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ABSTRACT

MOTION ESTIMATION AND VIDEO CODING

by
Xiaochun Xia

Over the last ten vears. research on the analysis of visual motion has come to
play a key role in the fields of data compression for visual communication as well as
computer vision. Enormous efforts have been made on the design of various motion
estimation algorithms.

One of the fundamental tasks in motion estimation is the accurate measurement
of 2-D dense motion fields. For this purpose. we devise and present in this dissertation
a multiattribute feedback computational framework. In this framework for each
pixel in an image. instead of a single image intensity. multiple image attributes are
computed as conservation information. To enhance the estimation accuracy. feedback
technique is applied. Besides. the proposed algorithm needs less differentiation and
thus is more robust to various noises. With these features. the estimation accuracy is
improved considerably. Experiments have demonstrated that the proposed algorithm
outperforms most of the existing techniques that compute 2-D dense motion fields
in terms of accuracy.

The estimation of 2-D block motion vector fields has been dominant among
techniques in exploiting the temporal redundancy in video coding owing to its
straightforward implementation and reasonable performance. But block matching is
still a computational burden in real time video compression. Hence. efficient block
matching techniques remain in demand. Existing block matching methods including
full search and multiresolution techniques treat every region in an image domain
indiscriminately noc matter whether the region contains complicated motion or not.
Motivated from this observation. we have developed two thresholding techniques for

block matching in video coding. in which regions experiencing relatively uniform
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motion are withheld from further processing via thresholding. thus saving compu-
tation drastically. One is a thresholding multiresolution block matching. Extensive
experiments show that the proposed algorithm has a consistent performance for
sequences with different motion complexities. It reduces the processing time ranging
from 14% to 20% while maintaining almost the same quality of the reconstructed
image (only about 0.1 dB loss in PSNR ), compared with the fastest existing multires-
olution technique. The other is a thresholding hierarchical block matching where
no pyvramid is actually formed. Experiments indicate that for sequences with less
motion such as videoconferencing sequences. this algorithm works faster and has
much less motion vectors than the thresholding multiresolution block matching

method.
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CHAPTER 1
INTRODUCTION

The motion estimation from image sequences is of crucial importance in image
sequence processing [2]. Over the past two decades. enormous efforts have been
made on the design of algorithms that extract motion information from a sequence
of images [6] [34] [60].

One field in which motion estimation plays a dominant role is computer vision
[48]. the ultimate goals of which are vision systems with the ability to discern
objects. ascertain their motion. and navigate in 3-D space. Such vision systems are
required in applications such as the automatic tracking and recognition of moving
objects in traffic monitoring and defense research. the autonomous navigation of
mobile vehicles. the inspection of moving objects in robotics. the interpretation and
prediction of atmospheric process from satellite image sequences. The fundamental
problem in these applications is the extraction of 3-D motion and structure infor-
mation to predict the position and orientation of the moving object(s). In this
process. the determination of 2-D motion field. a projection of the 3-D motion of
objects onto the image plane. is considered to be an essential step.

The other field in which motion estimation is a vital issue is video coding
[21]. the task of which is data compression for the transmission or storage of image
sequences. The demand for image transmission and storage has greatly increased
due to factors such as the increased availability of personal workstations. multimedia.
and the information society requiring more communication. The application of visual
communication ranges from the low bit-rate transmission of videophone. videocon-
ference to the high bit-rate transmission of digital TV and HDTV. The application of
digital image storage system involves the storage of medical images. satellite images

and etc. The common problem of these applications is the transmission or storage
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of image sequences as efficient as possible at a certain accepted loss of image quality.
The inclusion of motion models is one of the most recent important developments
in video coding field [34]. Without motion compensation. it would be impossible to
obtain a reasonable quality image at a low or very low transmission bitrates [26].
In the most recent international video compression standards [42]. motion compen-
sation has been utilized as a powerful tool to reduce the temporal redundancy of
video images.

[n addition to the fields of computer vision and video coding. motion estimation
technique has a variety of other applications in image sequence processing [28]. For
instance. by estimating motion field. we can create a new image frame between
two adjacent existing frames through interpolation. By motion estimation. we
can estimate the motion field and identifyv regions in different frames when image
intensities are expected to be the same or similar. Temporal filtering can then he
performed in these regions for image restoration.

In the various areas outlined above. the common problem involved is the compu-
tation or estimation of motion from a sequence of images recorded from a 3-D scene.
Because of the great importance of the motion estimation. various algorithms have
been developed to compute 3-D and 2-D motion from image sequences for the wide
range of applications since early 70s. and others continue to appear.

This dissertation is mainly concerned with the design of 2-D motion estimation

algorithms with application in the areas of computer vision and video coding.

1.1 Motion Estimation and Computer Vision
The research on computer vision is motivated by a broad set of applications such as
robotics. automous navigation. tracking of moving object and etc. For such appli-
cations. vision systems have to extract the motion and structural information about

the 3-D scene. The results of this first step of processing are then used for higher
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levels tasks such as navigation in the environment. manipulation of objects. and
object recognition as well as scene interpretation. To obtain the structure and motion
information of the 3-D scene. we resort to the 2-D images.

[f an object is moving in the 3-D scene. its 3-D position and orientation will
change in time. Due to the projection of the 3-D scene onto the image plane. these
changes will be reflected in the image plane as well. This means that the relative
motion between objects in a 3-D scene and a camera gives rise to motion of objects
in a sequence of images. Hence. we usually derive the 3-D motion of the objects in
the scene through the analysis of the motion information associated with objects in
the sequence of images.

Figure 1.1 gives a functional description of the process of recovering 3-D
motion and structure from image sequences [46]. As shown. there are two distinct
approaches: feature correspondence approach and optical flow approach. In each
one of these approaches. there are two stages: measurement and interpretation.

In feature correspondence approach. the measurement stage is responsible for
identifving a set of distinctive 2-D features in two or more frames of an image sequence
and matching them across the images. The output of the measurement stage gives
the position of various features in a set of images. The interpretation stage uses this
results to derive the 3-D position of all the points that correspond to the features
and velocities of the rigid objects that contain these points. In essence. this approach
provides 3-D information for only a sparse set of points.

In optical flow approach. the measurement stage involves constructing a 2-
D optical flow field from an image sequence. Optical flow can bhe regarded as an
approximation to a 2-D motion field that depicts the projection of the 3-D motion of
the scene. The interpretation stage takes the optical flow field as its input to extract

information about the depth and the velocity of every point in the 3-D scene.
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Optical flow approach usually computes 2-D motion field along a pixel grid.
There is no need for feature extraction and matching. However. they face following
problems. First. motion estimation by the optical flow approach can be affected by
aperture problem. The aperture problem means that while computing the motion
for a given pixel. only the component of the motion vector normal to the underlying
contour can be univocally determined by using information in a small neighborhood
of the pixel. Generally, the aperture problem exists in regions of an image that
have strongly oriented intensity gradients. say edges. Since the motion estimation by
optical flow approach is usually carried out in a small spatial-temporal neighborhood
of a pixel under consideration. the aperture problem is inherent in every optical flow
techniques. To overcome the aperture problem. neighborhood information should
be utilized. Second. to pursue a close approximation to the true 2-D motion field.
optical flow approach utilizes very sophisticated mathematical tool and as a result.
needs an enormous amount of computation. Third. in image acquisition and digiti-
zation. noises may be generated. This noise can affect the accuracy of optical flow
computation. For instance. gradient-based technique can suffer from high noise sensi-
tivity because of their dependence on spatial-temporal gradients. Fourth. since the
interframe motion is restricted to be small. the estimated motion is limited within
small range.

Feature correspondence approach allows either small or large motion. it does
not suffer from the problem of varying image intensity since the distinct features
is relatively more stable than intensity values. However. this approach also has its
problems. The tasks of extracting features and establishing feature correspondence
are nontrivial. so far only partial solutions suitable for simplistic situations have been

developed [2].
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The first part of this dissertation research is about the 2-D motion estimation

by using the optical flow approach. In Figure 1.1. this work can be classified in the

lower left box.

1.2 Motion Compensation and Image Coding

Recently. the need for image communication and image storage has been growing

enormously. The key problem of these two applications is to minimize the amount of

information necessary to adequately represent represent an image. Figure 1.2 shows

a typical system for image communication [28]. The digital image is encoded by an

image encoder. The output of the image encoder is a string of bits that represents the

source image. The channel encoder transforms the string of bits to a form suitable

for transmission over a communication channel through some form of modulation.

The modulated signal is then transmitted over a communication channel. At the

receiver. the received signal is demodulated and transformed back into a string of
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bits by a channel decoder. The image decoder reconstructs the image from the
string of bits. In contrast to the communication application described in Figure
1.2. no communication channel is involved in application of image coding for storage
purpose. [n storage applications. the string of bits from the image encoder is stored
in proper format on a recording medium. ready for future retrieval.

For both applications. the conventional coding scheme like predictive. transform
and interpolative coding strategies can create an annoying flicker or jerkiness when
the reconstructed frames are displayed as a video sequence. which is a sequence
of still frames that are displaved in a rapid succession. In addition. blurring in
the moving boundary may also appear. These distortions can be largely reduced
by using mathematical models describing the motion of objects. The frame rate
necessary to achieve proper motion rendition is usually high enough to ensure a
great deal of temporal redundancy among adjacent frames. Much of the variation in
intensity from one frame to the next is due to object motion. Considering the motion
information extracted from the image sequence. we can improve the efficiency of the
image sequence coding. Compression image sequence accounting for the presence of
motion is referred to as motion-compensated (MC') image sequence coding. It should
be noted that motion compensation consists of two steps. The first step involves a
2-D motion estimation technique which predicts the motion of an object between
frames. The second step uses the estimated motion vector optimally to provide
motion compensation at the decoder. with a minimum amount of data transmitted.

In motion-compensated predictive coding. the current frame is predicted from
the previous frame by estimating the motion between the two frames and compen-
sating for the motion. The difference between the current frame and the prediction
of the current frame is called the motion-compensated prediction (MCP} error. To
the extent that the intensity change between the current and previous frames is

due to motion and that the motion can be estimated accurately. the error obtained
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bv using motion compensation will have smaller magnitude than the intensities of
original image. As a result. a smaller number of coding bits will be required with
motion compensation than they would without motion compensation.

There are two kinds of schemes in implementing MC predictive coding as shown
in Figures 1.3 and 1.4. that is. forward MC predictive scheme and backward MC
predictive scheme [14]. In the forward MC predictive scheme in Figure 1.3. the
motion estimation is performed on the current frame and the reconstructed previous
frame. Since the current frame is not available at the decoder. the motion information
has to be transmitted. This scheme can give an adequately estimated motion. but
the lower bound of the bitrate is determined by the motion information to be trans-
mitted. To reduce the amount of motion vectors transmitted. block-based motion
compensation algorithms are used to compensate motion in this scheme. In backward
MC predictive coding scheme in Figure 1.4. motion estimation is performed only on
the reconstructed frames. Therefore. this coding scheme does not require the trans-
mission of any motion information. Therefore. pel-based motion compensation is
applied here. However this scheme has its own disadvantage. too. The decoder
grows more complex since it has to contain a motion estimation unit. and the coding
error also greatly influences the estimation accuracy of the motion field.

Although a critical evaluation of forward versus backward scheme using the
same bitrate has not vet been reported. the forward MC scheme has dominated
the motion compensation emploved and has been recommended by many video
compression standards.

The second part of this research deals with block-based motion estimation for

forward MC predictive coding. which corresponds to the motion estimation box in

Figure 1.3.
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1.3 Dissertation Overview
This chapter (Chapter 1) introduces general background of my research work and
the rest parts of the dissertation are organized as follows.

[n Chapter 2. we give a brief overview of some representative motion estimation
techniques and evaluate their performances. To meet the needs of diversified
requirements in different application areas. numerous motion estimation algorithms
have been presented in the literature. For computer vision application. many tasks
require that the computed motion field be accurate and dense. providing a close
approximation to the true 2-D motion field. While for image coding application.
many visual applications require that coding algorithms be implemented in real
time. The computational complexity is an important factor in the derivation of
motion estimation algorithms. In this chapter. we first review major related optical
flow estimation techniques from the past research. i.e.. gradient-based technique.
correlation-based technique and multiple attribute technique. Then. two main
classes of motion estimation algorithms in video coding area. namely block-based
approach and pel-recursive approach. are summarized.

In Chapter 3. based on an analysis of both advantages and disadvantages of
two newly developed algorithms by Weng et al. {52] and Pan et al. {40]. we present
a multiattribute feedback approach to determine optical flow field. [n this approach
for each pixel in an image plane. instead of a single image attribute (image intensity ).
multiple motion invariant image attributes are computed as conserved information.
The estimation of optical flow is carried out in two steps. i.e.. conservation step and
propagation step. Feedback technique is utilized to enhance the estimation accuracy.
Finally. we present experiments performed on three testing sequences to show the
superiority of the presented algorithm over the most of the existing algorithms in

computing optical flow field in terms of estimation accuracy.
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The next two chapters are devoted to two new thresholding techniques for block
matching utilized in video coding. Motion complexity for different regions within
an image is usually different. Regions experiencing complex motion deserve more
computational resources than those with slow motion. Based on this observation. we
withhold regions containing relatively uniform motion from further processing via
thresholding. thus saving computation.

In Chapter 4. we present a new thresholding multiresolution block matching
algorithm. in which thresholding technique is applied to multiresolution block
matching. In extensive experiments with quite different motion complexities. the
developed algorithm outperforms the fastest existing multiresolution block matching
algorithm while maintaining almost the same quality of reconstructed images.

[n Chapter 3. we show details of our newly developed thresholding hierarchical
block matching algorithm. In this algorithm. all levels in a hierarchy have the same
resolution. No multiresolution pyramid is formed. Experiments have demonstrated
that for videoconferencing sequences. this algorithm outperforms the fastest existing
multiresolution block matching algorithm while maintaining almost the same quality
of reconstructed images.

[n Chapter 6. we summarize the results of the research presented in this disser-
tation and outline the further questions which can be considered as the subjects of

our future research.
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CHAPTER 2

MAJOR RELATED 2-D MOTION ESTIMATION APPROACHES

The strong interest in estimation of motion from image sequences is motivated by
its various applications. These broad applications have different requirements on
the motion estimation algorithms. which include the predefined estimation accuracy.
computational complexity. economical feasibility. In this chapter. we will give a
detailed descriptions to some motion estimation algorithms that are related to this
research.

[n Section 2.1. motion estimation by optical flow is discussed. and three specific
algorithms upon which the first part of the thesis work is based are introduced. I[n
Section 2.2. two groups of motion estimation approaches developed for video coding
are presented. the most important algorithms of these two groups are dealt with in

Sections 2.2.1 and 2.2.2. respectively.

2.1 Motion Estimation - Optical Flow Determination
The optical flow approach usually computes 2-D motion field on an image grid.
There is no need for explicit feature extraction and matching. It can potentially
derive dense depth maps for tasks such as 3-D structure and motion analysis. Much
of the current work in the computation of optical flow can be classified as one of
the three categories: gradient-based techniques [20] [31][35][30]. correlation-based

techniques [3][46]{40] and spatio-temporal energy based techniques [18][51].

2.1.1 Gradient-based Techniques
The gradient-based techniques are based on the assumiption that for a given 3-D
scene point. the intensity [ at the corresponding point image point remains constant

over time. That is. if a 3-D scene point projects onto the image point (x.y) at time

13
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t and onto the image point (r + Ar.y + Ay) at time (f + :Af). we can write
[(z.y.t)=z+ Az.y + Ay.t + At) (2.1)

where [(r.y.t)is the image intensity at the point (r.y) in the image at time ¢{. This
equation is called intensity constant equation.
Expanding the right-hand side by a Tavlor series about (r.y.t) and ignoring

the second and higher order terms. we obtain

ol al ol
Hr4+Ar.y+ Ay t+At)=I(r.y.t)+ Ar— + Ay— + Nt — (2.2)
dr dy ot
Combining the two equations results in the following expression:
al ol ol
Ar—+Ay—+At— =0 2.
e TRV, T (=3)

Dividing throughout by At. taking the limit as At — 0 and denoting the partial

derivatives of I by [;.[,. and [;. we get the intensity constant constraint
Lu+ v+ ;=0 (2.1)

where u = %2 and v = &. (" = (u.v) is the flow vector associated with the point

T
under consideration. The collection of flow vectors " = (u.v) for the entire image

constitute the optical flow field for the image.
Equation (2.4) embodies two unknowns u and v. and is not sufficient by itself
to specify the optical flow uniquely. But. it does constrain the solution. To compute

optical flow for images using this constraint equation. some additional assumptions

must be made.

2.1.1.1 Horn and Schunck’s Approach Horn and Schunck [20] assumed that
the optical flow field varies smoothly across an image plane. A smoothness error .

denoted by E,,. is defined as

[NV
it

Eom =//(|Vu[2+|\7v[2)rlrdy (2.3]
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where 7 stands for gradient operation. From the smoothness assumption. the
smoothness error E, should be small.

An intensity error. E;,,. is defined as
En = [ [(VI-U + [)dedy (2.6)

From the intensity constant constraint in Equation (2.4). the intensity error should

be small. too.

The problem of computing a dense optical flow field is defined as that of

minimizing a weighted sum of the two errors.
//ﬂvpf+5ﬁ+&qu%vamumy (2.7)

where a® determines the relative contributions of the two errors. Horn and Schunck

derived an iterative method to calculate the optical flow by

[[[a* + [,e% + 1]

2 S S

u u [§+[y2

R M0 Al (TR 1) -

v = "= 3 (2.3)
I?+ [y'

where & denotes the iteration number. u°® and v? denote initial velocity estimate

which is set to zero. and @* and & denote neighborhood averages of u* and ¢F.
Horn and Schunck were among the first to estimate a 2-D dense motion field by

using the optical flow approach. This algorithm has a very fast convergence speed.

The primary difficulties with this algorithm are:

1. It is only suitable when the displacements are small respect to the scale of the
image intensity variations. In addition. any change in illumination or contrast

between frames can cause the intensity constancy assumption to be violated.

2. This method heavily depends on the gradient calculation. as indicated in

Equation (2.8). Due to noises in digitized images. it is impossible to accurately
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the partial derivatives (/;. [,. and ;) and hence. this approach is sensitive to

various noises

3. Horn and Schunck’s smoothness constraint may not be valid at image motion

boundaries.

2.1.1.2 Nagel’s Approach The same as Horn and Schunck’s algorithm. Nagel
[35] also formulated the problem of computing an optical flow as that of minimizing
the sum of an intensity error E;,, and a smoothness error E,. He observed that
smoothness error E,,, used by Horn and Schunck smooths out the flow field omnidi-
rectionally in all directions. The term corresponding to smoothness error in Horn

and Schunck’s formulation {(Equation(2.5)) can be rewritten as
Eyn = / / trace((T0) (90 )dedy (2.9)

The 57 term expresses the partial derivatives of the two components of velocity in a

matrix form

vL’:(zﬁi; f) (2.10)
dy Ay

Nagel modified the smoothness error as
Esm =//trace((V[')T[i'(v[')(lrdg {(2.11)

where W™ is a 2x2 positive-definite matrix defined as follows:

e (2.12)
trace( F)
with
Fe I} + 32(1‘§g+1§y) _,[’[y,,— A.j)'z[w({rﬁ- Il,,) (2.13)
_[rly - 3-[ry([r.r+ [yy) [; + 3-([;1- + [;y)

The change in smoothness error - that is. setting W = F/irace(F) instead of

an identity matrix used by Horn and Schunck - has the following effect. In regions
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with strong second-order intensity variations. say corners. the smoothness constraint
is enforced very weakly and the flow field is allowed to be nonsmooth. Further. in the
vicinity of edges. the smoothness constraint is enforced strongly along the direction
of the underlying contour and weakly across the contour. Because of these features.
Nagel termed his smoothness constraint an oriented smoothness constraint.

Nagel's approach overcomes the drawbacks of Horn and Schunck’s smoothness
constraint. That is. it does not blur the flow field at motion boundaries and it
gives the flow field everywhere. not just at the contours. However. it has practical
limitations. It is based on the second-order spatial partial derivatives of the image
intensity. Noise and quantization errors associated with digitized images make the

computation of second-order derivative error prone.

2.1.2 Correlation-based Techniques
In contrast to the gradient-based techniques where the calculation of partial
derivatives of image intensity is required. in correlation-based techniques. there
is no need for numerical differentiation. To determine a velocity associated with
a pixel under consideration. correlation-based techniques consider a small region
around the pixel in an image frame and search for the ~best match™ among all
possible regions in an adjacent frame. The relative position of these two corre-
sponding regions gives a flow estimate. Thus. correlation-based techniques are less
sensitive to noises. Since a small region instead of a single image point is used while
performing matching. the computation of the correlation-based techniques is very
time consuming.

In correlation-based approaches. the velocity {© = (u.v) is estimated by
minimizing a matching error which is given by

E=3 5 Cllry.t) [(x+ udt.y+ At t + Af) (2.14)
(ry)eR
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where C'[-.-] is a correlation measure that indicates the amount of dissimilarity
between two arguments. R is the local spatial region used to estimate (u.r). It

is assumed that (u.v) is constant over the region R.

The size of R is dictated by several considerations. If it is chosen too large. the

assumption that (u.v) is approximately constant over the region R may not be valid
and evaluation of the error expression require more computations. If it is chosen too
small. the estimates may become veryv sensitive to noise. Reasonable choices based

on these consideration are a 3x3 or 3x3 pixel region.

There are many possible choices for the correlation measure C'[-.-]. The most

commonly used correlation measures are listed below.

1. Direct correlation. in which the image intensity values of the corresponding

pixels in the regions R are multiplied and summed.

2. Mean normalized correlation. in which the average intensity of each region is

subtracted from the intensity values of each pixel in that region before multi-

plication and summing.

3. Variance normalized correlation. in which the correlation sum is divided by the

product of the variances of the intensities in each region.

. Sum of squared differences. in which the sum of the square of the differences

between the intensities at corresponding pixel is calculated.

. Sum of absolute difference. which is similar to sum of squared differences.

except that the absolute values of the differences are used instead of their

squares.

2.1.2.1 Singh’s Approach In Singh's approach [16]. the optical flow field is

estimated in two steps: i.e.. conservation step and propagation step.
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In the conservation step. flow vectors are estimated based on the assumption of
conservation of local intensity distribution. For each pixel p(x.y) at location (r.y)
in the first image [;. a correlation window W of size (2n + 1) x (2n + 1) is formed
around the pixel. The search window W of size (2.V + 1) x (2.V + 1) is established
around the pixel at location (z.y) in the second image [>. For each candidate in
. (2N4+1)x(2N+1) samples of error distribution are computed using the sum-of-
squared difference (SSD) as

E(Az.Ay)= Y Y (h(z+iy+j)—hLr+i+Ar.y+j+3y)°  (215)

t=—n j=-n
where —V < Ar. Ay < V.
Then the (2.V + 1) x (2.V + 1) samples of response distribution are computed

as follows:

R(Ar.Ay) = e FE(AnAY) (2.16)

where —V < Ar.Ay < V. k is chosen so as to make R.(-.-} vary between zero and
unity over the entire range of error.

An estimate of flow vector at the conservation step. denoted by [, = (u..v.)
where c stands for conservation. is obtained by using a so-called weighted least square

estimation technique [46] as follows:

v Yartay R(Az Ay)Ar
) Lar Lay B(Ar.Ay)
T T, RAT.Ap)Ay ) -
r. = (2.17)

2 az 2ay R(Ar. Ay)

where the summation is carried out over —.V < Ar. Ay < V. Each estimate given

above is associated with a covariance matrix

Y as Z,_\y Re(Ar.Ay)(Azr—uc)? > Z_W RAArAy)(Ar—uc ) (Ay—r.)
S = Doazdoa, Reldray) 2oarloa, RAdraY) 2 1%
ST YA doa, RAATAp(Az—uc)(Ay—re) Yy ), Re(Ar.Ay)(Ay-r.)’ (2.1%)
E; ZA,, Rc(Az.2y) Zs: Zéy R.(Ar.ay)

The covariance matrix S. measures the deviation of the estimate . from the true

velocity and is used as a confidence measure for the estimate (..
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In the propagation step. the estimate from the conservation step is propagated
by using the neighborhood information. The velocity estimate at this step. denoted
by [, = (un.v,) where n stands for neighborhood. can be derived from velocities

L; = (u;.v;) in its local (2w + 1) x (2w + 1) neighborhood as follows:

— i Ralui L‘-)u,—

" TiRaluiv

, Zl (Ux U l,’ i

o S AUED (2.19)

where both R, (u;.v;) and [; = (u;. v;) are assumed to be known in advance from an

independent source. The corresponding covariance matrix is

Z Rn("t vy )(ul—“n)2 ZJ Rn(u,.vi){uy—un)(u,—rn)
I Z Rn(ux L( Zl Rn(u,.u,) ()
bn - Z Rn(ux v J(ug—unj(ve—rn) LR"(“NU-)(U--UH)B (—20)
Z Rn(“x l-x Zl Rﬂ(ul'vl)

Also. the covariance matrix 5, gives a measure of the deviation of the estimate [,
from the true velocity and is used as a confidence measure for the estimate [',.
[t is obvious that the velocity estimates (. and (', are erroneous. The error at

the conservation step is given by
(U =TSt =) (2.21)

while the error at the propagation step is given by

I~
.
iy
I~
—

(C=C)TSTHE = n)

where (" is the true velocity of the pixel under consideration.
The final velocity estimate. {* = (u. ). is determined by minimizing the sum

of errors of the conservation step and the propagation step as
//[(L' TSI = Ua) + (U = U)TSTYU = Ua)ldedy — Min  (2.23)
Singh derived the estimate from this equation by using a calculus of variations
iteratively as
U= [ ST S

= U (2.24)
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where {". and S. are known from the conservation step {and fixed} for each pixel.
On the other hand. {7, and S, are derived from the assumption that the velocity of
each pixel in the neighborhood is known in advance from an independent source. In
practice. this assumption is invalid. In his implementation. Singh obtains 5, and (',
from the neighborhood velocity from the previous iteration.

A significant contribution of Singh’s work is an estimation-theoretic framework
to compute optical flow. Observing that estimated optical flow cannot be exactly
the same as true 2-D motion field. Singh treated the problem of optical flow recovery
as that of parameter estimation. where the estimated parameter is a flow estimate
accompanied by a covariance matrix for each pixel in the image. The second
major contribution is that Singh gave a unified perspective for all existing optical
flow techniques. He showed that all of the optical flow techniques consist of two
distinct step: conservation step and propagation step. The conservation step sets up
constraints based on conservation of image properties. The propagation step uses
conservation constraints along with some neighborhood information to recover true

optical flow field.

1. Like all of the correlation based techniques. in Singh’s algorithm. the assumption
that the intensity distribution within the correlation window remains unchanged

over time can be invalid at motion boundaries and causes great errors.

2. As indicated in Equation (2.24). the final estimate consists of two parts. The
[. and S. are estimated flow vector and its associated covariance matrix which
are derived from the original image intensity at the conservation step and are
fixed for each point. while [, and S, are derived from the previous iteration by
using neighborhood information. Thus. in Singh’s algorithm. the information
in original images is utilized only once at the conservation step. At the propa-
gation step. the estimate is refined repeatedly by exploiting the neighborhood

information.
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3. In this method. subpixel problem is not addressed.

2.1.2.2 Pan, Shi and Shu’s Approach Motivated from the above discussion
about the drawbacks of Singh’s algorithm. Pan et al. {40] developed a correlation-
feedback approach to compute the optical flow which enhances the estimation
accuracy of optical flow by fully exploiting the information of the original images.

Pan et al.’s algorithm consists of two stages: correlation stage and propagation
stage.

On the correlation stage. velocity is estimated based on the correlation infor-
mation between the neighboring images. Let [, and [ denote the image at moment
1 and 2. respectively. Let [’ = (u".v") denote the estimated flow vector at the nth
iteration. Then at the n + Ith iteration. for each pixel p(x.y) at location (r.y) in
the image [>. a correlation window I of size (2n 4+ 1) x (2n + 1) is formed around
the pixel p(z.y). The search window W established at the image [, is of variable
size. The position of the candidates within ;. denoted by (Ar.Ay). satisfies the

following

Ar € (v —u" 20" —u" 4wt u" Fut 4"+l f2)

[ BV
[NV
ol
-

Ay € (" =2 et =4t et et et e 2) (2.2

There are total 53 x 5 candidates within W. For each candidate. the matching error

is computed using SSD as

E(Ar.Ay)= Y Y (hi+rj+y)—fli+r+Ar.j+y+2Ay))?  (2.26)
I=—n y=-—n

where Ar. Ay satisfv Equation (2.25). f(-.-) is an interpolated image and is given

bv

fli+r+Ar.j+y+Ay) = (L—a)[(L=0)(i.))+bx Lii.j+ 1)

+al(l =6y Li+ 1. j) +hx Li+ 1)+ 1[R.27)
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where i =[i+r+Azjy=+y+Ayfra=i+r+dr—ib=j+y+Ny— s
means that only the integer part of r is retained. By using the interpolated image.
the velocity estimate will not be restricted to be integers and the error caused by
subpixel problem can be reduced.

The same as Equation (2.16). the 5x 3 samples of matching errors are converted

into a probability distribution using

R(AI.A}/) = e—kE(A.r.Ay) (2.

[ R]
[ K]
o
~

where & is chosen so as to make R be a number close to unity.
Then the velocity estimate on the correlation stage. denoted by {7 = (u'. ¢').
is given by

L TarTa, R Ay)Ar
T ar Lo, RAZ.Ay)

o TarTa, RAr Ay)Ar 1290
T ar Lo, R8T Ay)

On the propagation stage. the estimates from the correlation stage are further
improved by using the neighborhood information. based on the assumption that
velocity at the local neighborhood should be similar. The estimate at the n + Ith

iteration. denoted by ["F! = (4™*1. "t} is given by

N N
L = Z Z w(r.y)*u'(i +21.j+y)
==\ y=-\
N N
o= STOY w(ry) x4+ y) (2.30)
r==N\Ny=-\

where w(r.y) is a 3 x 3 Gaussian mask as shown in Figure 2.1.

Compared with Singh’s algorithm. Pan et al.’s algorithm has the following
characteristics. First. the refinement of estimated flow field is based on the original
images. In the algorithm. the flow estimate from the last iteration is fedback to the
algorithm. This flow vector rogether with its perturbed values (refer to Equation

(2.25)) is utilized as matching candidate for the next iteration. The larger the
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Figure 2.1 Gaussian mask

matching error. the smaller the contribution of the matching candidate to the flow
estimate. Thus the estimate is repeatedly refined by fully exploiting the infor-
mation of the original images. Second. the incorporation of the bilinear interpo-
lation technique largely reduces the error caused by subpixel problem. However. this

algorithm has some problems. too.

1. The same as Singh’s algorithm. this algorithm assumes the conservation of
intensity distribution within a correlation window. At motion boundaries. this

assumption can be violated and cause great errors.

2. In applying the motion smoothness constraint. this algorithm does not consider
motion discontinuities. As in Equation (2.30). the flow estimate on the propa-
gation stage is a weighted mean of those over a small neighborhood. The weight

is simply a Gaussian function and does not take into account discontinuities.
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2.1.3 Multiple Attributes Technique

In all above-mentioned methods. only the image intensity is used as the conser-
vation information. Based on an analysis indicating that using image intensity as a
single attribute is not enough in accurate matching for image points. Weng. Ahuja
and Huang [52] have proposed a multiple image attribute technique to image point
matching. Although this approach performs image matching instead of computing
the optical flow explicitly. the performed image matching amounts to optical flow
field computation since it calculates a displacement field for each point in the image
plane which is essentially a flow field if the time interval between two different images
is known.

In the algorithm. for each image point. multiple image attributes are defined.
which include image intensity. edgeness. negative cornerness and positive cornerness.
These image attributes are motion invariant and computed as conserved information.
They are briefly introduced as follows.

Intensity
The image intensity at a point p in an image /. denoted by i(p). is equal to

I(p)- ie.. i(p) = I(p).

Edgeness
The edgeness at a point p . denoted by €(p). is given by
al(p)
= ||—= 2.3
e(p) ‘ p } (2.31)

i.e.. the edgeness is defined as the magnitude of the gradient of image intensity.
Cornerness
The positive cornerness and negative cornerness at a point p. denoted by c,(p)

and c,(p). respectively. are defined by

e(p) = { e(p){l — [l —angle(a.b) = {2/7}]} 0 < angle(a.b) < =

0 otherwise

0 otherwise

ealp) = { e(pH{l — |l + angle(a.b) « {2/7}|} —= < angle(a.b) <0 (2.32)
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where a and b are intensity gradients at points p + r,. and p + ry. respectively.
T = dl(s)
Js
dl(s)
Js

S=P+Tq

bl =

S=p+T,

and ||r,|| = ||rs|| = r. r, and ry are such that

Al(v) L . 9l(v)
- *I, = min ———
N |yopira lirll=r Qv

v=p+r

al(v)
av

al{v)
av

*[‘J'

v=p+r

* Iy = max
v Irli=r
=p+Ts

The superscript L denotes the corresponding perpendicular vector. i.e.. if
r=(ry.r.)7. then r*t = (—r..ry).

In order to take those regions into consideration where no significant intensity
variation occurs. additional local smoothness constraints are also imposed. Namely.
both amplitude and orientation of the displacement vector of the point under consid-
eration should be similar to those displacement vectors in the vicinity of this point.
Let d(po) denote the displacement vector field in the vicinity of the point pg. Then.

d{(po) is computed as

d = (n;)d(p)d 2.33
(po)=[ [ w(nidip)dp (2.33)

where 0 < l|p — po|| < r denotes a region around pg. w(-) is a weighting function

and is given by

w(n;) . (2.34)

(n;) = ——— 2.5
e+ [mil

where n; = |I(p) — I(po)|. € is a small positive number to prevent the denominator

from zeroing. and c is a normalization constant that makes the summation of weights
equal to 1. Obviously. the weight is inversely proportional to the intensity difference

between the point po and the surrounding points p. The larger the difference in
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intensity is. the more likely the two points come from different regions. and the
smaller the weight will be. Hence. the weight implicitly takes into account motion
discontinuities. Consequently. to a certain extent. the local smoothness constraint
preserves discontinuities in the displacement field.

To measure the similarity of attributes between the corresponding points in
two images. a set of residual functions are defined. The residual of intensity at a

point p with a displacement vector d(p) is defined by
rip.d) =i:(p +d) — i1 (p) (2.33)

In the same way. the residual of edgeness r.(p.d). that of positive cornerness
re,{p-d). and that of negative cornerness r.,(p.d) are determined. A measure of
similarity between the displacement vector at a point p and the vector d(p) is given

by orientation residual and amplitude residual. which are defined as

l|d(p) x d(p)|
(p.d) = ! (2.36)
(P-4 = ")
and
ra(p-d) = ||d(p) — d(p)|] (2.37)

Let s denote a weighted sum of squares of residuals at the point p. ie..s(d) =
S{ri+ Aer? + MorZ + AarZ + Aor2 + Agri}. then the displacement estimate at the

point p is determined such that the following is minimized

[ SV
o
L

s(d) — min (2.

where \.. \,. A, A;. Ay are weighting parameters.

To solve for d(p). this method resorts to numerical differentiation. The

estimate can be recursively obtained by

bq = —(JT A2 )7 T A% s(d) (2.39)
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A =diag(1.1. A Aey. Aen- Aow Aa) (2.40)

and

Js(d
od

~—

Jr Jy
dr Iy
Ir 3y

—_— Ina ns

_ Az dy
~d/|\d|d,/[|d]]
10
01

where ((ZI.(l_y)T = d. and the partial derivative %‘f denotes the partial derivative of
Io(xr.y) with respect to r at the point p + d. and so on.

The algorithm by Weng et al. takes advantages of both optical flow approach
and feature correspondence approach. First. compared with optical flow approach
where a single image attribute (image intensity) is utilized. multiple attributes
associated with each image point are emploved to determine the displacement field
on a point grid and makes image point matching more robust. Second. in contrast
to the feature correspondence approach. this algorithm has essentially avoided the

problems of feature extraction and matching by considering dense motion vector

field. Third. this method can deal with large motion. However. this algorithm has

some problems. too.

1. The image attributes. edgeness and cornerness defined in Equations (2.31)
and (2.32) need the computation of the spatial gradient of the original image

intensity. Due to various noises. the computed attribute images can be noisy.

2. In solving for the displacement field. this method resorts to numerical differ-

entiation again. The estimated displacement vectors are updated based on the
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computation of the partial derivatives of the noisy attribute images (refer to

Equation (2.39)).

3. This algorithm does not address the subpixel problem.

2.2 Moticn Estimation for Image Coding
For image coding application. the extracted motion information is utilized for
improving the bandwidth reduction of image sequences. In addition to the quality
of prediction. the computational complexity is an important factor in the derivation
of motion estimation algorithms due to the real-time implementation requirement
of the MC coding scheme. Most motion estimation algorithms designed for image
coding estimate only a special motion that is 2-D translation.

The motion estimation algorithms developed for image coding can basically be
classified into two groups which are known as block-based approach and pel-recursive
approach. In this section. the most important block-based approach is discussed in
section 2.2.1. while the pel-recursive approach is briefly summarized in section 2.2.2.
2.2.1 Block-based Approach
[n block-based motion estimation technique. the present frame of an image sequence
is divided into rectangular or square blocks of pixels. It is assumed that all pixels
within one block are of the same motion vector. Hence each block has only one
motion vector. For a block in the current frame. we look for the block of pixels in
the previous frame that gives the best match in terms of a predefined criterion. This
best matched block is then used as a predictor for the present block. The relative
position of these two blocks defines a motion vector associated with the present
block. The collection of all motion vectors defines a motion field and is sent to

the receiver. Compared with the correlation-based techniques in section 1.1.2 which
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estimate dense motion vector fields. the block-based approach here estimates block
motion vector fields.

Among the various criteria for block matching. the mean square error (MSE)
and the mean absolute difference (MAD) are mostly used [34]. Let [,(i.j) denote
the frame of an image sequence at present moment n. We refer to a block of 6, x b,
pixels by the coordinate (:. j) of its upper left corner. The motion vector of the block
(i.j) is denoted by V(i.j) = (u.v). The MSE and MAD between the block (:.)) of
the current frame and the block (7 + u.j + v) of the previous frame can be defined

as follows. respectively.

2

(2.41)

MSE;jlu.v)= z Z([n(i+k.j+l)—[n_l(i+/x‘+u.j—%-l-{—v))

b, xb

and

S = = . .
T o o el ke D) = (i bt L)) 12:42)

¥ k=0 [=0

.\[.AD(;,j)(u. I.‘) =
The motion vector V°(i.J) of the block (:.J) is given by
V(i.j)=argminUSE; ;)(u.v) (2.43)

or

Vi) =argminMAD jy(u.v) (2.44)

For each location in the previous frame to be tested. the calculation of the
MSE requires 2b.b, additions and b.b, multiplications while the calculation of NIAD
requires only 2b.b, additions. Since the MAD requires no multiplication and gives
similar performance as the MSE. the MAD is favored in most block motion estimation
algorithms.

Figure 2.2 gives an illustration of the technique of block-based motion

estimation.
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2w+1

2w+1

search area

frame at moment n-1

frame at moment n

Figure 2.2 Basics of block-based approach
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2.2.1.1 Full Search Block Matching Full search block matching {FBM) is
also called exhaustive block matching and has been recommended by various video
compression standards. This technique computes the MAD (or MSE) at all the
possible locations within the search area to find the optimal motion vector. Let
w denote the maximum displacement which can be estimated in both horizontal
and vertical directions. there are (2w + 1)? locations for the FBM to search for the
best match to the current block (i.j). To perform motion estimation in real time.
the number of operations required by the FBM is often too high. To reduce the

computational complexity. a number of fast search algorithms have been proposed.

2.2.1.2 Three-step Search Based upon the assumption that within a prede-
termined search area. the M AD has a single peak and the average matching distortion
increases monotonically in directions other than the actual displacement. the three-
step algorithm [24] simplified the search procedure for motion estimation.

As shown in Figure 2.3. three different sets of parameters are used in the motion
estimation. In the first step. eight coarsely spaced points are tested except for the
central point (x=i.y=j). Searching the minimum of the MAD function. The first
approximation of the displacement vector is obtained which is the point A(i+3. j+3)
in Figure 2.3. In a second step. again eight search point are spaced. but less coarsely
around the point which was chosen in the first step. Again using the MAD criterion.
the point B(i+3. j+3) is found to be the best match. The second step is repeated
until the required accuracy is achieved. In this case (dm=6). the third step gives the
final approximation of the displacement vector C(i+2. j+6).

This simplified search algorithm works well if the assumptions hold. Unfortu-
nately. however. these assumptions are not always true. especially in the situations

where image contains highly detailed texture and complicated motion. Most often a
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non-optimal or even error estimation can be the matching results and that will have

a serious effect on the coding quality and efficiency.

2.2.1.3 Multiresolution Block Matching Multiresolution block matching
technique reduces the computation of motion estimation by taking advantage of
pyvramid structure. In a so-called top-down multiresolution technique [49]. pyramids
are formed before matching. The bottom level L of the pyramid contains the input
image. The image at any level /| = L —1.---.0 is generated by applying a low-pass
filter to the image at level | + 1 and subsampling the filtered image. The low-pass
filtering is achieved through convolution with a separable filter with 5 x 5 point

impulse response h(m.n) given by
h(m.n) = h(m)h(n) (2.43)

h(2) = h(=2) =

— 2. The constant a is a free

e fr—e

where h(0) = a.h(10 = h(-1) =

s -

parameter and is chosen typically between 0.3 and 0.6.

The sampling is done simply by selecting every 2nd pixel in both horizontal
and vertical directions. Matching is first conducted at the top level of the pyramid
to obtain an initial estimation of the motion field: the computed motion filed is then
propagated to the next pyramid level. In the variable block size method (refer to
Method 1 in [49]). the size of the block varies with the pyramid levels. That is. if
the block size at level [ is b, x b,. at level [ + I it becomes 2b, x 2b,. Therefore. if
17(i.j) is the computed motion vector for the block (i. ) at level { of the pyramid.
the propagated motion vector for the same block at level { + 1 is F#1(2/.2)) and is
given by

PN 20L25) = 200 ) (2.46)
At level [ + 1. this propagated motion vector is corrected and again propagated to

the next level until the bottom level of the pyramid is reached. Figure 2.4 shows a
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Figure 2.3 Three-step search
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bottom level

Figure 2.4 2-level pyramid structure

Table 2.1 The typical set of parameters for 2-level multiresolution block matching

Parameters at level Top level | Bottom level
Search range 4x4 Ix1
Block size x4 3x8
Motion estimation accuracy 1 0.5

2-level pyramid structure for block matching used in Method | and Table 2.1 lists

the corresponding set of parameters.

2.2.1.4 Hierarchical Block Matching The reliability of motion estimation
depends upon the chosen size of blocks and the amount of motion. Large blocks
give more reliable motion estimation in the case of large displacement while small
blocks are more suitable for small displacement. Based upon this observation. a
hierarchical block matching algorithm was proposed by Bierling [7].

In this method. the motion estimation starts with large blocks at the highest
level of a hierarchy. From one level to the next. the size of blocks is decreased.

The motion estimate is obtained recursively. i.e.. at each level of the hierarchy. the
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Table 2.2 The tyvpical set of parameters for hierarchical block matching

Parameters at level 1 2 3
Maximum displacement | £ 7 +3 +
Block size 64x64 | 28x28 | 12x12

resulting estimate serves as an initial guess for the next lower level. The first hierar-
chical level serves to estimate the large part of motion. whereas the last level serves
to estimate the remaining part of the motion. The final estimated motion vector is
the sum of the estimates from all hierarchical levels. Figure shows the principle of
hierarchical block matching with 3 levels. The associated set of parameters is listed in
Table. In this example. the first level is to estimate the major part of the displacement
of maximum +7 pixels using large blocks of size 64 x 64 pixels. At the second level.
an additional displacement of maximum £3 pixels can be estimated using a block
size of 28 x 28 pixels. and the second hierarchical level starts motion estimation
using the result of the first level. At the third level. the maximum displacement is
+1 pixel and the block size is 12 x 12 pixels. The maximum displacement which can

be estimated in total is 11 pixels.

2.2.2 Pel-recursive Approach

The pel-recursive approach estimates the motion between consecutive frames on a
pixel-by-pixel basis. Let [(r.y.t) denote the image intensity at a point (r.y) in
the image at time t. We seek to find the corresponding pixel in the previous frame
at a displacement D = (d..d,). In the pel-recursive approach. the displacement is
estimated recursively. Let DF = (cli(l;) denote the estimate of the displacement
D after the kth iteration . the estimate of D after the k + lth iteration. D*+! =
(c]ﬁ'*‘l. cZ’y"*’l ). is obtained by

DMt = DF 4 [ (2.47)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



frame at moment n-1

frame at moment n

Figure 2.5 Principle of hierarchical block matching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

where D* is an initial estimate of D**! and [**! is the update of D* to make it

more accurate.

The criterion used to estimate D is the displacement frame difference (DFD).

which is defined as
DFD(i.j.D*) = [e.y.ty = [z = df.y —d5 1 — 1) (2.48)

By minimizing the DFD. we can maximize the accuracy of the displacement estimate

-

Dk
Netravali and Robbins [37] were the first to develop a pel-recursive motion
estimation algorithm for image sequence coding. They proposed that the estimated

displacement D* be the one which minimizes the square value of the DFD. That is.

|DFD(zr.y.D*))* = min (2.19)
To solve for the estimate D* recursively. they used the steepest descent method

DY = DF = SeVp[DF D(z.y. DF)P (2.50)

where € is a positive constant. and V is the gradient with respect to the displacement

D. The gradient Vp can be calculated using the definition of DFD in Equation (2.48)

and noting that
Vp(DFD(z.y. D¥)) = VI(x —diy — di.t = 1) (2.51)

where V is the gradient with respect to r and y. This leads to

(B
-—

D' = DF — eDFD(z.y. DF)V I(2 = d5.y —d* £ — 1) (2.5

where DFD and V[ are evaluated by interpolation for nonintegral D*.
The choice of the positive constant € requires a compromise. A large value

of € vields a quick convergence but a noisy estimate. whereas a small € vields more
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accurate displacement estimate but takes more processing time. In [37]. € is chosen

1
to be T

The same authors presented an extension of Equation (2.32). in which
displacement is estimated by considering DFD at a small neighborhood in the

vicinity of the pixel under consideration:

. | . T
Dt = D¥ — ~eVp Y Wi[(DF D(z.y. D")))? (2.53)
= JeEM
where W are not negative weights and Y ;cy W, = 1. Although this iteration

formula is more complex. it significantly improves the performance of the displacement

estimation in those regions where the displacement is spatially uniform.

2.2.3 Discussions

The pel-recursive approach updates its displacement estimation at every pixel
and in principle. such algorithms overcome. to a large extent. the problems of
multiple moving objects. as well as different parts of an object undergoing different
displacement. Practically. however. the partial derivatives involved makes this
approach very sensitive to the presence of noise or the fine details in an image. On
the other hand. the block-based approach assumes that all pixels within a block have
the same motion vector and considers a block of pixels while performing matching.
Hence. this approach is less sensitive to various noises. But block matching is very
time consuming due to the fact that a block of pixels are involved in matching.
Although critical evaluation of block-based approach versus pel-recursive approach
has not vet been reported. the block-based approach has dominated the motion
estimation emploved in image coding area and has been recommended by many

video coding standards [26].
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CHAPTER 3

MULTIATTRIBUTE FEEDBACK APPROACH

In the correlation-feedback approaches. the estimate of optical flow is repeatedly
fedback to the algorithm to compensate the uncertainty of the estimated flow
vector. the accuracy of estimation is improved (refer to Equations (2.25) and (2.26)).
The utilization of bilinear interpolation reduces the errors caused by the subpixel
problem. [n this computational framework. less differentiation is required. Hence.
this approach is reliable in the presence of noise due to the image acquisition
and digitization. However. it has drawbacks. First. it is window oriented. The
assumption that the local intensity distribution does not change under motion
will be violated if the image area undergoes significant rotation. expansion or if it
contains motion boundaries. Second. in applving the motion smoothness constraint.
it does not consider the motion discontinuities.

The approach by Weng et al. computes the displacement field by taking
multiple image attributes as conservation information. These image attributes are
point-based local properties. this approach is point oriented. When imposing local
smoothness constraints. this method considers motion discontinuities. However. this
approach has some problems. too. First. the image attributes used are intensity.
edgeness. positive cornerness and negative cornerness. Among them. edgeness and
cornerness need the computation of the spatial gradient of the original image intensity
(refer to Equations (2.31) and (2.32)). Due to various noises. it is difficult to
estimate the gradients accurately. Hence. the computed attribute images can be
noisy. Second. in solving for the displacement field . this approach resorts to differ-
ential operation again. Specifically. the estimated displacement vectors are updated
based upon the computation of the partial derivatives of the noisy attribute images

(refer to Equation (2.39)). Hence. the computational framework is heavily depended

40
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on the numerical differentiation. which is considered to be impractical for accurate
computation [6]. Third. the algorithm does not address the subpixel problem.
Based upon the comparison between Pan et al.’s and Weng et al.’s approaches.
we observe that both advantages and disadvantages exist in two approaches.
Furthermore. the advantage in one approach might be utilized to enhance the
performance of the other approach. For instance. the incorporation of multiple
image attributes and point oriented processing of Weng et al.’s algorithm into Pan
et al.’s algorithm may improve the estimation accuracy. while the utilization of the
feedback and computational framework of Pan et al.’s algorithm can make Weng et
al.’s algorithm less sensitive to various noises. Motivated from this observation. in
this paper. we present a new way to compute optical flow field that takes advantages
of the approaches by both Pan et al. and Weng et al.. This algorithm has the

following characteristics.

l. It is point oriented. Multiple image attributes are computed as conservation
information. We use two tvpes of image attributes. One describes the
structural information of the point under consideration: the other reflects the
textural information of its local neighborhood. These attributes need less

derivative operations and are not sensitive to various noises.
2. No differentiation is involved in the computational framework.

3. Feedback techniques is utilized to enhance the estimation accuracy. The
estimation is carried out in two steps. In the first step. for each point under
consideration. its matching candidates in the second image are determined
by the estimated flow vector from the last iteration and its perturbed values.
Multiple image attributes are fully employed to determine the optical flow

bv using the weighted least squared estimation. In the second step. the flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

Computation Flow vector Flow vector
of multiple estimation at | Ue=(Uc. Ve) | estimation at L'w=(umf v
L2 attribue conservation propagation
images stage stage
Perturbation
Attributes of estimated
interpolation flow vector
Computation
of multiple
; =1 attribute
images

Figure 3.1 An schematic illustration of the computational framework

estimates are computed as a weighted sum of those over a small neighborhood.

The weight considers discontinuities in the flow field.

4. The subpixel problem is considered by using the bilinear interpolation

technique.

In the following. the multiconstraint feedback approach is discussed in detail.

3.1 Proposed Framework
Figure 3.1 shows an overview of the proposed computational framework. Let [, and
[, denote two images at moments 2 and 1. respectively. For each image. a set of
attribute images will be computed as conservation information. In the framework.

the computation of optical flow field is performed iteratively. Each iteration consists
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of a conservation stage and a propagation stage. At the conservation stage. for each
point in the current image [». the corresponding matching candidates are determined
by the estimated flow vector from the last iteration and its perturbed values. The
matching error is calculated by the sum of squared difference. The estimate of flow
vector at this stage. denoted by [, = (u..v.). is computed by weighted least square
estimation technique. At the propagation stage. the flow estimate (. is further
improved by using the neighborhood information. At the nth iteration. the output
of the propagation stage is denoted by [") = (u!™.¢{")). The iteration process
will continue until either the predefined iteration number or the predefined accuracy
threshold is reached. Besides. an interpolation mechanism is incorporated into the
algorithm to reduce the error caused by the subpixel problem.

A full description of every block in Figure 3.1 is given below.

3.1.1 Multiple Motion Invariant Image Attributes
To compute the optical flow field from the two frames of an image sequence. motion
invariant attributes are required since the conservation of such attributes can be
used as a criterion for matching process. Under the assumption that for a given
scene point. the intensity at the corresponding image points remains constant over
time. the iitensity is motion invariant. However. if the matching is based on intensity
only. a point in current image can be matched to any point with the same or similar
intensity in the previous image. To reduce the ambiguity in matching. we have to
resort to more motion invariant image attributes.

In addition to the intensity. the image attributes used in this work are horizontal
edgeness. vertical edgeness. contrast and entropy. The edgeness gives the structural
information for matching and is used in {32] too. The two other attributes. contrast

and entropy. reflect the textural information about the local neighborhood of the

point under consideration [17].
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The following are attributes used in our new algorithm.
Intensity

The image intensity at a point (r.y) in an image [. denoted by A;(r.y). is
given by A (z.y) = I(z.y).
Horizontal edgeness

The horizontal edgeness at a point (r.y) in an image /. denoted by Ax(r.y).
is defined as

An(r.y) = I%ﬁ'—y—)l (3.1)

i.e.. the horizontal edgeness is defined as the magnitude of the horizontal component
of the gradient of intensity.

Vertical edgeness

The vertical edgeness at a point (r.y) in an image [. denoted by A (r.y). is

defined as
1(z.y) = IQ[%'IQI (3.2)
Contrast
The local contrast at a point (z.y). denoted by A.(x.y). is defined as
Ary) =D (i = jVeij (3.3)

ij€s
where s is a set of distinct gray levels within a 3 x 3 window centered at the point
(r.y). ci; specifies a relative frequency with which two neighboring points separated
horizontally by a distance | occur on the 3 x 3 window. one with gray level 7 and the
other with gray level ;.
Entropy

The local entropy at a point (.r.y). denoted by A.(r.y). is given by

A(x.y) = —Zp,- log p; (3.4)
tEs
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where s is a set of distinct intensity values within a 3 x 3 window around the point
(r.y). pi is the probability (relative frequency) of occurrence of the grayv level : in
the window.

In above defined image attributes. the intensity and edgeness are used in Weng
et al.’s algorithm as well. Compared with the negative cornerness and positive
cornerness used in Weng et al.’s algorithm. the local contrast and entropy defined
by Equations (3.3) and (3.4) need no differentiation at all and therefore are less
sensitive to noises in the original image. Besides. these two attributes is inexpensive

in computation.

3.1.2 Conservation Stage

Let p or (r.y) denote a point in an image [,. Let [’(p) = (u.rv) denote the flow
estimate at the point p. Then the point (r.y) can be viewed as a shifted result of
the point (r — u.y — vr) in an image [,. assuming that the times interval between
the two moments is a unit. Hence. if the estimated flow vector {'(p) at the point p

is accurate. the attributes associated with the two corresponding points should be

similar.

To measure the similarity between the attributes of the corresponding points.
we use a set of residual functions. The residual function of intensity at the point p.

denoted by r;(p. (). is given by
ri(p.U) = Lx(p) — f(p =) (3.5)
where f(-) is given by

flp-0) = flz—uwy-r)
= (1—-a)[(1=b)x Li(k D)+ bx [(k.I+1)]

+al(l =8) x L(k+ 1.0)+bx [[(k+1.l+1)] (3.6)
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where b = int(r —u): {=int(ly—v):a=r—u—k: b=y —rv — L[ int(-) means
the integer part of the variable in (-). [, and I; are the intensity image in the two
images. respectively. The residual of horizontal edgeness ry(p.(’). that of vertical
edgeness r.(p.l’). that of contrast r.(p.l’). and that of entropy r.(p.(’) can be
defined. similarly.

In the conservation step. for each point p in the image [,. we consider a set of

points in image [;. denoted by p — [". where {" = (u.v) is given by

we (u™ — w2 0™ -yt g w4y g ) )2)

= (L.("-) _ L.(")/?_ L,(") - L.(")/4. L'(n). L.(") + L.(”)/_L L‘(n) + L.(’l)/-z) (3.7}

There are total 5 x 5 candidate points. For each candidate point. the matching error

at the point p in the image [. denoted by E(p.(’). is computed as
E(p.U) =3 [ri(p.O) + ri(p. O) + ri(p. U) + r2(p. O) + ri(p. O)] (3.8)

where {" = (u. v) satisfies Equation (3.7).
The same as Equation (2.16). the resulting 5 x 5 matching errors are converted

into a response distribution using
R(p.U") = e *EWRD) (3.9)

where k& is chosen so as to make R be a number close to unity.
Then the estimated flow vector at this step. denoted by [, = (u..r.). is

calculated as follows according to the weighted least-squares estimation

_ Y. R(p-Olu
L. B(p.U)

>, 5. R(p.U)e |
.= - 3.10
t = S S RO (3.10]

U,

u

3.1.3 Propagation Stage
For the true optical flow field. the flow vectors within the same object should be

similar. and that belonging to different moving ohjects should differ from each other.
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Based on this fact. the flow information of the local neighboring points within the
same region can be used to further improve the estimated flow vector of the point
under consideration. We form a window W; of size (2M + 1) x (2M + 1) around
the point (r.y) in the image [>. The flow estimate at the point (r.y) in this step.
denoted by ("t = (y*+1) p(n+1)) is computed as the weighted sum of the flow

vectors of the points within the window 7 and is given by

M M
ut = 3" N w(hy(z.y). L(x + sy + 1) xu(s + 1.t +y)
s==\Mt=-M
M %)
e = N N w(fy(ey). Iz 4 sy + ) xed(s + ot 4 y) (3.11)
s==\M t==\

where w(-.-) is a weighting function. For each point in the window ;. a weight
will be assigned by the weighting function. Let p’(x + s.y + ¢) denote a point in the
vicinity of the point p(z.y). the weight for the point p’ is given by

c
w(lyr.y). Ll +s.y+t)) = T hir ) — Lty 0] {3.12)

where ¢ is a small positive number to prevent the denominator from zeroing. and ¢
is a normalization constant that makes the summation of the weights by Equation
(3.12) equal to 1. The weight is determined based on the intensity difference between
the point under consideration and its neighboring point. The larger the difference in
intensity. the more likely the two points belong to different regions. Therefore. the
weight will be small in this case. Oun the other hand. the flow vector in the same
region will be similar since the corresponding weight is large. Thus the weighting

function implicitly takes flow discontinuities into account.

3.1.4 Summary of the Algorithm

The following summarizes the procedures of the proposed new algorithm.

1. Perform low-pass filtering on each image to remove noise.
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[
.

Generate attribute images: intensity. horizontal edgeness. vertical edgeness.

contrast. and entropy.

3. Set the initial flow field to zero. Set the maximum iteration number and

estimation accuracy.

4. For each point under consideration. compute {" = (u. v} according to Equation
(3.7). Compute the matching error for each matching candidate using Equation
(3.8) and transform them to the corresponding response distribution R. using
Equation (3.9). Compute the estimate [, from the probability distribution R

using Equation (3.10).

5. Forma (2M + 1) x (2M + 1) window around the point under consideration.
Compute the weight for each point within this window using Equation (3.12).

Update the flow vector using Equation (3.11).

6. Decrease the preset iteration number by one: If the iteration number is zero.
the algorithm returns with the resulting optical flow field: otherwise. goto Step

{.

7. If the change in flow vector over two successive iterations is less than the

predefined threshold. the algorithm returns with the estimated optical flow

field: otherwise. goto Step 4.

3.2 Experiments
Recently. a very comprehensive study of various optical flow techniques and
comparison of their performance mainly in terms of accuracy have been conducted
in [6]. In order to test the performance of our algorithm and compare with other
techniques in a more objective. quantitative manner. we choose to work on the same

testing sequences and then report the results with the same criterion as used in [6].
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Three experimental works are reported here. The image sequences used are
Translating Tree 2-D. Diverging Tree 2-D. and Yosemite as shown in Figures 3.2. 3.3
and 3.4. respectively. The first two sequences simulate translating camera motion
with respect to a textured planar surface. In the Translating Tree 2-D sequence.
the camera moves normal to its line of sight along its x axis. while in the Diverging
Tree 2-D sequence. the camera moves along its line of sight. The Yosemite sequence
is considered as the most challenging in [6] because of the range of velocities and
the occluding edges between the mountains and at the horizon. The motion in the
upper right is mainly divergent. the clouds translate to the right with a speed of 1
pixels/frame . while velocities in the lower left are about 4 pixel/frame.

As the same as in [6]. the angular error between the true optical flow vector
and an estimated flow vector is used as an error measure. Let (u;.tv;} and (u..v.)
denote the true optical flow vector and the estimated one. respectively. The angular

error between the true optical flow (u,.t;) and an estimate (u..v,.) i1s given by
n = arccos(V; - V2) {3.13)

where V; = ?;Ttm(llg. v 1) Vo = T.Hlvg_Tl(W' ve. 1).

To save the computation. all images are compressed by subsampling before
computing flow field. Yosemite sequence is subsampled by a factor of 4 in both
horizontal and vertical directions and compressed from 316 x 252 to 79 x 63. That
is. pixels in every 4x4 region are averaged and become one pixel in the compressed
image. The images of the other two sequences are subsampled by a factor of 2 in
both directions and are compressed from 150 x 130 to 3 x 3. The same averaging
procedure is involved. Obviously. this type of compression is low-pass filtering
in nature. Tables 3.1. 3.2 and 3.3 give the experimental results by some tyvpical
techniques surveyed in [6] and our algorithm. All methods that compute optical flow

field with 100% density are listed in Tables. The reported errors are averaged results

over the optical flow field. Besides. the corresponding standard deviations (where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.2 The 10th frame of Translating Tree 2-D

sample mean is used to replace the statistical mean) of the measurements are also
listed in the Tables. We note that the multiconstraint feedback approach performs
sensibly better than all other algorithms listed in the Tables. Specifically. in the first
(Translating Tree 2-D) and the third ( Yosemite) experiments. our algorithm performs
the best. In the second experiment (Diverging Tree 2-D). our algorithm performs
the second best. In all three cases. our algorithm outperforms both algorithms by

Pan et al. and Weng et al.. based on which our approach is developed.

3.3 Summary and Discussions
The proposed approach is mainly motivated from two newly developed optical flow
determination techniques. i.e. Weng et al.’s and Pan et al.’s methods. This approach
combines the merits from both algorithms and avoids the disadvantages existing in
the two methods.
Compared with Weng et al.’s algorithm. our new method has the following
distinctions. First. the multiple image attributes used are different. The image

attributes used in our algorithm are image intensity. horizontal edgeness. vertical
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Figure 3.3 The 10th frame of Diverging Tree 2-D

Figure 3.4 The 10th frame of Yosemite
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Table 3.1 Experimental results on ~Translating Tree 2-D™ sequence

Techniques Average | Standard | Density
Error | Deviation
Horn and Schunk (original) 38.72 27.67 100%
Horn and Schunk(modified) 2.02 2.27 100%
Cras et al. 0.62 0.52 100%
Anandan 4.52 3.10 100%
Singh(step 1. n=2.w=2) 1.64 2.44 100%
Singh(step2.n=2.w=2) 1.25 3.29 100%
Correlation feedback(n=1.w=I) 1.07 0.48 100%
Weng's appraoch 1.81 2.03 100%
New approach 0.35 0.52 100%

Takle 3.2 Experimental results on ~Diverging Tree 2-D” sequence

Techniques Average | Standard | Density
Error | Deviation
Horn and Schunk (original) 12.02 11.72 100%
Horn and Schunk (modified) 2.535 3.67 100%
Uras et al. 1.64 3.43 100%
Anandan(frame 19 and 21) 7.64 4.96 100%
Singh(step 2.n=2.w=2.N=4) 8.60 3.60 100%
Correlation feedback 5.12 2.16 100%
Weng a approach 8.01 9.71 100%
New approach 1.04 3.82 100%
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Table 3.3 Experimental results on ~Yosemite™ sequence

Techniques Average | Standard | Density
Error | Deviation
Horn and Schunk(original) 32.43 30.28 100%
Horn and Schunk(modified) 11.26 16.41 100%
Uras et al. 10.44 15.00 100%
Anadan 15.84 13.46 100%
Singh(step2.n=2.w=2.N=4) 13.16 12.07 100%
correlation feedback 7.93 6.72 100%
Weng's approach 8.41 3.22 100%
New approach T.54 6.61 100%

edgeness. contrast and entropy. The first three are used in [52] as well. The last two
attributes give the textural information about the local neighborhood of the point
under consideration. Compared with the negative cornerness and positive cornerness
used in [52]. the contrast and entropy need no spatial gradient calculation and are less
sensitive to the noises in the original images. Second. the computational framework
is quite different. In our algorithm. flow vector is estimated by using the weighted
least squared estimation. There is no differential calculation required. In Weng
et al.’s algorithm. the estimates of displacement vector are updated based upon
the calculation of derivatives of the attribute images. which makes the estimated
displacement field sensitive to various noises in the original images. Third. in our
new method. feedback technique is utilized to enhance the estimation accuracy.
Our new approach is also quite different from Pan et al.’s algorithm. First.
in our algorithm. multiple image attributes are computed as conservation infor-
mation. while in Pan et al.’s algorithm only the image intensity is assumed to be
conserved. Second. our approach is point oriented. while Pan et al.’s algorithm is
window oriented. Third. in both Pan et al.’s and our algorithms. the flow estimate
at the propagation stage is computed as a weighted sum of the flow vectors of the

neighboring points. However. the weight in our algorithm relates to the intensity
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difference between the point under consideration and the surrounding points and
therefore takes motion discontinuities into consideration. while the weight in Pan et
al.’s algorithm is simply a Gaussian mask and the motion discontinuities are ignored.

The experimental results show that our proposed approach outperforms in
general both Pan et al.’s and Weng et al.’s algorithm in terms of accuracy of optical
flow determined.

Computationally speaking. our algorithm is less expensive than Pan et al.’s
algorithm. To determine the estimated flow vector in the conservation step. both
algorithms have to compute the matching error E(-.-) (refer to Equation (3.8)).
In Pan et al.’s algorithm. the E(-.-) is computed as the sum of squared difference
between 3 x 3 correlation windows in two images. while in our algorithm. the £(-.-)
is calculated as the sum of squared residual function of five attributes. Hence.
our algorithm needs only almost half of the computation required by Pan et al.’s
algorithm. We spend an extra amount of computation on multiple attribute images.
but achieve a big saving in computing the matching error E(-.-). It is noted that
multiple attributes need to be computed only once. while the E(-.-) has to be
computed in each iteration.

Compared with Weng et al.’s algorithm. the computation of our method is
a little bit more expensive. Among the five image attributes used in our method.
i.e.. intensity. horizontal edgeness. vertical edgeness. contrast and entropy. the first
three are used in Weng et al.’s algorithm as well. Compared with the negative
cornerness and positive cornerness used in [32]. the local contrast and entropy used
here need less computation. But the computation of flow vector by using the weighted
least squared estimation in our algorithm takes much more time than that by using
numerical iteration in [32]. That is. although we achieve some savings in attribute

computation. we spend more on the calculation of flow vector.
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CHAPTER 4
THRESHOLDING MULTIRESOLUTION BLOCK MATCHING

Motion estimation is of great importance in video coding applications for the
exploitation of the high correlation between neighboring frames of an image sequence.
Among two basic approaches: block matching and pel recursion (refer to Section
2.2). the block matching approach is more popular and has been adopted by several
video compression standards.

The multiresolution technique has been regarded as one of the most efficient
methods in block matching [49]. In a so-called top-down multiresolution technique
(refer to Section 2.2.1.3). a typical Gaussian pyramid is formed first. Motion search
ranges are allocated among different pyramid levels. Matching is initiated at the
lowest resolution pyramid level to obtain an initial estimation of motion vectors.
The computed motion vectors are then propagated to the next higher resolution
level. where it is corrected and again propagated to the next level until the highest
resolution level is reached. As a result. a large amount of computation can be saved.

In the multiresolution technique. however. the computed motion vectors at
any intermediate pyramid level are all projected to the next higher resolution level.
[n reality. some computed motion vectors at the lower resolution level may be poor
interms of accuracy and have to be further refined. while others are relatively accurate
and able to give a satisfactory motion compensation for the corresponding block.
From saving computation point of view. it may not be worth for the latter class
of motion vectors to be propagated top the next higher resolution level for further
processing.

Motivated by the above consideration. we devise and present in the following
a new multiresolution block matching method in which a thresholding technique is
applied to withhold those blocks whose estimated motion vectors give a satisfactory

motion compensation from further processing. thus saving lots of computation.

Ut
(3]}
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4.1 The Framework
In this section. the proposed thresholding multiresolution block matching algorithm

is discussed in detail.

4.1.1 General Description

Let [,(t.J) be the frame of an image sequence at current moment n. First. we
form two Gaussian pyramids. pytamids n and n — 1. from image frames /[,(:.J) and
I.—1(¢. ). respectively. Let the levels of the pyramids be denoted by {. [ =0.1..... L.
where 0 is the lowest resolution level (top level) and L the full resolution level (bottom
level). If (i.j) is the coordinates of the upper left corner of a block at the level /
of pvramid n. the block is referred to as block (.),. The horizontal and vertical
dimensions of a block at the level [ are denoted by b\ and bfj. respectively. Similar
to the Method 1 in [49]. the size of the block in this work varies with the pyramid
levels. That is. if the size of a block at level [ is 6. x . then at level [ + 1 the block
size becomes 2b%. x 2b.. The reason we use the variable block size is that the variable
block size method gives more efficient motion estimatior than the fixed block size
method. The matching criterion used for motion estimation here is the MAD because
it requires no multiplication and gives similar performance as the mean square error
(MSE) does. The MAD between the block (:. j)! of the current frame and the block
(i + vz + v,)i_; of the previous frame at the level [ can be calculated as

L by b -1
MAD ju(vh.v)) = T STOST Uik D= Gk el el (L)

T y k=0 [=0

where 1 = (vL.v}) is one of the candidates of the motion vector of the block (. j},.

The block matching is initiated at the top pyramid level. and going down
towards the bottom level. At each level of the pyramid. a full-search block matching
is performed to search for the best match in a predefined search range. To threshold
those blocks which have relatively accurate estimated motion vectors. an accuracy

threshold is predefined according to the required accuracy for reconstructed image.
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[f the accuracv threshold is satisfied. the motion estimarion for this block will be
stopped. Otherwise. the computed motion vector will be propagated into the next
higher resolution pyramid level for refinement. In summary. the motion estimation
process for a block will be stopped if either the motion estimation satisfies the
accuracy threshold or the block reaches the full resolution pyramid level. whichever

occurs first.

Figure 4.1 illustrates the data flow and computional procedures of the proposed

framework.

4.1.2 Threshold Determination
The threshold used in this work is the MAD for the sake of saving computation.
The thresholding value has a direct impact on the performance of the proposed
algorithm. A small thresholding value can improve the reconstructed image quality
at the expense of increased computational effort. On the other hand. a large thresh-
olding value can reduce the computational complexity. but the quality of the recon-
structed image may be degraded.

One possible way to determine the thresholding value. which is used in our
many experiments. is as follows. The peak signal-to-noise (PSNR) gives an objective
measure of the quality of the motion compensated image. It is defined as

PSNR = 10log,o —20— 12
510 ‘I.SE ( ~—)

From the given PSNR. one can find out needed MSE value. A square root of this MSE
value can be chosen as a thresholding value. We apply this estimated threshold to
the first two images from the sequence. If the resulting PSNR and needed processing
time are satisfactory. we use it for the rest of the sequence. Otherwise. we can adjust
the threshold a little accordingly and apply it to the second and third images to
check the PSNR and processing time. In our experiments this adjusted parameter

has been good enough and there is no need for further adjustment. That is. it can
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be used for the rest of sequence. As shown in Table 4.1 (refer to Section 1.2). the
thresholding value used for ~Miss America.” “Train.” and ~Football™ sequences are 2.
3. and 4. respectively. It is noted that they are all determined in this fashion and give
satisfactory performance. as shown in those three rows marked with "New Method
(TH=2)." "New Method (TH=3)" and ~New Method (TH=4)." respectively. in
Table 4.2. that is. the PSNR experiences only about 0.1 dB loss and the processing
time reduces drastically. In our experiments. we also tried the threshold of 3. i.e.. the
average value of 2. 3. and 4. Refer to those three rows marked with “New Method
(TH=3)" in Table 1.2. It is noted that this average threshold 3 has already given
satisfactory performance for all of three sequences. Specifically. for ~Miss America”
sequence. since the threshold increases from 2 to 3. the PSNR loss increases from
0.12 dB to 0.48 dB and the processing time reduction increases from 20% to 33 .
For ~Football™ sequence. since the threshold decreases from 4 to 3. the PSNR loss
decreases from 0.08 dB to 0.05 dB and the processing time reduction decreases from
14% to 9%. Obviously. for ~Train™ sequence. the threshold as well as performance
remain the same. One can therefore conclude that the threshold determination may

not require much computation at all.

4.1.3 Thresholding

Motion vectors estimated at each pyramid level will be checked to see if they give
a satisfactorv motion compensation. Let V/(i.j) = (vl v;) denote the estimated
motion vector for the block (i.j)! at [ level of the pyramid n. For thresholding.
17(i.j) should be directly projected to the hottom level L. The corresponding
motion vector for the same block at the bottom level of the pyramid n will be

VEL(2E=0; 2L=D /)y and is given as

PLEED B0y = oE=01g ) (-+.3)
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Figure 4.2 Thresholding process

The MAD between the block at the bottom pyramid level of the current frame and
its counterpart in the previous frame can be determined according to Equation (4.1).
where the motion vector is V& = VE(2(6-0; 2(6=05)  This computed MAD value
can be compared with the predefined threshold. If this MAD value is less than the
threshold. the computed motion vector VE(2(£=1; 2(L=0 ) \ill be assigned to the
block (2(£=0;.2(L=0 ;)L at the level L in the current frame and motion estimation for
this block will be stopped. If not. the estimated motion vector 1 (. j) at the level {
will be propagated to the level [ + 1 for further refinement.

Figure 4.2 gives an illustration of the above thresholding process.
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4.2 Experiments

To verify the effectiveness of the proposed algorithm. extensive experiments have
been performed. The performance of the new algorithm is evaluated and compared
with that of Method 1 [49]. one of the most efficient multiresolution block matching
methods. in terms of PSNR. error entropy. motion vector entropy. the number of
blocks stopped at the top level versus total number of blocks. and processing time.

These performance indexs are stated below.
(a) The peak-to-peak signal-to-noise ratio (PSNR)

This term. defined by Equation (4.2). gives an objective measure of the accuracy
of the reconstructed image.
(b) The error entropy

The error image entropy is the entropy of the difference between the original

image and the reconstructed image and is given by
s
Hy, =— Y p(b)log, p(b) (+.4)

where b is a distinctive value of the error image and 5 is its maximum value. The error
image entropy gives a lower bound of number of bits per pixel needed in transmision.
(c) The motion vector entropy

This term is given by

A7A%

Hne=— Y p(mr)log, p(mr) (4.5)

mr=-MV

where mv is a numbering index of a distinctive motion vector and M1 is its maximum
value. which can be determined from the total search range and the motion vector
accuracy (e.g. pixel or half pixel accuracy) with respect to the full resolution image.
(d) The number of blocks stopped at the top level versus the total number of blocks

This term indicates how many blocks at the top level are withheld from further
processing.

(e) The processing time
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The processing time is the sum of total number of additions for the evaluation
of the MAD involved. and the thresholding operation.

In the experiments. two-level pyramids are used since pyramids of two levels
give a better performance for motion estimation purpose [49]. The algorithms
are tested on three video sequences with different motion complexities. i.e.. ~Miss
America.” “Train” and “Football.” as shown in Figures 4.3. 4.4 and 4.5. ~Miss
America” sequence has a speaker imposed on a static background and contains less
motion. ~Train™ sequence has more detail and contains a fast moving object (train)
[49]. The sequence “Football™ contains most complicated motion. Table 4.1 is the list
of implementing parameters used in the experiments. Table 4.2 gives the performance
of the proposed algorithm. compared with Method 1. Here the motion estimation
has half pixel accuracy. All performance measures listed there are averaged for the
first 25 frames of the testing sequences.

Each frame of the sequence ~Miss America” is of size 360 x 288 pixels. For conve-
nience. only the central portion of 320x236 pixels is processed. The total number of
blocks is 1280. With the operational parameters listed in Table 1.1 (TH=2). 533% of
the total blocks (679 blocks) at the top level satisfy the predefined threshold and are
not propagated to the bottom level. The processing time needed by the proposed
algorithm is 20% less than Method 1 while the PSNR. the error image entropy and
the vector entropy are almost the same. Compared with Method L. we spend an extra
amount of computation (around 0.16 x 10° additions) on thresholding operation. but
achieve a big savings of computation (around 2.16 X 10° additions) by withholding
those blocks. whose MAD values at the full resolution level is less than the predefined
accuracy. from further processing. The computational savings comes from here.

The frames of the “Train™ sequence are of size T20x288 pixels. and only the
central portion of 640x256 pixels is processed. The total number of blocks is 2816.

Refer to Table 4.2 (TH=3). about 52%of the total blocks (1465 blocks) are stopped
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Figure 4.3 The 10th frame of “Miss America” sequence

at the top level. The processing time has been reduced about 17% by the new
algorithm. compared with Method [. The PSNR. the error entropy and the vector
entropy are almost the same.

The frames of sequence ~Football™ are of size 720x480 pixels. and only the
central portion of 640x448 pixels is processed. The total number of blocks is 1928.
With the operational parameters listed in Table 4.2 (TH=4). about 38% of the total
blocks (1373 blocks) are stopped at the top level. The processing time is about 1%
less than that required by Method I. The PSNR. the error entropy and the vector
entropy are almost the same.

[n addition to the objective measures. we also compare the reconstructed images
by Method 1 and New Method subjectively. For three testing sequences. i.e.. ~Miss
America.” "Train.” and “Football.”. we virtually cannot see any difference between
the reconstructed images obtained by Method | and New Method.

In summary. it is clear that in all three different testing sequences. our algorithm
works faster than the existing top-down multiresolution block matching algorithm

while achieving almost the same quality of the reconstructed image.
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Figure 4.4 The 10th frame of “Train” sequence

Figure 4.5 The 10th frame of ~Football™ sequence
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Table 4.1 Parameters for testing sequences

| Parameters at level [ Low resolution level l Full resolution level
= Miss America ~
Search range [ 3x3 Ix1
Block size 4x4 3x8
Thresholding value | 2 None (Not applicable)
= Train ~
Search range 4x4 Ix1
Block size x4 8x&
Thresholding value | 3 None (Not applicable)
= Football ~
Search range ix4 Ix1
Block size 4x4 3x8
Thresholding value | 4 None (Not applicable)

Table 4.2 Experimental results on testing sequences

PSNR | Error Vector entropy | No. of blocks | Processing !
(dB) | entropy {bits/vector) stopped at times
(bits/pixel) top level/ (No. of
No. of additions.
total blocks | 10%j
= Miss America = sequence
Method 1 [49] 38.91 |3.311 6.02 0/1230 10.02
New Method (TH=2) | 38.79 | 3.319 5.65 679/1230 3.02
New Method (TH=3) | 38.43 | 3.340 5.45 187 /1280 6.17
= Train ~ sequence
Method 1 [49] 27.37 | 4.692 6.0 0/2316 2238
New Method (TH=3) | 27.27 | 4.788 3.65 1465/2816 13.68
= Football ™ sequence
Method 1 [49] 24.26 | 3.379 7.68 0/4928 30.06
New Method (TH=4) | 24.18 | 5.433 7.538 1873/1928 25.9
New Method (TH=3) | 24.21 | 5.483 .37 1456/4928 27.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

4.3 Conclusions
The existing multiresolution block matching technique such as the top-down pyramid
technique propagates all the motion vectors estimated at a lower resolution level
to its next higher resolution level for refinement no matter whether the computed
motion vector gives a satisfactory motion compensation or not. Based on this
observation., we present in this paper a new thresholding multiresolution block
matching algorithm so that motion vectors computed at lower resolution level
will be treated differently. According to the motion compensation performance.
those blocks satisfving the predefined accuracy criterion are withheld from further
processing. and a large amount of computation is saved. Three experiments with
different motion complexities have shown that the proposed algorithm works well. [t
largely reduce the processing time ranging from 141% to 20%. compared to the fastest

existing multiresolution technique. while maintaining almost the same quality of the

reconstructed image.
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CHAPTER 5
THRESHOLDING HIERARCHICAL BLOCK MATCHING

Block-based motion estimation approach has donimated various video codecs due
to its simplicity and easy implementation. Full search block matching is known to
give an optimal estimation at the expense of enormous amount of computation. To
improve the computational complexity. many efficient search techniques have been
proposed such as the three-step search. multiresolution block matching and so on.
Among them. the multiresolution technique is considered to be the very efficient.

It is noted that all the above mentioned block matching techniques. i.e.. full
search block matching. three-step search. and multiresolution block matching. treat
every region in an image domain indiscriminately no matter whether the region
under consideration contains complicated motion or not. The complexity of motion
for different regions within an image is usually different. Some regions may contain
complex motion. while others may have relatively static background or slow motions.
For instance. a typical videoconferencing scene is an image of a speaker imposed on
a static background. Except a limited amount of complex motion such as facial
expression changes. other motions are relatively slow. the background regions even
do not have any motion. To use the computing resources efficiently. different compu-
tation efforts should be made for regions containing different amount of motion.
Regions experiencing complex motion deserve more computational time. but for
regions with slow motion. the search procedure can be simplified to expedite the
motion estimation process.

Motivated by the above consideration. we devise and present in this chapter
a new hierarchical block matching algorithm in which a thresholding technique is
applied to withhold those regions containing less amount of motions from further
processing. thus saving computation drastically. In the following. Section 3.1 gives a

general description of the new framework and algorithm. and then several issues in its
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implementation are discussed in detail. Section 5.2 demonstrates an extensive exper-

iments to verify the algorithm. Section 5.3 presents conclusions and some discussions.

5.1 New Approach
In this section. the new hierarchical block matching algorithm using thresholding is
presented. First. we give a general description of the algorithm. and then several

issues in its implementation are discussed in detail.

5.1.1 General Strategy

In order to expedite the motion estimation process and save computation by
simplifving the search procedure for regions containing less motion. we resort to the
hierarchical structure in this new algorithm.

In the following. let [,{i.j) denote the frame of an image sequence at present
moment n. We first form a block hierarchy. Let the different levels of the hierarchy
be denoted by [. [ =0.1.---. L. where 0 is the top level and L the bottom level. If
(i.])is the coordinate of the upper left corner of a block at the level [ in the hierarchy.
the block is referred to as block (i.j)!. If the horizontal and vertical dimensions of
the blocks at the level / are denoted by 6. and bfj. respectively. at the level [ + 1 the

dimensions of the blocks will be

b1+l _f’li
T
bI
+1 T -
b, =3 (3.1)

That is. from the top to the bottom level in the hierarchy. the block sizes are
decreased. Figure 3.1 gives an illustration of the hierarchical structure used in our
work. As shown. a block at one level corresponds to four blocks at the next level and
all levels are of the same resolution. This is quite different from a pyramid structure.

Motion estimation is performed from the top to the bottom level of the

hierarchy. At each level. a separate search procedure with different sets of parameters
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A AV "

Figure 5.1 An illustration of the hierarchical structure.

is carried out. For a block (i.))" at level [ in the current frame. We look for a block
of pixels in the previous frame that gives the best match in terms of the mean
absolute difference (MAD) (refer to Section 2.2.1).

[t has been noted that for some blocks. the motion vectors estimated at
the intermediate levels of the hierarchy give a satisfactory motion compensation.
Therefore. it is inefficient to put these blocks into the next level for further processing.
Based on this consideration. in this work a set of accuracy thresholds is predefined
according to the required accuracy for reconstructed images. The computed motion
vector V(i.J) (refer to Section 4.1.3) will be checked to see if it satisfies the
predefined threshold. That is. the MAD value associated with the computed motion
vector V7(i.)) is compared with the threshold. If the MAD value is less than the
threshold. the estimated motion vector V(i) will be assigned to the block (i. ).

and the motion estimation for the block will be stopped.
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On the other hand. if the accuracy threshold is not satisfied. the block (:.
will be propagated into level [+ 1 in the hierarchy. According to the Equation (5.1).
the block (i.j)' corresponds to four blocks at the level [ + 1. The computed motion

vector V(¢ j) will be assigned to those four blocks as follows:
VYL ) = Vi)
qe1s- . B - -
L’-‘(lf%.{) = 1. )
VYL 4+ ) = VL)
PR B+ 3) = VL))

A
St
I~

—

At level [ 4+ 1. the motion estimation for four blocks will be carried out with the
above assigned motion vector as an initial guess.

The motion estimation is initiated at the top level of the hierarchy and is
going down towards the bottom level. By thresholding. motion estimation for blocks
with less motion will be terminated at some intermediate levels. thus saving compu-
tation. Blocks stopped at upper levels are of sizes larger than those stopped at lower
levels. Hence. the final motion field consists of blocks of different sizes. The motion
estimation for the whole image will be terminated if motion estimation of each block

either satisfies the accuracy threshold or reaches the bottom level of the hierarchy.

5.1.2 Block Size in the Hierarchy

In the extreme. the block size can be as large as the full image at the top level of
the hierarchy and as small as a single pixel at the bottom level. But this kind of
hierarchy structure makes the matching inefficient. On one hand. taking the whole
image as a single block and searching for a corresponding block in the previous frame
is almost certainly a waste of effort. unless the sequence is static at that particular
instant. On the other hand. a block of very small size such as a single pixel does
not necessarily result in a better motion estimation. The smaller the block size.
the higher the probability that there are blocks in the previous frame having a very
similar or identical pattern of the small block. This can cause mismatching. Besides.

noise will affect matching more when the block size is too small.
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[n practice. it is desirable to make the block size at the top levei of the hierarchy
smaller than the full image and the block size at the bottom level larger than a single
pixel. As listed in Tables 5.1. 5.3 and 3.5. the actual block sizes in a 4-level hierarchy

used in our extensive experiments are 64x64. 32x32. 16x16. 8x3.

5.1.3 Thresholding

The threshold used in this work is the MAD for the sake of saving computation. [t has
a direct impact on the performance of the proposed algorithm. Blocks at the upper
levels of the hierarchy are of large sizes. Large blocks deserve more chances to contain
nonuniform motions. The use of small thresholding value helps to detect complex
motions embeded in large blocks and splits these blocks for further processing. Thus
compared with large thresholding value. the use of small one makes the motion
estimation for large blocks relatively accurate. On the other hand. however. the
sizes of blocks at the lower levels of the hierarchy are relatively small. There are
many circumstances under which blocks containing complex motion cannot find a
good match in the previous frame such as occlusion and disocclusion. In these cases.
forcing blocks into further processing by the use of small thresholding value cannot
result in a better motion estimation but more computation. To take both the quality
of the reconstructed image and computational complexity into consideration. we use
variable thresholding technique here. That is. the thresholding values vary with the
hierarchical levels. For blocks at the upper levels. we use a small thresholding value
while for blocks at the lower levels. we use a large one. Specifically. let T' denote the

thresholding value at level { of the hierarchy. { = 0.1.---.L. Then T will be given
by
T'=c-2 (5.3)

where ¢ is a parameter. As seen. the thresholding value at one level is twice as large

as that at its immediate upper level.
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One possible way to determine the parameter c. which is used in our many
experiments. is as follows. The peak signal-to-noise (PSNR) gives an objective
measure of the quality of the motion compensated image. It has been defined in

Section 4.1.2 and is rewritten below

2552
PSNR = 10log,, % (;

ol

.

—
——

From the given PSNR. one can find out needed MSE value. A square root of this
MSE value can be chosen as an initial value of c. We apply this parameter ¢ to the
top level of the first two images from the sequence. If the resulting PSNR and needed
processing time are satisfactory. we use it for the rest of the sequence. Otherwise. we
can adjust the parameter ¢ a little accordingly and apply it to the second and third
images to check the PSNR and processing time. In our experiments this adjusted
parameter has been good enough and there is no need for further adjustment. That
is. it can be used for the rest of sequence. It is noted that the same procedure has
been used in Section +4.1.2.

The typical thresholding values used in our extensive experiments have been

listed in Tables 3.1. 5.3 and 5.5.

5.1.4 Allocation of Search Range
It is clear that in the proposed algorithm. motion estimation is conducted at different
hierarchical levels. At each level. a separate search procedure is performed.

Let D..r denote the maximum displacement which can be estimated. It would
be very time-consuming to search for motion vectors within the search range +£D,,..,
at each level and the search range should be allocated among different levels. On
the other hand. the larger the block size. the less possible the block contains large
motion. To take the above two factors into consideration. we assign the search range

nonuniformly to each level. \We make the search range decrease from the top to the
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@— points involved in the computation of the MAD

Figure 5.2 Subsampling procedure

bottom level of the hierarchy while the sum of the search ranges for all levels remains
equal to the maximum displacement for the image.

Let D! _ denote the maximum displacement at level [. { = 0.1.---. L. then.

we have the following:

D?na:SD}na.rS”'SDfnarS"'SD,[,;Q; (5.5)
and
Dgtar+Drlrzar+"'+D£na:+'°'+Dr€1ar=Dmu: (5.6)

Tyvpical search ranges used in our implementation have been given in Tables

5.1. 3.3. and 5.3.

5.1.5 Subsampling

In the evaluation of the matching criterion MAD. all pixels within the block are
involved. In order to further reduce the computational effort. a subsampling inside
the block is performed. As shown in Figure 3.2. every other pixel (horizontally and

verticallv) inside the block is taken into account for the evaluation of the matching
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criterion. When the subsampling procedure is applied. instead of Equation {2.12].

the MAD value can be calculated as

SO
Y N .1_—_1__2 3 PO R Cle el oy
MAD (v, v,) = 5 > n(i+2k.j+20) = Lo (0 42k + v j+ 20+ 0 )

bl
= X F k=0 I=0

(5.7)

Obviously. by using the subsampling technique. the computation is reduced

by a factor of 4. However. since 3/4 of the pixels in the block are not involved
in the matching computation. the use of such subsampling procedure may affect
the accuracyv of the motion vectors. especially for blocks of small size. In the
algorithm. this subsampling procedure only applies to blocks at the top two levels in
the hierarchy where the block size is large enough such that the matching accuracy

will not be seriously affected.

5.1.6 Summary of the Algorithm

The algorithm is summarized below.

. Apply Gaussian filter to original images to remove various noises.

o

Define a hierarchical structure as illustrated in Figure 5.1. Label the levels of
the hierarchy as level [. [ = 0.1..... L: level 0 is the top level and level L the

bottom level.

3. Allocate the search range among the different hierarchical levels. as discussed

in Section 5.1.4.

4. Set the level to the top. i.e.. | = 0. and set the block motion vectors at level 0

to zero.

5. For blocks au level [ in the current frame. search for a best match within a
predefined search range at the same level in the previous frame by the full-

search block matching. The matching criterion is the MAD.
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6. If { = L. the procedure returns with the resulting motion field: otherwise. go

to step 7.

-1

Threshold the block motion vectors computed at the level [. If the MAD
value given by the estimated motion vector is less than the threshold. motion

estimation for this block will be stopped: otherwise. go to rhe next step.

8. Split the block into four subblocks with equal size. That is. propagate the block
into the next lower level in the hierarchy. Assign the computed motion vector
of the block to its corresponding subblocks at level { + [. This motion vector
gives an approximate estimation of the motion vector at level [ + 1 and serve
as an initial guess for the motion estimation. The block matching is conducted

at level [ + 1. Go to step 6.

5.2 Experiments

To verify the effectiveness of the proposed new algorithm. extensive experiments have
been performed. The new algorithm is implemented in two different ways: one (New
Method 1) does not employ the subsampling procedure: the other (New Method 2)
does. The performance of New Methods | and 2 are evaluated and compared with
the full-search block matching (FBM) and Method 1 in [49]. in terms of PSNR. error
image entropy. motion vector entropy. the number of motion vectors. and processing
time. The definition of the first three terms have been given in Chapter 4. The
number of motion vectors is the total number of motion vectors in the final motion
field. The processing time here is the total number of additions needed for evaluation
of the MAD. The amount of thresholding operation is negligible compared with that
needed by the MAD evaluation and is hence not counted in.

In the experiments. the algorithms are tested on three groups of video sequences

containing different motion complexities.
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Figure 5.3 The 10th frame of “Claire” sequence

Figure 5.4 The 10th frame of “Salesman™ sequence
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Group 1

Group | of the testing sequence contains typical videoconferencing sequences.
i.e.. “Claire.” ~Miss America.” and “Salesman.” as shown in Figures 5.3. +.3 and
5.4. Each frame of the sequences is of size 360x 288 pixels. For convenience. only the
central portion of 320x256 pixels is processed. The motion estimation has one pixel
accuracy. Table 5.1 lists the implementation parameters used in this experiment.
Table 5.2 gives the performance of New Methods 1 and 2. compared to the FBM
and Method 1 in [49]. averaged for the first 25 frames of the testing sequences. [t is
noted that. great saving has been achieved in both processing time and the number of
resulting motion vectors by our algorithms. The superiority over the FBM is obvious.
Compared with Method 1 in [49]. the processing time needed by New Method 1 (New
Method 2) is 62% (83%) less in the case of ~Claire™. 26% (80% ) less in the case of
~Miss America”. and 9% (47%) less in the case of ~Salesman™ while maintaining
almost the same quality of reconstructed images (for New Method 1. loss in PSNR
is about 0.2 dB and for New Method 2. loss in PSNR is about 0.7 dB). Furthermore.
the number of final resulting motion vectors is substantially less than Method 1 [19]
(ranging from 88% to 99% less for the three sequences). The performance of New
Methods 1 and 2 is slightly different. Due to the subsampling. New Method 2 is
faster than New Method | as expected. and gives 0.5-0.7 dB decrease in the PSNR
for the three testing sequences.

As a whole. it is clear that our algorithm outperforms both full-search block
matching and top-down pyramid technique in this group of experiments as discussed
above.

Group 2

The experiments are also conducted on the other video sequences which contain

more complicated image details and motion. The sequence of “Train”™ (see Figure

4.4) is of detailed images with a fast moving object (train). The frames of “Train”
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sequence are of size 720 x 288 pixels. and only the central portion of 704 x 236 pixels
is processed. The motion estimation has a half pixel accuracy.

Table 5.3 lists the parameters used in applying the proposed algorithm to the
“Train” sequence. Table 5.4 illustrates the results achieved in the experiments. As
seen. for the ~Train~ sequence. compared with the FBM and top-dowm pyramid
technique. a saving in both the number of motion vectors and processing time by the
proposed algorithm has been achieved. But the saving is not as much as obtained
in the case of the videoconferencing sequences as reported in Group 1. Besides. the
quality of the reconstructed images deteriorates. specifically. the PSNR decreases
by 1.02 dB and 2.35 dB for New Methods 1 and 2. respectively. Subjectively. this
deterioration is obvious in the reconstructed images shown in 5.5 and 5.6. Figure
5.5 is the motion compensated image by Method 1 while Figure 3.5 is the motion
compensated image by New Method 1. Compared with the orignal image Figure 4.4.
there exist some distortions in both Figures 5.5 and 5.6. In Figure 3.5. the head of
the train is slightly blurred while in Figure 3.6. it is almost disappeared. There is a
serious distortion in Figure 5.6.

Group 3

The -Footbhall™ sequence in this group contains most complicated motion
among all sequences tested. The frames of the sequence ~Football™ (see Figure +.5)
are of size 720 x 480 pixels. and only the central portion of 704 x 443 pixels is
processed. The motion estimation has a half pixel accuracy. Tables 5.5 and 5.6 is
the implementation parameters and experimental results by the proposed algorithm.
respectively. For the ~“Football™ sequence. our algorithm does not seem as effective
as in the other experiments. Figures 5.7 and 3.8 are the motion compensated
image by Method | and motion compensated image by New Method 1. respectively.

Compared with the original image in Figure 1.3. one can tell that the distortions in

Figure 5.8 are a little more severe than that in Figure 3.7.
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Table 5.1 Parameters for videoconferencing sequences

Parameters at level 1 2 3 1

Search range Ix1 1x1 2x2 | 3x3
Block size 64x64 | 32x32 | 16x16 | 8x8
Thresholding value 2 4 8 16

Figure 5.5 The motion compensated 10th frame of “Train™ by Method 1

As a conclusion. for sequences having less motion such as videoconferencing
sequences. our proposed algorithm works more efficient than the FBM and top-
down pyramid technique. while for sequences containing complex motion. the new

algorithm loses the superiority.

5.3 Conclusions and Discussions
The existing block matching techniques such as full-search block matching and
top-down pyramid treat every region in an image domain indiscriminately no
matter whether the region under consideration contains complicated motion or not.
Motivated from this observation. we present in this chapter a new thresholding

hierarchical block matching algorithm so that different computational efforts may be
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Table 5.2 Experiment results on videoconferencing sequences

PSNR | Error entropy | Vector entropy | Number of | Processing times
(dB) | (bits/pixel) (bits/vector) final blocks | (No. of operations.
10°)

= Claire ~

FBM 41.13 1 2.32 1.82 1024 11.3

Method 1 [49] 40.92 | 2.33 1.83 1024 T.44

New Method 1 | 41.07 | 2.32 1.62 13 2.79

New Method 2 | 40.58 | 2.35 1.59 12 1.28

= Miss America =

FBM 37.71 3.64 3.45 1024 11.5

Method 1 [49] | 37.5 3.63 3.61 1024 T.44

New Method 1 | 37.32 | 3.69 3.0 31 5.51

New M-=2thod 2 | 36.92 | 3.73 2.37 38 1.44

~ Salesman ~

FBM 35.81 3.82 3.63 1024 11.5

Method 1 [49] | 35.62 | 3.84 3.81 1024 T

New Method 1 | 35.36 | 3.91 2.89 113 6.75

New Method 2 | 34.76 | 4.13 2.61 T 3.79

Table 5.3 Parameters for ~Train™ sequence

Parameters at level l 2 3 1

Search range Ix1 2x2 2x2 | 4xd
Block size 64x64 | 32x32 | 16x16 [ Sx8
Thresholding value 3 6 12 24

Table 5.4 Experiment result on ~Train™ sequence

PSNR | Error entropy | Vector entropy | Number of | Processing times
(dB) (bits/pixel) (bits/vector) final blocks | (No. of operations.
10°%)
FBM 27.75 | 4.69 6.02 1096 442.9
Method 1 [49] | 27.51 | 4.71 6.33 1096 19.9
New Method 1 | 26.49 | 1.82 5.54 3567 [3.21
New Method 2 | 25.16 | 4.97 4.78 2416 16.12
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Figure 5.6 The motion compensated 10th frame of “Train™ by New Method 1

Table 5.5 Parameters for ~Football™ sequence

Parameters at level 1 2 3 4

Search range 1x1 2x2 2x2 | dxd
Block size 64x64 | 32x32 | 16x16 | 3x8
Thresholding value 4 8 16 32

Table 5.6 Experimental results on “Football™ sequence

PSNR | Error entropy | Vector entropy | Number of | Processing times
(dB) | (bits/pixel) (bits/vector) final blocks | (No. of operations.
10%)
FBM 24.61 | 5.46 .54 4096 891.5
Method 1 [49] |24.29 |35.48 7.86 1096 30.1
New Method 1 | 22.33 | 5.71 7.22 3889 29.24
New Method 2 | 20.41 | 5.92 6.13 3216 26.12
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Figure 5.7 The motion compensated 10th frame of “Football™ by Method 1
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Figure 5.8 The motion compensated 10th frame of “Football” by New Method 1
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made for regions having different complexity of motion. Extensive experiments have
shown that for sequences with less motion such as videoconferencing sequences. the
proposed algorithm reduces both the processing time and the number of final motion
vectors drastically. while maintaining almost the same quality of the reconstructed
image. For videoconferencing sequences it works even better than thresholding
multiresolution block matching discussed in Chapter 4. For sequences containing
complicated motion. such as sequences ~Train” and “Football™. the thresholding
hierarchical block matching may not be suitable.

Our proposed algorithm is quite different from the existing hierarchical block
matching algorithm [7]. Based upon the observation that large measurement windows
give more reliable motion estimation in the case of large displacement while small
measurement windows are more suitable for small displacement. in the existing
hierarchical method. the motion estimation of each block in the current frame is
performed recursively at three hierarchical levels. At each level. a separate motion
estimation is performed. The finally estimated motion vector is the sum of the
estimates from three hierarchical levels. On the other hand. the purpose of our
algorithm is to reduce the computation of motion estimation. The strategy of our
algorithm is also different. In the proposed algorithm. blocks are treated differently
according to the accuracy of the estimated motion vectors. [f the estimate of motion
vector does not satisfving the predetermined threshold. the block will be splitted into
four subblocks for further processing: otherwise. the motion estimation for this block
will be terminated. thus saving computation. Besides. contrary to the algorithm in
{7]. in our algorithm the search range of each level is increased from the top to the

bottom level of a hierarchy.
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CHAPTER 6

SUMMARY OF THE DISSERTATION

This chapter contains a summary of our major contributions and possible avenues

for future research.

6.1 Summary
This dissertation has focused on motion estimation for applications in the field of
video coding and computer vision. Here. we briefly summarize what have been
accomplished in the research presented in this dissertation.

In the dissertation. we first present a multiattribute feedback approach to deter-
mining 2-D dense motion field. This approach has the following features. First.
for each point in an image. multiple image attributes are computed as conserved
information and make image point matching more robust. Specifically. we use two
types of image attributes. One describes the structure information of the point
under consideration: the other reflects the textural information of its local neigh-
horhood. These attributes need lers derivative operation and are hence less sensitive
to various noises. Second. feedback technique is utilized to enhance the estimation
accuracy. For each point under consideration. the estimated motion vector from
the last iteration and its perturbed values lead to possible matching candidates in
the second image. Third. except horizontal and vertical edgeness. no other differ-
entiation is involved in the proposed computational framework. The estimation is
carried out in two steps. In the conservation step. matching error is calculated by
the sum of squared difference between the point under consideration in one image
and its possible matching candidate in the other image. Estimation of motion is
determined by using the weighted least squared estimation. In the propagation step.

the estimates are computed as a weighted sum of those over a small neighborhood.
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The proposed approach is mainly motivated from two newly developed motion
estimation techniques. i.e.. Weng et al.’s and Pan et al.’s methods. This approach
combines the merits and avoids the disadvantages of both existing algorithms.
Compared with \Weng et al.’s algorithm. our new method has the following
distinctions. First. the multiple image attributes used are different and less sensitive
to noises in images. Second. the computational framework needs much less differ-
ential calculation and it is therefore more robust to various noises. Third. in our
new method. feedback technique is utilized to enhance the estimation accuracy. Qur
new approach is also quite different from Pan et al.’s algorithm. First. instead of
using image intensity as a single attribute. multiple image attributes are computed
as conserved information. Second. instead of window-wise. our approach is point
oriented. Third. we consider the motion boundary as applyving motion smoothness
constraint. Experimental results show that our proposed approach outperforms in
general most of the existing techniques computing 2-D dense motion field in terms
of accuracy.

Block-based motion estimation has been successful in image sequence coding
application. Block matching may be realized using full search technique or faster.
more efficient search techniques. The well-known full search block matching is very
time-consuming as a result of exhaustive searching where all the possible motion
vectors are considered. Multiresolution block matching algorithms reduce the compu-
tation by taking advantage of pyramid structure. However. both approaches treat
every region in an image domain indiscriminately no matter whether the region under
consideration contains complicated motion or not. Motivated from this observation.
we have developed two thresholding block matching algorithms.

One is the thresholding multiresolution block matching. In this method.
we form multiresolution pyramid first. The motion estimation is initiated at the

top pyramid level. and going down towards the bottom level. At each level of
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the pvramid. a full search block matching is conducted to search for the bhest
matching in a predefined search range. If the accuracy is satisfied. the motion
estimation for this block will be stopped. Otherwise. the computed motion vectors
will be propagated into the next higher resolution level for refinement. Experiments
with different motion complexities have shown that the proposed algorithm has a
consistent performance. It reduces the processing time ranging from 4% to 20%
while maintaining almost the same quality of the reconstructed image (only about
0.1 dB loss in PSNR). compared with the fastest existing multiresolution block
matching.

The other is the thresholding hierarchical block matching. In the algorithm. a
block at one level in the hierarchy corresponds to four blocks at the next level and all
levels are of the same resolution. Motion estimation is performed from the top to the
bottom level of the hierarchy. At each level. a separate search procedure with different
sets of parameters is carried put. By thresholding. motion estimation for blocks with
less motion will be terminated at some intermediate levels. thus saving computation.
Extensive experiments indicate that for sequences with less motion such as video
conferencing sequences. the proposed algorithm gives a better performance than the
thresholding multiresolution block matching. [t reduces both the proceésing time
and the number of final motion vectors drastically. while maintaining almost the
same quality of the reconstructed image.

The threshold has a major influence on the performance of the proposed thresh-
olding schemes. The threshold used here is MAD and is determined by using two or
three frames in a sequence before motion estimation. Once determined. the threshold
can be used for the whole sequence of images.

[n both above thresholding frameworks. block matching is initiated at the top
level and going down towards the bottom level. and to save the computation. thresh-

olding techniques are applied. However. there exist distinct difference between two
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algorithms. In the multiresolution approach. multiresolution pyramid is formed
before matching. From the top to the bottom level of the pyramid. biock size is
increased and search range is decreased. Experiments show that this approach gives
a consistent performance for image sequences with different motion complexities. On
the other hand. in the hierarchical approach. each level in the hierarchy has the same
resolution and no pyramid is formed. From the top to the bottom level. the block
size is decreased and search range is increased. This approach needs less processing
time and less number of motion vectors for image sequences containing less motion.
But for video sequences having complex motion. its performance is degraded. As a
conclusion. the hierarchical algorithm is more suitable for video conferencing appli-

cations. while the multiresolution algorithm can be used for sequences with more

complex motion.

6.2 Future Research
[n connection with the motion estimation approaches proposed in this thesis. there
remain several questions which are worth investigating. Here we present some facts
which can be considered to be the subject of future research.

-One of the possible research directions is to incorporate an effective confidence
measure into the proposed multiconstraint feedback approach. In a computed optical
flow field. not all flow vectors have high accuracy. Those vectors having high accuracy
are more reliable than the others. It is important to search for a best confidence
measure to determine the reliability and accuracy of the estimated flow vectors. For
computer vision application. we can enhance the accuracy of 3-D motion analysis
bv extracting those flow vectors with high confidence measure. For video coding
application. in regions where the computed motion vectors are less reliable. other

coding mode than motion compensation can be applied.
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-We can address the problem of choice of motion-invariant image attributes.
To a large extent. both the accuracyv and convergence speed of image point matching
in the multiconstraint feedback approach depend on the image attributes used in
the computation. The more effective the image attributes. the more accurate and
faster the image point matching. In the current computational framework. we use
two sets of motion invariant image attributes: structural attributes and textural
attributes. The problem remains open to search for more effective motion invariant
image attributes to enhance the performance of the proposed approach.

-In both thresholding multiresolution block matching and thresholding hierar-
chical block matching approaches presented in Chapters 4 and 5. respectively. thresh-
olding technique is utilized to reduce the computation of block matching. Currently.
the threshold is computed based on the first two or three frames from a sequence.
Once determined. the threshold is used for the rest of the sequence. Frames in a video
sequence can have different image details and contain different amount of motion. A
larger threshold is appropriate for a frame having less detailed and small amount of
motion while a smaller one is needed for an image with more details and complex
motion. Hence. it can be one of the important subjects of future research to study
a mechanism to automatically determine the threshold on a frame by frame basis.

-In the thresholding hierarchical block matching algorithm presented in
Chapter 5. the size of blocks are decreased from the top to the bottom level in
a hierarchy. Hence. blocks stopped at upper levels are of sizes larger than those
stopped at lower levels. Consequently. the final motion field consists of blocks of
different sizes. That is. motion vectors sent to a decoder are with blocks of different
sizes. To reconstruct images. the variable block size information should be trans-
mitted to the decoder . too. Therefore. it is worth investigating an effective way to

transmit the variable block size information.
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