4 research outputs found

    Prime Field ECDSA Signature Processing for Reconfigurable Embedded Systems

    Get PDF
    Growing ubiquity and safety relevance of embedded systems strengthen the need to protect their functionality against malicious attacks. Communication and system authentication by digital signature schemes is a major issue in securing such systems. This contribution presents a complete ECDSA signature processing system over prime fields for bit lengths of up to 256 on reconfigurable hardware. By using dedicated hardware implementation, the performance can be improved by up to two orders of magnitude compared to microcontroller implementations. The flexible system is tailored to serve as an autonomous subsystem providing authentication transparent for any application. Integration into a vehicle-to-vehicle communication system is shown as an application example

    FPGA Based High Speed SPA Resistant Elliptic Curve Scalar Multiplier Architecture

    Get PDF
    The higher computational complexity of an elliptic curve scalar point multiplication operation limits its implementation on general purpose processors. Dedicated hardware architectures are essential to reduce the computational time, which results in a substantial increase in the performance of associated cryptographic protocols. This paper presents a unified architecture to compute modular addition, subtraction, and multiplication operations over a finite field of large prime characteristic GF(p). Subsequently, dual instances of the unified architecture are utilized in the design of high speed elliptic curve scalar multiplier architecture. The proposed architecture is synthesized and implemented on several different Xilinx FPGA platforms for different field sizes. The proposed design computes a 192-bit elliptic curve scalar multiplication in 2.3 ms on Virtex-4 FPGA platform. It is 34% faster and requires 40% fewer clock cycles for elliptic curve scalar multiplication and consumes considerable fewer FPGA slices as compared to the other existing designs. The proposed design is also resistant to the timing and simple power analysis (SPA) attacks; therefore it is a good choice in the construction of fast and secure elliptic curve based cryptographic protocols

    Cryptographic coprocessors for embedded systems

    Get PDF
    In the field of embedded systems design, coprocessors play an important role as a component to increase performance. Many embedded systems are built around a small General Purpose Processor (GPP). If the GPP cannot meet the performance requirements for a certain operation, a coprocessor can be included in the design. The GPP can then offload the computationally intensive operation to the coprocessor; thus increasing the performance of the overall system. A common application of coprocessors is the acceleration of cryptographic algorithms. The work presented in this thesis discusses coprocessor architectures for various cryptographic algorithms that are found in many cryptographic protocols. Their performance is then analysed on a Field Programmable Gate Array (FPGA) platform. Firstly, the acceleration of Elliptic Curve Cryptography (ECC) algorithms is investigated through the use of instruction set extension of a GPP. The performance of these algorithms in a full hardware implementation is then investigated, and an architecture for the acceleration the ECC based digital signature algorithm is developed. Hash functions are also an important component of a cryptographic system. The FPGA implementation of recent hash function designs from the SHA-3 competition are discussed and a fair comparison methodology for hash functions presented. Many cryptographic protocols involve the generation of random data, for keys or nonces. This requires a True Random Number Generator (TRNG) to be present in the system. Various TRNG designs are discussed and a secure implementation, including post-processing and failure detection, is introduced. Finally, a coprocessor for the acceleration of operations at the protocol level will be discussed, where, a novel aspect of the design is the secure method in which private-key data is handle

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore