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Abstract

Motion is a very important part of understanding the visual picture of the surrounding envi-
ronment. In image processing it involves the estimation of displacements for image points in
an image sequence. In this context dense optical flow estimation is concerned with the com-
putation of pixel displacements in a sequence of images, therefore it has been used widely in
the field of image processing and computer vision. A lot of research was dedicated to enable
an accurate and fast motion computation in image sequences. Despite the recent advances
in the computation of optical flow, there is still room for improvements and optical flow al-
gorithms still suffer from several issues, such as motion discontinuities, occlusion handling,
and robustness to illumination changes. This thesis includes an investigation for the topic
of optical flow and its applications. It addresses several issues in the computation of dense
optical flow and proposes solutions. Specifically, this thesis is divided into two main parts
dedicated to address two main areas of interest in optical flow.

In the first part, image registration using optical flow is investigated. Both local and global
image registration has been used for image registration. An image registration based on
an improved version of the combined Local-global method of optical flow computation is
proposed. A bi-lateral filter was used in this optical flow method to improve the edge pre-
serving performance. It is shown that image registration via this method gives more robust
results compared to the local and the global optical flow methods previously investigated.

The second part of this thesis encompasses the main contribution of this research which is
an improved total variation L1 norm. A smoothness term is used in the optical flow energy
function to regularise this function. The L1 is a plausible choice for such a term because of
its performance in preserving edges, however this term is known to be isotropic and hence
decreases the penalisation near motion boundaries in all directions. The proposed improved
L1 (termed here as the steered-L1 norm) smoothness term demonstrates similar performance
across motion boundaries but improves the penalisation performance along such boundaries.
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Chapter 1

Introduction

Optical Flow is a low level image processing task that has a wide range of applications
in many areas across computer vision. In its basic notion, optical flow can be defined as
the computation of image points displacements over time [1], [2]. The displacements of
image points that are computed in the 2D image domain correspond to the relative motion
between the camera and the objects points in the real world, as well as among the objects
themselves. This gives an important cue in computer vision and can be used in many tasks
such as Structure-from-Motion, image registration, object tracking, and robot navigation
(see Section-2.3). In the literature there have been many algorithms developed for the pur-
pose of computing optical flow fields. In this thesis the focus is on what is known as the
variational methods, which use variational calculus to find optical flow displacements fields.
Variational methods are perhaps the most popular methods to calculate optical flow due to
its sub-pixel accuracy and the fill-in effect that permits the ability to find optical flow at
image locations even if no or limited image information is available [3], [4].

Since the marquee paper of Horn-Schunck [1], which used variational methods to find op-
tical flow, there has been much research dedicated to improve the performance of optical
flow computation, yet the main issues facing computing the optimum optical flow field still
remain. Examples of such issues are robustness to illumination changes, motion discon-
tinuousness and occlusion, real-time computation, small structures and large displacements
and texture-less areas. Among those problems preserving motion boundaries while estimat-
ing optical flow field has also attracted a lot of interest since the early days of optical flow
consideration. In addition to advances in optical flow algorithms and the way they are un-
derstood, another important aspect of optical flow has attracted attention, that is the means
of measuring the accuracy of the computed displacement field and datasets to test these al-
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gorithms. Some examples of error measures are Average Angular Error (AAE), Average
End-point Error (AEPE) and Interpolation Error (IE), in addition to flow colour-coding to
qualitatively analyse the displacement fields [5], [6].

Figure-1.1 illustrates the concept of optical flow, an object at position A moves towards
position A

′
in time dt. Optical flow algorithms aim at computing the velocity at which each

point in the image domain moves, where the velocity is decomposed into two components
in dx/dt, dy/dt in both the x and y directions. This information can be extracted from an
image of the object at position A and time t, and an image of the object at position A

′
and

time t +1. It follows that dt = (t +1)− t.

Fig. 1.1 Point velocities.
The aim of optical flow is to find the velocity of the point A which moves to location A

′
in

the second image.
If dt is considered to be equal to unity then the problem comes to down to finding the

displacement from A to A
′
.

These images can also be taken from a sequence of video frames, if dt is considered to be
equal to unity, then the problem comes down to finding the displacement of image points.

The displacement field can be represented as a vector originating from points in the image
heading towards the destination points in the second image. In this context it is useful to
distinguish between two concepts, these are non-dense and dense optical flow fields. The
non-dense flow field depicts displacements at discontinuous points of the image sequence.
The dense flow field on the other hand depicts the displacements for most points of the
image. Hence image points are actually the pixels of these images. The density ratio of the
calculated flow field differs for various methods.
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Consider the following two images taken from the Middlebury dataset [6] in Figure-1.2.
The images exhibit relative movement between the camera and the objects, from the first
image taken at time t to the second image taken at time t+1.

Fig. 1.2 Image sequence ‘Hydrangea’ [6].
Left: Image taken at time t. Right: Image taken at time t+1.

Figure-1.3 depicts the computed vectorised displacement field.

Fig. 1.3 Vectorised visualisation of optical flow field.

In Figure-1.3 the displacement fields are depicted as arrows originating from various points
of the first image of the sequence. The heading direction of each arrow depicts the direction
of the point motion, while the length of these arrows are proportional to the magnitude of
the movement.

The aim of optical flow algorithms is to calculate two components for the displacement field
in the x and y directions. A colour-coded flow field can be obtained which helps to visually
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inspect the calculated displacement field. This way of visualising the flow field is more
suitable for dense displacement fields. Throughout this thesis the colour coding shown in
Figure-1.4 is used to visualise the displacement fields [6]. Although colour-coded optical
flow field is not a precise way to judge the efficiency of the optical flow algorithm, it is useful
to give a general impression on the results, especially when no quantitative measures and
ground truth data are available. In this colour-code the direction of displacements is coded
by the hue, and the magnitude of the displacements is coded by the saturation. For example
if a pixels moves in the upper left direction of the image, the pixel appears in blue. The
more saturated colour indicates bigger displacement. In other words the colours correspond
to the angle and the magnitude of displacements. The colour code in this thesis follows the
colour code of the Middlebury dataset1. The visualised flow field results are computed by
applying the colour and saturation corresponding to the magnitude and orientation of the
displacements.

Fig. 1.4 Colour code visualisation for optical flow displacement fields.
The direction of displacements is coded by the hue, and the magnitude of the

displacements is coded by the saturation.

Based on the ground truth optical flow field of the image sequence set, the displacement
field of Figure-1.2 can be visualised as follows:

Fig. 1.5 Ground truth for ‘Hydrangea’.
This visualisation follows the colour code in Figure-1.4.

1 http://vision.middlebury.edu/flow/data/

http://vision.middlebury.edu/flow/data/
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This thesis studies several aspects and applications of optical flow. In the next section, the
motivation of the work in this thesis is discussed. The is followed by sections introducing
several concepts and applications related to optical flow, and demonstrate its importance
in the field of computer vision. At the same time, several limitations are discussed, and
possible solutions are proposed which will be introduced later in this thesis.

1.1 Motivation

Motion is an important cue in the world around us. As part of the endeavour to perceive
the surrounding environment, living creatures need to observe the relative motion between
objects in the environment and the observer. In static environments it is enough to only
identify the various objects surrounding the perceiver in order to interpret the scene. This
is done by observing the different colours, textures and locations of these objects. As soon
as relative motion between the objects and the perceiver takes place additional information
is available, and the objects’ features are not enough to form a complete idea about the en-
vironment. The relative motion between the observer and the surrounding environment can
help to carry out several tasks, for example avoiding collision and tracking and estimating
objects’ distances. Analogues to this is machine and computer vision. Motion is also an im-
portant cue which enables these artificial systems to interact with their surroundings. Using
the estimated motion several useful systems can be designed such as obstacle avoidance,
objects tracking, path planning and steering.

In the heart of motion estimation systems is the optical flow computation, where motion
can be estimated from scenes in an image sequence. Estimating motion via sparse descrip-
tors has been successful for some applications. On the other hand dense optical flow that
attempts to find the displacement for each point (pixel) in the image sequence offers richer
information. Optical flow has been utilised in many computer vision applications, some
examples are autonomous navigation and object tracking. Estimating dense optical flow is
non-trivial, and research in this area is still attracting a lot of attention to enhance existing
algorithms.

This research investigates the topic of optical flow, with an emphasis on the dense optical
flow using global methods which were shown in previous research to give good results.
During the course of this research several shortcomings and issues of optical flow computa-
tion are addressed and solutions are proposed. Although this research does not propose an
ultimate solution for the problem of optical flow computation, it certainly offers an improve-
ment in several aspects. The algorithm presented in this thesis is a developmental method,
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and the improvement in estimating of optical flow is demonstrated using quantitative and
qualitative results. The results show an improvement when compared with other methods
sharing similar principals. This research concludes with recommendations for further re-
search and suggestions to be investigated in the future.

1.2 Image Registration

Image registration has been widely used in many applications such as change detection
and monitoring, image mosaicing, remote sencing, and medical imaging [7], [8]. Image
registration is the process of matching (aligning) two or more images, these images are either
from different viewpoints or using different sensors. In this case the image registration is
called multi-modal. Alternatively, images can be taken for the same scene but at different
points in time, in this case image registration is referred to as mono-modal [7]. Usually one
of the images is considered as a target image, while the other is a source image which is
required to be aligned. Based on the previous definition, the relation of image registration
and optical flow can be easily established in the mono-modal case. Optical flow can be
considered as a special case of mono-modal image registration, where the deformations
or the changes between the two images are relatively small [7]. In the case of images
with rigid contents, image registration based on feature detection and matching is widely
used. This type of registration is also referred to as parametric image registration, where
the parameters of the mapping or transformation function are estimated from these features.
On the contrary, if image contents undergo deformations and changes, deformable image
registration methods such as the methods based on optical flow becomes more suitable. This
is due to the dense displacements field which can describe the transformation in a detailed
way.

To ensure an accurate registration, accurate optical flow displacements should be found.
Usually this is not an easy process, especially when the image sequece encompass noise
which renders the optical flow estimation inaccurate. Local and global optical flow methods
were used in optical flow based image registration [9], [10]. As it will be shown later,
the local method assumes that correspondence can be established for small neighbourhoods
between images, thus these methods are relatively robust. Global methods on the other hand
try to establish these correspondences between single pixels rather than neighbourhoods,
thus dense results can be obtained. This leads to better image registration results since more
detailed information is included. However the global methods are known to be prone to
noise.
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To demonstrate the affect of noise on the registration results, consider the following se-
quence of images in Figure-1.6. In this image a zero mean Gaussian noise with variance of
(0.005) was added, the optical flow displacement field is estimated via the Horn-Schunck
method [1] with implementation described in [11]. The flow field is then used to register
the original second image (i.e. without noise contamination).

Fig. 1.6 The first frame (frame-10) of Walking sequence [6].
Left: Original frame. Right: Contaminated with noise.

The registered image is shown in Figure-1.7 next, where it can be seen that the registered
image has lost some of its sharpness and became blurry. Any further smoothing would
introduce more blurriness. The blurriness can be noticed in areas with small details and also
straight lines.

Fig. 1.7 Registered image.
Left: Registered image. Middle and Right: Parts of the image to illustrate the blurry results

of image registration.

A combined local-global (CLG) method was proposed by Bruhn et al. [12], combining



1.3 Motion Boundaries Conservation and the Filling-in Effect 8

benefits of both local and global methods, thus it performs better in terms of accuracy and
robustness. Both the local and global methods were used for image registration for different
purposes [9], [10]. However, the CLG version of optical flow has not been considered for
image registration problems. In Chapter-3 a method for image registration based on CLG
optical flow is presented, with the aim of improving the performance of image registration.
The CLG algorithm proposed in [12] can be expressed in terms of a linear structure tensor,
this renders the calculated optical flow blurry across motion boundaries. To address this
problem a CLG optical flow based on a bilateral structure tensor is presented and used here.
It will be shown that the proposed modification improves optical flow quality across such
boundaries. Although the main field of application for non-parametric image registration
is medical imaging, the focus of this thesis is the general concept of this type of image
registration. Therefore the results of the algorithm are displayed using general purpose test
images that are not necessarily medical. However further investigation on the use of CLG
optical flow in medical imaging can be considered for future work. Chapter-3 introduces
the theoretical background for optical flow, and lays the foundation of common techniques
that are used in algorithms in the rest of this thesis.

1.3 Motion Boundaries Conservation and the Filling-in Ef-
fect

Despite the recent advances in algorithms estimating optical flow fields, they still suffer
from several issues. The techniques and algorithm are usually tailored to address a certain
problem or problems, at the same time it may affect other aspects of the calculations. For
example the algorithm proposed in [13] aimed at detecting large displacements of small
objects in the image by extending the calculation to include sparse descriptors. Although
the algorithm succeeded in this to an extent, the overall accuracy of the calculation showed
a small decrement. Edge conservation is among those issues and was paid a lot of attention
to in the research of optical flow algorithms. One can imagine that knowing the exact
motion boundaries are crucial in many applications, additionally the exact localisation of
the motion boundaries increases the accuracy of the calculated optical flow field. If the
motion boundaries are not well preserved in the calculation, it appears as a blurry edge
between two smooth optical flow regions.

The blurred edges and boundaries in the global optical flow algorithms can be attributed to
many reasons, one of the main reasons is the smoothness term. In the calculation of optical
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flow the displacement field is assumed to be smooth across the whole image, in other words
the displacement of neighbouring pixels have very close values. In reality neighbourhood
pixels may belong to different objects, each of which exhibit dissimilar motion, so the pix-
els will no longer be very close to each other in the next image. If the smoothness term
strongly penalises this diverse movement, the motion boundaries between those pixels be-
comes blurry. For example in the marquee work of Horn-Schunck [1] a quadratic penaliser
was used. This penaliser is known to penalise the displacement field severely. Consider the
‘Urban2’ image sequence taken from the Middlebury dataset, Figure-1.8 next demonstrates
the visualisation of the displacement field for this sequence. A modern implementation of
this algorithm was presented and described in detail by Sun et al. [11]. The code was down-
loaded from their website2, the original parameters of that code is kept unchanged. This
code is used to generate the following optical flow field.

Fig. 1.8 Image sequence and optical flow for ’Urban2’.
Top left: First image. Top right: Second image. Down left: Ground Truth. Down right:

Estimated optical flow using Horn-Schunck algorithm.

It can be seen by examining the previous figure the blurriness which makes it difficult to
identify and distinguish the different objects’ motion in that image sequence. The problem
of edge blurriness may be found more in what is known as ‘Global methods’ which requires

2 http://cs.brown.edu/~dqsun/research/software.html

http://cs.brown.edu/~dqsun/research/software.html
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the use of a smoothness term. Further discussion on global methods and its counterpart
‘Local methods’ is found in Section-3.5.

One way to improve the edge conservation performance is to retract from the assumption of
smoothness across an image, and assume a ‘Piecewise Smooth’ flow field instead. Indeed
the piecewise smoothness can better characterise the displacement field, and hence it can
improve the estimation of the flow field. An example for a piecewise smoothness function
is the total variation L1 norm, which was used in several algorithms as the smoothness
(Regularity) term [14], [9], [4].

The L1 norm provides an isotropic penalisation for the displacement field, i.e. a penalisa-
tion regardless of the direction of the flow. The regularisation term in the global optical flow
methods is responsible for what is known as the ‘Filling-in’ effect, where displacements
of pixels with no information can be estimated via the information contained in the neigh-
bouring pixels. This is a very important property of the global optical flow methods. The
filling-in effect is induced by the penalisation of the regularity term. A piecewise smooth
regularity term reduces penalisation at locations near motion boundaries to permit disconti-
nuities. Since the L1 norm is an isotropic function as pointed out earlier, the filling-in effect
reduces in all directions near motion boundaries, reducing the accuracy of the optical flow
algorithm.

Some researchers proposed to adapt penalisation with the direction of image structures,
however this may produce over segmentation in the estimated flow field [4], [15]. In this
thesis an improved L1 norm penalisation is introduced, which is called ‘steered-L1’ smooth-
ness because the penalisation direction is adapted to image structures, while penalisation
magnitude rely on the flow field value. The detailed discussion on the isotropic and the new
anisotropic L1 smoothness term is introduced in Chapter-4.

1.4 Thesis Outline and Research Questions

This thesis investigates optical flow computation in several aspects, with a focus on motion
boundaries preservation. The structure of this thesis is as follows: Chapter-2 provides a
literature review for optical flow and related areas, in particular a discussion of the main
elements and advances of the variational optical flow field as well as the main problems
that have been addressed in research over the previous years. Additionally this chapter
touches on the applications of optical flow. The focus of this chapter is on the variational
algorithms, and starts with a brief introduction to the general notion of optical flow, and the
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general energy function used to compute displacements. Various subsections are dedicated
to discuss the advances of the main terms of the variational formulation of optical flow,
namely the data and smoothness terms.

Chapter-3 investigates a particular algorithm for computing optical flow, namely the Com-
bined Local-Global (CLG) optical flow [12]. This chapter also discusses the topic of image
registration, and examines the relation between image registration and optical flow estima-
tion. It will be shown in this chapter that the use of CLG optical flow for image registration
yields dense and more robust results. This is in comparison to other image registration tech-
niques which are based on either local or global methods. This chapter starts by introducing
the theoretical background and concepts used in calculating optical flow, which are gener-
ally used in most of variational optical flow algorithms. After that the CLG optical flow for
image registration with some initial results obtained at early research stages is demonstrated.
This chapter also introduces an improved version of the CLG method using bi-lateral filters,
this improves edge-preserving and accuracy of displacement field estimation. The main
research questions that this chapter addresses are:

• How would the use of CLG optical flow methods improve image registration and
motion estimation?

• How is it possible to improve the edge preserving performance of CLG optical flow?

In Chapter-4 a steered-L1 norm smoothness term is proposed, this smoothness term ren-
ders this function anisotropic with respect to the direction of image structures. However
the magnitude of the penalisation is adapted according to the flow field which circumvents
over segmentation of the optical flow field. Additionally, this chapter includes a discussion
on different smoothness terms and their influence on the edge preserving performance of
optical flow algorithms. This chapter starts by introducing the total variation TV −L1 algo-
rithm used to calculate optical flow, then uses these concepts to propose the algorithm. In
addition to that, a formulation for the use of a delayed linearisation data term is introduced
with the use of image gradient to improve robustness against illumination changes. This
chapter addresses the following questions:

• How can the L1 smoothness be modified to become anisotropic and does not impede
the filling-in effect near edges? and;

• How to do this modification despite the fact that this function is not continuously
differentiable?

• How can a non-linearised (delayed linearisation) data term be used in a primal-dual
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optical flow algorithm? and;

• Does using such a robust non-linearised data term with image gradient render the
performance better compared to other methods?

Chapter-5 is dedicated to the experiments conducted for the proposed algorithms. It is
divided into two parts, the first part is concerned with experiments on image registration,
with a focus on showing the difference in registering quality between the global optical flow
methods [1] and the proposed modified CLG optical flow. Results in this section extends
the preliminary results demonstrated in Chapter-2, and uses the Middlebury dataset [6].
The second part is concerned with experiments on the proposed optical flow algorithm with
the steered-L1 norm, and demonstrates the improvements and how it affects the results.
Experiments are conducted to show the different effect of main constituent of the algorithm.
The Middlebury dataset also used for this purpose.

Chapter-6 concludes this thesis. In this chapter the work presented is assessed. Improve-
ments are highlighted and shortcomings are pointed out. A detailed discussion on future
improvements is included in this chapter, in addition to possible future research directions.

This thesis also includes two appendices. The first appendix (Appendix-A) includes some
preliminary work. The proposed algorithm in Chapter-4 is supplemented with a descriptors’
matching term to enable the detection of small objects in the image sequence, this work is
part of a future research direction that will be investigated and has application in the field
of robot navigation. Appendix-B includes a paper that was published containing the work
presented in Chapter-3.

Published results

The results obtained in this thesis have been published in two papers to date. The work
presented in Chapter-3 is published in a paper which can be found in Appendix-B. The work
in Chapter-4 is published in a paper accepted for presentation at the ‘24th. International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision
2016 (WSCG 2016)’.



Chapter 2

Literature Review

This chapter introduces a literature review for the development of optical flow computation.
This review focuses on variational algorithms because they are the main topic of the thesis.
The introduction of this chapter includes a general discussion and explanation for the topic
of optical flow. It also introduces the general formula for optical flow computation. The rest
of this chapter is divided as follows: in the next section a discussion on the data term of the
general optical flow energy function is presented. In the following section the smoothness
(regularity) term of that equation is discussed. In the final section a review of the main
applications of optical flow, and a demonstration on how this technique is used in image
processing and computer vision fields is presented. Formulas and equations will also be
included in this chapter for the purpose of further illustrations of ideas.

Optical flow aims at finding displacement fields for pixels between two images taken for
the same scene at time t and t + 1. It has been used widely in many computer vision ap-
plications, such as mobile robotics, structure-from-motion, object tracking, etc. Although
the computation of optical flow has been widely researched, and many problems have been
addressed, solutions are far from being perfect, and algorithms still need further investiga-
tions and improvements. Some examples of common problems in optical flow calculations
are small scale with large displacements, discontinuity (edge) preserving, texture-less areas,
etc.

Algorithms for finding optical flow fields can be classified in many ways. An early tax-
onomy for optical flow algorithms was reported by Barron et al. [5]. They classified these
methods into 4 main groups, namely: region-based matching, energy-based, phase-based,
and differential. In addition to that they also compared the performance of these methods.
In region-based methods, algorithms try to find block matches between search areas in the
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two images. This is done by maximising (minimising) a similarity (dissimilarity) measure.
The displacements found usually lack sub-pixel accuracy, therefore an additional refinement
step is needed. Examples for such algorithms are [16], [17], [18]. Energy-based methods
work in the frequency domain. An example for such algorithms is the work presented by
Heeger in [19]. He used Gabor filters, and used these spatio-temporal filters to extract opti-
cal flow. The phase-based algorithms were denoted by that name in the taxonomy because
they rely on the phase behaviour of band-pass filters. An early attempt in this field was the
work of Fleet-Jepson [20]. The authors used ‘local phase gradient’ constancy assumption
to estimate component velocity. The phase-based methods are computationally demanding.
A relatively recent work was presented by Pauwels et al. [21]. The authors in the latter pa-
per attempted to parallelise the algorithm of Fleet-Jepson ona CUDA platform, additionally
they used Coarse-to-fine framework.

Differential algorithms are also known as variational algorithms. They rely on finding the
displacement field by minimising an energy function. This function generally comprises a
data and global smoothness term, and minimised in a variational framework. Over the years
variational methods attracted increasing attention and became more popular. This popularity
may be attributed to their accuracy and the fill-in affect that such algorithms provide [4], [3].
The general energy function of variational optical flow can be written as follows:

E = α1Edata(u)+α2Esmooth(u) (2.1)

where u = (u,v) are the displacements in the two directions x and y, and α1,α2 are weights
between the data and the smooth term.

Optimisation techniques are an important factor which have an effect on the efficiency of
each algorithm, whether in terms of accuracy or computation speed. Euler- Lagrange equa-
tions provide an efficient solution, and have been used by many algorithms. The output of
the Euler- Lagrange system is a set of equations that can be solved either by direct division,
or using a suitable iterative solver such as Successive Over Relaxation (SOR). If the result-
ing set of equations is non-linear, a fixed point iteration may be utilized to linearise each
non-linear term [12], [13]. Several algorithms minimise the optical flow energy function in
a dual (primal-dual) formulation. In this case the minimisation is split into two stages, the
first stage is a minimisation for the data term and can be a point-wise minimisation step.
The second can be considered as a de-noising process [22], [14], [23], [24]. A detailed
discussion on the primal-dual algorithms can be found in Chapter-4.

The solution of variational optical flow equations is computationally expensive, and often
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cannot be implemented in real time. Some work has been dedicated to reach real or near
real-time performance. Bruhn et al. [25], [26] proposed the use of a Bi-directional multi-
grid method to speed up the computation of variational optical flow. Multi-grid methods
are numerical algorithms used to solve differential equations [27], and offer a fast numer-
ical scheme for solving linear equations. It was applied to the Combined Local Global
method [12]. The implementation [25] was able to achieve a speed of 18.229 frames/second
on the ‘Yosemite without clouds’ sequence 1. Another multi-grid computation algorithm
was proposed in [3], this time the authors implemented the variational algorithm that was
proposed by Brox et al.[2]. This algorithm (i.e. [2]) is computationally demanding due to
the non-linearised data term and the use of non-quadratic penalisers, in addition to the use
of a very fine multi-resolution scheme (Section-3.1.5). The algorithm was able to achieve
6.651 frames/second with good performance in terms of accuracy. Multi-grid methods were
also used to calculate 3-D optical flow. Kalmoun et al. [28] implemented an extension of
the 2-D Horn-Schunck [1] algorithm. The implementation was used to compute motion of
cardiac Computed Tomography (CT) images. Further to this the authors investigated the
parallel implementation of this algorithm. The parallelisation was implemented on a cluster
of CPUs, and it was found that there is a speed up in the performance as the number of pro-
cessors increase. Despite the fast computation, the implementation had high memory cost
as data volume increases. Multi-grid methods offer a good solution to speed up implemen-
tation on CPUs for some low and medium resolution images. However multi-grid methods
are known to be problem specific and require very complicated implementation. In addition
to that it did not give real-time performance on modern test sequences [29].

The computation of optical flow field via variational techniques requires a lot of calculations
at pixel level. Therefore the use of parallel computation seems a plausible way to increase
speed of calculation of such algorithms. Several implementations are available in the lit-
erature that attempt to parallelise optical flow computation on Graphic Processing Units
(GPUs). Some implementations of variants of the local method of Lucas-Kanade [10] algo-
rithms are available in the literature. For example the CUDA implementation of a dense ver-
sion of the Lucas-Kanade algorithm can be found in [30]. Another implementation can be
found in [31], and the authors reported high implementation speed in this paper. Some other
examples for Lucas-Kanade implementations are also available such as the high speed VLSI
(Very Large Scale Integration) implementation [32]. An example for a Field Programmable
Gate Array (FPGA) implementation can be found in [33]. The lack of a smoothness (reg-
ularity) term in the Lucas-Kanade algorithm made the computation required in such local
methods simpler, and thus it was found suitable for fast implementation.

1 http://cs.brown.edu/~black/images.html

http://cs.brown.edu/~black/images.html
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The performance of such implementations varies depending on the hardware used and the
efficiency of the code architecture. In addition to that the choice of the optical flow com-
putational algorithm plays an important role. The global optical flow algorithms are more
computationally demanding, the dense solution provided by these algorithms increases the
computational effort. Global methods generally produce a dense displacement field and re-
quires intensive computation for each image pixel, unlike the local methods that may give
sparse results (see Section-3.5). The work presented in [29] implements the Complemen-
tary Optical Flow proposed in [15], they achieved near real-time results. The parallelisation
was implemented on an NVidia GPU with CUDA architecture. In addition to GPU paral-
lelisation, this implementation used the Fast Explicit Diffusion (FED) method which was
proposed by Greweing et al. [34]. FED is a numerical scheme for implementation of dif-
fusion filters, which has been shown to be efficient and accelerates the computation. A
fast GPU implementation of the large displacement optical flow [13] was presented in [35].
The authors aimed to implement a fast point tracker that gives dense results, they compared
their results to the Kanade-Lucas-Tomasi (KLT) point tracker [36], [37]. The results were
not 100% dense due to the removal of several points such as those in areas without struc-
tures. However the implementation offered a speed-up of 78 times in comparison to the
KLT tracker.

Another group of papers used a dual formulation minimisation with the total variation
TV − L1 optical flow, such as the algorithms proposed by Zach et al. [22], and the im-
proved version proposed by Wedel et al. [14], in addition to the Anisotropic Huber-L1 optical
flow [23]. The duality formulation for optical flow offers an easier implementation, addi-
tionally the structure of such algorithms enables an easy parallelisation on GPUs. Moreover,
the duality provides faster convergence rates [38]. The three aforementioned algorithms in
this paragraph had a parallel implementation on a GPU, and it was found to give a good
speed. For example the algorithm in [22] was able to estimate the flow field of a video with
frame resolution of 320×240 and a frame rate of 30 frames/second.

In addition to the continuous formulation of the general optical flow equation 2.1, it is
possible to derive a discrete version of the optical flow energy function. In the discrete case,
the optical flow computation can be seen as a problem of assigning a proper label for the
displacement [39]. The displacement is found as the best label among a set of labels. Since
the displacement is found as the best label among a number of specific labels, the solution
lacks sub-pixel accuracy. In fact there is a trade-off between the accuracy of the solution
and the time required for the optimisation. The optical flow energy function in the discrete
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case can be formulated as follows [39]:

E = ∑
ΩD

[
Edata +∑

N

EMRF

]
(2.2)

where EMRF is the counterpart of Esmooth in the discrete settings and N denotes the neigh-
bouring pixels. The focus of this thesis is on the continuous variational formulation, but in
order to complete the picture of this literature review, a brief discussion on the MRF for-
mulation of optical flow is presented here. An example for such formulation can be found
in the paper presented by Sun et al. [11], in this paper the authors used an MRF model for
the optical flow energy function. The aim was to learn the statistical model of both parts of
this function (data and smoothness terms). A Steerable Random Field (SRF) [40] was then
used to model the smoothness term to preserve flow boundaries at image edges. According
to [11], the optical flow field can be formulated as follows:

p(u,v|I1,I2;Ω) ∝ p(I2|u,v,I1;ΩD).p(u,v|I1, ;ΩS)

The first term describes how to obtain the second image I2 using the displacement fields
u,v and the first image I1, this corresponds to the data term in Equation-2.1. The second
term is the prior knowledge of the flow fields, which corresponds to the smoothness term in
Equation-2.1. The authors in this paper attempted to learn the statistical properties model
of both terms (data and smoothness). Additionally the authors followed [41] in assuming
that the horizontal and vertical component of the flow are independent for simplicity. The
use of MRF and discrete optimisation methods to find optical flow actually dates back to
the early nineties. Vlontzos and Geiger [42] used MRF modelling to find optical flow, their
algorithm was based on area matching where they defined a matching window and search
window. Heitz and Bouthemy [43] used a Coarse-to-fine framework (Multi-resolution) in
their algorithm, they relied on fusing the motion detected from two sources: image gradients
and sparse features. The information is fused via a framework based on Bayesian estimation
theory and MRF models.

Combinatorial methods are used for optimisation in discrete settings. Among those methods
‘Simulated Annealing’ [44] was used for optical flow calculations [45]. However simulated
annealing is very computationally demanding and may take a very long time to converge.

Graph cut is another combinatorial optimisation method, it is an efficient and fast way of
minimisation of a MRF based energy function [46], [47]. Graph cut is based on the problem
of estimating the minimum cut with maximum flow (Min-cut/Max-flow) in a graph con-
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sisting of nodes and directed edges [48]. Graph cut algorithms were used in many image
processing tasks, such as motion estimation and stereo matching [43].

Recently convolutional Neural Networks (CNNs) were also used to find optical flow [49].
This was motivated by the recent advances that enabled a per-pixel processing [50], [51].
In [49] a CNN was trained using backpropagation to estimate optical flow field, the problem
was formulated as a supervised learning task and several architectures were tested. The
computation time was relatively short the it was possible to reach a 5 to 10 frames/second,
However the neural network layers were implemented only on GPU. One of the problems
of such an approach is the need for a huge training data to be available. In the final stage a
variational step was applied to refine the estimation accuracy.

Despite the recent advances in several non variational methods for estimating optical flow
such as the discrete methods, variational algorithms are still common. Most of the non
variational algorithm lack the sub-pixel accuracy and the filling-in effect that variational
methods provides. Even if non variational method is used to estimate the optical flow dis-
placement field, a final step of refinement is used in many algorithm to improve the final
estimation [52], [49], [53], [54], [55].

2.1 Data Fidelity Term

In the context of finding the displacement field between two images, it is assumed that the
brightness of each pixel does not change over time, this can be formulated as follows:

I(x,y, t) = I(x+u,y+ v, t +1) (2.3)

where (x,y) are the indices of pixels in the two dimensional rectangular image sequence I
with region domain Ω. In other words the intensity level of a pixel in the first image with
location specified by the indices (x, y) is equal to the intensity level of the pixel in the second
image at location (x+u, y+ v). Where the first image taken at time t and the second image
taken at time t + 1, and (u, v) are the displacements of the pixel in the x and y directions
respectively as stated earlier. This equation is linearised using the Taylor expansion to obtain
what is known as the optical flow constraint:

Ixu+ Iyv+ It = 0 (2.4)



2.1 Data Fidelity Term 19

where the subscripts denote partial derivatives, specifically Ix and Iy are the derivatives of
the image in the x and y directions respectively, and It is the time derivative and is actually
the difference (subtraction) between the two image.

One of the earliest attempts to deal with optical flow computation was in the algorithm de-
veloped by Horn-Schunck [1]. In this marquee work, optical flow was computed globally
by minimising an energy function in a variational framework. Similar to the general model
in 2.1 the energy function mainly comprised two terms, a data fidelity term and a regular-
ization term. The data fidelity term favours pixels with similar intensity level, while the
regularization term imposes a smooth flow field,

EHS =
∫

Ω

[(Ixu+ Iyv+ It)2 +α(u2
x +u2

y + v2
x + v2

y)] dxdy. (2.5)

The first term in the above equation is actually a quadratic version of the optical flow con-
straint in Equation-2.4. The smoothness term chosen in [1] was the sum of the squared
magnitude of the gradient of the displacement field. Contrary to the global solution pro-
posed by Horn-Schunk, local methods assumes that the displacement field are the same for
a small local patch, and the optical flow field calculated here may not be dense. The ear-
liest version of this was the Lucas-Kanade [10] algorithm, which estimates optical flow by
minimising the quadratic equation:

ELK = uTJρ(∇3I)u. (2.6)

The Lucas-Kanade method uses a rectangular Gaussian kernel for flow integration, with a
standard deviation ρ often referred to as the integration scale [12]. The size of the window
should be big enough to estimate optical flow. A small window may not be sufficient for
finding the displacement field due to the aperture problem [1]. On the other hand, the use of
a bigger window results in less accuracy and more possibility of blurring across objects and
motion boundaries. To preserve edges in such methods, a possible way is to use a window
with varying size such as the algorithm in [56], where windows are changed for each pixel
depending on local variation of intensities around that pixel. A different approach is the
use of image segmentation. Ren in [57] used local grouping to decide the motion of pixels
near edges. In this paper boundaries including corners and edges are detected then pairwise
affinities between neighbouring pixels are computed using intervening contours [58]. This
is done near boundaries only, to speed up the operation.

It is known that the global methods give a dense flow field while the local methods are more
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robust to noise. Bruhn et al. [12] combined both local and global method to improve the
performance and to obtain a flow field that is both dense and more robust compared to other
global methods. In order to compute the optical flow field, the authors proposed to minimise
the following energy function:

E =
∫

Ω

(uTJρ(∇3I)u+α|∇u|2)dx (2.7)

where Jρ(∇3I) = Kρ ∗ (∇3I∇3IT) and K is a Gaussian kernel with standard deviation ρ .

As a result of smoothing in the latter equation, the value of intensity level of a pixel is
replaced with a weighted sum of pixels’ intensities in the neighbourhood, which increases
the robustness. However, the smoothness also will have the same effect across boundaries,
and the motion boundaries become blurry. To mitigate this effect Drulea et al. [4] replaced
the Gaussian smoothness kernel with a bilateral filter [59] [60]. In the Gaussian kernel
case the weight of pixel contribution decreases as the pixel is further from the centre, the
bilateral filter on the other hand decreases the weight also as the pixel intensity value has
a bigger difference from the central pixel. It is expected that pixels across boundaries have
difference in intensities values, thus a bilateral filter suppresses the smoothing effect across
objects boundaries in the image.

The data fidelity term is an important element of the general optical flow energy function 2.1,
it favours pixels with similar intensity (or colour) levels. As pointed out earlier, the data
term is linearised resulting in the well known Optical Flow Constraint ofc [1], [12], [4].
A Non-linearised version of the data fidelity term was also considered in [2], [61], all the
minimisation is done in the C2F framework. The basic assumption for the calculation of
optical flow is that the illumination of a certain point does not change over time, any changes
in the illumination may lead to error in calculations. Therefore it is useful to make the data
term more robust and resistant to such illumination variations.

Illumination variation in images can be attributed to several reasons, such as change of illu-
mination in the scene between the two images (locally or globally), sensor noise, reflections
and shadows [14], [62]. Wedel et al. [14] proposed an improved algorithm for the primal-
dual algorithm in [22] to increase the robustness to illumination changes in the images. The
authors proposed to decompose the images into structure and texture parts. The structure
part outlines the big objects in the scene, while the texture one contains the fine scale details.
It is expected that the shadows and shading reflections show up on the structural part while
the textural part is noisier due to sensor noise and sampling artefacts. The structural part is
found using total variation minimisation based on Rudin, Osher and Fatemi [63]. The tex-
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tural part is computed as the difference between the original image and the structure image.
The input to the optical flow algorithm a mixed version of the structural and textural parts.

Changes in illumination can be considered as outliers, similar to discontinuousness in the
smoothness term, it is desired to penalise such changes less severely. Black and Anan-
dan [64] [65] [66] considered using robust statistics for computing optical flow, a technique
proved its effectiveness as many subsequent papers used such estimators [12], [2], [13], [67].
The illumination variation here is considered as outliers, therefore this method will not be
very useful in the case of large illumination variation that affect large areas.

Augmenting the data term with the image gradients constancy was found also to be useful,
it is also assumed that the image gradients do not change over time:

∇I(x,y, t) = ∇I(x+u,y+ v, t +1) (2.8)

Adding such constraint to the data term can be useful especially in the case of translational
displacements [2]. This term means that even if the illumination changes in the two images
it is still relatively constant in relation to the surrounding points. The data fidelity term will
be composed of the intensity and gradient differences:

Edata = Eintensity + γ Egradients (2.9)

where γ is a weight factor. Several algorithms followed this method and used the gradients
constraint to improve the robustness to illumination [2],[13], [61], [67].

Xu et al. [68] found that the combination of intensity (or colour) values and the gradient
does not always contribute optimally to the optimisation problem. In fact sometimes the in-
tensity values can give better estimation, while in other cases using the gradient values alone
can give good results. The authors of this paper argue that using two constraints in the data
term can be less efficient in modelling pixel correspondences than only using one of them.
They showed empirically that the data cost for pixels with regard to different displacements
are not always minimum using both data constraints. Therefore they proposed to switch
between the two constraints by introducing a binary weight map. However this compli-
cates the minimisation, therefore Mean Field approximation [69] was used to simplify the
problem.

Adding the gradient constancy to the data term can help to increase robustness against what
is known as ‘Additive illumination changes’. However, real-world scenarios may include
more complex illumination changes to deal with [67]. In case of more complex illumination
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variations, it may be useful to model these changes and assume that the illumination changes
can be decomposed into additive and multiplicative components. One of the attempts to
model these changes was by Negahdaripour [70], where he proposed the following model:

I(x,y, t) = M(x+u,y+ v, t +1)I(x+u,y+ v, t +1)+C(x+u,y+ v, t +1) (2.10)

where M,C are the multiplicative and additive factors respectively. Other models of illumi-
nation changes also available [62].

So far the discussion has been limited to grey scale images, that depend only on intensity
levels. Colour images on the other hand may have an advantage (in terms of illumination
robustness) over grey scale images in that they contain more photometric information [71].
This means that it is easier to derive photometric invariant models. As the use of colour
spaces started to gain popularity over the years, many algorithms adopted the use of colour
images to estimate optical flow [72], [73], [71], [74], [75], [67]. Mileva et al. [72] incorpo-
rated the non-linearised variational algorithm proposed by Brox et al. [2] into colour space
in a multichannel framework to make use of its photometric invariants properties. Several
colour spaces were tested (RGB, HSV, and spherical). The RGB colour space describes
colours as an additive value of three colours or channels (Red, Green and Blue). Similar to
the constraint normalisation [76], normalised RGB spaces were also used [74] [77]. HSV
space on the other hand describes colour using three parameters: Hue, Saturation and Value.
The Hue represents the colour value, Saturation represents the degree of achromatic/grey
component, and the Value is the brightness. The use of HSV colour space to calculate opti-
cal flow was shown to be useful for illumination robustness. As was pointed out in [67] [72],
the Hue value is invariant to local and global multiplicative illumination changes in addi-
tion to local additive changes. These changes are mainly attributed to shadows, shading,
highlights and specularities. The Saturation value is invariant to global multiplicative illu-
mination changes mainly attributed to shadows and shading. The Value is not invariant at
all.

Steinbrücker et al. [78] compared different types of data terms namely: Point-wise L1, trun-
cated L1, and L1 computed over a patch (CLG case), and proposed a fourth one (Normalized
Cross Correlation NCC) which was computed over a local patch and is expected to be more
robust to multiplicative illumination changes. The experiments were conducted using the
algorithm in [79]. Constraint normalisation was also used in optical flow calculation [67],
[76] to amend the affect of the difference in gradients between regions of high and low
gradients. Regions of high gradients will dominate the calculation in the locations close to
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it [76]. The normalisation helps to reduce stronger enforcement at high gradient locations,
as these locations may be caused by noise or occlusion. It was shown in [15] that the use of
normalisation improves the performance. The normalisation term as was proposed in [15]
can be formulated as:

N =
1

|∇I|2 +ζ 2

where ζ is a small constant added to avoid dividing by zero.

The linearisation in 2.4, although useful for making the minimisation problem convex, in-
troduces a different problem, where it is only possible to find displacement that does not
exceed a few pixels. In reality the displacements for pixels can be large, therefore it is de-
sired to find the flow field even for large displacements. To this end, the minimisation is
performed in a Coarse-to-Fine (C2F) framework (also called Multi-resolution, Multi-scale),
where the displacement is computed in a coarsened version of the images to guarantee small
displacements. This computed optical field is then propagated to a higher resolution image
via interpolation. Some papers used a non-linearised version for the data term, this can be
found in [2], [80], [61], but these algorithms still worked in a C2F framework.

Brox et al. in [2] opted to use the non-linearised version of the optical flow constraint 2.3,
this enabled them to detect more complex motion (e.g. rotational) so the algorithm becomes
rotationally-invariant, however the non-linearity introduced in the energy function makes
the optimization non-trivial as it easily gets trapped in an unwanted local minima, therefore
the authors opted back to linearisation at the numerical solution stage. The data term was
formulated as follows:

Edata =
∫

Ω

|I2(x+u)− I1(x)|2dx (2.11)

The work in [61] is an extension for the latter paper, various data terms were tested, such
as image gradients, Hessian, and Laplacian. The authors found an increase in robustness
to illumination changes when using data terms that incorporate image intensities and image
gradients. The algorithm in [80] [81] is an earlier attempt to use a non-linearised model in
computing optical flow, in fact [80] presents a modification for the algorithm presented by
Nagel & Enkelemann in [82]. In these papers the non-linearised version of the optical flow
constraint is used, however this energy function is non-convex (as was pointed out earlier),
and thus the use of a C2F framework is inevitable. In the C2F framework, the images are
coarsened several times and two pyramids of images are created including all the coarsened
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versions. The displacement field is then computed on the coarser level to ensure a small
displacement, then this flow field is propagated to the next finer level. The propagated
displacement field is used as an initialization to compute the displacement in the next finer
level. In addition to that the displacement field is used to warp one image towards the other,
so the optical flow field is computed between one image and a warped version of the other
image. The C2F is not without its problems, for example when the image is coarsened, one
would expect the small details in the original images to be lost, therefore it would not be
possible to find the flow field for these small structures when their displacements are large.

On the other hand, descriptors matching has been relatively successful for many applica-
tions such as object detection [83], and structure from motion SfM. Due to the nature of the
descriptors and its uniqueness it does not have limitations in the case of large displacements.
For this reason Brox et al. in [13], [84] integrated sparse descriptor matching into a varia-
tional framework with the aim of enhancing the performance of optical flow calculation in
the presence of small structures. In that paper the optical flow was calculated by minimising
an energy function comprising data and global smoothness terms, in addition to that a de-
scriptors matching term was added as a soft constraint to the energy function. The purpose
of this term is to prevent the solution of the optical flow drifting away from the correct flow
field. Several types of descriptors were tested in [13], such as the Histogram of Oriented
Gradients (HOG) [83], and Scale-Invariant Feature Transform (SIFT) [85].

Li Xu et al. in [68], [86] showed that the problem with small scale structures occur also
in the case of small displacements, basically when small motion structures exist near a
large scale motion structure. In this paper the authors proposed a modified C2F algorithm,
and called it the Extended Coarse-to-fine framework (EC2F), where the initialization of the
displacements is chosen from several motion candidates obtained from the coarser layer dis-
placement flow, sparse descriptors (SIFT) and patch matching. A labelling process is then
adopted to choose the optimal flow candidate. The authors used Quadratic Pseudo-Boolean
Optimization (QPBO) [87], the algorithm also included an occlusion awareness refinement
stage to enhance the result in the presence of discontinuities. Although this algorithm gave
very good results, it is computationally expensive as it includes feature detection and match-
ing and labelling optimisation on each pyramid level in addition to the variational continuous
optimisation.

Patch matching was also used as a correspondences between images to estimate optical flow.
Chen et al. in [53] found that matched patches from Nearest Neighbour Fields (NNF) [88]
contain a percentage of approximate motion fields. They proposed to find Optical flow
through finding the patch matches, obtaining several motion candidates which accounts for
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translational plus rotational motion patterns via Random Sample Consensus (RANSAC) on
image patches in addition to perturbation on motion patterns. The final motion candidates
are chosen through a labelling procedure using graph cut [47] and QPBO fusion, and the
problem of optical flow is formulated as a motion segmentation problem. Finally, the ob-
tained motion field is used as an initialization for a variational optical flow computation to
obtain sub-pixel accuracy. The fact that the initial motion field obtained by patch match-
ing contains a high percentage of the motion field makes it very good for finding optical
flow for small scale objects, where the C2F is not used. However the problem with using
NNF in this algorithm is the ambiguity introduced due to similarity in patches, especially
in texture-less areas. The size of the patch is also important and was pointed out in the pa-
per. A more recent paper presented Edge-preserving large displacement Optical flow [89].
The authors used bilateral weights to the patch matching cost to preserve discontinuousness.
To speed-up the algorithm, the images are down-sampled twice by a factor of 0.5.

In [55] sparse correspondence were used in rather a different way to obtain quasi-dense
feature correspondence and work in a bottom-up fashion in the image hierarchy (i.e. from
finest to coarsest layer) to obtain a response map which will be used later in a C2F variational
solution approach. Revaud et al. [54] used dense correspondences to estimate optical flow
by sparse-to-dense interpolation that respects edges. The results of this interpolation is
used as an initialisation for a variational optical flow estimation. Leordeanu et al. [90]
tried to eliminate the use of C2F and proposed to expand sparse features to approximate
a dense motion field using a locally affine model, and the final motion field is obtained
using continuous total variation method. Steinbrücker et al [79] proposed a new framework
for calculating optical flow without a C2F framework. It is related to the duality approach
presented in [22], but changed the second step to be a complete search of pixels. Obviously
this means that this algorithm is computationally expensive.

2.2 Smoothness (Regularisation Term)

The smoothness term in equation 2.1 assumes that the displacement field to be calculated
is smooth across the image. When computing optical flow certain assumptions are made,
one of these assumptions is the spatial constancy, which means that neighbouring pixels in
an image move together in space. Hence a regularisation term is added to the data term
to penalise diverse displacements of neighbouring pixels. Of course this is not always the
case because this assumption is violated at image motion boundaries and objects occlusions.
These violations can be treated as outliers. One choice for a smoothness term is the quadratic
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penaliser Ψ(s) = s2 used by Horn-Schunk [1], the smoothness was chosen to be the sum of
the squared flow gradients:

Esmooth(u) = |∇u|2 + |∇v|2 = (u2
x +u2

y + v2
x + v2

y). (2.12)

The quadratic smoothness used here penalises the flow field (and hence outliers) severely in
all directions, making it sensitive to such outliers. As a consequence the motion boundaries
are over-smoothed. This creates undesired blur across motion boundaries.

It seems logical to replace this regularity with one that permits piecewise smoothness, such
as the first order norm total variation TV −L1 regularier, which is an isotropic rugulariser
(i.e. penalises the flow field in all directions equally). This regulariser is more robust and
efficient in handling discontinuousness across boundaries. However the problem with such
regularisation is that they are not continuously differentiable. Chambolle in [91] presented a
numerical scheme to solve TV −L1 minimisation with applications to image denoising and
zooming. This algorithm was then used by Zack et al. [22] to compute optical flow in the
spirit of primal-dual optimisation. In that paper the minimisation problem was broken down
into two alternating steps. The first step is minimised by keeping an auxiliary variable fixed
and solving a total variation-like energy function. The second step is a point-wise thresh-
olding minimisation depending on how close the auxiliary variable is to the actual solution.
The minimisation works under the Coarse-to-Fine framework to ensure the computation of
large displacements.

Several algorithms modified the TV − L1 ([4], [23], [92]) to enhance its edge-preserving
properties. This is done by adding a strictly positive decreasing function to the smoothness
term [93] and thus reducing the smoothness across image edges and corners. A regulariser
was proposed in [4] of the following form:

Esmooth =
∫

|D.u|=
∫
(|D.u|+ |D.v|) (2.13)

where D is the diffusion coefficient, which was chosen in [4] to be:

D = e−α|∇I|β (2.14)

where α and β are constants. In addition to that the authors in [4] used Bilateral filtering
in the data term to suppress propagation (as discussed in Section-2.1 in more detail). It was
proposed in [11] to add another regularisation term to favour rigid body motion, as this type
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of motion is the only one available in images with moving camera and rigid scenes, and the
common motion of images with moving rigid bodies.

Since the regularisation term in Equation-2.13 is adaptive based on the image gradients,
this smoothness term can be denoted as an image-driven regularity term. The use of such
regularisation will lead to over-segmentation in the computed flow field especially in areas
with high textures. This is due to the fact that image boundaries do not always coincide
with motion boundaries. In fact motion boundaries can be seen as a subset of image bound-
aries [94].

The TV −L1 regularisation favours a piecewise constant solution. This will become clear
in untextured areas where the computed flow field suffers from what is known as the ‘stair-
casing effect’. The stair-casing phenomenon is caused by the use of a piecewise constant
smoothness term such as the total variation L1 norm [23], [95]. Which can be seen as artifi-
cial boundaries in the computed flow field [96], obviously this can decrease the accuracy of
the flow field.

To deal with this Werlberger et al. [23] proposed an anisotropic, image-driven, Huber regu-
larisation term instead of the isotropic TV −L1 in the smoothness term. The Huber-L1 norm
penalises outliers less severely, while the addition of a symmetric, positive definite diffusion
tensor impedes the propagation across image boundaries. The minimisation was performed
in a dual formulation and using an auxiliary variable similar to the previous algorithm pro-
posed by Zach et al. [22]. Other papers to deal with the stair-casing effect can be found in
the literature. For example Trobin et al. [97] opted to use higher order derivatives in the
smoothness term to penalise only deviation from an affine function. This is based on the
fact that the second order derivative of an affine flow function is zero, hence no weight is
assigned at this point. In [95] the authors presented a generalised notion of TV −L1 to an
arbitrary order of derivatives which does not lead to stair-casing effect. This notion was also
used in optical flow algorithms, an example is the work done by Braux-Zin et al. [98]. In this
paper the author used the ‘Total Generalized Variation regularization’ and used AD-Census
in the data fidelity term [99].

As pointed out earlier, in order to improve the performance of optical flow algorithms at
motion boundaries, it is a good idea to replace the quadratic regularization with a non-
quadratic one that permits piecewise smoothness. This is due to the nature of the optical
flow field which is piecewise smooth. Beside using the L1 norm, several algorithms tried to
approximate the work of the L1 norm behaviour, these penalisers are borrowed from Robust
Statistics [64] and applied in the field of optical flow and also image diffusion. Weickert
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in [100] replaced the smoothness term in [1] with the non-quadratic term in the form:

Ψ(s) = ε
2

√
1+

s2

ε2 (2.15)

where (ε2 > 0). Which is similar to the robust estimator proposed by Charbonnier et
al. [101] and was used by Bruhn et al. [12] in their CLG optical flow. Another example
is given by Black-Anandan in [64] [65] [66], inspired by robust statistics. They proposed
the use of Lorentzian estimator :

Ψ(s) = log(1+
1
2
(

s
ε
)2). (2.16)

The proposed estimator penalises outliers less severely in the computation of flow field and
hence improves the performance on the image motion boundaries. Later on many algorithms
used the robust penaliser in the form Ψ(s2) =

√
s2 + ε [2], [61]. Several other papers using

non-quadratic functions can also be referred to here, such as [102], [61].

In the context of preserving edges in optical flow computation, smoothness can be classified
into image-driven and flow-driven terms. A good discussion in the literature on the classi-
fication of the smoothness term can be found in [103], also in [104] a good taxonomy was
provided and the connection of a smoothness term with diffusion filters was shown. The
edge-preserving smoothness term was classified in [104] into three types, isotropic image-
driven, anisotropic image-driven and isotropic flow-driven. In addition to that an anisotropic
flow-driven smoothness was proposed.

An image-driven smoothness works by reducing the penalisation across image discontinu-
ities. An example for isotropic image-driven smoothness can be found in [81]. In this paper
the authors modified the Horn-Schunck smoothness term by multiplying it with a decreasing
strictly positive function of the image gradients:

Esmooth(u,∇I) = g(|∇I|2)(|∇u|2) (2.17)

Hence, the smoothness effect decreases across image discontinuities as these regions usu-
ally have high gradients, and increases in smoother image areas. The notion of isotropy
here stems from the fact that the function g is directionally-independent. In other words it
does not depend on the direction of the image gradient, and penalisation takes place in all
directions equally. As a consequence for being ‘isotropic’ the fill-in effect along image (and
motion) edges will also be affected. Contrary to this is the anisotropic image-driven smooth-
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ness which is directionally-dependant. Early examples for this smoothness can be found
in [80], [105], where they used a diffusion tensor instead of the directionally-independent
function g in equation 2.17. The smoothness term used in [80] can be written as:

Esmooth =
∫

trace( (∇u)TD(∇I)(∇u) ) (2.18)

Here D(∇I) is a regularized projection matrix perpendicular to ∇I:

D(∇I) =
1

|∇I|2 +2λ 2{∇I∇IT+λ
2I} (2.19)

where I is the identity matrix.

The problem with image-driven smoothness as was discussed earlier is that it changes the
effect of smoothness in relation to the image gradients. This may lead to over-segmentation
in the estimated displacement field. Hence, it is more suitable to design the smoothness term
to be adaptive with the flow field itself. The quadratic regulariser used by Horn-Schunck
is not suitable for such purpose because of its strong penalisation, including areas across
motion boundaries. Therefore it is inevitable to refrain from it and use a piecewise smooth
function, in fact the smoothness terms discussed earlier (e.g. [100], [64], [65], [66],
[101]) are considered isotropic flow-driven smoothness terms.

Xiao et al. [106] used bilateral filtering [59] in the smoothness term to deal with occlusion.
As was pointed out in this paper, theoretically the occluded regions should not have a dis-
placement vector, however in practice they do have. This displacement is induced from the
smoothness term and the fill-in effect. The authors in this paper used this type of filter to
harness the smoothing across motion edges. The optimisation was decoupled into two steps
(as the two terms work in different domains). One optimisation step updates the displace-
ment field and the second minimises the data energy, and a bilateral filter was applied in the
smoothness term.

Another type of smoothness was used which depends on information contained in the im-
age and motion fields. The combination of this may give better estimation for the motion
edges. Thus far in this section, the main type of smoothness discussed are isotropic and
anisotropic image-driven smoothness, in addition to isotropic flow-driven smoothness. Ide-
ally the desired smoothness term would be one that depends on the motion discontinuities
rather than image discontinuities. This is because image-driven smoothness may introduce
over-segmentation in the estimated flow field. In addition to that the smoothness term would
be directionally-dependant (i.e. anisotropic), such as to harness propagation across motion
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discontinuities while encouraging this along them. In [15], [67], [11], [40] the authors
used what can be described as a hybrid smoothness term, they made use of the structure
tensor and its eigensystem. The structure tensor is a 2×2 matrix that contains information
about the structure orientation of a certain location in the image. It is possible to extract
two orthonormal eigenvectors for such a matrix one of these vectors pointing across image
structures while the other points along them. In [15], [67] a smoothness term was proposed
which has a form similar to the following:

Esmooth = Ψ
(
(eT

∇u)2)+Ψ
(
(eT

∇v)2) (2.20)

where e ∈ {e1,e2} are the eigenvectors of the structure tensor matrix. ∇u is the gradient
of the displacement in the x direction (i.e. ∇u = (ux,uy)), and ∇v is similar but for the
displacement in the y direction. The function Ψ is a robust function penaliser (e.g. Equation-
2.16). In this way the smoothness term magnitude will be proportional to the motion field,
while the direction is dictated by the structure tensor eigenvectors. Hence the problem
of over-segmentation is avoided. This idea was originally adopted from [11], [40] which
was proposed to work in discrete settings, and was adapted to work in continuous settings
in [15], [67].

A closely related notion to the structure tensor, is a representation called ‘Motion tensor’,
also denoted sometimes as ‘Orientation tensor’. The motion tensor is a 3× 3 symmetric
positive semi-definite matrix, which contains information about the local orientation. The
main difference from the structure tensor, is that it extends it to obtain spatio-temporal
derivatives. A Motion tensor was used in [107], [108] to compute the velocity in an image
sequence. The velocity (motion) was assumed to be constant over a certain region in a
similar assumption to the local optical flow of Lucas-Kanade [10]. Zimmer et al. [67] used
the spatio-temporal representation to extend their algorithm in the time domain to obtain a
temporally smooth flow field.

So far in this section, the main smoothness terms discussed were spatially-dependant. Usu-
ally optical flow is required to be computed for a sequence of images (e.g. video). Hence
it would be plausible to think of using a smoothness term in the time domain. Black and
Anandan assumed in their paper [65] that the acceleration of pixel patches in an image plane
over time is constant, and acceleration changes slightly due to noise. Hence it is possible
to estimate the displacement in the next frame. The authors used this in addition to spatial
coherence in this paper. Weickert et al. [103] used spatio-temporal smoothness regularisers
to extend flow-driven spatial smoothness. The flow-driven smoothness was obtained using a
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non-quadratic robust function. The authors in this paper used a function of the form shown
in Equation-2.15. The spatio-temporal smoothness proposed took the following form :

Ψ(u) = Ψ(|∇3u|2 + |∇3v|2) (2.21)

where ∇3 denotes a spatio-temporal nabla operator (∂x,∂y,∂t). The authors also reported a
50% increase in the computation time compared with the spatial case.

The smoothness terms discussed earlier are based on the assumption that neighbouring pix-
els have similar displacements, in other words the displacement is assumed to be locally
similar for those pixels. Non-local smoothness augments this assumption to include a num-
ber of pixels in a certain neighbourhood. Several algorithms used non-local smoothness
terms to extend the range of different types of the previously discussed regularity terms. A
non-local version of the total variation regularisation was presented in [38]. The smoothness
term included (in addition to TV −L1) a term which is a function of both colour similar-
ity and distance proximity. The penalisation of such a smoothness term may resemble to
an extent that of the bi-lateral filter (see Section-3.2.2). In this way, and by including a
bigger neighbourhood in the calculation, the robustness increases. In addition to that and
because the term is adaptive and gives more weight to pixels with similar colours, the edge-
preservation performance is improved. This can be attributed to the fact that pixels on the
sides of boundaries usually have a big colour difference compared to pixels on the same
side.

Krähenbühl and Koltun [109] extended the general optical flow equation (Equation-2.1),
and added a non-local term. The proposed energy function will take the form:

E = Edata +Esmooth +Enon−local

where the term Enon−local refers to the non-local smoothness term, and Esmooth is the tra-
ditional regularity term which can be any of the previously discussed smoothness (local)
terms. The problem with non-local regularisers is their computational complexity which
tends to increase quadratically with the size of the neighbouring window [109], although
this was improved to a certain extent in the last paper via approximation using a mixture of
exponentials, a concept related to Gaussian Scale Mixture (GSM) [11].



2.3 Optical Flow Applications 32

2.3 Optical Flow Applications

Optical flow cue is a very important tool which has wide use in image processing and com-
puter vision. It has been used in many areas across those fields such as robot navigation,
medical imaging, Structure-from-Motion and 3D composition. This section aims at pro-
viding a brief literature review for the main optical flow applications, and tries to show its
importance in the image processing field. Living creatures travel through their environment
based on information collected using their senses, of which vision provides the richest in-
formation. In autonomous vehicles this corresponds to using sensors to do this job. Several
types of sensors may be used for this purpose such as sonar, laser and infra-red or even a
mix of several types of sensors [110], [111], [112]. However visual navigation has been at-
tracting a great deal of research over the years. The choice of vision as the main information
source for navigation may seem obvious due to the rich information it provides. In addition
to that, researchers are trying to mimic the navigation systems that living creatures use to
traverse environments [113].

Perhaps a fundamental operation in robot and autonomous navigation is the ability to avoid
obstacles existing on the path to be traversed. In order to do that, obstacle detection is
needed. Several methods have been used for this purpose, among those are the ones relying
on previous knowledge of the environment, called ‘map-based navigation’. If such infor-
mation exists then it is easy to design suitable algorithms to traverse the environment, the
maps can vary in the details they contain. Once the map is provided the robot can find its
location (‘Localize’) in relation to the obstacles in the environment. An example of map-
based navigation is the ‘Occupancy grid’ where obstacles are represented as a 2D projection
of the volume [114], [112].

Santos-Victor et al. [115] proposed a biologically inspired robot navigation system. The
idea was inspired by the navigation of honeybees and insects. In this system, images from
two cameras where used to find the optical flow field. These two cameras were mounted
on a mobile platform pointing horizontally in opposite directions. The control of the robot
was of a reflex-like control in relation to the computed optical flow. The difference of the
average flow field computed by the two cameras was used to control the trajectory of the
mobile robot. The aim was to balance the flow computed by the opposite cameras which
were directed to the walls, a main requirement was that the walls should be textured. The
flow field was computed using the optical flow constraint (Equation-2.4). Since the camera
is fixed on the robot, and the robot moves horizontally parallel to the floor, the cameras
witness a horizontal displacements flow field only, therefore the vertical component of the
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flow field v is set to zero, yielding the following equation:

u =− It
Ix

(2.22)

Experiments were conducted in different scenarios to test the effectiveness of the algorithm,
wall following and obstacle avoidance, in addition to navigating in a funnelled corridor.
This type of visually guided robot navigation belong to the category of mapless navigation,
where no prior information about the geometry of the environment is required [112].

Srinivasan et al. [113] discussed several methods for mobile robot navigation, and showed
that the observations of travelling insects led to several algorithms for autonomous navi-
gation that rely on motion estimation. In this paper the authors outlined several strategies
inspired by insect navigation. The first strategy was range finding which was identified in
some insects and animals, which allowed the design of its counterparts algorithms in au-
tonomous movements. For example range finding by a camera moving perpendicular to
its optical axis [116]. More detailed information can be obtained by finding the range and
orientation of surfaces. It is possible to obtain information by investigating image velocity,
for example if the surface is directed uniform to the camera optical axis, image velocity will
be uniform. The second strategy is corridor traversing, which is inspired by bees behaviour
while flying through corridors, where bees tend to balance the velocity of the walls on the
sides. The third strategy discussed in [113] is navigation in a cluttered environment, again
inspired from bees behaviour [117], it was possible to design an algorithm to travel in such
an environment using image velocity. If a mobile robot is moving in a straight line, the
image velocity looks faster in a near area in comparison with an object lying further away.
The authors of [113] also discuss the development of two visual odometry systems based
on several experiments on honeybees and insects. The first system was proposed to com-
pute the distance travelled using image motion, however the distance calculated is not the
actual distance travelled. In order for this information to be useful the robot has to travel in
a pre-known environment. Alternatively it is possible to estimate the distance travelled in
terms of the time integral of the reciprocals of the image velocity.

In a different approach Camus et al. [118] used optical flow for real-time obstacle avoid-
ance via estimating Time-to-Contact (T TC). In that system images are taken using an
un-calibrated camera with a 115 degree field of view. Optical flow was calculated in a
correlation-based algorithm [119]. The displacement is searched for in a (2η+1)×(2η+1)
patch, where η is a parameter value that depends on the expected maximum displacement.
The images taken by the camera mounted on the robot have a resolution of 256 × 512,
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which is then sub-sampled to a resolution of 32× 64. This sub-sampling helps to speed
up the computation of the algorithm, however some image details will certainly be lost.
The calculation of T TC involves computation for the velocity at which the object and the
robot are approaching each other in relative movement, and the calculation is done in the
2D domain of the image. The x,y components of the optical flow (u,v) can be written as:

u = (1/z)(−Tx + xTz)+(xyωx − (1+ x2)ωy + yωz) (2.23a)

v = (1/z)(−Ty + yTz)+((1+ y2)ωx − xyωy − xωz) (2.23b)

where z is the depth of the point in the environment, and (Tx,Ty,Tz), (ωx,ωy,ωz) are the
translational and rotational components of the relative velocity in the environment. It then
can be shown that [118]:

∇(u,v) =
2Tz

z
(2.24)

which shows that T TC depends on the translational velocity in the z direction. The aim of
the robot navigation system discussed in this paper is to navigate to a certain point, while
avoiding at the same time collision with obstacles on the way. The steering policy depends
on what the authors call a ‘hazard map’, which is derived from the flow divergence, and
includes obstacles indication and the desired goal direction.

Nelson et al. [120] used flow divergence to estimate (T TC) and hence obstacle avoidance.
Their algorithm made use of the motion components projected in the 2D image domain to
estimate the motion taking place in the 3D environment. This paper discussed the relation
between the different motion types and directional divergence. Relative motion between a
camera and a certain point in the surrounding environment can be seen as a composition of
three components, namely motion resulting from camera rotation, and others that result from
perpendicular and parallel movements of the camera in relation to the point. The authors
showed that it is possible to approximate (T TC) using the flow divergence of the computed
flow field, and that the rotational component of the motion is not needed to estimate (T TC).
It was also shown that divergence at certain points is positive as the camera approaches
(relatively) the object points. The authors used one camera mounted on a robot arm for their
experiments.

T TC was used along with what is called Focus-of-Expansion (FOE) in robot navigation.
Souhila et al. [121] derived those two parameters from optical flow and used them to steer
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a robot away from obstacles, and used this to calculate (FOE), which is the point in an
image plane where motion everywhere is directed away from. In this sense the point would
lie in the centre of the image plane. The aim of the navigation algorithm is to balance the
horizontal flow on both sides of the (FOE), thus the control algorithm can be seen as a
function of the calculated optical flow. In this paper the authors used optical flow extracted
from a sequence of images using the Horn-Schunck [1] algorithm. Low et al. [122] used
optical flow as a cue to estimate what they call a range map derived from the calculation
of (T TC). However, the optical flow calculated was not dense, instead the sparse features
were used. The authors used Harris corner detection [123], and the matching was done
using normalised cross correlation. (T TC) was then derived for all the detected corners.
The range can be easily found using the robot speed information and this operation would
result in a map of distances from the camera to each detected corner. Experiments were
conducted using a wheelchair type robot in straight and slowly curved paths. Ohnishi and
Imiya [124] proposed to use optical flow for dominant plane detection, and used this plane
for robot navigation. The dominant plane can be defined as the largest planar area of the
image, and in the case of robot navigation it is assumed to be the ground plane in front of
the camera where the robot will move. Any part of the image that belongs to the dominant
plane can be considered safe to navigate on, while parts that do not belong to this plane can
be seen as obstacles and the robot has to avoid colliding into it. The authors assumed that
the dominant plane should occupy over half of the image in the initial frame which helped in
the detection process. Optical flow was computed using the Lucas-Kanade algorithm [10],
and uses this flow to calculate what they call planar flow, which is the displacement field of
the dominant plane area, and is estimated via an affine transformation.

Optical flow was also used to remove undesirable motion in videos and images such as
shakes and jiggles that exist for example in hand-held cameras. It is used as part of Digital
Stabilisation Systems (DIS) which can be found in consumer cameras and mobile tele-
phones [125]. Chang et al. [126] proposed a video stabilisation system that uses cues from
optical flow algorithms. The system in this paper calculates the motion field between each
consecutive image using the Horn-Schunck algorithm [1], then the rotational and transla-
tional global motions are estimated via least square estimation. The calculated motion is
then used to counter the undesired shakiness of the video. Liu et al. [127] used optical flow
to find motion vectors at each pixel. They denoted this as a ‘pixel-profile’, and used it for
video stabilisation by smoothing these vectors. They denoted the optical flow algorithm as
‘SteadyFlow’ which is similar to the algorithm in [128], which is proceeded by a global
homogrophy transformation to align the two frames, and also includes a discontinuities re-
alisation stage.
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Optical flow is also used in image registration algorithms. To register two images is to align
them together, this requires finding the correspondences between images which can either
be in the form of sparse features or dense displacement vectors. A good description for
the relation between image registration and optical flow can be found in the work presented
by Lefébure and Cohen [129]. Image registration based on the computed optical flow are
sometimes referred to as intensity-based image registration. This type of image registration
is usually used in medical imaging, due to its ability to register images with contents that
have undergone deformable changes. A good review on deformable image registration can
be found in [7]. As pointed out in chapter-1 image registration can be divided into two types,
the first type is called multi-modal registration where images to be registered are acquired
from different view points may be using different sensors. The second type is called mono-
modal where images are acquired from the same view point at different points in time. In this
specific case the image registration and optical flow become similar. However, optical flow
was used as a part of an algorithm to find multi-modal image registration in [130], where the
displacement field was used to estimate complex deformation after initial parametric rigid
registration using a particle filter. Optical flow was used also in a similar manner in [131],
where an initial estimate for the registration is found, and later an optical flow algorithm
was used to refine the registration.

Several optical flow methods have been used for image registration. Pock et al. [9] proposed
the use of TV −L1 optical flow for image registration, which follows the algorithm presented
in [22] for optical flow calculation. The algorithm used a non-quadratic smoothness term
which allowed it to deal with discontinuities and outliers. Experiments were conducted on
both synthetic and real clinical images. Keeling et al. [132] used variational optical flow for
rigid medical image registration, they penalised the deviation from the optical flow solution.

Optical flow was also used to find Structure-from-Motion (SfM) and monocular depth es-
timation. Newcombe and Davison [133] used optical flow correspondences as part of a
system for scene reconstruction in real-time. In this system the requirement of a real-time
performing optical flow algorithm favoured the use of primal-dual optical flow, this is due
to its high implementation speed on a GPU hardware [14]. This enabled them to obtain a
dense map for the scenes. Optical flow was also used for dense tracking and mapping in
real time in several algorithms such as the work of Newcombe et al. [134]. The optical flow
version used there is the algorithm proposed in [79], which does not use C2F to estimate the
displacement fields and thus does not suffer from losing many details in the images. An-
other example of dense motion tracking can be found in the work of Sundaram et al. [35],
which relies on a real time implementation of the large displacement optical flow by Brox
et al. [13].
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This section did not aim to give an extensive survey for optical flow application, but rather
to give an idea on how optical flow is used in image processing and computer vision. The
importance of optical flow was highlighted by reviewing the wide range of applications it
can be used in.

2.4 Summary

In this chapter a literature review for optical flow was presented. The aim of the literature
review was to give an overview for variational optical flow algorithms. The chapter demon-
strated the advances in the general optical flow equation (see Equation-2.1), and intensive
discussion was presented to examine each part of that equation and the development it has
undergone. More specifically a section was dedicated to discuss the data and the smoothness
terms. In the section for the data term, several data terms were discussed and it was shown
how this term developed in order to increase robustness against different types of noise, and
robustness against illumination changes. Also this data term evolved to give more accurate
estimation for the displacement field. The smoothness term also had its share of research,
and more robust regularity was proposed, particularly smoothness terms that are more robust
and that permits motion discontinuity at motion edges. This chapter also touched on several
other topics such as research in implementation and real-time performance. Probabilistic
formulation was also briefly introduced. Additionally an investigation for the application of
optical flow in image processing was also introduced. The vast amount of application areas
for optical flow show that optical flow algorithms are very important in image processing
and computer vision fields.

In the literature two main issues can be identified. The first is related to image registration
and optical flow. Optical flow was used for the purpose of image registration, both global
and local optical flow algorithms were used. However there is a lack in the literature for
the study of the effect of using combined local-global optical flow algorithms. The second
issue is purely optical flow algorithm related. The total variation L1 norm is known for its
robustness and edge preserving performance. This norm was used in several algorithm for
finding displacement fields. This norm is isotropic, this decreases efficiency of the estimated
flow field near motion edges due to the reduced penalisation along these edges. In this thesis,
those two issues are investigated and addressed.



Chapter 3

Local-Global Optical Flow For Image
Registration

In the field of image processing, image registration is a closely related concept to optical
flow. While the aim of optical flow is to calculate the displacement fields between two (or
more) images taken with a time difference, image registration tries to align images so that
the contents of these images can be matched. To accomplish this the displacement of each
pixel between images is looked for, and correspondences between pixels in the two images
must be established. These images can either be taken using the same camera with a time
difference or taken using a different camera (view) at the same time. The alignment process
can be described using a geometrical transformation (spatial mapping):

T : IB 7→ IA ⇔ T(IB) = IA (3.1)

where T is the spatial mapping, IA is the source image (image to be transformed), and IB is
the target image. The concept of image registration can be illustrated as in Figure-3.1 next:

Fig. 3.1 Image registration illustration.
Correspondence between points A and B is found to perform registration
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It is possible to classify image registration based on the way the spatial mapping function is
estimated into two types. In the first type the spatial mapping can be found using a certain
number of parameters to describe the mapping function, this is called parametric image
registration. An example for this type of image registration is estimating the transformation
based on descriptors detection and matching [8]. Alternatively the mapping function is
found by estimating the displacement vector for each pixel, here the image registration is
referred to as non-parametric image registration [7]. In the case of the latter type of image
registration, utilising optical flow to estimate pixel correspondences becomes plausible.

Motion or deformation in optical flow is represented with velocity vectors originating from
each pixel, specifying how each pixel moves between adjacent images. Periaswamy and
Farid [135] used optical flow as a framework for image registration. Moreover [136] used
optical flow to evaluate the result of medical image registration. The dense flow field cal-
culated using the global optical flow methods allowed images with deformed contents to
be registered. Hence, this can be found useful for the purpose of medical image registra-
tion [7]. A detailed description on the relation between image registration and optical flow
can be found in the work of Lefébure and Cohen [129].

As a result of the relation between non-parametric image registration and optical flow, im-
age registration performance inherits the shortcomings of the particular computational algo-
rithm. In this chapter a new method for image registration is going to be used, this method
is based on using a dense displacement flow field. Most of the image registration methods
use either global or local optical flow methods. Bruhn et al [12] combined the local and
global method to enhance the performance of the global method, and proposed a combined
Local-Global optical flow (CLG). The CLG optical flow is used here for mono-modal reg-
istration, where both images are taken for the same scene with a time difference. It will be
shown that this method is more robust compared to the global method of Horn-Schunck [1].

This chapter introduces the background theory and fundamental concepts in image pro-
cessing used to estimate optical flow displacements. In the next section the Course-to-Fine
framework is introduced with a detailed discussion on how it works with optical flow al-
gorithms. Section-3.2 introduces further image processing techniques that are used to es-
timate optical flow, namely median and bi-lateral filters. Section-3.3 introduces the notion
of structure tensor. Section-3.4 includes a discussion on the main benchmark datasets and
means of quantitative assessment of optical flow algorithms. In Section-3.5 local and global
variational optical flow computation is discussed as introduced by Horn-Schunck [1] and
Lucas-Kanade [10], which is followed by a section introducing the Combined Local-Global
method which is used in this thesis for image registration as introduced in [12]. Section-3.7
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contains preliminary results of image registration using CLG optical flow. This is followed
by a section that includes a proposed improvement on the CLG optical flow using bilat-
eral filtering, replacing the Gaussian filtering used in the original CLG method. This final
section is a summary to conclude this chapter.

3.1 Multi-scale Image Processing

One of the shortcomings of variational optical flow methods is that they can easily get
trapped in local minima. This leads to undesired results especially in the cases where ob-
jects tend to have large displacements. In real life scenarios large displacements of objects’
points are very much possible. To overcome this issue most optical flow algorithms perform
minimisation in multi-scale (multi-resolution) images, where a pyramid of Coarse-to-Fine
(C2F) images is created and used as a framework for the minimisation. In this section this
framework is discussed in detail.

In the C2F framework, image sequences are coarsened several times via image re-sampling
producing a hierarchy or a pyramid of images. This requires image re-sampling (up-scale or
down-scale) multiple times. The solution is first looked for in the coarsest layer of this pyra-
mid (top of the pyramid), where the problem is usually easier to be solved. This solution is
then used to initialise a finer solution in the next layer of the image pyramid. This process is
repeated for each pyramid layer until the original problem is solved. Multi-scale image pro-
cessing is used in several applications, such as multi-scale image segmentation [137], object
recognition [138], and detection [139]. In this section, an introduction for this framework is
given, in addition to a discussion on the basic multi-scaling concepts used to create the C2F
pyramid.

3.1.1 Spatial Filtering

Spatial filtering is a fundamental operation in image processing, it involves replacing the
value of pixels with a weighted sum of its neighbours. In order to achieve this a ‘correlation’
or a ‘convolution’ is performed between the image and a certain filter ‘kernel’. The result is a
modified version of that image. Depending on the kernel used, spatial filtering can be used to
perform many image processing operations, such as image smoothing, edge detection, and
finding image gradients, and also interpolation which is fundamental to image re-sampling

Correlation and convolution can both be used to perform spatial filtering, despite the fact that
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they have some fundamental differences. Correlating an image with a kernel is finding the
sum of the products between image pixels and kernel elements. This operation is repeated
for each pixel while the kernel slides across the image dimensions. In a 2D discrete case
(e.g. an image), correlation can be formulated as follows [140]:

I
′
(x,y) = ∑

i, j
h(i, j)I(x+ i, y+ j) (3.2)

where I
′

is the result of the correlation and it is a modified version of the image I. Image
indices are given by x, y, and h(i, j) is a 2D correlation kernel. Figure-3.2 next demonstrates
the sliding operation for the spatial filter:

Fig. 3.2 Spatial filtering operation.
The filter kernel slides in the x and y direction to produce a filtered image, each pixel

evaluated as the correlation of the image and the filter kernel overlaid over it.

Convolution is another mathematical operation used for spatial filtering, it has a similar
application and working mechanism as the correlation. However an intrinsic difference is
that the kernel is rotated 180o before the convolution process [140]. In a 2D discrete case,
convolution can be formulated mathematically as follows:

I
′
(x,y) = ∑

i, j
h(x− i, y− j)I(i, j) (3.3)

which can be also written in the following form [140]:

I
′
(x,y) = ∑

i, j
h(i, j)I(x− i, y− j) (3.4)
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where h(i, j) is known as the convolution kernel or filter mask, and (i, j) are the indices of
that kernel. Hence, image pixels are determined by weighted values of its neighbourhood.
To demonstrate a simple example of the difference between correlation and convolution
operations, consider Figure-3.3 next which depicts a 2D matrix which can be considered as
a segment of an image. The figure also depicts a random kernel h.

Fig. 3.3 An image and a kernel.
Left: A segment of an image with each square representing a pixel. Right: An example of a

filter kernel, this kernel is applied to each pixel of the image.

Figure-3.4 next demonstrates the results of a correlation and a convolution processes:

Fig. 3.4 The result of a correlation and a convolution operations
Left: Result of correlation. Right: Result of convolution.

Although the image and the kernel are the same, the outcomes of correlation and
convolution are different, this is because the kernel is rotated by 180o before applying

convolution.

Figure-3.3 depicts a segment of an image I(x,y), where each small square represents a pixel.
Numbers inside the pixels are the intensity levels for each pixel. Figure-3.3 also include a
kernel h(i, j). Figure-3.4 depicts the results of applying the kernel to the segment of the
image using convolution and correlation. Despite the fact that the segment of the image and
the kernel are the same, the results apparently differ; this is due the rotation of the kernel by
180o before performing the convolution.
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As was pointed out earlier, spatial filtering can be used for many image processing appli-
cations. Many different filter kernels can be used depending on the application required.
Spatial filtering can be used for image smoothing, for example a Gaussian kernel can be
used as a low pass filter. In the continuous case a 2D Gaussian function K(x,y) can be given
by the following equation:

K(x,y) =
1

σ22π
e−

x2+y2

2σ2 (3.5)

where σ is the standard deviation. An example of the discrete version of the Gaussian
function being used as a low pass filter is shown in Figure-3.5 for a 5×5 approximation of
a Gaussian kernel.

Fig. 3.5 A 5×5 Gaussian kernel approximation with with σ = 3.
This Gaussian filter can be used as a low pass filter.

Applying spatial filtering using a Gaussian kernel smooths the image by suppressing high
frequencies such as noise and edges, therefore the resulting image appears to be blurry. Two
main parameters affect the performance of this kernel these are the standard deviation σ and
the size of the kernel itself. With fixed kernel size the higher the standard deviation for the
kernel the more blurry the resulting images will look, this is due to close weights assigned
to pixels in the neighbourhood. Figure-3.6 demonstrates the effect of different σ on the
resulting image. In this context it is worth pointing out that convolution and correlation
gives the same results, this is due to the symmetry that such filter kernels have (see Figure-
3.5).

Spatial filtering can also be used to find image gradients. For a 2D image, gradients can be
defined as follows:

∇I = [ Ix, Iy ] = [
∂ I
∂x

,
∂ I
∂y

] (3.6)

The basic definition for image derivatives are:
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Fig. 3.6 Smoothing an image using a Gaussian Kernel.
It can be seen that the image becomes more blurry with the increase of σ

Top left: Original image. Top right: σ = 0.5. Bottom left: σ = 1. Bottom right: σ = 3.

∂ I
∂x

= I(x+1,y)− I(x,y) (3.7)

∂ I
∂y

= I(x,y+1)− I(x,y) (3.8)

According to this equation, the value of the image derivative at a certain pixel is equal to
the difference in intensity level of that pixel and the one next to it. These equations can
be formulated as a spatial filtering operation by using the following kernel for example to
obtain the horizontal derivative:

Fig. 3.7 Filter kernel to find the horizontal derivative of an image
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In the same manner it is possible to obtain the derivative in the y direction, using the trans-
pose of the kernel in Figure-3.7 above. In the following figure, an example of using that
kernel to obtain image derivatives is shown.

Fig. 3.8 Image derivatives in the horizontal and vertical direction.
Top: Original image. Bottom left: Derivative in the x-direction. Bottom right: Derivative in

the y-direction

Several other filter kernels can be used to find image gradients, such as the central point
difference [−1, 0, 1]. More robust filter kernels have also been used, such as the filter
kernel in [12]:

Fig. 3.9 A robust convolution derivative kernel was used in [12] to find image gradients.

The notion of image smoothing and filtering finds direct application in variational image
processing algorithms, for example in CLG optical flow [12] image smoothing was used to
increase the robustness of the optical flow energy equation. Smoothing an image via spatial
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filtering can be thought of as replacing the intensity value of a pixel with a weighted sum of
the pixel’s neighbourhood, hence the effect of noise can be mitigated.

3.1.2 Up-scaling Images

Up-scaling can be thought of as overlaying an image over a grid with higher resolution,
this is done via up-sampling the original image. This operation produces pixels that have
no information. Values for pixels with no information are estimated via interpolation from
neighbouring pixels in the original image. For example consider a rectangular image with
dimensions N ×M. This image is required to be up-scaled by a certain factor producing an
image with dimensions rN×rM, where r is the up-scaling factor, a certain number of pixels
will be inserted between each two adjacent pixels in the original image (Figure-3.10).

Fig. 3.10 Image Up-scaling.
Left: Original image with dimensions N ×M. Right: Up-sampled version image where

additional pixels were inserted.

The interpolation method can be formulated as a spatial filtering operation, for example the
interpolation can be given as a convolution process (Equation-3.3, 3.4), [141]:

Iu = ∑
x, y

I(x, y)h(i− rx, j− ry) (3.9)

where Iu is the up-scaled image. Several interpolation kernels can be utilized to interpolate
the zero pixels, the choice of the kernel is an important part of the up-scaling process. For
example pixel values can be interpolated directly from neighbouring pixels, this is known
as nearest-neighbour interpolation. This interpolation method is perhaps the most basic
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one, often used when speed of implementation is required. However this method is not very
efficient and the output image suffers from a block-like appearance, which becomes obvious
at edges.

Another type of interpolation is the bilinear interpolation, here the interpolated pixel value
is derived from the values of the 4 surrounding pixels, and is found as a weighted average
for these pixels. In the case of bilinear interpolation, the interpolated pixels have a better
approximation value in comparison to nearest-neighbour interpolation, and the transition
between intensity (or colour) values is smoother. In mathematics, bilinear interpolation is
an extension of linear interpolation in a 1D setting, where a value of an interpolated point is
found to be lying on the straight line connecting two points. In the 2D case this is extended
to 4 points (pixels), and the intensity value of the interpolated pixel is found as a linear
combination of the 4 surrounding pixels [142]. Let the four surrounding pixel have the
following coordinates, I0(x0,y0), I1(x1,y1), I2(x2,y2), I3(x3,y3). Then the intensity value
of the up-scaled image at a certain pixel is [142]:

I(x,y) = A+Bx+Cy+Dxy (3.10)

where A, B, C, D are constants. which can be found by solving the following equations:


A
B
C
D

=


1 x0 y0 x0y0

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3


−1

I(x0,y0)

I(x1,y1)

I(x2,y2)

I(x3,y3)

 (3.11)

Bi-cubic interpolation includes even more pixels in the calculation than the bilinear interpo-
lation, a 4×4 neighbourhood is considered in the calculations. Bi-cubic interpolation is an
extension for the cubic interpolation in 1D. It can be easily found by applying the following
cubic convolution kernel [141]:

h(k) =


1− (a+3)x2 +(a+2)|x|3 i f |x|< 1
a(|x|−1)(|x|−2)2 i f 1 6 |x|< 2
0 elsewhere

(3.12)

where a specifies the derivative at x = 1, usually chosen to be −1 or −0.5.

The aforementioned up-scaling algorithms are the most common methods used in creating
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an image pyramid for optical flow. The performance of these methods differ especially when
comparing the speed, sharpness of the interpolated image and how well they can preserve
details and edges. Figure-3.11 depicts an example image that is going to be up-scaled five
times using the three previously discussed interpolation methods. Figure-3.12 next depicts
the differences between the three interpolation methods.

Fig. 3.11 Image ‘lena’ to be up-scaled 5 times.
The area inside the red square is shown in the next image.

Figure-3.12 next shows the part of the image that is enclosed inside the red square enlarged
5 times.

Fig. 3.12 Comparison of the three interpolation kernels.
Left: Nearest-neighbour. Middle: Bilinear. Right: Bi-cubic.

The differences between the three interpolation methods can be seen in Figure-3.11, and
Figure-3.12. The image enlarged using the nearest-neighbour interpolation method is pixe-
lated and the transitions between different intensity values are obvious in areas with salient
structures, this interpolation method is usually used when a fast computation is required as
pointed out earlier. Images enlarged using the bilinear and bi-cubic methods look more sim-
ilar compared to the nearest-neighbour one, and they both show finer and smoother results,
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however the bilinear one has lost a bit of sharpness and looks blurry compared to the other
two images.

3.1.3 Down-scaling (Decimation)

Down-scaling gives an opposite result to that of up-scaling, where an image is down-
sampled to obtain another version of the image with less resolution. The resulting image
will have smaller dimensions, obviously this means that there will be loss of information. In
practice to perform down-scaling, every nth pixel in the image is replaced with a weighted
sum of the surrounding pixels, while the rest of the pixels are eliminated [141]. Similar to
up-scaling several kernels can be used in the decimation process, and the down-scaling can
be formulated as a convolution process. However the kernel in this case is a stretched and
re-scaled version of the interpolation kernel previously discussed. This can be noticed in the
following equation [140], [141]:

Id = ∑
i, j

I(i, j)h(ni− k, n j− k) (3.13)

where Id is the down-scaled image and n is the down-scaling ratio. Figure-3.13 next shows
the image in Figure-3.11 down-scaled by a factor of 2 using the three kernels discussed in
the previous section.

Fig. 3.13 Comparison of the three Down-scale interpolation kernels.
Left: Nearest-neighbour. Middle: Bilinear. Right: Bi-cubic.

To show the the down-scaling effect more clearly, Figure-3.14 demonstrates the image ’lena’
down-scaled and then up-scaled with a factor of 2.
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Fig. 3.14 Comparison of image resizing with factor of 2.
Left: Image down-scaled then up-scaled via nearest neighbour. Middle: Image

down-scaled then up-scaled via bilinear interpolation. Right: Image down-scaled then
up-scaled via bi-cubic interpolation.

Performing down-scaling usually generates aliasing artefacts in the down-scaled image. The
aliasing artefacts are due to the existence of high frequency details in the image which is
to be projected on a smaller resolution grid; therefore a low-pass filter is used prior to the
down-scaling process to suppress such high frequencies in the original image.

Resizing images is a fundamental process in multi-scale image processing. As the name
implies, multi-scale or multi-resolution image processing requires the processing of the
image at different scales. To this end, image down-scaling is used to find a coarser (smaller)
version of the image to be processed. Later the solution found needs to be up-scaled to
obtain a finer version of it.

3.1.4 Image Warping

Given an image and a transformation map it is possible to deform the image according to the
given mapping. This operation belongs to the geometrical transformation process in image
processing. In general image warping techniques can be classified into two types, the first
uses a number of parameters to create a global transformation model to perform warping,
while in the second type the transformation model is available [8]. If the transformation
(displacement) or deformation vector is available for each pixel in the image, it is easy to
produce a warped image. Consider an image I with a transformation mapping in the form
of a displacement vector for each pixel u and v. In the warping process, each pixel in the
warped image gets the value of the corresponding pixel in the original image. This can be
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expressed as follows:

I(x,y) = Iwarped(x+u, y+ v) (3.14)

Figure-3.15 depicts this operation.

Fig. 3.15 Forward Image Warping.

This warping technique is called the ‘forward warping technique’. The values of u and v
are not always integers, therefore these values must be rounded to obtain pixels residing
on the grid in the warped image. This process may produce holes and overlaps in the
resulting image. To mitigate this an alternative method for warping is used which is called
the ‘backward warping technique’. In this technique pixels are backward mapped from the
grid representing Iwarped towards I. Additionally the values for pixels colours are determined
via interpolation with a certain kernel. This reduces holes and overlaps creation. [8], [141].

Fig. 3.16 Backward Image Warping

To demonstrate the difference between the two warping methods, consider the following
image in Figure-3.17. In this figure a second image in a sequence is warped using the dense
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optical flow field obtained using the global Horn-Schunck algorithm [11].

Fig. 3.17 Forward and Backward warping.
Left column: Forward image warping, Right column: Backward image warping.

Image sequence:MiniCooper and Grove2 [6]
Cracks in the image are visible in the forward-mapped images

The following figure is a magnified segments of forward-warped images.

Fig. 3.18 Magnified forward-warped images segments.
Cracks are apparent in images with forward mapping.

The process of image warping is fundamental to many image processing application. For
example it is an essential part of image registration, where the aim is to align two images.
This alignment obviously involves deforming or warping one image to align with the other.
It also plays a vital role in the C2F framework, which in turn is essential to variational image
processing techniques, including variational optical flow algorithms. In such algorithms,
multi-scale image pyramids are produced and optical flow displacements are estimated for
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each layer. At each layer of the pyramid, one image is warped towards the other using the
estimated displacement fields in the previous layer.

3.1.5 Coarse-to-Fine Framework (C2F)

The aforementioned techniques and concepts can now be used to create an image pyramid,
where an image is coarsened several times as can be seen in Figure-3.19 next.

Fig. 3.19 Multi-scale image pyramid.
The coarse layer is obtained by down-sampling the previous layer. Image taken from [141]

The production of the pyramid in the figure above can be illustrated as a pseudo-code as
can be seen in Algorithm-1. Usually each pyramid layer dimensions are reduced by a factor
of 2, this should be sufficient to compute optical flow using the Horn-Schunck algorithm.
However, some algorithms require a finer pyramid, Brox et al. [13] used a very fine pyramid
with a down-scaling factor given by 0.95(L−l), where l is the current layer and L is the
number of layers, chosen to be smallest resolution where image gradients can be found.

Algorithm 1: Creating an image pyramid
Input: Image I, number of pyramid layers L, current layer l
initialization;
while l 6 L do

Down-scale I by a factor of 2l;
produce Il;

end

To calculate optical flow under C2F using any variational algorithm, the displacement field
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is calculated in the coarsest layer of the pyramid. This is done between the coarsest ver-
sions of the two images Il

1 and Il
2, where l is equal to 0 at the base of the pyramid. The

displacement field components calculated at a certain layer is denoted here by (du,dv), and
is initialised to (0,0) at the top of the pyramid. These displacement fields calculated at a cer-
tain layer are used as an initialisation for the calculation at the next finer layer. Therefore the
displacements fields are up-scaled via interpolation using any of the aforementioned meth-
ods. In addition to that Il

2 at l = 2 is warped towards Il
1. At l = 2 the displacement fields are

calculated in the same manner, and the final displacement field at that layer is found to be
equal to the sum of the current displacement (du,dv) and the displacement calculated in the
previous layer (ul−1,vl−1). This process continues until the original image at the base of the
pyramid is reached. Algorithm-2 depicts a general framework for optical flow estimation
under C2F.

A typical pyramid can be composed of 4 layers, where the dimensions of an image in
each layer is half of that in the lower layer. This pyramid is sufficient to produce good
results [143] for the Horn-Schunck algorithm. Figure-3.20 next includes a demonstration
for a 4 layer image pyramid of the RubberWhale sequence [6].

Figure-3.21 demonstrates the optical flow field for several image sequence. For each se-
quence optical flow was calculated twice. One result is obtained using C2F and one without
C2F. The results obtained without the use of C2F suffers from being trapped in local minima,
while the results obtained via the use of the C2F framework appear to be more accurate.

Algorithm 2: Calculating optical flow under C2F framework
Input: Images I1, I2;
Number of pyramid layers L, current layer l
initialization;
initialise (ul,vl) to (0,0) ;
while l 6 L do

Up-scale size of (ul−1,vl−1) to size (ul,vl);
Warp I2l towards I1l;
Find (du,dv);
Calculate (ul,vl) = (ul−1,vl−1) + (du,dv);

end
Output: (Displacement field (u,v))
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Fig. 3.20 A 4 layer image pyramid.
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Fig. 3.21 A comparison of Horn-Schunck optical flow with/without C2F framework.
Left Column: Optical flow obtained without C2F. Right column: Optical flow obtained

with C2F.
The displacement field estimated without the use of C2F suffered being trapped in local

minima.

3.2 Other Types of Filtering

In the previous sections, the notion of image filtering was discussed. Image filtering was
discussed as an application of correlation and convolution. It was also shown that smoothing
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images using certain kernels (e.g. Gaussian) had a blurring effect on the smoothed images.
Since edges are important information contained in images, it was necessary to develop
smoothing techniques that would preserve edges during the smoothing process. This also
applies to optical flow algorithms, where it is necessary to preserve image motion bound-
aries in the calculated displacement field.

The blurring effect that appears in the motion boundaries of the estimated optical flow field
can be attributed to several factors, the first is the assumption of global smoothness in the
displacement field, this assumption is violated at motion boundaries. If the smoothness term
penalises this assumption severely the results is a blurred motion boundaries. The blur can
also be found in CLG algorithms for example, where the value of pixels are replaced with
a weighted average of the pixel values surrounding that pixel, which produce this blurry
effect when pixels are near image boundaries. A possible solution is to replace the linear
filter with a non-linear filter that respects the presence of boundaries in an image. In this
section additional types of filters are discussed, these filters have an immense number of
applications in image processing, including applications of variational optical flow. In the
following subsection the median and bi-lateral filters are discussed.

3.2.1 Median Filter

A median filter is a spatial non-linear filter, it belongs to what is known as ‘Order-Statistics
filters’ [140]. Unlike linear spatial filtering discussed earlier these types of filters do not use
convolution, instead they rely on exploiting statistical properties in a certain neighbourhood.
As the name implies, a median filter replaces pixels with the median of pixel intensities
inside a certain neighbourhood. Other examples of statistical filters are the max filter which
replaces the intensity value of a pixel with the maximum in a neighbourhood, the min filter
does the same but using the minimum value.

Consider a set of N numbers A = a1,a2, ...aN sorted either in ascending or descending order,
the median of such a set is the number lying in the middle of the set if N is odd, and is the
average of the two numbers lying in the middle of the set if N is even. The median filter may
outperform linear filters in some cases especially in terms of preserving edges. It is useful
primarily when the noise appears suddenly and discontinuously in the image such as Impulse
noise also referred to as salt-and-pepper noise [140], where the value of the pixel with such
noise will be replaced by an intensity value from within its neighbourhood. Figure-3.22
illustrates the performance difference between a median filter and a linear Gaussian filter.
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Fig. 3.22 Smoothing an image using median filter and two Gaussian filters.
Up left: original image. Up right: Gaussian image smoothing with σ = 2. Bottom left:

Gaussian image smoothing with σ = 5. Bottom right: Image filtering using median filter.

To further examine the difference, the following figure is a magnified copy of the previous
figure. The comparison is done between the median filtering effect and one of the Gaussian
filters. It can be seen that the image filtered with the median filter, although it looses some
sharpness, the details and edges are clearer and less blurry.

Fig. 3.23 Filtering comparison.
Left: segment of the original image. Middle left: segment of the image filtered with

Gaussian of σ = 2. Middle right: segment of the image filtered with Gaussian of σ = 5.
Right: segment of the image filtered with a median filter.
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As a consequence of the performance of this filter in the presence of an impulse-like noise,
the median filter was integrated into the C2F framework for optical flow calculations [14]
in what is known as ‘Splitting methods’ [24], where optical flow is calculated in a dual min-
imisation step (see Section-4.1). The use of a median filter as an intermediate filtering step
improved the performance of the optical flow algorithms. After finding the displacements
fields in each pyramid layer, a median filtering is applied to the calculated optical flow. This
ensures the removal of outliers that may appear during the calculation of the flow field dis-
placement. Figure-3.24 next demonstrates the optical flow fields for two image sequences of
the Middlebury dataset [6]. The displacement field is estimated via the TV −L1 algorithm,
with the implementation of [14] downloaded from their website1.

Fig. 3.24 The median filter effect on the calculation of optical flow field.
Left column: optical flow computed without median filter. Right column: optical flow

computed with median filter.
Areas enclosed in the black squares in the lower row shows outliers removal after using

median filter.

In Figure-3.24 the difference in the two flow fields is noticeable, where one of the flow
fields was computed without the use of median filtering, while the other used that filter as
an intermediate step. It can especially be noticed in the ‘Hydrangea’ sequence in the lower
row of images. The displacement flow field calculated without the median filter clearly
shows outliers, while the one with the median filter shows the absence of those outliers. In
addition to removing outliers Sun et al. [143] showed that the inclusion of median filtering
produce higher energy results.

1 http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php

http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
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3.2.2 Bi-lateral Filter

The bi-lateral filter is known for its edge-preserving properties [59], [60], however the work-
ing mechanism is completely different compared to the previously discussed median filter.
It can be seen as a Gaussian filter that respects boundaries, and it can be thought of as a
combination of more than one technique of filtering. As was pointed out earlier during the
discussion of spatial filtering, Gaussian kernels for convolution introduces blurring across
edges. This is attributed to the fact that each pixel is replaced with values that are a weighted
average of pixels in the neighbourhood, and if this pixel resides near an edge its value is go-
ing to be affected by the pixel across the edge, which usually have very different values. The
bi-lateral filter addresses this issue by adding weights to pixels depending on their intensity
values and how close these values are to the intensity of the pixel being considered.

In the linear spatial filters discussed earlier (e.g. Gaussian), the weight for each pixel in the
window is a function of the spatial distance from the centre pixel. The previously discussed
linear filtering (Equation-3.4, Equation-3.3) can be expressed as follows:

I
′
(x) =

1
wg

∑
i

K(i,x)I(i) (3.15)

where i = (i, j) ∈ ΩD, ΩD is the neighbourhood region specified by the kernel size, K is the
Gaussian kernel, wk is a normalising term, and can be defined as:

wg = ∑ K(i,x).

Similarly it is possible to formulate a filter that gives weight based on the similarity in
intensity values, such a filter can be defined as:

I
′
(x) =

1
ws

∑
i

S( I(x), I(i)) I(i) (3.16)

where s(I(x), I(i)) determine the weight depending on the similarity between the two pixels,
ws is also a normalising term, and can be given as:

ws = ∑ S( I(x), I(i) )

The bi-lateral filter combines those two filters to produce a filter with weights change in
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spatial and also intensity (or colour) domains. Such a filter can be expressed as follows:

I
′
(x) =

1
w ∑

i
S( I(x), I(i)) K(i,x) I(x) (3.17)

where w here is the normalising term, and can be defined as:

w = ∑ S( I(x), I(i)) K(i,x) (3.18)

In practice S and K both can have Gaussian distribution with different standard deviation
value. Hence, this filter gives different weights to pixels in the window. The weight varies
as a function of two variables, the first is the spatial distance of that pixel to the centre pixel,
the bigger the distance the smaller the weight given. The second variable is the intensity
level similarity, the closer the intensity pixel values to the considered pixel, the higher the
weight assigned. This reduces blurring, as pixels across edges are expected to have different
intensity or colour values. Both kernels can have a Gaussian distribution. Figure-3.25 shows
an illustration of the behaviour of a bi-lateral filter near an image edge. As can be seen in the
figure, the spatial Gaussian filter weight is decreased as pixels are far from the central pixel,
while the bi-lateral filter kernel weight decreases rapidly at the existence of image edge.

Fig. 3.25 Bi-lateral filtering.
(a) Input image. (b) Spatial Gaussian kernel g(i,x). (c) Intensity similarity kernel. (d)

Combined kernel (e) Output. [Image taken from [60]]

Figure-3.26 next demonstrates some examples for smoothing images using a bi-lateral filter,
while Figure-3.27 shows a segment of an image providing more illustration.
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Fig. 3.26 Smoothing using Bi-lateral filter.
Left column: original images. Right column: images smoothed via bi-lateral filtering.
Despite the smoothing effect of the filter, the image edges are still visible, this can be

noticed for example in the clouds in the ‘lake’ image.

Fig. 3.27 An image segment demonstrating smoothing using Bi-lateral filter.

The bi-lateral filter has been used by some optical flow algorithms to improve the perfor-
mance at the presence of edges and object boundaries [4] [106].
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3.3 Structure Tensor

A structure tensor matrix is a fundamental tool used in image processing and computer vi-
sion, it is also known as the second moment matrix [144]. It gives an idea of the dom-
inant orientation of gradient in a certain neighbourhood, and it is derived from image
gradients, therefore it has been widely used in several applications such as corner detec-
tion [145], [146], texture analysis [147], [148], [149], and optical flow calculation [12]. An
initial structure tensor matrix J0 of a 2D image I can be written as follows:

J0 = ∇I∇IT =

 I2
x IxIy

IxIy I2
y

 . (3.19)

In the formulation of structure tensors, it is desired to include information in a certain neigh-
bourhood around each pixel. To this end the structure tensor J of a 2D image can be found
by convolving J0 with a Gaussian kernel Kρ :

J = Kρ ∗ J0. (3.20)

This formulation can be easily extended to higher dimensions. Although the information
provided by the structure tensor matrix is derived from the image gradients, it offers more
useful information due to the smoothing process via the Gaussian kernel with a certain
integration scale ρ . This allows to examine the orientation and magnitude of a structure
in a certain neighbourhood. In addition to that the squaring operation can help to avoid
cancellation of gradients with opposite direction during the smoothing process [144].

The importance of the structure tensor matrix lies in the orientation information it conveys,
which can be obtained via the calculation of the eigenvalues and eigenvectors. It is known
that for a certain matrix (let it be J in this case) eigenvalues and eigenvectors can be calcu-
lated, and that:

Je = λe (3.21)

where e are the set of eigenvectors (e1, e2...en), and λ are the corresponding eigenvalues
(λ1, λ2,... λn), and n is the number of dimensions of the square matrix J. Equation-3.21 can
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also be written as follows:

J = eTλe (3.22)

In image processing, the structure tensor computed for a 2D image is useful to give an idea
of the dominant orientation in the neighbourhood. The two eigenvectors extracted from
the 2× 2 matrix are one pointing across the dominant orientation, while the other points
along the dominant orientation. For example if the pixel is near an edge where the gradient
is high, the first eigenvector points vertical to the edge while the other is parallel to that
edge [40]. Coherence is another useful piece of information that can be extracted from the
structure tensor and its eigenvalues/eigenvectors, usually defined as the largest number of
eigenvalues divided by the smallest [144].

The information extracted from the structure tensor matrix can be used to determine the
dominant orientation in a local neighbourhood. The eigenvalues are proportional to the
magnitude of the gradient orientation and thus can be found useful in edges and corners
detection [145].

3.4 Benchmark Datasets and Error Measures

In this section, a general discussion on the error measurements to assess the estimation ac-
curacy of optical flow fields is introduced. As optical flow algorithms were continuously
improving, it was necessary to develop error measures to compare the performance of dif-
ferent algorithms, this comparison could either be qualitative or quantitative. Most common
approaches for quantitative performance measurements calculates error in relation to a pre-
computed ground truth displacement field. A qualitative measure on the other hand relies
on visually inspecting a colour-coded version of the computed flow field. While it may be
more efficient to quantitatively compare performance of different algorithms, it is not al-
ways possible to compute the ground truth of test images. Depending on their source, test
images can be divided into two types, synthetic and real world images. It is relatively easy
to find a precise ground truth for synthetic images, as these images are generated by com-
puter graphics. Conversely, obtaining ground truths for images with real objects are more
challenging.
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3.4.1 Obtaining Image Sequences and Ground Truth

Middlebury dataset

Different techniques were followed to obtain such ground truths, an example of this is
the Middlebury dataset [6], which includes synthetic and non-synthetic images. Since this
dataset will be the most used dataset in this thesis, a more detailed discussion for this dataset
is included here. The dataset is divided into four types of test images, each encompassing
different challenge goals, such as non-rigid motion, real world scenarios, and dense ground
truths with sub-pixel accuracy. The four types of images are as follows:

• Non-synthetic images with non-rigid moving scene: To obtain these images a special
set was built on a computer-controlled stage. This set is moved in small steps, and
two types of images are taken at each step, one using ambient light while the other is
taken under UV lighting. The combination of UV with special paint applied to the set
helps to preserve textures of the objects in the scene. The displacement is then found
by a local search in a small window in the images taken under UV lights. Sub-pixel
accuracy is obtained using the Lucas-Kanade [10] algorithm. One advantage of such
kind of test images is the use of real cameras to obtain these images, which means
natural illumination conditions. On the other hand the images taken in a laboratory
are not real world scenarios. Figure-3.28 includes examples of such images.

Fig. 3.28 Real (Non-Synthetic) image examples from the Middlebury dataset. [6].
Left: Frame-10 of ‘Army’ sequence. Right: Frame-10 of ‘Mequon’ sequence.

• Synthetic image: These images are generated using computer graphics. The advan-
tage of such images is the ability to compute a precise ground truth, in addition to
having control of the texture and the scenario of the scenes. Two types of images
were generated using special software. The first type is natural scenes with non-rigid
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motion (e.g. trees). The second is generated ‘Urban’ scenes with building of different
shapes and textures.

Fig. 3.29 Synthetic image examples from the Middlebury dataset. [6].
Left: Frame-10 of ‘Grove2’ sequence a natural scene. Right: Frame-10 of ‘Urban2’

sequence an urban structures scene.

• Images via interpolation: These images do not have ground truth. They are used to
check the optical flow algorithms by how well they can predict intermediate frames.
Images for these datasets are taken using a camera with a 60 frames/second rate.
Every other frame was chosen to be used for testing, while the intermediate frames
were kept to be used as ground truth. Indoor and outdoor images were taken, including
different objects such as people, moving vehicles and some urban structures. To test
the optical flow algorithms, intermediated frames are generated via interpolation and
compared with the omitted intermediate frame. Figure-3.30 demonstrate examples of
such images.

Fig. 3.30 Interpolation frame examples from the Middlebury dataset. [6].
Left: Frame-10 of ‘Basketball’ sequence an indoor scene. Right: Frame-10 of
‘Dumptruck’ sequence an outdoor image with some urban structures scene.
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• Stereo data images: The last type of images are modified stereo images. The ground
truth for such images were obtained using structured lighting. The displacement be-
tween images in stereo data are all horizontal, this makes estimation of the displace-
ment field (disparity in case of stereo images) easier and more accurate. Figure-3.31
demonstrates the two frames of the ‘Teddy’ stereo sequence.

Fig. 3.31 Modified Stereo data examples from the Middlebury dataset. [6].
Left: Frame-10 of ‘Teddy’ dataset. Right: Frame-11 of ‘Teddy’ dataset.

MPI-Sintel

The MPI-Sintel dataset [150] is a synthetic image sequence taken from an animated 3D
short film, it contains complex motion with varied textures. The ground truth was obtained
with a complicated process that include identifying boundaries (for objects, materials, and
depth), producing an estimate of the motion boundaries and thresholding with threshold
gradient magnitude. The dataset is divided into two categories. The first is the training
image category, which includes images with open-access ground truth. The second category
is the test image category, with withheld ground truth. MPI-Sintel provides 1064 frames for
training and 564 for testing. The frames were taken from 35 clips selected from the film.

Images used in this dataset are rendered in different levels, these levels are called ‘passes’.
The first level is ‘albedo’ which is the simplest rendering which does not contain illumi-
nation effect and has a piecewise constant colour. This means that the data (brightness)
constancy assumptions holds across the whole image. The second level is the ‘clean’ ren-
dering level which includes illumination effects (e.g. shading, specular reflections). The
final level is the one that matches the final version of the film, which includes more complex
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effects and adds motion blur, atmospheric effect, colour correction,etc.

Figure-3.32 includes an example of the MPI-sintel dataset. The example include the first
frame of the image group ‘alley-1’, illustrating the three rendering passes. The figure also
includes the ground truth obtained between that frame and the next frame in the image
group. The ground truth follows the colour code in Figure-1.4.

Fig. 3.32 Example of MPI-Sintel dataset [150].
This is frame-0001 of ‘alley-1’.

Top: frame-0001 with albedo rendering. Second from top: frame-0001 with clean
rendering. Third from top: frame-0001 with final rendering. Bottom: ground truth.
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The KITTI dataset

Another dataset is the KITTI dataset [151], which is a multi-purpose dataset that can be
used as a benchmark for optical flow, stereo matching, object detection, etc. The data was
obtained using a complicated system of video cameras, laser scanners, and GPS/IMU units
all mounted on a vehicle. The benchmark was aimed at autonomous driving and navigation.
The ground truth for optical flow was obtained by registering images via point clouds using
ICP (Iterative Closest Point), then calculating the optical flow by projecting 3D points into
the sequence of registered images. However, they obtained a 50% density ground truth only,
but it offered a benchmark for real world images, rather than images taken in a controlled
lab environment.

3.4.2 Error Measures

There were several error measurements proposed to evaluate the performance of optical
flow algorithms, perhaps the most popular one is the Angular Error (AE) and the End-point
Error (EPE) [20] [5] [6]. AE finds the deviation of the computed optical flow in relation to
the ground truth. This is done by calculating the angle between the vector of the computed
optical field w = (u,v,1) and the given ground truth flow field wgt = (ugt ,vgt ,1). A spatio-
temporal flow vector is used preventing the division by zero at locations with no flow.

AE = arccos
( u×ugt + v× vgt +1
√

u2 + v2 +1
√

u2
gt + v2

gt +1

)
(3.23)

However this error measurement does not penalise all errors in a uniform way, as errors
with large displacement values are penalised less severely than errors with small displace-
ments [6].

End-point Error (EPE) is another error measurement [152], [6], it calculates the error as
the square root of the sum of squared differenced between the computed and ground truth
displacement fields:

EPE =
√

(u−ugt)2 +(v− vgt)2 (3.24)

Reconstruction error was also used to evaluate the efficiency of optical flow algorithms.
Given two images in a sequence and the flow field computed between those images, it is
possible to reconstruct one of the images using the other image and the computed optical
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flow via interpolation. Lin and Barron in [153] compared the efficiency of several optical
flow methods, the comparison was made depending on how well the reconstructed image
compared to the actual image. Moreover several interpolation methods were investigated.
The comparison was done by calculating the Interpolation Error (IE), which is the root-
mean-square (RMS) between the reconstructed image and the actual second image.

IE =

√
1
N ∑( I(x,y)− IGT (x,y) )2 (3.25)

where N is the number of pixels, IGT is the actual second image, and I is the reconstructed
image. An interesting finding of this paper was that the interpolation error correlates to
the angular error in most cases, and hence interpolation error can be regarded as a good
indicator for angular error. This is very useful especially in the case where no ground truth
is available, as ground truth is very difficult to obtain.

Szeliski in [154] proposed a method to evaluate performance of optical flow algorithms
without the need for ground truth data. The approach relies on assuming constant velocity
for motion in images. Given a sequence of more than two images, the displacement field
is calculated for a subset of two images, the flow field is then extrapolated to predict the
third frame, or interpolated to construct an image lying between two frames. The quality of
the algorithm is then judged by how efficiently it can reconstruct the predicted frame. The
error calculated here is referred to as ‘Interpolation Error’ (IE), which is the root-mean-
square (RMS) difference between grey levels of the ground truth frame and the predicted
interpolated (or extrapolated) frame (Equation-3.25). This type of error measurement was
reported in the Middlebury database [6], along with the ‘Normalised Interpolation Error’
(NE), which is given by:

NE =

√
1
N ∑

( I(x,y)− IGT (x,y) )2

|∇IGT (x,y)|2 + ε
(3.26)

where ε is an arbitrary scaling constant preventing division by zero.

3.5 Local and Global Optical Flow Methods

In general, variational methods for finding optical flow can be divided into local and global
methods. The global methods for optical flow can generally produce dense flow fields,
while the local methods are often more robust under the influence of noise. The work of
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Horn-Schunk [1], and Lucas-Kanade [10] can be considered landmark papers for the global
and the local methods receptively. In this section a brief introduction for both methods is
presented. To reiterate on the notation that is used for the rest of this thesis, consider a
rectangular image domain Ω with pixel coordinates (x,y). Optical flow algorithms aim
at finding the displacement field u = (u,v) for corresponding pixels between images in an
image sequence I1 and I2, which are taken at time t and t + 1 respectively, u here is the
displacement in the x direction, and v is the displacement in the y direction.

Variational methods usually start from the assumption that grey value levels (brightness)
do not change over time, in what is called the data constancy assumption (Equation-2.3).
The function resulting from this assumption is not convex, hence this function is linearised
using a Taylor expansion, resulting in what is known as optical flow constraint (Equation-
2.4). This function is ill-posed, and it is not possible to find a unique solution as this
is one equation with two unknowns. This problem is referred to as the ‘aperture prob-
lem’ [1], [12]. However, it is possible to find the flow parallel to image gradients (normal to
image edges) [12]:

uparallel =− It
|∇I|

∇I
|∇I|

(3.27)

To overcome the ill-posedness, Lucas-Kanade [10] assumed that the flow is constant within
a certain window (neighbourhood). The flow field is then found by least square minimisation
of the following equation:

ELK = Kρ ∗ [Ixu+ Iyv+ It ]2 (3.28)

where u , and v are the flow fields, which are assumed constant for a window of size ρ

centred at pixel (x,y). Subscripts denote partial derivatives. Kρ is a Gaussian filter kernel
of standard deviation ρ . The solution of the Lucas-Kanade equation is found by setting
the derivatives with respect to u and v equal to 0, and the following set of equations are
obtained:

Kρ ∗
[

I2
x u+ IxIy v+ IxIt

]
= 0 (3.29)

Kρ ∗
[

IxIy u+ I2
y v+ IyIt

]
= 0 (3.30)

Whether it is possible to find a solution or not depends on the size of the neighbourhood
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and the available information in this neighbourhood. As the Lucas-Kanade method depends
on image differentiation the information in a small neighbourhood may be insufficient to
constrain the equation. As a solution for this issue it is possible to increase the neighbour-
hood size to include more information. However increasing the size of the neighbourhood
means that it is more possible to include different motion in the same area, this renders the
estimated flow field unreliable. Alternatively estimating the flow at sparse locations may be
a good solution, the resulting flow field is not dense (sparse) in this case.

In a different approach, Horn-Schunck [1] proposed to add another constraint to the optical
flow constraint (Equation-2.4). They assumed that the flow field changes smoothly across
the image, therefore adding a smoothness (Regularity) term to the energy function. The
energy function becomes:

EHS =
∫

Ω

(
(Ixu+ Iyv+ It)2 +α|∇u|2

)
dxdy (3.31)

where α here is a weight factor. ∇u = (∇u,∇v). The basic assumption in the regularity term
is a smooth flow field, and neighbouring pixels are expected to have similar displacements.

The solution is found via variational methods by obtaining the corresponding Euler-Lagrange
equations. Euler-Lagrange are a set of partial differential equations, with a solution which is
the minimisation of an energy function. The minimiser (u,v) of a function in the form [94]:

E(u,v) =
∫

Ω

G(x,y,u,v,∇u,∇v)dxdy (3.32)

Satisfying the following Euler-Lagrange set of equations:

∂ Gux

∂x
+

∂ Guy

∂y
− ∂G

∂u
= 0 (3.33)

∂ Gvx

∂x
+

∂ Gvy

∂y
− ∂G

∂v
= 0 (3.34)

Hence, the Euler-Lagrange equations for the Horn-Schunck equation (Equation-3.31) is
given as follows:
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α∇
2u− Ix(Ixu− Iyv− It) = 0 (3.35)

α∇
2v− Iy(Ixu− Iyv− It) = 0 (3.36)

where (∇2) denotes the Laplace operator. This formulation allows the displacement fields
u and v to be found at locations where image gradients approach 0. These displacements
are induced from neighbouring pixels as an effect of the smoothness term, filling pixels
with missing information. Hence, the resulting displacement flow calculated here is dense.
Figure-3.33 next demonstrates visualisation for optical flow calculated via both the local
method of Lucas-Kanade2 [10] and the global one by Horn-Schunck [1].

Fig. 3.33 Lucas-Kanade vs. Horn-Schunck optical flow computation.
Upper row: Optical flow field obtained via Lucas- Kanade local method. Lower row:

Optical flow obtained via Horn-Schunck global method.

3.6 Combined Local-Global (CLG) Optical Flow

Lucas-Kanade energy function to estimate optical flow can be written in the following
form [12]:

ELK = wTJρ(∇3I)w (3.37)

where ∇3I = (Ix, Iy, It), J0(∇3I) = Kρ ∗ (∇3I), Kρ here is a Gaussian kernel filter with stan-

2 MATLAB code was downloaded from http://crcv.ucf.edu/source/optical

http://crcv.ucf.edu/source/optical
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dard deviation of ρ , and w = (u,v,1). The Horn-Schunck energy function can also be
re-written in the following form:

EHS =
∫

Ω

[wTJ0(∇3I)w+α|∇w|2] dxdy. (3.38)

The difference between Equation-3.31 and this equation is the spatio-temporal form of the
latter one. Smoothing images plays an important role in improving the convergence of the
solution. When an image is smoothed using a Gaussian kernel, the low-pass filter effect
removes a certain percentage of the noise. However, this will also lead to loosing some
of the small details in the image. In addition to that, when a certain window of pixels is
smoothed, pixel values are changed as a function of the neighbourhood pixels values. In
this way neighbouring pixels have a weighted effect on the calculation at a certain pixel.
Hence, the calculation of flow field at a certain point is extended to include neighbouring
pixels, and the estimated flow field at this point becomes more robust.

As was pointed out in the previous section, global methods for optical flow yield dense
flow fields, while local methods are more robust. Hence Bruhn et al. [12] in suggested
to combine the two methods to incorporate the effect of the local method into the global
method of Horn-Schunck, Bruhn et al. [12] suggested to minimise the following equation

ECLG =
∫

Ω

[Ψ(wTJρ(∇3I)w)+αΨ(|∇3w|2)] dxdy (3.39)

where ρ > 0, Ψ(.) is a robust penaliser, and ∇3w is a spatio-temporal smoothness term. The
spatial filtering applied here is actually increasing the robustness of the data term by includ-
ing the neighbourhood of the pixel to be part of the data constancy assumption. Meanwhile
the estimated flow field resulting is also dense. The minimisation can be accomplished by
obtaining the corresponding Euler-Lagrange equations:

0 = ∑
j∈N (i)

Ψ
′
2i +Ψ

′
2 j

2
(u j −ui)−

Ψ
′
1i

α
(J11iui + J12ivi + J13i) (3.40)

0 = ∑
j∈N (i)

Ψ
′
2i +Ψ

′
2 j

2
(v j − vi)−

Ψ
′
1i

α
(J11iui + J12ivi + J23i) (3.41)

Here Ψ
′
1i = Ψ

′
1i(w

T
i Jρiwi), Ψ

′
2i = Ψ

′
2i(|∇3wi|2), and i denotes a certain pixel in the image.

Jnm is the structure tensor Jρ(∇3I). The solution for the simultaneous equations in 3.40 is
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non-trivial, as they are non-linear. To solve such a system of equations, nested fixed-point
iteration is used. In the inner loop Ψ

′
is kept fixed and the equations are solved to determine

u and v. Several numerical schemes can be employed for this purpose such as Successive-
Over Relaxation (SOR) [155]. The values obtained for (u,v) are then used to update Ψ

′
.

The SOR iteration step was given in [12] as follows:

uk+1
i = (1−ω)uk

i +ω
∑ j∈N −(i)

Ψ
′
2i+Ψ

′
2 j

2 uk+1
j +∑ j∈N +(i)

Ψ
′
2i+Ψ

′
2 j

2 uk
j −Ψ

′
1i

h2

α
(J12ivk

i + J13i)

∑ j∈N (i)
Ψ
′
2i+Ψ

′
2 j

2 +Ψ
′
1i

h2

α
J11i

(3.42)

vk+1
i = (1−ω)vk

i +ω
∑ j∈N −(i)

Ψ
′
2i+Ψ

′
2 j

2 vk+1
j +∑ j∈N +(i)

Ψ
′
2i+Ψ

′
2 j

2 vk
j −Ψ

′
1i

h2

α
(J21iuk+1

i + J23i)

∑ j∈N (i)
Ψ
′
2i+Ψ

′
2 j

2 +Ψ
′
1i

h2

α
J22i

(3.43)

3.7 Preliminary Results

The main aim of the Preliminary experiments was to compare the local and global optical
flow methods. These experiments were carried out at an early stage of the research 3. A
further experiment and investigation is presented in Section-5.1 of Chapter-5. The CLG op-
tical flow was implemented in MATLAB, further details on the final implementation can be
found in Section-5.1.1. The collection of images used here are taken from a video sequence
with a frame rate of 25 frame/second 4. Figure-3.34 shows two images taken from this se-
quence. Those two images were used as input to the local, global and the CLG optical flow
algorithms. In these preliminary experiments the performance of the three algorithms was
qualitatively assessed by investigating the flow field visualisation.

3 These preliminary results were published in a paper and can be found in Appendix-B
4 Video source: http://datasetfor.org/

http://datasetfor.org/
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Fig. 3.34 FootballMatch image sequence.
Left: Image taken at time t. Right: Image taken at time t+1.

In Figure-3.35 the visualisation of the output from the local method is compared with the
flow field of the CLG algorithm. By analysing both flow fields qualitatively, it can be seen
that the overall view in the case of the CLG optical flow has better quality than that for the
global flow case. Where the displacement field estimated using the CLG method is smoother
and less affected by noise. Again all this analysis is done qualitatively, further quantitative
results are shown later in Chapter-5. On the other hand the local method does not result in a
dense flow field. In general, the optical flow field in the CLG case is more obvious around
the visible motion field, while in global methods the results are more noisy due to the nature
of such algorithms. As for the local method, and as pointed out earlier, the flow field is not
dense. A further investigation is done by showing a zoomed-in area of the results in order
to clearly analyse the results.

Fig. 3.35 A comparison of the optical flow field computed in the global and CLG cases.
Left: Optical flow field obtained using Global method. Right: Optical flow field obtained

using CLG method.

In Figure-3.36 next a comparison of zoomed-in versions of the estimated flow field using
the three methods.
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Fig. 3.36 Optical flow zoom-in comparison.
Left: Zoomed-in local flow field. Middle: Zoomed-in global flow field. Right: Zoomed-in

CLG flow field.

3.8 Improving Edge-preserving in CLG Optical Flow

The initial results in the previous section were obtained using the original CLG optical
flow method [12]. The data term used in the CLG method uses a smoothed version of the
intensity values of the image, which results in a more robust calculation. However, the use of
Gaussian smoothing in the data terms introduces blurriness which becomes apparent at the
edges. In order to improve the quality of the estimated displacement fields, and to improve
edge-preserving performance, further experiments are conducted using an improved version
of the CLG. In the proposed improved version linear filtering is replaced with a non-linear
edge preserving filter, that is the bi-lateral filter [60], [59]. The use of the bi-lateral filter
here is similar to that proposed in [4], however in the current case it is applied to the CLG
algorithm [12]. In this section a formulation of an improved CLG optical flow method is
presented, this version is based on the used of bi-lateral filtering to obtain an edge-preserving
structure tensor. Experiments are presented in Chapter-5 to illustrate the improvement that
this method gives in image registration over the global method of Horn-Schunck [1].

The bilateral filter was discussed in Section-3.2.2, the kernel weights for this filter varies
according to the spatial distance from the pixel and also according to pixel value similarity.
To improve the CLG performance, it is proposed to replace the Gaussian filter in Equation-
3.38 with the bi-lateral filter kernel, hence the equation becomes:

EHS =
∫

Ω

[wTJb f (∇3I)w+α|∇w|2] dxdy (3.44)

where Jb f (∇3I) is the structure tensor obtained using the bilateral filter kernel [4], and can
be written following Equation-3.20 as follows:
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Jb f = kb f ∗ J0.

The derivation of the Euler-Lagrange equations is similar to the Gaussian CLG optical flow,
which results the following sets of equations:

0 = ∑
j∈N (i)

Ψ
′
2i +Ψ

′
2 j

2
(u j −ui)−

Ψ
′
1i

α
(Jb f 11iui + Jb f12ivi + Jb f13i) (3.45)

0 = ∑
j∈N (i)

Ψ
′
2i +Ψ

′
2 j

2
(v j − vi)−

Ψ
′
1i

α
(Jb f11iui + Jb f12ivi + Jb f23i) (3.46)

The non-linearity in this system of equations makes the solution difficult. However this can
be solved by applying nested fixed-point iterations similar to Equation-3.42, and Equation-
3.43. The outer iteration updates Ψ′, while the inner iteration updates the values of u, and
v.

uk+1
i = (1−ω)uk

i +ω
∑ j∈N −(i)

Ψ
′
2i+Ψ

′
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′
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α
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(3.47)
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′
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h2

α
Jb f22i

(3.48)

3.9 Summary

In this chapter the relation between image registration and optical flow was explored. A
CLG optical flow method for displacement field estimation was used for image registration.
In addition to that an improved CLG method is proposed which replaces the Gaussian filter-
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ing in the data term with an edge preserving bi-lateral filter. The chapter included also the
background theory necessary to implement any optical flow algorithms. This includes some
basic and fundamental concepts such as filtering and image resizing, in addition to some
more complex notions such as structure tensor.

Some initial results are reported in this chapter, including some preliminary comparison for
image registration using the local, global and CLG optical flow. Further experiments are
reported in Chapter-5. These experiments are designed to highlight the improved perfor-
mance of the bi-lateral CLG optical flow and compare the results with its counterpart the
global optical flow proposed by Horn-Schunk [1].



Chapter 4

Steered-L1 Norm for Optical Flow
Calculation

There are two main components that can be identified in the energy function used to estimate
optical flow (Equation-2.1). The first is the data term which is based on the assumption
of unchanged illumination. The second is the smoothness or the regularity term which is
based on the assumption that the flow field is smooth or piecewise smooth in nature. More
specifically the flow field is piecewise smooth, therefore the smoothness term should be
chosen carefully to characterise this property of the flow field. Several smoothness terms
can be used in the computation of optical flow, among those is the piecewise robust L1

norm. Despite its plausible characteristics, the L1 norm is not without its problems. The L1

norm is not continuously differentiable, this issue was addressed in the Total-Variation dual
algorithm TV −L1 presented by Zach et al. [22].

One of the main advantages of the inclusion of a smoothness term in global variational
optical flow is the filling-in effect that such algorithms demonstrate (see Section-1.3, 2.2).
Unlike the local method, a flow field can be estimated at a certain point in global methods
even if no information is available at that point of the image. In this case the flow field
estimation is induced from the surrounding neighbourhood information available there. The
L1 norm provides a good filling-in performance. In addition to that the L1 norm has an
excellent performance in terms of preserving edges. The penalisation of this norm allows
for discontinuities in the flow field. However, the filling-in effect decreases near edges as
the penalisation decreases. This happens isotropically, in other words the filling-in effect
decreases along motion boundaries.

In this chapter, an improved L1 smoothness term is proposed that can be considered anisotropic
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in terms of penalisation near image edges. The L1 is steered according to local image struc-
tures. The direction of the regularity term is adapted to local image structure, while the
penalisation magnitude is adapted to the flow field itself. The regularity is decomposed
into components orthogonal and along image edges, hence encouraging the filling-in ef-
fect [15], [124], [11].

This chapter includes the following main sections: a section of introduction to dual TV −L1

optical flow algorithm [22]. A section discussing the influence of different regularity terms
on the calculation of optical flow; a section introducing the proposed steered-L1 norm regu-
larity term; a section on the derivation of a robust data term to work in the dual formulation
minimisation, which is inspired by the work of Brox et al. [2].

4.1 Total Variation Optical Flow

The TV −L1 smoothness term can handle discontinuities better than the L2 norm used by
Horn-Schunck [1]. However, this term is not continuously differentiable. Zach et al. [22]
proposed a dual formulation to calculate optical flow based on the numerical scheme pre-
sented by Chambolle [91] that was proposed to solve the ROF total variation based image
denoising [63]. The optimisation problem is split into two optimisation steps using an aux-
iliary variable z which is a close approximation for the displacement field u. Starting from
the non-linearised data constancy term, the energy function can be written as:

E =
∫

Ω

(|I2(x+u)− I1(x)|+ |∇u|)dx (4.1)

I2 is then linearised:

I2(x+u) = I2(x+u0)+(u−u0)∇I2(x+u0) (4.2)

where u0 is the displacement initialisation. In the C2F framework u0 is the propagated
displacement from the previous pyramid layer, and it has a value of (0,0) in the first pyramid
layer. In the latter layers, the value of u0 is the initial value of the displacement field that was
computed in the previous layer of the pyramid (up-scaled to the current layer). To further
illustrate u0, let δu be the displacement computed at a certain layer of the C2F pyramid, then
the total displacement can be expressed as (u = u0 +δu), in other words the displacement
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is equal to the displacements computed in the previous pyramid layer plus the displacement
computed at the current layer. Equation-4.1 becomes:

E =
∫

Ω

( |u I2x + I2(x+u0)−u0 I2x − I1|+ |∇u| )dx (4.3)

where I2x = (I2x, I2y) are the image gradients in the x, and y directions. The auxiliary
variable (z = (zx, zy)) is introduced at this point:

E =
∫

Ω

( Eprimal︷ ︸︸ ︷
α|ρ(z)|+ 1

2θ
(u− z)2 + |∇u|︸ ︷︷ ︸

Edual

)
dx (4.4)

where θ is a small constant, and α is the weight constant of the data term, this weight is
manually tuned to give the best performance (A process similar to the one found in 5.2.2).
This Equation is similar to Equation-4.1 but with the added term 1

2θ
(u−z)2, which is added

to decouple the minimisation problem into two sub-problems. The terms I2(x+u0)− (u−
u0)I2x − I1 in Equation-4.3 is denoted as the residual ρ(u) in the current equation. An
alternating primal-dual formulation is adopted to minimise the previous energy function. In
the dual step:

Edual =
∫

Ω

( |∇u|+ 1
2θ

(u− z)2 )dx (4.5)

where this is the dual problem obtained from Equation-4.4 as indicated using the braces.
The aim of the minimisation of this equation if to find the minimum u, while the auxiliary
variable (z = (zx,zy)) is fixed. The minimisation process can be done in several ways, such
as obtaining the Euler-Lagrange equations, or by applying the divergence theorem[22], [4],
[23], [91], which leads to the following equation in the x direction:

u = zx −θ div pu (4.6)

and similarly for the displacement in the y direction:

v = zy −θ div pv (4.7)

where pu = (p1u, p2u) and pv = (p1v, p2v).
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The value of pu is found as proposed Chambolle [91] using a semi implicit gradient descent
algorithm as shown in the next equation (It is worth noting here that the derivation of the
dual step is shown in more details in Section-4.3.1 as it is core part of the algorithm proposed
in this thesis).

pk+1
u =

pk
u + τ.∇

(
div(pk

u)+ zx/θ

)
1+ τ.

∣∣∣∇(
div(pk

u)+ zx/θ
)∣∣∣ (4.8)

where τ ≤ 1/8, and p0 = 0. A similar equation can be obtained to find the minimisation in
the other direction (i.e for pv).

In the primal step, the aim is to minimise the following function:

Eprimal =
∫

Ω

(
1

2θ
(u− z)2 +α|ρ(z)| )dx (4.9)

The minimisation for this problem is performed via a thresholding step:

z = u+


αθ Ix i f : ρ(u)<−αθ I2

x
−αθ Ix i f : ρ(u)> αθ I2

x
−ρ(u)/Ix i f : |ρ(u)| ≤ αθ I2

x

(4.10)

The aim of this thresholding step is to minimise the residual:

ρ = wIx + It (4.11)

This is done by adding or subtracting displacements proportional to the image gradients.
Hence, z makes a leap if the magnitude of the residual ρ is bigger than a certain threshold,
and makes a small step if the residual is small. In this way the residual is allowed to vanish
gradually. One would expect that if wrong initialisation was used, the displacement could
converge to wrong minima and residuals would not be minimised.

4.2 Regularisation Influence on Optical Flow Performance

As discussed earlier, the smoothness term is a very important part of a variational optical
flow energy function. It was introduced based on the assumption that a flow field usually
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exhibits a smooth displacements, however this assumption does not always hold. Since
the optical flow field of a certain scene includes a collection of several motions, the result-
ing displacement field is piecewise smooth [66]. The marquee work of Horn-Schunck [1]
used quadratic function Ψ(s) = s2 (see Equation-2.12). This regularisation term severely
penalises diverse displacements of neighbouring pixels including the areas with motion
discontinuities. The effect of such penalisation is a blur across these discontinuities (see
Figure-1.8). Since the quadratic function penalises the flow field equally in all directions in
the same magnitude, it can be referred to as ‘homogeneous smoothness term’ [94]. Several
improved versions were proposed to enhance the performance of the regularisation in the
presence of a piecewise flow field. Ideally a piecewise function will suffice to characterise
the piecewise smooth displacement field. Isotropic, anisotropic flow and image driven reg-
ularisations were proposed by many researchers to improve the performance of smoothness
terms with regard to motion boundaries conservation. ‘Robust Statistics’ were used in opti-
cal flow calculations to improve the performance of the estimated field, in particular robust
statistical functions (estimators) were used in the regularisation terms to render these terms
less sensitive to outliers [64].

Robust statistics are concerned with the problem of estimation in the presence of out-
liers [156]. In the context of optical flow estimation, motion boundaries can be considered
as outliers present between two smooth displacement regions [157]. Several robust func-
tions with different performance were used to calculate a flow-driven optical flow field [13],
[12], [66], [2]. In this section a brief comparison between different regularisation terms is
presented. The discussed terms include the quadratic and first norm, in addition to several
robust estimators. These smoothness terms are juxtaposed and compared in terms of their
Influence Function. The influence function is proportional to the first derivative of the robust
function [157], [156], it helps to analyse the performance of such estimators and shows the
behaviour in response to a certain measurement [157].

Consider the quadratic function Ψ(s)= s2, with the derivative Ψ′(s)= 2s. Figure-4.1 depicts
the function with its derivative. By examining the figure, it can be seen that the influence
value increases linearly with the increase of s without bound [157]. In the context of optical
flow, this can be interpreted as follows: if a pixel exists near a motion boundary, the dis-
placement field gradient increases (s = ∇u), and since there is no limit for the influence, the
value of estimation will be affected by the motion field across these motion edges. Hence,
blurred motion boundaries are created.
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Fig. 4.1 Quadratic estimator and its influence function.
Left: Ψ(s). Right: Ψ′(s).

The Lorentzian robust function given in Equation-2.16 was also used in several optical flow
algorithms [64] [65] [66]. Its influence function (derivative) is given as follows:

Ψ
′(s) =

2s
2ε2 + s2 . (4.12)

Figure-4.2 demonstrates the estimator and its influence function.

Fig. 4.2 Lorentzian estimator and its influence function.
Left: Ψ(s). Right: Ψ′(s2).

The Lorentzian estimator is more robust than the quadratic function, as can be seen from the
figure. As the s value increases the influence function increases up to a certain level where
it starts decreasing. The threshold point where the function’s value starts decreasing is
determined by the value of the constant ε . In the case of optical flow this can be interpreted
as follows: the displacement field will be penalised increasingly as the gradients of the flow
field increases. At a certain threshold the penalisation starts decreasing which makes the
smoothing affect less severe in the calculation of the flow field. Hence, motion edges are
preserved more efficiently. Similarly for the Charbonnier estimator (see Equation-2.15),
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which has the following derivative [12]:

Ψ
′(s2) =

1√
1+ s2

ε2

. (4.13)

Figure-4.3 next depicts the function with its derivative:

Fig. 4.3 Charbonnier estimator and its influence function.
Left: Ψ(s). Right: Ψ′(s).

The Charbonnier penalisation degrades gradually, however it does not reach zero.

The L1 norm (Equation-4.14, 4.15) is another function that can be used as a smoothness
term of the optical flow energy function. It provides a robust penalisation, and the piecewise
nature of this function seems plausible for that purpose:

Ψ(s) = |x| (4.14)

Ψ
′(s) =

x
|x|

. (4.15)

Figure-4.4 next depicts the L1 norm and its derivative:
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Fig. 4.4 L1-norm and its influence function.
Left: Ψ(s). Right: Ψ′(s).

However, as discussed earlier, it is obvious from Figure-4.4 that the L1 norm is not continu-
ously differentiable.

The L1 norm can be approximated via the following function:

Ψ(s) =
√

s2 + ε2 (4.16)

where ε here is also a small constant. This constant helps to avoid dividing by zero in the
derivative. A small value of ε results in a slow convergence of the solution, while a high
value of this constant results a blurry boundaries. The influence of this robust estimator is
given by:

Ψ
′(s) =

s√
s2 + ε2

(4.17)

and the influence function can be depicted as follows:

Fig. 4.5 L1 norm approximation and its influence function.
Left: Ψ(s). Right: Ψ′(s).



4.2 Regularisation Influence on Optical Flow Performance 88

The influence function of this estimator (Figure-4.5) has a similar behaviour and influence
function for that of the L1 norm. An important question may arise here, which is why
the L1 norm is considered robust and can preserve motion edges in comparison to the
quadratic norm ? The answer to this question can be found by examining the influence
function of the L1 norm (Figure-4.4), where the piecewise nature of this function can char-
acterise the piecewise motion flow field. Unlike the quadratic penalisation function, the
influence of the increase of s in the L1 norm does not increase with the increase of s but
rather stays constant. This definitely means the L1 norm is a better smoothness term in
comparison with the quadratic penalisation where the influence increases without limits.

A modified version of the robust L1 norm was also used and is illustrated in the following
equations:

Ψ(s2) =
√

s2 + ε2 (4.18)

Ψ
′(s2) =

1
2
√

s2 + ε2
. (4.19)

This function offers a robust performance and was used in many optical flow algorithms [13],
[2], [84], [61]. Figure-4.6 next depicts the function with its derivative:

Fig. 4.6 Modified L1-norm approximation and its influence function.
Left: Ψ(s). Right: Ψ′(s).

Ideally the smoothness term should descend to zero near edges to decrease the penalisation
effect and to prevent the blurring at motion discontinuities. The Lorentzian and the Char-
bonnier estimators exhibit a good performance in this aspect where the influence decreases
at a certain point (although does not descend to zero). However one issue with such an es-
timator (including the robust estimator in Equation-4.16) is their sensitivity to the constant
ε .
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Indeed these robust estimators (e.g. Equations-4.18) performance is related to the choice of
the constant ε . A small value of ε would render the convergence of the function slow, while
large values of ε results in a blur across the motion boundaries as properties of the model
are lost [9], [22], [158]. Therefore the robust L1 norm is chosen here as the smoothness
term for the optical flow model. To overcome the problem of discontinuous differentiability
of the L1 norm, a dual minimisation framework was used in the optical flow algorithm
presented in [22]. In addition to the previous advantages, the dual minimisation offers
an easy implementation on modern graphic cards, enabling such algorithms to have a real
or near real-time performance [38], [22]. Although the performance speed is outside the
context of this thesis, it is useful to point out such a fact for future work if a real-time
version of this algorithm is required. In the next section an steered-L1 smoothness term is
presented.

4.3 Steered TV −L1 Regularisation for Optical Flow Cal-
culations

In the previous section the reason for choosing the L1 norm in the smoothness term was
discussed. However, the L1 norm suffers from several problems, some of them were pointed
out in the previous section. One of the issues that degrades the performance of the L1

norm is being isotropic, i.e. it penalises the flow field in all directions regardless of the
local structure [4]. Hence, at regions near motion boundaries, the penalisation of this norm
decreases in all directions. The decrease in penalisation allows for motion discontinuities at
such motion boundaries in order to preserve these edges. At the same time this decrease in
penalisation decreases the filling-in effect parallel (along) such boundaries. This eventually
reduces the accuracy of the estimated flow field.

Several researchers tried to address this issue by adding a diffusion filter in the smoothness
term. The reason for this addition is to reduce penalisation across image areas that corre-
spond to image edges, and to strengthen this along these edges to encourage the filling-in
effect [4], [23]. Several choices of diffusion filter D are available such as:

D(∇I) = e−(
|∇I|
β

)2

or:
D(∇I) =

1

1+( |∇I|
β
)2
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where β is a constant [93]. These diffusion filters are functions of the image gradients,
therefore the penalisation influence will depend on image edges rather than the flow field
edges. This produces over-segmentation in the estimated optical flow field. The reason for
this is that the magnitude of penalisation is varying with the magnitude of the image gradi-
ent. At relatively smooth areas of the image, the value of ∇I is relatively small and hence
D(∇I) is high, which allows for strong penalisation. However, as the pixels approach an
image edge, the opposite takes place and D(∇I) decreases, encouraging over-segmentation
in areas corresponding to image edges.

To overcome the over-segmentation issue it seems a good idea to vary the penalisation mag-
nitude in accordance to the flow field variation itself. In this section a steered L1 norm
optical flow algorithm is presented, which resembles the work of an anisotropic regularity.
The smoothness term is designed to preserve motion edges while encouraging the filling-in
effect (along such edges) that the global optical flow algorithms demonstrate.

The concept of ‘Steered image derivative’ was introduced earlier [159], [40]. The idea is
to steer image derivatives from the conventional x, and y directions to directions orthogonal
to, and aligned with local image structure. This can be formulated as:

Io = cosφ .Ix + sinφ .Iy (4.20)

Ia =−sinφ .Ix + cosφ .Iy (4.21)

where φ is the angle of the first eigenvector and it is obtained via the structure tensor matrix.
Equation-4.20, and Equation-4.21 can be written in the following compact form:

Is = eTIx (4.22)

where Is ∈ {Io, Ia} are the image derivatives orthogonal to Io and aligned with Ia image
structures, and e ∈ {e1,e2} are the two eigenvectors of the structure tensor. The image
structure is obtained via the structure tensor discussed earlier in Section-3.3. Sun et al. [11]
used this to calculate optical flow in the discrete setting, they combined the image and flow-
driven in one smoothness term. Later, the idea was picked-up by Zimmer et al. [15], [67]
and used this combination in their smoothness term to improve optical flow performance
and edge conservation. In their paper they used robust estimators in the smoothness term.

Starting from the image structure tensor (see Equation-3.20), two orthonormal eigenvec-
tors can be obtained from this matrix. The first eigenvector pointing orthogonal to the
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image structure (cosφ ,sinφ), and the other along these structures (−sinφ ,cosφ). Figure-
4.7 shows the two eigenvectors at a certain point near an image edge, for a structure tensor
which was obtained using a 5 × 5 Gaussian filter. The first line plotted in green is the
eigenvector corresponding to the highest eigenvalue and it is pointing orthogonally to the
predominant image structure (edge). The second line plotted in red is the other eigenvector
and it is aligned with the image structure.

Fig. 4.7 Eigenvectors directions of a structure tensor.
The green line corresponds to the first eigenvector, while the red line corresponds to the

second eigenvector.

The aim of the optical flow algorithm presented here is to minimise the following function:

E =
∫

Ω

(
Edata(I1, I2)+Esmooth(u,∇u, I1)

)
. (4.23)

The smoothness term used in this algorithm is the L1 norm which is not continuously dif-
ferentiable. Therefore the minimisation follows the dual formulation that was proposed by
Zach et al. [22] and discussed earlier in Section-4.1. To this end the auxiliary variable z is
introduced, and the minimisation problem takes the following form:

E =
∫

Ω

(
αEdata(I1, I2)+

1
2θ

(u− z)2 +Esmooth(u,∇u, I1)
)

(4.24)

where z and θ are defined in Section-4.1, and α is the data term weight in this formula. The
problem is broken down into two minimisation steps, a dual step (Equation-4.5), and a pri-
mal step (Equation-4.9). In the following subsection, a detailed discussion for minimisation
of the data and smoothness terms for this equation is presented.
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4.3.1 The Dual Step (Smoothness Term)

The aim of the dual step is to minimise u while keeping z fixed. The dual equation can be
re-written in accordance with the flow directions u and v in the following form [11], [15]:

Edual =
∫

Ω

(
|∇u|+ 1

2θ
(u− zx)2+

|∇v|+ 1
2θ

(v− zy)2
)
.

Here the steered TV −L1 regularity term is presented. The two orthonormal eigenvectors
of the structure tensor e1 and e2 are obtained. A modified version of the smoothness is
proposed and the dual equation is written as follows [11], [15], [67]:

Edual =
∫

Ω

(
|eT∇u|+ 1

2θ
(u− zx)2+

|eT∇v|+ 1
2θ

(v− zy)2
) (4.25)

where:

eT =

[
cosφ sinφ

−sinφ cosφ

]
.

In this way the directions of the smoothness term is adapted to the direction of the local im-
age structure, while the magnitude of the penalisation if adapted to the flow field itself [15].
The minimisation of the dual step (Equation-4.25) is non-trivial, this is due to the non con-
tinuous differentiability of the L1 norm.

To solve the minimisation, Euler-Lagrange equations are obtained (see Equation-3.33, 3.34).
The first equation obtained is the following [4]:

−div
(
eT.

∇u
|∇u|

)
+

1
θ
(u− zx) = 0 (4.26)
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Let pu =
∇u
|∇u| , hence:

−div
(
eT.pu

)
+

1
θ
(u− zx) = 0 (4.27)

which can be re-written as follows:

u = θ .div(eT.pu)+ zx (4.28)

where pu = (p1
u, p2

u). It follows that:

pu.|∇u|−∇u = 0, |pu|6 1 (4.29)

Substituting Equation-4.28 in Equation-4.29, the following equation is obtained:

pu.
∣∣∣∇(

div(eT.pu)+ zx/θ
)∣∣∣−∇

(
div(eT.pu)+ zx/θ

)
= 0. (4.30)

Adding pu to both sides of the above equation yields the following fixed-point iteration to
find pu:

pk+1
u =

pk
u + τ.∇

(
div(eT.pk

u)+ zx/θ

)
1+ τ.

∣∣∣∇(
div(eT.pk

u)+ zx/θ
)∣∣∣ (4.31)

where k is the iteration count, and τ is the step size. In the same way pv can be obtained,
and it is calculated using the following fixed-point iteration:

pk+1
v =

pk
v + τ.∇

(
div(eT.pk

v)+ zy/θ

)
1+ τ.

∣∣∣∇(
div(eT.pk

v)+ zy/θ
)∣∣∣ . (4.32)

The terms eT.pk
u, and eT.pk

v can be replaced by the alternative notations psu, and psv, where:

psu = eT.[p1u, p2u]
T

psv = eT.[p1v, p2v]
T
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Hence, Equation-4.31, and Equation-4.32 can be written in the following way:

pk+1
u =

pk
u + τ.∇

(
div psu + zx/θ

)
1+ τ.

∣∣∣∇(
div psu + zx/θ

)∣∣∣ . (4.33)

pk+1
v =

pk
v + τ.∇

(
div psv + zy/θ

)
1+ τ.

∣∣∣∇(
div psv + zy/θ

)∣∣∣ . (4.34)

4.3.2 Data Fidelity Term

Several data terms were previously proposed in numerous algorithms. One of the first mod-
ules was the linearised data fidelity term of Horn-Shuck [1], which is based on the assump-
tion of brightness constancy between images. However this assumption usually gets violated
due to illumination changes. To cope with such changes several techniques can be followed.
For example structure-texture decomposition can be used to mitigate the effect of illumina-
tion changes that are attributed to shading reflection and shadows [14], [4]. Alternatively
image derivatives can be added to the data fidelity term to increase robustness against illu-
mination changes [2]. In addition to incorporating the image derivative, the proposed data
term of Brox et al. [2] postponed data term linearisation in order to enable the capturing of
large displacements which offered high accuracy in the results. In the dual minimisation
formulation, structure-texture decomposition was used in several algorithms while there is
no attempt to use the image gradient in the data term.

As stated earlier, the focus of this thesis is on the performance of the proposed steered-L1

norm smoothness term. Additionally a data term which incorporates image derivatives in
the data fidelity term is used here. Although image derivatives were used before to improve
robustness against illumination changes, its formulation was not derived in the dual min-
imisation framework before. Braux-Zin et al. [98] proposed a similar dual formulation to
compute optical flow. However, an intrinsic difference is that they use AD-Census in the
data fidelity term [99]. In this subsection a derivation for a data term is presented, this term
includes the data fidelity and image derivatives which will work under the dual formulation.

Unlike the smoothness term which uses the L1 norm, the data term uses an L2 norm. The fo-
cus of the current algorithm is proposing an L1 norm in the smoothness term. As for the data
term, it was found in previous algorithms that the L2 norm gave a good results [2]. Hence
L2 norm is used in the current data fidelity term. Starting from the non-linearised version of
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the data term, an image derivatives term is inserted, hence the data term of Equation-4.24 is
written as follows:

EPrimal =
∫

Ω

((
α|I2(x+u)− I1(x)|2 + γ|∇I2(x+u)−∇I1(x)|2

)
+

1
2θ

(u− z)2
)

(4.35)

where γ is the weight for image gradients. This Equation is the decoupled data term taken
from Equation-4.24. It consist of the intensity value difference (|I2(x+u)− I1(x)|2), and
the gradient value difference (|∇I2(x+u)−∇I1(x)|2). In addition to the decoupling term
( 1

2θ
(u− z)2). The aim is to minimise the intensity difference between the first image and

the warped second image. The warped second image can be written in the following form:

I2(x+u) = I2(x+u+u0 −u0)

where u0 is the initial displacement of the pixels. The linearised version of the image inten-
sity difference can be written in the following form:

I2(x+u) = I2(x+u0)+(u−u0)∇I2(x+u0).

Hence, the intensity difference term in Equation-4.35 can be written as follows:

I2(x+u)− I1(x) = It0 +(u−u0)∇I2(x+u0) (4.36)

where It0 = I2(x+u0)− I1(x) is the initial intensity difference between the first image and
the warped second image. The image gradient term can be written as follows:

∇I2(x+u)−∇I1(x) =
(
I2x(x+u), I2y(x+u)

)T (4.37)

Similar to Equation-4.36, image gradient can be approximated to have the following form:

I2x(x+u) = I2x(x+u0)+(u−u0)∇I2x(x+u0). (4.38)

I2y(x+u) = I2y(x+u0)+(u−u0)∇I2y(x+u0). (4.39)
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Plugging all these terms into Equation-4.35:

Edata =
∫

Ω

(
α
∣∣It0 +(u−u0)∇I2

∣∣2 + γ
∣∣(Itx +(u−u0)∇I2x

)
,
(
Ity +(u−u0)∇I2y

)∣∣2)+
1

2θ
(u− z)2

(4.40)

With the following abbreviations used:

I2x =
∂

∂x
I2(x+uo) (4.41)

I2y =
∂

∂y
I2(x+uo)

Itx =
∂

∂x
I2(x+u0)−

∂

∂x
I1(x)

Ity =
∂

∂y
I2(x+u0)−

∂

∂y
I1(x)

The solution of the primal step of Equation-4.24 requires the minimisation of EPrimal(z),
where:

EPrimal(z) =
∫

Ω

(
α
∣∣It0 +(z−u0)∇I2

∣∣2 + γ
∣∣(Itx +(z−u0)∇I2x

)
,
(
Ity +(z−u0)∇I2y

)∣∣2)+
1

2θ
(u− z)2

(4.42)

Equation-4.42 can be solved by setting the derivatives with respect to zx, zy equal to zero.
The derivation with respect to zx yields the following equation:

[(
αI2

2x + γI2
2xx + γI2

2xy
)
+

1
θ

]
zx

+
[
αI2xI2y + γI2xy(I2xx + I2yy)

]
zy

=−
(
αrt0I2x + γrtx0I2xx + γrty0I2xy

)
+

u
θ
.

(4.43)
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Similarly a derivation with respect to zy yields the following equation:

[(
αI2xI2y + γI2xxI2xy + γI2xyI2yy

)]
zx

+
[(

αI2
2y + γI2

2xy + I2
2yy

)
+

1
θ

]
zy

=−
(
αrt0I2y + γrtx0I2xy + γrty0I2yy

)
+

v
θ
.

(4.44)

with the following abbreviation used:

I2xx =
∂ 2

∂x2 I2(x+uo) (4.45)

I2yy =
∂ 2

∂y2 I2(x+uo)

I2xy =
∂

∂y
∂

∂x
I2(x+uo)

rt0 = It0 −u0I2x − v0I2y

rtx0 = Itx −u0I2xx − v0I2xy

rty0 = Ity −u0I2xy − v0I2yy

4.3.3 Robust Data Term

The data term in the optical flow energy function is based on the assumption that the illu-
mination does not change between successive images. As discussed earlier this assumption
is not always valid. In order to improve the robustness of the data term in the presence of
such changes, a robust penalisation function is used to mitigate the penalisation. A robust
function of the form Ψ(s2) =

√
s2 + ε2 is used in the data term (see Equation-4.35), this

renders the data term to have the following form:

EPrimal =
∫

Ω

(
α Ψ

(
|I2(x+u)− I1(x)|2

)
+ γ Ψ

(
|∇I2(x+u)−∇I1(x)|2

)
+

1
2θ

(u− z)2
) (4.46)

The data and the gradients terms are linearised (see Equation-4.40, Equation-4.41). Hence,
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Equation-4.46 is written in the following way:

Eprimal =
∫

Ω

α Ψ

(∣∣It0 +(u−u0)∇I2
∣∣2)+ γ Ψ

(∣∣(Itx +(u−u0)∇I2x
)
,
(
Ity +(u−u0)∇I2y

)∣∣2))+
1

2θ
(u− z)2

(4.47)

The minimisation is found by setting the derivatives of Eprimal(z) with respect to zx, zy equal
to zero in a similar way as was done in the previous section (Section-4.3.2). Equation-4.47
is written as follows:

Eprimal =
∫

Ω

α Ψ

(∣∣It0 +(z−u0)∇I2
∣∣2)+ γ Ψ

(∣∣(Itx +(z−u0)∇I2x
)
,
(
Ity +(z−u0)∇I2y

)∣∣2))+
1

2θ
(u− z)2

(4.48)

After finding the derivatives, a set of equations are obtained which can be easily solved to
find zx, zy. Analysing the derivative with respect to zx yields the following equation:

[
α Ψ

′
1.I

2
2x + γ Ψ

′
2(I

2
2xx + I2

2yx)+
1
θ

]
zx

+
[
α Ψ

′
1.I2xI2y + γ Ψ

′
2.I2xy(I2xx + I2yy)

]
zy

=−
[
α Ψ

′
1rt0I2x + γ Ψ

′
2rtx0I2xx + γ Ψ

′
2rty0I2xy

]
+

u
θ
.

(4.49)

Similarly derivation with respect to zy yields the following equation:

[
α Ψ

′
1.I2xI2y + γ Ψ

′
2I2yx(I2xx + I2yx)

]
zx

+
[
α Ψ

′
1.I

2
2y + γ Ψ

′
2.(I

2
2xy + I2

2yy)
]
zy

=−
[
α Ψ

′
1rt0I2y + γ Ψ

′
2rtx0I2xy + γ Ψ

′
2rty0I2yy

]
+

v
θ

(4.50)

where Ψ
′
is the derivative of Ψ, and the abbreviation in Equation-4.45 is used.
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Equation-4.49 and Equation-4.50 are two simultaneous equations. The unknown terms are
only zx and zy which are required to be found. The rest of the terms are already known and
can be computed in a straight forward manner. The values of zx and zy can be found via
any simultaneous equation solution method, such as Successive over relaxation [155] (used
in Section-3.39 to compute (u,v) in the CLG optical flow) or direct division as used in the
MATLAB implementation for this thesis. Here Ψ1,Ψ2 are defined as follows:

Ψ1 = Ψ

(∣∣It0 +(z−u0)∇I2
∣∣2)

Ψ2 = Ψ
(∣∣(Itx +(z−u0)∇I2x

)
,
(
Ity +(z−u0)∇I2y

)∣∣2)
Hence, optimisation for Equation-4.24 can be preformed in primal-dual steps. The aim of
the dual step is to minimise Equation-4.25, via fixed-point iteration of Equation-4.33, and
Equation-4.33. To solve the primal step, Equation-4.35 is minimised via point-wise solution
of Equation-4.43, and Equation-4.43.

4.3.4 Colour Realisation

The data term that has been used so far works with grey-scale images. Although grey-
scale images show good results in the estimation of optical flow [14], [2], the use of colour
images will improve the performance due to the richer photometric information they en-
compass [72], [73]. In RGB images, the colours are encoded in three values of Red, Green
and Blue. The RGB is an additive colour model, where the colour of each pixel is de-
cided based on combination values of these three colours [141]. Hence, the images can
be expressed in terms of these three channels, and can be written in the following way
I1(x,y) =

(
Ic1
1 (x,y), Ic2

1 (x,y), Ic2
1 (x,y)

)
, and I2(x,y) =

(
Ic1
2 (x,y), Ic2

2 (x,y), Ic2
2 (x,y)

)
. In this

section, the optical flow estimation is extended in order to handle colour images.

Colours in this space are represented in Cartesian coordinate system. Colours at each pixel
can be viewed as a combination of the three primary colours (i.e. Red, Green and Blue).
Images can be converted to their intensity values (grey-scale) as a weighted sum of the
three colour values. According to the recommendations of ITU-R BT.601-71 the following
weights are used:

Iintensity = 0.299∗R+0.587∗G+0.114∗B

1 International Telecommunication Union - Recommendations. BT.601-7 https://www.itu.int/rec/
R-REC-BT.601-7-201103-I/en

https://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
https://www.itu.int/rec/R-REC-BT.601-7-201103-I/en
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Where R, G, B are the three components (Red, Green, Blue). Images from the Middlebury
dataset are available in RGB colours. In order to make use of the additional information
conveyed in the three colour channels, it is possible to use the three channels to separately
estimate the minimisers of (zx, zy), as explained in this section.

The data term Equation-4.46 can be extended to incorporate the three colour channels in the
RGB colour model. A Robust data term is used here. This equation can be written in the
following form:

EPrimal =
∫

Ω

(
α Ψ

(
|Ic

2(x+u)− Ic
1(x)|2

)
+ γ Ψ

(
|∇Ic

2(x+u)−∇Ic
1(x)|2

)
+

1
2θ

(uc − zc)2
) (4.51)

where c ∈ {c1,c2,c3} are the three colour channels in the RGB colour model.

The minimisation for this equation is similar to the minimisation of the data term in the
grey-scale images case. Hence the minimisation is found by setting the derivatives with
respect to zx,zy equal to zero. The following set of equations are obtained, which can be
solved easily to find the values of zx,zy.

[
α (Ψc

1)
′
.(Ic

2x)
2 + γ (Ψc

2)
′
((Ic

2xx)
2 +(Ic

2yx)
2)+

1
θ

]
zxc

+
[
α (Ψc

1)
′
.Ic

2xIc
2y + γ (Ψc

2)
′
.Ic

2xy(I
c
2xx + Ic

2yy)
]
zyc

=−
[
α (Ψc

1)
′
rc
t0Ic

2x + γ (Ψc
2)

′
rc
tx0Ic

2xx + γ (Ψc
2)

′
rc
ty0Ic

2xy
]
+
( u

θ

)c
.

(4.52)

[
α (Ψc

1)
′
.Ic

2xIc
2y + γ (Ψc

2)
′
Ic
2yx(I

c
2xx + Ic

2yx)
]
zxc

+
[
α (Ψc

1)
′
.(Ic

2y)
2 + γ (Ψc

2)
′
.((Ic

2xy)
2 +(Ic

2yy)
2)
]
zyc

=−
[
α (Ψc

1)
′
rc
t0Ic

2y + γ (Ψc
2)

′
rc
tx0Ic

2xy + γ (Ψc
2)

′
rc
ty0Ic

2yy
]
+
( v

θ

)c
.

(4.53)

The values of (u,z) are replicated at each iteration to cope with the three channels of the
images, and thus to obtain (uc,zc). Additionally the values of (uc,zc) are averaged before
starting the dual step (see Section-4.3.1).
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4.4 Summary

In this chapter a steered-L1 norm is introduced. This norm can improve the performance of
the optical flow algorithm in terms of accuracy. The conventional total variation L1 norm
is isotropic in nature, hence it decreases penalisation at locations near motion edges. This
in fact decreases the filling-in effect along motion edges. This filling-in effect is one of
the properties of global optical flow algorithms, it enables the estimation of displacements
at points in untextured areas. The steered-L1 formulated in this chapter decreases penal-
isation across motion edges and increase it along these edges, this in effect improves the
filling-in effect and increase displacement field accuracy. The steering of the smoothness
term was done by multiplying with eigenvectors of the structure tensor of local image struc-
tures. Although eigenvectors of the structure tensor to improve the performance of optical
flow algorithms has been used before in other smoothness terms [15], adopting this idea
to the L1 norm is non-trivial. This is due to the fact that the L1 norm is not continuously
differentiable. Additionally, this chapter provided the formulation for a robust data term
with delayed linearisation, and the addition of an image gradient term to increase robust-
ness against illumination changes in a similar manner to the algorithm in [2] . This data
term is incorporated in primal-dual formulation.

Experiments on the proposed algorithm in this chapter are conducted in Chapter-5. The
experiments are designed to investigate each part of the proposed algorithm. Results of the
experiments are reported qualitatively using colour-coded results to enable visual inspection
of the estimated displacement field. Additionally results are reported quantitatively where
ground truth data are available.



Chapter 5

Experiments and Results

In the previous chapters several optical flow algorithms were investigated, and an improved
algorithm was proposed. In particular, a steered-L1 norm smoothness term was proposed
to improve the efficiency of the optical flow algorithm. The proposed steered-L1 norm di-
rectionally penalises the flow field depending on the orientation of image structures, and
with magnitude proportional to the magnitude of the flow field itself. This can also be
referred to as joint image-flow driven smoothness [15], which improves the edge conserva-
tion properties of the algorithm compared with the second order norm. In addition to that
the proposed enhanced smoothness increases the filling-in effect observed in global optical
flow algorithms, which leads to improved flow field estimation accuracy. Although similar
smoothness terms have been used, the contribution here is using it with the robust L1 norm.

In general the efficiency of optical flow algorithms are assessed using benchmark datasets,
and compared against each other using error metrics. Several datasets were used over pre-
vious years such as, the Middlebury dataset benchmark [6], and MPI-Sintel [150].

In this chapter several experiments are conducted to study the performance of the smooth-
ness term on the calculated flow field. Experiments are carried out using the Middlebury
dataset [6], and compared to other algorithms qualitatively using the colour code discussed
previously, and quantitatively via the error metrics benchmarks. This chapter is divided into
two sections. The first section is dedicated to investigate the image registration based on the
CLG optical flow method. Experiments conducted using this method demonstrate an im-
proved image registration method when compared with the global optical flow method [1].
In the second section, several experiments are used to demonstrate the performance of the
proposed optical flow method with the steered-L1 norm. Each experiment aims to highlight
the contribution that each constituent has made to the final method.
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5.1 CLG Image registration

In Chapter-3 an improved CLG optical flow algorithm was proposed, where a bi-lateral filter
is used to calculate the structure tensor resulting in an improved edge-preserving and accu-
racy of the calculated flow field. In this section experiments are conducted to demonstrate
the performance of image registration using the CLG method. The experiments here can
be considered as an extension and further investigation of the initial results demonstrated
in Section-3.7. Image registration using bi-lateral CLG optical flow is compared with the
registration of the global optical flow proposed by Horn-Schunck [1]. The Middlebury
benchmark [6] is used in these experiments.

5.1.1 Implementation

Algorithm-3 illustrates the implementation.

Algorithm 3: Implementation Algorithm of bi-lateral CLG optical flow.
Input: Images I1& I2,
number of pyramid layers L, current layer l,
flow at each warp (du,dv)
Create pyramid of images with 5 layer, and a ratio of 0.5;
initialization;
l=1; initialise (ul,vl) to (0,0) ;
while l 6 L do

Up-scale size of (ul−1,vl−1) to (ul,vl);
while No. of Warps 6 4 do

Warp I2l, I2x, I2y towards I1l, I1x, I1y;
while No. of fixed_point_iterations <= 5 do

Update Ψ′
1, Ψ′

2;
Calculate du,dv ;
Update the flow ul = ul +du, vl = vl +dv;

end
end
u = ul, v = vl;

end
Output: (Displacement field (u,v))
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The aforementioned algorithm is implemented in MATLAB. Image sequences are resized
several times to create the image pyramid, the minimisation is performed in a C2F frame-
work. Each layer of the pyramid is resized with a ratio of 0.5 of the previous image layer.
Images and displacement fields rescaling are done using bi-cubic interpolation. A structure
tensor is computed at every layer using a bi-lateral filter.

To compare the performance and the robustness of both optical flow algorithms, zero-mean
Gaussian noise is added to the image sequences with different variances. The displacement
fields are obtained using the aforementioned algorithms, then these displacement fields are
used to register the second image to the first image of the sequence. This is done by warping
the second image using the estimated displacement fields. For the warping process it is
important to point out that the images used are the original images (i.e without added noise),
this is because it is easier to visually investigate the registered image to be compared with
the reference image.

5.1.2 Results

Estimating Optical Flow

The first set of experiments are conducted to compare the performance of the two methods
(i.e. Horn-Schunck and the bi-lateral CLG optical flow). The following table illustrates the
AAE results for both methods of evaluation using Middlebury dataset [6].

Image sequence Horn-Schunck Bi-lateral CLG
RubberWhale 8.10 6.99
Dimetrodon 3.90 4.14
Urban2 6.20 8.46
Urban3 14.50 14.31
Venus 9.36 8.13
Grove2 4.02 2.94
Grove3 8.10 7.89
Hydrangea 7.72 7.50

Average 7.74 7.55

Table 5.1 AAE o comparison between Horn-Schunck and the implemented bi-lateral CLG

This table depicts the results obtained by applying the two methods to all the eight training
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sequences of the Middlebury dataset. The AAE is calculated as discussed earlier (Equation-
3.23) between the computed flow field and the ground truth. The smaller AAE value in-
dicates more accurate flow field computation, as these values mean that the estimated flow
field is closer to the ground truth. It can be seen in this table that the proposed bi-lateral
CLG yield better results in comparison with the Horn-Schunck method.

Image Registration Performance

In this section the performance of the image registration of the bi-lateral CLG is assessed,
and compared with image registration of the global method of Horn-Schunck [1]. The
CLG optical flow offers a more accurate and more robust method to estimate optical flow
displacement fields in the presence of noise. It is desired to test the robustness of the image
registration method. To this end zero-mean Gaussian noise is added to the image sequences.
The registration quality is then visually assessed using the results obtained by applying the
two methods.

To perform the registration, the dense optical flow field is calculated via the two methods.
The displacements field is then used to register the uncontaminated second image in the
sequence via bi-cubic warping. In Figure-5.1 a first image of an image sequence is shown,
this image is contaminated with a Gaussian noise with a variance of 0.005.

Fig. 5.1 DogDance image sequence with added noise.
Left: Original image. Right: Image with zero-mean Gaussian noise with variance of 0.005

added.

The optical flow displacement field is calculated for the contaminated image sequence. The
displacement field is estimated using both optical flow methods (i.e. Horn-Schunck and
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bi-lateral CLG). Then these displacements are used to register the second image (of the
sequence) to the first image. Figure-5.2 depicts the results of the registration.

Fig. 5.2 Image registration comparison of the two optical flow methods.
Images are registered using the estimated optical flow filed. Left: Horn-Schunck. Right:

Bi-lateral CLG.

To further investigate the difference, Figure-5.3 illustrates zoomed-in parts of the registered
images.

Fig. 5.3 Image registration comparison with zoomed-in image segments.
Images are registered using the estimated optical flow field.

Left: Original image. Middle: Horn-Schunck. Right: Bi-lateral CLG.
It can be noticed that images registered via bi-lateral CLG optical flow are more robust as

this method is able to preserve lines and edges.
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By examining the previous image, the differences between the images can be noticed. While
the image registered using the Horn-Schunck displacement field can be seen with blurry
edges, the image registered with the bi-lateral CLG is able to better preserve image edges.

Figure-5.4 shows a depiction of the results of registration using several images. The registra-
tion was implemented using displacement fields estimated via the two optical flow methods,
however, this time with a zero-mean Gaussian noise of variance of 0.05.

Fig. 5.4 Image registration comparison of several image sequences.
These images are contaminated with zero-mean Gaussian noise of 0.05 variance.

Left column: Original image. Middle column: Horn-Schunck. Right column: Bi-lateral
CLG.

Image registration has a wide application in image processing and computer vision, an ac-
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curate and robust registration is very important. Although the experiments conducted in this
chapter use images of general nature, further work can be carried out to include images of
certain type of registration. In addition to the use of the CLG optical flow, the CLG optical
flow is modified by using a bi-lateral filter to enhance the edge preserving performance of
the algorithm. An example of such applications is medical images, where image registration
is used to obtain deformable dense results. Noise can have a measurable effect on the results
of registration. In medical imaging, noise also can have a tangible effect on the results of
registration (for example Gaussian noise [160]). In this section experiments were carried to
illustrate the difference in the quality of registration compared to the Horn-Schunk optical
flow method. It is going to be interesting to apply this method on different types of images
such as medical images and to understand how it can improve the registration quality in
terms of noise robustness and edge preservation.

The size of the filter in the data fidelity term is important factor that affects the performance
of the algorithm. In the CLG algorithm that was proposed Bruhn et al. [12], the authors used
Gaussian filter in the data term. The size of the filter has an impact on the performance. A
small filter size (with small standard deviation) may not have the desired effect in terms
of illumination change robustness. On the other hand a large filter may include regions
from across motion boundaries, which may lead to over-smoothing of these boundaries. If
a bi-lateral filter is used, such as the one in the current experiments, this over-smoothing is
mitigated due to assigning lower weights for different colour pixels across the boundaries.
However these will still have effect on the computation, especially if the colours across the
boundaries are similar. In the current experiments the bi-lateral filter chosen has a 5× 5
kernel size with standard deviation of 2, and a standard deviation for the intensity similarity
of 5/3. Several parameters were tested, it was found that these parameters gave good results,
hence it was chosen for the experiments.

5.2 Steered-L1 algorithm

In this section several experiments are conducted1, and the purpose is to demonstrate the
performance of the proposed steered-L1 optical flow algorithm. In the first part of this sec-
tion, the implementation of this algorithm in MATLAB is discussed. This is followed by
experiments to demonstrate the effect of using the steered-L1 norm on the overall perfor-
mance of the algorithm (Section-4.3.1). Then experiments are conducted to demonstrate the
effect of using the robust data term in two cases, grey-scale and colour images (see Section-

1 The results of the steered-L1 are published in a recent paper at the WSCG 2016
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4.3.3, Section-4.3.4). In the following subsection a new intermediate filtering is presented
with the aim to improve the accuracy of optical flow estimation. Experiments show that
the performance of the optical flow algorithm proposed in this thesis is improved using the
extended intermediate filtering.

5.2.1 Implementation

In this section, the implementation of the algorithm with its variants is discussed. In the
first part, the implementation the total variation L1 optical flow is explained. In this imple-
mentation the data term used is the one proposed in Section-4.3.2, and the L1 smoothness
term [22]. In the second part the implementation of the steered-L1 is discussed.

L1 implementation

The implementation of the algorithm with its variants was done using MATLAB. Since the
algorithm is variational, only small displacements can be computed, hence minimisation
was performed under the C2F framework. A fine resolution image pyramid is used here
with 80 layers, and down-sampling ratio of each layer is 0.95 of the previous resolution.
The down-sampling is performed using bi-cubic interpolation, and the same interpolation
method is used for the displacement field up-sampling. The x and y first and second deriva-
tives are approximated via the filter kernel [−1, 9, − 45, 0, 45, − 9, 1]/(60) [12]. The
image derivatives are computed at each layer of the pyramid, the derivative used is the av-
erage of the derivatives of the first image and the warped second image, this step improves
the results [143]. The divergence and derivative for the variable p are approximated using
the three point kernel [−1, 0, 1].

For each pyramid layer six warps are applied, for each warp a median filter is used to remove
outliers in the computed flow field. Algorithm-4 illustrates the implementation.
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Algorithm 4: Implementation of L1 norm with data term proposed in Section-4.3.2.
Input: Images I1& I2, number of pyramid layers L = 80, current layer l , number of warps

w=6
number of iterations per warp It = 20
Create pyramid of images with L layer, and a ratio of 0.95;
initialization;
l=1;
initialise (ul,vl) to (0,0) ;
while l 6 L do

Up-scale size of (ul−1,vl−1) to (u0,v0);
while No. of warps 6 w do

Warp I2l, I2x, I2y towards I1l, I1x, I1y;
while No. of iterations 6 It do

Calculate the auxiliary variable zx,zy;
Use these values to calculate the flow ul,vl;
Update pu, pv;

end
Use median filter to remove outliers from ul,vl;

end
end
Output: (Displacement field (u,v))

Steered-L1

The implementation of the steered-L1 is similar to the previous implementation with some
differences. At each pyramid layer the structure tensor (see Equation-3.20) is computed. In
order to compute the derivatives to obtain Equation-3.20 a 5×5 optimised derivative filter
D [40] is used:

D = (0.0234,0.2415,0.4700,0.2415,0.0234)T ∗ (0.0838,0.3323,0,−0.3323,−0.0838)
(5.1)

The Gaussian kernel used for the structure tensor computation is a 6 × 6 with standard
deviation of 2. After calculating the structure tensor, eigen-decomposition is performed to
find the two eigenvectors. To obtain psu, psv the following filter kernels [161] are used to
compute pu, pv:
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hx =
1

32

 3 0 −3
10 0 −10
3 0 −3

 (5.2)

hy =
1
32

−3 10 −3
0 0 0
3 10 3

 (5.3)

where hx,hy are the kernels to estimate the x,y derivatives respectively. The implementation
of the steered-L1 is illustrated in Algorithm-5.

Algorithm 5: Implementation Algorithm of steered-L1 norm.
Input: Images I1& I2, number of pyramid layers L = 80, current layer l , number of warps

w=6 , number of iterations per warp It = 20
Create pyramid of images with L layer, and a ratio of 0.95;
initialization;
l=1;
initialise (ul,vl) to (0,0) ;
while l 6 L do

Up-scale size of (ul−1,vl−1) to (u0,v0);
Find structure tensor of the first image I1;
while No. of warps 6 w do

Warp I2l, I2x, I2y towards I1l, I1x, I1y;
while No. of iterations 6 It do

Calculate the auxiliary variable zx,zy;
Use these values to calculate the flow ul,vl;
Calculate psu, psv, use them to find pu, pv;

end
Use median filter to remove outliers from ul,vl;

end
end
Output: (Displacement field (u,v))
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5.2.2 Parameters Variations

It is important to carefully select the parameters and weights of different terms in any optical
flow algorithms. Parameters affect the performance of the algorithms in terms of accuracy
of flow field estimation. Therefore it is crucial to find the parameters values which gives the
best results prior to assessing the work of any algorithm. To this end several experiments
were conducted to find the optimum parameters for the algorithm. The focus in this sec-
tion is to study the effect of varying several parameters on the performance of the current
algorithm. Namely α which is the data term weight parameter (see Equation-2.1), and γ

which is the weight of the image gradients in the data term (see Equation-4.35). The data
term used here is the one derived in this thesis (see Section-4.3.2). The Average End-Point
Error (AEPE) is used here rather than the Average Angular Error (AAE). As discussed in
Section-3.4, AAE does not penalise error in a uniform way, where large errors are penalised
less severely.

In the first set of experiments the value of α is varied and the resulting AEPE is calculated.
Three image sequences are used here taken from the Middlebury dataset [6], and depicted
here in Figure-5.5.

Fig. 5.5 First frames of three image sequences.
These are frame-10 of the three images sequences. Experiments are conducted using these
sequences to illustrate the effect of parameter varying on the optical flow accuracy results.

Three different image sequences with known ground truth are used. Table-5.2 illustrates the
results obtained from these experiments.
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α γ RubberWhale Urban2 Grove2
1 1 0.12 0.52 0.19
1/10 1 0.10 0.50 0.19
1/100 1 0.10 0.50 0.20
1/500 1 0.10 0.49 0.20
1/1000 1 0.10 0.50 0.20
1/2000 1 0.10 0.49 0.20
1/3000 1 0.10 0.49 0.20
1/4000 1 0.10 0.49 0.20
1/4700 1 0.10 0.49 0.20
1/5000 1 0.10 0.50 0.20

Table 5.2 AEPE differences with varied α .
The value of γ was fixed to examine the effect of varying α .

It can be seen by examining the previous table that a changes in α result in a small or
negligible change in AEPE. This indicates that the algrrithm is robust to changes in α . Two
decimal place numbers are used here. Now for the same parameters the value of γ is varied,
the results are illustrated in Table-5.3 next. For the sake of illustration the weight α is fixed
to a value of 1

4000 .

α γ RubberWhale Urban2 Grove2
1/4000 10 0.13 0.56 0.24
1/4000 5 0.12 0.54 0.23
1/4000 2 0.11 0.51 0.21
1/4000 1 0.10 0.49 0.20
1/4000 1/10 0.10 0.73 0.18
1/4000 1/100 0.25 1.61 0.21
1/4000 1/500 0.46 7.15 0.27

Table 5.3 AEPE differences with varied γ .
The value of α is fixed at 1

4000 to examine the effect of varying γ .

A good results can be obtained at value of γ = 1, i.e. the weight of γ is equal to the smooth-
ness weight, while increasing or decreasing the value reduces the accuracy of the results.
Small values of α seems to give a good results.

As discussed earlier, tuning the parameters (weights) is very important to ensure that the best
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performance of the algorithm is achieved. These parameters control the rate of contribution
of each element of the equation on the results. For example higher weight of the intensity
values term and lower weight for the gradient term results in trapping in local minima as it
is possible to have a lot of intensity values similarities. On the other hand, lowering both
weights for the intensity and gradients terms, results in a smoother flow field, including
smoothness across motion boundaries, as lowering the data term weight (intensity values
term + gradient term) gives more effect for the smoothness term.

5.2.3 Steered-L1 Norm

The experiments conducted in the previous section used the proposed data term that in-
cludes image gradient to improve robustness against illumination changes, and the smooth-
ness term used is the total variation L1 norm as was proposed in [22], [14]. Tests in the
current section are designed to investigate the performance of the steered-L1 norm, which
is the algorithm proposed in Section-4.3. Experiments are conducted using the Middle-
bury dataset [6], and the parameters are set to the following values

(
α = 1

4700 , γ = 1, θ =

0.1, τ = 0.1
)
. The value of AEPE is obtained and compared in both cases, the total varia-

tion L1 and the proposed steered-L1 smoothness. In the proposed smoothness the direction
of penalisation is steered by local image structures, while the magnitude is adapted with
the flow magnitude. This results in an improved filing-in effect, and in turn decreases the
average end-point error (AEPE). Additionally, the experiments from this point onward uses
the robust data term discussed in Section-4.3.3. Table-5.4 next demonstrates the results of
AEPE obtained by running both algorithms on the Middlebury dataset. In total there are
eight training image sequences in the Middlebury benchmark, the results in the following
table include the results obtained using all these training sequences.



5.2 Steered-L1 algorithm 115

Image L1 steered-L1

RubberWhale 0.10 0.08
Dimetrodon 0.19 0.18
Urban2 0.66 0.63
Urban3 0.59 0.55
Venus 0.30 0.30
Grove2 0.19 0.17
Grove3 0.59 0.58
Hydrangea 0.18 0.16

Average 0.35 0.33

Table 5.4 AEPE o results of isotropic and anisotropic L1 smoothness.

By examining the previous table, it can be seen that the use of the proposed smoothness term
improved the optical flow estimation. It is worth mentioning here that a small reduction in
AEPE results in a big difference in the ranking of Middlebury benchmarks, this is due
to having a small evaluation dataset [90]. Figure-5.7 next demonstrates the colour-coded
results obtained for the above experiment. The left column of the figure lists the ground truth
for the eight sequences, while the right column includes the colour-coded results obtained
via the proposed steered-L1 norm.
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Fig. 5.7 Colour-coded results comparison between the ground truth displacement fields and
the proposed algorithm using steered-L1.

Left: Ground-truth. Right: Estimated flow field using the current algorithm.
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5.2.4 Colour Images Implementation

The previous sections included the investigation the effect of the steered-L1 norm, and the
improvement it made to the performance of the optical flow, all this was done using grey-
scale images. From this section onward, colour images are used. This section includes a
brief discussion on the implementation of the algorithm using colour images.

As was illustrated in Section-4.3.4 it is possible to use colour images instead of the grey-
scale ones. In that section the data term for the the algorithm was derived for the colour
images case. The data term is duplicated for the three channels of the RGB colour space.
The values of zx,zy are found in the three channels and averaged to yield a single value for
these variables. Algorithm-6 depicts the computation of optical flow using colour images.

Algorithm 6: Implementation Algorithm of steered-L1 norm using colour images.
Input: Images I1& I2, number of pyramid layers L = 80, current layer l , number of warps

w=6 , number of iterations per warp It = 20
Create pyramid of images with L layer, and a ratio of 0.95;
initialization;
l=1;
initialise (ul,vl) to (0,0) ;
while l 6 L do

Up-scale size of (ul−1,vl−1) to (ul,vl);
Find structure tensor of the first image I1;
while No. of warps 6 w do

Warp I2l, I2x, I2y towards I1l, I1x, I1y;
while No. of iterations 6 It do

calculate pu, pv, use them to find psu, psv;
replicate the terms and update the auxiliary variable zxc,zyc;
Average zxc,zyc to yield zx,zy;
Update the flow ul,vl;

end
Use median filter to remove outliers from ul,vl;

end
end
Output: (Displacement field (u,v))
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5.2.5 Extended Intermediate Filtering

Median filtering is used in optical flow algorithms to improve the accuracy of flow field
estimation. It is especially used in algorithms following dual minimisation techniques, also
known as splitting algorithms, where the problem is decomposed into several sub-problems
each solved separately. An example of this is the dual optimisation used in this thesis. While
median filtering does not have a high impact on the results of algorithms relying on Euler-
Lagrange equations, the impact is clear in duality algorithms [24]. Median filtering can
be applied at each warping step to remove outliers from the estimated displacements field,
thus improving the accuracy of the calculated flow field. Median filters work by replacing
the displacement value with the median value in a small neighbourhood (see Section-3.2.1).
One can conclude that a median filter helps to improve the accuracy of the optical flow by
encouraging smoother solutions (without outliers) in the computed flow field. Additionally,
one of the disadvantages of the L1 smoothness term is that it leads to a piecewise constant
solution in low textured areas [23], this results in what is known as the ‘stair-casing effect’,
which can be seen as artificial boundaries in the computed flow field [96]. Obviously this
can decrease the accuracy of the flow field.

Taking all the previous points into consideration, an additional smoothing step is proposed
to enhance the accuracy of the optical flow computation. It is suggested here that the ad-
ditional step be performed immediately after using the median filter to remove outliers.
Experiments conducted using this additional filtering step are found to give improved re-
sults. The intermediate filtering is called here ‘Extended Intermediate Filtering (EIF)’, and
is performed at each warping step.

One option for the extended intermediate filtering is the Gaussian filter. However, Gaus-
sian filtering may introduce blurring of edges in the computed flow field. Another possible
filter is the bi-lateral filter [59], [60], which has a better edge preserving performance (see
Section-3.2.2).

Although bi-lateral filters may themselves introduce some regions with a stair-casing effect,
the use of such filters in the intermediate filtering step mitigates the stair-casing effect in
general. This is done (as pointed out earlier) by encouraging a smoother flow field in a
small neighbourhood. Algorithm-7 is a simplified algorithm for optical flow estimation
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with an illustration of EIF.

Algorithm 7: Extended Intermediate Filtering (EIF). EIF stage is highlighted in bold font.
Input: Images I1, I2

while l <= L do
while No. of Warps <= 6 do

while No. of iterations <= 20 do
Update the auxiliary variable zx,zy;
Update the flow ul,vl;

end
Use median filter to update ul,vl;
Use bi-later filter to update ul,vl;

end
end
Output: (Displacement field (u,v))

Table-5.5 depicts a comparison of the estimated flow field with/without using the proposed
extended intermediate filtering on colour images.

Image without EIF with EIF

RubberWhale 0.08 0.08
Dimetrodon 0.15 0.14
Urban2 0.64 0.53
Urban3 0.54 0.46
Venus 0.34 0.31
Grove2 0.17 0.17
Grove3 0.57 0.57
Hydrangea 0.16 0.16

Average 0.33 0.30

Table 5.5 AEPE results with/without extended intermediate filtering.
It is worth noting that a small change in AEPE can lead to a big difference in ranking [90].

The table above shows an improvement in algorithm performance. This can make a big
difference in the ranking in benchmarks [90]. The EIF is one constituent of the proposed
algorithm. The effect of this filtering step may seem small; however each constituent of
the algorithm introduces part of the improvements. When all the constituent work together,
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the final algorithm surpasses the performance of other algorithms sharing similar principals,
this is shown in more details in Section-5.2.6.

Figure-5.8 demonstrates colour-coded optical flow displacement fields. In this figure a com-
parison is made between the results of optical flow estimation with/without EIF.

Fig. 5.8 Optical flow estimation comparison with/without EIF
Upper row: Ground truth for RubberWhale and Venus sequences. Middle row: Estimated

flow field without EIF. Lower row: Estimated flow field with EIF.

To further examine the effect of EIF, Figure-5.9 demonstrates segments of optical flow.
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Fig. 5.9 Optical flow estimation comparison with/without EIF for selected segments
Left column: Ground truth. Middle column: Optical flow without EIF. Right column:

optical flow with EIF.

The improvement that EIF introduces to the estimation of the displacement fields can be
noticed by examining Figure-5.9. The optical flow field obtained using EIF is smoother and
appears more similar to the ground truth than that obtained without EIF. Figure-5.10 depicts
te final visualisation for the displacement fields of the Middlebury training datasets.

Fig. 5.10 Final optical flow field visualisation.
First row starting from left: RubberWhale, Dimetrodon, Hydrangea, Venus.

Second row starting from left: Urban2, Urban3, Grove2, Grove3

5.2.6 Comparison with Other Algorithms

In this section a comparison between the proposed algorithm and some already existing al-
gorithms is presented. The comparison here is quantitative and uses either results reported
by the authors of these algorithms, or results obtained using codes provided by the authors.
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The algorithms chosen for the comparison were selected because they share similar princi-
pals to the algorithm proposed in this thesis.

The first algorithm to compare with is the LDOF proposed by Brox et al. [13]. This al-
gorithm used delayed linearisation and augmented the data term with image gradients to
increase robustness to illumination [2]. In addition to that, a descriptors’ matching term
was incorporated in the optical flow energy function to enable flow field detection of small
objects with large displacements. The code of this algorithm was downloaded from the
website provided by the authors2. This code is used to estimate the optical flow field of the
eight training sets of Middlebury dataset.

Braux-Zin et al. [98] presented a large displacement optical flow which was inspired by the
work of Brox et al. [13]. In this paper they incorporated descriptors’ matching into a vari-
ational algorithm. However, the difference from [13] is the use of a primal-dual algorithm
similar to the one presented in this thesis. The authors of [98] used AD-Census in the data
fidelity term [99], which is one of the major differences from the algorithm presented here.

The algorithm proposed by Wedal et al. [14] shares some common features with the current
algorithm. It also follows primal-dual minimisation. It was found that this algorithm has
very good real-time performance. However, as pointed out in previous discussions, two ma-
jor differences distinguish this algorithm from the one proposed here. First the algorithm
of Wedal et al. [14] uses structure-texture decomposition to improve robustness against il-
lumination. Unlike the algorithm proposed in this thesis which uses image gradients for
this purpose, in addition to delayed linearisation. Another important difference is the use of
steered-L1 norm in the smoothness term, different from the L1 norm used in that algorithm.
The results of AEPE of this algorithm on the Middlebury training images are reported in
their paper.

In Table-5.6 a comparison of the AEPE of the algorithm proposed in this thesis with the
aforementioned algorithm is presented. The table includes the algorithm proposed in [98]
without descriptors’ matching. The results of their algorithm were reported in their paper.
The results of the AEPE is shown here rounded to the nearest two decimal places.

2 http://lmb.informatik.uni-freiburg.de/resources/software.php

http://lmb.informatik.uni-freiburg.de/resources/software.php
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Image Braux-Zin et al. [98] LDOF [13] Improved
TV −L1 [14]

Proposed algorithm

RubberWhale 0.13 0.12 0.09 0.08
Dimetrodon 0.12 0.12 0.19 0.14
Urban2 0.46 0.33 0.32 0.53
Urban3 0.60 0.60 0.63 0.49
Venus 0.26 0.43 0.26 0.31
Grove2 0.18 0.16 0.15 0.17
Grove3 0.71 0.66 0.67 0.56
Hydrangea 0.18 0.18 0.15 0.16

Average 0.33 0.32 0.31 0.30

Table 5.6 AEPE Comparison between the proposed method and several methods.
The algorithm proposed in this thesis shows an improvement by reducing AEPE for the

Middlebury training image sequences.

As seen in Table-5.6, the AEPE average of the eight sequences using the proposed algorithm
has improved.

The AEPE value for each frame can be interpreted as the difference in displacement between
the computed optical flow and the ground truth optical flow (Equation-3.24). The Middle-
bury dataset is divided into training and test datasets, both include small number of image
sequences (each includes 8). Therefore the results on the benchmark tends to be over-fitted
and a small change in AEPE can make big leap in the ranking [89]. Although the results
in Table-5.6 was obtained using the training image sequences 3, the results correlated to the
test image results. For example the difference in average between LDOF [13] and the Im-
proved TV −L1 [14] is only 0.01 (Table-5.6), yet the difference is 20 positions (according
to AEPE) in the Middlebury ranking table 4

5.2.7 Results on MPI-Sintel Training Dataset

All the previous experiments were conducted using the Middlebury dataset [6]. More re-
cently, the MPI-Sintel [150] is also being used to test the performance of optical flow al-
gorithms (see Section-3.4.1). This dataset is more challenging due to the inclusion of large

3 A total of 8 training sequences only available.
4 http://vision.middlebury.edu/flow/eval/results/results-e1.php

http://vision.middlebury.edu/flow/eval/results/results-e1.php
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motion and occlusion. It was reported in [150] that methods with high ranking on the Mid-
dlebury dataset have more difficulty estimating optical flow on this dataset.

The experiments conducted in the previous section were all using the training images of
the Middlebury dataset. Similar experiments are to be conducted using different datasets
keeping all parameters unchanged. The MPI-Sintel offers a large number of training and
test frames (1064 frames for training and 564 for test). The experiments conducted here are
performed using the training dataset due to the availability of ground truth data.

Results on selected frames

As stated earlier the MPI-Sintel dataset includes a large number of training frames (1064
training frames). Frames are grouped together, each group is taken from a certain clip in the
film (see Section-3.4.1). In this section a demonstration of the performance of the steered-
L1 algorithm on several random frames of this dataset is presented. The following tests are
conducted using a frame with a diverse image environment, including some indoor, outdoor
and different lighting settings. Table-5.7 next illustrates the results obtained using the first
two frames from several selected clips.

Image clip clean final

alley_1 0.18 0.19
ambush_5 1.72 2.78
bamboo_1 0.23 0.23
cave_2 2.01 2.29
mountain_1 0.59 1.10
shaman_2 0.11 0.13
sleeping_1 0.10 0.11
temple_1 1.15 1.93

Average 0.76 1.10

Table 5.7 AEPE for selected frames from MPI-Sintel dataset.

Figure-5.11 includes the visualised results of the MPI-Sintel dataset. The results include
optical flow of two passes, the ‘clean’ and ‘final’ passes (see Section-3.4.1).
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Fig. 5.11 Results on selected frames of MPI-Sintel. [150] Displacement field computed
between the first frame (frame_0001) and the second (frame_0002)

Top to bottom rows: alley_1, ambush_5, bamboo_1, cave_2, mountain_1, shaman_2,
sleeping_1, temple_2.

Left column to right: First frame (frame_0001), ground truth, clean, final.

5.2.8 Processing Time

The implementation of the code is done in MATLAB. The running time was not of concern
at the time of implementing the algorithm. However, it is useful to get an idea of the running
time for the algorithm. In general MATLAB codes may run slow in comparison to other
languages such as C and C++, as a result it is expected that the algorithm runs slow. As part
of future work a faster version can be implemented using a different programming language.

Table-5.8 depicts the running time of the algorithm to compute optical flow between two
images. The code ran on a Dell laptop powered by an Intel Core i5 CPU with 2.40 MHZ
clock speed.
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Resolution Time (grey-scale) Time (colour)

380 × 420 ≃ 283 s. ≃ 457 s.
388 × 584 ≃ 376 s. ≃ 738 s.
480 × 640 ≃ 488 s. ≃ 860 s.
436 × 1024 ≃ 686 s. ≃ 1297 s.

Table 5.8 Running speed for different resolutions.

As expected the running time for colour image is much bigger than that for the grey-scale
images, this is due to the three channels of colours requiring processing in the primal step.

5.2.9 Current Performance on test benchmarks

In addition to the training datasets that are available in evaluation benchmarks, test datasets
are also available and are used to asses performance of methods. To this end the proposed
algorithm is applied to the test dataset of the previously discussed datasets. In this subsection
the results of these evaluations are demonstrated and discussed.

The Middlebury ranking

The Middlebury datasets include 8 image sequences that are used to asses algorithm perfor-
mance. The proposed algorithm in this thesis was applied to the test images. Currently the
algorithm has an average rank of (57.5) based on the AEPE values, and (57.8) based on the
AAE values. Figure-5.12 next depicts a segments of the Middlebury ranking table for both
measures.

Fig. 5.12 Middleburry ranking table.
Top: AAE results ranking. Bottom: AEPE results ranking.
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To further examine and compare the results with other algorithms, the values of AEPE are
listed in the Table-5.9 with the results of other method sharing similar principles. These
methods are, the Improved-TV-L1 [14], CLG-TV [4], LDOF [13].

Image LDOF [13] CLG-TV [4] Improved-
TV −L1 [14]

Steered-L1

Army 0.12(74) 0.11(54) 0.09(30) 0.09(30)

Mequon 0.23(84) 0.32(84) 0.20(28) 0.14(1)
Schefflera 0.43(60) 0.55(77) 0.53(73) 0.28(24)

Wooden 0.45(98) 0.25(78) 0.21(67) 0.18(50)

Grove 1.01(86) 0.92(71) 0.90(67) 0.89(64)

Urban 1.10(86) 0.47(42) 1.51(101) 1.71(106)

Yosemite 0.12(27) 0.17(81) 0.18(88) 0.26(112)

Teddy 0.94(86) 0.74(65) 0.73(62) 1.06(90)

Average rank 80.5 69.5 63.8 57.5

Table 5.9 AEPE comparison for four algorithms taken from the Middlebury ranking table.
Numbers in brackets indicate the ranking of the specific image sequence results, for

example the results of the ‘Mequon’ sequence of the algorithm proposed in this thesis is
ranked first. Numbers in blue indicate the highest rank in this table.

This table illustrates the AEPE values and the rank on the Middlebury ranking list. The rank
in this table is illustrated using two numbers, for example the Steered-L1 scored 0.14(1) in
the ‘Mequon’ image sequence. The value 0.14 represents the AEPE results (Section-3.4.2),
which is calculated as the difference between the obtained flow field and the ground truth
(Equation-3.24), the smaller the number the closer the estimated flow field to the ground
truth. The number between the brackets ‘(1)’ depicts the rank on the particular method
(steered-L1 in this example), for the designated image sequence (‘Mequon’ in this exam-
ple). The ‘Average rank’ for each algorithm is the average of ranks for all the eight image
sequences. Figure-5.13 depicts several example of the test images along with their estimated
flow field
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Fig. 5.13 Optical flow visualisation of some Middlebury test images obtained via
steered-L1.

left: frame_10. Right: Visualised optical flow field.
Image sequences top to bottom: ‘Mequon’ ranked 1st. according to its AEPE. ‘Schefflera’

ranked 24th. according to its AEPE. ‘Wooden’ ranked 50th. according to its AEPE.

MPI-Sintel Ranking

MPI-Sintel contain a huge number of test image sequences. Test image sequences belong
to the ‘clean’ and ‘final’ passes. As discussed earlier the MPI-Sintel is a very challenging
dataset. This is due to the large and complex motion it contains, varied textures and illumi-
nation effects. Methods with high-ranking on the Middlebury dataset have more difficulty
estimating optical flow on this dataset [150]. The AEPE for the test were obtained by apply-
ing the proposed algorithm here. The AEPE for the test images in the ‘clean’ pass is equal
to (10.864), and for‘final’ pass is equal to (12.277).



5.3 Summary 130

Despite that improved performance that this algorithm produces, it still has some limitations
in several aspects. The algorithm improved the robustness to illumination as was demon-
strated earlier; however it still suffers in the presence of bigger illumination changes, in
addition to that the algorithm performance degrades at the presence of large motion and
occlusion. This can be noticed by the relative lower accuracy on the MPI-Sintel dataset.
Another issue related to the piecewise nature of the L1 norm. As discussed earlier, the L1

norm has a piecewise behaviour, which results in favouring piecewise solutions of the op-
tical flow field. This can be noticed in areas with slightly slanted motion [95], in this case
the estimated flow appears to have piecewise constant flow field rather than a smooth flow
field. On the computation time level, the implemented algorithm is not suitable for real-time
performance as it requires high computation time. These limitations are further discussed
in Chapter-6 with possible future work suggestions.

5.3 Summary

In this chapter several experiments were conducted to investigates the algorithms proposed
in this thesis. This chapter is divided into two parts. The first is dedicated to experiments
conducted on the CLG optical flow image registration. The experiments highlighted the im-
proved performance of image registration with the use of CLG optical flow. In this part the
performance of the image registration was visually inspected and compared with the perfor-
mance of the global optical flow algorithm of Horn-Schunck [1]. Additionally, experiments
were used to investigate an improved CLG optical flow algorithm formulated earlier in this
thesis (see Section 3.8).

In the second part of this chapter, the proposed steered-L1 was investigated. Several exper-
iments were conducted to test the effect that the main constituents of the algorithm have
on the algorithm performance. Experiments were conducted mainly on the Middlebury
dataset [6], some tests were also done using the MPI-Sintel dataset [150]. The proposed al-
gorithm improves the TV −L1 algorithm [22], [14] by improving the filling-in effect along
motion edges. Despite not being the best preforming method at the current time, but the
proposed algorithm can be further improved. This is going to be discussed in more details
in the next chapter. It was shown also in this chapter that this algorithm has a higher ranking
on the Middlebury benchmark compared with algorithms sharing similar principals.



Chapter 6

Discussion, Conclusion and Future Work

In this thesis, the topic of optical flow estimation was investigated. Several algorithms were
explored in relation to a number of applications. In Chapter-2 a literature review for optical
flow algorithms was presented. The chapter focused mainly on the variational methods for
finding optical flow. The main problems that faced the estimation of optical flow were also
investigated along with researchers solutions for such issues. The advances of variational
methods and techniques were explored. Additionally this chapter included a discussion on
the main applications in which optical flow estimation is used. It was shown that this low-
level image processing technique can have a direct application in several computer vision
problems.

In Chapter-3 a new image registration method was proposed that is based on the CLG op-
tical flow calculation. In addition to that a new version of CLG optical flow was presented,
which replaces the Gaussian filter with a non-linear bi-lateral filter. It was shown that the
performance of image registration using this method surpasses that of the global method
of Horn-Schunck [1], especially in terms of preserving edges. Chapter-3 can also be con-
sidered as an introduction to the concept of optical flow. Theoretical notions discussed in
that chapter are the fundamental ideas underpinning the majority of variational optical flow
algorithms.

Chapter-4 introduced the main contribution of this thesis, the steered-L1 norm for optical
flow computation. The L1 smoothness term suffers from two major drawbacks. First this
function is not continuously differentiable, second this term is isotropic. The first issue was
addressed by Zach et al. [22] with a dual formulation numerical scheme [91], [162]. This
algorithm however still suffers from being isotropic. The proposed algorithm in Chapter-4
can be considered as an anisotropic version of the L1 smoothness term previously discussed
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in [22]. In addition to that, a new formulation of the data term was introduced which is
inspired by the non-linearised robust data term proposed by Brox et al. [2]. The data term
also incorporates an images gradients term to improve the robustness against illumination
changes.

In Chapter-5 experiments were conducted to assess the performance of the proposed algo-
rithms, and to compare the efficiency of the algorithms with several algorithms which follow
a similar approach for estimating optical flow. This chapter is divided into two parts, the
first part is dedicated to experiments highlighting image registration performance using the
proposed method. This section also includes a comparison with image registration using the
global method of Horn-Schunck [1]. Middlebury dataset image sequences are used in these
experiments. In the second part of this chapter, several experiments are performed to inves-
tigate the performance of the proposed optical flow estimation method. Each experiment
highlighted the improvement for different contributing constituents of the algorithm.

Contribution

The Contributions of this thesis can be summarised in the following points:

• Proposing a new method for image registration based on the CLG optical flow algo-
rithm;

• Proposing an improved CLG optical flow based on the use of bi-lateral filtering;

• Proposing a steered-L1 norm smoothness term, which enabled an improved filling-in
effect in the estimated flow field;

• Deriving data term formulation for primal-dual optical flow computation based on the
non-linearised optical flow algorithm;

• Introduction of new extended intermediate filtering

6.1 Discussion and Future Work

The following discussion is mainly dedicated to assess the performance of the optical flow
algorithm with the steered-L1 norm that was proposed in Chapter-4. It is acknowledged
here that the results of the experiments are not the best performing compared to the state-
of-the-art optical flow algorithms on their own. However, the contribution here can be an
important addition to the building block of variational optical flow, especially algorithms
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following the primal-dual minimisation. Further experiments can be conducted to investi-
gate the performance of the proposed algorithm using different datasets. As discussed earlier
several datasets are available and can be used to evaluate optical flow algorithms, such as the
KITTI benchmark [151], and the MIP-Sintel [150]. The algorithm was evaluated using the
Middlebury and the MPI-Sintel datasets, it is also proposed that the algorithm be evaluated
via the KITTI optical flow assessment benchmark in the future. The KITTI dataset contains
more specific images aimed at autonomous driving (Section-3.4.1). The KITTI dataset was
not used as it offers ground truth with only 50% density.

Further research should be directed towards the improvement of the method proposed in
this thesis. In this thesis it was shown that the steered-L1 norm can improve the accuracy
of optical flow estimation. Several aspects of the algorithm can be investigated to improve
the performance and to make this algorithm competitive with the state-of-the-art algorithms,
these are discussed in the following points.

• Other smoothness terms: The performance of the proposed algorithm can be fur-
ther improved using some additional techniques borrowed from already existing al-
gorithms. As discussed earlier, the L1 norm favours a piecewise constant solution,
resulting in a stair-casing effect in smooth areas. This problem can be addressed by
using higher order norms [2]. Alternatively other penalisers can be used, such as the
Huber-L1 norm [163]. This penaliser behaves as a quadratic penaliser for relatively
smooth areas, and as L1 norm in areas with higher gradients. Werlberger et al. [23]
proposed an anisotropic image-driven Huber-L1 to improve the performance of such
a penaliser. For future work, a steered anisotropic Huber-L1 could be designed to
further improve optical flow estimation.

• Different Colour Spaces: In order to improve the illumination robustness of the pro-
posed algorithm, an image gradients term is used to increase the robustness of the
data term. This term is added to cope with the illumination changes between im-
ages. Another idea that can improve the performance is the use of different colour
spaces [72]. Colour spaces such as the HSV colour space were found to improve the
illumination robustness in some algorithms [15], [67]. The HSV components are the
Hue, Saturation, and Value. The hue channel is robust under multiplicative illumina-
tion especially shadow, shading, highlights and specularities [15]. In the current thesis
grey-scale and colour images are used for experiments, The colour images belong to
the RGB colour space. For future work experiments are to be conducted to assess the
performance of images of HSV colours. It is expected to improve the estimation of
the displacement flow field significantly [15], [67].
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• Spatio-temporal smoothness term: The estimation of optical flow in the current the-
sis rely on the spatial continuity assumption, in other words estimates optical flow be-
tween two images only. In reality such images may be a part of a long sequence of im-
ages (e.g. video sequence). Spatio-temporal constraints were used in some algorithms
to improve the performance of optical flow algorithms in case long image sequences
are available [65], [103]. In spatio-temporal smoothness terms it is assumed that the
flow changes gradually over time, and that previous as well as the next frame will
demonstrate relatively similar displacements. Generally the use of spatio-temporal
smoothness terms were more exploited in the case of Euler-Lagrange minimisation
rather than the algorithms following primal-dual minimisation [23]. Werlberger et
al. [23] argues that the spatio-temporal smoothness terms were not very successful
when tested using the Middlebury dataset. The reason as the authors suggest is that
the Middlebury datasets contain more complex displacements in comparison to some
previous benchmarks such as the Yosemite 1 benchmark. Alternatively the authors
in [23] propose a new method for temporal smoothness that relies on ‘mirroring’ of
the data constancy term. Generally in the literature there is a lack of investigation
of spatio-temporal smoothness terms for the primal-dual algorithms. As future work
spatio-temporal terms could be examined for primal-dual algorithms. The spatio-
temporal and the temporal data terms [23] could both be investigated to improve the
performance of the current algorithm.

• Implementation: Optical flow algorithms working in the primal-dual settings usually
belong to the high performing algorithms in terms of computation time. Such algo-
rithms can be easily parallelised using modern GPUs [38]. The proposed algorithm
here has several differences when compared to previously proposed primal-dual algo-
rithms which were successfully parallelised and found to achieve high speed perfor-
mance [22], [14], [4]. One of these differences is the delay of data term linearisation
as was proposed in [2], in addition to some extra calculation in the smoothness term
due to the addition of the structure tensor and eigenvectors computation. The imple-
mentation of the algorithm in this thesis was done using MATLAB. As a future plan,
an implementation of this algorithm should be considered in C++. Several libraries
may be considered in the future implementation including OpenCV. Vectorisation us-
ing the Intel compiler should also be considered [35]. Further it would be useful to
explore the possibility of a parallel version of the code on a GPU using the NVidia
CUDA platform. The aim of this implementation would be to exploit the algorithm
and investigate whether real-time or near real-time performance is possible. This

1 http://cs.brown.edu/people/black/images.html

http://cs.brown.edu/people/black/images.html
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would be useful if this algorithm is to be used in real-time applications (e.g. mobile
robot navigation)

• Applications and extension to LDOF : As pointed out earlier, the estimation of
optical flow has numerous applications in image processing and computer vision
fields. Application for optical flow were reviewed and discussed earlier in this thesis
in Section-2.3. The proposed algorithm in this thesis can be further extended in a sim-
ilar way to the LDOF algorithm [13]. This can be done by incorporating a descriptors
matching function in the data term. A possible research direction is the use of optical
flow in mobile robots obstacle detection, and also visually impaired navigation assis-
tant. Obstacle in the path of robots can have different sizes. While optical flow can
be used to detect obstacles and steer robots away from it, the inherited shortcoming
of failure to detect the motion of small objects with large displacements is hazardous.
Therefore, and in order to utilise this algorithm in any navigation system, it has to
be able to find displacements even for small objects. Some preliminary research has
already been done in this aspect, which can be found in Appendix-A.
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Appendix A

Estimating Displacement Fields for
Small Objects with Large Motion

Since the work of Horn-Schunck [1], many algorithms used the linearised data constancy
assumption, this permitted researchers to convexify the optical flow problem. However the
displacement field to be calculated should be small enough so that the linearisation holds.
On the other hand some algorithms proposed the use of a non-linearised version of the data
constancy assumption, such as the algorithm proposed by Brox et al. [2], although this also
has its shortcomings. Since the data constancy is not linearised, the solution can be easily
trapped in local minima, which was referred to as ‘multi-modal’ in [2]. Therefore it would
be useful to initialise the computation with a value close to the actual solution. The use of a
Coarse-to-Fine framework (C2F) was adopted to solve this issue, where the computation of
the flow field starts from a coarsened (down-sampled) version of the image. This solution is
then propagated to a finer level, where it is used as an initialisation for the flow field at that
resolution. This continues until the original resolution image is reached.

It is expected that the coarsened image will suffer from losing some details during the coars-
ening process. The flow field computed in the coarsened image will therefore be biased
towards the larger structures remaining in that version of the image. Hence in the next finer
level the initialisation is not close to the actual solution, but rather induced more by the
larger structures appearing in the image. In addition, the calculation will fail if the small
structures have displacements larger than its scale [13].

Brox et al. [13], [84] were perhaps among the first to note the problem with small structures
and proposed to incorporate a descriptors’ matching term into a variational framework. As
descriptors have no problem in capturing displacements regardless of the magnitude of such
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displacement, the descriptors term will steer the solution towards the correct displacements.
The main problem with using descriptors is false matching, indeed the false matching may
eventually deteriorate the overall optical flow computation. Other algorithms used patch
matching to completely eliminate the use of C2F [53] , [89], or by exhaustive search for
candidates [79]. The problem with such algorithms is the huge memory consumption and
the slow speed of the matching process.

In this appendix, an extension to the steered-L1 algorithm proposed in this thesis is going to
be presented. The final aim of this research is to use the proposed algorithm in autonomous
navigation and navigation assistant for the visually impaired. This is an initial stage of the
research and contains only preliminary results. The specific objective of the algorithm pre-
sented in this appendix is to enable the steered-L1 algorithm presented in this thesis (Section-
4.3) to detect displacements of small objects in the scene, this is done by incorporating a
descriptors matching term into the variational method discussed in Chapter-4. The incorpo-
ration of the descriptors’ matching is inspired by the work of Brox et al. [13]. However an
intrinsic difference is that the proposed algorithm here works in a primal-dual formulation
and uses TV −L1 which indicates a different optimisation method. The proposed algorithm
here also has similarities with the method presented by Braux-Zin [98] which was also in-
spired by the work of Brox et al. [13], but the difference from the algorithm discussed in
this appendix is the use of a different data terms.

A.1 Obstacle Avoidance, Corridor Traversing and Mobile
Robot Navigation

Several algorithms proposed the use of optical flow as a cue to traverse corridors and avoid
obstacles in mobile robots navigation [113], [115]. Some other examples also include Un-
manned Aerial Vehicles (UAV) navigation, such as the Micro Aerial Vehicles (MAV) [164].
The use of optical flow for obstacle avoidance requires the algorithm to be able to estimate
motion of small objects as well as larger objects. Consider the image sequence taken using
a camera traversing a corridor. It is possible to compute the displacement field using one of
the optical flow algorithms.
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Fig. A.1 Corridor traversing.
Left: Image taken at time t. Right: Image taken at time t+1.

While the camera is moving forward, the ball is moving fast in the other direction.

Figure-A.1 contains relative movement between the camera and the surrounding environ-
ment. While the camera is moving forward with slow pace, the ball is moving in the other
direction with high speed. The Horn-Schunck [1] method is used to find the displacement
field for this image sequence. The visualised estimated field is depicted in Figure-A.2.

Fig. A.2 Optical flow of the corridor sequence Figure-A.1.
It can be seen that the displacements field is not accurately estimated using the

Horn-Schunck method.

As the figure reveals, the estimated displacement field does not include the accurate dis-
placement of the small ball apparent in the image.

A.2 Extending the steered-L1 Algorithm

In this section, the formulation of the extended steered-L1 algorithm is presented. As pointed
out, the extension is inspired by the work of Brox et al. [13] which incorporated descriptors
matching into the variational optical flow energy function. The descriptor used here is the
Histogram of Oriented Gradient (HOG) [83]. The next subsection includes a discussion for
HOG, followed by another subsection illustrating the algorithm.
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A.2.1 Descriptors: Histogram of Oriented Gradients (HOG)

Brox et al.[13] used several types of descriptors including HOG in their work that proposed
an algorithm to find optical flow for small scale objects that have large displacements. In
their work they carefully designed the matching algorithm, as false matching can drastically
affect the solution. In this section HOG descriptors are discussed, how they are calculated
and what are the main parameters affecting their performance.

Before the computation of HOG, the process may involve gamma/colour normalisation.
Images can be either grey-scale or represented using any colour space, e.g RGB or LAB
colour spaces. HOG relies on computing histograms over a fixed window size, where
each pixel contributes to the histogram. Image gradients are found using a certain kernel.
Several kernels may be used, e.g. simple 1-D centred kernel [−1,0,1], the cubic-centred
[1,−8,0,8,−1], 2-D ones like the 2× 2 kernels, or even 3× 3 like the Sobel kernel. The
choice of the gradient kernel may affect the results as was shown in [83].

In the next step histograms are created for a small rectangular neighbourhood, this can have
any size (e.g. 7× 7). These rectangular neighbourhoods are called cells, cells can also be
radial. Each pixel in these cells contributes to a histogram bin based on its gradient orienta-
tion, the contribution of the pixel is a function of the gradient’s magnitude. The histogram
is divided into equally spaced bins over the range of 0o − 180o in case unsigned gradients
are considered. In the signed gradients case the range is 0o − 360o . The cell histogram is
not very discriminative by itself, especially at areas undergoing local illumination changes.
For this reason, cells are grouped into blocks and the final descriptors are a collection of
cells’ histograms. Thus, each descriptor consists of n×m entries, where n is the number of
cells in each block, and m is the number of bins of each histogram. To make the descrip-
tors more robust to local illumination changes, contrast normalisation for histograms can be
performed for each block (descriptor). Figure-A.3 depicts one descriptor.

Fig. A.3 A single HOG descriptor.
This HOG descriptor consists of a collection of 9 histograms highlighted here in black [13].

Unlike SIFT features [85] which are computed at sparse locations, HOG descriptors can be
computed in a dense grid. This means that a huge number of descriptors in each image can
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be expected, and it will be computationally expensive if descriptors’ correspondences are
to be found. To reduce the computation complexity, it is possible to reduce the number of
descriptors by picking only a number of these descriptors. This is done by considering only
descriptors at equal spaces in the image grid. For instance by considering a descriptor every
fourth pixel as in [13]. In addition to that the work in [13] included a further descriptors
number reduction by ignoring descriptors in smooth image areas where no structures are
available. This is done by calculating the eigenvalue for the structure tensor at similar
locations to the descriptors. Descriptors with eigenvalues less than one eighth of the average
of all the eigenvalues across the image are ignored.

The correspondence of these descriptors can be found as the descriptors with minimum
distance between them, where the distance is the sum of squared differences between the
descriptors (histograms). To speed up the matching process, specialised algorithms may
be employed, such as the approximate nearest neighbour search. To further improve the
matching process and in order to remove false matches, a backward consistency check was
used in [13], where for each matched pair found from I1 to I2, we check if they still have the
minimum distance between them if the calculation was done from I2 to I1, if not then these
descriptors are ignored, and displacement at this pixel is set to 0.

A.3 Energy Function Formulation and Minimisation

In order to estimate an optical flow of a sequence of images and to improve the estimation
accuracy of small objects in the scene, a descriptors matching term is added to Equation-
4.24. Hence the energy function is written in the following way:

E =
∫

Ω

(
αEdata(I1, I2)+Edesc +

1
2θ

(u− z)2 +Esmooth(u,∇u, I1)
)

(A.1)

where Edesc is the descriptors’ matching term which can be formulated in the following
way [13]:

Edesc = δ (x)Ψ(|u−ud|2) (A.2)

where |ud −u|2 is the descriptors matching term, ud is the sparse displacements of descrip-
tors at certain pixel locations1. The value of δ (x) is equal to 1 if there is a descriptors at the

1 The following source code was used http://www.cs.berkeley.edu/~katef/LDOF.html

http://www.cs.berkeley.edu/~katef/LDOF.html
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pixel x and 0 otherwise. The rest of the terms are defined in Section-4.3. The minimisation
of this energy function is split into two steps, primal and dual steps. The minimisation of
the dual step is similar to the minimisation is Section-4.3.1, where z is kept fixed to find the
minimisation of u.

The primal step in the current case is written in the following way:

EPrimal =
∫

Ω

(
αΨ

(
|I2(x+u)− I1(x)|2

)
+ γΨ

(
|∇I2(x+u)−∇I1(x)|2

)
+βδ (x)Ψ(|u−ud|2)+

1
2θ

(u− z)2
)

The aim of this step is to minimise u while keeping z fixed. This minimisers of this equation
is found by setting the derivatives with respect to zx, zy equal to 0. The derivation of this
set of equation is similar to the derivation explained in Section-4.3.3, the only difference is
the inclusion of the descriptors matching term in this case. Setting the derivative equal to 0
yield the following set of equations:

[
α Ψ

′
1.I

2
2x + γ Ψ

′
2(I

2
2xx + I2

2yx)+βδ (x) Ψ
′
3 +

1
θ

]
zx

+
[
α Ψ

′
1.I2xI2y + γ Ψ

′
2.I2xy(I2xx + I2yy)

]
zy

=−
[
α Ψ

′
1rt0I2x + γ Ψ

′
2rtx0I2xx + γ Ψ

′
2rty0I2xy

]
+

βδ (x) Ψ
′
3ud +

u
θ
.

(A.3)
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′
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′
2I2yx(I2xx + I2yx)+

1
θ

]
zx

+
[
α Ψ

′
1.I

2
2y + γ Ψ

′
2.(I

2
2xy + I2

2yy)+βδ (x) Ψ
′
3
]
zy

=−
[
α Ψ

′
1rt0I2y + γ Ψ

′
2rtx0I2xy + γ Ψ

′
2rty0I2yy

]
+

βδ (x) Ψ
′
3vd +

v
θ

(A.4)

where Ψ
′
3 is the derivative of Ψ3, and Ψ3 = Ψ(|u−ud|2).
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A.4 Preliminary Experiments

The algorithm is implemented in MATLAB. Details of implementation are similar to imple-
mentation discussed in Section-5.2.1, with two main differences. The first is the use of the
descriptors matching term. The second smoothing image sequence using a Gaussian filter
during the coarsening process [67], Images were smoothed using a Gaussian kernel of size
5× 5 and standard deviation of 1.67 this helps to produce smoother displacement fields.
Figure-A.4 depicts two examples of image sequences extracted from a film of a moving
ball in a corridor. In this film the camera is moving forward at a certain speed and a ball is
moving in the other direction with a relatively higher speed. These image sequences were
extracted from a film taken using Sony DSC-V1 camera. The film were taken at frame rate
of 25 frame per second, each frame has a resolution of 480× 640. Gray-scale images are
used in these experiments.

Fig. A.4 A moving camera in a corridor.
Two image sequences. Top row: sequence-1. Bottom row: sequence-2. Left column: First
image in the sequence (at time t). Right column: Second image in the sequence (at time

t+1).

Figure-A.5 depicts the optical flow field for these image sequences using several algorithm.
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Fig. A.5 Results of corridor image sequences.
Top row: Image sequence-1. Bottom row: Image sequence-2.

First column(left): Optical flow field obtained via Horn-Schunck method. Second column:
Optical flow obtained via steered-L1 without descriptors matching (β = 0). Third column:

Optical flow obtained via LDOF [13]. Fourth column: Optical flow obtained via the
method developed in this appendix with (β = 7).

In Figure-A.5 the optical flow field obtained via the use of Horn-Schunck [1] failed to cor-
rectly estimate the displacement of the ball. The optical flow field obtained via the steered-
L1 algorithm presented in Chapter-4 also failed to detect this motion. On the other hand the
optical flow field obtained via the algorithm discussed in this appendix is able to detect such
motion.

A.5 Summary and Conclusion

In this appendix a primal-dual formulation for the algorithm proposed by Brox et al. [13]
is presented. The aim is to enable the primal-dual optical flow algorithm discussed earlier
in this thesis to detect the displacement fields of small objects in the scene. This method
used the formulation discussed earlier in Chapter-4. Experiments were conducted using
images produced specially for this purpose. The results demonstrate an improved ability
to detect small objects that are visible in the scene. These results are still at an initial
stage and further improvements on the algorithm are expected. The structure of primal-dual
algorithms enables an easy implementation on modern graphical hardware [38] to obtain a
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real-time performance. Real-time is very important for several applications such as robot
navigation where the information is required to be processed in real-time.

Optical flow is an important cue in computer vision, and it has been used in many applica-
tions in mobile robot navigation in some old and other more recent research [113], [60], [115].
Navigation systems for the visually-impaired people is related to the area of mobile robot
navigation. The goals in both cases can be similar, where it is required to traverse an area
and avoid colliding with obstacles. As future work the algorithm presented in this appendix
is to be part of obstacle avoidance system for the visually-impaired. This system is going to
be inspired by early work on mobile robot navigation systems.
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Registration is a fundamental task in image processing used to match two or more images taken, 
for example, at different times, from different sensors, or from different viewpoints. Optical flow is 
a technique in computer vision area to compute the displacement field of the contents within an 
image sequence. In the sense of correspondence, image registration and optical flow have very 
close relation. On the one hand, optical flow is used to do image registration; on the other hand, it 
is also used to evaluate the performance of image registration. In literature, either local optical flow 
or global optical flow is studied for image registration. In this paper, an improved optical flow 
technique, namely Local-Global, which combines the advantages of both techniques, is applied for 
image registration. Experiments are conducted to demonstrate the effectiveness of this method 

Keywords: Image registration; global-local optical flow; correspondence estimation; tracking.

1. INTRODUCTION 

As a fundamental task in image processing, image 
registration is defined as the process of aligning 
two or more images so that the shape, size, and 
spatial relationships of corresponding image 
contents can be easily matched or related. This 
concept is shown in Figure 1. The alignment 
process can be described with a geometrical 
transformation, namely a spatial mapping:  

 

           : ( )B A B Af f f f! =T Ta                (1) 
 
where T stands for the transformation, Af is the 

target image, which acts as the reference and Bf is 
the source image, which is to be transformed 
toward to the reference.  
 
The transformation can be found either by 
estimating the displacement of each pixel in the 
image or by finding certain number of parameters 
that describe the deformation pattern. The former is 
called nonparametric registration, while the latter is 
known as parametric registration. 
 

 

Figure 1: Image registration: the correspondence 
between point A and point B is found after registration. 

 
Widely used in computer vision, optical flow is a 
technique to study the motion of contents within an 
image sequence. In literature there are two 
comprehensive papers on optical flow algorithms 
and their performance. (Barron et al., 1994) 
compared nine classic flow algorithms on the basis 
of accuracy and density. They classified these 
algorithms into four groups: differential techniques, 
energy based techniques, phase based techniques 
and region matching based techniques.  (Liu et al., 
1998) extended Barron’s work by providing a 
coordinate system that compares accuracy with 

Target 
image 

Registered 
images 

Source 
image 

A 
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efficiency. They classified optical flow algorithms 
into two groups: those that perform a gradient 
search on extracted structure of the image 
sequence and those that do not. 
 
In optical flow, the motion is typically represented 
with velocity vectors originating from each pixel 
position. These vectors specify how the image 
pixels move between adjacent images. In this 
sense of correspondence, the procedure of 
determining optical flow is essential the 
nonparametric image registration. (Periaswamy 
and Farid, 2003) used optical flow in their general 
framework for medical image registration and 
achieved very good results. On the other hand, 
optical flow is also used to evaluate the result of 
medical image registration (Cooper and Ritter, 
2003). A detailed description of the relation 
between image registration and optical flow can be 
found in (Lefébure and Cohen, 2001). 
 
The most important assumption for optical flow is 
that when an image pattern moves, the brightness 
of a particular point in this pattern keeps constant. 
With this assumption, the famous optical flow 
equation can be derived either by chain rule 
differentiation or by first order Taylor 
approximation. For a 2D image, the problem is that 
the solution, namely the velocities in x and y 
directions (2 unknowns) cannot be uniquely 
determined with just one single equation. Extra 
constraints are needed. According to the types of 
constraints, differential techniques can be classified 
into local optical flow and global optical flow. Both 
of these two methods have their advantages and 
shortcomings. (Bruhn A and Weickert, 2005) 
proposed a method to combining the local optical 
flow to the global one. 
 
However, when considered with image registration, 
all the work in literature only considers either of the 
optical techniques. In this paper, we aim to achieve 
improved image registration results by using the 
local-global optical techniques. The remaining part 
of this paper is as follows. Section 2 gives the 
details of local-global optical flow technique and the 
idea of apply it for image registration. Experiments 
are conducted in Section 3 to demonstrate the 
results and the quantitative registration errors are 
also given. Section 4 concludes this paper. 

2. METHODS 

In this section, we first discuss the original local 
and global methods, and further discuss how they 
can be combined and applied for image 
registration. 
 
 
 

2.1 Local-global optical flow 

According to experiments conducted, local method 
yields flow field which is more robust to noise and 
more accurate optical flow values. However, its 
operation time in MATLAB is much slower than 
global method. Another finding by the authors of 
this paper is that the larger number of iterations, 
the more accurate result will be. However, when 
the number of iterations reaches 500, the 
calculations of optic flow values will reach its limit. 
 
Global method yields flow yields with 100% density, 
which means global method should fully represent 
the flow field, but are experimentally. Also, it is 
known to be more sensitive to noise. After we 
compile the global method program in MATLAB, 
the compilation time is less than one minute which 
is much faster than local method. However, Global 
method is not robust to noise. 
 
Due to advantages and disadvantages of global 
and local methods, it is beneficial to combine these 
two methods to get a better one. 
 
It is common to smooth the image values before 
calculating optic flow in order to get more clear 
results, and there are many existing smoothing 
techniques such as Gaussian filter using Gaussian 
calculations and Median filter which emphasize on 
the average values of each point. Combining the 
different smoothing effects can be done so that we 
can make use of the high robustness of local 
methods with full density of global techniques. 
 
In an image domain Ω and time t � [0,T ] g(x, y, t) 
represents the image sequence within the image. 
Gaussian filter has been chosen to make use of its 
low-pass effect in order to remove noise and other 
destabilizing high frequencies. However, it is noted 
that too much pre-smoothing should be avoided 
else it will remove the original features of the 
image. 
 
           f (x, y, t) :=(Kσ * g)(x, y, t)                          (2) 

 
where σ represents standard deviation. Normal 
flow (weighting factor) is given by 
 

                   
f
f

f
fw t

n !
!

!
"=                                  (3) 

 
Let us look at how we local method is represented 
in (Bruhn A and Weickert, 2005). 
 

))((*:),( 2
tyxpLK fvfufKvuE ++= )      (4) 

 
The standard deviation ρ of the Gaussian serves 
as an integration scale over which the main 
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contribution of the least square fit is computed. The 
larger the value of ρ, the more robust of the result 
will be under noise.  
 
Global method is shown below in simplified form, 
 

dxdyvufvfufvuE tyxHS ))|||(|)((),( 222 !+!+++= "
#

$ (

5) 
 
where !  denotes the spatial Laplace operator   

yyxx !+!=" :
 

 
So, we can easily derive the final combined local-
global method after some substitutions, 
 

dxdydtfJE
TCLG )||)(()( 2

3],0[ 33 !"!!! # $+$= % &'
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            (6) 
 
and the weighted function has become 
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3. EXPERIMENTS AND RESULTS 

In order to determine the result of Combined Local-
Global optic flow method, we have implemented it 
in MATLAB, so as local and global methods. In the 
following session, we will compare and discuss the 
effects of different methods. 
 
 First, we chose two groups of photos taken from 
subsequent time points in two different videos; the 
camera speed is around 25 frames/second. 
 

 
Figure 2: Football match in time t1 

 

 
Figure 3:.Football match in time t2 

 
Figures 2 and 3 are two photos taken with camera 
speed around 25 frames/sec. We used the two 
photos as inputs of global method, local method 
and combined local-global method in order to 
compare their results 
 

 
Figure 4: Global football match 

 
In Figure 4, we can see that there is too much 
noise to affect the optic flow field, which means 
global method is not good enough to avoid the 
noises. 
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Figure 5: Local football match 

 
In Figure 5, the overall view is much better than 
that in global method because we can see clear 
flow field under noise interferences. 
 

 
Figure 6: Combined local-global football match 

 
From Figures 4, 5 and 6 it is obvious that with the 
same inputs, the three different methods yield 
different output view. The three pictures are taken 
from the general view of the outputs, and it is clear 
that global method yields high density optic flow 
while local method yields more noise treatments. 
However, the CLG output show high contrast of 
optic flow density due to movement of objects to 
the stable objects and performs well under noise. 

 
Generally speaking, from the overview pictures, 
optic flow in CLG output is more obvious around 
visible motion field while in local and global outputs; 
visible optic flow can be found throughout the 
whole pictures due to noise and other 
interferences. We chose the same part in Figures 
4, 5 and 6 and zoom into the flow fields. The results 
are shown in Figures 7, 8 and 9. 

 
Figure 7: Zoom in Global football 

 
In Figure 7 above, global flow fields are smooth 
and with high density. 

 

 
Figure 8: Zoom in Local football 

 
In Figure 8, local optic flow filed is more robust 
under noise and with clear difference between 
moving and non-moving objects. 
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Figure 9: Zoom in CLG football 

 
In Figure 9, we can see that optic flow field in CLG 
is very distinguishing between obvious and 
unobvious movements and robust to noise which 
have better view than global and local methods. 

4. CONCLUSION 

In this paper, the relation between image 
registration and optical flow estimation is 
discussed. The advantages and shortcomings of 
both local and global optical flow are introduced. 
The improved optical flow technique, namely Local-
Global, which combines the advantages of both 
techniques, is applied for image registration. The 
experiments on images with standard image 
sequences and images with synthetic deformations 

show that this method is highly effective with the 
advantages of both local and global optical flow 
techniques. Our future work will be focused on 
refine this method and applied on more images 
such as in medical area.  
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