D k - e D F D ( x . y . D k) V I ( x - d k. y  - d k. t  -  1) (2.52)

where D F D  and V I  are evaluated by in te rpo la tion  for non in teg ra l D k.

T he  choice o f the positive constant e requires a com prom ise. A large value 

o f t  y ie lds a qu ick convergence but a noisy estim ate, whereas a sm all e yie lds more
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accurate d isplacem ent estim ate but takes m ore processing tim e . In [37]. t  is chosen 

to  be

The same authors presented an extension o f Equation (2.52). in  which 

displacement is estim ated  by considering D F D  at a sm all ne ighborhood in  the 

v ic in ity  o f the p ixe l under consideration:

D k+l =  D k ~  \ e V D £  W j [ ( D F D ( x . g .  D k ))]2 (2.53)
j€-U

where Wj  are not negative weights and '52Je \r  H j  =  1- A lthough  th is  ite ra tio n  

fo rm u la  is m ore com plex, it  s ign ifican tly  im proves the performance o f the  d isp lacem ent 

estim a tion  in  those regions where the d isp lacem ent is spa tia lly  un ifo rm .

2.2.3 Discussions

The pel-recursive approach updates its  d isplacem ent es tim ation  at every  p ixe l 

and in  p rinc ip le , such a lgorithm s overcom e, to  a large extent, the  prob lem s o f 

m u ltip le  m oving objects, as well as d iffe ren t parts o f an object undergoing d iffe ren t 

displacem ent. P rac tica lly , however, the  p a rtia l derivatives invo lved makes th is  

approach very sensitive to  the presence o f noise or the fine details in  an im age. On 

the o ther hand, the  block-based approach assumes tha t a ll pixels w ith in  a b lock  have 

the same m o tion  vector and considers a b lock o f pixels while perfo rm ing  m a tch ing . 

Hence, th is  approach is less sensitive to  various noises. B ut block m a tch ing  is very 

tim e  consum ing due to  the fact tha t a b lock o f pixels are involved in  m a tch ing . 

A lthough  c r it ic a l evaluation o f block-based approach versus pel-recursive approach 

has not yet been reported, the block-based approach has dom inated the  m o tion  

estim a tion  em ployed in image coding area and has been recommended by m any 

video coding standards [26].
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CH APTER 3 

MULTIATTRIBUTE FEEDBACK APPROACH

In  the corre la tion-feedback approaches, the  estim ate of op tica l flow is repea ted ly  

fedback to  the a lgo rithm  to  com pensate the  uncerta in ty  o f the e s tim a te d  flow 

vector, the  accuracy o f estim a tion  is im p roved  (refer to Equations (2.25) and  (2 .26)). 

The u tiliz a t io n  o f b ilinea r in te rpo la tion  reduces the errors caused by th e  subp ixe l 

p rob lem . In  th is  com puta tiona l fram ew ork . less d iffe ren tia tion  is requ ired . Hence, 

th is  approach is re liab le in the  presence o f noise due to the image a cqu is itio n  

and d ig it iz a tio n . However, it  has drawbacks. F irs t, it is w indow  o rien ted . The 

assum ption th a t the  local in ten s ity  d is tr ib u t io n  does not change under m o tion  

w il l be v io la ted  i f  the image area undergoes significant ro ta tion , expansion o r i f  it 

contains m o tion  boundaries. Second, in  a pp ly in g  the m otion smoothness co n s tra in t, 

it  does not consider the m otion  d iscon tinu ities .

The  approach by Weng et al. com putes the displacement fie ld by tak ing  

m u lt ip le  im age a ttr ibu te s  as conservation in fo rm a tion . These image a ttr ib u te s  are 

point-based local properties, th is  approach is po in t oriented. W hen im pos ing  local 

smoothness constra in ts, th is m ethod considers m otion  d iscontinu ities. H owever, th is  

approach has some problems, too. F irs t,  the image a ttribu tes  used are in ten s ity , 

edgeness. positive  cornerness and negative cornerness. Am ong them , edgeness and 

cornerness need the  com puta tion  o f the spa tia l gradient o f the o rig ina l im age in te n s ity  

(refer to  Equations (2.31) and (2 .32)). Due to  various noises, it  is d if f ic u lt  to 

estim a te  the  gradients accurately. Hence, the computed a ttr ib u te  images can be 

noisy. Second, in  so lving for the  d isp lacem ent fie ld . this approach resorts to  d iffe r­

en tia l opera tion  again. Specifically, the  estim a ted  displacement vectors are updated 

based upon the com puta tion  o f the p a r t ia l derivatives of the noisy a tt r ib u te  images 

(refer to  E quation  (2.39)). Hence, the co m p u ta tion a l framework is heav ily  depended

40
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on the num erica l d iffe re n tia tio n , which is considered to  be im practica l for accurate 

com puta tion  [6]. T h ird , the  a lg o rith m  does not address the  subpixel problem .

Based upon the com parison between Pan et a l. 's  and Weng et a l.'s approaches, 

we observe tha t bo th  advantages and disadvantages exist in two approaches. 

Furtherm ore, the advantage in  one approach m ig h t be u tilized  to  enhance the  

perform ance o f the  o the r approach. For instance, the  incorpora tion  o f m u lt ip le  

image a ttr ib u te s  and p o in t o riented processing o f W eng et a l.'s a lgo rithm  in to  Pan 

et al.'s a lg o rith m  m ay im prove  the estim ation  accuracy, w h ile  the u tiliz a tio n  o f the 

feedback and com p u ta tion a l fram ew ork o f Pan et a l.'s  a lg o rith m  can make Weng et 

a l.'s a lgo rithm  less sensitive to  various noises. M o tiva te d  from  th is observation, in  

th is  paper, we present a new way to  compute o p tica l flow  fie ld  tha t takes advantages 

o f the approaches by b o th  Pan et al. and Weng e t ah. Th is a lgo rithm  has the  

fo llow ing characteristics.

1. It is po in t oriented. M u lt ip le  image a ttr ib u te s  are com puted as conservation 

in fo rm a tion . We use two types o f image a ttr ib u te s . One describes the  

s tru c tu ra l in fo rm a tio n  o f the point under considera tion : the o ther reflects the  

tex tu ra l in fo rm a tion  o f its  local neighborhood. These a ttr ibu tes  need less 

deriva tive  operations and are not sensitive to  various noises.

2. Xo d iffe ren tia tion  is invo lved in the com pu ta tiona l fram ework.

3. Feedback techniques is u tilize d  to enhance the  estim ation  accuracy. The 

estim a tion  is carried  out in  two steps. In the  firs t step, for each po in t under 

consideration, its  m a tch ing  candidates in  the  second image are dete rm ined  

by the estim ated flow  vector from  the last ite ra tio n  and its pertu rbed values. 

M u ltip le  image a ttr ib u te s  are fu lly  em ployed to  determ ine the o p tica l flow 

by using the  weighted least squared es tim a tion . In  the second step, the flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

A ttr ib u te s

in te rpo la tion

Flow vector 

es tim ation  at 

conservation 

stage

C om pu ta tion  

o f  m u ltip le  

a ttr ib u e  

images

F low  vector 

es tim a tion  at 

propagation  

stage

P ertu rb a tion  

o f estim ated 

flow vector

C om puta tion  

o f m u ltip le  

a ttr ib u te  

images

F ig u re  3 .1  A n  schem atic illu s tra tio n  o f the com puta tiona l fram ew ork

estim ates are com puted as a weighted sum o f those over a sm all neighborhood. 

The weight considers d iscontinu ities in  the flow field.

4. The subp ixe l problem  is considered by using the b ilinea r in te rpo la tion  

technique.

In  the fo llow ing, the m u ltico ns tra in t feedback approach is discussed in  d e ta il.

3 .1  P ro p o s e d  F ra m e w o rk

F igure 3.1 shows an overview  o f the proposed com puta tiona l fram ew ork. Let l i  and 

[y denote two images at mom ents 2 and 1. respectively. For each image, a set of 

a ttr ib u te  images w ill be com puted as conservation in fo rm a tion . In the fram ework, 

the com puta tion  o f op tica l flow fie ld is perform ed ite ra tive ly . Each ite ra tio n  consists
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o f a conservation stage and a propagation stage. A t the  conservation stage, for each 

po in t in  the current image A . the corresponding m atch ing  candidates are determ ined 

by the  estim ated flow vecto r from  the last ite ra tion  and its  pertu rbed  values. The 

m atch ing  e rro r is ca lcu lated by the sum o f squared difference. The estim ate  o f flow 

vector at th is  stage, denoted by I~c =  (uc. r c). is com puted by weighted least square 

es tim a tion  technique. A t  the  propagation stage, the  flow estim ate  L'c is fu rthe r 

im proved by using the neighborhood in fo rm a tion . A t the  n th  ite ra tion , the ou tpu t 

o f the  propagation stage is denoted by A (n) =  (u (n). c (n)). The ite ra tio n  process 

w ill continue u n til e ithe r the  predefined ite ra tion  num ber o r the predefined accuracy 

thresho ld  is reached. Besides, an in te rpo la tion  m echanism  is incorpora ted in to  the 

a lg o rith m  to reduce the e rro r caused by the subpixel p rob lem .

A  fu ll description o f every block in F igure 3.1 is g iven below.

3.1.1 M ultiple M otion Invariant Image Attributes

To com pute  the op tica l flow  fie ld  from  the tw o frames o f an image sequence, m otion 

inva rian t a ttr ibu te s  are required since the conservation o f such a ttr ib u te s  can be 

used as a c rite rio n  for m a tch ing  process. Under the assum ption tha t for a given 

scene po in t, the in tens ity  at the corresponding image po in ts remains constant over 

tim e , the  in tens ity  is m o tion  inva rian t. However, i f  the m atch ing  is based on in tens ity  

only, a po in t in  current im age can be matched to any po in t w ith  the same or s im ila r 

in ten s ity  in  the previous image. To reduce the a m b ig u ity  in  m atch ing , we have to 

resort to  more m otion  in va rian t image a ttribu tes .

In  add itio n  to the in tens ity , the image a ttr ib u te s  used in th is  work are horizonta l 

edgeness. ve rtica l edgeness. contrast and entropy. The edgeness gives the s truc tu ra l 

in fo rm a tion  for m atching and is used in [52] too. The tw o o the r a ttr ib u te s , contrast 

and entropy, reflect the te x tu ra l in fo rm a tion  about the local neighborhood o f the 

po in t under consideration [17].
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The fo llow ing  are a ttribu tes  used in  our new a lg o rith m .

Intensity

T he  im age in ten s ity  at a po in t (x.y)  in  an im age / .  denoted by Ai (x.y) .  is 

given by Ai (x .y )  =  I (x .y) .

Horizontal edgeness

T he  h o rizon ta l edgeness at a po in t (x.y)  in  an im age I .  denoted by Ah(x.y).  

is defined as

i.e.. the  h o rizon ta l edgeness is defined as the m agn itude  o f the horizonta l component 

o f the  g rad ien t o f in tensity.

Vertical edgeness

The ve rtica l edgeness at a po in t (x.y)  in  an im age I .  denoted by A v(x.y) .  is 

defined as

where s is a set o f d is tin c t gray levels w ith in  a 3 x  3 w indow  centered at the point 

( x . y ) .  Ci'j specifies a re la tive  frequency w ith  which tw o  ne ighboring  points separated 

h o rizo n ta lly  by a distance 1 occur on the 3 x  3 w indow , one w ith  gray level / and the 

o the r w ith  g ray level j .

Entropy

The loca l en tropy  at a point (x.y) .  denoted by A f (x.y) .  is given by

Contrast

The loca l contrast at a point (x.y) .  denoted by A c(x.y) .  is defined as

Ac(x.y)  =  J2 ( 'l - j ) 2cij
i . j £ s
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where s is a set o f d is tin c t in tens ity  values w ith in  a 3 x  3 w indow around the po in t 

( x . y ) .  pi is the  p ro b a b ility  (re la tive  frequency) o f occurrence o f the gray level i in  

the w indow .

In  above defined image a ttr ibu tes , the  in te n s ity  and edgeness are used in  Weng 

et a l. ’s a lg o rith m  as well. Compared w ith  the  negative cornerness and positive  

cornerness used in  Weng et a l.’s a lg o rith m , the  local contrast and en tropy defined 

by Equations (3.3) and (3.4) need no d iffe re n tia tio n  at a ll and therefore are less 

sensitive to  noises in  the o rig in a l image. Besides, these two a ttr ib u te s  is inexpensive 

in com puta tion .

3.1.2 Conservation Stage

Let p o r ( x . y )  denote a po in t in  an image A . Let i  (p) =  ( u . r )  denote the flow 

estim ate at the po in t p. Then the point ( x . y )  can be viewed as a sh ifted  result o f 

the po in t (x — u . y  — c) in  an image A . assum ing th a t the tim es in te rva l between 

the two m om ents is a u n it. Hence, i f  the es tim a ted  flow vector i ' (p)  at the point p 

is accurate, the a ttr ibu te s  associated w ith  the  tw o corresponding po in ts should be 

s im ila r.

To measure the s im ila r ity  between the  a ttr ib u te s  o f the corresponding points, 

we use a set o f residual functions. The residual func tion  o f in ten s ity  at the point p.  

denoted by r,(p . i ’ ). is given by

M p . C )  =  I2(p) -  f ( p - i ' )  (3.5)

where / ( • )  is g iven by

f t p - L ' )  =  f ( ^ - u . y - c )

=  (1 — a)[( 1 — b) x  I i (k.  /) +  6 x  / [ ( £ . / + ! ) ]

+ u [( I — b) x  I \ (h I . I) b x  fi( fc -r- I . I -{-[ )\ (3.6)
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where k =  i n t ( x  — u): I =  i nt ( y  — v): a =  x — u — k: b =  y — c — I: int.(-) means 

the in teger pa rt o f the variable in  (-). l 2 and Ix are the in tens ity  im age in  the two 

images, respectively. The residual o f horizon ta l edgeness r ^p . L' ) .  th a t o f ve rtica l 

edgeness r v( p . i ' ) .  tha t o f contrast rc( p . i ' ) .  and tha t o f en tropy r e{ p . i ' )  can be 

defined, s im ila rly .

In  the conservation step, fo r each po in t p in the image />• we consider a set o f 

points in  image I x. denoted by p — i  . where V  =  (u. c) is given by

E ( p . i ' )  =  +  r l ( p . C)  +  r;(p.L' )  +  r;(p.  C) ]  (3.8)

where C  =  ( u. r)  satisfies E quation (3.7).

T he  same as Equation (2.16). the  resu lting  5 x  5 m atch ing  errors are converted 

in to  a response d is tr ib u tio n  using

where k is chosen so as to make R  be a num ber close to  un ity .

Then the  estim ated flow vector at th is  step, denoted by f ’c =  r_.). is

ca lcu la ted  as follows according to the weighted least-squares es tim a tion

3.1.3 Propagation Stage

For the tru e  o p tica l flow field, the flow vectors w ith in  the same ob jec t should be 

s im ila r, and th a t belonging to d ifferent m oving objects should d iffe r fro m  each other.

There are to ta l 5 x  o candidate points. For each candidate po in t, the  m a tch ing  e rro r 

at the  po in t p  in  the image /•>. denoted by E( p . i ' ) .  is com puted as

R(p.L' )  =  e~kE{p-V) (3.9)

“ c nuzeR(p.n
__ Z u Z l- # ( /> •£ >  

E u E t- f t ( p - n
(3.10)
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Based on th is  fact, the flow in fo rm a tion  o f the local neighboring po in ts  w ith in  the 

same region can be used to  fu rthe r im prove the estim ated flow vector o f the po in t 

under considera tion . We form  a w indow  IF; o f size (2.V/ - f  1) x  (2 M  4- 1) around 

the po in t ( x . y )  in  the image A . The flow  estim ate  at the po in t ( x . y )  in  th is  step, 

denoted by L '(n+1> =  (u (n+1). c (rl+ l*). is com puted  as the weighted sum  o f the flow 

vectors o f  the points w ith in  the w indow  IF; and is given by 

u  u
u(n+1 ) _  £  V '' w (I2( x . y ) . I 2( x +  s . y  +  t ) ) *  uc(s + x . t  +  y)

s=-.\r t=-.u  
xi xr

(4*+!) _  ic(I2( x . y ) . I 2(x +  s . y  +  t )) * uc($ +  x . t  +  y) (3.11)
s=-Xl t=—Xl

where w(- . - )  is a weighting function . For each po in t in the w indow  IF ;, a weight 

w ill be assigned by the weighting function . Let p'(x  +  s.y +  t) denote a po in t in  the 

v ic in ity  o f the po in t p( x . y ) .  the weight fo r the  po in t p' is given by

i r ( [2( x . y ) .  I2{x +  s . y  +  t )) = ------------- ------ ------°---------------- — r  (3.12)
e +  |h ( x . y )  -  l 2(x +  s.y -t  01

where t  is a sm all positive num ber to prevent the denom inator from  zero ing, and c 

is a n o rm a liza tion  constant tha t makes the sum m ation  o f the weights by E quation 

(3.12) equal to  1. The weight is determ ined based on the in tens ity  d ifference between 

the po in t under consideration and its  neighboring po in t. The larger the  d ifference in 

in tens ity , the  m ore like ly  the tw o points belong to  different regions. Therefore , the 

weight w il l  be sm a ll in th is case. On the  o the r hand, the flow vector in  the same

region w il l  be s im ila r since the corresponding weight is large. Thus the  w e ighting

function  im p lic it ly  takes flow d iscontinu ities in to  account.

3.1.4 Summary of the Algorithm

The fo llow ing  summarizes the procedures o f the proposed new a lg o rith m .

1. P erform  low-pass filte rin g  on each image to  remove noise.
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2. Generate a ttr ib u te  images: in tens ity , horizonta l edgeness. ve rtica l edgeness. 

contrast, and entropy.

3. Set the in it ia l flow  fie ld  to  zero. Set the m a x im u m  ite ra tio n  num ber and 

es tim a tion  accuracy.

4. For each p o in t under consideration, com pute U  =  (u.  v)  according to  E quation

(3.7). C om pute  the m atch ing  e rro r fo r each m atch ing  cand idate  using E quation

(3.8) and trans fo rm  them  to  the corresponding response d is tr ib u tio n  R.  using 

E quation  (3 .9). C om pute the estim ate  £ \ from  the p ro b a b ility  d is tr ib u tio n  R 

using E qua tion  (3.10).

5. Form  a (2 4 / +  1) x  (2 4 / 4- 1) w indow  around the p o in t under consideration. 

C om pute  the  weight fo r each po in t w ith in  th is  w indow  using Equation  (3.12). 

C pdate the  flow  vector using Equation  (3.11).

6. Decrease the  preset ite ra tio n  num ber by one: I f  the  ite ra tio n  num ber is zero, 

the a lg o rith m  re turns w ith  the resu lting  op tica l flow fie ld : o therw ise, goto Step

I .

7. I f  the change in  flow vector over two successive ite ra tion s  is less than the 

predefined thresho ld , the a lg o rith m  returns w ith  the  estim ated  o p tica l flow 

fie ld : o therw ise, goto Step 4.

3.2 Experiments

Recently, a very comprehensive s tudy o f various o p tica l flow techniques and 

comparison o f th e ir  perform ance m a in ly  in  terms o f accuracy have been conducted 

in [6]. In  order to  test the perform ance o f our a lg o rith m  and compare w ith  o the r 

techniques in a m ore ob jective , q u a n tita tive  manner, we choose to  work on the same 

testing sequences and then report the results w ith  the same c rite rio n  as used in [6].
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Three experim en ta l works are reported here. The  image sequences used are 

T rans la ting  Tree 2-D . D iverg ing Tree 2-D. and Yosem ite as shown in  Figures 3.2. 3.3 

and 3.4. respectively. The firs t two sequences s im u la te  tra n s la tin g  camera m otion  

w ith  respect to  a tex tu red  p lanar surface. In  the  T rans la ting  Tree 2-D sequence, 

the  camera moves norm al to  its  line  o f sight along its  x axis, w h ile  in  the D iverg ing  

Tree 2-D sequence, the camera moves along its line  o f s igh t. T he  Yosemite sequence 

is considered as the most challenging in [6] because o f the  range o f velocities and 

the  occ lud ing  edges between the mountains and at the horizon. The m otion  in the 

upper rig h t is m a in ly  d ivergent, the clouds transla te  to  the  r ig h t w ith  a speed o f L 

p ixe ls /fram e  . w h ile  velocities in the lower le ft are about 4 p ixe l/fram e .

As the same as in [6], the angular error between the  tru e  op tica l flow vector 

and an estim a ted  flow vector is used as an e rro r measure. Let (ut . r t ) and (tz^.iv ) 

denote the  true  o p tica l flow vector and the estim ated one. respectively. The angular 

e rro r between the  true  op tica l flow (ut. i't) and an es tim a te  ( .  vf ) is given by

rj =  arccos( \ \  • Ve) (3.13)

where Vt =  i't-1)- Ve =  ^

To save the  com puta tion , a ll images are compressed by subsam pling before 

com pu ting  flow fie ld. Yosemite sequence is subsampled by a fac to r o f 4 in  both 

ho rizon ta l and ve rtica l d irections and compressed from  316 x  252 to  79 x  63. T ha t 

is. p ixe ls in every 4x4 region are averaged and become one p ixe l in  the compressed 

image. The  images o f the o the r two sequences are subsam pled by a factor o f 2 in 

bo th  d irections and are compressed from 150 x  150 to  75 x  75. The same averaging 

procedure is invo lved. Obviously, this type o f compression is low-pass filte rin g  

in  nature . Tables 3.1. 3.2 and 3.3 give the expe rim en ta l results by some typ ica l 

techniques surveyed in  [6] and our a lgorithm . A ll m ethods tha t com pute op tica l flow 

fie ld  w ith  100% density  are lis ted in Tables. The reported  errors are averaged results 

over the o p tica l flow field. Besides, the corresponding standard  deviations (where
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F ig u re  3 .2  The 10th fram e o f T rans la ting  Tree 2-D

sample mean is used to replace the s ta tis tica l mean) o f the measurements are also 

lis ted  in  the Tables. We note tha t the m u ltico n s tra in t feedback approach perform s 

sensibly b e tte r than  a ll o ther a lgorithm s lis ted in  the Tables. Specifically, in  the first 

(T rans la ting  Tree 2-D) and the th ird  (Yosem ite) experim ents, our a lgo rithm  perform s 

the best. In the  second experim ent (D ive rg ing  Tree 2-D ). our a lgo rithm  perform s 

the second best. In a ll three cases, our a lgo rithm  outperform s both a lgorithm s by 

Pan et al. and Weng et al.. based on w h ich  our approach is developed.

3.3 Summary and Discussions

The proposed approach is m a in ly  m o tiva ted  from  two new ly developed o p tica l flow 

de te rm ina tio n  techniques, i.e. Weng et a l.'s  and Pan et a l.'s  methods. Th is  approach 

combines the  m e rits  from  both  a lgorithm s and avoids the disadvantages ex is ting  in 

the two m ethods.

Com pared w ith  Weng et a l.'s a lg o rith m , our new m ethod has the fo llow ing  

d is tin c tions . F irs t, the m u ltip le  image a ttr ibu te s  used are d ifferent. The image 

a ttr ib u te s  used in  our a lgo rithm  are image in tens ity , horizon ta l edgeness. vertica l
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Figure 3.3 The 10th frame of D ive rg ing  Tree 2-D

Figure 3.4 The 10th frame o f Yosem ite
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T a b le  3 .1  E xpe rim en ta l results on "T ransla ting  Tree 2-D “  sequence

Techniques Average
Error

S tandard
D evia tion

D ensity

Horn and Schunk (o rig in a l) 38.72 27.67 1007c
Horn and S chunk(m od ified) 2.02 2.27 1007
Eras et al. 0.62 0.52 1007
Anandan 4.52 3.10 1007
Singh(step 1. n = 2 .\v = 2 ) 1.64 2.44 1007
S ingh(step2.n=2.\v=2) 1.25 3.29 1007c
Correlation fe e d b a c k (n = l. \v = l) 1.07 0.48 1 0 0 7

Weng's appraoch 1.81 2.03 1007
New approach 0.55 0.52 1007

T a b le  3.2 E xpe rim en ta l results on "D iverg ing Tree 2-D " sequence

Techniques Average
Error

Standard
D evia tion

D ens ity

Horn and Schunk (o r ig in a l) 12.02 11.72 1007
Horn and Schunk (m o d ifie d ) 2.55 3.67 1007
Eras et al. 4.64 3.48 1007
Anandan( frame 19 and 21) 7.64 4.96 1007
Singh(step 2 .n = 2 .\v = 2 .X = 4 ) 8.60 5.60 1007
C orre la tion feedback 5.12 2.16 1007
Weng'a approach 8.01 9.71 1007
Xew approach 4.04 3.82 1007
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Table 3 .3  E xperim enta l results on “ Yosem ite" sequence

Techniques Average
E rro r

Standard
D evia tion

D ensity

H orn  and Schunk(orig ina l) 32.43 30.28 1007c
H orn and Schunk(m odified) 11.26 16.41 1007c
Uras et al. 10.44 15.00 1007c
Anadan 15.84 13.46 1007
S in gh (s te p 2 .n = 2 .w = 2 .X = 4 ) 13.16 12.07 1007c
co rre la tion  feedback 7.93 6.72 1007c
W eng's approach 8.41 8.22 1007c
New approach 7.54 6.61 1007c

edgeness. contrast and entropy. The firs t three are used in  [52] as well. The last two 

a ttr ib u te s  give the  te x tu ra l in fo rm a tion  about the  local neighborhood of the po in t 

under consideration. Com pared w ith  the  negative cornerness and positive  cornerness 

used in  [52]. the  contrast and entropy need no spa tia l g radient ca lcu la tion  and are less 

sensitive to  the noises in  the o rig ina l images. Second, the com puta tiona l fram ew ork 

is q u ite  d iffe ren t. In  ou r a lg o rith m , flow vector is estim ated by using the weighted 

least squared e s tim a tion . There is no d iffe re n tia l ca lcu la tion  required. In Weng 

et a l.'s  a lg o rith m , the  estim ates o f displacement vector are updated based upon 

the ca lcu la tion  o f derivatives o f the a ttr ib u te  images, which makes the estim ated 

displacem ent fie ld  sensitive to  various noises in  the  o rig ina l images. T h ird , in our 

new m ethod, feedback technique is u tilized  to  enhance the es tim a tion  accuracy.

O ur new approach is also quite  d ifferent from  Pan et a l.'s  a lgo rithm . F irs t, 

in  our a lg o rith m , m u lt ip le  image a ttribu tes  are com puted as conservation in fo r­

m a tion . w h ile  in  Pan et a l.'s  a lgorithm  on ly  the image in ten s ity  is assumed to  be 

conserved. Second, o u r approach is po in t o riented, w hile  Pan et a l.'s  a lgo rithm  is 

w indow  oriented. T h ird , in  bo th  Pan et al.'s and our a lgorithm s, the  flow estim ate 

at the propagation  stage is com puted as a weighted sum o f the flow vectors o f the 

neighboring po in ts. However, the weight in our a lg o rith m  relates to  the in tens ity
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d ifference between the point under consideration and the surrounding po in ts and 

there fo re  takes m otion  d iscontinuities in to  considera tion , w h ile  the weight in Pan et 

a l.'s  a lg o r ith m  is s im p ly  a Gaussian mask and the  m o tion  d iscontinu ities are ignored.

T h e  expe rim en ta l results show th a t our proposed approach ou tperfo rm s in 

general b o th  Pan et a l.'s and Weng et a l.'s  a lg o rith m  in  term s o f accuracy o f op tica l 

flow  de te rm ined .

C o m p u ta tio n a lly  speaking, our a lg o rith m  is less expensive than Pan et al.'s 

a lg o rith m . To determ ine the estim ated flow vector in  the conservation step, both 

a lgo rith m s have to  compute the m atch ing  e rro r E(- . - )  (refer to Equation  (3 .8 )). 

In Pan et a l. ’s a lg o rith m , the E{-. -)  is com puted as the sum of squared difference 

between 3 x  3 corre la tion  windows in  tw o images, w h ile  in  our a lgo rithm , the £ ”(-. •) 

is ca lcu la ted  as the sum of squared residual fu n c tio n  o f five a ttr ibu te s . Hence, 

o u r a lg o rith m  needs on ly  almost h a lf o f the co m p u ta tion  required by Pan et a l. ’s 

a lg o rith m . We spend an extra am ount o f com pu ta tion  on m u ltip le  a ttr ib u te  images, 

bu t achieve a big saving in com puting  the m a tch ing  e rro r £ (•.• )•  It is noted tha t 

m u lt ip le  a ttr ib u te s  need to be com puted on ly  once, w hile  the £"(•.•) has to  be 

com puted  in  each ite ra tion .

C om pared w ith  Weng et al.'s a lg o rith m , the  com puta tion  o f our m e thod  is 

a l i t t le  b it m ore expensive. Am ong the five im age a ttr ib u te s  used in o u r m ethod, 

i.e .. in ten s ity , horizon ta l edgeness. ve rtica l edgeness. contrast and entropy, the  first 

three are used in  Weng et a l.’s a lg o rith m  as w ell. Com pared w ith  the  negative 

cornerness and positive  cornerness used in  [52]. the  local contrast and en tropy used 

here need less com puta tion . But the com puta tion  o f flow vector by using the  weighted 

least squared es tim a tion  in our a lgo rithm  takes m uch more tim e  than th a t by using 

num erica l ite ra tio n  in [52]. That is. a lthough we achieve some savings in  a ttr ib u te  

co m p u ta tio n , we spend more on the ca lcu la tion  o f flow vector.
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CHAPTER 4

THRESHOLDING MULTIRESOLUTION BLOCK MATCHING

M o tion  e s tim a tion  is o f great im portance in  video coding app lica tions for the 

e xp lo ita tio n  o f the  high corre la tion between neighboring frames o f an image sequence. 

Am ong tw o basic approaches: block m atch ing  and pel recursion (refer to  Section 

2.2). the  b lock m atch ing  approach is more popu la r and has been adopted by several 

video compression standards.

The m u ltire so lu tion  technique has been regarded as one o f the most efficient 

methods in  b lock m atching  [49]. In a so-called top-dow n m u ltire so lu tion  technique 

(refer to  Section 2.2.1.3). a typ ica l Gaussian p yram id  is form ed firs t. M o tion  search 

ranges are a llocated among d ifferent py ram id  levels. M a tch ing  is in it ia te d  at the 

lowest reso lution pyram id  level to ob ta in  an in it ia l es tim a tion  o f m otion  vectors. 

The com puted m otion  vectors are then propagated to  the next h igher resolution 

level, where it  is corrected and again propagated to  the next level u n til the highest 

resolution level is reached. As a result, a large am ount o f com puta tion  can be saved.

In  the  m u ltire so lu tion  technique, however, the com puted m otion  vectors at 

any in te rm ed ia te  pyram id  level are a ll p ro jected to  the next h igher resolution level. 

In rea lity , some com puted m otion  vectors at the lower resolution level may be poor 

in term s o f accuracy and have to  be fu rthe r refined, w hile  others are re la tive ly  accurate 

and able to  give a satisfactory m otion  com pensation for the corresponding block. 

From saving com puta tion  po in t o f view , it  m ay not be w orth  for the la tte r class 

of m o tion  vectors to  be propagated top  the next h igher reso lution level for fu rthe r 

processing.

M o tiva ted  by the above consideration, we devise and present in the fo llow ing 

a new m u ltire so lu tion  block m atching m ethod in  which a th resho ld ing technique is 

applied to  w ith h o ld  those blocks whose estim ated m otion  vectors give a satisfactory 

m otion  com pensation from  fu rthe r processing, thus saving lots o f com puta tion .

55
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4.1 The Framework

In  th is section, the  proposed thresho ld ing  m u ltireso lu tion  b lock m atch ing  a lgo rithm  

is discussed in  d e ta il.

4.1.1 General Description

Let In( i - j )  be the  fram e o f an image sequence at current m om ent n. F irs t, we 

form  tw o Gaussian pyram ids, pyram ids n and n — 1. from  im age frames I n( i . j )  and

T i - iD - j ) .  respective ly. Let the levels o f the pyram ids be denoted by /. / =  0. I  L.

where 0 is the  lowest resolution level (to p  level) and L the fu ll reso lu tion  level ( bo ttom  

level). I f  ( i . j )  is the coordinates o f the  upper le ft corner o f a b lock at the  level I 

o f pyram id  n . the  block is referred to  as block ( i . j ) ‘n. The ho rizon ta l and vertica l 

dimensions o f a b lock at the level I are denoted by bx and b!y. respective ly. S im ila r 

to  the M ethod  1 in  [49]. the size o f the  block in  th is  work varies w ith  the  pyram id  

levels. T ha t is. i f  the  size o f a block at level / is blr x  bl . then a t level / +  I the block 

size becomes 2blx x  2bltJ. The reason we use the variable block size is th a t the  variable 

block size m e thod  gives more efficient m otion estim ation  than  the fixed block size 

m ethod. The m a tch ing  c rite rion  used fo r m otion es tim ation  here is the M A D  because 

it  requires no m u lt ip lic a tio n  and gives s im ila r perform ance as the  mean square error 

(M SE ) does. The  M A D  between the block ( i . j ) ln o f the curren t fram e and the block 

(i +  cx . j  +  )^_ ! o f the previous fram e at the level / can be ca lcu la ted  as

The b lock m atch ing  is in it ia te d  at the top pyram id  leve l, and going down

is perform ed to  search for the best m atch in a predefined search range. To threshold 

those blocks w h ich  have re la tive ly  accurate estim ated m otion  vectors, an accuracy 

threshold is predefined according to  the  required accuracy for reconstructed image.

where V 1 =  {v lx . v l ) is one o f the candidates o f the m otion  vecto r o f the b lock ( i . j ) ‘n.

towards the b o tto m  level. A t each level o f the pyram id , a fu ll-search block m atch in
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I f  the accuracy thresho ld  is satisfied, the m o tion  es tim a tion  for th is block w ill be 

stopped. O therw ise , the computed m otion  vecto r w ill be propagated in to  the next 

h igher reso lu tion  pyram id  level for refinem ent. In  sum m ary, the m otion  estim a tion  

process fo r a b lock  w il l be stopped i f  e ithe r the  m o tio n  es tim a tion  satisfies the 

accuracy th resho ld  o r the block reaches the  fu ll reso lu tion  p y ra m id  level, whichever 

occurs firs t.

F igure  4.1 illu s tra tes  the  data flow and co m pu tiona l procedures o f the proposed 

fram ew ork.

4.1.2 Threshold Determination

The thresho ld  used in  th is  work is the M A D  fo r the sake o f saving com puta tion . 

The  th resho ld ing  value has a direct im pact on the  perform ance o f the proposed 

a lg o rith m . A  sm a ll threshold ing value can im prove  the reconstructed image q u a lity  

at the expense o f increased com puta tiona l e ffo rt. O n the o th e r hand, a large th resh­

o ld ing  value can reduce the com puta tiona l com p lex ity , bu t the  q u a lity  o f the recon­

s truc ted  im age m ay be degraded.

One possible way to  determ ine the th resho ld ing  value, which is used in  our 

m any experim en ts, is as follows. The peak signal-to-noise (P S X R ) gives an ob jec tive  

measure o f the q u a lity  o f the m otion compensated image. I t  is defined as

P S X R  =  10 log 10 (4.2)

From  the given P S X R . one can find out needed M SE value. A  square root o f th is MSE 

value can be chosen as a threshold ing value. We a pp ly  th is  estim ated threshold to 

the firs t tw o images from  the sequence. I f  the resu lting  P S X R  and needed processing 

t im e  are sa tis facto ry , we use it  for the rest o f the  sequence. O therw ise, we can adjust 

the thresho ld  a l i t t le  accordingly and app ly  it  to  the second and th ird  images to 

check the  P SXR  and processing tim e. In ou r experim ents th is  adjusted param eter 

has been good enough and there is no need for fu r th e r ad jus tm en t. That is. it can
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be used for the rest o f sequence. As shown in  Table 4.1 (re fer to Section 4.2). the 

threshold ing value used fo r “ Miss A m erica ." “ T ra in ." and “ F oo tba ll" sequences are 2.

3. and 4. respectively. I t  is noted tha t they are a ll de te rm ined  in  th is  fashion and give 

satisfactory perform ance, as shown in those three rows m arked w ith  “ New M ethod 

(T H = 2 ) ."  “ New M e thod  (T H = 3 )"  and "New M e thod  (T H = 4 ).~  respectively, in 

Table 4.2. tha t is. the P S X R  experiences only about 0.1 dB  loss and the processing 

tim e  reduces d rastica lly . In  our experim ents, we also tr ie d  the  threshold o f 3. i.e.. the 

average value o f 2. 3. and 4. Refer to those three rows m arked w ith  “ New M ethod 

(T H = 3 ) “ in Table 4.2. I t  is noted tha t this average th resho ld  3 has already given 

satisfactory perform ance fo r a ll o f three sequences. Specifica lly , for “ Miss A m erica " 

sequence, since the th resho ld  increases from  2 to  3. the  P SXR  loss increases from  

0.12 dB  to 0.48 dB  and the  processing tim e reduction  increases from  20% to 38%. 

For “ Footba ll" sequence, since the threshold decreases fro m  4 to  3. the PSXR loss 

decreases from  0.08 dB  to  0.05 dB and the processing t im e  reduction  decreases from  

14% to  9%. O bviously, fo r "T ra in " sequence, the th resho ld  as well as perform ance 

rem ain the same. One can therefore conclude tha t the  th resho ld  de te rm ina tion  may 

not require much co m p u ta tion  at a ll.

4.1.3 Thresholding

M otion  vectors estim ated  at each pyram id  level w ill be checked to  see i f  they give 

a satisfactory m otion  com pensation. Let V l{ i . j ) =  ( v lT. c ly ) denote the estim ated 

m otion  vector for the b lock ( i . j ) ln at I level o f the p y ra m id  n.  For threshold ing. 

V l( i . j )  should be d ire c t ly  pro jected to the b o ttom  level L.  The corresponding 

m otion  vector for the same block at the bottom  level o f the pyram id  n w ill be 

\ ' L(2 L̂~1̂ a n d  is g iven as

V L{2iL- l)i . 2 (L- t]j )  =  2 {L~l)V l{ i . j )  (4.3)
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F ig u re  4 .2  Threshold ing process

The M A D  between the block at the  bo ttom  pyra m id  level o f the  cu rren t frame and 

its  coun te rpa rt in  the previous fram e can be determ ined according to  E quation  (4.1). 

where the  m o tion  vector is V L =  V L(2(L~^i . 2 (L~l) j ) .  Th is  com puted  M A D  value 

can be com pared w ith  the predefined threshold. I f  th is M A D  value is less than the 

th resho ld , the  com puted m otion  vector V L(2l‘L~l)i .2^L~l)j )  w il l be assigned to the 

b lock (2^L~^i. 2 l̂~1̂ j)^ at the level L in the cu rren t frame and m o tio n  es tim a tion  for 

th is  b lock w il l be stopped. I f  not. the estim ated m otion  vector \ at the level /

w il l be propagated to the level / +  1 for fu rthe r refinem ent.

F igure  4.2 gives an illu s tra tio n  o f the above threshold ing process.
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4.2 Experiments

To ve rify  the effectiveness o f the proposed a lg o rith m , extensive experim ents have 

been perform ed. The perform ance o f the  new a lg o rith m  is evaluated and com pared 

w ith  th a t o f M ethod 1 [49]. one o f the  most e ffic ien t m u ltireso lu tion  b lock m a tch ing  

m ethods, in term s o f PSXR. e rro r entropy, m o tio n  vector entropy, the  num ber o f 

blocks stopped at the top  level versus to ta l num ber o f blocks, and processing tim e . 

These perform ance indexs are stated below.

(a) The  peak-to-peak signal-to-noise ra tio  (P S X R )

Th is  term , defined by Equation (4.2). gives an ob jec tive  measure o f the accuracy 

o f the  reconstructed image.

(b ) The error en tropy

The e rror image entropy is the entropy o f the difference between the o rig in a l 

image and the reconstructed image and is g iven by

H b =  ~  ^  p ( b ) l ° g 2 p ( b )  (4.4)
6 = —S

where 6 is a d is tin c tive  value o f the e rro r image and 5  is its  m axim um  value. T he  e rro r 

image entropy gives a lower bound o f num ber o f b its  per p ixe l needed in transm is ion.

(c) The  m otion vector entropy

Th is  te rm  is given by

MV
Hmv =  -  £  P( mv )  log2 p ( mv )  (4.5)

m v = - . \ f V

where m e is a num bering  index o f a d is tin c tiv e  m o tion  vector and .1/1 ’ is its  m a x im u m  

value, which can be determ ined from  the to ta l search range and the m o tion  vector

accuracy (e.g. p ixe l o r h a lf p ixe l accuracy) w ith  respect to  the fu ll reso lu tion  image.

(d ) The  num ber o f blocks stopped at the  top  level versus the to ta l num ber o f blocks

Th is  term  indicates how m any blocks at the  top  level are w ithhe ld  from  fu rth e r 

processing.

(e) The processing tim e
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The processing tim e  is the sum o f to ta l num ber o f add itions fo r the  evaluation 

o f the M A D  invo lved , and the  threshold ing operation.

In  the experim ents, two-level pyram ids are used since pyram ids o f two levels 

give a b e tte r perform ance fo r m otion  es tim a tion  purpose [49]. The  a lgorithm s 

are tested on th ree  video sequences w ith  d iffe rent m o tio n  com plexities, i.e.. "M iss 

A m erica ." "T ra in " and "F oo tba ll." as shown in  F igures 4.3. 4.4 and 4.5. "M iss 

A m erica " sequence has a speaker imposed on a s ta tic  background and contains less 

m otion . "T ra in " sequence has more deta il and contains a fast m oving ob ject ( tra in ) 

[49]. The  sequence "F oo tba ll"  contains most com plica ted m o tion . Table 4.1 is the list 

o f im p lem enting  param eters used in the experim ents. Table 4.2 gives the  perform ance 

o f the proposed a lg o rith m , compared w ith  M ethod 1. Here the m o tion  estim ation  

has h a lf p ixe l accuracy. A ll performance measures lis ted  there are averaged for the 

first 25 frames o f the  testing  sequences.

Each frame o f  the sequence "M iss A m erica " is o f size 360x288 pixels. For conve­

nience. on ly  the cen tra l po rtion  o f 320x256 pixels is processed. The to ta l num ber o f 

blocks is 1280. W ith  the opera tiona l param eters lis ted in  Table 4.1 (T H = 2 ). 53Vf o f 

the to ta l blocks (679 blocks) at the top level satisfy the predefined threshold  and are 

not propagated to  the b o tto m  level. The processing t im e  needed by the proposed 

a lgo rithm  is 20% less than M ethod  1 w h ile  the PSXR. the  e rro r image entropy and 

the vector en tropy are alm ost the same. Com pared w ith  M e thod  1. we spend an extra  

am ount o f com puta tion  (around 0.16 x  10b add itions) on thresho ld ing  operation, but 

achieve a big savings o f com puta tion  (around 2.16 x  106 add itions) by w ithho ld ing  

those blocks, whose M A D  values at the fu ll reso lution level is less than the  predefined 

accuracy, from  fu r th e r processing. The com puta tiona l savings comes from  here.

The frames o f the "T ra in "  sequence are o f size 720x288 pixels, and on ly  the 

centra l po rtion  o f 640x256 pixels is processed. The to ta l num ber o f blocks is 2816. 

Refer to  Table 4.2 (T H = 3 ) . about 529?o f the to ta l blocks (1465 blocks) are stopped
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Figure 4.3 The  10th fram e o f “ Miss A m erica " sequence

at the top  level. The processing tim e  has been reduced about 179? by the  new 

a lgo rithm , com pared w ith  M e thod  1. The PSXR. the e rro r en tropy and the vector 

entropy are a lm ost the same.

The frames o f sequence “ F oo tba ll" are o f size 720x480 p ixels, and o n ly  the 

central p o rtion  o f 640x448 p ixe ls is processed. The to ta l num ber o f blocks is 4928. 

W ith  the opera tiona l param eters lis ted  in  Table 4.2 (T H = 4 ) . about 38c/f o f the  to ta l 

blocks (1873 blocks) are stopped at the top  level. The processing t im e  is about 149? 

less than tha t required by M e thod  I. The PSXR. the e rro r en tropy and the  vector 

entropy are alm ost the same.

In a dd ition  to  the ob jec tive  measures, we also compare the reconstructed images 

by M ethod 1 and Xew M ethod  sub jective ly . For three testing  sequences, i.e.. "M iss 

A m erica ." “ T ra in ."  and "F o o tb a ll." , we v ir tu a lly  cannot see any d ifference between 

the reconstructed images ob ta ined  by M ethod 1 and Xew M ethod.

In sum m ary, it  is clear th a t in  a ll three different testing sequences, ou r a lg o rith m  

works faster than the ex is ting  top-dow n m u ltireso lu tion  block m a tch ing  a lg o rith m  

w hile  achieving almost the same q u a lity  o f the reconstructed image.
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F ig u re  4 .4  The 10th fram e o f  "T ra in " sequence

F ig u re  4 .5  The 10th fram e o f "F oo tba ll" sequence
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T a b le  4 .1  Parameters for testing  sequences

Param eters at level Low  resolution level Fu ll reso lu tion  level
“  M iss Am erica “
Search range 3x3 1x1
B lock size 4x4 3x8
T hresho ld ing  value 2 None (X o t app licab le)
" T ra in  “
Search range 4x4 1x1
B lock size 4x4 8x8
T hresho ld ing  value 3 Xone (X o t app licab le)
~ Foo tba ll “
Search range 4x4 1x1
B lock size 4x4 8x8
Thresho ld ing  value 4 Xone (X o t app licab le)

T a b le  4 .2  E xperim en ta l results on testing  sequences

P SXR
(d B )

E rro r
entropy
(b its /p ix e l)

Vector en tropy 
(b its /v e c to r)

Xo. o f blocks 
stopped at 
top  le ve l/
Xo. o f 
to ta l blocks

Processing 1 
tim es 
(X o . o f 
add itions. 
10r i)

" Miss A m erica  " sequence
M ethod 1 [49] 38.91 3.311 6.02 0/1280 10.02
Xew M ethod  (T H = 2 ) 38.79 3.319 5.65 679/1280 8.02
Xew M ethod  (T H = 3 ) 38.43 3.340 5.45 487/1280 6.17
" T ra in  " sequence
M ethod 1 [49] 27.37 4.692 6.04 0/2816 22.58
Xew M ethod  (T H = 3 ) 27.27 4.788 5.65 1465/2816 18.68
“ Footba ll "  sequence
M ethod 1 [49] 24.26 5.379 7.68 0/4928 30.06
Xew M ethod  (T H = 4 ) 24.18 5.483 7.58 1873/4928 25.9
Xew M ethod  (T H = 3 ) 24.21 5.483 7.57 1456/4928 27.1
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4.3 Conclusions

T he  ex is ting  m u ltire so lu tio n  b lock m atch ing  technique such as the top -dow n  pyram id  

techn ique propagates a ll the  m o tio n  vectors estim ated at a lower reso lu tion  level 

to  its  next h igher reso lution level fo r refinem ent no m a tte r w hether the  com puted 

m o tio n  vector gives a sa tis fac to ry  m o tion  compensation or not. Based on th is  

observation, we present in  th is  paper a new thresho ld ing m u ltire so lu tio n  b lock 

m a tch ing  a lg o rith m  so th a t m o tio n  vectors com puted at lower reso lu tion  level 

w il l be treated d iffe ren tly . A ccord ing  to  the m otion  com pensation perform ance, 

those blocks sa tis fy ing  the predefined accuracy c rite rio n  are w ith h e ld  from  fu r th e r 

processing, and a large am ount o f  com puta tion  is saved. Three experim en ts  w ith  

d iffe ren t m otion  com plexities have shown th a t the proposed a lg o rith m  works w ell. It 

la rge ly  reduce the processing t im e  ranging from  14% to  20%. com pared to  the fastest 

e x is ting  m u ltireso lu tion  techn ique, w h ile  m a in ta in ing  alm ost the same q u a lity  o f the 

reconstructed image.
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CHAPTER 5

THRESHOLDING HIERARCHICAL BLOCK MATCHING

Block-based m o tio n  es tim a tion  approach has don im ated various video codecs due 

to its s im p lic ity  and easy im p lem enta tion. F u ll search b lock m a tch ing  is known to 

give an o p tim a l es tim a tion  a t the expense o f enormous am oun t o f com puta tion . To 

im prove the co m p u ta tion a l com plexity , many e ffic ient search techniques have been 

proposed such as the three-step search, m u ltire so lu tion  b lock m atch ing  and so on. 

Am ong them , the  m u ltire so lu tion  technique is considered to  be the very efficient.

I t  is noted th a t a ll the above m entioned block m a tch ing  techniques, i.e.. fu ll 

search b lock m a tch ing , three-step search, and m u ltire so lu tio n  block m atching, trea t 

every region in  an image dom ain  in d isc rim ina te ly  no m a tte r w hether the region 

under consideration contains com plicated m o tion  o r not. T he  co m p lex ity  o f m otion 

for d iffe rent regions w ith in  an image is usually d iffe ren t. Some regions may contain 

com plex m o tion , w h ile  others m ay have re la tive ly  s ta tic  background o r slow motions. 

For instance, a ty p ic a l videoconferencing scene is an image o f a speaker imposed on 

a s ta tic  background. Except a lim ite d  am ount o f com plex m otion  such as facial 

expression changes, o the r m otions are re la tive ly  slow, the background regions even 

do not have any m o tio n . To use the com puting  resources e ffic ien tly , d iffe ren t com pu­

ta tio n  efforts should  be made fo r regions conta in ing  d iffe ren t am ount o f m otion. 

Regions experiencing com plex m otion  deserve more co m p u ta tion a l tim e , but for 

regions w ith  slow m o tion , the search procedure can be s im p lified  to  expedite the 

m otion  es tim a tion  process.

M o tiva te d  by the  above consideration, we devise and present in  th is  chapter 

a new h ie rarch ica l b lock m atch ing  a lgo rithm  in  which a th resho ld ing  technique is 

applied to  w ith h o ld  those regions conta in ing less am ount o f m otions from  fu rthe r 

processing, thus saving com puta tion  drastica lly. In the fo llow ing. Section 5.1 gives a 

general descrip tion  o f the new fram ework and a lg o rith m , and then several issues in its

67
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im p lem enta tion  are discussed in  de ta il. Section 5.2 dem onstrates an extensive exper­

im ents to  ve rify  the a lg o rith m . Section 5.3 presents conclusions and some discussions.

5.1 New Approach

In  th is section, the new h ie rarch ica l block m atching a lg o rith m  using th resho ld ing is 

presented. F irs t, we give a general description o f the  a lg o rith m , and then several 

issues in its  im p lem en ta tion  are discussed in  deta il.

5.1.1 General Strategy

In  order to expedite  the m o tion  estim ation  process and save com pu ta tion  by 

s im p lify ing  the search procedure for regions conta in ing less m otion , we resort to the 

hierarchical s truc tu re  in th is  new a lgo rithm .

In the fo llow ing, let In{ i . j )  denote the frame o f an image sequence at present 

m om ent n.  We firs t form  a b lock hierarchy. Let the d iffe rent levels o f the hierarchy 

be denoted by /. / =  0 .1 . • • • . L.  where 0 is the top level and L the  b o tto m  level. I f  

{ i . j )  is the coordinate o f the  upper le ft corner o f a b lock at the level / in the hierarchy, 

the block is referred to  as b lock { i . j ) 1. I f  the horizon ta l and ve rtica l dimensions o f 

the blocks at the level / are denoted by blx and bly. respectively, at the level / +  1 the 

dimensions o f the blocks w il l be

» »  =  &
2

e '  =  I ( 5 - n

T h a t is. from  the top to  the b o ttom  level in the hierarchy, the b lock sizes are 

decreased. F igure 5.1 gives an illu s tra tio n  o f the h ierarchical s tru c tu re  used in our 

work. As shown, a block at one level corresponds to  four blocks at the next level and 

a ll levels are o f the same reso lution. Th is is quite  d ifferent from  a pyram id  s tructu re .

M o tion  estim a tion  is perform ed from  the top to  the b o tto m  level o f the 

hierarchy. A t each level, a separate search procedure w ith  different sets o f parameters
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F ig u r e  5 .1  A n  illu s tra tio n  o f the h ierarchical s truc tu re .

is carried ou t. For a b lock ( i . j ) 1 at level I in  the curren t fram e. We look for a block 

o f pixels in  the previous fram e tha t gives the best m atch in term s o f the mean 

absolute difference (M A D ) (refer to  Section 2.2.1).

It has been noted tha t for some blocks, the m o tion  vectors estim ated at 

the in te rm ed ia te  levels o f the hierarchy give a sa tis facto ry  m o tion  compensation. 

Therefore, it  is ine ffic ien t to  pu t these blocks in to  the next level for fu r th e r processing. 

Based on th is  considera tion , in  th is  work a set o f accuracy thresholds is predefined 

according to  the requ ired  accuracy for reconstructed images. The com puted m otion  

vector V l( i . j )  (re fe r to  Section 4.1.3) w ill be checked to  see i f  i t  satisfies the 

predefined thresho ld . T h a t is. the M A D  value associated w ith  the com puted m otion  

vector V !( i . j )  is com pared w ith  the threshold. I f  the M A D  value is less than the 

threshold, the es tim a ted  m otion  vector V l( i . j )  w ill be assigned to  the  block ( i . j ) 1. 

and the  m otion  e s tim a tion  for the block w ill be stopped.
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On the  o the r hand, i f  the accuracy thresho ld  is not satisfied, the b lock  ( i . j )1 

w i l l  be propagated in to  level / - f-1 in  th e  hierarchy. A ccord ing  to the E qua tion  (-5.1). 

th e  b lock ( i . j ) 1 corresponds to  four b locks at the level / +  1. The com puted m o tion  

vecto r V l( i . j )  w il l be assigned to  those four blocks as follows:

V l+l( i . j )  =  v l( i . j )
V'+' ( i+bi j )  = Vl( iJ)
V l+lU . j + bf ) = y l( i . j )
V l+l ( i + bf . j  +  bf )  =  V l( i . j )

A t level / +  1. the m otion  es tim a tion  for four blocks w il l be carried ou t w ith  the

above assigned m otion  vector as an in it ia l guess.

The m o tion  estim ation  is in it ia te d  at the top  level o f the h ie rarchy and is 

going down towards the bo ttom  level. B y  thresho ld ing , m o tion  es tim ation  fo r blocks 

w ith  less m o tion  w il l be te rm ina ted  at some in te rm ed ia te  levels, thus saving com pu­

ta tio n . B locks stopped at upper levels are o f sizes larger than  those stopped at lower 

levels. Hence, the  fina l m otion  fie ld consists o f blocks o f d iffe rent sizes. The m otion  

e s tim a tio n  fo r the  whole image w ill be te rm ina ted  i f  m o tion  estim a tion  o f each block 

e ith e r satisfies the  accuracy threshold o r reaches the b o tto m  level o f the  h ierarchy.

5.1.2 Block Size in the Hierarchy

In  the  extrem e, the block size can be as large as the fu ll image at the top  level o f 

the  h ie rarchy and as small as a single p ixe l at the b o tto m  level. But th is  k in d  o f 

h ie ra rchy  s tru c tu re  makes the m atch ing  ine ffic ien t. O n one hand, tak ing  the  whole 

im age as a single block and searching fo r a corresponding block in the previous fram e 

is a lm ost ce rta in ly  a waste o f e ffo rt, unless the sequence is s ta tic  at tha t p a rtic u la r 

in s ta n t. On the  o ther hand, a block o f very sm all size such as a single p ixe l does 

not necessarily result in  a be tte r m o tio n  es tim a tion . The sm aller the b lock size, 

the  h igher the  p ro b a b ility  tha t there are blocks in  the previous frame having a very 

s im ila r o r iden tica l pa tte rn  o f the sm all block. Th is can cause m ism atch ing. Besides, 

noise w il l affect m atching more when the  block size is too small.
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In  p ractice , it  is desirable to  make the block size a t the  top level o f the h ie rarchy 

sm a lle r than  the  fu ll image and the  b lock size at the  b o tto m  level larger than a single 

p ixe l. As lis ted  in  Tables 5.1. 5.3 and 5.5. the actua l b lock sizes in  a 4-level h ie rarchy 

used in  ou r extensive experim ents are 64x64. 3 2x3 2 . 16x 16. 8 x 8 .

5.1.3 Thresholding

The th resho ld  used in  th is  w ork is the M A D  for the sake o f saving com puta tion . I t  has 

a d irec t im p a c t on the perform ance o f the proposed a lg o rith m . Blocks at the upper 

levels o f the  h ierarchy are o f large sizes. Large blocks deserve more chances to  conta in  

nonun ifo rm  m otions. The use o f sm all threshold ing value helps to detect com plex 

m otions embeded in  large blocks and sp lits these blocks fo r fu rth e r processing. Thus 

com pared w ith  large th resho ld ing  value, the use o f sm a ll one makes the m o tion  

es tim a tion  fo r large blocks re la tive ly  accurate. On the o the r hand, however, the 

sizes o f blocks at the lower levels o f the hierarchy are re la tive ly  sm all. There are 

m any circum stances under w h ich  blocks conta in ing com plex m otion cannot find a 

good m atch  in  the previous fram e such as occlusion and disocclusion. In these cases, 

forc ing  blocks in to  fu rth e r processing by the use o f sm a ll threshold ing value cannot 

result in  a b e tte r m otion  es tim a tion  but more co m p u ta tion . To take both  the q u a lity  

o f the reconstructed image and com puta tiona l co m p le x ity  in to  consideration, we use 

variable  th resho ld ing  technique here. T ha t is. the th resho ld ing  values vary w ith  the 

h ie rarch ica l levels. For blocks at the upper levels, we use a sm all thresho ld ing  value 

w h ile  for blocks at the lower levels, we use a large one. Specifically, let T l denote the  

th resho ld ing  value at level / o f the  hierarchy. / =  0. 1. • • • .  L.  Then T l w il l be g iven 

by

^  ̂ =  c • 2l (5.3)

where c is a param eter. As seen, the threshold ing value at one level is tw ice  as large 

as th a t at its  im m ed ia te  upper level.
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One possible way to  determ ine the param eter c. which is used in ou r m any 

experim ents, is as follows. The peak signal-to-noise (P S X R ) gives an o b jec tive  

measure o f the  q u a lity  o f the m otion compensated image. I t  has been defined in  

Section 4.1.2 and is re w ritte n  below

P S X R =  10 log10- ^ :  (o . t )

From  the  given PSXR . one can find out needed M SE value. A  square root o f th is  

M SE value can be chosen as an in it ia l value o f c. We app ly  th is  param eter c to  the  

top level o f the  firs t two images from  the sequence. I f  the  resu lting  PSXR and needed 

processing tim e  are satisfactory, we use it  for the rest o f the  sequence. O therw ise, we 

can ad just the  param eter c a l i t t le  accordingly and app ly  it  to  the second and th ird  

images to  check the  P SXR  and processing tim e . In  our experim ents th is  ad justed 

param eter has been good enough and there is no need fo r fu rth e r ad justm en t. T h a t 

is. i t  can be used fo r the rest o f sequence. I t  is noted th a t the  same procedure has 

been used in  Section 4.1.2.

The  typ ica l th resho ld ing  values used in  our extensive experim ents have been 

lis ted in  Tables 5.1. 5.3 and 5.5.

5.1.4 Allocation of Search Range

I t  is clear th a t in  the proposed a lgorithm , m otion  es tim a tion  is conducted at d iffe rent 

h ie rarch ica l levels. A t each level, a separate search procedure is perform ed.

Let D max denote the m axim um  displacement w h ich  can be estim ated. I t  w ould 

be very tim e-consum ing  to  search for m o tion  vectors w ith in  the search range ± D , n.tx 

at each level and the search range should be a llocated among d ifferent levels. On 

the o th e r hand, the  larger the block size, the less possible the block conta ins large 

m otion . To take the  above two factors in to  consideration, we assign the search range 

non u n ifo rm ly  to  each level. We make the search range decrease from  the top to the
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• —  poin ts involved in the co m pu ta tion  o f the M A D  

F ig u r e  5 .2  Subsampling procedure

bo ttom  level o f the h ie rarchy w h ile  the sum o f the search ranges fo r a ll levels remains 

equal to the m ax im um  d isp lacem ent for the image.

Let D lmax denote the  m a x im u m  displacement at level /. / =  0. 1. • • • .  L. then, 

we have the fo llow ing:

D° <  D l < • • • < £ '  (5.5)m a x  —  m a x  —  —  m a x  —  —  m a x  x '

and

Dmar +  H h J' *" =  D m,IX (5.6)

Typ ica l search ranges used in our im p lem enta tion  have been given in  Tables 

5.1. 5.3. and 5.5.

5 .1 .5  S u b s a m p lin g

In  the evaluation o f the m a tch ing  crite rion  M A D . a ll pixels w ith in  the b lock are 

involved. In order to  fu r th e r reduce the com puta tiona l e ffo rt, a subsam pling inside 

the block is perform ed. As shown in Figure 5.2. every o the r p ixe l (h o rizo n ta lly  and 

ve rtica lly ) inside the b lock is taken in to  account for the  evaluation o f the m atch ing
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c rite rio n . W hen the  subsam pling procedure is applied, instead o f Equation (2.12). 

the M A D  value can be calculated as

i ^ — 1

T .  |/n 0  +  '2k.j +21)  — +  ’2(c +  v lx. j  +  21 +  Cy)|
- f  X  -  f  k=0 1=0

(5.7)

O bviously, by using the  subsampling technique, the  co m pu ta tion  is reduced 

by a fac to r o f 4. However, since 3 /4  o f the pixels in  the  b lock are not invo lved 

in  the  m a tch ing  co m pu ta tion , the use o f such subsam pling procedure m ay affect 

the accuracy o f the  m o tion  vectors, especially for b locks o f sm all size. In  the 

a lg o rith m , th is  subsam pling procedure on ly  applies to  blocks at the  top  two levels in 

the h ie rarchy where the  b lock size is large enough such th a t the  m atch ing  accuracy 

w ill not be seriously affected.

5.1.6 Summary of the Algorithm

The a lg o rith m  is sum m arized below.

1. A p p ly  Gaussian f ilte r  to  orig ina l images to  remove various noises.

2. Define a h ie rarch ica l s truc tu re  as illu s tra ted  in  F igure  5.1. Label the levels o f

the  h ierarchy as level /. / =  0. I  L : level 0 is the  top level and level L the

b o tto m  level.

3. A llo ca te  the search range among the d ifferent h ie rarch ica l levels, as discussed 

in  Section 5.1.4.

4. Set the  level to  the top . i.e.. / =  0. and set the b lock m o tion  vectors at level 0 

to  zero.

5. For blocks at level / in  the current fram e, search fo r a best m atch w ith in  a 

predefined search range at the same level in the previous fram e by the fu ll-  

search block m atch ing . The m atching c rite rio n  is the  M A D .

M A P : .  4 )  = bl„
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6. I f  / =  L. the procedure re tu rns  w ith  the resu lting  m otion fie ld: o therw ise, go 

to  step 7.

7. Threshold the block m o tio n  vectors com puted at the level /. I f  the  M A D  

value given by the estim ated  m o tio n  vector is less than the th resho ld , m o tion  

es tim ation  for this b lock w il l be stopped: otherw ise, go to the next step.

8. S p lit the block in to  four subblocks w ith  equal size. T ha t is. propagate the  b lock 

in to  the next lower level in  the hierarchy. Assign the com puted m o tio n  vector 

o f the block to  its corresponding subblocks at level / +  1. Th is  m o tio n  vector 

gives an approxim ate e s tim a tion  o f the m o tion  vector at level / +  1 and serve 

as an in it ia l guess for the m o tio n  es tim a tion . The block m atch ing  is conducted 

at level / +  1. Go to  step 6.

5.2 Experiments

To ve rify  the effectiveness o f the  proposed new a lg o rith m , extensive experim ents have 

been perform ed. The new a lg o rith m  is im p lem ented in two different ways: one (X ew  

M e thod  1) does not em ploy the  subsam pling procedure: the o ther (X ew  M e thod  2) 

does. The performance o f Xew M ethods 1 and 2 are evaluated and com pared w ith  

the  full-search block m atch ing  (F B M ) and M ethod  L in [49]. in term s o f P SX R . e rro r 

image entropy, m otion  vector entropy, the  num ber o f m otion vectors, and processing 

tim e . The de fin ition  o f the firs t three term s have been given in  C hapte r 4. The 

num ber o f m otion  vectors is the  to ta l num ber o f m otion  vectors in  the  fina l m o tion  

fie ld . The processing tim e  here is the to ta l num ber o f additions needed fo re v a lu a tio n  

o f the M A D . The am ount o f th resho ld ing  opera tion  is negligible com pared w ith  tha t 

needed by the M A D  evaluation and is hence not counted in.

In  the experim ents, the a lgo rithm s are tested on three groups o f video sequences 

conta in ing  different m otion  com plex ities .
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F ig u re  5 .3  The 10th fram e o f "C’la ire " sequence

F ig u re  5 .4  The 10th fram e o f "Salesman" sequence
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Group 1

G roup 1 o f the tes ting  sequence contains typ ica l videoconferencing sequences,

i.e.. "C la ire ." "M iss A m erica ." and "Salesman." as shown in  Figures 5.3. 4.3 and 

5.4. Each fram e o f the  sequences is o f size 360x288 pixels. For convenience, on ly the 

centra l p o rtio n  o f 320x256 pixels is processed. The  m o tio n  es tim a tion  has one p ixe l 

accuracy. Table 5.1 lis ts the  im p lem enta tion  parameters used in th is  experim ent. 

Table 5.2 gives the  perform ance o f New M ethods 1 and 2. compared to  the F B M  

and M ethod  I in  [49], averaged fo r the first 25 frames o f the  testing  sequences. I t  is 

noted th a t, great saving has been achieved in  bo th  processing tim e  and the num ber o f 

resu lting  m o tion  vectors by our a lgorithm s. The su pe rio rity  over the F B M  is obvious. 

Com pared w ith  M e thod  L in  [49]. the  processing tim e  needed by New M ethod 1 (New 

M ethod 2) is 629? (839?) less in  the  case o f "C la ire ". 269? (809?) less in  the case o f 

"M iss A m e rica ", and 99? (479?) less in the case o f "Salesm an" w h ile  m a in ta in ing  

alm ost the same q u a lity  o f reconstructed images (fo r New M ethod  1. loss in PSNR 

is about 0.2 dB  and for New M e thod  2. loss in PSNR is about 0.7 d B ). Furtherm ore, 

the num ber o f fina l resu lting  m o tion  vectors is subs tan tia lly  less than M ethod 1 [49] 

(rang ing from  889? to 999? less fo r the three sequences). The  perform ance o f New 

M ethods 1 and 2 is s lig h tly  d iffe ren t. Due to  the subsam pling. New M ethod 2 is 

faster than  New M ethod  1 as expected, and gives 0.5-0.7 dB  decrease in  the PSNR 

for the  three tes ting  sequences.

As a whole, it  is clear th a t our a lgo rithm  ou tperfo rm s both  full-search block 

m atch ing  and top-dow n pyram id  technique in  th is  group o f experim ents as discussed 

above.

G roup 2

The experim ents are also conducted on the o ther video sequences which contain 

more com plica ted image deta ils and m otion. The sequence o f "T ra in " (see Figure 

4.4) is o f deta iled  images w ith  a fast moving object ( tra in ) . The frames o f "T ra in "
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sequence are o f size 720 x  288 pixels, and on ly  the  centra l portion  o f 704 x  256 pixe ls 

is processed. T he  m o tio n  estim ation  has a h a lf p ixe l accuracy.

Table 5.3 lis ts the  parameters used in app ly in g  the proposed a lg o rith m  to  the  

“ T ra in ”  sequence. Table  5.4 illustra tes the results achieved in  the experim ents. As 

seen, for the  “ T ra in "  sequence, compared w ith  the  F B M  and top-dowm  p yra m id  

technique, a saving in  bo th  the num ber o f m o tion  vectors and processing tim e  by the 

proposed a lg o rith m  has been achieved. B u t the  saving is not as much as ob ta ined  

in  the  case o f the  videoconferencing sequences as reported in  Group L. Besides, the 

q u a lity  o f the  reconstructed images deteriorates, specifically, the PSXR  decreases 

by 1.02 dB  and 2.35 dB  fo r Xew M ethods 1 and 2. respectively. S ub jective ly , th is  

de te rio ra tion  is obvious in  the reconstructed images shown in  5.5 and 5.6. F igu re

5.5 is the m o tio n  compensated image by M e thod  1 w h ile  Figure 5.5 is the m o tio n  

compensated image by Xew M ethod 1. Com pared w ith  the orignal image F igure  4.4. 

there exist some d is to rtion s  in both Figures 5.5 and 5.6. In Figure 5.5. the head o f 

the tra in  is s lig h tly  b lu rred  while in  F igure 5.6. it  is a lm ost disappeared. There is a 

serious d is to rtio n  in  F igure  5.6.

G roup 3

The “ F o o tb a ll" sequence in th is  group contains most com plicated m o tio n  

among a ll sequences tested. The frames o f the  sequence "F oo tba ll" (see F igure  4.5) 

are o f size 720 x  480 pixels, and on ly  the cen tra l po rtion  o f 704 x  448 p ixe ls is 

processed. T he  m o tio n  estim ation  has a h a lf p ixe l accuracy. Tables 5.5 and 5.6 is 

the im p lem en ta tion  param eters and experim en ta l results by the proposed a lg o rith m , 

respectively. For the  “ Foo tba ll" sequence, ou r a lg o rith m  does not seem as effective 

as in  the o th e r experim ents. Figures 5.7 and 5.8 are the m otion com pensated 

image by M e thod  1 and m otion  compensated image by Xew M ethod L. respective ly. 

Com pared w ith  the o rig in a l image in  Figure 4.5. one can te ll tha t the d is to rtion s  in 

F igure 5.8 are a l i t t le  m ore severe than tha t in  F igure 5.7.
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T a b le  5 .1  Parameters for videoconferencing sequences

Parameters at level I 2 3 4
Search range l x l l x l 2x2 3x3
B lock  size 64x64 32x32 16x16 8x8
Thresho ld ing value 2 4 8 16

F ig u re  5 .5  T he  m otion  compensated 10th fram e o f “ T ra in " by M ethod  1

As a conclusion, for sequences having less m o tion  such as videoconferencing 

sequences, o u r proposed a lgorithm  works m ore  e ffic ien t than the F B M  and top- 

down p y ra m id  technique, while for sequences con ta in ing  complex m otion , the  new 

a lgo rithm  loses the superiority.

5 .3  C o n c lu s io n s  a n d  D is c u s s io n s

The e x is tin g  b lock m atching techniques such as full-search block m atch ing  and 

top-down p y ra m id  trea t every region in  an image dom ain in d isc rim in a te ly  no 

m a tte r w he the r the  region under consideration conta ins com plicated m otion  o r not. 

M o tiva ted  fro m  th is  observation, we present in  th is  chapter a new th resho ld ing  

h ierarch ica l b lock  m atch ing  a lgorithm  so th a t d iffe ren t com puta tiona l efforts m ay be
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T a b le  5 .2  E xpe rim en t results on videoconferencing sequences

PSXR
(dB)

E rro r entropy 
(b its /p ix e l)

Vector en tropy 
(b its /ve c to r)

N um ber o f 
fina l blocks

Processing tim es 
(X o . o f operations.
to6)

~ C la ire  “
F B M 41.13 2.32 1.82 1024 41.5
M ethod 1 [49] 40.92 2.33 1.83 1024 7.44
Xew M ethod 1 41.07 2.32 1.62 13 2.79
New M ethod 2 40.58 2.35 1.59 12 1.28
“ Miss Am erica ”
F B M 37.71 3.64 3.45 1024 41.5
M ethod 1 [49] 37.51 3.65 3.61 1024 7.44
Xew M ethod 1 37.32 3.69 3.0 81 5.51
Xew M ethod 2 36.92 3.73 2.37 38 1.44
“ Salesman ”
FB M 35.81 3.82 3.63 1024 41.5
M ethod 1 [49] 35.62 3.84 3.81 1024 7.44
Xew M ethod 1 35.36 3.91 2.89 113 6.75
New M ethod 2 34.76 4.13 2.61 17 3.79

T a b le  5 .3  Parameters for "T ra in ”  sequence

Param eters at level L 2 3 4 I
Search range lx l 2x2 2x2 4x4
B lock size 64x64 32x32 16x16 8x8
Thresho ld ing  value 3 6 12 24

T a b le  5 .4  E xperim en t result on “ T ra in ” sequence

P S X R
(d B )

E rro r entropy 
(b its /p ix e l)

Vector en tropy 
(b its /ve c to r)

N um ber of 
fina l blocks

Processing tim es 
(X o. o f operations. 
106)

FB M 27.75 4.69 6.02 4096 442.9
M ethod 1 [49] 27.51 4.71 6.33 4096 19.9
Xew M ethod 1 26.49 4.82 5.54 3567 18.21
Xew M ethod 2 25.16 4.97 4.78 2416 16.12
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F ig u re  5 .6  The  m o tion  compensated 10th fram e o f "T ra in " by Xew M e thod  1

T a b le  5 .5  Parameters for "F o o tb a ll"  sequence

Param eters at level 1 2 3 4
Search range l x l 2x2 2x2 4x4
B lock size 64x64 32x32 16x16 8x8
Thresho ld ing  value 4 8 16 32

T a b le  5 .6  Experim enta l results on “ F oo tba ll" sequence

PSXR
(d B )

E rro r entropy 
(b its /p ix e l)

Vector en tropy 
(b its /v e c to r)

X um ber o f 
fina l blocks

Processing tim es 
(X o . o f operations. 
106)

F B M 24.61 5.46 7.54 4096 891.5
M ethod  1 [49] 24.29 5.48 7.86 4096 30.1
Xew M ethod  I 22.33 5.71 7.22 3889 29.24
Xew M ethod  2 20.41 5.92 6.13 3216 26.12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F ig u r e  5 .7  The  m otion compensated 10th fram e o f "F oo tba ll by M e thod  1
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Figure 5 .8  T he  m o tion  compensated 10th fram e o f "F o o tb a ll by Xew M ethod  I
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made fo r regions having d iffe ren t com p lex ity  o f m otion . Extensive experim ents have 

shown tha t fo r sequences w ith  less m otion  such as videoconferencing sequences, the 

proposed a lgo rithm  reduces bo th  the  processing tim e  and the  num ber o f fina l m otion 

vectors d rastica lly , w h ile  m a in ta in in g  almost the same q u a lity  o f the  reconstructed 

image. For videoconferencing sequences i t  works even b e tte r than  threshold ing 

m u ltire so lu tion  block m a tch ing  discussed in  C hapter 4. For sequences conta in ing 

com plica ted m otion , such as sequences "T ra in " and "F o o tb a ll" , the  threshold ing 

h ie rarch ica l b lock m a tch ing  m ay not be suitable.

O ur proposed a lg o rith m  is q u ite  d ifferent from  the  ex is ting  h ie rarch ica l block 

m a tch ing  a lgo rithm  [7]. Based upon the  observation tha t large measurem ent windows 

give m ore re liab le m o tio n  es tim a tion  in the case o f large d isp lacem ent w h ile  sm all 

measurement windows are more su itab le  fo r sm all d isp lacem ent, in  the  existing  

h ierarch ica l m ethod, the  m o tion  es tim ation  o f each b lock in  the cu rren t frame is 

perform ed recursively at three h ierarchical levels. A t each level, a separate m otion 

es tim a tion  is perform ed. The  fin a lly  estim ated m otion  vector is the  sum of the 

estim ates from  three h ie rarch ica l levels. On the o ther hand, the  purpose o f our 

a lg o rith m  is to reduce the  co m pu ta tion  o f m otion  es tim a tion . The s tra tegy o f our 

a lg o rith m  is also d iffe ren t. In  the proposed a lgo rithm , blocks are trea ted  d iffe ren tly  

according to  the accuracy o f the estim ated m otion  vectors. I f  the es tim a te  o f m otion 

vector does not sa tis fy ing  the  predeterm ined threshold, the  b lock w il l be sp litted  in to  

four subblocks for fu r th e r processing: otherwise, the m otion  es tim a tion  fo r th is  block 

w ill be te rm ina ted , thus saving com puta tion . Besides, co n tra ry  to  the  a lgo rithm  in 

[7]. in  our a lgo rithm  the  search range o f each level is increased from  the top to the 

b o tto m  level o f a hierarchy.
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CHAPTER 6 

SUMMARY OF THE DISSERTATION

Th is  chapter conta ins a sum m ary o f our m a jo r con tribu tions  and possible avenues 

fo r fu tu re  research.

6.1 Summary

Th is  d isse rta tion  has focused on m otion  es tim a tion  fo r app lications in  the fie ld  o f 

video coding and com puter vision. Here, we b rie fly  sum m arize what have been 

accom plished in  the  research presented in  th is  d isserta tion .

In  the  d isse rta tion , we first present a m u lt ia t tr ib u te  feedback approach to  de te r­

m in ing  2-D dense m otion  field. Th is approach has the fo llow ing features. F irs t, 

fo r each po in t in  an image, m u ltip le  image a ttr ib u te s  are com puted as conserved 

in fo rm a tion  and make image point m atch ing  m ore robust. Specifically, we use tw o 

types o f image a ttr ib u te s . One describes the s truc tu re  in fo rm ation  o f the po in t 

under considera tion : the o ther reflects the te x tu ra l in fo rm a tion  o f its  local neigh­

borhood. These a ttr ib u te s  need less deriva tive  opera tion  and are hence less sensitive 

to  various noises. Second, feedback technique is u tilize d  to  enhance the es tim a tion  

accuracy. For each po in t under consideration, the estim ated m otion vector from  

the  last ite ra tio n  and its  perturbed values lead to possible m atching candidates in 

the second image. T h ird , except horizonta l and ve rtica l edgeness. no o ther d iffe r­

e n tia tio n  is invo lved  in  the proposed com puta tiona l fram ework. The es tim a tion  is 

carried out in  tw o  steps. In the conservation step, m a tch ing  error is ca lcu lated by 

the  sum o f squared difference between the po in t under consideration in one image 

and its  possible m atch ing  candidate in the o the r image. E stim ation  o f m o tion  is 

de term ined by using the weighted least squared es tim a tion . In the propagation step, 

the estim ates are com puted as a weighted sum o f those over a small neighborhood.
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The proposed approach is m a in ly  m o tiva ted  from  tw o new ly developed m o tion  

es tim a tion  techniques, i.e.. VVeng et a l.'s and Pan et a l.'s  m ethods. This approach 

combines the  m erits and avoids the disadvantages o f bo th  exis ting  a lgorithm s. 

Com pared w ith  Weng et a l.'s  a lg o rith m , ou r new m ethod  has the fo llow ing  

d is tinc tions . F irs t, the  m u ltip le  image a ttr ib u te s  used are d iffe rent and less sensitive 

to  noises in  images. Second, the com puta tiona l fram ew ork needs much less d iffe r­

en tia l ca lcu la tion  and i t  is therefore more robust to  various noises. T h ird , in  our 

new m e thod , feedback technique is u tilized  to  enhance the  es tim a tion  accuracy. O u r 

new approach is also qu ite  d ifferent from  Pan et a l.’s a lg o rith m . F irs t, instead o f 

using image in tens ity  as a single a ttr ib u te , m u ltip le  im age a ttr ib u te s  are com puted 

as conserved in fo rm a tion . Second, instead o f w indow -w ise, our approach is po in t 

oriented. T h ird , we consider the m otion  boundary as app ly in g  m otion  smoothness 

constra in t. E xperim enta l results show th a t our proposed approach outperform s in 

general m ost o f the ex is ting  techniques com puting  2-D dense m otion  field in term s 

o f accuracy.

Block-based m o tion  estim a tion  has been successful in  image sequence coding 

app lica tion . Block m atch ing  may be realized using fu ll search technique or faster, 

more e ffic ien t search techniques. The w ell-know n fu ll search block m atching is very 

tim e-consum ing as a result o f exhaustive searching where a ll the possible m o tion  

vectors are considered. M u ltire so lu tion  b lock m atching a lgo rithm s reduce the com pu­

ta tio n  by tak ing  advantage o f pyram id  s truc tu re . However, both  approaches treat 

every region in  an image dom ain in d isc rim ina te !} ' no m a tte r w hether the region under 

consideration contains com plicated m otion  o r not. M o tiva te d  from  th is  observation, 

we have developed two th resho ld ing  b lock m atch ing a lgo rithm s.

One is the thresho ld ing  m u ltireso lu tion  block m atch ing . In this m ethod, 

we fo rm  m u ltire so lu tion  pyram id  firs t. The m otion es tim a tion  is in itia ted  at the  

top p y ra m id  level, and going down towards the b o tto m  level. A t each level o f
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the pyram id , a fu ll search b lock m atch ing  is conducted to  search for the best 

m atch ing  in a predefined search range. I f  the accuracy is satisfied, the  m o tion  

es tim a tion  for th is  b lock w il l  be stopped. O therw ise, the com puted m o tion  vectors 

w il l be propagated in to  the  next h igher resolution level fo r re finem ent. E xperim en ts  

w ith  d iffe rent m o tion  com p lex ities  have shown tha t the proposed a lg o rith m  has a 

consistent perform ance. I t  reduces the processing tim e  ranging from  l-T/f to  20c/f 

w h ile  m a in ta in ing  alm ost the  same q u a lity  o f the reconstructed image (on ly  about

0.1 dB  loss in  PSN R). com pared w ith  the fastest ex is ting  m u ltire so lu tio n  b lock 

m atching.

The o ther is the  th resho ld ing  h ierarch ica l block m atch ing . In  the  a lg o rith m , a 

block at one level in  the h ie rarch}' corresponds to  four blocks at the next level and a ll 

levels are o f the  same reso lu tion . M o tio n  es tim ation  is perform ed from  the top  to  the  

bo tto m  level o f the hierarchy. A t each level, a separate search procedure w ith  d iffe ren t 

sets o f param eters is carried p u t. B y threshold ing, m otion  es tim a tion  for blocks w ith  

less m o tion  w ill be te rm in a te d  at some in term edia te  levels, thus saving co m p u ta tion . 

Extensive experim ents in d ica te  tha t fo r sequences w ith  less m otion  such as video 

conferencing sequences, the  proposed a lg o rith m  gives a be tte r perform ance than  the  

thresho ld ing  m u ltire so lu tio n  b lock m atch ing . It  reduces bo th  the processing tim e  

and the num ber o f fina l m o tio n  vectors drastica lly, w h ile  m a in ta in in g  a lm ost the  

same q u a lity  o f the reconstructed image.

The threshold  has a m a jo r influence on the perform ance o f the proposed th resh­

o ld ing  schemes. The th resho ld  used here is M A D  and is determ ined by using tw o o r 

three frames in  a sequence before m o tion  estim ation . Once determ ined, the  th resho ld  

can be used for the whole sequence o f images.

In  both  above th resho ld ing  fram eworks, block m atch ing  is in it ia te d  at the top  

level and going down towards the b o tto m  level, and to  save the com puta tion , th resh ­

o ld ing  techniques are app lied . However, there exist d is tin c t difference between tw o
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a lgorithm s. In  the  m u ltireso lu tion  approach, m u ltire so lu tio n  pyram id  is form ed 

before m a tch ing . From  the top to  the b o tto m  level o f the pyram id , biock size is 

increased and search range is decreased. E xperim en ts  show tha t th is  approach gives 

a consistent perform ance for image sequences w ith  d iffe ren t m otion  com plexities. On 

the o the r hand, in  the  hierarchical approach, each level in  the hierarchy has the same 

reso lution and no pyram id  is formed. From  the  top  to  the  b o ttom  level, the b lock 

size is decreased and search range is increased. T h is  approach needs less processing 

tim e  and less num ber o f m otion vectors fo r im age sequences conta in ing  less m o tion . 

B u t fo r video sequences having com plex m o tio n , its  perform ance is degraded. As a 

conclusion, the  h ie rarch ica l a lgorithm  is m ore su itab le  for video conferencing a p p li­

cations. w h ile  the  m u ltireso lu tion  a lgo rithm  can be used for sequences w ith  m ore 

com plex m o tio n .

6.2 Future Research

In  connection w ith  the m otion estim ation  approaches proposed in th is thesis, there 

rem ain several questions which are w orth  investiga ting . Here we present some facts 

which can be considered to be the subject o f fu tu re  research.

-One o f the  possible research d irections is to  inco rpora te  an effective confidence 

measure in to  the  proposed m u lticons tra in t feedback approach. In a com puted op tica l 

flow fie ld, not a ll flow  vectors have high accuracy. Those vectors having high accuracy 

are m ore re liab le  than  the others. I t  is im p o rta n t to  search for a best confidence 

measure to  de te rm ine  the re lia b ility  and accuracy o f the  estim ated flow vectors. For 

com puter v is ion  app lica tion , we can enhance the  accuracy o f 3-D m otion  analysis 

by e x tra c tin g  those flow vectors w ith  high confidence measure. For video coding 

app lica tion , in  regions where the com puted m o tio n  vectors are less re liable, o th e r 

coding mode th a n  m otion  compensation can be applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-We can address the  problem  o f choice o f m o tio n -inva rian t image a ttr ibu te s . 

To a large ex ten t, bo th  the  accuracy and convergence speed o f image po in t m atching 

in  the m u ltic o n s tra in t feedback approach depend on the image a ttr ibu te s  used in 

the com puta tion . The  m ore effective the image a ttr ib u te s , the more accurate and 

faster the  image p o in t m atching. In  the current co m p u ta tion a l fram ework, we use 

two sets o f m o tio n  inva rian t image a ttr ibu tes : s tru c tu ra l a ttr ibu te s  and te x tu ra l 

a ttr ibu te s . The p rob lem  remains open to search fo r m ore effective m otion invariant 

image a ttr ib u te s  to  enhance the perform ance o f the proposed approach.

-In  bo th  th resho ld ing  m u ltireso lu tion  block m a tch ing  and threshold ing h ie ra r­

chical b lock m a tch ing  approaches presented in Chapters 4 and 5. respectively, thresh­

o ld ing  technique is u tiliz e d  to  reduce the com puta tion  o f b lock m atching. C u rren tly , 

the thresho ld  is com puted  based on the firs t two o r three frames from  a sequence. 

Once determ ined, the  threshold is used for the rest o f  the sequence. Frames in a video 

sequence can have d iffe ren t image deta ils and conta in  d iffe ren t am ount o f m o tion . A  

larger thresho ld  is appropria te  for a fram e having less deta iled  and sm all am ount o f 

m otion  w h ile  a sm a lle r one is needed for an image w ith  m ore details and com plex 

m otion . Hence, it  can be one o f the im p o rta n t subjects o f fu tu re  research to  study 

a mechanism to a u to m a tica lly  determ ine the thresho ld  on a fram e by frame basis.

-In  the th resho ld ing  h ierarchical block m a tch ing  a lgo rithm  presented in 

C hapter o. the size o f blocks are decreased from  the top to the bo ttom  level in 

a hierarchy. Hence, blocks stopped at upper levels are o f sizes larger than those 

stopped at lower levels. Consequently, the final m o tio n  fie ld consists o f blocks of 

d ifferent sizes. T h a t is. m otion  vectors sent to  a decoder are w ith  blocks o f d ifferent 

sizes. To reconstruct images, the variable block size in fo rm a tion  should be trans­

m itte d  to  the decoder . too. Therefore, it  is w orth  investiga ting  an effective way to 

tra nsm it the variab le  block size in fo rm a tion .
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