
Title Cryptographic coprocessors for embedded systems

Author(s) Hamilton, Mark

Publication date 2014

Original citation Hamilton, M. 2014. Cryptographic coprocessors for embedded systems.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2014, Mark Hamilton
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/1770

Downloaded on 2017-02-12T10:18:32Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/1770

Cryptographic Coprocessors for

Embedded Systems

Mark Hamilton

Department of Electrical and Electronic Engineering

National University of Ireland, Cork

Research Supervisor : Dr. William P. Marnane

Head of Department : Prof. Nabeel Riza

A thesis submitted for the degree of

Doctor of Philosophy

January 24, 2014

Abstract

In the field of embedded systems design, coprocessors play an important role

as a component to increase performance. Many embedded systems are built

around a small General Purpose Processor (GPP). If the GPP cannot meet

the performance requirements for a certain operation, a coprocessor can be

included in the design. The GPP can then offload the computationally in-

tensive operation to the coprocessor; thus increasing the performance of the

overall system. A common application of coprocessors is the acceleration of

cryptographic algorithms. The work presented in this thesis discusses co-

processor architectures for various cryptographic algorithms that are found

in many cryptographic protocols. Their performance is then analysed on a

Field Programmable Gate Array (FPGA) platform.

Firstly, the acceleration of Elliptic Curve Cryptography (ECC) algorithms

is investigated through the use of instruction set extension of a GPP. The

performance of these algorithms in a full hardware implementation is then

investigated, and an architecture for the acceleration the ECC based digital

signature algorithm is developed.

Hash functions are also an important component of a cryptographic system.

The FPGA implementation of recent hash function designs from the SHA-

3 competition are discussed and a fair comparison methodology for hash

functions presented.

Many cryptographic protocols involve the generation of random data, for

keys or nonces. This requires a True Random Number Generator (TRNG)

to be present in the system. Various TRNG designs are discussed and a

secure implementation, including post-processing and failure detection, is

introduced.

Finally, a coprocessor for the acceleration of operations at the protocol level

will be discussed, where, a novel aspect of the design is the secure method

in which private-key data is handled.

I, Mark Hamilton, certify that this thesis is my own work and I have not obtained a

degree in this university or elsewhere on the basis of the work submitted in this thesis.

Mark Hamilton

Acknowledgements

I would like to thank all those who have helped me during the course of

completing this thesis, including, but not limited to, my supervisor Liam

Marnane for giving me the opportunity to pursue this PhD, and for his

guidance over the past few years; Christophe Negre and Emanuel Popovici

for taking the time to read this thesis; the staff of the electrical engineering

department in UCC; all of the postgraduate students and postdocs that I

have worked with over the past few years; Arnaud Tisserand for inviting me

to collaborate with him in Lannion; and my family for their support over

the last few years.

Contents

Contents i

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Publications . 4

2 Cryptography for Embedded Systems 6

2.1 Introduction . 6

2.2 Introduction to Cryptographic Systems 7

2.3 Mathematical Background . 8

2.3.1 Groups . 8

2.3.2 Rings . 9

2.3.3 Fields . 9

2.3.4 Finite Fields . 10

2.4 Generating Random Numbers . 10

2.5 Private-Key Cryptography . 11

2.6 Public-Key Cryptography . 12

2.6.1 Public Key Infrastructure . 13

2.6.1.1 Digital Signatures . 13

2.6.1.2 Digital Certificates . 16

2.7 Cryptographic Protocols . 16

2.8 Transport Layer Security . 17

2.8.1 TLS Record Protocol . 18

2.8.2 TLS Alert Protocol . 18

2.8.3 TLS ChangeCipherSpec Protocol 19

2.8.4 TLS Application Data Protocol 19

i

CONTENTS

2.8.5 TLS Handshake Protocol . 20

2.9 Field Programmable Gate Arrays . 22

2.9.1 Microblaze Processor . 23

2.9.2 FSL Bus . 24

2.10 FPGAs and Cryptography . 25

2.11 Side Channel Attacks . 27

2.12 Related Work . 28

2.12.1 Isobe et al. 28

2.12.2 Wang et al. 29

2.12.3 Instruction Set Extension . 30

2.12.4 Secure Key Management . 30

2.13 Discussion . 32

3 Hardware-Software Co-Design for Elliptic Curve Cryptography 34

3.1 Introduction . 34

3.2 Background to ECC . 35

3.2.1 Group operations on Elliptic Curves 35

3.2.2 Jacobian Coordinates . 36

3.2.3 Co-Z Arithmetic . 38

3.3 Point Scalar Multiplication . 39

3.3.1 SPA Resistant Point Scalar Multiplication 40

3.3.1.1 Combined double-add operation 43

3.3.1.2 (X,Y)-only operations 43

3.4 Montgomery Multiplication . 45

3.5 Instruction Set Extension for ECC . 47

3.5.1 Software . 47

3.6 Custom Hardware Acceleration . 49

3.6.1 Montgomery Multiplication in Hardware 49

3.6.2 Instruction Set Extension Results 50

3.7 Optimisations for the q = 2n − 1 case . 53

3.7.1 Serial Multiplier . 54

3.7.2 Booth Multiplier . 55

3.7.3 Multiplier with BRAMs and DSP48Es 56

3.7.3.1 Multiplier Architecture 58

3.7.3.2 Decomposing the Multiplicands 59

3.7.3.3 DSP Blocks . 61

ii

CONTENTS

3.7.3.4 Block RAM . 62

3.7.3.5 The Adder . 62

3.7.3.6 Controller . 63

3.7.3.7 Multiplier Operation . 64

3.7.4 Results . 64

3.8 Discussion . 66

4 FPGA Implementation of an ECDSA Coprocessor 68

4.1 Introduction . 68

4.2 ECC Processor . 68

4.2.1 Fq Addition/Subtraction . 69

4.2.2 Fq Inversion . 70

4.3 Comparing Coordinate Performance . 71

4.4 Applications of Elliptic Curves in TLS 76

4.4.1 Elliptic Curve Diffie-Hellman Key Exchange (ECDH) 77

4.4.2 Elliptic Curve Digital Signature Algorithm (ECDSA) 78

4.4.3 DPA resistant ECDSA . 80

4.4.4 Simultaneous multiple point multiplication 80

4.5 Related Work . 81

4.6 ECDSA Processor Architecture . 83

4.7 Implementation Results . 84

4.8 Discussion . 87

5 Hash Functions and their Applications 89

5.1 Introduction . 89

5.2 Hash Function Design . 90

5.2.1 Implementation Options . 90

5.3 Hash Function Usage . 91

5.4 Hash Functions and TLS . 92

5.4.1 HMAC Function . 92

5.4.2 TLS Pseudorandom Function . 93

5.4.3 Key derivation . 94

5.4.4 Finished Message Calculation . 94

5.5 SHA Algorithms . 95

5.5.1 SHA256 . 95

5.6 SHA-3 Competition . 97

iii

CONTENTS

5.7 Blue Midnight Wish . 97

5.8 Hamsi . 99

5.9 CubeHash . 100

5.10 Fair Comparison Methodology . 102

5.10.1 Wrapper Overview . 102

5.10.2 Communications Protocol . 103

5.10.3 Padding Protocol . 104

5.11 Implementation Results . 105

5.12 Discussion . 107

6 True Random Number Generators 109

6.1 Introduction . 109

6.2 Implementation of TRNGs . 110

6.2.1 Analysing the Quality of TRNG Output Data 111

6.3 Vasyltsov et al. 113

6.4 Varchola and Drutarovský . 116

6.5 Dichtl and Golić . 118

6.6 Comparing the Results . 122

6.7 TRNG Failure Detection . 123

6.7.1 FPGA Implementation . 124

6.8 Post-processing of TRNGs . 125

6.9 Secure Architecture Implementation Results 125

6.10 Discussion . 126

7 Coprocessor Design For the Protocol Level 128

7.1 Introduction . 128

7.2 Designing a Secure Coprocessor . 129

7.3 Requirements of a TLS Coprocessor . 131

7.3.1 Public-key algorithms . 131

7.3.2 Private-key Algorithms . 131

7.3.3 Hashing Operations . 132

7.3.4 Operations Involving Private Keys 132

7.4 Encryption for TLS . 132

7.4.1 Cipher Block Chaining . 134

7.4.2 AES Implementation . 135

7.5 SHA256 Implementation for TLS . 136

iv

CONTENTS

7.6 Design Overview . 137

7.7 Hardware/Software Partition . 137

7.8 Coprocessor Operation . 139

7.9 Test Platform . 141

7.9.1 Microblaze Configuration . 141

7.10 Implementation Results . 142

7.11 Conclusions . 143

8 Conclusions and Future Work 145

8.1 Contribution to the Field . 145

8.2 Future Work . 147

A Co-Z Algorithms 148

A.1 Point Doubling Formulæ with Update in Homogeneous Coordinates. . . 152

A.2 Full Coordinate Recovery . 153

A.3 Point doubling and tripling with co-Z update 154

List of Abbreviations 156

References 161

v

Chapter 1

Introduction

1.1 Motivation

The emergence of ubiquitous computing has led to increasing amounts of data being

transmitted over a wide range of media; ranging from fiber optic links over distances of

hundreds of miles, to wireless transmissions over several centimetres. The transmission

of sensitive information is no longer exclusive to large businesses using expensive and

computationally powerful equipment. Today, small embedded devices, such as smart

cards and mobile phones, also require the ability to transmit data securely. These small

devices provide a completely different design challenge than that of large high-speed

applications. When implementing cryptographic protocols on embedded devices, a

designer must take into consideration the computational power, logic resources available

in the device, and power consumption. A trade-off must be made in these areas in order

to achieve acceptable performance in terms of computation time, while also minimising

the area and power consumption.

Cryptographic protocols can be used to ensure that data is transmitted securely

over an unsecured channel. The increase in transmission of financial and other sen-

sitive information across the Internet has led to the definition of many cryptographic

standards. Currently, one of the most widely supported cryptographic standards, for

use on the Internet, is the Transport Layer Security (TLS) protocol. The TLS pro-

tocol allows for secure communication over Virtual Private Networks (VPNs); is used

extensively in securing online financial transactions and also plays an important role in

embedded applications, such as wireless sensor networks. However, embedded devices

tend to be very constrained in terms of computing power, as many of them are battery

powered and do not require a powerful processor to perform their primary task. This

1

1.1 Motivation

can be problematic as the TLS protocol supports a wide array of encryption and key

exchange algorithms, many of which are very computationally intensive as they include

large finite field multiplications. These types of computations are not suited to small

General-Purpose Processors (GPPs) found in embedded devices and can lead to un-

acceptably poor performance. To alleviate this problem a coprocessor can be used to

accelerate cryptographic computations and allow for GPPs to be used for other tasks.

Field Programmable Gate Arrays (FPGAs) are a popular choice for embedded sys-

tems as they have a faster time to market than Application Specific Integrated Cir-

cuit (ASIC) based solutions, and are also more flexible than a design based around

a microprocessor Integrated Circuit (IC). An FPGA consists of a large array of user

programmable Lookup Tables (LUTs), memory elements, and routing logic; allowing a

designer to implement any logic required for the system, inside the FPGA. This has

the advantage that a customised system can be built, without the need to manufac-

ture new hardware components. Another benefit of FPGAs is their reconfigurability,

which allows for hardware updates to be made without replacing components in the

system. The configurability of FPGAs and the abundance of Intellectual Property (IP)

cores, that can perform a wide array of tasks, makes it possible to construct a System

on Chip (SoC) consisting of a microprocessor and also some extra logic, for whatever

application is required, all inside the same chip.

The advantage of FPGAs for cryptographic applications is that they are much

more suited to processing data in parallel than a GPP. A small processor usually

has a datapath in the range of 8 to 32 bits and an Arithmetic Logic Unit (ALU)

capable of performing operations on data of the same size. This structure works well

when processing general data, such as checking message fields in packets of information

received over a network. However, an FPGA can be configured in such a way that it

can process large data structures in parallel, which allows for the implementation of a

cryptographic processor that consists of a datapath of several hundred bits, and also

an ALU capable of processing data of the same size. A combination of a GPP and a

cryptographic coprocessor can reduce the cost and power consumption of the embedded

device, while increasing the performance.

When designing cryptographic applications for an embedded system, security is an

important factor. The security needs are very different from that of large systems

that are intended for use in a fixed location, such as a web or mail server. In server

applications the hardware will usually be physically protected to a much higher degree

than in an embedded device. This can include the servers being kept inside a secure

room. An embedded device however may have very little, to no physical protection.

2

1.2 Contribution

This allows the attacker to mount different forms of attacks against the device, such

as monitoring the power consumption of the device in order to retrieve secret key

information; this form of side channel attack is known as Simple Power Analysis (SPA).

An attacker might also try to influence how the device generates random numbers, or

how the device processes data, possibly compromising the security of cryptographic

algorithms running on the device. With the extent of physical access an attacker has,

it is critically important to protect the device in some way from these attacks. One of

the easiest ways an attacker can recover the secret keys is by attempting some form

of software based attack, through which the secret keys would be extracted from the

GPPs internal working registers. These sort of attacks can be prevented by segmenting

the system into a secure and non-secure areas. The GPP would be placed in the non-

secure zone and would not have access to the secret keys, thus removing the option of

a software based attack.

1.2 Contribution

In this thesis, a secure architecture for a cryptographic coprocessor will be presented.

The goal of the design is to derive an architecture that securely manages the private

keys and is resistant against side channel attacks. Firstly, the requirements of a co-

processor for the TLS protocol will be analysed; specific operations will be chosen for

implementation in the coprocessor, with the aim of improving overall system perfor-

mance and security. Much of the previous work in the area has focused on very large

and high speed designs. In contrast, the architecture presented in this work will fo-

cus on embedded applications, where an efficient implementation of all operations is

critical. Having identified the components required for the implementation of a TLS

coprocessor, a thorough analysis of each of the components will be conducted in order

to derive efficient and secure architectures.

Side channel resistance will be built into the system at an architecture and algo-

rithmic level. The use of secure logic styles such as dual rail logic has been avoided in

order keep the design portable across a range of platforms. It is not possible to fully

protect a device from attack but the goal is to reduce the number of attacks that are

feasible and to increase both the computational power and time required to extract the

private keys.

The remainder of this thesis is organised as follows: Chapter 2 introduces the

background information and theory required for the remaining chapters. Chapter 3

introduces Elliptic Curve Cryptography (ECC) theory and its implementation in a

3

1.3 Publications

hardware-software co-design setting. The acceleration of ECC algorithms through the

use of Instruction Set Extension (ISE), and the design of finite field multipliers for this

purpose will also be examined. Chapter 4 builds on the results from the previous chap-

ter and explores the design of ECC coprocessors constructed from FPGA resources.

Chapter 5 discusses the implementation of hash functions on FPGAs and introduces a

fair comparison methodology for different hash function structures. Chapter 6 intro-

duces True Random Number Generators (TRNGs) and how they can be implemented

on an FPGA platform. Post-processing and failure detection of TRNGs will also be

investigated; thus, allowing the construction of a secure TRNG suitable for use as a

coprocessor. Chapter 7 details the design of the TLS coprocessor, which incorporates

the components discussed in the previous chapters. The final coprocessor is a novel

architecture that incorporates secure key management and securely partitions TLS

operations between software and hardware.

1.3 Publications

The following papers were published during the course of the research conducted for

this thesis:

- Brian Baldwin, Andrew Byrne, Mark Hamilton, Neil Hanley, Robert P. McEvoy,

Weibo Pan, and William P. Marnane. FPGA Implementations of SHA-3 Candidates:

CubeHash, Grøstl, LANE, Shabal and Spectral Hash. In Euromicro Conference on

Digital System Design (DSD), pages 783–790, August 2009.

- Brian Baldwin, Andrew Byrne, Liang Lu, Mark Hamilton, Neil Hanley, Maire O’Neill,

and William P. Marnane. A Hardware Wrapper for the SHA-3 Hash Algorithms. In

Signals and Systems Conference (ISSC 2010), IET Irish, pages 1–6. IET, 2010.

- Brian Baldwin, Andrew Byrne, Liang Lu, Mark Hamilton, Neil Hanley, Maire O’Neill,

and William P. Marnane. FPGA Implementations of the Round Two SHA-3 Can-

didates. In International Conference on Field Programmable Logic and Applications

(FPL 2010), pages 400–407. IEEE, 2010.

- Brian Baldwin, Andrew Byrne, Liang Lu, Mark Hamilton, Neil Hanley, Maire O’Neill,

and William P. Marnane. FPGA Implementations of the Round Two SHA-3 Candi-

dates. In The Second SHA-3 Candidate Conference, August 2010.

- Brian Baldwin, Raveen R. Goundar, Mark Hamilton, and William P. Marnane. Co-

Z ECC Scalar Multiplications for Hardware, Software and Hardware-Software Co-

4

1.3 Publications

Design on Embedded Systems. Journal of Cryptographic Engineering, 2(4):221–240,

2012.

- Mark Hamilton and William P. Marnane. FPGA implementation of an Elliptic Curve

Processor using the GLV Method. In International Conference on ReConFigurable

Computing and FPGAs (ReConFig), pages 249–254, 2009.

- Mark Hamilton, William P. Marnane, and Arnaud Tisserand. A Comparison on

FPGA of Modular Multipliers Suitable for Elliptic Curve Cryptography over GF(p)

for Specific p values. In 21st International Conference on Field Programmable Logic

and Applications (FPL), pages 273–276, 2011.

5

Chapter 2

Cryptography for Embedded

Systems

2.1 Introduction

An embedded system is a subsection of a larger system that is designed to perform a

specific task. Examples include the Global Positioning System (GPS) transceiver in a

mobile phone or the traction control system of a car. An embedded system contains

at least one processor in its architecture and might also contain several other hardware

modules, as shown in Figure 2.1, where µP denotes a microprocessor. The embedded

system architecture consists of software running on the µP, which interfaces with the

various hardware modules in order to perform its specified task.

µP

Data Bus

ROM ASIC

RF
ADC
DAC

Figure 2.1: Generic architecture of an embedded system.

6

2.2 Introduction to Cryptographic Systems

Embedded devices are usually more constrained in terms of computing power than

general purpose devices, such as a desktop computer, as they are optimised to perform

one specific task. When adding support for cryptographic protocols, one can therefore

not take a generic library of code, compile it for the embedded system, and expect

to achieve the required performance. The designer must take into consideration the

resources available and optimise the implementation of the cryptographic primitives

accordingly. In certain situations, the embedded system may simply not contain the

requisite hardware to achieve acceptable performance. The inclusion of a coprocessor

can solve this problem.

This chapter introduces the basic cryptographic algorithms and the mathematical

concepts that they are based on. It will then be shown how these algorithms are com-

bined into a cryptographic protocol that can be used to secure communications across

an unsecured channel. Finally, an outline of the security requirements of embedded sys-

tems today and how FPGAs can be used to solve some of the problems that arise when

implementing cryptographic algorithms in an embedded environment will be discussed.

2.2 Introduction to Cryptographic Systems

Figure 2.2 shows how the layers of a typical cryptographic system are arranged; the

top level layer is where user applications reside. Secure email and mobile commerce are

two examples of applications that are highly dependent on the services that the lower

layers provide. Many different cryptographic algorithms exist that supply the security

protocols with services such as sender authenticity, encryption, non-repudiation, and

data integrity. Using a combination of these algorithms, it is possible to transfer data

securely over an unsecured channel.

At the lowest layer of the system the core operations are based on finite field arith-

metic. The efficient implementation of these operations is very important for overall

system performance, as some of these operations need to be executed thousands of

times during the processing of an algorithm. A small saving at this level can therefore

lead to a large reduction in latency in the upper layers [7].

Cryptographic algorithms generally fall in two main categories, private-key cryp-

tography and public-key cryptography. In private-key cryptography, two entities use an

identical shared secret to communicate across an unsecured channel; this form of cryp-

tosystem is discussed in Section 2.5. This approach, however, assumes that both parties

have been able to establish a shared secret between them. In practice, this process is

not a trivial task. However, the invention of public-key cryptography has provided a

7

2.3 Mathematical Background

Applications:
m-commerce, secure email

Security Protocols:
TLS/SSL, IPsec, SSH

Cryptographic algorithms

Private-key Public-key Other

AES, DES ECC, RSA Hash, PRNG

Fq arithmetic:
addition,

subtraction,
multiplication,

inversion.

Figure 2.2: Hierarchical model of a cryptographic system.

solution by defining mathematical constructions that allow both keys and encrypted

messages to be exchanged securely. Public-key algorithms are generally the most com-

putationally intensive in the system as they require the most arithmetic operations per

bit during their execution. Public-key cryptography will be discussed in Section 2.6,

but first an introduction to some of the mathematics involved in cryptography will be

given.

2.3 Mathematical Background

Many cryptographic primitives are based on the principles of finite field arithmetic;

therefore, in this section the construction of finite fields and their associated properties

will be discussed. In order to define a finite field, the general concepts of groups, rings,

and fields must first be introduced.

2.3.1 Groups

A group is a set of elements G together with an operation “·” which when applied to

elements of G, the following properties hold:

1. The group operation “·” is closed. That is, a · b = c ∈ G for all a, b ∈ G.

8

2.3 Mathematical Background

2. The group operation is associative. That is, a · (b · c) = (a · b) · c for all a, b, c ∈ G.

3. There is an identity element (or neutral element) µ ∈ G, where a · µ = µ · a = a

for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G , where a · a−1 = a−1 · a = µ.

The element a−1 is known as the inverse of a.

5. A groupG can be referred to as abelian (or commutative) if the property a·b = b·a,
for all a, b ∈ G, is satisfied.

2.3.2 Rings

A ring (R,+, ·) is a set R, together with two binary operations “+” and “·”, where:

1. R forms an abelian group with respect to “+”, where “+” is usually referred to

as addition.

2. The associative property holds for the the “·” operation. i.e., a · (b · c) = (a · b) · c
for all a, b, c ∈ R.

3. The distributivity law holds i.e., a · (b+ c) = a · b+a · c and (b+ c) ·a = b ·a+ c ·a.

2.3.3 Fields

If we refer to “+” as addition and “·” as multiplication, a field F is a ring where

the multiplication is commutative and a multiplicative inverse exists for every nonzero

element of F. The properties of a field are therefore:

1. The elements of F form an additive group with the group operation “+” for which

the identity element is 0.

2. All elements of F except for 0 form a multiplicative group with respect to the

group operation “·” and corresponding identity element 1.

3. The distributivity law holds for both multiplication, addition, and their combi-

nation. i.e., for all a, b, c ∈ F, a · (b+ c) = (a · b) + (a · c).

9

2.4 Generating Random Numbers

2.3.4 Finite Fields

Finite fields are of great importance to cryptography, as many cryptographic primitives

can be defined using arithmetic over finite fields. In particular ECC, which will be

discussed in Chapter 3, and Rivest-Shamir-Adleman (RSA) [106] are two examples of

algorithms that are derived from this area of mathematics.

A finite field is simply a field F that has a finite number of elements. It has been

shown that a finite field can only exist if the number of elements in the field (also known

as the order of the field) is the power of a prime p. That is, given a prime p and a

positive integer m a finite field has q = pm elements and is denoted Fq. This result

was derived by the mathematician Évariste Galois and hence a finite field is sometimes

referred to as a Galois field, with the notation GF (q).

Having introduced some of the mathematical principles used in cryptography, the

following sections address how these principles are used in cryptographic algorithms.

2.4 Generating Random Numbers

As will be shown in subsequent sections, many cryptographic algorithms require the

generation of random data for keys or nonces. Therefore, in this section a brief intro-

duction into the generation of random data will be presented.

Regardless of how mathematically secure a cryptographic algorithm is, it can still

be defeated if its implementation is not secure. This has been shown to be true in the

past where cryptosystems were broken due to poorly initialised random data [45, 67].

In this case, an attacker can predict the keys; therefore, breaking the cipher itself is

not necessary.

In order for a Random Number Generator (RNG) to be secure, random data should

be generated in such a way that it’s unpredictable, even if an attacker has knowledge of

all previously generated data and the physical implementation of the RNG. Ideally, the

RNG should produce random data uniformly distributed in the required range and each

random bit should be independent. This amounts to the RNG having good statistical

properties. In order to achieve this, the RNG must sample some unpredictable source

to generate a stream of random bits. The more unpredictable the source, the more

entropy will be present in the output bitstream; where entropy is a measure of the

uncertainty of a random bit. The quality of the RNG is determined by its ability to

extract randomness from the unpredictable source. RNG designs vary depending on the

platform of implementation, a detailed discussion on implementing RNGs on FPGAs

10

2.5 Private-Key Cryptography

will be given in Chapter 6. In the following sections it will be assumed that the keys

and nonces have been generated in a secure manner.

2.5 Private-Key Cryptography

A private-key (also known as symmetric-key) cryptosystem consists of two entities, say

Alice and Bob, that both have knowledge of a secret key k. If Alice wants to send

a message to Bob, Alice encrypts the message using the key k, and some encryption

function ǫ, where ǫ is generally a stream cipher or a block cipher. Both stream ciphers

and block ciphers are used to encrypt a string of data; stream ciphers encrypt the data

one bit at a time, updating the key for each new bit of the plaintext. Block ciphers on

the other hand fragment the data in blocks of fixed length and encrypt each block with

the same key.

The encryption function ǫ operates on the message and the key to produce the

ciphertext c, that is c = ǫk(m). An example of this type of cryptosystem is shown

in Figure 2.3, where δ is the corresponding decryption function for ǫ. The National

Institute of Standards and Technology (NIST) block cipher currently recommended for

use as the encryption algorithm is the Advanced Encryption Standard (AES) [91]. If

the encryption function ǫ is cryptographically strong, it is possible to securely exchange

messages without an eavesdropper being able to decipher them. An example of a

private-key system is Wi-Fi Protected Access (WPA) [2], which uses pre-shared keys.

Alice Bob
secret key: ksecret key: k

message: m

c = ǫk(m)

secure channel

c

unsecured channel m = δk(c)

kk

k

key source

Figure 2.3: Private-key cryptosystem.

Private-key cryptosystems offer high throughput for communications, however, se-

curely distributing the secret key between the two communicating entities is a problem

11

2.6 Public-Key Cryptography

in certain situations. Over a large network, maintaining the key pairs for each con-

nection is also problematic. Another downside is that private-key does not provide

non-repudiation, which is of critical importance for online financial transactions. A

solution to this can be found through the use of public-key cryptography for the distri-

bution of keys. Once the secret key has been established, private-key algorithms can

then be used for bulk data encryption. This combination of public-key and private-key

systems combines the security and easy key distribution properties of public-key algo-

rithms, with the high data throughput that is achievable with private-key algorithms.

2.6 Public-Key Cryptography

Public-key (also known as asymmetric-key) cryptography was introduced by Diffie and

Hellman in 1976 in their paper “New Directions in Cryptography” [30]. Public-key

cryptography provides a solution to setting up a shared secret key between two entities

over an unsecured channel. The two communicating entities each have a key pair

(Kpub,Kpriv), where Kpub and Kpriv are the public and private keys of that entity

respectively. The keys are generated in such a way that if a message is encrypted using

Kpub, it can be decrypted using Kpriv. This allows for an easy key distribution scheme

as Kpub can be made publicly available and anyone who wants to send an encrypted

message only requires knowledge of the recipient’s public key. In order for the protocol

to be secure the key pair must be calculated in a way that makes it computationally

infeasible to compute Kpriv, given only Kpub.

Take as example two entities, Alice and Bob, that are connected by an unsecured

channel, as shown in Figure 2.4. If Alice wants to send a message to Bob she first

acquires a copy of Bob’s public key, Bpub. Alice then encrypts the message m, using

Bpub and some function ξ to obtain a ciphertext c, such that c = ξBpub
(m). Alice then

sends the ciphertext to Bob who can decrypt the ciphertext using his private key, Bpriv,

and a decryption function ϕ.

The main variants of public-key cryptography all stem from [30], they are ElGamal

[34], RSA [106], and ECC [63, 81]. RSA uses the integer factorisation problem as its

hard problem, whereas the others use the Discrete Logarithm Problem (DLP). The

DLP is defined as the problem of finding an integer x such that αx ≡ β (mod q),

where 1 ≤ x ≤ q − 1, α, β ∈ G, and G is a finite cyclic group.

Although public-key cryptography solves the secure key distribution problem, the

system can easily be defeated by certain attacks without having to break the underlying

mathematical principles. A Man-in-the-middle (MIM) attack [114, pages 48–49] can

12

2.6 Public-Key Cryptography

Alice Bob
key pair: (Apub, Apriv)

message: m

c = ξBpub(m)

c,Apub, Bpub

unsecured channel

key pair: (Bpub, Bpriv)

m = ϕBpriv(m)

Figure 2.4: Public-key cryptosystem.

be performed, where an attacker intercepts messages between the two communicating

parties and impersonates each party by replacing their public keys with his own. To

protect against this type of attack, some form of key authentication must be built into

the system; this has lead to the definition of a Public Key Infrastructure (PKI).

2.6.1 Public Key Infrastructure

PKI is the term given to the system that incorporates Certificate Authorities (CAs),

Registration Authorities (RAs), and various public-key algorithms to achieve an au-

thenticated distribution of keys. The purpose of the PKI is to bind a user’s identity

to their public key, this introduces a level of trust into the system. Digital certificates,

which will be discussed in Section 2.6.1.2, are the mechanism used to bind a user to

their public key. For the PKI to be possible, there must be at some level a trusted

source of certificates; this trusted source is known as the root CA. The root CA has

the ability to verify other CAs by signing their certificates. This method of trust being

passed down to the end user is known as a certificate chain, and is present as it allows

many different organisations to issue certificates. This also results in a reduction in the

amount of data that an end user would need to store if they were required to possess

the public keys of all the CAs.

When a user receives a certificate they must be able to verify the signature of one

of the CAs in the chain in order to ensure that the certificate is in fact legitimate.

An important process in the distribution of certificates is the ability to digitally sign a

piece of data.

2.6.1.1 Digital Signatures

Digital signatures provide a method by which the receiver of a message, that has been

digitally signed, can verify the source of the message i.e., data origin authenticity.

13

2.6 Public-Key Cryptography

Digital signatures are based on pubic-key methods and were introduced in [30]. Many

other schemes have been proposed such as ElGamal [34, 106], and the elliptic curve

based variant which will be discussed in Chapter 4.

In contrast to how the Diffie-Hellman key exchange works, by using an entity’s

public key to encrypt a message, digital signatures are produced by generating the

signatures based on some operation and the sender’s private key. The signature can

then be verified through the use of the sender’s public key. As an example the Digital

Signature Algorithm (DSA) [89] is presented here. The sender generates a public key

that consists of four parameters (p, q, α, β). The values p and q are primes, and are

generated such that q | (p − 1). The value of α is given by α = gp−1/q, where g is

chosen at random such that α 6= 1 and g ∈ [1, p− 1]. The value of β is given by β = αd

(mod p), where d ∈ [1, q − 1] is the sender’s private key. H is a cryptographically

secure hash function, which calculates a fixed length string for the input message m

of arbitrary length. This string is effectively a fingerprint of the input message. A

detailed description of the design and implementation of hash functions will be given

in Chapter 5.

The signature generation process is given in Algorithm 1. In step 1 the value of

k should be generated in a secure manner, such as that described in Section 2.4. A

hash function H is used in step 2 to calculate a fixed length string based on the input

message m. The hash of the input message, the value k, and the sender’s private key d

are then combined using some finite field arithmetic which results in a digital signature

consisting of two elements r and s.

Algorithm 1 Digital signature generation

Input: private key d, public key (p, q, α, β), message m
Output: Signature (r, s)

1: generate random integer k ∈ [1, q − 1]
2: compute e = H(m)
3: compute r ≡ (αk (mod p)) (mod q)
4: compute s ≡ (e+ dr)k−1 (mod q)
5: the signature for message m is then (r, s)

Algorithm 2 shows the steps required to verify the signature of a received message.

Using the same hash function as that of Algorithm 1, the receiver calculates the hash of

the received message. Steps 3 to 6 of the algorithm then use some finite field arithmetic

to generate values based on r, s, H(m), and the sender’s public key. If the signature is

correct, the resulting value v should equal that of r from the received signature.

14

2.6 Public-Key Cryptography

Algorithm 2 Digital signature verification

Input: signature (r, s), senders public key (p, q, α, β), message m
Output: accept or reject signature

1: verify r, s ∈ [1, q − 1]
2: compute e = H(m)
3: compute λ = s−1 (mod q)
4: compute u1 = eλ (mod q)
5: compute u2 = rλ (mod q)
6: compute v ≡ (αu1βu2 (mod p)) (mod q)
7: accept signature if v ≡ r (mod q) else reject

This can be shown by observing that in Algorithm 1, the sender computes the value

s ≡ (e+ dr)k−1 (mod q), (2.1)

where, e = H(m). Therefore, the correctness of Algorithm 2 can shown, as

k ≡ es−1 + drs−1 (mod q),

≡ eλ+ drλ (mod q). (2.2)

Using the notation from Algorithm 2 this can be rewritten as

k ≡ u1 + du2 (mod q). (2.3)

Raising α to the power of both sides gives

αk ≡ αu1+du2 (mod p),

≡ αu1αdu2 (mod p),

≡ αu1βu2 (mod p). (2.4)

Finally,

r ≡ (αk (mod p)) (mod q),

≡ (αu1βu2 (mod p)) (mod q),

≡ v (mod q). (2.5)

15

2.7 Cryptographic Protocols

2.6.1.2 Digital Certificates

Digital certificates, standardised in [56], are used to link a specific public key to its user.

A Certificate Authority (CA) is a registered organisation (trusted third party) that

verifies the identities of the owners of public keys and issues certificates accordingly. To

create a certificate, the sender uses a digital signature algorithm to sign a combination

of the sender’s ID and public key. Web browsers contain a list of trusted CAs. When

a browser tries to access a website, the website sends the browser a certificate that it

has obtained from a CA. If the certificate can be verified i.e., the signature is valid for

the website domain name and the accompanying public key, the browser can infer that

the website is genuine.

2.7 Cryptographic Protocols

In the previous sections, the underlying mathematical principles used in cryptography

were introduced, this was followed by a discussion of the different forms of cryptographic

algorithms. This section deals with the use of these cryptographic algorithms as part

of a cryptographic protocol.

Cryptographic protocols define how the cryptographic algorithms are combined in

order to achieve a specific security goal, such as secure data transmission over a net-

work. They define how data should be encapsulated and give a framework for how the

different forms of messages should be exchanged i.e., the exchange of keys or application

data. Many cryptographic protocols exist, however, they are all based upon the same

underlying cryptographic primitives, such as public-key and private-key cryptography.

The Internet Protocol Security (IPsec) protocol [96] operates at the IP layer of the

TCP/IP model [17, 18] and is used extensively in securing VPNs. Secure Shell (SSH)

[135] operates at the application layer and allows for secure command-line login and

file transfers over a network. Although IPsec and SSH are used for different applica-

tions and operate at a different layer of the TCP/IP model, they both use standard

public-key and private-key algorithms to achieve their security goals.

One of the most common cryptographic protocols is TLS, which operates at the

transport layer of the TCP/IP model. TLS is not application specific and is therefore

widely used to establish secure data transmission. For this reason a detailed description

of TLS will be given in the following sections. It should be noted however that TLS is

just one application of the cryptographic algorithms that will be discussed throughout

this thesis. The architectures may be applied to whatever cryptographic application is

16

2.8 Transport Layer Security

required.

2.8 Transport Layer Security

The TLS protocol [29] supports a suite of cryptographic algorithms that can be used

in many combinations to achieve the secure transfer of data. The fact that so many

cryptographic algorithms are supported, with a varying degree of security levels, means

that TLS is suitable for use on a wide range of devices. TLS is based around the private-

key and public-key algorithms that were discussed in the previous sections. A detailed

description of TLS is given in the following sections, as the processes and algorithms

used determine the requirements of a TLS coprocessor.

The TLS protocol operates at the transport layer of the TCP/IP model. As an

example, data may be received over a network through the use of the Transmission

Control Protocol (TCP) [102]. This data is then passed to the TLS record protocol

which is responsible for the fragmentation, compression, and encryption of data. The

TLS record protocol encapsulates four higher level TLS protocols: the TLS handshake

protocol, TLS application data protocol, TLS ChangeCipherSpec Protocol, and the

TLS Alert protocol, as shown in Figure 2.5. The TLS handshake protocol is used

for setting up a shared secret between two parties and is based around public-key

algorithms, such as the Diffie-Hellman key exchange [30]. The TLS record protocol

is used to send encrypted data between two communicating parties that have already

established a shared secret in some way (possibly through use of the the TLS handshake

protocol). The TLS record protocol is based around private-key algorithms, which use

block ciphers or stream ciphers to encrypt and decrypt the messages, while digital

signatures are used to provide message authenticity and non-repudiation.

The TLS protocol uses different message types to transfer application data or in-

formation related to the protocol itself; each message is referred to as a TLS record.

Each record has its own header and may be encrypted and protected by a Message

Authentication Code (MAC). A MAC is a tag that can be appended to a message and

allows the receiver to verify the message’s integrity and authenticity. A MAC algorithm

can be constructed from a block cipher, in which case the algorithm is referred to as

a Cipher-based Message Authentication Code (CMAC) [32], or more commonly they

are constructed from hash functions and referred as a Hash-based Message Authenti-

cation Code (HMAC) algorithm [68]. The HMAC algorithm generates a MAC based

on the hash of the message and the sender’s public key; thus, combining the ability of

hash functions to provide message integrity, with the ability of public-key algorithms

17

2.8 Transport Layer Security

to provide message authenticity.

TCP Data

TLS Record Protocol

TLS
Handshake
Protocol

TLS
Alert

Protocol

TLS
Change Cipher

Spec

TLS
App Data
Protocol

Users Applications (TCP/IP Application Layer)

T
C
P
/I
P

tr
an

sp
or
t
la
ye
r

Figure 2.5: Processing of a TLS message fragment.

2.8.1 TLS Record Protocol

The TLS record protocol uses private-key algorithms to encrypt messages sent between

the two communicating parties. Once the handshake phase of the TLS protocol has

been completed, some method of encrypting messages must be used. Public-key based

systems are generally too computationally intensive for this type of application. A

more common choice is to use either a stream cipher or block cipher to perform the

bulk encryption operation. AES [91] in Cipher Block Chaining (CBC) mode [31, 33] is

a popular choice for this purpose and is the current NIST standard block cipher. The

TLS record protocol uses HMAC to provide message integrity and message authenticity.

The process of encrypting a message begins by segmenting the data into blocks

of 214 bytes or less. Each fragment to be encrypted is referred to as a TLSPlaintext

fragment. At this point there is the option to compress the fragment; a process that is

only executed if it was negotiated as part of the agreed cipher suite. A MAC is then

calculated for the fragment and appended before encryption takes place. A TLS record

header is prepended onto the encrypted TLSCiphertext ; the data segment is now ready

to be transmitted, this process is illustrated in Figure 2.6.

2.8.2 TLS Alert Protocol

The TLS alert protocol allows each communicating party to signal that they have

detected a problem with the session, or that they would like to close the session. The

alert protocol supports two severity levels of alert messages: a warning message and a

fatal error message. A close notify message is a type of alert message, with severity of

18

2.8 Transport Layer Security

TLSPlaintext

Append MAC

TLSPlaintext MAC

Ek(TLSPlaintext ‖ MAC)

TLSCiphertext

Prepend record header

TLSCiphertextHeader

Figure 2.6: TLS protocol layers.

warning, that signifies that the sender is closing the connection. If either party detects

an error in the TLS session, an alert message must be sent. If the error is considered

fatal, the alert message is sent and the connection is immediately closed.

2.8.3 TLS ChangeCipherSpec Protocol

The TLS ChangeCipherSpec protocol is used to notify the receiving party that the

sender will be changing ciphering strategies. During the handshaking phase of setting

up a TLS session, the initial messages exchanged are unencrypted. Once a party receives

a ChangeCipherSpec message it signifies that all of the sender’s communications, from

this point forward, will be protected by the previously negotiated bulk encryption and

MAC algorithms.

2.8.4 TLS Application Data Protocol

The TLS application data protocol is simply the encrypted data carried by the TLS

record protocol.

19

2.8 Transport Layer Security

2.8.5 TLS Handshake Protocol

The TLS handshake protocol is used to establish a TLS session between two entities.

The protocol supports many different algorithms for performing the negotiation of the

shared secret. A typical handshake process, between a client and a server, is shown in

Figure 2.7. The exact messages that are exchanged depend on the cipher suite that is

negotiated by the first two Hello messages. Optional messages that are only sent by

some cipher suites are shown with a “∗”.

Client Server

ClientHello

Certificate∗

ClientKeyExchange∗

CertificateVerify∗

ChangeCipherSpec

Finished

ApplicationData

ServerHello

Certificate∗

ServerKeyExchange∗

CertificateRequest∗

ServerHelloDone

ChangeCipherSpec∗

Finished

ApplicationData

Figure 2.7: TLS handshake protocol.

The ClientHello message is sent by the client to notify the server of the cipher

suites that it supports. Each cipher suite consists of a key exchange algorithm, a

bulk encryption algorithm, a MAC algorithm and an algorithm to be used as the

pseudorandom function. The client also generates a random number and sends it as

part of the message. The ServerHello message is a response from the server that tells the

client which security parameters it has accepted; the message also contains a random

number generated by the server. These two messages also allow the client and server

20

2.8 Transport Layer Security

to select which version of the TLS protocol is to be used. The descriptions that follow

assume that the most recent version of the TLS protocol, TLSv1.2, is used.

The ServerCertificate message is sent if the algorithm parameters agreed upon sup-

port digital certificates for server side authentication. The certificate is an x.509 en-

coded data structure that contains the server’s public key. Server side authentication

is achieved through a trusted CA signing the certificate with the CA’s private key.

The ServerKeyExchange message is only sent if the cipher suite that has been

chosen allows for the negotiation of a shared secret based on a key that is different

from the one contained in the server’s certificate. This message is usually sent for

cipher suites that make use of ephemeral keys. If ephemeral keys are not being used,

the server’s certificate should have contained all the information required to set up

the premaster secret, and in this case the ServerKeyExchange message would not be

sent. The premaster secret is used, along with the client and server random numbers,

to derive the master secret and any keys required for the bulk encryption and HMAC

functions.

The optional CertificateRequest message, sent by the server, is used if client side

authentication is required by the negotiated cipher suite.

The ServerHelloDone message indicates that the server has sent all necessary data

to the client in order for the client to continue with the key exchange process.

Once the client receives the ServerHelloDone message, it calculates its response and

sends the data in the ClientKeyExchange message. The ClientKeyExchange message

is always sent and contains the client’s ephemeral public key. The client can, at this

point, verify the certificate that has been sent by the server and generate the master

secret based on the server’s certificate or the data received in the ServerKeyExchange

message, if it was sent. Once the server has processed the ClientKeyExchange message,

both the server and client should have arrived at the same master secret.

The client then sends a ChangeCipherSpec message; this message notifies the server

that all subsequent messages sent by the client will be encrypted with the agreed upon

bulk encryption algorithm and authenticated with the HMAC algorithm.

This is then followed by the client’s Finished message. This is the first encrypted

message in the handshake process and contains a MAC and a hash of all previously

exchanged handshake messages. Upon receiving the client’s Finished message, the

server can authenticate that the handshake was performed correctly by decrypting the

Finished message and verifying that the MAC and the hash of handshake messages

contained in the message matches the values that it has calculated.

The server then responds with its own ChangeCipherSpec and Finished messages.

21

2.9 Field Programmable Gate Arrays

Once the client has processed these messages, the handshake is complete and application

data can then be exchanged through the use of the application data protocol.

2.9 Field Programmable Gate Arrays

Throughout this thesis, designs will be implemented and tested on reconfigurable logic

devices known as FPGAs. Therefore, an introduction into their structure will be dis-

cussed in this section.

Field Programmable Gate Arrays (FPGAs) are a flexible platform that offer the

ability to quickly test designs. Modern FPGAs contain not only large amounts of user

programmable logic, but also dedicated hardware blocks that offer a high level of per-

formance for specific applications, such as Digital Signal Processing (DSP) [134]. Some

Xilinx Virtex 5 devices also contain PowerPC processors, Ethernet MACs, and high

speed Input/Output (I/O) transceivers [131]. FPGAs consist of an array of Configurable

Logic Blocks (CLBs) and routing logic that can be combined and configured to form

complex combinational circuits. The CLBs and routing logic are arranged in columns

throughout the FPGA chip. The internal structure of CLBs varies with different ven-

dors and FPGA versions, however, all designs presented in this thesis are generated for

members of the Xilinx Virtex 5 family of FPGAs [132]; hence, their structure will be

discussed here.

In a Virtex 5 FPGA each CLB consists two slices, as shown in Figure 2.8. Each

slice consists of four 6 input LUTs. The number of slices in a Virtex 5 FPGA ranges

from 4,800 to 51,840, however, the version used for most of the results in this thesis

is the XC5VLX110T, which has 17,280 slices. Each slice also incorporates fast carry

chain logic which is designed to improve the performance of arithmetic circuitry. This

is achieved by providing a dedicated path between slices for the carry signal, instead of

having to route it through the standard routing logic. The carry chain connects slices

in two vertically adjacent CLBs, as shown in Figure 2.8.

Each Virtex 5 FPGA also contains between 936 kbit and 18,576 kbit of Block

RAM (BRAM) which is split into 36 kbit blocks. These blocks, however, can be

combined in order to achieve larger memory sizes. BRAM resources are not part of the

slice logic on the FPGA; therefore, they are presented as a separate result when used

in any design in the following chapters.

22

2.9 Field Programmable Gate Arrays

CLB

slice 0

slice 1

Cin Cin

Cout Cout

ro
u
ti
n
g
lo
gi
c

Figure 2.8: Virtex 5 CLB structure.

2.9.1 Microblaze Processor

Much of the work presented in this thesis concerns the design of coprocessors. In order

to test the performance of these coprocessors in a real world environment, they must

be implemented in a system where a GPP is also present. As the target platform for

implementations are Xilinx devices, a Microblaze processor [130] is used as the GPP.

A Microblaze is soft-core processor designed by Xilinx and is thus easily implemented

on Xilinx devices. The Microblaze has a Reduced Instruction Set Computing (RISC)

architecture and can be implemented using slice logic and BRAM resources on Xilinx

FPGAs. The Microblaze can be configured to achieve different levels of performance

by incorporating a floating point unit, dedicated multiply instruction, or a Memory

Management Unit (MMU).

The test system used for many of the designs in the following chapters of this thesis

is shown in Figure 2.9. The system is configured to include access to 256 MB of Double

Data Rate (DDR2) Random Access Memory (RAM) through an external memory con-

troller. The Microblaze also has access to a configurable amount of memory internal

to the FPGA; this memory is implemented in BRAM. In some designs the system re-

quires access to an Ethernet connection. This is done by utilising one of the embedded

Ethernet Media Access Controller [133] modules present in the XC5VLX110T FPGA.

23

2.9 Field Programmable Gate Arrays

DDR2 RAM

BRAM

memory controller

Microblaze

FIFO

FIFO

cryptographic
coprocessor

FPGA chip

Eth. MAC

32

32

Figure 2.9: Example of an embedded SoC with a GPP and a coprocessor.

Each coprocessor is connected to the Microblaze via a Fast Simplex Link (FSL)

bus.

2.9.2 FSL Bus

The FSL bus [129] is a high speed interconnect offered by Xilinx that allows the Mi-

croblaze processor to communicate with custom logic elsewhere in the FPGA. An FSL

bus is unidirectional; hence, two FSL buses are required for two way communication

with the coprocessor. The FSL bus consists of a First In, First Out (FIFO), of config-

urable depth, and 32 bits in width. The master side of the FSL bus controls the clock

frequency, and writes data into the FIFO; while the slave side reads from the FIFO.

An illustration of the FSL bus is shown in Figure 2.10. Data is sent from the master,

into the FIFO, 32 bits at a time on the FSL M Data signal; the slave can then read

from the FIFO. Valid data in the FIFO is indicated by the FSL S Exists signal being

set high. A control signal, FSL M Control, is also present that is used to signal that

a specific 32 bit block in the FIFO is a control word. The same setup is used in the

24

2.10 FPGAs and Cryptography

opposite direction, for the coprocessor to send data to the Microblaze.

The clock signal, FSL Clk, is provided by the Microblaze; hence, the coprocessor

must run at the same clock frequency as the Microblaze. The FSL bus used in the

design presented in this work was configured to have a depth of 16, and to use LUT

RAMs, as opposed to block RAMs. Each 32 bit data block takes 1 clock cycle to be

written to the FSL FIFO.

FIFO
. . .

FSL Clk

FSL M Data

FSL M Control

FSL M Write

FSL M Full

FSL Clk

FSL S Data

FSL S Control

FSL S Read

FSL S Exists

3232

Figure 2.10: FSL bus.

2.10 FPGAs and Cryptography

FPGAs have been a popular choice for implementing cryptographic systems in recent

years. This mainly stems from their suitability for implementing large parallel bitwise

operations and lower development costs than ASIC based solutions. FPGAs also tend to

have lower energy consumption per bit than Central Processing Unit (CPU)/Graphics

Processing Unit (GPU) based designs [117], as they can be configured for a specific

task; this is of particular interest to designers of embedded systems. An overview of

the area of implementing cryptographic algorithms on FPGAs can be found in [107].

Embedded systems generally contain a small processor and some custom hardware

to perform their task. Unfortunately, a small GPP is not the ideal device for imple-

menting cryptographic algorithms. Cryptographic algorithms usually have operands

with bitlengths in the range of 128 to 1024 bits, and above, whereas GPPs are designed

to work with data of bitlengths in the range of 8 to 64 bits. Embedded systems proces-

sors usually fall into the lower end of this range. To execute operations on operands of

this size, a GPP will have to decompose the operands until they are sufficiently small

so that the processor’s ALU can operate on them. This decomposition increases the

number of clock cycles required to process the data, which thus increases the overall

computation time and can result in a computation time of over a second on small de-

vices [49]. Although this length of time might be acceptable for certain applications,

FPGAs offer a solution for reducing the computation time.

25

2.10 FPGAs and Cryptography

FPGAs have the advantage that they can be configured to operate on the data

in parallel. This makes them much more efficient than small GPPs for performing

cryptographic operations. An added benefit is that an FPGA can be used to implement

both the processor and the extra logic for performing cryptographic algorithms, all

inside the same chip, as illustrated in Figure 2.9. This type of design is known as

an SoC. FPGAs, however, have a limited amount of internal memory and for this

reason, memory placed in an external chip is common practice. This can be done by

implementing a memory controller inside the FPGA and having an external connection

to a DDR RAM or Static Random Access Memory (SRAM) module.

This poses a problem when the processor has to perform operations on any secret

data stored in the FPGA, as the processor will have to have access the secret keys or

secret data in cleartext, in order for it to operate on it. As a result, unless precautions

are taken, the secret data will have to be transferred to the main memory, external to

the chip. An attacker could simply read this data as it’s transferred from the FPGA

to the memory module. There are several solutions to this problem:

1. The system can be designed so that all data sent to and from the memory module

is encrypted. This solution, however, is not very efficient and will have a big

impact on the overall performance of the system. This is caused by the overhead

involved in encrypting data before transferring it to and from the memory module,

and is inefficient as not all data being processed needs to be kept secure. This

solution also increases the logic resources required on the FPGA and does not

protect against software based attacks [52, 54, 94].

2. The processor can be implemented such that it has a section of working memory

implemented internally to the FPGA and when secure data must be processed,

all calculations use this secure internal memory. However, this solution does not

protect against the possibility of software based attacks, as the processor still has

access to the secret data.

3. The other solution, the one presented in this work, is to design the SoC such that

the processor never has to operate on the secret key data. In order to achieve this,

all operations requiring the secret key data can be done inside a coprocessor. This

has several advantages over the two previous solutions. Firstly, a small GPP is

not a very secure platform to implement cryptographic algorithms. If an attacker

gains the ability to execute code on the processor, the attacker could simply

retrieve the secret keys from memory. With this solution, however, software

26

2.11 Side Channel Attacks

based attacks are negated. Secondly, in this design the coprocessor can be used

to increase the performance of the system and also add resistance against attackers

extracting the secret keys, thus adding protection against hardware based attacks

such as Side Channel Attack (SCA).

2.11 Side Channel Attacks

A secure cryptosystem relies not only on the theoretical security of cryptographic al-

gorithms, but also on their secure implementation. In Section 2.4, the effect of a weak

RNG implementation was discussed, where an adversary does not need to break the

cryptographic algorithm if they can predict the secret keys that will be used. A gen-

eralisation of this approach can be applied to an entire cryptosystem and is referred

to as an SCA. SCAs attempt to infer from physical emissions of the cryptosystem,

sensitive information that the cryptosystem is operating on. This can be in the form of

variations in the time it takes to perform a specific task [64], electromagnetic emissions

[39], or the power consumption of the device [65].

SPA attacks attempt to determine, directly from the power consumption of the

device, information about the data that is being processed. This is done by visually

inspecting the waveform of the power consumption of the device and inferring from

this which operation the device is performing at a given time. If an algorithm is

designed in such a way that it executes different operations depending on the value of

the secret key, an SPA attack could be used to recover each bit of the key. This can be

the case for certain ECC algorithms; preventing this form of attack will be discussed

in Chapter 3. Differential Power Analysis (DPA) attacks are a more sophisticated

form of power analysis attack, where the waveform of the power consumption of the

device is recorded over several executions (usually in the order of thousands) of the

algorithm under attack. These waveforms are then statistically analysed, and the key

recovered. A DPA attack that attempts to recover the secret key by analysing the

power consumption of one specific point during the algorithm’s execution is referred to

as a first order attack. This approach can be extended to higher order attacks, where

multiple points in the algorithms execution are simultaneously analysed in order to

infer information about the secret key. Where possible, DPA and SPA attacks will be

protected against in the designs presented in this thesis. A detailed description of side

channel attacks can be found in [73].

27

2.12 Related Work

2.12 Related Work

Very few hardware implementations that fully support acceleration of the TLS or Secure

Sockets Layer (SSL) protocols have been published. Much of the currently published

research has focused on accelerating specific algorithms supported by the TLS protocol

suite, such as ECC arithmetic operations or private-key algorithms [43, 99, 100, 111];

there have also been several IPsec implementations [76, 93]. The following sections will

examine the different types of SSL/TLS coprocessor architectures that have appeared

in the literature. Coprocessors that accelerate specific algorithms will be discussed in

their relevant chapter.

In the previous sections, some of the algorithms used in cryptographic protocols

have been introduced. From the description of the TLS protocol, it can be seen that

a number of different functions are required in order to implement the cryptographic

portions of TLS, these are:

1. An encryption/decryption function, in the form of a stream cipher or block cipher.

2. A public-key processor that supports key exchange and digital signature algo-

rithms.

3. A hash function, including HMAC capabilities.

4. A random number generator.

Therefore, the designs presented in the following sections each have a different

structure, but contain some, or all, of the components above.

2.12.1 Isobe et al.

Several high speed designs have been published, such as that presented by Isobe et al.

in [59], where the authors present a FPGA/ASIC based design of a SSL/TLS ac-

celerator capable of reaching a throughput of 10 Gigabits per second (Gbit/s). The

design supports RSA as the public-key algorithm, 128 bit and 256 bit AES and Rivest

Cipher 4 (RC4) [114, pages 397–398] for encryption, and Message-Digest Algorithm

5 (MD5) [105] and Secure Hash Algorithm 1 (SHA-1) for hashing operations. The

design, shown in Figure 2.11, uses a bus topology for data transfers and consists of

three sections: the protocol processing block is used to process TCP and SSL/TLS

packets; the cipher processing block contains the cryptographic processors; and the

28

2.12 Related Work

routing block is used to route data between them. The system has access to a network

through an Ethernet MAC.

The authors show that the FPGA/ASIC design outperforms implementations run

on a CPU or GPU. The design provides a higher throughput and reduces the power

consumption by 80%. The final design occupied 13043 slices and 192 DSP blocks on

the FPGA. The paper, however, does not describe in any detail how each hardware

block is implemented, or exactly what type of FPGA was used. The authors state that

it was an FPGA constructed using a 65 nm process. The lack of information makes it

hard to make any comparison with this design, however, the work does show how there

can be a dramatic saving in power consumption when custom hardware is used.

TCP SSL/TLS RSA AES RC4 MD5 SHA-1

protocol processing cipher processing

Eth. MAC routing
network

Figure 2.11: Isobe et al. design.

2.12.2 Wang et al.

In [125], the authors discuss a design for implementing a Network Security Processor

(NSP) which alleviates the problem of bus contention that is present in a bus topology

design, such as that shown in Section 2.12.1. Further work on the design can be found

in [126, 127]. The processor is designed for use with both the IPsec and SSL protocols.

The architecture supports a wide variety of cryptographic algorithms including 256 bit

AES, DES/3DES [90], 1024 bit RSA, 256 bit ECC, HMAC, and a random number

generator.

The architecture of the design is shown in Figure 2.12. The arithmetic engines are

accessed through dedicated read DMA, write DMA and config DMA channels. The

authors show that this type of memory access has a performance advantage over that

of a standard bus topology, such as that used in [59]. The C*Core310 is a processor

similar to an ARM core and is used to parse the SSL data that it receives from the

network processor. The C*Core310 then sends a set of tasks, that need to be performed,

to the central distributor which schedules the tasks in order to maximise the parallel

29

2.12 Related Work

processing capabilities of the arithmetic engines.

The ECC unit used is based on the architecture presented in [23] which incorporates

two ECC arithmetic engines in order to improve performance when processing two point

multiplications in parallel during the signature verification process.

The proposed design is capable of processing 1600 SSL handshakes per second and

achieves a throughput of just over 1 Gbit/s when transferring data in the SSL record

protocol. The design was implemented on a Xilinx Spartan XC3S5000 FPGA and

occupied 14,471 CLBs. The design was operated at a frequency of 150 Megahertz

(MHz). At the time of writing, this design is currently the most complete SSL NSP

that has been published.

2.12.3 Instruction Set Extension

The designs of Isobe et al. and Wang et al. both used a coprocessor style architecture.

Another option for increasing the performance of a GPP is Instruction Set Extension

(ISE). ISE is a method of increasing the performance of certain low level operations in a

processor. A standard processor uses specific hardware blocks in its ALU to execute its

supported instruction set. These instructions generally include addition, shift, rotate,

and floating point multiplication operations. By adding extra hardware blocks into

the processor’s ALU, it’s possible to increase performance for certain cryptographic

operations. In [98], the authors include custom instructions to increase the performance

of several block ciphers. As extra circuitry for only one specific operation is being added

to the ALU, this type of architecture usually occupies a smaller area than that of a

coprocessor based design, but has lower performance. This method can also have an

impact on the critical path of the GPP, this can lead to reduced performance for all

of the instructions that the processor executes, as the frequency at which it’s clocked

might have to be reduced. In a coprocessor architecture the coprocessor shares the

same clock as the GPP, but does not add to its critical path. Further examples can

be found in [35, 118]. An analysis of ISE for ECC algorithms will be discussed in

Chapter 3, however, the Microblaze does not allow for custom instructions to be added

to its ALU; therefore, a coprocessor style approach must be taken, where, the custom

instruction is connected to the Microblaze via an FSL bus.

2.12.4 Secure Key Management

An important aspect of designing a secure SoC is securely managing the secret key

data. In [40, 41], the authors introduced a method whereby the secret key data could

30

2.12 Related Work

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
ODES/3DES

AES

RSA

ECC

HMAC

RNG

CDMA(1)

CDMA(2)

WDMA(1)

WDMA(2)

WDMA(n)

RDMA(1)

RDMA(2)

RDMA(n)

..
.

..
.

Read
Arbiter

Write
Arbiter

FPGA chip

mem

External
Memory

PCI
Interface

C*Core310

control

Network
Processor

Eth. PHY
Network data

PCI Bus

Task Scheduler

Resource Manager

Central Distributor

Figure 2.12: Wang et al. design.

31

2.13 Discussion

be kept separate from the working memory in the GPP. The key data is kept in a

physically isolated section of the FPGA, Figure 2.13. When the GPP’s ALU is working

on data that needs to be decrypted, the ciphertext is sent to the security module where

it is decrypted using the secret key. The plaintext data can then be returned to the

GPP for processing. The authors state that this form of implementation is suitable for

protecting against software based attacks that attempt to recover secret key data from

the internal registers or cache memory of the GPP, such as that in [51]. The design

was implemented using a Microblaze processor [130] on a Xilinx Virtex 6 FPGA. The

security module occupied 604 slices and 432 kilobytes (kBs) of BRAM.

GPP cipher & TRNG key storage

processor zone cipher zone secure key zone

security module

cipher key bus

control bus

data bus

physical
separation

key
memory

bus

Master
Secret

Figure 2.13: Gaspar et al. design.

2.13 Discussion

In this chapter, the basic components of the TLS protocol have been introduced. It

has been shown how the various elements of private-key and public-key algorithms

are used together to secure digital communications. All of these algorithms determine

the requirements of a cryptographic coprocessor, of which several previously published

designs have been discussed. These designs, however, do not deal with a secure im-

plementation architecture, instead they tailor their architectures to achieve the best

performance. The designs do show the advantages that can be gained by using a co-

processor for accelerating cryptographic functions.

This still leaves an area of work unexplored, which is the implementation of a TLS

coprocessor in a secure architecture. The remainder of this thesis discusses architectures

32

2.13 Discussion

for the various components of a TLS coprocessor. The goal of each architecture is to

achieve a secure implementation, with the final coprocessor architecture built around

the concept of the Gaspar et al. design, where the secret keys are isolated from the

GPP.

In order to design a secure TLS architecture, the underlying components must first

be examined. From the description of the TLS protocol presented in this chapter, it can

be seen that a coprocessor would require the ability to perform encryption/decryption

functions, message hashing operations, a TRNG for the generation of random data,

and a processor for elliptic curve arithmetic.

33

Chapter 3

Hardware-Software Co-Design for

Elliptic Curve Cryptography

3.1 Introduction

Since the introduction of ECC by Miller [81] and Koblitz [63], elliptic curve based

public-key algorithms have been growing in popularity. This is mainly due to their

relatively short key lengths, for the same security level, when compared to RSA [106].

ECC algorithms can be used as a key exchange mechanism and also as the basis of a

digital signature scheme. ECC algorithms are therefore a good choice for use in the

TLS handshake protocol.

Although ECC algorithms have shorter key lengths than RSA, they are still com-

putationally intensive and usually account for the majority of computation time during

the TLS handshake. In an embedded system, it can be advantageous to improve the

performance of operations relating to ECC; therefore, reducing the TLS handshake

time.

In this chapter, the mathematical principles behind ECC will be introduced, along

with various ECC algorithms that have been suggested in order to reduce computation

times [24, Section 13.2]. A general embedded system style setup, based around a GPP,

will then be discussed and the ECC algorithms examined for performance in a purely

software based environment. The impact of ISE on the performance of this system will

then be explored; thus, analysing ECC in a hardware-software co-design setting.

34

3.2 Background to ECC

3.2 Background to ECC

An elliptic curve defined over the finite field Fq, q > 3, is the set of all pairs (x, y) ∈ Fq

which satisfy the short Weierstraß equation,

E : y2 ≡ x3 + ax+ b (mod q), (3.1)

where, a, b ∈ Fq. The set also contains an identity element, or point at infinity, O. If

the condition

4a3 + 27b2 6≡ 0 (mod q), (3.2)

is satisfied, it ensures that the curve, defined by Equation 3.1, contains no singularities.

An elliptic curve must be defined over a finite field Fq for it to be of use in cryptog-

raphy. The curve must also be non-singular i.e., it must not intersect itself at any point.

All points on the elliptic curve, including the point at infinity, should form an abelian

group, where O is the identity element; this set of points is denoted E(Fq). The number

of points in E determines the set of all possible public keys that can be generated on

that curve. The number of points on a curve is referred to as the order of E over Fq

and is denoted by #E(Fq). At most, a curve defined over Fq could have 2q + 1 points.

This accounts for every possible pair P = (x, y), its negative, −P = (x,−y), and the

point at infinity O. The Hasse interval gives a tighter bound for #E(Fq) and is given

by,

[q + 1− 2
√
q, q + 1 + 2

√
q]. (3.3)

The order of all NIST standardised prime field curves, is a large prime [89].

3.2.1 Group operations on Elliptic Curves

Let EA be an elliptic curve defined over the finite field Fq, where q 6= 2, 3 is a large prime

and O is the point at infinity. The group operation on elliptic curves is addition. If two

points, P1 and P2, on the curve are added together using the group operation, a third

point on the curve results. The group operation can be derived from the geometric

tangent and chord method, used to create a third point on an elliptic curve, if two

points are already known [53, Section 3.1]. The point addition can then be performed

using only integer additions, subtractions, multiplications, and divisions, modulo the

prime q. The addition or doubling of two affine points on an elliptic curve is defined

35

3.2 Background to ECC

as,

(x3, y3) = (x1, y1) + (x2, y2),

x3 = w2 − x1 − x2 (mod q),

y3 = w(x1 − x3)− y1 (mod q), (3.4)

where

w =

{
y2−y1
x2−x1

(mod q) if P 6= Q (point addition)
3x2

1
+a

2y1
(mod q) if P = Q (point doubling).

(3.5)

It can be seen from these formulæ that the computation of a point addition in affine

coordinates requires 1 inversion (I), 3 multiplications (M), and 6 additions (A), while

a point doubling requires {1I, 4M, 5A}, assuming a finite field addition is computation-

ally equivalent to a subtraction. In the finite field arithmetic of ECC algorithms, the

most computationally intensive operation is modular inversion, followed by modular

multiplication, and then modular addition/subtraction. As will be discussed in Section

3.3, ECC algorithms require the evaluation of point additions and doublings several

hundred times during their execution. Therefore, other coordinate systems have been

suggested that remove the need for the modular inversion in the point addition and

doubling operations. These alternative coordinate systems are simply a different way of

representing an elliptic curve point; hence, a mapping exists between these alternative

coordinate systems and affine points. One example is Jacobian coordinates.

3.2.2 Jacobian Coordinates

Representing points on an elliptic curve as Jacobian projective coordinates removes the

need to perform modular inversions during the point addition and doubling operations.

The affine points are mapped to their Jacobian projective form, prior to the point

addition or doubling, and can then be mapped back afterwards. When representing

points on a curve in Jacobian coordinates, the curve equation is given by

EJ : Y
2 = X3 + aXZ4 + bZ6. (3.6)

A point on the curve is given by P (X1, Y1, Z1) which corresponds to the affine

point P (X1

Z2

1

, Y1

Z3

1

). The point at infinity is O = (1, 1, 0) and the negative of a point is

−P = (X1,−Y1, Z1). Point additions and point doublings are performed as shown in

36

3.2 Background to ECC

Algorithms 3 and 4.

Algorithm 3 Jacobian point addition.

Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2), where P,Q ∈ EJ

Output: R = P +Q = (X3, Y3, Z3)

1: A = X1Z
2
2

2: B = X2Z
2
1

3: C = Y1Z
3
2

4: D = Y2Z
3
1

5: E = B −A
6: F = D − C
7: X3 = −E3 − 2AE2 + F
8: Y3 = −CE3 + F (AE2 −X3)
9: Z3 = Z1Z2E

10: return R = (X3, Y3, Z3)

Algorithm 4 Jacobian point doubling.

Input: P = (X1, Y1, Z1), where P ∈ EJ

Output: R = 2P = (X3, Y3, Z3)

1: A = 4X1Y
2
1

2: B = 3X2
1 + aZ4

1

3: X3 = −2A+B2

4: Y3 = −8Y 4
1 +B(A−X3)

5: Z3 = 2Y1Z1

6: return R = (X3, Y3, Z3)

A point addition using Jacobian coordinates requires {16M, 7A}, while the doubling
operation requires {10M, 13A}. The point doubling in Jacobian coordinates can be

simplified if the value a in the equation of the curve is −3. This is the case for NIST

specified curves [89]. In the point doubling operation, the calculation of B = 3X2
1 +

aZ4
1 can be replaced by B = 3X2

1 − 3Z4
1 = 3(X1 − Z2

1)(X1 + Z2
1); thus reducing the

computational cost of a point doubling to {8M, 14A}.
Many other projective coordinate systems exist [24, Chapter 13], most of which

are designed to improve the performance on a GPP platform, where a software imple-

mentation is used. In the next section, some of the more recent proposals, where it

was found that optimisations can be made when a point addition involves two points

that share the same Z coordinate, will be discussed. The area is referred to as co-Z

arithmetic.

37

3.2 Background to ECC

3.2.3 Co-Z Arithmetic

In [77], Meloni analysed the operation of adding two different points, P = (X1 : Y1 : Z)

and Q = (X2 : Y2 : Z), on EJ where both points share the same Z-coordinate. It was

shown that their sum P +Q = (X3 : Y3 : Z3) can be evaluated faster using Algorithm

5.

Algorithm 5 Co-Z addition (ZADD).

Require: P = (X1, Y1, Z) and Q = (X2, Y2, Z)
Ensure: R← ZADD(P,Q) where R← P +Q = (X3, Y3, Z3)

1: function ZADD(P,Q)
2: C ← (X1 −X2)

2

3: W1 ← X1C
4: W2 ← X2C
5: D ← (Y1 − Y2)

2

6: A← Y1(W1 −W2)
7: X3 ← D −W1 −W2

8: Y3 ← (Y1 − Y2)(W1 −X3)−A
9: Z3 ← Z(X1 −X2)

10: return R = (X3, Y3, Z3)
11: end function

This operation is referred to as the ZADD operation. The computation of R = P+Q

then yields, for free, an equivalent representation for the input point P with its Z-

coordinate equal to that of the output point R. This is given by

(X1(X1 −X2)
2 : Y1(X1 −X2)

3 : Z3) = (W1 : A : Z3) ∼ P. (3.7)

The ZADD operation can then be extended to include this update of the Z co-

ordinate. The corresponding algorithm, denoted ZADDU is given in Appendix A as

Algorithm 24. The algorithm requires {7M, 6A}. This method of point addition, how-

ever, cannot be used with standard point scalar multiplication algorithms (point scalar

multiplication algorithms will be discussed in Section 3.3).

In [47, 48] Goundar et al. introduced another co-Z operation referred to as conjugate

co-Z addition, denoted ZADDC. This operation was introduced in order to allow for

a more traditional point scalar multiplication algorithm to be used, without any loss

of performance. The resulting algorithm is given as Algorithm 25 in Appendix A. The

total cost for the ZADDC operation is {9M, 15A}.
Further work on the area of co-Z algorithms was presented by Hutter et al. in

[57], where X-coordinate only formulæ for co-Z arithmetic were introduced. These

38

3.3 Point Scalar Multiplication

formulæ are referred to as differential addition-and-doubling, denoted AddDblCoZ, and

are targeted at memory-constrained environments. The formulæ are defined for the

homogeneous coordinate system, where the curve equation is given by

EH : Y 2Z = X3 + aXZ2 + bZ3, (3.8)

where, a point on EH, P (X1, Y1, Z1), corresponds to the affine point P (X1

Z1
, Y1

Z1
). Take

two points, P = (X1, Z) and Q = (X2, Z) on EH that share the same Z-coordinate.

The doubling and addition formulæ output a pair of points P ′ and Q′ that also share

the same Z-coordinate, where Q′ = 2Q = (X ′
2, Z

′) and P ′ = P+Q = (X ′
1, Z

′) as shown

in Algorithm 26. The computational cost of this formula is {17M, 14A}.
Hutter et al. also noticed that an improvement in computation time can be made

by replacing the multiplication X1X2 with (X2
1 + X2

2 − (X1 − X2)
2)/2, followed by

a multiplication by 2 later in the algorithm. The result is shown as Algorithm 27 in

Appendix A, and requires {16M, 14A}.
Further optimisations can be made for cases where the curve parameters a and b

are dynamic. Three additional coordinates are calculated at the initialisation stage,

these are Ta = aZ2, Tb = 4bZ3 and TD = xDZ. The resulting algorithm is given in

Appendix A as Algorithm 28. It can be seen that the performance can be increased by

saving 1M if Ma = Mb = 1M. The computational cost is then {15M, 13A}.

3.3 Point Scalar Multiplication

In the previous section, several point addition and point doubling formulæ were dis-

cussed. The main operation of elliptic curve arithmetic used in cryptography is the

multiplication of an integer, times an elliptic curve point. Calculating the product of

an integer k, times a point on the curve P , is equivalent to the repeated addition of the

point P to itself k times. This operation is known as point scalar multiplication and

can be evaluated using the addition and doubling formulæ from the previous section.

R = kP = P + P + P...+ P
︸ ︷︷ ︸

k times

. (3.9)

The double and add algorithm, Algorithm 6, is one example of a point multiplication

method. The binary value of the scalar k is right shifted by 1 bit for each iteration

of the algorithm. The value of each bit ki then determines which operations will be

performed. If ki = 0, a point doubling is performed; if ki = 1, both a point doubling

39

3.3 Point Scalar Multiplication

and point addition are performed. After l iterations, the algorithm is complete.

Algorithm 6 Double and Add.

Input: P ∈ E(Fq); k =
∑l−1

i=0 ki2
i

Output: R = kP ∈ E(Fq)

1: R = O

2: for i = l − 1 down to 0 do
3: R = 2R;
4: if ki = 1 then
5: R = R+ P
6: end if
7: end for
8: return R

3.3.1 SPA Resistant Point Scalar Multiplication

The double and add algorithm, Algorithm 6, is the standard point multiplication

method, however, it is susceptible to SPA attacks, such as those described in Sec-

tion 2.11. In the double and add algorithm, the operations performed in the main

loop depend on each bit of the key; therefore, the difference in power consumption and

length of computation time for each operation would allow an attacker to determine if

a specific bit of the key is a 0 or a 1.

An alternative method for performing elliptic curve point multiplications is the

Montgomery ladder [83]. A generalised version of the Montgomery ladder, shown in

Algorithm 7, has a regular structure and is therefore resistant against SPA attacks.

Algorithm 7 Montgomery ladder.

Input: R0 ← O;R1 ← P ; k =
∑l−1

i=0 ki2
i

Output: R = kP ∈ E(Fq)

1: for i = l − 1 down to 0 do
2: b← ki; R1−b ← R1−b +Rb

3: Rb ← 2Rb

4: end for
5: return R = R0

The initialisation step of the Montgomery ladder sets R0 ← O and R1 ← P . The main

loop then consists of two operations that are repeated l times, namely

40

3.3 Point Scalar Multiplication

R1−b ← R1−b +Rb, (3.10)

Rb ← 2Rb. (3.11)

If the condition that kl−1 = 1 is set, and the initialisation of R0 and R1 are replaced

by R0 ← P and R1 ← 2P , with both R0 and R1 sharing the same Z coordinate. The

number of loop iterations can be reduced to l − 1 and the co-Z algorithms, ZADDC

and ZADDU, can be used in the main loop. Algorithm 8 shows how this is achieved.

The DBLU operation, given in Appendix A as Algorithm 35, is used to initialise R0

and R1 to the correct values.

Algorithm 8 Montgomery ladder with co-Z addition formulæ.

Input: P = (xP , yP) ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N with kl−1 = 1
Output: R = kP ∈ E(Fq)

1: (R1, R0)← DBLU(P)
2: for i = l − 2 down to 0 do
3: b← ki
4: (R1−b, Rb)← ZADDC(Rb, R1−b)
5: (Rb, R1−b)← ZADDU(R1−b, Rb)
6: end for
7: return R = R0

An alternative form of the Montgomery ladder is shown in Algorithm 9, where the

main loop consists of differential addition-and-doubling formulæ introduced by Hutter

et al. in [57] and computations only involve the X and Z coordinates. The initialisation

step of Hutter et al.’s algorithm (i.e., Algorithm 3 in [57]) has been replaced by DBLUH,

given in Appendix A. The function recoverfullcoordinates recovers the full projective

coordinates of the output point R = kP , from the X and Z coordinates of R0 = (X1, Z)

and R1 = (X2, Z), on completion of the main loop of the algorithm.

All of the scalar multiplication algorithms that have been presented so far have

scanned the bits of the scalar k from left-to-right. An alternative approach is to scan

the scalar from right-to-left; this method is used in Joye’s version of the double and

add algorithm [60], shown in Algorithm 10. The algorithm has a similar structure

to that of the Montgomery ladder and always repeats the same pattern of effective

operations making it resistant to SPA attacks; a property that the original double and

add algorithm does not have.

Algorithm 11 shows how Joye’s double and add algorithm is implemented using co-

41

3.3 Point Scalar Multiplication

Algorithm 9 Montgomery ladder with (X,Z)-only co-Z addition formulæ.

Input: P = (xP , yP) ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N with kl−1 = 1
Output: R = kP ∈ E(Fq)

1: (X1,X2, Z)← DBLUH
∗(P)

2: for i = l − 2 down to 0 do
3: b← ki
4: (X2−b,X1+b, Z)← AddDblCoZ(X2−b,X1+b, Z)
5: end for
6: R← recoverfullcoordinates(X1,X2, Z)
7: return R

Algorithm 10 Joye’s double-add.

Input: P ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N

Output: R = kP ∈ E(Fq)

1: R0 ← O; R1 ← P
2: for i = 0 to l − 1 do
3: b← ki
4: R1−b ← 2R1−b +Rb

5: end for
6: return R = R0

Z operations [47, 48]. The initialisation step of the algorithm requires a point tripling,

which can be evaluated as 3P = P + 2P using co-Z arithmetic when P = (X1 : Y1 : 1)

[71]. The TPLU operation performs a point tripling and is used to initialise the points

R0 and R1; a description can be found in Appendix A.3.

Algorithm 11 Joye’s double-add algorithm with co-Z addition formulæ.

Input: P = (xP , yP) ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N with k0 = 1
Output: R = kP ∈ E(Fq)

1: b← k1; (R1−b, Rb)← TPLU(P)
2: for i = 2 to n− 1 do
3: b← ki
4: (Rb, R1−b)← ZADDU(R1−b, Rb)
5: (R1−b, Rb)← ZADDC(Rb, R1−b)
6: end for
7: return R = R0

42

3.3 Point Scalar Multiplication

3.3.1.1 Combined double-add operation

The calculation of R = 2P + Q can be implemented in two steps; a point addition

T = P +Q, followed by another point addition R = P + T . If P and Q have identical

Z-coordinates, this operation can be performed through two consecutive applications of

the ZADDU function, Algorithm 24, which would require {14M, 12A}. However, due

to the structure of Joye’s algorithm, these two applications of the ZADDU operation

can be combined, resulting in the ZDAU function given in Appendix A. The ZDAU

(co-Z double-add with update) operation only requires {16M, 27A}.
Joye’s double and add algorithm can be rewritten using this new function, Algorithm

12. The cost per bit is then {16M, 27A}, instead of {16M, 21A}. However, in Algo-

rithm 11, five of the multiplications are squaring operations and in Algorithm 12, seven

of the multiplications are squarings. On some platforms a squaring operation can be

performed faster than a standard multiplication, hence, the introduction of algorithms

that attempt to trade multiplications for squarings. However, the implementations

presented in this chapter use identical functions for squaring and multiplication.

Algorithm 12 Joye’s double-add algorithm with co-Z addition formulæ (II).

Input: P = (xP , yP) ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N with k0 = 1
Output: Q = kP ∈ E(Fq)

1: b← k1; (R1−b, Rb)← TPLU(P)
2: for i = 2 to n− 1 do
3: b← ki
4: (R1−b, Rb)← ZDAU(R1−b, Rb)
5: end for
6: return R = Jac2aff(R0)

3.3.1.2 (X,Y)-only operations

The co-Z Montgomery ladder can be rewritten so as to operate on only the X and

Y coordinates of the input points. The operation ZACAU′1 is the combination of the

ZADDC′ operation followed by ZADDU′, and is given in Appendix A as Algorithm

30. This is used to obtain an (X,Y)-only implementation of the Montgomery ladder,

Algorithm 13 [48, 123]. The computational cost of the algorithm is {14M, 39A}. The

return function in Algorithm 13 costs {1I, 9M} and returns the affine coordinates of

the output point Q.

1The prime symbol ′ is used to denote operations that do not involve the Z-coordinate.

43

3.3 Point Scalar Multiplication

Algorithm 13 Montgomery ladder with (X,Y)-only co-Z addition formulæ.

Input: P = (xP , yP) ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N with kl−1 = 1
Output: R = kP ∈ E(Fq)

1: (R1, R0)← DBLU′(P)
2: C ← (X(R0)−X(R1))

2

3: for i = l − 2 down to 1 do
4: b← ki
5: (Rb, R1−b, C)← ZACAU′(Rb, R1−b, C)
6: end for
7: b← k0; (R1−b, Rb)← ZADDC′(Rb, R1−b)
8: (xP , yP)← P
9: Z ← xP Y(Rb)(X(R0)−X(R1)); λ← yP X(Rb)

10: (Rb, R1−b)← ZADDU′(R1−b, Rb)

11: return R =
((

λ
Z

)2
X(R0),

(
λ
Z

)3
Y(R0)

)

A left-to-right (X,Y)-only co-Z algorithm can be implemented by performing a

ZADDU′ followed by a ZADDC′ to obtain an (X,Y)-only double-add operation with a

co-Z update ZDAU′. The total cost of this operation is hence {14M, 28A}, while the

cost for the final conversion is {1I, 7M}. The complete algorithm is shown in Algorithm

14 [48, 104].

Algorithm 14 Left-to-right signed-digit algorithm with (X,Y)-only co-Z addition
formulæ.
Input: P = (xP , yP) ∈ E(Fq) and k = (kl−1, . . . , k0)2 ∈ N≥3 with k0 = kl−1 = 1
Output: R = kP ∈ E(Fq)

1: (R0, R1)← TPLU′(P)
2: for i = l − 2 down to 1 do
3: b← ki ⊕ ki+1

4: R1 ← (−1)bR1

5: (R0, R1)← ZDAU′(R0, R1)
6: end for
7: R1 ← (−1)1+k1R1

8: (xP , yP)← P ; λ← yP X(R1)
xP Y(R1)

9: return R =
(
λ2 X(R0), λ

3 Y(R0)
)

Table 3.1 gives a summary of the scalar multiplication algorithms which have been

presented, along with their corresponding co-Z functions. Each of these algorithms

have been introduced in order to change the amount of memory or the number of

multiplications required during the processing of the point scalar multiplication, at the

44

3.4 Montgomery Multiplication

expense of extra precomputations or finite field additions. It would be expected that

a reduction in the multiplications in the main loop of the point scalar multiplication

algorithm would reduce the overall computation time. In order to investigate this, the

performance of these algorithms will be compared in the following sections.

Algorithm Main op. Other op.

Left-to-right algorithms:

Double and Add (Alg. 6) ADD, DBL
Montgomery ladder with co-Z addition (Alg. 8) ZADDC, ZADDU DBLU
Montgomery ladder with (X,Z)-only co-Z (Alg. 9) AddDblCoZ DBLUH

∗, recoverfullcoordinates
Montgomery ladder with (X,Y)-only co-Z (Alg. 13) ZACAU′ DBLU′, ZADDC′, ZADDU′

Left-to-right signed-digit algorithm with (X,Y)-only co-Z (Alg. 14) ZDAU′ TPLU′

Right-to-Left algorithms:

Joye’s double-add algorithm with co-Z I (Alg. 11) ZADDU, ZADDC TPLU
Joye’s double-add algorithm with co-Z II (Alg. 12) ZDAU TPLU

Table 3.1: Operation usage for various co-Z addition formulæ.

3.4 Montgomery Multiplication

The point addition and doubling operations from the previous sections all require finite

field multiplications. It is possible to use standard multiplication and modular reduc-

tion algorithms, however, in 1985, Montgomery introduced an algorithm to efficiently

compute the modular product of two numbers [82]. The algorithm is very efficient

when used for modular exponentiation as is does not require computationally intensive

trial division operations by the modulus, q. Instead, the algorithm consists mainly of

addition and shift operations. The Montgomery multiplier is one of the most widely

used multiplier types in ECC processors. This is due to its relatively short critical path

and the fact that it does not require a specific form of modulus.

Given a modulus q, of length l, let ρ = 2l. The Montgomery algorithm requires that

ρ and q be relatively prime i.e., gcd(ρ, q) = 1. The Montgomery algorithm achieves an

efficient multiplication through modifying the representation of the integers on which

it operates. The inputs to the Montgomery algorithm must first be converted to their

corresponding Montgomery representation. Given an integer A < q, its Montgomery

representation is defined by

A′ = A · ρ (mod q). (3.12)

Given two integers in Montgomery representation the Montgomery algorithm computes

45

3.4 Montgomery Multiplication

their product

R′ = A′ · B′ · ρ−1 (mod q), (3.13)

where, ρ · ρ−1 = 1 (mod q). The result R′ can be converted back to standard domain

representation by Montgomery multiplying it by 1. Which can be shown to be true as

R = R′ · ρ−1 = R′ · 1 · ρ−1 (mod q). (3.14)

In order to specify an algorithm for the computation of the Montgomery product,

as in Equation 3.13, an additional quantity of q̂ is required. q̂ can be calculated by

using the extended Euclidean algorithm [70, page 22] to solve the relation

ρ · ρ−1 − q · q̂ = 1. (3.15)

The result will yield the values of both ρ−1 and q̂.

The algorithm for computing the Montgomery product is shown in Algorithm 15.

Algorithm 15 Montgomery algorithm.

Input: A′, B′, ρ, q, q̂
Output: R′ = A′ · B′ · ρ−1 (mod q)

1: t = A′ · B′

2: s = t · q̂ (mod ρ)
3: u = (t+ s · q)/ρ
4: if u ≥ q then
5: return (R′ = u− q)
6: else
7: return (R′ = u)
8: end if

The algorithm includes a multiplication in step 1, while steps 2 to 8 perform the modular

reduction. The efficiency of the algorithm comes from the ability to specify the value

of ρ. As ρ = 2l, if l = 32, steps 2 to 8 of the algorithm can be efficiently computed on

a GPP with a 32 bit datapath. Similarly, if the algorithm was being implemented on

a 64 bit platform, a value of l = 64 would be chosen.

The main operation performed in ECC algorithms is the computation of Q = kP .

Although a Montgomery multiplication is efficient to compute, it requires that the

operands be converted to the Montgomery domain before Algorithm 15 can be used.

Performing the conversion process for every multiplication would be less efficient than

using a standard multiplication algorithm. However, an alternative approach is to

46

3.5 Instruction Set Extension for ECC

convert all values required for the calculation of Q = kP into the Montgomery domain,

perform the point scalar multiplication using values in the Montgomery domain, and

then convert back to the standard domain at the end of the calculation.

3.5 Instruction Set Extension for ECC

In the previous sections, the algorithms and mathematical principles of ECC were

introduced. On an FPGA platform there are many different options for implementing

ECC algorithms. As SoC designs are generally implemented around a GPP [58], the

performance of the different ECC algorithms will first be analysed on a GPP constructed

from FPGA resources, such as that discussed in Section 2.9.1.

The GPP that will be used is the Microblaze soft-core processor [130] which is

based on a 32 bit RISC architecture and can be implemented on any of the Xilinx

FPGA families. The Microblaze can be configured so that it is capable of running a

version of the Linux kernel, this makes communication with the FPGA a simple task

due to the built in networking capabilities of the Linux kernel.

A design for performing elliptic curve arithmetic operations was implemented on an

XUPV5-LX110T development board. The maximum clock frequency of the Microblaze

when implemented on the board is 125 MHz. The board contains 256 Megabytes (MBs)

of DDR2 RAM that the Microblaze can access through an external memory controller.

The implemented design uses the DDR2 RAM for storing some of the code sections,

while the heap and stack are placed in 64 kB of BRAM internal to the FPGA.

3.5.1 Software

The FPGA was configured as shown in Figure 3.1. The GNU GMP library [50] was

compiled for the Microblaze and used to implement all of the algorithms. All mul-

tiplications were performed using the Montgomery multiplication method, Algorithm

15, with ρ = 232. Table 3.2 shows the results for the three different field sizes with

bitlengths of 192, 256, and 521, with the Microblaze clocked at 125 MHz. The curves

used are the prime field curves defined by NIST in [89]. The conversion of elliptic curve

points, to and from affine coordinates, are included in all the results, along with any

precomputations required by the co-Z algorithms.

The results are quite slow for the Microblaze in this setup. This is to be expected as

the Microblaze is not optimised in any way to perform large finite field multiplications.

All of these algorithms are designed with software implementations in mind and the

47

3.5 Instruction Set Extension for ECC

results reflect this, with the best result in each field size being the left-to-right signed-

digit algorithm with (X,Y)-only co-Z (Algorithm 14) algorithm. All algorithms, apart

from the D&A, have a regular structure and therefore the timing results do not change

for different values of the scalar k. The timing results for the D&A algorithm, however,

are dependant on the Hamming weight of k; with a higher Hamming weight resulting

in more point addition operations being executed in Algorithm 6. Therefore, a value

of k that has a Hamming weight of l/2, where l is the length of k in bits, was used

to generate the D&A results. The result is then the average length of time a point

scalar multiplication with the D&A algorithm would take. The maximum number

of multiplications and additions for the D&A algorithm is {24M, 21A}. This occurs

when both a point addition and point doubling are executed in the main loop. The

minimum number of multiplications and additions is {8M, 14A}, which occurs when

only a point doubling is executed. In order to compare the D&A algorithm with all the

other algorithms that have a constant execution time, the computational complexity of

the D&A algorithm is taken as the average of these two values, {16M, 18A}.
On average, for the co-Z algorithms, the precomputations and conversion to and

from affine coordinates takes about 9 ms in the 192 bit case and can be considered

negligible in this software implementation.

DDR2 RAM

BRAM

memory controller

Microblaze

FPGA chip

xps timer

PLB bus

PLB bus

PLB bus

Figure 3.1: Microblaze system setup.

48

3.6 Custom Hardware Acceleration

Algorithm Main loop
192 bit 256 bit 521 bit

Time (ms) Time (ms) Time (ms)

D&A (Alg. 6) {16M, 18A} 1060 1976 20330
ML co-Z (Alg. 8) {16M, 21A} 1083 2033 21220
Joye I (Alg. 11) {16M, 21A} 1085 2036 21286
Joye II (Alg. 12) {16M, 27A} 1058 1981 20157

ML (X,Z) (Alg. 9) (Alg. 26 & 33) {17M, 14A} 1134 2141 22355
ML (X,Z) (Alg. 9) (Alg. 27 & 33) {16M, 14A} 1056 1980 20683
ML (X,Z) (Alg. 9) (Alg. 28 & 34) {15M, 13A} 991 1876 19299

ML (X,Y) (Alg. 13) {14M, 39A} 935 1753 17726
SD (X,Y) (Alg. 14) {14M, 28A} 924 1737 17668

Table 3.2: Software implementation results on a Microblaze processor.

3.6 Custom Hardware Acceleration

In the previous section, the baseline results for a software based design were presented.

Due to the configurability of FPGAs, they offer many options in terms of increasing

the performance of designs. The Microblaze processor supports the addition of custom

instructions, through the use of an FSL bus, as described in Section 2.9.2. In this

section an analysis of the use of a custom multiply instruction for the Microblaze will

be conducted.

In Section 3.2, various ECC algorithms were introduced that remove the need to

perform finite field inversions during the main loop of the scalar multiplication algo-

rithm. The main loop then consists of additions, subtractions, and multiplications over

Fq; of which the multiplications are the most computationally intensive. When decid-

ing on an instruction to add custom hardware for, it therefore makes sense to offload

the multiplication operation as it has the greatest impact on the computation time of

the ECC algorithms. This can be seen in Table 3.2, where the algorithm with the least

number of multiplications, SD (X,Y) (Alg. 14), has the best performance.

3.6.1 Montgomery Multiplication in Hardware

To implement the Montgomery multiplication in hardware a modified version of the

algorithm is used. From [124], we know that when used as part of the computation of

Q = kP in ECC algorithms, the conditional subtraction at the end of the Montgomery

multiplication algorithm is not required. Algorithm 16 shows how the Montgomery

multiplication is performed without a conditional subtraction. The algorithm can be

derived from Algorithm 15 by setting ρ = 21, resulting in a bitserial method which is

49

3.6 Custom Hardware Acceleration

more suited to a hardware implementation than Algorithm 15.

Algorithm 16 Montgomery multiplication.

Input: A′ =
∑l

i=0 a
′
i2

i, B′ =
∑l

i=0 b
′
i2

i, q
Output: R′ = A′ · B′ · 2−l+2 (mod q)

1: R′ = 0, a′l+1 = b′l+1 = 0;
2: for i = 0 to l + 1 do
3: ti = R′

i−1 + (b′iA
′ (mod 2))

4: R′
i = (R′

i−1 + tiq + b′iA
′)/2

5: end for

A circuit for performing a Montgomery multiplication is shown in Figure 3.2. The

design requires two l + 2 bit full adders, which form the critical path of the design.

A′ B′

R′
i

q

R′
i−1

l + 2

l + 2

l + 2

l + 2

l + 2

l + 2

l + 2

shift

Figure 3.2: Montgomery multiplier.

3.6.2 Instruction Set Extension Results

The Montgomery multiplier was connected via an FSL bus to the Microblaze processor,

as shown in Figure 3.3. The clock signal from the multiplier is supplied by the Microb-

50

3.6 Custom Hardware Acceleration

laze, through the FSL bus; therefore, the multiplier runs at the same frequency as the

Microblaze. In this setup, the multiplier forms the critical path in the design and hence

determines the clock frequency for the entire system. In the case of the 192 bit design,

the system clock frequency was set to 100 MHz and in the 256 and 521 bit cases, the

clock frequency was set to 75 MHz. A pipeline register was added to the multiplier

design for the 521 bit implementation in order to reduce its critical path. This doubles

the number of clock cycles it takes to perform a multiplication. The FPGA area usage

results for each entire system and the multipliers alone are shown in Table 3.3. A timer

and debug module were also included in the design in order to measure computation

times and for command line output.

DDR2 RAM

BRAM

xps timer

memory controller

Microblaze

FPGA chip

PLB bus

PLB bus

PLB buscustom peripherals

FSL bus192/256/521 bit
Montgomery
Multiplier

Figure 3.3: Microblaze with hardware multiplier.

Table 3.4 shows the results obtained from the Microblaze with hardware accelera-

tion. The results show the timing for performing a full computation of kP including

all conversion to and from affine coordinates, and also any precomputations for each

algorithm. The results assume that the point P is unknown and therefore no values

that could be precomputed and stored in RAM are used. Comparing Table 3.4 with

Table 3.2, it can be seen that the hardware multiplier reduces the computation time

of the different algorithms by on average 89-94%. The large reduction in computation

time can be attributed to the fact that the hardware multiplier performs both the mul-

51

3.6 Custom Hardware Acceleration

Design
Area

BRAM
DDR2

DSP48E
Freq.

(Slices) RAM (MHz)

Microblaze 192 bit 3145 65 × 36 k 256 MB 3 100
Microblaze 256 bit 3454 65 × 36 k 256 MB 3 75
Microblaze 521 bit 3466 65 × 36 k 256 MB 3 75

192 bit mult 334 0 0 0 100
256 bit mult 499 0 0 0 75
521 bit mult 904 0 0 0 75

Table 3.3: Microblaze FPGA resource usage.

tiplication and Montgomery modular reduction, which are more time consuming than

modular additions.

In the software implementation results from Table 3.2, the SD(X,Y) (Alg. 14) was

fastest. This due to the fact that the SD(X,Y) (Alg. 14) algorithm requires the least

number of multiplications. With the addition of the hardware Montgomery multiplier

the ML(X,Z) (Alg. 9) (Alg. 27 & 33) and ML(X,Z) (Alg. 9) (Alg. 28 & 34) algorithms

are the best performing. These algorithms require one and two extra multiplications,

respectively, over the SD(X,Y) (Alg. 14) algorithm, however, the number of additions is

reduced. When implemented in software, the multiplication operation is the dominant

factor in the computation time and additions account for only a small percentage

of the computation time. The inclusion of the hardware multiplier has reduced the

computation times to the point where the addition operations also have a noticeable

impact on the performance; thus, changing the order of the results.

Algorithm Main loop
192 bit 256 bit 521 bit

Time (ms) Time (ms) Time (ms)

D&A (Alg. 6) {16M, 18A} 94 228 1534
ML co-Z (Alg. 8) {16M, 21A} 113 296 2207
Joye I (Alg. 11) {16M, 21A} 114 297 2221
Joye II (Alg. 12) {16M, 27A} 96 252 1686

ML(X,Z) (Alg. 9) (Alg. 26 & 33) {17M, 14A} 74 203 1176
ML(X,Z) (Alg. 9) (Alg. 27 & 33) {16M, 14A} 71 166 1175
ML(X,Z) (Alg. 9) (Alg. 28 & 34) {15M, 13A} 71 185 1172

ML(X,Y) (Alg. 13) {14M, 39A} 97 250 1638
SD(X,Y) (Alg. 14) {14M, 28A} 87 225 1506

Table 3.4: Microblaze with Montgomery multiplier results.1

1It should be noted that the times given in this table are average computation times averaged over

1000 executions of each algorithm. As the results are from a software implementation, the computation

time of each operation can vary slightly between different executions.

52

3.7 Optimisations for the q = 2n − 1 case

3.7 Optimisations for the q = 2n − 1 case

The curves used in the implementations in the previous section are all defined by NIST

in [89], and have moduli of slightly different forms for each field size. The form of

modulus is irrelevant when using the Montgomery multiplication algorithm as it uses

its own fast method for modular reduction. However, the 521 bit curve uses a modulus

where a particularly efficient modular reduction technique can be applied. A prime

number of the form 2n−1 is known as a Mersenne prime; with its bitlength equal to n.

In 1992, Hiasat [55] proposed a multiplier architecture that takes advantage of the

fast modular reduction that can be performed when working with moduli of the form

2n±1. Hiasat’s design requires slightly different modular reduction circuitry depending

on whether the modulus is of the form 2n − 1, 2n, or 2n + 1. The modulus of the form

2n − 1 is of most interest for ECC and is therefore discussed below.

If,

R = AB, (3.16)

and R can be represented as,

R =
2n−1∑

i=0

ri2
i, (3.17)

the modular reduction of R can be described as,

|R|2n−1 =

∣
∣
∣
∣
∣

n−1∑

i=0

ri2
i + 2n

2n−1∑

i=n

ri2
i−n

∣
∣
∣
∣
∣
2n−1

, (3.18)

where,

|2n|2n−1 = |1|2n−1 . (3.19)

This type of multiplier can be implemented through the use of a full width multi-

plier followed by correction circuitry that performs the modular reduction step. There

are many different methods for performing the n × n bit multiplication which will be

discussed in Sections 3.7.1 to 3.7.3. Regardless of how the n × n bit multiplication is

performed, the correction circuitry remains the same and consists of some simple combi-

national logic; the setup is shown in Figure 3.4. The purpose of the reduction circuitry

is to implement the following cases that can result from the full width multiplication

of A and B.

53

3.7 Optimisations for the q = 2n − 1 case

n× n
bits

A

B

R

n

n

n

2n

correction
circuitry

|R|2n−1

Figure 3.4: Hiasat multiplier.

The most significant and least significant n bits of R are added together, as in

Equation 3.18, this is taken as the result if neither of the following two cases occur.

Case 1: If the result of the addition is all 1’s, the result is set to all 0’s.

Case 2: If the carry bit Cout is 1, R is incremented by 1 and is taken as the result.

It can be shown that Case 1 and Case 2 cannot occur at the same time [55]. The

implementation of case 1 only requires some comparison circuitry, and case 2 requires

an n bit adder to increment the value of R. Both of these cases are relatively efficient

to implement in hardware and the entire correction step can be performed in a single

clock cycle.

It has been shown that the Hiasat modular reduction step above can be performed

efficiently, as it consists of simple combinational logic. Next, several architectures for

implementing the n× n bit multiplication will be discussed.

3.7.1 Serial Multiplier

A simple way of calculating the product of two integers of length n, is to implement

the multiplication as the sum of n partial products, as shown in Algorithm 17. The

Least Significant Bit (LSB) of the multiplicand B, is scanned. If the current LSB is

a 1, the multiplier A, is added to an accumulator R. If a 0 bit is detected, nothing is

added to the accumulator. B is then shifted to the right by 1 bit position. The process

continues until every bit of the multiplicand has been scanned. This method is known

as the Schoolbook method for multiplication.

This form of multiplier requires a single n bit full adder and performs the multipli-

cation in n clock cycles. Figure 3.5 shows how the output of the adder feeds into a shift

register that holds the accumulator value. B is stored in the LSBs of the accumulator

and shifted right; thus, B does not need to be stored in a register of its own. After n

54

3.7 Optimisations for the q = 2n − 1 case

Algorithm 17 Schoolbook multiplication algorithm.

Input: A =
∑n−1

i=0 ai2
i, B =

∑n−1
i=0 bi2

i, n
Output: R = A×B (mod 2n − 1)

1: R = 0;
2: for i = 0 to n− 1 do
3: if bi = 1 then
4: R = R+A
5: end if
6: R≫ 1
7: end for
8: Reduce(R)
9: return R = A×B (mod 2n − 1)

clock cycles B is completely shifted out of the accumulator and only the result of the

multiplication, R, remains. R can then be fed into the Hiasat correction circuitry to

obtain the result modulo 2n − 1, as shown in Figure 3.4. The multiplier requires only

FPGA slice logic for its implementation and its critical path is through the n bit adder.

3.7.2 Booth Multiplier

In 1951, Booth [16] introduced a multiplication algorithm which can reduce to n/2 the

number of partial product additions required, at the cost of some extra hardware. A

modified version of Booth’s algorithm was introduced in [72]. Both algorithms work

by precomputing a set of partial product multiples, such as {0, A, 2A, 3A} in the case

of the Booth algorithm. Two bits of the multiplicand are then scanned at a time

and depending of the value of these two bits, one of the multiples is added to the

accumulator.

The modified Booth algorithm [72] improves on the Booth algorithm, allowing for a

more efficient hardware implementation of the precomputation circuitry, by modifying

the set of precomputed partial product multiples. In the set of multiples {0, A, 2A, 3A},
3A is the most computationally intensive as it requires the use of an adder, while 2A

can be computed by a bitwise shift operation which can be efficiently implemented in

hardware. The carry chain in the adder required for 3A, would increase the critical

path and the area of the design. The modified Booth algorithm solves this problem by

using the set of multiples {−2A,−A, 0, A,+2A}, where every multiple in this set can

be calculated by a bitwise shift, a bitwise inversion, or both. For the modified Booth

algorithm, overlapping groups of 3 bits of the multiplicand must be scanned at a time.

On the first iteration of the algorithm, the LSB of the 3 bits is taken to be equal to

55

3.7 Optimisations for the q = 2n − 1 case

A

B

R

n

n

n

2n
n

1
n2n

1 0

shift R shift B

Figure 3.5: Serial multiplier.

0. A detailed description of Booth recoding schemes can be found in [11]. Algorithm

18 defines the modified Booth algorithm and an illustration of an architecture for its

implementation is shown in Figure 3.6. The critical path of the multiplier is through

the adder and the circuitry used for the precomputations. The architecture of the

circuit, shown in Figure 3.6, is similar in structure to that of the serial multiplier from

Section 3.7.1 and can also be implemented entirely in slice logic in the FPGA.

The number of iterations of the main loop of Algorithm 18 can be reduced if a

larger set of precomputed multiples is used. This, however, would require an adder

in the precomputation stage and would therefore increase the critical path and logic

resources required for the circuit.

3.7.3 Multiplier with BRAMs and DSP48Es

In the previous sections, multiplier architectures that can be implemented entirely in

FPGA slice logic were discussed. However, many FPGAs also contain other resources,

such as BRAM and DSP blocks. The registers in the previous designs can then be

replaced by BRAM and some of the arithmetic operations implemented using DSP

blocks. By incorporating these elements into the design and using different multipli-

56

3.7 Optimisations for the q = 2n − 1 case

A

compute multiples

{−2A,−A, 0, A,+2A}

B

R

n

n

2n
n

3
n2n+ 3

shift R shift B

Figure 3.6: Booth2 Multiplier

57

3.7 Optimisations for the q = 2n − 1 case

Algorithm 18 Booth recoded multiplication.

Input: A =
∑n−1

i=0 ai2
i, B =

∑n
i=0 bi2

i with b0 = 0
Output: R = A×B (mod 2n − 1)

Precompute: −A = A, 2A = A≪ 1, −2A = 2A, R = 0, ones =
∑n

i=0(1)2
i

for i = 0 to n− 1 do
switch (bi+2, bi+1, bi)
case “000”: R = R+ 0
case “001” or “010”: R = R+A
case “011”: R = R+ 2A
case “100”: R = R− 2A
case “101” or “110”: R = R−A
case “111”: R = R+ ones
R≫ 2
i = i+ 2
end switch

end for
Reduce(R)
return R = A×B (mod 2n − 1)

cation algorithms, alternative multiplier architectures can be developed. The resulting

architecture must be designed such that it maximises the usage of the available FPGA

resources. The DSP blocks present in Xilinx FPGAs are hardcoded resources and there-

fore can operate at a higher frequency than if the same operation was implemented in

slice logic. They are capable of a full 18 × 18 bit multiplication; therefore, the mul-

tiplication algorithm should use operations of this size. In this section, a multiplier

architecture will be introduced that uses BRAM and DSP blocks to reduce the number

of clock cycles required to perform a multiplication.

3.7.3.1 Multiplier Architecture

The general structure of the DSP and BRAM based design is shown in Figure 3.7. In

comparison to the architectures in the previous sections, the goal of the design is to

replace slice logic with hardcoded resources in the FPGA. The design presented in

this section uses DSP blocks to implement the arithmetic operations in a finite field

multiplication, and BRAM to implement the memory requirements.

The multiplication algorithm will be discussed in Section 3.7.3.2, first an overview

of the multiplier design will be given. The architecture is shown in Figure 3.7. The

inputs to the multiplier are decomposed until their partial products are small enough to

be calculated with a single DSP block. A number of DSP blocks are used to calculate

58

3.7 Optimisations for the q = 2n − 1 case

the partial products which are then stored in dual port BRAM. The adder reads the

partial products from BRAM, calculates their sum, and returns the result to BRAM.

To decrease the number of clock cycles required to perform a multiplication, the number

of DSP blocks used can be increased. The maximum possible operating frequency of

the design will be unchanged by the number of DSP blocks used, as they operate in

parallel. The design shown in Figure 3.7 consists of four DSP blocks, four BRAM, and

one adder. However, if the number of DSP blocks and BRAM is increased, the general

setup of the design remains the same.

A

B

R

n

n

+

d
ec
om

p
os
e
A

&
B

×

×

×

×

··
··
··
··
·

BRAM

BRAM

BRAM

BRAM

d inA

d inA

d inA

d inA

d inB

d inB

d inB

d inB

d outA

d outA

d outA

d outA

d outB

d outB

d outB

d outB

controller

RAM select

enable done

partial
product
select

recursive level

Figure 3.7: DSP48E and BRAM based multiplier.

3.7.3.2 Decomposing the Multiplicands

The standard way to decompose the multiplication A×B, is as follows. Let A and B

be represented as a binary string of length t. To split A and B into two equal parts let

n = t/2, then:

59

3.7 Optimisations for the q = 2n − 1 case

A = a12
n + a0,

B = b12
n + b0,

A×B = (a12
n + a0)(b12

n + b0),

= r22
2n + r12

n + r0,

where,

r2 = a1b1,

r1 = a1b0 + a0b1,

r0 = a0b0. (3.20)

This method can be applied recursively to the partial products, a0b0, a0b1, a1b0,

a1b1, until the calculation of r0, r1, and r2 consist of 18×18 bit, or less, multiplications.

For each decomposition there are then four partial products that have to be calculated,

a0b0, a0b1, a1b0, and a1b1. DSP blocks are used in the design to calculate these partial

products. Depending on the bitlength of the multiplication that is being performed,

there can be a large number of partial products that need to be calculated. For this

reason, some form of memory element must be present in the design in order to store

the partial products. Hardcoded BRAM that is present in Xilinx Virtex 5 FPGAs is

therefore used for this purpose. After calculating the partial products they must be

summed as shown in Figure 3.8.

a1b1

a1b0

a0b1

a0b0

22n 2n

Figure 3.8: Addition of partial products.

The lower half of a0b0 is not involved in the addition and can be routed directly

to the output of the adder. By using the Karatsuba method for decomposition [97],

the number of multiplications required to calculate the partial products can be reduced

60

3.7 Optimisations for the q = 2n − 1 case

A

B n

n

2n R

Figure 3.9: Pipelined multiplier in a DSP block.

from four to three. This is done by replacing r1 in Equation 3.20 with

r1 = (a1 + a0)(b1 + b0)− r2 − r0. (3.21)

This method, however, increases the number of additions that need to be performed.

Since the critical path in the design is through the adder, the previous method for

decomposition, Equation 3.20, is used.

3.7.3.3 DSP Blocks

Each DSP block on a Xilinx Virtex 5 FPGA is capable of performing a full 18 × 18

bit multiplication, giving a 36 bit result. If the pipelining registers in the DSP blocks

are used, Figure 3.9, the maximum possible clock frequency achievable is about 450

MHz. To take advantage of the high clock frequency of these DSP blocks, a large

multiplication must be decomposed recursively until the size of the partial product

multiplications is 18 × 18 bits or less. The maximum frequency of the design will not

be limited by the DSP blocks but by the critical path of the adder used to sum the

partial products. It is possible to pipeline the adder, but for large bit lengths, achieving

a clock frequency close to that of the DSP blocks is not possible.

The pipelining registers add a delay of 1 clock cycle on the input and 1 on the

output of the DSP block. In the smaller designs these pipelining registers are required,

as without them, the DSP blocks would have a longer critical path than the adder circuit

in the design. However, as the bit length increases the critical path through the adder

becomes larger than the unpipelined DSP blocks; therefore, the pipelining registers are

not used and 2 clock cycles per multiplication can be saved. Even though the adder is

pipelined, when the bit length reaches several hundred bits, it is not feasible to pipeline

61

3.7 Optimisations for the q = 2n − 1 case

the adder enough so that the critical path is similar to that of the DSP blocks, as doing

so would result in an unacceptable number of clock cycles for the addition of the partial

products.

3.7.3.4 Block RAM

The FPGAs in the Virtex 5 family contain BRAM which is distributed in columns

throughout the chip in 36Kilobit (kbit) blocks. All BRAM used in the multiplier, shown

in Figure 3.7, is configured as dual port BRAM. The output ports of the BRAM support

three different modes of operation WRITE FIRST, READ FIRST and NO CHANGE.

These different modes determine how data is written into memory in BRAM and how

data appears on the output port of the BRAM if a read and write are being performed

on the same BRAM address, in the same clock cycle. Depending on the bit length of

the multiplication being performed, either WRITE FIRST or READ FIRST modes are

used; NO CHANGE mode is not used in any of the designs. In WRITE FIRST mode,

the data being written to an address in BRAM also appears on the output port in the

same clock cycle. In READ FIRST mode the data that was previously at the address

location appears on the output port and then the new data is written to the address

in BRAM. The BRAM mode of operation that is used in the multiplier depends on

the complexity of the adder. As the bitlength increases, so does the number of partial

products that need to be stored in BRAM. Therefore, WRITE FIRST mode is used

in the smaller multiplier designs, where the adder does not have to write to and read

from the same location in BRAM, at the same time. This occurs when only two RAM

locations are required in each BRAM and saves a clock cycle at the multiplication stage.

READ FIRST is used for design where the bit length is large and the adder requires

the ability to write to, and read from, the same BRAM locations at the same time i.e.,

when decomposition of the multiplicands has been applied recursively several times.

3.7.3.5 The Adder

An adder is required in the design to sum the partial products. The four inputs to

the adder, a0b0, a0b1, a1b0, and a1b1, must be bitwise shifted by the correct amount to

ensure that they are aligned to give the correct sum on the output, as shown in Figure

3.8. For multiplications several hundred bits in length, the decomposition will have

been applied recursively several times until each input to the DSP blocks is at most

18 bits. For the 521 bit case, the multiplicands must be recursively decomposed five

times until each multiplication is 17 × 17 bits. For this reason, the adder will have to

62

3.7 Optimisations for the q = 2n − 1 case

align the partial products differently each time the decomposition is performed. The

signal recursive level, shown in Figure 3.7, is used to indicate to the adder how the

partial products should be aligned. The output of the adder is fed into a multiplexer

which selects which BRAM unit the result is routed to. The results are written into

the same address of each different BRAM unit. Spreading the partial products across

the multiple BRAM units allows the adder to read the partial products in parallel from

across all of the BRAM units, in a read operation.

Due to the fact that the adder is the critical path in the design, it must be pipelined

in order to keep the critical path as short as possible, without adding so many extra

clock cycles as to make the design slower than a bitserial approach from Sections 3.7.1

or 3.7.2. The adder is implemented in slice logic as the DSP blocks cannot perform

additions of a sufficient length without cascading them. A design was tested with DSP

blocks but it was found that implementing the adder in slice logic resulted in a shorter

critical path.

3.7.3.6 Controller

A controller is required to schedule all multiplications, additions, and all of the BRAM

read/write operations along with all the data routing. The controller consists of a

Finite State Machine (FSM) which starts and stops various counters. In total, there

are six counters used in the design.

BRAM address counter: There are two BRAM address counters used in the design,

one for each input port of the BRAMs. Every time an output from a DSP block

is written to BRAM, the counter for BRAM input port A increments. Every time

a result from the adder is written to BRAM, the counter for port B increments.

BRAM input select counter: This counter is incremented when the output of the

adder needs to be written to the next BRAM unit.

Delay counter: Determines how long to wait before the multiplier can move to the

next state in the FSM. The delays are caused by pipelining in the adder.

Partial product counter: The output of this counter is connected to a multiplexer

that routes the correct parts of the decomposed multiplicands, to the different

DSP blocks. When the counter increments, the multiplexer routes a different set

of partial products to the DSP blocks.

63

3.7 Optimisations for the q = 2n − 1 case

Recursive level counter: This counter is connected to the adder and through the

signal recursive level, it controls how the adder aligns the partial products that

are being added, as shown in Figure 3.8.

3.7.3.7 Multiplier Operation

The inputs A and B are decomposed by routing the correct portions of the array of

bits, to the DSP blocks. A multiplexer routes the decomposed A and B signals into

the DSP blocks, which are then processed. The controller determines which partial

products are routed to the DSP block at each clock cycle through the use of the partial

product select line, shown in Figure 3.7. For every DSP block in the design, there is

a dual port BRAM unit and for every four DSP blocks there is a single adder. The

output of the DSP blocks are fed into the “d inA” port of each BRAM and the value

is stored in address location 0. The “d inB” port of the BRAM is only used by the

feedback from the adder stage. For all larger bit lengths READ FIRST RAM is used.

The controller also controls the BRAM enable lines and address signals.

Due to the type of multiplicand decomposition that is used, the number of DSP

blocks in the design is always a multiple of 4. This ensures that the adder can sum

the four partial products in the clock cycle after they have been calculated by the DSP

blocks. If the number of DSP blocks was not a multiple of 4, some DSP blocks would

remain unused for periods of time. This would lead to a reduction in the efficiency of

the design. The control circuitry would also be more complex; thus, increasing the area

of the circuit.

A generator was written in C++ to generate the VHSIC Hardware Description

Language (VHDL) code for the multiplier. This allows for the generation of multipliers

with different bit lengths, with minimal effort. The generator is designed to take as

inputs, the bit length of the multiplication, and number of DSP blocks to be used.

From these values the generator produces all the VHDL files necessary to implement

the multiplier.

3.7.4 Results

Shown in Table 3.5 are post place and route results for a Virtex XC5VLX220-1ff1760

FPGA. The results for a 127 bit version of the multiplier are also included as an ECC

implementation using a modulus of the form 2127 − 1 has been suggested by Galbraith

et al. in [38]. The best results in each category are highlighted in bold.

In order to properly route the 521 bit Booth circuit, a pipelined design was used.

64

3.7 Optimisations for the q = 2n − 1 case

Multiplier Bit Length
Area
(slices)

Max. Freq.
(MHz)

Clk. Cycles
Throughput
(Mbit/s)

Montgomery 127 264 161 129 159
Serial 127 352 186 128 185
Booth 127 353 167 65 327

DSP BRAM (4DSPs) 127 1139 110 31 451

Montgomery 521 957 54 523 54
Serial 521 1280 50 522 50
Booth 521 1601 84 525 83

DSP BRAM (4DSPs) 521 6250 52 353 77

Table 3.5: Multiplier performance and power consumption results.

This allowed the design to be routed onto the chip without exceeding the length of

the carry chain that run vertically in each column of CLBs in the FPGA. Routing

from one column to the next can significantly increase the critical path of the design,

as there is no dedicated carry routing from one column to the next. The circuits that

make use of BRAM and DSP blocks are capable of performing the multiplications in

fewer clock cycles than the other designs. However, the area used by these multipliers

is much higher than the circuits that implement the multiplication using slice logic

alone. This is due in part to the large multiplexer that is required to route the correct

partial products to the DSP blocks, but also the adder that is used to sum the partial

products.

In certain applications such as handling large amounts of traffic on a network, high

speed encryption is more desirable than a low area design. In this situation making use

of the BRAM and DSP resources on the FPGA may be a desirable way of implementing

the multiplier. The Booth multiplier, however, appears to be the best alternative to

the Montgomery, for implementation of the 521 bit NIST curve, as it has the shortest

critical path and the highest throughput.

In order to compare the performance of the Booth multiplier against Montgomery

for ECC applications, the Booth multiplier was implemented alongside a Microblaze

processor; a similar setup to that from Section 3.6. The clock frequency of the system

was set to 75 MHz. The results are shown in Table 3.6.

It can be seen that the use of the Booth multiplier instead of the Montgomery

reduces the computation time by 4%–15%, with the relative performance of each algo-

rithm remaining the same. Although the Booth multiplier appears significantly faster

from the results in Table 3.5, these do not take into account the latency introduced

by the Microblaze while communicating with the multiplier over the FSL bus. Both

the latency of the FSL bus and the software overhead introduce delays in the system

65

3.8 Discussion

Algorithm
Booth Montgomery

Time (ms) Time (ms)

D&A (Alg. 6) 1386 1534
ML co-Z (Alg. 8) 2089 2207
Joye I (Alg. 11) 2094 2221
Joye II (Alg. 12) 1623 1686

ML(X,Z) (Alg. 9) (Alg. 26 &33) 1120 1176
ML(X,Z) (Alg. 9) (Alg. 27 &33) 1019 1175
ML(X,Z) (Alg. 9) (Alg. 28 &34) 996 1172

ML(X,Y) (Alg. 13) 1510 1638
SD(X,Y) (Alg. 14) 1387 1506

Table 3.6: Microblaze and 521 bit Booth multiplier results.

that increase the multiplication time for the Montgomery multiplier to 94 µs, and the

Booth to 81 µs, when they are accessed through a function call in software.

Although the performance of the system can be increased by using the Booth mul-

tiplier architecture, this limits the type of modulus to that of 2n−1, 2n, or 2n+1. The

Montgomery multiplier, however, can be used with any form of modulus and would

therefore lead to a more flexible system, suitable for a larger number of applications.

3.8 Discussion

In this chapter, the mathematical principles of ECC were introduced. The standard

point scalar multiplication method, D&A with Jacobian coordinates, was compared

against several more efficient algorithms based on co-Z coordinate addition. From the

results presented, it is clear that in a software setting, finite field multiplications are

the dominant factor in the computation time for the ECC algorithms discussed in this

chapter.

ISE was then explored as a method to speed up the ECC point scalar multiplication

by including a custom multiplication circuit in the design. This resulted in an 89%–

94% reduction in computation times; thus, proving the effectiveness of ISE in this case.

Further optimisations were made for the case where the modulus used for the finite field

arithmetic was a Mersenne prime, with the Booth multiplier proving to be optimal in

this case.

The performance gains that have been achieved in this chapter are unsurprising as

a custom designed circuit will always outperform general arithmetic circuitry, such as

is present in GPPs. From the results it can be seen that as further optimisations are

66

3.8 Discussion

made, the flexibility of the overall design is reduced in order to improve performance.

Therefore, a choice must be made as to the requirements of the system and a trade-off

made between area, performance, and flexibility. In the next chapter, an ECC proces-

sor will be introduced, where the entire point scalar multiplication algorithm can be

implemented outside of the GPP. Although ISE has been shown to improve the perfor-

mance of the system, there is still a software overhead present in the results. An ECC

processor can remove some of this software overhead and achieve better performance.

67

Chapter 4

FPGA Implementation of an

ECDSA Coprocessor

4.1 Introduction

In the previous chapter, various ECC algorithms were implemented in a hardware-

software co-design setting where only the finite field multiplications were performed in

dedicated FPGA logic. In this chapter, the implementation of the entire ECC point

scalar multiplication algorithm in FPGA logic will be examined.

This method of implementation has the advantage of increasing the performance of

the system, but also lends itself to a more secure architecture, as intermediate values

during the point scalar multiplication can be kept internal to the coprocessor. First, a

generic structure for an ECC processor will be introduced.

4.2 ECC Processor

In [20], Byrne et al. introduced a configurable processor architecture capable of per-

forming arithmetic over any extension field Fqm . The authors developed software that

generates a VHDL description of a processor based on some configuration options that

define the number, and type of arithmetic units in the design. The generic structure is

shown in Figure 4.1. The arithmetic units can be configured to be adders, subtractors,

multipliers, or field inversion units. This structure allows for the rapid comparison of

the various ECC algorithms and coordinate systems. The user defines the scalar mul-

tiplication and point operation algorithms, which are then processed by the generator

software. The algorithms are analysed and a list based scheduling algorithm [115] is

68

4.2 ECC Processor

applied in order to maximise the usage of the arithmetic units.

The controller implements the scalar multiplication algorithm as an FSM. The

group operations, such as point addition or point doubling, are then performed through

the use of microcoded instructions stored in the Read Only Memory (ROM) block. The

ROM instructions determine which arithmetic unit is used to execute each operation,

through the use of the address decoders. The ROM instructions also control the I/O

and addressing for the RAM block. The architecture for the multiplier unit is that of

the Montgomery multiplier from Section 3.4. The architectures of the inversion and

addition/subtraction arithmetic units are discussed in the following sections.

data in

data out

address
decoder

address
decoder

sel(0)

sel(1) sel(2) sel(3) sel(n)

controller

load done

RAM
din

addr
we

doutA
doutB

ROM

addr

unit(1) unit(2) unit(3) unit(n). . .

Figure 4.1: Byrne et al. design.

4.2.1 Fq Addition/Subtraction

The addition of two integers A and B modulo q can be achieved through the use of the

circuit shown in Figure 4.2. The circuit consists of two full adders of bit width l, where

A =
∑l−1

i=0 ai2
i and B =

∑l−1
i=0 bi2

i. In the case of modular addition, the first adder has

its carry input set to 0, and adds the two values A and B. The result is fed into the

second adder which adds the result to the inverse of the modulus q, with the carry input

set to 1; thus, performing a two’s complement subtraction. The carry out of the second

adder determines which value is taken as the final result, as this indicates whether the

output from the first adder was in the correct range or whether the correction provided

69

4.2 ECC Processor

by the second adder was required.

The corresponding subtraction, circuit is shown in Figure 4.3. In the case of sub-

traction, the B input to the first adder is inverted and its carry input is set to 1. This

performs a two’s complement subtraction which is then corrected by the second adder

if the result (A−B), from the first adder, was not in the correct range.

A B
q

R

+

+

l + 1

l + 1

l

lll

0 1

0

1

Figure 4.2: Fq adder.

A

B

q

R

+

+

l + 1

l + 1

l

l
ll

1 0

0

1

Figure 4.3: Fq subtractor.

4.2.2 Fq Inversion

An important and highly computationally intensive operation in finite field arithmetic

is modular inversion. The modular inversion of an integer x ∈ [1, q − 1] is defined

as the integer z such that x × z (mod q) = 1. The Montgomery representation of an

integer and its corresponding multiplication algorithm were introduced in Section 3.6.1.

Similarly the Montgomery representation of the modular inverse of an integer is given

by x−12l (mod q), where l is the length of q in bits [61].

One possible method to calculate the multiplicative inverse of an integer over Fq is

to use use Fermat’s little theorem. Let x be and integer and q be a prime, the theorem

states that

xq ≡ x (mod q). (4.1)

70

4.3 Comparing Coordinate Performance

Equation 4.1 can be rewritten as

xq−1 ≡ 1 (mod q). (4.2)

The inverse of an element is then given by

x−1 ≡ xq−2 (mod q). (4.3)

Calculating the inverse using this method requires only multiplications over Fq. As the

bit length increases, however, this method becomes very inefficient; therefore, a method

based on the extended Euclidean algorithm is preferred for these cases.

The Montgomery modular inverse algorithm, based on the binary extended Eu-

clidean algorithm, requires only additions and subtractions over Fq. The algorithm is

split into two phases and is shown in Algorithms 19 and 20 [61]. Algorithm 19 shows

the first phase, where the binary extended Euclidean algorithm is performed by steps

2 to 24. This is followed by a modular correction operation in steps 25 and 26. The

binary extended Euclidean algorithm factors powers of 2 out of the variables u and v

by dividing u, v, or their difference by 2, at each iteration updating the values of r and

s. The flag variable keeps track of which value s should take on the next iteration of

the while loop. After k iterations, step 24 of the algorithm is reached and the value

of r will be r = −x−12k (mod 2q). The final modular reduction step gives r = x−12k

(mod q). Thus, Algorithm 19 is complete in k + 2 iterations. The algorithm returns

the values of z = r = x−12k (mod q) and k, which can be used as inputs to phase 2.

Phase 2 of the Montgomery modular inverse is shown in Algorithm 20, where the

input is the result from Algorithm 19. Each iteration of the algorithm doubles the input

modulo q and gives a final output of z = x−122l (mod q). The algorithm requires k− l

clock cycles to complete.

The architecture used to implemented this algorithm was introduced by Crowe

et al. in [25]. Each iteration of the loops in Algorithms 19 and 20 are evaluated in a

single clock cycle; therefore, the total number of clock cycles required to calculate the

Montgomery modular inverse is 2k − l + 2. The inverter unit occupies more area than

the multiplication or addition units, and also has a longer critical path.

4.3 Comparing Coordinate Performance

When designing an ECC processor for FPGAs, it is possible to implement a circuit that

performs a field inversion; hence, using affine coordinates on an FPGA platform can be

71

4.3 Comparing Coordinate Performance

Algorithm 19 Montgomery Inversion Algorithm: Phase 1

Input: x =
∑k

i=0 xi2
i, q, gcd(q, x) = 1

Output: z = x−12k (mod q), k where l ≤ k < 2l

1: Initialise: u← q, v ← a, r← 1, s← 0
2: while v > 0 do
3: if u0 = 0 then
4: u← u/2
5: if flag = 0 then s← 2r
6: else s← 2s
7: flag = 1
8: else if v0 = 0 then
9: v ← u/2

10: if flag = 0 then s← 2s
11: else s← 2r, flag = 0
12: else if u/2 > v/2 then
13: u← u/2− v/2
14: if flag = 0 then s← 2r
15: else s← 2s
16: r ← r + s, flag = 1
17: else if v/2 ≥ u/2 then
18: v ← u/2− v/2
19: if flag = 0 then s← 2s
20: else s← 2r
21: r ← r + s, flag = 0
22: end if
23: k = k + 1
24: end while
25: r ← r − s
26: if r < 0 then r ← r + q
27: return z = r, k

Algorithm 20 Montgomery Inversion Algorithm: Phase 2

Input: z, k from phase 1
Output: z = x−122l (mod q)

1: Initialise: r ← z
2: for i← 1 to 2l − k do
3: r ← 2r
4: if r ≥ q then r ← r − q
5: end for
6: return z = r

72

4.3 Comparing Coordinate Performance

done relatively efficiently. However, using other coordinate systems in an FPGA imple-

mentation allows for parallel finite field multiplications to be used; thus, a performance

increase may be achieved. It is therefore advantageous to analyse the performance of

each coordinate system, while varying the number of parallel computations that are

used.

The Affine, Jacobian, and ML(X,Y) (Alg. 13) algorithms were implemented using

the test platform from Section 4.2. A Montgomery point scalar multiplication algorithm

was used for both the affine and Jacobian coordinate systems. The ML(X,Y) (Alg. 13)

algorithm was chosen as it has been shown in [5] to have the best performance and

lowest energy requirements of the co-Z algorithms when implemented in hardware. A

full analysis of implementing co-Z algorithms on an FPGA can be found in [5], where

the co-Z algorithms are compared in terms of performance and power consumption.

All results are for a field size of 256 bits as this represents a medium level of security

that should offer protection for at least the next 30 years [95].

The algorithms were implemented with a varying number of multiplication units,

one addition unit, and one subtraction unit. Only the core operations of the algorithms

were implemented, as they constitute the vast majority of the computation time; there-

fore, no inversion unit was required for the Jacobian or co-Z algorithms. In the case of

affine coordinates, however, the circuit also required an inversion unit. The implemen-

tation results are shown in Table 4.1 and graphed in Figure 4.4. The results for the

affine coordinate system in Figure 4.4 are for when 1 multiplication unit is present in

the design.

Design Mult’s slices slice Reg’s slice LUTs BRAM Max. Freq. (MHz) Time (ms)

Affine Mont. Ladder 1 2472 5008 7071 9 80.16 9.46

Jacobian Mont. Ladder 1 1840 3694 4698 9 83.65 15.68
Jacobian Mont. Ladder 2 2059 4473 5998 10 79.43 8.99
Jacobian Mont. Ladder 3 2307 5250 6776 9 80.27 6.42
Jacobian Mont. Ladder 4 2702 6028 7817 9 80.24 4.77

ML(X,Y) (Alg. 13) 1 1647 3701 4722 10 78.90 12.52
ML(X,Y) (Alg. 13) 2 2131 4479 6019 9 78.92 6.63
ML(X,Y) (Alg. 13) 3 2301 5256 6797 9 79.20 4.92
ML(X,Y) (Alg. 13) 4 2618 6034 7841 9 79.41 4.08

Table 4.1: ECC area results.

The results show that when 1 multiplication unit is present in the design, the

affine coordinate system provides the best performance. This is to be expected, as the

number of operations required for affine coordinates is much less than for Jacobian or

ML(X,Y) (Alg. 13). However, if the number of multipliers is increased, there are no

multiplications in the affine algorithms that can be performed in parallel; therefore,

73

4.3 Comparing Coordinate Performance

Number of Multipliers

C
om

p
u
ta
ti
on

T
im

e
(m

s)

Affine (1M)
Jacobian

ML(X,Y) (Alg. 13)

1 2 3 4
0

2

4

6

8

10

12

14

16

Figure 4.4: Timing results.

affine coordinates cannot benefit from extra multiplication units. Both Jacobian and

ML(X,Y) (Alg. 13) algorithms have many multiplications that can be performed in

parallel, and as a result, the performance quickly exceeds that of affine coordinates.

The ML(X,Y) (Alg. 13) algorithm performs best for every number of multiplication

units above 1. The increase in the amount of block RAM required for the ML(X,Y)

(Alg. 13) design with 1 multiplier, and the Jacobian design with 2 multipliers, is a result

of how the width and number of ROM instructions change for each design. The number

of RAM locations required is also a factor. As the number of multipliers increases,

the number of RAM locations required also increases. An increase in the number of

multipliers also requires the width of ROM instructions to increase, but simultaneously,

the number of ROM locations that are required, to store the instruction set, is reduced.

As a result, the number of BRAMs required does not increase linearly with the number

of multiplication units in the design.

Table 4.2 shows the characteristics of how each algorithm utilises the multiplication

units. The Mult. Eff. column indicates the efficiency with which the multipliers

are used i.e., 100% efficiency occurs when, at every multiplication stage, all of the

multipliers are being used in parallel. A low efficiency indicates that some of the

74

4.3 Comparing Coordinate Performance

multipliers are left idle for periods during the algorithm, as certain multiplications

cannot be performed in parallel. When a single multiplication unit is present, the

efficiency is always 100%. All of the results shown in Table 4.2 are for the core operations

of each algorithm. The Affine PA PD result is for a point addition followed by a

point doubling in affine coordinates, and Jacobian PA PD, the corresponding Jacobian

coordinate version. The ZACAU′ (Alg. 30) algorithm is the operation used in the main

loop of the ML(X,Y) (Alg. 13) algorithm.

Algorithm Mult’s Mult. clk’s Mult. Eff.(%) other clk’s total clk’s

Affine PA PD 1 1806 100 1151 2957

Jacobian PA PD 1 4902 100 267 5169

Jacobian PA PD 2 2580 95 240 2820

Jacobian PA PD 3 1806 90 231 2037

Jacobian PA PD 4 1290 95 225 1515

ZACAU′ (Alg. 30) 1 3612 100 276 3888

ZACAU′ (Alg. 30) 2 1806 100 255 2061

ZACAU′ (Alg. 30) 3 1290 93 249 1539

ZACAU′ (Alg. 30) 4 1032 87 246 1278

Table 4.2: Clock cycles per sub-algorithm.

Figure 4.5, illustrates how the algorithms perform when both occupied area, and

computation time is taken into account. This is done by multiplying the area (slices),

with the computation time (ms). This method of comparing the algorithms takes into

account the efficiency of the design. In many cases, doubling the area of a circuit does

not result in a doubling of performance and this will be reflected in the Area × Time

results. A lower area-time product signifies a more efficient use of FPGA resources.

The co-Z coordinates, ZACAU′ (Alg. 30), are again the best performing system in

this metric. It can be seen from Figure 4.5 that the addition of a second multiplier

causes a sharp increase in performance with respect to the increase of area, however,

the addition of a third and fourth multiplier does not result in the same increase in

performance, with respect to area. This is caused by a decrease in how efficiently the

multipliers are being used, as was shown in Table 4.2.

75

4.4 Applications of Elliptic Curves in TLS

Number of Multipliers

A
re
a
×

T
im

e
(s
li
ce
×
m
s)

Affine PA PD (1M)
Jacobian PA PD

ZACAU′ (Alg. 30)

1 2 3 4
10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

Figure 4.5: Area-time product.

4.4 Applications of Elliptic Curves in TLS

In the previous sections, the implementation of elliptic curve arithmetic on FPGAs was

examined. The co-Z algorithms have been identified as the fastest and most efficient.

In this section, the use of these algorithms at the protocol level will be discussed.

First, the use of ECC in the TLS protocol will be investigated in order to identify the

components that will be required to construct a coprocessor for ECC at the protocol

level.

In [14], the various elliptic curve based extensions for TLS are defined. The two

key exchange algorithms of interest here are; ECDH ECDSA which uses fixed Ellip-

tic Curve Diffie-Hellman (ECDH) keys and digital certificates signed with ECDSA;

and ECDHE ECDSA which uses ephemeral (i.e., short term) ECDH keys and digital

certificates signed with Elliptic Curve Digital Signature Algorithm (ECDSA). In both

cases, the server possesses a certificate with a fixed public key. During the handshake

process of ECDHE ECDSA, the server sends both a certificate signed with ECDSA and

an ephemeral public key in the ServerKeyExchange message. This ServerKeyExchange

message is signed with the private key that corresponds to the server’s certificate. In

the case of ECDH ECDSA, the server uses only a certificate with a fixed public key

76

4.4 Applications of Elliptic Curves in TLS

and no ServerKeyExchange message is sent.

For both ECDH ECDSA and ECDHE ECDSA, the client responds with an ephemeral

public key in the ClientKeyExchange message. Client authentication is possible if a

client also possesses a certificate, however, this is not a common setup.

To use ECDH ECDSA and ECDHE ECDSA, both the client and server require

the ability to perform scalar multiplication of elliptic curve points and verify ECDSA

signatures. If ECDHE ECDSA is being used, the server also requires the ability to sign

the ServerKeyExchange message using ECDSA. The ECC processor presented in this

chapter, therefore, contains dedicated hardware capable of performing elliptic curve

point multiplications for ECDH, signing of a message with ECDSA and verification of

ECDSA signatures. The point multiplication methods used for each algorithm were

chosen based on the results of the comparison from Section 4.3. An introduction to

each protocol is given in the following sections.

4.4.1 Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

The public-key protocol described in Section 2.6 can be used to encrypt messages sent

between two entities over an unsecured channel. However, the encryption algorithm

used, ξ, is generally more computationally intensive, per bit, than the block cipher or

stream cipher type algorithms used in private-key cryptography. Therefore, a com-

bination of private-key and public-key cryptography can be used to achieve secure

communications with a higher throughput than that of public-key alone. A public-key

algorithm, such as the Diffie-Hellman key exchange [30], can be used to set up a shared

secret between two communicating parties. This shared secret can then be used as the

key for the encryption algorithm in the private-key protocol.

The security of the Diffie-Hellman key exchange relies on the intractability of the

discrete logarithm problem and can be extended to use elliptic curves, where the scalar

multiplication of kP provides the intractable problem. First, the two communicat-

ing entities, Alice and Bob, must agree upon the domain parameters of the protocol,

(q,A,B,G, n); where q is the field size; A and B define the short Weierstraß equa-

tion of the curve and G = (xg, yg) specifies a point of order n on the curve. Alice

and Bob must then each generate a private/public key pair. Alice chooses at ran-

dom a private key Apriv ∈ {2, 3, ..., n − 1}, and generates her public key such that

Apub = AprivG = (xA, yA). Bob performs the same process to generate his key

pair, Bpriv ∈ {2, 3, ..., n − 1} and Bpub = BprivG = (xB , yB). Alice and Bob then

exchange their public keys. If Alice then computes SA = AprivBpub and Bob com-

77

4.4 Applications of Elliptic Curves in TLS

putes SB = BprivApub, both Alice and Bob should have arrived at the same value,

SA = SB = Bpriv(AprivG) = Apriv(BprivG), which is a point on the elliptic curve.

Alice and Bob can then use the x coordinate of this point to generate the key for a

symmetric-key encryption protocol.

4.4.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is the elliptic curve based version of DSA. As from Section 4.4.1, the domain

parameters of the curve are given by (q,A,B,G, n).

The algorithms for generating and verifying elliptic curve digital signatures are

shown in Algorithms 21 and 22, respectively. The most computationally intensive op-

eration in Algorithm 21 is the calculation of R = kG, and in Algorithm 22 it is the

computation of X = u1G+ u2θ. Signature verification is the more computationally in-

tensive of the two algorithms as it requires two elliptic curve point scalar multiplications

to be performed, as opposed to only one in the signature generation algorithm.

The security of the signature generation algorithm relies on several assumptions:

that the random number k is generated securely; that the hash function used is crypto-

graphically secure; and that the Elliptic Curve Discrete Logarithm Problem (ECDLP)

is intractable. If any of these assumptions fail, it would be possible for an adversary to

forge signatures.

If an entity wishes to sign a message they must first generate their private/public

key pair. The individual’s private key is chosen at random such that d ∈ [1, n − 1].

Their public key can then be generated as θ = dG. The resulting key pair (d, θ) is used

in the signature generation and verification algorithms.

The generation of the integer k must be done using a cryptographically secure

random number generator, such as that described in Chapter 6. Step 3 of Algorithm

21 can be done using any coordinate system as long as the x coordinate of the resulting

point R is converted back to affine coordinates. The hash function used in step 2 of

Algorithm 21 must be a cryptographically secure hash function such as those described

in [87]. The overall system for implementing Algorithms 21 and 22 is described in

Section 4.6.

To show that signature verification works, it must be shown that the x coordinate of

the point X in Algorithm 22 equals the signature parameter r. First, from Algorithm

21

s = (k−1(e+ dr)) (mod n), (4.4)

78

4.4 Applications of Elliptic Curves in TLS

Algorithm 21 Elliptic Curve Digital Signature Generation

Input: private key d, message m, domain parameters (q,A,B,G, n)
Output: Signature (r, s)

1: generate random integer k ∈ [1, n − 1]
2: compute e = H(m)
3: compute R = kG = (x1, y1)
4: set r = x1 (mod n). If r = 0 return to step 1
5: compute k−1 (mod n)
6: compute s = (k−1(e+ dr)) (mod n)
7: the signature for message m is then (r, s)

Algorithm 22 Elliptic Curve Digital Signature Verification

Input: signature (r, s), domain parameters (q,A,B,G, n), senders public key θ
Output: accept or reject signature
1: verify r, s ∈ [1, n − 1]
2: compute e = H(m)
3: compute λ = s−1 (mod n)
4: compute u1 = eλ (mod n)
5: compute u2 = rλ (mod n)
6: compute X = u1G+ u2θ
7: if X = O → reject signature
8: else convert x1 of X to an integer c (mod n) accept signature if c = r

rearranging gives

k = (s−1(e+ dr)) (mod n), (4.5)

= s−1e+ s−1dr (mod n), (4.6)

= ωe+ ωdr (mod n), (4.7)

and

u1 = eω (mod n), (4.8)

u2 = rω (mod n). (4.9)

Therefore,

k = u1 + u2d (mod n). (4.10)

79

4.4 Applications of Elliptic Curves in TLS

The message signer’s public key is given by Q = dG; therefore,

X = u1G+ u2Q = u1G+ u2dG = (u1 + u2d)G = kG (mod n). (4.11)

It follows that if x1 = r, the signature is correct.

4.4.3 DPA resistant ECDSA

When implementing the signature generation algorithm the designer must take into

consideration which operations are susceptible to side channel attack. The use of affine

coordinates and the Montgomery ladder is naturally resistant to SPA attacks but is

still susceptible to DPA attacks [65]. Using the co-Z formulæ also allows for the use

of projective point randomisation which is a countermeasure against DPA attacks.

However, since the value of k is random and changes for every signature generated, this

part of the ECDSA algorithm is not susceptible to DPA attacks. For DPA attacks to

be applicable the key must remain constant for many executions of the algorithm.

One part of the ECDSA key generation that can be susceptible to first order DPA

attacks is the computation of s = (k−1(e+dr)) (mod n). The message signer’s private

key d remains constant and an attacker would have knowledge of r; hence, this operation

can be attacked [80]; specifically the multiplication d × r. To protect this operation

against a DPA attack, the message e and the private key d should be masked in some

way. Since k is random and changes with every signature generated, it can be used to

mask the operands at the expense of an extra multiplication. First, the value φ = k−1d

(mod n) is computed. s can then be computed as s = (ek−1 + φr) (mod n), which

results in the same value without d and r being multiplied together directly. This

removes any correlation between the power consumption of the device and the value of

d.

4.4.4 Simultaneous multiple point multiplication

In line 6 of Algorithm 22, two ECC point scalar multiplications are required. The

most basic way of accomplishing this task is to calculate u1G and u2Q separately and

then add the result. There is, however, a more efficient technique for performing this

computation, known as Shamir’s trick, see [24] for details. Algorithm 23 shows how

the computation is performed. First, the value (G+Q) is pre-computed, the algorithm

then proceeds in the same way as the double and add algorithm, except for the fact that

both u1 and u2 are simultaneously used to determine which operations are performed.

Computing u1G and u2Q separately would result in at least 2l point doublings and up

80

4.5 Related Work

to 2l point additions. Algorithm 23, however, will only require l point doublings and

up to l+1 point additions. This results in a saving in computation time at the cost of

only 1 extra register for storing the point (G+Q).

Algorithm 23 Simultaneous multiple point multiplication

Input: G,Q ∈ E(Fq);

u1 =
∑a−1

i=0 ki2
i; u2 =

∑b−1
i=0 ki2

i; l = max(a, b);
Output: X = u1G+ u2Q ∈ E(Fq)

1: pre-compute G+Q
2: X = O

3: for i = l − 1 down to 0 do
4: X = 2X;
5: if u1i = 1 AND u2i = 0 then
6: X = X +G
7: else if u1i = 0 AND u2i = 1 then
8: X = X +Q
9: else if u1i = 1 AND u2i = 1 then

10: X = X + (G+Q)
11: end if
12: end for
13: return X

4.5 Related Work

In [43], Glas et al. detail a design for accelerating ECC operations in a vehicle-to-vehicle

communication setting. The design is capable of performing hashing, ECDSA signature

generation and verification, and general ECC operations. The implementation uses an

ALU that was introduced in [42], where, the multiplication unit uses the interleaved

multiplication method from [15]. The addition and subtraction units are implemented

in a similar method to those introduced in Section 4.2.1. The ALU is capable of

performing Fq operations with bitlengths of 224 and 256 bits. The ECC operations

are implemented using affine coordinates, where signature generation and verification

are done using Algorithms 7 and 23 respectively. The division unit, shown in Figure

4.6, is used for field inversion and registers R1, R2, R3, and R4 are used to store the

intermediate results during the processing of an algorithm. The processor is controlled

by an FSM. An overview of the design is shown in Figure 4.6.

The design was implemented on a Xilinx XC5VLX110T Virtex-5 FPGA and occu-

pied 14256 LUT/FF pairs. The critical path of the design restricted the clock frequency

81

4.5 Related Work

hash

PRNG

FSM

Fp ALU

FSM

certificate
cache

Elliptic Curve
scalar mult

unit

routing multiplexer

R1 R2 R3 R4

selsel

sel

out1 out2

add sub mul div

Figure 4.6: Glas et al. design.

82

4.6 ECDSA Processor Architecture

to 50 MHz, resulting in an average signature generation time of 7.15 ms and signature

verification time of 9.09 ms; a full list of the results can be found in Table 4.3.

The work shows how useful a coprocessor can be in a real world setting, as the

design was implemented in a fully working system and showed a performance gain over

several microcontroller implementations that it was compared with. The coprocessor

did not achieve performance comparable to that of high end processors usually found

in desktop computers, such as the Intel Pentium D or Intel Core 2 Duo. However, these

types of processors generally have a much higher power consumption than FPGA based

designs, and are also targeted at much larger applications than embedded devices.

4.6 ECDSA Processor Architecture

In this section, a design for an ECDSA coprocessor will be introduced. The goal of the

design is to be usable as part of a larger coprocessor for acceleration the TLS proto-

col. When used in the TLS coprocessor, the ECDSA coprocessor will take instructions

from a GPP. The GPP will be used to implement the non-computationally intensive

operations such as parsing incoming TLS records. It is important when designing the

instructions for the coprocessor to offload as many finite field multiplications as possi-

ble. The coprocessor is much more efficient at performing finite field multiplications;

thus, the correct partitioning of operations between the GPP and the coprocessor will

maximise the performance of the overall design. Therefore, all pre-computations are

performed by the coprocessor. The GPP should be able to send information retrieved

from TLS messages directly to the coprocessor, without having to perform any compu-

tationally intensive operations on them.

The algorithms presented in Section 4.3 contained only the core operations. The

coprocessor, however, requires data to be sent to it in the Montgomery domain. For

the results of point multiplications to be useful in the TLS protocol, they must be in

affine coordinates and standard domain. The computation time for co-Z coordinates

was shown to be optimal for the processor architecture shown in Section 4.2. Therefore,

the algorithms presented were modified so that all data sent to the coprocessor is in

standard domain and affine coordinates. The coprocessor then transforms the values

into the Montgomery domain and co-Z coordinates, using a pre-computation phase in

the FSM. The scalar multiplication algorithm is then performed and upon completion a

post-computation phase is started, where the resultant ECC point is converted back to

standard domain and affine coordinates. These pre-computation and post-computation

stages are each roughly equivalent to one iteration of the main loop of the scalar mul-

83

4.7 Implementation Results

tiplication algorithm. Considering that the main loop is executed 253 times for a field

size of 256 bits, the main loop of the algorithm is by far the dominating factor in the

performance of the design.

The circuit for the ECDSA processor is shown in Figure 4.7 and is based around

the design of Byrne et al. [20]. One modification that has been made is the addition of

extra control FSMs. The original architecture presented by Byrne et al. is only capable

of performing one type of point scalar multiplication algorithm, as only one FSM and

ROM instruction set is present in the design. The addition of extra FSMs allows

for a more flexible design, as the RAM and ALUs can be shared between multiple

algorithms. When the control unit receives input data, it loads the data into block

RAM. The control unit also enables the correct FSM that will perform either a point

multiplication, signature generation, or signature verification operation. Each FSM

contains a ROM instruction set that defines the sub algorithms that it will perform

(i.e., DBLU, ZADDC etc..). The ECDSA processor also contains a number of ALUs,

such as a 256 bit adder and subtractor; a multiplication unit; and a field inversion

unit, as were discussed in Section 4.2. The FSMs also have the ability to select which

modulus is used in each ALU. This is required, as in Algorithms 21 and 22, the ECC

scalar multiplications are done mod q, while all other finite field arithmetic is performed

mod n. All intermediate values are stored in RAM.

4.7 Implementation Results

Table 4.3 shows the area and timing results for the ECDSA processor, implemented on

a Xilinx Virtex 5 XC5VLX110T FPGA. For comparison, the results from [43] are also

included.

Design slices slice slice LUT/FF pairs BRAM Max. Freq. P mul Sig. Gen. Sig. Ver.
Reg’s LUTs (MHz) (ms) (ms) (ms)

1 mult 3974 9065 10366 13519 14 78.29 12.515 12.599 17.636
2 mult 3905 9845 11305 14092 14 78.14 6.644 6.694 9.166
3 mult 4508 10363 12857 16108 14 74.33 5.218 5.263 8.044
4 mult 5347 11403 13900 18380 13 74.51 4.325 4.364 7.605

Glas et al. - 14256 0 50 7.14 7.15 9.09

Table 4.3: ECDSA processor implementation results.

Figures 4.8 and 4.9 show how the performance varies with the number of multipliers

in the circuit. A sharp increase in performance can be seen after the addition of a second

multiplier. The addition of further multiplier units has much less of an impact on the

performance of the design as these extra multipliers cannot be fully utilised in parallel.

84

4.7 Implementation Results

O
P
E
R
A
T
IO

N
ra
n
d
om

ke
y

P
(x
,y
)

si
g i

n
(r
,s
)

H
(m

)

d
p
in

ac
ce
p
t/
re
je
ct

si
g o

u
t(
r,
s)

Ω
p
r
e

d
p
ou

t

d
inco
n
tr
ol

d
ou

t

O
P

se
l

O
P

se
l

O
P

se
l

O
P

se
l

O
P

se
l

st
ar
t

se
l(
0)

se
l(
1)

se
l(
2)

se
l(
3)

se
l(
4)

se
l(
7)

A
D
D

S
U
B

IN
V

M
U
L
(1
)

M
U
L
(3
)

..
.

R
A
M

ad
d
r d
ind

ou
tA

d
ou

tB

n
q

P
m
u
l
F
S
M

si
g
ge
n
F
S
M

si
g
ve
r
F
S
M

R
O
M

R
O
M

R
O
M

ad
d
r

d
ec
o
d
e

se
l

d
ec
o
d
e

m
o
d
u
lu
s

d
ec
o
d
e

se
l(
0,
1,
..
.,
n
)

m
o
d
se
l

m
o
d
se
l

F
ig
u
re

4.
7:

E
C
D
S
A

p
ro
ce
ss
or
.

85

4.7 Implementation Results

As these operations are based around the algorithms shown in Table 4.2, it can be

seen that the algorithms from this section follow the same trend of loss in multiplier

efficiency.

Number of Multipliers

C
om

p
u
ta
ti
on

T
im

e
(m

s)

P Mul
Sig Gen
Sig Ver

Glas et al. P Mul
Glas et al. Sig Gen
Glas et al. Sig Ver

1 2 3 4
0

2

4

6

8

10

12

14

16

18

Figure 4.8: ECDSA processor timing results.

It can also be seen from Figures 4.8 and 4.9 that for each multiplier added, there

is an increase in area and there comes a point when adding extra multipliers does not

improve performance enough to justify the extra area that they consume. This can be

seen in Figure 4.9, where the area time product is given. It can clearly be seen that the

addition of the second multiplier decreases the area-time product significantly, however,

the addition of any further multiplier units has a very small impact on reducing the

area-time product. In the case of the signature generation algorithm, having more than

three multipliers causes the area-time product to increase. For this reason, it would

appear that three multiplier units is the optimal solution. With two or three multipliers

in the circuit, the area-time product is lower than that of the Glas et al. design.

One important result is the critical path of the design as the number of multipliers

is increased. Due to the fact that the multipliers are in parallel, there is very little

impact on the critical path. This is of importance as the coprocessor must run at the

same frequency as the GPP it’s connected to; thus, the ECDSA processor will generally

86

4.8 Discussion

Number of Multipliers

A
re
a
×

T
im

e
(L

U
T
/F

F
p
ai
rs
×
m
s)
×
10

−
4

P Mul
Sig Gen
Sig Ver

Glas et al. P Mul
Glas et al. Sig Gen
Glas et al. Sig Ver

1 2 3 4
6

8

10

12

14

16

18

20

22

24

Figure 4.9: ECDSA processor area time product.

be the circuit that constrains the maximum frequency of the overall system.

4.8 Discussion

In this chapter, the design of an ECC processor was introduced. Various ECC algo-

rithms were compared for performance on the architecture. The optimal algorithms,

for the architecture presented, were found to be a version of the projective coordinates

using co-Z algorithms. As a result, these algorithms were extended for use as part of

the ECDSA signature generation and verification algorithms. An architecture for an

ECDSA processor was then introduced.

The architecture presented in this chapter can be used to perform the public-key

based operations required by the TLS protocol. Public-key algorithms are the most

computationally intensive of all the algorithms supported by TLS. For this reason,

an efficient implementation is very important, as it will be the limiting factor on the

performance of the overall system. It has been shown that through changing the number

of multipliers in the circuit, various levels of performance can be achieved. The best

solution appears to be the use of three multiplier units, as this provides a good trade-off

87

4.8 Discussion

between efficient use of resources and performance.

Although public-key algorithms are very computationally intensive, they are not

the only operations that a coprocessor would be required to perform. A hash function

is required for the signature generation algorithm, key generation functions, and to

provide message integrity. All the operations presented so far have been required by the

TLS handshake protocol. Once a shared master secret has been established, encryption

and hashing functions are the core operations used by the TLS record layer to provide

secure data transmission. In the next chapter the implementation of hash functions

will be discussed.

88

Chapter 5

Hash Functions and their

Applications

5.1 Introduction

Hash functions are cryptographic primitives that are used to generate a fingerprint,

known as a message digest, for a string of data. If this data is then transmitted, the

receiver should be able to calculate a matching fingerprint; thus indicating that the data

has not been altered in transit. Hash functions have many other uses in cryptographic

protocols such as the generation of MACs, which provide message authenticity, or as

part of the digital signature algorithm discussed in Section 2.6.1.1.

Hash functions are not just implemented as standalone algorithms and are fre-

quently used in the construction other cryptographic functions. Examples include the

TLS pseudorandom function described in Section 5.4.2 or as a post-processing mecha-

nism for TRNGs, which will be discussed in Section 6.8.

Many hash function constructions have been presented in literature over the past few

years, several of which were submissions to the NIST Secure Hash Algorithm 3 (SHA-3)

competition. With the wide variety of different architectures available, comparing the

performance can be a difficult task. In this chapter, the application of these hash

functions as part of the TLS protocol will be discussed. A generic hardware wrapper

will then be introduced that is believed to allow for a fair comparison of different hash

function designs to be made. Finally, several recent hash designs will then be compared

on an FPGA platform, using this wrapper.

89

5.2 Hash Function Design

5.2 Hash Function Design

A cryptographic hash function is an algorithm that maps an arbitrary length string of

bits, to a fixed length string of bits. Ideally, the algorithm is a computationally efficient

one way function, where computing the hash of a message block requires minimal

computational power, while computing the message for a given hash value should be

computationally infeasible [78, Chapter 9].

A generic iterative hash function, shown in Figure 5.1, consists of a core operation

referred to as a compression function fc. The message to be hashed, M , is padded and

then fragmented into n blocks of length x, where x is the input bitlength required by

fc. Each n bit block of the message is denoted Mi. The compression function iterates

on the input message block for a defined number of rounds. The output is then fed

back into the input of fc, along with the next message block Mi. This process continues

until the last message block has been processed. The final output of fc is then taken

as the message digest. Depending on the specification of the hash function, the final

application of fc sometimes differs from all previous applications; it is therefore denoted

here as f ′
c. Several specific subsets of this iterative structure exist such as the Merkle-

Damg̊ard construction [27, 79] used by the 256 bit Secure Hash Algorithm (SHA256),

or the Hash Iterative Framework (HAIFA) construction [12] which uses a counter and

salt value, along with each message block, as inputs to the compression function. Two

examples of HAIFA based hash functions are ECHO [8] and SHAvite-3 [13], both of

which were knocked out in round 2 of the SHA-3 competition.

message M

M0 M1 Mn−1 Mn ‖ pad

fc fc fc f ′
cIV H

Figure 5.1: Generic hash function architecture.

5.2.1 Implementation Options

Although many hash functions follow the generic structure of Figure 5.1, the complexity

of fc is dependent on the specification of the hash function. Therefore, certain design

techniques can be used to alter the critical path and area of fc in hardware.

90

5.3 Hash Function Usage

- Loop unrolling involves feeding the output of one function into the next without

an intermediate register. This decreases the number of clock cycles required by

the function, but increases the area and critical path of the design.

- Parallelisation may be used when a function is used repeatedly and the input for

each iteration is not dependent on any of the previous results. In this case the

hardware can be replicated; thus, reducing the number of clock cycles required,

at the expense of extra area.

- Pipelining is used to shorten the critical path of a design, at the expense of extra

clock cycles. The resulting design will also require more memory resources.

These different techniques may be applied to the compression function as a whole, or

to operations within the compression function.

5.3 Hash Function Usage

One application of hash functions, as part of a cryptographic protocol, is to provide

message integrity. The hash function H is applied to the message m to produce a

message digest dm, such that H(m) = dm. In the case of TLS, this process takes place

prior to the message being passed through an encryption function. The message can

then be transmitted, along with dm. The receiver can apply the same process to m and

should arrive at the same result dm. If any part of the message had been altered during

transmission, there is a very high probability that the receiver would not calculate the

same message digest dm.

A cryptographically secure hash function should have the following properties:

- Preimage resistance: It should be computationally infeasible to calculate m, given

dm.

- Second Preimage resistance: given a message m1, it should be computationally

infeasible to find another message m2, such that H(m1) = H(m2), where, m1 6=
m2.

- Collision Resistance: It should be computationally infeasible to find two messages,

where, m1 6= m2 and H(m1) = H(m2).

91

5.4 Hash Functions and TLS

5.4 Hash Functions and TLS

As mentioned previously, hash functions form an important part of cryptographic pro-

tocols, by providing a mechanism to ensure message integrity and as building blocks

for other functions. In this section, a description will be given as to how hash functions

are used to provide different services for the TLS protocol.

During the handshake phase of the TLS protocol, a hash function is required by sev-

eral different operations. The derivation of the key block is done using a pseudorandom

function, based on a hash function. A hash of all of the handshake messages is required

as part of the Finished messages that are exchanged. A hashing operation is necessary

in both the generation and verification of ECDSA signatures. The HMAC function

used to generate a MAC for messages, that are to be encrypted, is also constructed

from a hash function.

5.4.1 HMAC Function

The HMAC function [68] is a hash function based construction that is used to provide

message integrity and message authenticity. The algorithm is used to calculate a MAC

and combines the hash of a message with a key. The construction of the HMAC function

is given by

HMACk(m) = H(k ⊕ opad ‖ H(k ⊕ ipad ‖ m)), (5.1)

where,

- H is a cryptographic hash function.

- k is the key. If k is longer than the input block length of H, then the value

k = H(k) is used.

- ⊕ denotes an XOR operation.

- ‖ denotes concatenation.

- opad is the hexadecimal value 5c, repeated until opad equals the input block

length of H.

- ipad is the hexadecimal value 36, repeated until ipad equals the input block length

of H.

92

5.4 Hash Functions and TLS

The HMAC function is used in the TLS protocol as part of the pseudorandom

function, Section 5.4.2, and is also used to append a MAC to any message, prior to it

being encrypted.

5.4.2 TLS Pseudorandom Function

A pseudorandom function is described in Section 5 of [29]. The TLS pseudorandom

function is used to generate the 48 byte master secret Ωm, and also any keys required

for the HMAC or data encryption algorithm. It is also used in calculating data for the

Finished messages sent during the TLS handshake protocol.

The pseudorandom function takes as input, a secret (usually the shared secret that

was set up between the two communicating parties), a random value referred to as a

seed, and an American Standard Code for Information Interchange (ASCII) encoded

string of characters denoted label e.g., “master secret”. The pseudorandom function

then uses a HMAC function to generate an arbitrary amount of data.

The pseudorandom function denoted TLS PRF is defined as follows:

Firstly, a function based on HMAC is defined to expand a secret and a seed into an

arbitrary amount of data.

PH(secret, seed) =HMAC(secret, A(1) ‖ seed) ‖
HMAC(secret, A(2) ‖ seed) ‖
HMAC(secret, A(3) ‖ seed) ‖ · · · , (5.2)

where ‖ indicates concatenation and

A(0) = seed,

A(i) = HMAC(secret, A(i− 1)). (5.3)

The pseudorandom function is then given by

TLS PRF(secret, label, seed) = PH(secret, label ‖ seed). (5.4)

93

5.4 Hash Functions and TLS

5.4.3 Key derivation

One of the main uses of the TLS PRF is to generate the keys for use in the TLS

handshake and also the master secret Ωm. To generate Ωm, the operation defined

in Equation 5.5 is used. The ASCII encoded string “master secret” along with the

premaster secret Ωpre, and a 512 bit block of random data Γ, are operated on by the

TLS PRF function. The 512 bit block of random data contains 256 bits generated by

the server and 256 bits generated by the client. The premaster secret is the result of

whichever key exchange algorithm was used during the TLS handshake process. In the

case of ECDH the premaster secret is the x coordinate of an elliptic curve point.

Ωm = TLS PRF(Ωpre, “master secret”,Γ). (5.5)

A key block KB , is required by the key expansion block of encryption/decryption

algorithm. The key block is generated from the master secret using Equation 5.6, where

“key expansion” is an ASCII encoded string.

KB = TLS PRF(Ωm, “key expansion”,Γ). (5.6)

Not all of the data in the key block is required by all TLS suites. For the two suites

implemented in this work only the AES encryption and decryption keys and two secret

values for the HMAC operation are required.

5.4.4 Finished Message Calculation

The verification data Dv, is used to ensure that the TLS handshake protocol has com-

pleted successfully. Both the client and the server generate Dv and send it in their

respective finished messages. If the received data matches the generated data, the TLS

handshake has completed successfully. The verification data is generated using Equa-

tion 5.7. The finished label Lf , is either the ASCII string “client finished” or “server

finished” depending which entity is generating the data. Hmes is the hash of all of the

previously exchanged handshake messages.

Dv = TLS PRF(Ωm, Lf ,Hmes). (5.7)

94

5.5 SHA Algorithms

5.5 SHA Algorithms

The Secure Hash Algorithm (SHA) family of hash functions is standardised by NIST

in the Secure Hash Standard (SHS) [88]. Several different algorithms are present, with

varying levels of security, ranging from 160 to 512 bit hash lengths. Although the

most recent standard was published in 2012, the SHA algorithms date back to 1993

when the original Secure Hash Algorithm 0 (SHA-0) algorithm was introduced [84].

SHA-0, however, was superseded by the SHA-1 algorithm [85] in 1995, due to several

weaknesses in its design, and has been declared broken since the publication of [22] in

1998, where a practical attack against the design was introduced. SHA-1 is still part

of the SHS [88], however, its use is no longer recommended for critical applications

due to the attack presented in [128]. Mounting such an attack using today’s hardware

would cost several million euros to calculate a single hash collision, however, this figure

will drop significantly over the coming years. It is therefore currently recommended

to use the Secure Hash Algorithm 2 (SHA-2) family of hash functions [88] which were

introduced by NIST in 2001. As it is a common variant, the 256 bit version, SHA256,

is described in Section 5.5.1; larger versions are based on the same construction.

5.5.1 SHA256

The SHA256 algorithm uses a Merkle-Damg̊ard construction; its compression function

is shown in Figure 5.2, where

Ch(E,Z,Θ) = (E ∧ Z)⊕ (E ∧Θ), (5.8)

Maj(A,B,Γ) = (A ∧B)⊕ (A ∧ Γ)⊕ (B ∧ Γ), (5.9)

Σ0(A) = (A ≫ 2)⊕ (A ≫ 13)⊕ (A ≫ 22), (5.10)

Σ1(E) = (E ≫ 6)⊕ (E ≫ 11) ⊕ (E ≫ 25). (5.11)

and ∧ denotes a bitwise logical AND, ⊕ denotes bitwise logical XOR and, (x ≫ n)

denotes a bitwise rotation of x to the right by n bits.

The input message is split into n 512-bit message blocks, M0,M1, . . .Mn. Each

message block M i is expanded, using the the message schedule [88], into 64 32-bit

words, Wt for 0 ≤ t ≤ 63, where

Wt =

{

M i
t 0 ≤ t ≤ 15

σ1(Wt−2) +Wt−7 + σ0(Wt−15) +Wt−16 16 ≤ t ≤ 63
(5.12)

95

5.5 SHA Algorithms

Hi−1

︷ ︸︸ ︷

︸ ︷︷ ︸

Hi

A

A

B

B

Γ

Γ

∆

∆

E

E

Z

Z

Θ

Θ

I

I

Σ0

Σ1

Ch

Maj

Wt

Kt

Figure 5.2: SHA256 compression function, fc.

and

σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x≫ 22), (5.13)

σ1(x) = (x ≫ 17)⊕ (x ≫ 19) ⊕ (x≫ 10). (5.14)

Where (x ≫ n) denotes a bitwise shift of x to the right by n bits. Each Wt is added

modulo 232 to a set of 64 eight bit constants Kt, for 0 ≤ t ≤ 63.

The most computationally intensive operations of the compression function are

modulo 232 additions, denoted by ⊞ in Figure 5.2. The output hash of each round H i,

is fed back in as the input to the next. This follows the iterative structure from Figure

5.1, where the IV in Figure 5.1 corresponds to Kt for the SHA256 algorithm. A circuit

for the algorithm was implemented such that each round of the compression function

takes 1 clock cycle.

96

5.6 SHA-3 Competition

5.6 SHA-3 Competition

The construction of the SHA-2 algorithm is similar to that of SHA-1, for which sig-

nificant weaknesses have been discovered. Although no practical attack against SHA-2

has yet been found, there were concerns that, due to its similarity to SHA-1, an exploit

might be found in the coming years. Due to these security concerns, NIST decided

to hold a competition for a new SHA standard [92]. Designers were asked to submit

their designs, which would then analysed by the academic community and by NIST

themselves. The competition initially received 64 submissions; 51 of these progressed

to round 1 of the competition. Following a year of scrutiny from the academic commu-

nity, resulting in weaknesses being found in many submissions, 14 designs were chosen

to progress to round 2 of the competition, where a year long period was given to more

thoroughly analyse these designs for potential weaknesses and also to compare the

performance of the different designs on a wide range of platforms.

In the following sections, several of these designs will be discussed, along with a

method to compare their performance in a fair manner. A full comparison of all 14

round 2 designs can be found in [1, 4], which are publications resulting from the work

presented in this chapter.

5.7 Blue Midnight Wish

Blue Midnight Wish (BMW) [44] was designed by Gligoroski et al. and was knocked

out in round 2 of the SHA-3 competition. The algorithm has four variants of differ-

ing bitlengths, BMW224, BMW256, BMW384, and BMW512. Both BMW224 and

BMW256 are very similar in design; they take an input message block of size 512 bits

and operations in the compression function are performed on 32 bit blocks at a time.

BMW384 and BMW512 take an input message block of size 1024 bits and operations

are performed on 64 bit blocks. The BMW design is an iterative hash function that

uses a wide pipe design for the compression function. A wide pipe design has an inter-

nal state size larger than the input block size. In the case of BMW, the algorithm has

both a double-pipe stage, where the internal state is twice the size of the input, and a

quadruple-pipe, where, the internal state size is four times the size of the input. BMW

consists of three core functions, whose structure defines the wide pipe design:

- f0 : {0, 1}2m → {0, 1}m

- f1 : {0, 1}3m → {0, 1}m

97

5.7 Blue Midnight Wish

- f2 : {0, 1}3m → {0, 1}m

where m is the number of bits in the message block M (i) and the double pipe value

H(i−1). Each of M (i), H(i), Q
(i)
a , and Q

(i)
b are represented as sixteen 32 or 64 bit

blocks depending on which variant of the hash function is being used. All additions

and subtractions in the design are performed modulo 232 for BMW224 and BMW256

and modulo 264 for BMW384 and BMW512. An illustration of the algorithm is shown

in Figure 5.3; the design follows the same generic structure as was discussed in Section

5.2.

fc

f0 f1 f2

Q
a
R
eg

Q
b
R
eg

H
R
eg final hashIV

M (i)

m

m

mmm

m

CONSTfinal

Figure 5.3: BMW hash function.

The three functions f0, f1, and f2 are constructed as follows:

- f0 takesM
(i) andH(i−1) as its inputs and produces the first half of the quadrupled-

pipe value Q
(i)
a . f0 consists of 80 additions/subtractions. The function also con-

sists of many XORs, bitwise shifts, and rotations.

- f1 takes M (i), H(i−1), and Q
(i)
a and produces the second half of the quadrupled-

pipe value Q
(i)
b . The quadrupled-pipe is then Q(i) = (Q

(i)
a , Q

(i)
b). f1 is the most

complex of the functions performed by BMW. It consists of two sub functions

ExpandRounds1 and ExpandRounds2 . Together these functions must be per-

formed a total of sixteen times. The specification recommends that ExpandRounds1

be performed twice and ExpandRounds2 be performed fourteen times. This is

due to the fact that ExpandRounds1 is a much more complex function than

ExpandRounds2 .

98

5.8 Hamsi

- The final function f2 takes M (i), Q
(i)
a , and Q

(i)
b as inputs and produces the new

double-pipe value H(i). f2 consists of XOR, bitwise shift, rotation, and modular

addition operations.

The two functions ExpandRounds1 and ExpandRounds2 allow for modification of the

security of the hash function. To increase security, the number of times ExpandRounds1

is performed can be increased. Both ExpandRounds1 and ExpandRounds2 contain six-

teen modular addition operations but ExpandRounds1 contains much more bitwise shift

and rotate operations than ExpandRounds2 . Both functions use an AddElement oper-

ation that uses modular additions, subtractions, and rotations to combine a block of

the message and of the double-pipe with a predefined set of constants.

A pipelined design was chosen for implementation due to the large amount of modu-

lar addition/subtraction operations that need to be performed. A fully unrolled design

was tested but its critical path was too long to be efficiently routed on the FPGA.

Each of the functions f0, f1, and f2 are separated by a pipeline register. As as a result,

one operation of the compression function takes three clock cycles. A diagram of the

pipelined design is shown in Figure 5.3.

5.8 Hamsi

Hamsi was designed by Özgül Küçük and was also eliminated in the second round of

the SHA-3 competition; its specification is given in [101]. Hamsi allows for message

digest sizes of 224, 256, 384, and 512 bits. Hamsi224 and Hamsi256 are very similar

in construction, as are Hamsi384 and Hamsi512, differing only in initialisation values

and the final truncation. The message input size and state size is 32 and 512 bits

for Hamsi224/Hamsi256 and is 64 and 1024 for Hamsi384/Hamsi512 respectively. The

design is based on a concatenate-permute-truncate construction and consists of four

main operations:

- Message Expansion: The input message is expanded using linear codes, which

can be implemented as a set of lookup tables. For Hamsi224/Hamsi256 the 32

bit input message is expanded to 256 bits, for Hamsi384 and Hamsi512 the 64 bit

input message is expanded to 512 bits.

- Concatenation: The expanded message is concatenated with an initial value or

the output from the previous stage of the hash function. This forms the full state

of Hamsi which is either 512 or 1024 bits in length depending on the variant used.

99

5.9 CubeHash

- Non linear permutation P : The non linear permutation P is made up of three

sub operations. The first operation XORs the state with a table of predefined

constants and also a counter. The second operation is the application of one

of Serpent’s S-boxes [3]. Each S-box operates on 4 bits of the state; therefore,

128 S-boxes for Hamsi224/Hamsi256 (or 256 for Hamsi384/Hamsi512) can be

implemented in parallel. The final operation in P is a diffusion operation L. This

operation consists of several bitwise shifts and XORs. For Hamsi224/Hamsi256

P is executed three times during normal hashing of a message and six times when

it is the last message block. There are also a change in the round constants used

when hashing the last block of a message. For Hamsi384/Hamsi512 P is executed

six times during normal hashing and twelve times for the final message block.

- Truncation: The truncation stage reduces the Hamsi state down to the size of the

input message. In the case of Hamsi224 and Hamsi384 the state must be further

truncated to achieve message digest lengths of 224 and 384 bits, this is only done

after the last message block has been processed.

A fully parallel design was used for implementation, as shown in Figure 5.4; where

m = 32, n = 256 and, s = 512 for Hamsi224/Hamsi256; and m = 64, n = 512 and,

s = 1024 for Hamsi384/Hamsi512. The non-linear permutation P was unrolled three

times. Further unrolling resulted in a congested design that could not be routed onto

the FPGA. Therefore, it takes one clock cycle for a normal message block to be hashed

and two clock cycles for the final message block. The Serpent S-boxes were implemented

using distributed ROM

5.9 CubeHash

The CubeHash algorithm, designed by Bernstein [9], is defined by three parameters h, r,

and b where h ∈ {8, 16, 24, ..., 512}, r ∈ {1, 2, 3, ...}, and b ∈ {1, 2, 3, ..., 128}. A specific

version of CubeHash is then defined as CubeHashr/b−h. 10r rounds are performed to

initialise the state, the first b byte block of data to be hashed is then XORed into the

first b bytes of the state and r rounds of the compression function are performed. The

CubeHash version used in this implementation, is CubeHash16/32 − 512. CubeHash

was eliminated in round 2 of the SHA-3 competition.

A diagram of the CubeHash compression function is shown in Figure 5.5. The

compression function takes two 512 bit inputs A and B which are each half of the

1024 bit state. The outputs A′ and B′ are fed back to the inputs if several rounds of

100

5.9 CubeHash

fclast block

P/Pf

final hashIV

M (i)
m

n

n

n

ss

T
ru
n
ca
ti
on

C
on

ca
te
n
at
io
n

M
sg

E
x
p
an

si
on

H
R
eg

Figure 5.4: Hamsi hash function.

compression are to be performed; this follows the same structure as shown in Figure

5.1. The compression function performs several operations; 2 × 16 additions modulo

232 (⊞); 2× 16 Boolean XORs (⊕); 2× 16 rotation operations, where each word in the

B datapath is rotated cyclically by a fixed number of bits; 4 × 8 swapping operations

where certain words in the datapath exchange positions. The finalisation round of

CubeHash is performed by iterating the compression function 160 times.

512

512512

512

swap

swap

swap

swaprot7 rot11

A

B

A′

B′

fc

Figure 5.5: CubeHash compression function.

The algorithm was implemented such that one iteration of the compression function

takes 1 clock cycle. For CubeHash16/32−512, 16 iterations of the compression function

are required to process each message block. An unrolled design was tested; however,

no improvement in performance was achieved. Upon reaching a loop unrolled design of

length 4 (i.e., 4 concatenated compression functions), the design was no longer routable

101

5.10 Fair Comparison Methodology

on the FPGA as the design was too congested.

5.10 Fair Comparison Methodology

When processing data with a hash function, the data must be padded so that it can

be fragmented into blocks of equal size. The size of each of the fragmented blocks is

determined by the input message size required by the hash function. There are many

different methods used for the padding of input data. The padding schemes used by the

hash functions described in the previous sections are given in Table 5.1. For comparison

purposes, details of the Keccak hash function [10] are also given, as Keccak was selected

as the winning design of the SHA-3 competition.

Design Padding Scheme

SHA224/256 1, 0’s until congruent (448 mod 512), 64-bit message length
SHA384/512 1, 0’s until congruent (896 mod 1024), 128-bit message length
BMW224/256 1, 0’s until congruent (448 mod 512), 64-bit message length
BMW384/512 1, 0’s until congruent (960 mod 1024), 64-bit message length
Cubehash 1, 0’s until a multiple of 256 (256 = 8 ∗ b, b = 32)

Hamsi224/256 1, 0’s until a multiple of 32, 64-bit message length
Hamsi384/512 1, 0’s until a multiple of 64, 64-bit message length
Keccak-224 1, 0’s until a multiple of 8, append 8-bit rep. of 28, append 8-bit rep. of 1152/8, 1, 0’s until a multiple of 1152
Keccak-256 1, 0’s until a multiple of 8, append 8-bit rep. of 32, append 8-bit rep. of 1088/8, 1, 0’s until a multiple of 1088
Keccak-384 1, 0’s until a multiple of 8, append 8-bit rep. of 48, append 8-bit rep. of 832/8, 1, 0’s until a multiple of 832
Keccak-512 1, 0’s until a multiple of 8, append 8-bit rep. of 64, append 8-bit rep. of 576/8, 1, 0’s until a multiple of 576

Table 5.1: Padding schemes.

Due to the different padding schemes and input block sizes used by the submissions

to the SHA-3 competition, it was decided that a fair comparison of the designs, in

hardware, should include the padding operation and a standard width I/O data bus.

The rationale for this decision is based on the fact that the different input block sizes for

the hash functions have different impacts on performance. Some of the hash functions

require input block sizes up to 1024 bits in length; a data bus of this size is not common

practice in most systems. Therefore, comparing only the compression functions does

not give a true indication of the relative performance of the designs, as it does not

take into account the extra latency introduced by padding and I/O delays. In order to

achieve a fair comparison, a generic wrapper for the hash functions was designed, that

incorporates a padding unit and a fixed size data bus.

5.10.1 Wrapper Overview

Figure 5.6 shows a block diagram of the wrapper architecture, and its interface with

both the hash function and the outside world. The design consists of an input shift reg-

102

5.10 Fair Comparison Methodology

ister with associated padding circuitry that appends the padding data to the incoming

message. The input data can be set to any size w, but for a representation of a real

world communications system it is set to 32 bits, a standard word size. The input shift

register reads and stores the incoming message w bits at a time. The value m is the

input message size of the hash function under test. Once the input shift register has

stored m bits of message data, it can be passed to the hash function. A shift register is

also present at the output which stores the output message digest of size d, while the

output bus reads it out w bits at a time. The control circuitry synchronises the shift

register operation, padding, and all communication signals.

controller

input
shift

register

output
shift

register

padding unit

hash block
ww

2
3

m d

sel in

ctr en

ctr cl
dp in

lb in

ack in

sel out

dp out

lb out

ack out

d in d out

lb
h
in

d
p
h
in

ac
k
h
in

d
p
h
ou

t

ac
k
h
ou

t

mes in
hash out

Figure 5.6: Wrapper interface.

5.10.2 Communications Protocol

In order to communicate with the different hash designs, a generic communications

protocol between the wrapper and the external world, and between the wrapper and

the hash function, had to be specified. Table 5.2 defines these communication signals,

which correspond to the signals shown in Figure 5.6. The approach taken is similar to

that suggested by Gaj [37]. It differs, however, in the fact that a user wishing to hash

a message does not need to do any pre-processing to their plaintext before sending the

message, such as adding message length data, but only needs to set an end of message

signal high, in this case defined as a last block (lb in) signal either simultaneously with

the last block of the message or at any time after transmission of the last message

block.

The dp in signal is used to indicate that there is valid data present on the input

103

5.10 Fair Comparison Methodology

bus d in. Once the current w bit message block has been read in, the ack in signal is

set high to indicate that the next message block can be placed on the input bus. A

similar structure is present on the output side of the wrapper, where the d out data

bus holds the next unread w bit block of the message digest. Valid data is present on

d out while the dp out signal is set high. The output data is updated when a return

acknowledge (ack out) is received.

Signal IO Description

clk in Global clock

rst in Global reset, Active HIGH. Initialises the
circuitry to begin hashing a new message

d in in The input bus

dp in in Data present on the input bus

ack in out Data present on the input bus has been read

lb in in Data present on the input bus is the
last block of the message to be hashed

d out out The output bus

dp out out Data present on the output bus

ack out in Data present on the output bus has been read

lb out out Data present on the output bus is the last
block of the hashed message

Table 5.2: Wrapper interface communication signals.

Table 5.3 defines the communication signals between the hash function and the

wrapper. The function of each of these signals is similar to that of the ones presented

in Table 5.2. A lb out is not required in this case as the entire message digest is

transferred from the hash function to the output shift register in a single clock cycle.

5.10.3 Padding Protocol

Many similarities are present between the different padding schemes of the hash func-

tions, see Table 5.1. Therefore; a generic circuit structure can be developed to imple-

ment the different variants of Merkle-Damg̊ard strengthening [78] padding schemes, as

well as padding types of all-zeros or one-and-trailing-zeros.

Figure 5.7 shows the block diagram of the selection process for some of the different

padding schemes. Data is fed in on the d in bus, w bits at a time and saved in a

register. The data in the register is shifted w bits every subsequent input until the

register is full. When a total of m bits have been read in, the data can be transferred

to the hash function. If the message ends prior to filling of the register, the relevant

104

5.11 Implementation Results

Signal IO Description

clk in Global clock

rst in Global reset Active HIGH

mes in in Data-in bus

dp h in in Valid data on Data-in bus
Set when buffer-in shift-register is full

ack h in out Data present on Data-in bus has been read

lb h in in Last block is present on Data-in bus
Inclusive of padding where required

hash out out Data-out bus

ack h out in Data present on Data-out bus has been read.

dp h out out Message digest is present on Data-out bus

Table 5.3: Hash interface communication signals.

padding scheme is selected via multiplexer.

000

001

010

011

100

101

110

111

(d out ≫ w) ‖ (d in)

(d out ≫ w) ‖ (100 . . . 00)

(d out ≫ w) ‖ (000 . . . 00)

d in

100 . . . 00

000 . . . 00

100 . . . 00

000 . . . 00

100 . . . 00

000 . . . 00

mm

m

m

m

m

m

m− c

m− c

w

w

w

counter

‖
‖

ctr en ctr cl

c

sel in

3

D Q d out

clk

Figure 5.7: Padding block.

5.11 Implementation Results

Table 5.4 gives the clock cycle count for the 3 hash function designs and their variants.

As can be seen from the table, the time required to load the input message block is

different for each design. This is due to the difference in input block size and also

the different padding schemes. Finalisation rounds are also defined differently for each

hash function; CubeHash in particular has a very thorough finalisation process. These

105

5.11 Implementation Results

differences, however, have less of an impact on the overall calculation time as the

message size increases. Two different results were therefore used to compare the designs.

A short message is defined as the time required to process the padding, a message block,

and perform the finalisation. A long message is defined as just the time to process the

message block. The use of these two metrics can be justified by examining the different

uses of hash functions in the TLS protocol, such as those discussed in Section 5.4. Many

of these functions require a hash operation to be applied to messages of arbitrary length,

in this case the long message results are most applicable. However, by examining the

construction of the HMAC function, which is used throughout the TLS key derivation

process, it can be seen that the outer hashing operation from Equation 5.1 is always of

fixed length. In the case of SHA256, this corresponds to applying the hash operation

to 2 message blocks; therefore, a hash function that performs poorly for short messages

will have a larger impact on this specific operation, than hash functions that perform

well.

It should be noted that in the case of BMW, the time required to hash a message

is actually shorter than the time required to load a message. This results in the hash

function remaining idle for a period of time as the message block is loaded. Calculating

the throughput for this case must therefore take into consideration this delay.

Hash 32-bit load Extra Padding Message Round Long Msg Final Final Short Msg
Design #Cycles Padding #Cycles Rounds #Cycles #Cycles Rounds #Cycles #Cycles

SHA224/256 16 0 0 64 1 65 0 0 65
SHA384/512 32 0 0 80 1 81 0 0 81

BMW224/256 16 0 0 1 4 4 1 3 7
BMW384/512 32 0 0 1 4 4 1 3 7

Cubehash 8 0 0 16 17 17 160 161 178

Hamsi224/256 1 3 1 3 2 6 6 24 31
Hamsi384/512 2 3 1 6 2 12 12 48 61

Keccak-224 36 0 0 24 1 25 0 0 25
Keccak-256 34 0 0 24 1 25 0 0 25
Keccak-384 26 0 0 24 1 25 0 0 25
Keccak-512 18 0 0 24 1 25 0 0 25

Table 5.4: Hash function clock cycle count.

The performance of the different designs are compared in terms of area consumption

and throughput. The throughput is given by

Throughput =
Bits in a message block×Maximum clock frequency

Clock cycles per message block
(5.15)

The throughput per area (TP/Area) is another metric used in the design compar-

isons. It indicates how efficiently a design makes use of the logic resources that it

106

5.12 Discussion

consumes. A higher TP/Area is desirable as it shows that the design is processing

more bits per slice. The performance of each of the designs is shown in Table 5.5.

All designs are implemented such that they only occupy slice and routing logic on the

FPGA. Memory components are implemented as distributed RAM and the use of ven-

dor specific FPGA resources such as DSP blocks were avoided. All results shown in

Table 5.5 are post place and route for a Xilinx XC5VLX330T-2-ff1173 FPGA. The -w

designation, defines the results inclusive of the wrapper, while -nw gives the hash func-

tion as a stand alone entity. The TP-s and TP-l results are for long and short message

clock cycle counts, as shown in Table 5.4, and are inclusive of the latency introduced

by the wrapper.

Hash Area-w Max. Freq-w Area-nw Max. Freq-nw TP-l TP-l/Area TP-s TP-s/Area
Design (slices) (MHz) (slices) (MHz) (Mbit/s) ((Mbit/s)/slice) (Mbit/s) ((Mbit/s)/slice)

SHA256 1,019 125.063 656 125.125 985 0.966 985 0.966
SHA512 1,771 100.04 1,213 110.096 1264 0.713 1264 0.713

BMW-256 5,584 14.306 4,997 14.016 457 0.081 457 0.081
BMW-512 9,902 8.985 9,810 10.004 287 0.028 287 0.028

Cubehash 1,025 166.667 695 166.833 2509 2.447 239 0.233

Hamsi-256 1,664 67.195 1,518 72.411 358 0.215 69 0.041
Hamsi-512 7,364 14.931 6,229 16.51 79 0.01 15 0.002

Keccak-224 1,971 195.733 1,117 189 5915 3 5915 3
Keccak-256 1,971 195.733 1,117 189 6263 3.17 6263 3.17
Keccak-384 1,971 195.733 1,117 189 8190 4.15 8190 4.15
Keccak-512 1,971 195.733 1,117 189 8518 4.32 8518 4.32

Table 5.5: Hash function implementation results.

A clear difference can be seen between the performance of the CubeHash design

for short messages versus long messages, with a significant increase in throughput and

throughput per area for the long message results. This is due to the number of finalisa-

tion rounds required by the CubeHash specification. The 160 finalisation rounds of the

CubeHash design account for the majority of the processing time for short messages. In

contrast, the SHA256 design does not require a modified finalisation process; therefore,

no change is present in the performance for short versus long messages. The Keccak

design has a significantly higher throughput per area than the other designs, which was

a contributing factor in Keccak winning the SHA-3 competition.

5.12 Discussion

In this chapter, a thorough analysis of hash function designs has been presented. First,

the application of hash functions in the TLS protocol was discussed. A generic hash

function wrapper was then introduced that allows for the fair comparison of different

hash function designs by including the latency of data I/O and the application of

107

5.12 Discussion

padding in the results. Several hash function designs were then analysed for area and

performance using the wrapper.

In the previous chapters, various cryptographic functions have been discussed. So

far all have been deterministic functions that can be analysed mathematically to ensure

that they provide a specific level of security. All of these functions, however, also rely

on secret keys and nonces that must be generated at random in some secure manner.

The next chapter deals with this problem by discussing the design of TRNGs.

108

Chapter 6

True Random Number

Generators

6.1 Introduction

A Random Number Generator (RNG) is required in most cryptographic systems to

provide an unpredictable source of data. This data source is generally used to generate

initialisation vectors or cryptographic keys. It is imperative that the output of the

RNG is unpredictable, as all subsequent operations are usually related, in some way,

to the initial random data generated by the RNG. A high quality RNG will output an

unbiased stream of bits that possess good statistical properties.

RNGs fall into two main categories: Pseudorandom Number Generators (PRNGs)

and True Random Number Generators (TRNGs). A PRNG is a mathematically defined

algorithm that outputs a stream of bits that have excellent statistical properties. As a

PRNG is deterministic, it does not generate any entropy by itself and requires a random

seed as an input. The output bitstream will then only contain as much entropy as was

present in the seed. It is possible that the entropy per bit can be increased, if the

PRNG compresses the seed in some way, however, this would reduce the throughput

of the design.

In contrast, a TRNG is non-deterministic and extracts entropy from some unpre-

dictable physical source; with the goal being to extract as much entropy as possible.

The TRNG must, in some way, convert this physical source of randomness into a stream

of 1’s and 0’s. A well designed TRNG will produce a stream of bits that have good

statistical properties, similar to that of a PRNG, however, TRNGs generally have a

much lower bit rate than PRNGs. Therefore, if a high bitrate is required, a PRNG is

109

6.2 Implementation of TRNGs

used to generate the random bitstream and the TRNG is used to refresh the seed at

regular intervals.

In this chapter, several different TRNGs will be compared in order to analyse their

performance on an FPGA platform. Post-processing techniques and testing of the

statistical properties of TRNGs will also be discussed. These specific designs were

chosen as they are, at the time of writing, the most recent designs published and have

displayed the ability to produce a raw stream of bits with good statistical properties,

in previous implementations. A detailed list of TRNG designs, can also be found in

Chapter 4 of [21].

6.2 Implementation of TRNGs

TRNGs are one of the most critical components of a cryptographic system to implement,

as they are used to produce secret keys and initialisation vectors for other cryptographic

algorithms. A TRNG should be able to provide a high entropy source of random data,

at an acceptable bitrate. For this to be possible, the circuit must be able to sample

some unpredictable physical source, at often enough intervals, without there being any

correlation between the resulting bits. Sources of entropy on an FPGA are usually in

the form of phase or frequency jitter in ring oscillators, or some type of metastable

circuit. The underlying physical mechanisms that provide these sources of randomness

are generally attributed to the existence of thermal and shot noise in semiconductor

devices [21, Section 4.2]. Semiconductor devices are designed to minimise these sources

of noise, which therefore makes the implementation of TRNGs using standard logic

components a difficult task.

To provide security against an attacker, a TRNG should be implemented within the

FPGA, as opposed to being an external component. If the TRNG, which is effectively

a noise source, is implemented off chip, an attacker may be able to inject some bias

into the noise source; thus, causing the TRNG to fail as a random source. An attacker

would also be able to intercept all data that is transmitted between the external RNG

and the FPGA, completely compromising the secrecy of the data. When implementing

a TRNG inside an FPGA, only digital components are available; this poses a more

difficult design challenge when compared to ASICs. Consequently, a large amount of

research has been conducted in this area [66, 112, 116, 119, 120].

Although it’s preferable that the TRNG produces a stream of bits with good sta-

tistical properties, this is not usually the case. FPGA vendors try to minimise the

amount of unpredictable behaviour in their ICs; therefore, designing an unpredictable

110

6.2 Implementation of TRNGs

noise source can be difficult. For this reason, the bitstream generated by most TRNGs

contains a certain amount of bias. In order to correct this, some form of post-processing

can be applied to the bitstream in order to improve its statistical properties. A common

post-processing technique is to use a cryptographic hash function [36, pages 161–182]

or PRNG to process the output of the TRNG. A hash function provides a very robust

method of post-processing as it has strong cryptographic properties that prevent an

adversary from predicting output sequences, see Section 5.3 and [6]. It is also advan-

tageous to monitor the statistical properties of the raw stream of bits that the TRNG

produces (i.e., before any post-processing is applied), as TRNGs can at times fail to

produce sufficiently random data and it is necessary to be able to detect these events

in order to maintain the security of the overall system.

6.2.1 Analysing the Quality of TRNG Output Data

When designing a TRNG, the quality of the output bitstream must be analysed to

ensure that the TRNG is working correctly and that the data it produces is sufficiently

random. In order to test the quality of a bitstream, several offline test suites have

been developed [62, 86, 108, 113]. These test suites can be used, during the design

phase, to process a file of binary data taken from the TRNG and will return a pass/fail

result as to whether the data has good statistical properties and appears random. This

process of testing the statistical properties of the TRNG allows for any weaknesses in

the underlying architecture to be found, such as any bias in the output bitstream.

One of the most thorough test suites is the diehard battery of statistical tests [74].

It cannot guarantee that a TRNG is producing truly random random data, however,

it does indicate what quality of output the circuit is producing. There are 16 diehard

tests in total:

1. Birthday spacings test: Based on the birthday paradox, this test uses the input

data as birthdays in a year of 224 days. The spacings between birthdays form a list

and the occurrence of each value in the list should follow a certain distribution.

2. Overlapping permutations test: The ordering of each set of 5 consecutive 32 bit

numbers from input data are tested. Each set can be in one of 120 orders, which

are then counted and should follow a known distribution.

3. Binary rank test for 31 × 31 matrices: The leftmost bits of random integers in

the test data are used to generate 31× 31 matrices over the field F2. The rank of

111

6.2 Implementation of TRNGs

each of the generated matrices is calculated and a chi-squared test is applied to

the set of results.

4. Binary rank test for 32 × 32 matrices: Same as test 3, except 32 × 32 matrices

are used.

5. Binary rank test for 6 × 8 matrices: Same as test 3, except 6 × 8 matrices are

used.

6. Bitstream test on 20 bit words: The input file is divided into overlapping 20 bit

words (b0, b1, b2, . . . b20, b1, b2, b3, . . . b21 etc..). Each word can therefore be one of

220 possible values. The number of missing possibilities are counted and should

follow a certain distribution.

7. In a similar method to test 6, the OPSO, OQSO, and DNA tests convert the

input data into words and count the number of missing words in the generated

sequence. Each test uses a different word length or alphabet.

- Overlapping-Pairs-Sparse-Occupancy (OPSO)

- Overlapping-Quadruples-Sparse-Occupancy (OQSO)

- DNA test

8. Count the 1’s in a stream of bytes: The input test data is broken into a stream of 8

bit bytes. The number of 1’s in each byte are counted and each count converted to

a letter; resulting in a sequence of letters based on the input data. This sequence

is broken up into overlapping five letter words. The frequency of each possible

five letter word is counted and should follow a known distribution.

9. Count the 1’s in specific bytes: Follows the same principle as test 8, however, only

one randomly chosen byte in every four of the input bytes is used to generate a

letter.

10. Parking lot test: Attempts are made to place circles of radius 1 in a square of

side 100 such that they do not overlap. The test data provides the coordinates of

each attempt. The number of attempts versus the number of successfully placed

circles should follow a known distribution.

11. Minimum distance test: The test data is used to generate the coordinates of 8000

points in a square of side 10000. The square of the minimum distance between

points should follow a known distribution.

112

6.3 Vasyltsov et al.

12. 3D spheres test: Each 32 bit value from the test data is converted to floating

point values on the range [0, 1000). Every three values form a triplet (xn, yn, zn)

which are taken as points in a cube of edge 1000. The radius of each sphere is

taken to be the minimum distance such that it does not overlap with any other

sphere in the cube. The resulting radii should follow a known distribution.

13. Squeeze test: Each 32 bit value from the test data is converted to floating point

values on the range [0, 1). These floating point values are multiplied by k = 231

and the number of multiplications required to reduce k to 1 are counted. A

chi-squared test is then applied to the result.

14. Overlapping sums test: Each 32 bit value from the test data is converted to

floating point values on the range [0, 1) and denoted X0,X1,X2, . . . Xn. The

overlapping sums S0 = X0 +X1 + . . . X100, S1 = X1 +X2 + . . . X101, . . ., Sn =

Xn−100 + Xn−99 + . . . Xn are calculated and a chi-squared test applied to the

result.

15. Runs test: The sequence of test data is converted to floating point values on the

range [0, 1). The ascending and descending runs in the sequence are counted and

should follow a known distribution.

16. Craps test: 200,000 games of craps are played, where each 32 bit value of the

test data is used as the result of the throw of a die. The number of wins and

throws necessary to end each game are counted. A chi-squared test is applied to

the result.

For a full description of how these tests are implemented, see [74].

6.3 Vasyltsov et al.

In [122], the authors introduced a new form of ring oscillator that can be forced into a

metastable state. The authors refer to this circuit, shown in Figure 6.1, as a metastable

ring oscillator. The circuit can be constructed on an FPGA as it consists of digital

components only. The design consists of an odd number of inverters, connected in series,

through a set of multiplexers. The multiplexers are used to change the configuration

of the circuit and are controlled by the clock control signal. The multiplexers can

configure the circuit so that the inverters are isolated from each other, or are connected

in series; effectively making the circuit a ring oscillator.

113

6.3 Vasyltsov et al.

. . .

clock control delay

D Q

Q

Figure 6.1: Vasyltsov et al. design.

The design works by disconnecting all the inverters from each other; thus, turn-

ing them into a series of individual noise sources. At this point the inverters are in a

metastable state. The entropy in the circuit is obtained from the thermal noise that

affects the initial oscillations of the inverters, when they are reconnected in series. Fig-

ure 6.2 shows how the circuit behaves just as the inverters are connected back in series.

Before the clock control pulse, the circuit is in a metastable state. When the clock

control signal transitions to a positive voltage level, the multiplexers connect all of the

inverters back in series. At this point the circuit is effectively a ring oscillator, however,

due to the random starting conditions of the circuit, the initial waveform is chaotic.

This initial chaotic behaviour is what the authors say contains the entropy. Figure 6.3

shows the operation of the circuit as it transitions to and from the metastable state,

over three sampling periods. The random bit is sampled a few hundred nanoseconds

after the circuit is brought out of the metastable state. Sampling cannot take place

before this, as the output voltage may not achieve a suitable level to be sampled by a

flip-flop. This can be seen in Figure 6.2 where the TRNG output voltage takes approx-

imately 200 ns, after the control signal transitions from logic 0 to logic 1, to reach a

stable level.

The design was implemented on a Xilinx Virtex 5 XCVLX110T FPGA and occupied

10 slice LUTs. Table 6.1 shows the results of the diehard tests when applied to random

data taken from the circuit. Four different sampling frequencies are given in order

to analyse the effect of holding the circuit in a reset state for longer periods of time.

A longer time between subsequent samples should result in less correlation between

samples. The authors state that they achieved a throughput of 2.5 Megabits per second

(Mbit/s) in their FPGA implementation. However, it can be seen from the results

that the circuit did not operate effectively at 2.5 Mbit/s and reducing the sampling

rate below 1 Mbit/s was required to improved the randomness properties of the output

bitstream.

114

6.3 Vasyltsov et al.

TRNG output
control

Time (ns)
100 200 300 400 500 600

V
ol
ta
ge

(V
)

1

1.5

2

2.5

sample

Figure 6.2: Output of Vasyltsov et al. design as clock control pulse is applied.1

TRNG output
control

Time (ns)
1000 2000 3000 4000 5000 6000 7000 8000

V
ol
ta
ge

(V
)

1

1.5

2

2.5

Figure 6.3: Operation of Vasyltsov et al. design over three sampling periods.2

1The voltage of the control signal has been scaled for clarity.
2The voltage of the control signal has been scaled for clarity.

115

6.4 Varchola and Drutarovský

Speed (Mbit/s)
Diehard Test No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.4 P P P P P F F F F P P P F P P P
0.625 P P P P P F F F P P P P P P P P
1 P P P P F F F F F F P P F P P F
2.5 F F P P F F F F F F F F F F P F

Table 6.1: Diehard test results for Vasyltsov et al. design, implemented at several
sampling speeds.

6.4 Varchola and Drutarovský

A very low area TRNG design was presented by Varchola and Drutarovský in [121]. The

circuit, referred to as a Transition Effect Ring Oscillator (TERO), can be implemented

in a single CLB of a Xilinx Spartan 3E FPGA, as it requires only 9 logic functions. The

design, shown in Figure 6.4, was implemented on a Xilinx Virtex 5 FPGA. Although

the CLB structure of the Virtex 5 differs from that of the Spartan 3E, the circuit can

still be implemented in a single CLB. In order to implement the XOR gates in the

circuit, the authors suggest that the dedicated XOR gates, present in the carry chain

of a CLB, should be used. The authors state that this can result in a more stable

operation of the circuit. To do this the design must be written using Xilinx library

primitives, and the routing specified by the designer.

ctrl
clk

clk

rst

clear

clear

Q

Q

T

T1

1

output

output

TERO loop

Figure 6.4: Varchola and Drutarovský design.

The design works on the principle that the TERO loop portion of the circuit, shown

in Figure 6.4, takes an unpredictable number of oscillations to return to a steady state

116

6.4 Varchola and Drutarovský

condition after it is disturbed by toggling the inputs of the two XOR gates. This

operation can be seen in Figure 6.5, where, at each edge of the ctrl signal, the TERO

output waveform is excited into a metastable state. Two control pulses are shown in

Figure 6.5, and it can clearly be seen that after the rising edge of each control pulse, the

TERO oscillates for a different length of time (∆1 and ∆2). The number of oscillations

is then measured using a T-type flip-flop; which is effectively a 1 bit counter. The

period of the control signal is 4000 ns in length, and 1 random bit is sampled 200 ns

before the falling edge of the control signal, shown as s1 and s2 in Figure 6.5. Therefore,

a throughput of 250 Kilobits per second (kbit/s) can be achieved. The reset signal is

applied to the circuit as the random bit is being sampled. The AND gates in the circuit

allow the TERO loop to be returned to the same initial conditions before each control

signal edge. This is done by setting the reset signal high.

TRNG output
control

∆1 ∆2

s1 s2

Time (ns)

0 1000 2000 3000 4000 5000 6000 7000

V
ol
ta
ge

(V
)

−8

−6

−4

−2

0

2

4

6

Figure 6.5: TERO output waveform.1

Table 6.2 gives the results of the diehard tests when applied to random data pro-

duced by the circuit. Three sampling frequencies are given, where, a reduction in

sampling frequency is a result of holding the circuit in a reset state for a longer period

1The control signal has been shifted by -6 volts.

117

6.5 Dichtl and Golić

of time between each sample. As the output oscillations resolve to a stable level after

several hundred nanoseconds, increasing the time between the circuit being activated

and taking the sample would not affect the randomness of the data produced. However,

holding the circuit in a reset state for a longer time between samples may reduce the

chance of subsequent samples being correlated. However, from the obtained results it

does not appear that increasing the time that the circuit is held in reset has any impact

on the randomness properties of the output data as each set of data performs similarly

in the diehard tests.

Speed (kbit/s)
Diehard Test No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

185 P P P P F F F F F P F P F P P P
240 P P P P P F F F F F P P P P P P
250 P P P P F F F F F F P P F P P F

Table 6.2: Diehard test results for Varchola and Drutarovský design, implemented at
several sampling speeds.

6.5 Dichtl and Golić

The FIGARO random number generator is based on Galois and Fibonacci ring oscil-

lators and was introduced by Golić in [46]. A thorough analysis was carried out by

Dichtl and Golić in [28]. A ring oscillator is an odd number of inverters connected

together in series where the output of the final inverter is connected to the input of the

first; thus, creating a combinatorial loop. The circuit will then oscillate with a period

defined by the sum of the delays of the inverters and wiring delays. The output of

the ring oscillator will contain some phase jitter, which has been used in some TRNG

designs [116], however, a large number of ring oscillators are required to provide enough

entropy. Very tight timing constraints are also required in order to ensure that only

the phase jitter is sampled. Galois and Fibonacci ring oscillators are a combination

of Linear Feedback Shift Registers (LFSRs) and ring oscillators. Some feedback paths

and XOR logic are introduced into the circuit as shown in Figures 6.6 and 6.7. As a

result, the circuit no longer outputs a waveform of defined period.

The circuits are believed to combine the true randomness properties of ring os-

cillators with the pseudorandomness properties of LFSRs. A useful way to represent

the feedback paths of a Fibonacci Ring Oscillator (FIRO) or a Galois Ring Oscilla-

tor (GARO) is with a feedback polynomial, such as f(x) =
∑r

i=0 fix
i, f0 = fr = 1,

118

6.5 Dichtl and Golić

f1f2fr fr−1

Output

Figure 6.6: Galois ring oscillator.

f1 f2 frfr−1

Output

Figure 6.7: Fibonacci ring oscillator.

where each fi = 1 define that a feedback path is present at that point. In order to

ensure that the outputs of the circuits cannot get stuck in a fixed state, the feedback

polynomials should satisfy the following properties. The feedback polynomial for both

circuits should have the form f(x) = (1 + x)g(x), where g(x) is an irreducible polyno-

mial [70, page 82]. An additional property for the correct implementation of the the

FIRO is that g(1) = 1 and for a GARO the number of inverters should be odd (i.e.,

r should be odd). The output of a FIRO or a GARO should be a high entropy white

noise signal. The output can be sampled by a D-type flip flop.

In order to reduce power consumption and also to remove the possibility of any

statistical dependence between successively sampled bits, the GARO or FIRO can be

operated in restart mode. This is done by replacing one of the inverters with an AND

gate. The output of the AND gate can then be forced to zero, in order to shut down

the circuit. In restart mode the circuit is run for a short period of time after a restart.

After enough time has passed the output of the circuit is sampled, the circuit is then

shut down until another random bit is required.

In order to improve the randomness of the TRNG, the outputs of a FIRO and a

GARO can be combined with an XOR gate. This type of design is known as a FIGARO.

Combining the outputs of the circuits should improve the overall randomness of the

bitstream, as the sampling of an additional independent noise source should increase

the amount of entropy that is being sampled. This design is shown in Figure 6.8.

The circuit was implemented on a Xilinx Virtex 5 XCVLX110T FPGA and the

output analysed with an oscilloscope. Figure 6.9 shows how the output of a GARO

circuit behaves just after the circuit is started. The output voltage quickly assumes a

119

6.5 Dichtl and Golić

f1 f2 fr−1 fr

f1f2fr−1fr

rst

rst clear

QD

clk

Figure 6.8: FIGARO TRNG.

chaotic behaviour. This waveform was achieved by placing the output of the GARO

circuit in a slice as close to the output pin of the FPGA as possible. This minimises

the interference that would be present in the signal if it had to pass through a long

routing path, inside the FPGA. Internal capacitances would also have distorted the

output waveform. The arrow indicates the time at which the output is sampled by the

flip-flop. The output of the FIRO circuit operates in the same manner.

In Figure 6.10, the sampling of 8 consecutive bits from a FIGARO circuit can

be seen. The circuit is operating in restart mode and a single bit is sampled 160 ns

after every falling edge of the control signal. This gives the design a throughput of

6.25 Mbit/s, which is the highest of all designs presented in this work. The design used

a FIRO of length 29 and a GARO of length 31. The feedback polynomial of the FIRO

circuit is given by

1+x1+x2+x5+x6+x8+x9+x10+x13+x15+x18+x21+x24+x25+x28+x29, (6.1)

while, the GARO feedback polynomial used was

1+x1+x3+x4+x5+x6+x8+x9+x10+x13+x15+x16+x17+x20+x21+x23+x27+x31.

(6.2)

Table 6.3 shows the results of the diehard tests when applied to a random bitstream

of the output data of the FIGARO circuit. Sampling speeds of 6.25, 9, and 12.5 Mbit/s

were used to generate three sets of results. As can be seen from Table 6.3, increasing

the sampling frequencies beyond 6.25 Mbit/s has a significant impact on the statistical

properties of the output bitstream. This is most likely a result of the circuit not having

120

6.5 Dichtl and Golić

TRNG output
control

Time (ns)

0 200 400 600 800 1000

V
ol
ta
ge

(V
)

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

sample

Figure 6.9: Output of GARO circuit just after restart.

TRNG output
control

Time (ns)

0 200 400 600 800 1000 1200 1400

V
ol
ta
ge

(V
)

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 6.10: Eight sampling periods of the FIGARO circuit.

121

6.6 Comparing the Results

enough time in the active state to diverge from the reset state output voltage.

Speed (Mbit/s)
Diehard Test No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6.25 P P P P P P P F P P P P P P P P
9 P P P P P F F F F P P P F P P F

12.5 P P P P P F F F F P P P F P P P

Table 6.3: Diehard test results for Dichtl and Golić design, implemented at several
sampling speeds.

6.6 Comparing the Results

The designs discussed in the previous sections were all implemented on the same Virtex

5 XC5VLX110T FPGA and their performance and statistical properties analysed at

different sampling speeds. Table 6.4 shows the results for each of the TRNG designs

at their best performing sampling rate. A 14 MB stream of bits was taken from each

design and passed through the diehard battery of statistical tests [74].

Design
Speed Diehard Test No.

(Mbit/s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Vasyltsov et al. 0.4 P P P P P F F F P P P P P P P P
Varchola and Drutarovský 0.24 P P P P P F F F F F P P P P P P

Dichtl and Golić 6.25 P P P P P P P F P P P P P P P P

Table 6.4: Diehard test results.

The Varchola and Drutarovský design performed worst; failing five of the diehard

tests while also having a very low throughput of only 250 kbit/s. For this reason, it was

found to be unsuitable for use as the TRNG module that will be present in the final

coprocessor design. The design of Vasyltsov et al. passed all but three of the tests, and

with post-processing would likely provide a good source of random data. The design of

Dichtl and Golić, however, was clearly the best performing design; having the highest

throughput of the designs that were tested and only failing the count the 1’s in a stream

of bytes test. This is possibly due to the fact that the design relies much less on having

balanced routing paths, than the other two designs. The Dichtl and Golić design is

also the only one to incorporate an element of pseudorandomness in its output.

Portability is also as factor in choosing the correct design, as the designs of Vasyltsov

et al. and Varchola and Drutarovský required the circuit to be hand routed, while, the

design of Dichtl and Golić can be routed by the FPGA tools. For these reasons, the

122

6.7 TRNG Failure Detection

design of Dichtl and Golić was chosen to be used in the design of the coprocessor that

will be presented in Chapter 7.

6.7 TRNG Failure Detection

When designing a random number generator it’s possible to analyse the data produced

using a large battery of statistical tests; this may not be the case during the standard

operation of the TRNG. If the TRNG fails during operation, the entire system may

become vulnerable to attack. To prevent this, some statistical tests can be used for

on the fly evaluation of the random bitstream that is produced by the TRNG. If a

failure in the randomness is detected, an alarm can be set so that no more data from

the TRNG is used throughout the system. The reader is referred to [110] and [109] for

a more detailed explanation of on-the-fly testing of TRNGs for randomness.

The statistical tests implemented here were presented in [109] and operate on 20000

bits of data at a time. The designers used four of the statistical test from the FIPS140-

2 standard [86]. The tests take the output bitstream of the TRNG prior to the post-

processing stage, this is done as the post-processing would mask any drop in randomness

of the TRNG. The designers chose four tests that could be implemented efficiently on

an FPGA; implementing the entire battery of tests would consume too much area. The

four tests implemented are:

1. Frequency test (Monobit test): This test verifies that there is a uniform distribu-

tion of 1’s and 0’s. The number of 1’s in the 2 × 104 bitstream are counted and

should lie in the range [9726, 10274].

2. Poker test: For this test the 2× 104 bit stream is split into four non-overlapping

segments each of length 5 × 103 bits. The number of occurrences of each of the

16 possible 4 bit values are counted and stored. The number of occurrences of

each 4 bit value is denoted fi, where 0 ≤ i ≤ 15, and the following evaluated:

χ2
15 =

(
16

5000

)

×
(

15∑

i=0

f2
i

)

− 5000. (6.3)

The result follows a Chi-squared distribution and the test is passed if 2.16 ≤
χ2
15 ≤ 46.17.

3. Runs test: The number of runs (consecutive bits of all 1’s or all 0’s) are counted

and stored for run lengths of 1 to 6. For the test to pass the number of runs of

123

6.7 TRNG Failure Detection

each length should not exceed the intervals shown in Table 6.5.

i Required Interval

1 2315–2685
2 1114–1386
3 527–723
4 240–384
5 103–209
≥ 6 103–209

Table 6.5: Runs test interval requirements.

4. Long run test: This test verifies that there are no runs of length 26 or more in

the bitstream.

6.7.1 FPGA Implementation

The frequency test requires very little logic and can be implemented using a 15 bit

wide counter and some logic for comparing the results. As the TRNG generates each

random bit, it is tested and a counter incremented depending on its value. Once all

20000 bits have passed through the test, the final result held in the counter is checked

to see if it is in the correct range. Post map results from the Xilinx ISE toolchain show

that the test occupies 12 slices on a Virtex-5 FPGA.

The poker test is the most computationally intensive of the four tests as it re-

quires both multiplication and addition operations. The multiplication operation can

be implemented by using a DSP block in the FPGA; thus, reducing the slice logic re-

quirements of the test. Post-map results indicate that the test occupies 117 slices and

one DSP block on a Virtex-5 FPGA.

The runs test can be implemented by using a counter to store the number of runs

for each of the run lengths of 1 to 6. As a counter is needed for each run length and also

some comparison logic to evaluate a pass or fail result, the test consumes significantly

more area than the frequency or long run tests. The post map results show that the

test consumes 81 slices on a Virtex-5 FPGA.

The long run test consumes the least amount of area of the four tests. The test only

requires a 5 bit counter and some comparison logic to ensure that there are no runs of

length 26 or more in the random data. The test occupies 9 slices on a Virtex-5 FPGA.

If any of these tests fail during the operation of the TRNG, all previously generated

random data is discarded and the TRNG is restarted.

124

6.8 Post-processing of TRNGs

6.8 Post-processing of TRNGs

As a TRNG circuit produces an output based on unpredictable physical sources of noise

in the semiconductor fabric, a change in the operating conditions, such as temperature

fluctuations or the presence of an external noise source, can cause a drop in the entropy

that is present in the output of the TRNG. Post-processing of the bitstream can be

used to mask these imperfections and maintain an output that has good statistical

properties. Even when operating correctly, the TRNG may produce a bitstream that

contains some bias i.e., the TRNG has a tendency to produce more 1’s than 0’s, or 0’s

than 1’s. This bias can be removed by compressing the bitstream; therefore, increasing

the entropy per bit.

Post-processing is usually implemented by seeding a PRNG, such as an LFSR with

a long period, or any PRNG that is cryptographically secure [69]. A cryptographic hash

function can also be used to post-process the TRNG output and should have excellent

statistical properties. The downside to using a cryptographic hash function is that the

area consumption is significantly more than LFSR based designs, due to the increased

amount of logic required. However, this is a more robust method of post-processing

and was therefore used for the TRNG design presented in this thesis. The output of

the TRNG was passed through the CubeHash function that was described in Section

5.9. CubeHash was chosen as it was shown to have a low area consumption and a high

throughput for long messages. As the hash function, for the purpose of post-processing

the TRNG output, is required to operate on data blocks of 20000 bits, CubeHash

is a better choice than a SHA256 based design. Although both have a similar area

consumption, CubeHash has a higher throughput for long message lengths.

6.9 Secure Architecture Implementation Results

The overall design of the TRNG module is shown in Figure 6.11. The design includes

the FIGARO TRNG which, when enabled, produces a stream of bits at 6.25 Mbit/s.

This data is passed to the post-processing block through a Serial-in, parallel-out (SIPO)

shift register, denoted s reg. At the same time, the data is processed by the statistical

tests which produce a pass/fail result for every 20000 bits that are processed. The

controller block is responsible for managing the generation of random data and only

releasing that data when it has passed the statistical tests. On start-up there is an

initial latency in the output of data from this block. The statistical tests must wait

for 20000 bits to be generated by the TRNG before any of the post-processed random

125

6.10 Discussion

data can be released by the controller.

replacemen

controller

post-
processing

stats tests
pass/fail

s regTRNG
1 256

256

256

enable

data

request

TRNG fail

Figure 6.11: Complete TRNG design.

A breakdown of the area used by each part of the design is given in Table 6.6. It

can be seen from the results that the vast majority of area is taken up by the CubeHash

post-processing block. This is due to the fact that the internal state of the CubeHash

block is 1024 bits and the operations performed in the compression function require

more logic resources than the statistical tests, or FIGARO design. The FIGARO circuit

consumes very little area as it only consists of effectively two ring oscillators, an XOR

gate, and a flip-flop. The statistical tests can also be implemented very efficiently on

an FPGA. It should be noted that the poker test uses a DSP block to implement the

multiplication required by the test; all other tests use slice logic only. A DSP block is a

hardcoded resource in the FPGA and is therefore not included in the slice count. The

“complete design” result includes every component present in Figure 6.11.

Design Area (slices) slice LUTs slice Reg’s

complete design 734 2487 1337
stats tests 231 655 380
CubeHash 638 2325 1035

Table 6.6: TRNG implementation results.

6.10 Discussion

In this chapter, several TRNG designs were implemented on an FPGA and compared.

Although some of the designs performed well by passing most of the statistical tests, it

is clear that generating high quality random data from digital components alone is not

a trivial task. When implementing a TRNG based solely on digital components, the

resulting design requires a thorough statistical analysis, as the behaviour of the design

will vary across different implementation platforms.

The final design, presented in Section 6.9 is far more robust than a TRNG alone.

126

6.10 Discussion

The addition of statistical tests prevents against a complete failure of the TRNG, and

ensures that only correctly produced random data is forwarded on to the rest of the

system for use in cryptographic protocols. The application of post-processing also

improves the security of the design, as any statistical bias in the raw binary stream

from the TRNG will be removed.

In the previous chapters, many different cryptographic components have been dis-

cussed at the algorithmic level. In the next chapter, these components will be combined

in order to analyse the design of a coprocessor at the protocol level.

127

Chapter 7

Coprocessor Design For the

Protocol Level

7.1 Introduction

In Chapter 2, the TLS protocol and the necessary components to implement a TLS

coprocessor were discussed. In the chapters that followed, coprocessor designs for ECC,

hash functions, and random number generation were examined. The best candidate

for a secure implementation was identified for each case. The designs presented in the

previous chapters are usable as a standalone coprocessor, however, by combining them

it is possible to create a full TLS coprocessor.

Many of the operations required by the TLS protocol, such as parsing incoming

messages or verifying certain fields of digital certificates, can implemented in software.

These types of operations would not benefit from hardware acceleration, as the time

taken to transfer data to the coprocessor would be comparable to the time taken for the

processor to access its own memory. However, performance can be increased by per-

forming the computationally intensive operations, such as large multiplications, block

ciphers, and hash functions in a coprocessor. With this approach, it is also possible

to make the device more resistant to leaking the private keys of the user, as, if imple-

mented correctly, storing the keys in hardware eliminates the possibility of an attacker

mounting a software based attack. If the coprocessor is designed with security against

hardware based attacks in mind, it can also be made more resistant to certain side

channel attacks, in particular SPA and to a lesser extent DPA [65].

Secure key management is also of utmost importance for a cryptographic system.

In Section 2.12, several TLS coprocessor designs from the literature were discussed,

128

7.2 Designing a Secure Coprocessor

however, their focus was on achieving high throughput designs and therefore a copro-

cessor at the protocol level that addresses the issue of secure key management has yet

to be published. In this chapter, this problem will be addressed and a coprocessor for

the acceleration of the TLS protocol will be introduced. The architecture will focus on

the secure management and generation of secret key data.

7.2 Designing a Secure Coprocessor

Many embedded systems have different requirements, in terms of physical security of

the device, than that of a personal computer or other large system that operates in

a fixed location. Embedded devices, such as smartcards and keyfobs, are not usually

kept in secure locations; therefore, an attacker has physical access to them. This gives

an attacker more options in terms of the techniques that can be used to retrieve secret

information from the device. Power consumption, electromagnetic radiation, and the

time it takes the device to perform different operations can all be used to infer what

data the device is processing at a given time.

The most valuable data in a cryptographic system, to an attacker, are the secret

keys stored in the device. In the case of the TLS protocol, these secret keys are

used to authenticate the device during the handshake protocol and to encrypt data in

the record protocol. With access to these keys, an attacker can encrypt and decrypt

data, forge digital signatures, or initiate connections on the network as if they were a

legitimate user. The extent to which the system is compromised is then determined by

the lifetime of the secret keys. It is feasible in many systems to have the private keys

refreshed regularly; although this does degrade the performance, as a TLS handshake

would have to be performed for each refresh. The system is then only compromised for

the amount of time that the current keys are active, however, the attacker may then

simply attempt the attack again. It is therefore advantageous to design a system that

makes it difficult for an attacker to retrieve the secret keys in a timeframe shorter than

that in which they are refreshed.

If a GPP is used to perform cryptographic functions in an embedded device, the

private keys are usually stored in ROM or RAM. However, for the GPP to operate

on these keys it must transfer them to its working memory. In many applications this

working memory is a mixture of a small amount of registers internal to the processor

and a larger memory bank located externally to the GPP device in the form of an

SRAM or Double Data Rate (DDR) RAM module. This is a common setup in FPGA

based systems where the internal memory of the FPGA is limited and mainly designed

129

7.2 Designing a Secure Coprocessor

to serve as small block RAM elements for custom logic functions. If memory internal

to the FPGA is used to store the keys, they are vulnerable to software based attacks.

If external memory is used, an attacker can simply read off the secret keys as they

are transferred over an external bus. There are two solutions to this problem; all data

sent over the bus to the external memory is encrypted or the keys are kept internal

to the GPP. Encrypting all the data that is sent to external memory has an impact

on performance for all operations that the device performs. This method also fails if

an attacker develops the ability to run his own code on the device as it would be a

simple task to recover the secret keys. A more secure solution is to isolate the keys

from the GPP in a secure section of the chip, such as that proposed by Gaspar et al.

in [40]. In this setup, if an attacker gains the ability to run code on the GPP, they will

still not have access to the private keys. This limits the attacker’s options of retrieving

the private keys to performing side channel attacks or physically tampering with the

device.

In order to provide a methodology for designing a secure coprocessor, several as-

sumptions as to the level of access an attacker has to the device must be made.

1. An attacker has the ability to execute their own software on the GPP.

2. An attacker has physical access to the device itself. This would include how the

device is powered and also any external connections to the device.

3. An attacker has full control over what data can be sent to the cryptographic

coprocessor.

To fully protect a device against an attacker is nearly an impossible task. The

cost of manufacturing such a device would also be prohibitively expensive. Making

a device sufficiently secure involves ensuring that the financial cost and computing

power required to retrieve the private keys makes it infeasible and also economically

unprofitable to an attacker.

The design presented in this thesis attempts to provide security against an attacker

in several ways:

1. The private keys and nonces should be isolated from the GPP. Under no circum-

stances should an attacker be able to retrieve the keys over the interface between

the GPP and coprocessor.

2. At an algorithmic level the device should be protected against simple power anal-

ysis and differential power analysis attacks.

130

7.3 Requirements of a TLS Coprocessor

3. A random number generator should be present, internally to the chip, that pro-

duces high entropy random numbers and is also protected from being influenced

by conditions external to the device by being able to detect a failure in the ran-

domness of the data that it’s producing.

7.3 Requirements of a TLS Coprocessor

The requirements of a coprocessor are determined by how the various TLS functions

are partitioned between software running on the GPP and custom hardware in the

coprocessor. Many TLS functions are suited to software implementation and would

not reduce the security of the overall design if they were implemented by the GPP.

The goal of the design presented in this work is to increase both the performance and

security of the system through the use of a coprocessor; therefore, the coprocessor

contains hardware modules that can be used to perform computationally intensive

operations and any operation involving the private keys. The specific cryptographic

operations required by the TLS protocol are discussed below; these operations have a

direct impact on the structure of the final TLS coprocessor.

7.3.1 Public-key algorithms

The public-key algorithms used by the TLS handshake protocol were introduced in

Chapter 3 and 4. The two key exchange algorithms that will be used in this implemen-

tation are:

- ECDH ECDSA, which uses fixed ECDH keys and digital certificates signed with

ECDSA. The fixed keys are present in the digital certificates.

- ECDHE ECDSA, which uses ephemeral ECDH keys and digital certificates signed

with ECDSA.

7.3.2 Private-key Algorithms

The TLS record protocol requires the ability to encrypt/decrypt messages exchanged

between the server and the client. The design presented in this work uses AES in

CBC mode as the encryption function. An AES key expansion operation generates the

roundkeys from the shared secret established using ECDH.

131

7.4 Encryption for TLS

7.3.3 Hashing Operations

Both the TLS handshake and TLS record protocol use hash functions in order to provide

message integrity and authenticity during the transmission of messages. TLS makes use

of both the standard hashing operation and also the HMAC operation defined in [68].

The work presented in this thesis uses the SHA256 algorithm for all hashing operations.

The HMAC function generates a MAC that is appended to messages just before they

are encrypted. The entity receiving the message can use the same operation just after

a message has been decrypted, where a matching MAC indicates that the message has

not been altered in transit and also infers the authenticity of the sender.

7.3.4 Operations Involving Private Keys

The Finished messages of the TLS handshake protocol include data that can be used

to verify that the handshake process has completed successfully. The operation used to

generate this verification data is based on the TLS pseudorandom function and involves

the master secret. For this reason, a dedicated hardware module is incorporated in the

coprocessor that is capable of calculating the verification data.

The secure management of the private keys is of paramount importance to the

security of the overall system. A hardware block is incorporated into the coprocessor

which is used to generate all of the secret key data required by the TLS protocol.

The HMAC function requires two secret values, mac enc and mac dec. The mac enc

value is used for calculating the MAC for outgoing messages that are to be encrypted,

while mac dec is used for messages that have been decrypted. The AES function also

requires two keys, one for encryption and another for decryption. They are denoted

aes enc key and aes dec key respectively. The master secret is also generated by the

key management module and is denoted Ωm.

7.4 Encryption for TLS

The TLS protocol supports a wide range of algorithms for bulk data encryption. How-

ever, the obvious choice is to use AES, as it is the NIST standard block cipher and its

cryptographic strength has been analysed for many years. AES [91] was introduced in

2001 as a replacement for the Data Encryption Standard (DES) [90], as DES’s short

key length of 56 bits was no longer considered to be secure.

AES is a symmetric-key block cipher based on the Rijndael algorithm [26]. AES is

effectively identical to the Rijndael algorithm except the allowable key sizes and block

132

7.4 Encryption for TLS

lengths have been fixed to 128, 192, and 256 bits. The 128 bit version of the algorithm

will be discussed for the remainder of this chapter.

The input message to be encrypted, known as the plaintext P , is split into n 128 bit

blocks, where P =
∑n

x=1 Px. Padding is applied if the message length is not divisible

by 128. Each plaintext block Px is then fed into the AES encryption function Ek, along

with a key of the same size. Each 128 bit plaintext block Px produces a corresponding

ciphertext block Cx, where Cx = Ek(Px) and the full ciphertext is then C =
∑n

x=1Cx,

this type of operation is known as Electronic Code Book (ECB) mode. ECB mode is

not suitable for use in the TLS record protocol as it would be susceptible to attacks

[114, page 189]. An alternative mode of operation, known as CBC mode is discussed

in Section 7.4.1.

The AES encryption and decryption algorithms are shown in Figures 7.1 and 7.2.

The AES encryption algorithm consists of four operations, SubBytes, ShiftRows, Mix-

Columns, and AddRoundKey. One pass through these four operations is known as a

round. The output of the AddRoundKey operation is then fed back into the SubBytes

operation. In the case of 128 bit AES, nine standard rounds are performed, followed by

a final round with the MixColumns operation omitted; the round number is denoted

Nr. The roundkey values Rk[0], Rk[1] . . . Rk[Nr], are derived from the key through the

use of the AES key expansion, see [91].

The AES decryption algorithm is simply the inverse of the encryption algorithm.

Each of the operations SubBytes, ShiftRows, and MixColumns are invertable; their

inverses denoted InvSubBytes, InvShiftRows, and InvMixColumns. The AddRoundKey

operation is simply a bitwise XOR operation and is therefore its own inverse.

The AES state is 128 bits in length and can be represented as a 4 × 4 matrix

consisting of 16 bytes Sij, where i is the row and j is the column of the matrix.

SubBytes: The SubBytes operation uses an invertable substitution box, S-box, de-

rived from the multiplicative inverse over GF(28) where the value 0016 is mapped

to itself. For all other values, given an 8 bit byte represented by X =
∑7

i=0 xi and

C = 011000112 =
∑7

i=0 ci, the following transformation, Equation 7.1, is applied

to each byte Sij = X of the state matrix.

x′i = xi ⊕ x(i+4) mod 8 ⊕ x(i+5) mod 8 ⊕ x(i+6) mod 8 ⊕ x(i+7) mod 8 ⊕ ci (7.1)

ShiftRows: Each row of the state is cyclically shifted left by i positions, where i is

the row index of the state matrix.

133

7.4 Encryption for TLS

Px

SubBytes

SubBytes

ShiftRows

ShiftRows

MixColumns

Rk[0]

Rk[i]

Rk[Nr]

Cx

fo
r
i
=

0
to

N
r
−

1
F
in
al

R
ou

n
d

Figure 7.1: AES encryption.

Cx

InvSubBytes

InvSubBytes

InvShiftRows

InvShiftRows

InvMixColumns

Rk[Nr]

Rk[i]

Rk[0]

Px

fo
r
i
=

N
r
−

1
d
ow

n
to

1
F
in
al

R
ou

n
d

Figure 7.2: AES decryption.

MixColumns: Each column of the state is treated as a polynomial over GF(28) and

multiplied modulo x4 +1 with the polynomial a(x) = 0316x
3 +0116x

2 +0116x
1+

0216

AddRoundKey: A round key, generated by the AES key schedule, is XOR’d with

the output of the MixColumns step for rounds 1 to 9, and with the output of the

ShiftRows step for the final round.

7.4.1 Cipher Block Chaining

The AES module in the coprocessor implements the AES key expansion and performs

AES encryption and decryption functions in CBC mode. In CBC mode, the ciphertext

output from one 128 bit block is fed into the next iteration of the algorithm. Figures

7.3 and 7.4 show the AES algorithm operating in CBC mode, where P1, P2 . . . Pn is the

plaintext message to be encrypted, split into 128 bit blocks. C1, C2 . . . Cn is the output

ciphertext, split into 128 bit blocks. The initialisation vector is denoted IV.

134

7.4 Encryption for TLS

Ek(P1) Ek(P2) Ek(Pn)

P1 P2 Pn

C1 C2 Cn

Cn−1

keykeykey

IV

Figure 7.3: AES encryption in CBC mode.

Dk(C1) Dk(C2) Dk(Cn)

P1 P2 Pn

C1 C2 Cn

Cn−1

keykeykey

IV

Figure 7.4: AES decryption in CBC mode.

7.4.2 AES Implementation

A detailed analysis of hardware architectures for AES is given in [136]. For each

iteration of the AES algorithm, the encryption key must be expanded so that it can

be combined with the state during each round. Two separate key expansion blocks are

used in the design: one generates the keys for message encryption, the other generates

the keys for message decryption. The AES core was implemented such that each round

takes two clock cycles to complete. The second clock cycle is required as the SubBytes

operation is implemented as a lookup table in BRAM. Table 7.1 shows the performance

results when implemented in software versus hardware. The simulation results indicate

what would be an upper limit on the performance of the AES module. The simulation

results do not take into account the padding that is done in software and hence there

is a significant decrease in performance between the simulation results and hardware

135

7.5 SHA256 Implementation for TLS

implementation.

Msg. Size (bits) sim Microblaze SW Microblaze SW + HW

512 1563 1.286 5.590
100 K 1563 1.284 5.718

Table 7.1: AES performance results in Mbit/s.

Table 7.2 shows the area consumed by the final design. The AES core result includes

both the encryption and decryption functions for AES.

Component Area (slices) BRAM

AES core 1525 9

Key Expansion 660 1

Table 7.2: AES area results.

7.5 SHA256 Implementation for TLS

Hash functions were discussed in Chapter 5 and are a key component of the TLS

protocol. A SHA256 module is therefore included in the coprocessor design to provide

all hash related operations.

In order to test its performance, the SHA256 core was implemented alongside a

Microblaze processor on a Virtex XC5VLX110T FPGA, similar to the structure shown

in Figure 2.9 in Chapter 2. The usual method for implementing a hash function is to

process each data block as it becomes available, the state of the hash function is then

stored. This removes the need to have to store all previous handshake messages. Firstly,

this would increase the amount of data sent to the hash function, as the state of the hash

function would have to be loaded into hardware with each message processed. Secondly,

allowing the state of the hash function to be loaded for each message would reduce the

security of the implementation, by allowing an adversary to view intermediate values of

the hash function state. Therefore, new drivers were written that store the handshake

messages, apply padding, and then, only when the hash is required are the messages

processed.

The compression function of the SHA256 algorithm is implemented such that one

round takes a single clock cycle and 64 rounds are required in total for the processing

of one 512 bit message block. The SHA256 core occupies 2112 slices. The performance

results are shown in Table 7.3; the results assume that the circuit is clocked at 75 MHz.

136

7.6 Design Overview

sim Microblaze SW Microblaze SW + HW

383 0.98 11.65

Table 7.3: SHA256 performance results in Mbit/s.

7.6 Design Overview

Figure 7.5 shows the construction of the coprocessor. The design is broken up into three

sections: FSL bus, control logic, and hardware modules. Two FSL bus connections are

present, one for receiving data, and one for transmitting data. The control logic is used

to decode the incoming instructions and forward data to the relevant hardware modules

for processing. The majority of the coprocessor contains the hardware modules that

were discussed in the previous chapters. All private data is stored in the key manager

and each cryptographic module that requires secret key data has a connection to the

key manager. Any data sent by the GPP is sent through the input registers and then

forwarded to the correct cryptographic module. The routing of data, internally in the

coprocessor, is achieved by configuring several routing multiplexers depending on the

instruction that the coprocessor is currently processing.

Each cryptographic module also has their own FSM that handles the communication

with the control logic FSM. The ECDSA processor controller is used to load the correct

values into the BRAM of the ECDSA processor and also check the result of the signature

verification algorithm.

In order to minimise the impact on the area of the design, a single SHA256 core is

shared between the key manager, HMAC module, and the finished message calculation

module. The hash function core can be shared among many functions. This is done

through the use of routing multiplexers, external to the SHA256 core.

7.7 Hardware/Software Partition

A key element in designing a coprocessor is dividing the workload between the GPP

and the coprocessor. The coprocessor is mainly required to increase the performance

of the design. If the entire protocol was implemented in hardware it would achieve the

highest performance. However, the area consumption of such a design would usually

be unacceptable. On an FPGA platform, the designer is constrained by the number of

slices and hardware blocks present in the FPGA; hence, it is usually best practice to

implement very computationally intensive parts of the protocol in FPGA logic. The

strength of a GPP is that it can be configured to implement very broad set of tasks,

137

7.7 Hardware/Software Partition

F
S
L
b
u
s

co
n
tr
ol

lo
gi
c

co
n
tr
ol
le
r

ct
rl

in

m
o
d
e
re
g

se
l

se
l

sh
if
t

R
1

R
2

R
3

R
4

R
5

︸
︷
︷
︸

in
p
u
t
re
g
is
te
rs

      

  

    

to
/f
ro
m

IO
re
gi
st
er
s

fr
om

h
ar
d
w
ar
e

m
o
d
u
le
s

  

to
/f
ro
m

IO
re
gi
st
er
s

1

3232

25
6

25
6

F
IF
O

F
IF
O

to
in
p
u
ts

ou
tp
u
t

re
gi
st
er

en
ab

le

T
R
N
G

H
M
A
C

A
E
S

fi
n
m
sg

ca
lc

d
er
iv
e
ke
y
s

E
C
C

p
ro
ce
ss
or

h
ar
d
w
ar
e
m
o
d
u
le
s

m
o
d
e

H
M
A
C

m
sg

m
sg

le
n

M
A
C

m
ac

en
c/
m
ac

d
ec

d
at
a
to

h
as
h

S
H
A
25
6

m
sg

h
as
h
ou

t

fi
n
m
sg

ca
lc

H
(m

)
sr
v
/c
li

ve
ri
fi
ca
ti
on

d
at
a

Ω
m

d
at
a
to

h
as
h

A
E
S
C
B
C

en
c/
d
ec

in
p
u
t
d
at
a

IV
ou

tp
u
t
d
at
a

ro
u
n
d
ke
y
s

E
C
C

p
ro
ce
ss
or

O
P
E
R
A
T
IO

N
H
(m

)
P
(x
,y
)

si
g i

n
(r
,s
)

si
g o

u
t(
r,
s)

ac
ce
p
t/
re
je
ct

ra
n
d
om

ke
y

Ω
p
r
e

T
R
N
G

re
q
u
es
t
d
at
a

ra
n
d
om

d
at
a

ke
y
m
an

ag
er

ra
n
d
b
y
te
s

A
E
S
ke
y

ex
p
an

si
on

ke
y
b
lo
ck

m
ac

en
c

m
ac

d
ec

ae
s
en

c
ke
y

ae
s
d
ec

ke
y

Ω
m

d
at
a
to

h
as
h

F
ig
u
re

7.
5:

C
op

ro
ce
ss
or

ar
ch
it
ec
tu
re
.

138

7.8 Coprocessor Operation

by increasing the code size, rather than the amount of logic that the design consumes.

Decision making, such as checking message fields, are a prime example of a task that

is suited to a GPP. These types of tasks also do not involve secret key information.

Many open-source libraries that support TLS are freely available on the Internet;

OpenSSL [103] and GNUTLS [75] are two popular example. The PolarSSL library [19]

was chosen for use in this design as it offers an easy platform in which to add support

for a coprocessor. The PolarSSL library does not support elliptic curve routines and,

therefore, modifications were made to add support for elliptic curve arithmetic and

also the ability to parse certificates based on elliptic curve algorithms. The design

has been implemented such that a comparison can be made between the code running

entirely in software, or offloading different cryptographic tasks to the coprocessor, to a

varying degree. However, all tasks must be offloaded to the coprocessor for the design

to conform to the secure implementation methodology introduced in Section 7.2.

7.8 Coprocessor Operation

The coprocessor accepts certain instructions from the connected microprocessor. The

instructions are designed to fulfil the cryptographic requirements of the TLS protocol

that were discussed in Section 7.3. The instructions are:

- Reset the coprocessor

- Sign a message with ECDSA

- Verify the ECDSA signature of a message

- SHA256

- SHA256 HMAC

- Encrypt a message using AES

- Decrypt a message using AES

- Generate random data

- Generate the key block

- Calculate the finished message verification data

139

7.8 Coprocessor Operation

Instructions are sent over the FSL bus with the control signal set high to indicate

that the accompanying 32 bit block of data is an instruction to be decoded. Upon

receiving an instruction message, the processor control unit decodes the message and

sets the mode register for the current instruction. The mode register determines, to

which core the data will be sent. The control unit then reads in all of the relevant

data and forwards it from the input registers, (R1, R2 ..., R5), to the correct module.

The control unit then waits for the data to be processed and then returns the data to

the Microblaze via the FSL bus. The control unit then sets the mode register back

to general mode, which indicates that the coprocessor is ready to process the next

instruction.

A detailed description of how each instruction is executed, is given below.

- Reset the coprocessor: Upon receiving this instruction, the controller sends a reset

signal to all arithmetic modules. This signal clears all data inside the coprocessor,

including any keys for the current TLS session. The private key corresponding to

the coprocessor certificate is hardcoded in the processor and can only cleared by

reprogramming the FPGA.

- Sign a message with ECDSA: For this operation to be performed, all keys must

have already been setup in the coprocessor. The processor receives the instruction

followed by the 256 bit hash of the message it should sign. Once the message has

been signed, the coprocessor returns the signature to the Microblaze via the FSL

bus.

- Verify the signature of a message: This instruction does not require any secret

key information and receives all necessary data via the FSL bus. The coprocessor

receives the instruction followed by the signer’s public key and the signed message.

Upon completion, the coprocessor returns a value indicating whether the signature

was correct or incorrect.

- Generate the premaster secret: This operation implements the final stage of the

ECDH algorithm, where, an elliptic curve point multiplication is used to generate

the premaster secret Ωpre. The x coordinate of the resultant elliptic curve point

is used as the premaster secret. Ωpre is then transferred to the key manager where

it’s stored until the generate key block instruction is received.

- SHA256 & SHA256 HMAC: The mac enc and mac dec values must have been

generated by the key manager prior to receiving an instruction to perform a

140

7.9 Test Platform

HMAC operation. No Initialisation Vectors (IVs) are required for a normal

SHA256 hashing operation. The coprocessor receives the instruction followed

by the padded message to operate on.

- AES encrypt/decrypt: The AES roundkeys must have already been generated by

the coprocessor for it to be possible to execute this instruction. The coproces-

sor receives the instruction followed by the padded message to be encrypted or

decrypted.

- Generate Random Data: This instruction generates 512 bits of random data using

the TRNG. The data is post-processed and checked for randomness before it’s

returned. If the randomness tests fail, an error code is returned to the Microblaze.

- Generate key block: This instruction takes as input, the random bytes received

from the server or client (i.e., randbytes). Ωpre must also have been computed

prior to receiving this instruction. No output is returned from the coprocessor

for this instruction. All keys and data remain internal to the coprocessor.

7.9 Test Platform

The design was implemented on a Xilinx XUPv5 evaluation board which consists of a

Xilinx Virtex XC5VLX110T FPGA. The board also contains 256 MB of DDR RAM.

The bitstream is loaded onto the FPGA through the use of a compact flash card on

the board. The design uses a Microblaze processor as the GPP for testing purposes, as

shown in Figure 2.9. The coprocessor is a generic structure and could be implemented

alongside any GPP. The Microblaze has access to the DDR RAM through the use of a

memory controller. Network communications for the Microblaze are done through one

of the hard Ethernet MACs, present inside the FPGA. External to the FPGA there is

also an Ethernet PHY, which is connected to an Ethernet cable. The evaluation board

was connected to a PC using an Ethernet cable and the TLS handshake process was

performed between the PC and evaluation board using this link.

7.9.1 Microblaze Configuration

Version 8.30 of the Microblaze was configured for use with a version of the Xilinx

maintained Linux kernel. For this to be possible, the Microblaze must be configured

with a memory management unit. The Microblaze was also configured to use a full

141

7.10 Implementation Results

32×32 bit multiplier, which is capable of generating a full 64 bit result. The instruction

cache and data cache were both configured to be 16 kB in size.

7.10 Implementation Results

The post map area results for the system are shown in Table 7.4, where CP denotes

the coprocessor circuit and µB is the Microblaze. The top four results show the area

consumption with a varying number of multiplier units used in the ECDSA processor.

These results are post place and route, while the bottom of the table shows post map

results. Post map results were used, as a breakdown of the area occupied by submodules

in the design cannot be generated for post place and route results. Some of the modules

share resources; hence, modules such as HMAC have a smaller area than SHA256. The

HMAC module uses the SHA256 module for hashing operations. The HMAC module

is therefore mostly control logic and hence has a very small area. The design also

uses 5 DSP48E blocks, of which 4 are used by the Microblaze’s multiplier circuit, and

1 is used to implement the poker test in the post processing circuit of the TRNG.

The Xilinx Virtex XC5VLX110T FPGA used to generate the results, in total, contains

17280 slices, 148 36 kB BRAM blocks, and 64 DSP48E blocks.

Design Area (slices) slice LUTs slice Reg’s BRAM DSP48E

µB + CP 1M 13526 36124 27352 76 5
µB + CP 2M 13797 37148 28132 76 5
µB + CP 3M 14203 38722 28651 76 5
µB + CP 4M 14403 40011 29689 76 5

CP with 3 multipliers (post map)

full CP 10088 28508 18273 23 1
ECDSA Proc. 4624 12117 8234 13 0

AES 1525 2366 270 9 0
AES key exp 664 1157 1416 1 0

SHA256 2112 5165 1033 0 0
HMAC 73 20 267 0 0

Key manager 448 50 1682 0 0
fin msg calc 321 288 619 0 0

TRNG 1170 3217 1700 0 1

Table 7.4: Coprocessor area results.

The timing results for an average handshake are shown in Table 7.5, where the

coprocessor’s ECDSA unit contains 3 multipliers. The GPP result is the average time

taken to complete a TLS handshake when the Microblaze has no access to the copro-

142

7.11 Conclusions

cessor. These timing results are also dependent on the performance of the PC that

takes part in the handshake process. It can be seen, however, that there is a huge

performance increase when the coprocessor is used to offload the computationally in-

tensive operations. The poor performance of the GPP only design is due to the fact

that the Microblaze is not a very powerful processor and is not designed for performing

the large amounts of finite field arithmetic found in the ECC algorithms.

Cipher Suite µB (ms) µB + CP (ms)

ECDH ECDSA 15400 132
ECDHE ECDSA 11300 152

Table 7.5: Average TLS handshake time.

In Section 2.12.2 an SSL security processor by Wang et al. was discussed. The design

is a high speed architecture and is capable of performing a full SSL handshake in 0.61

ms. The coprocessor presented in this chapter is not capable of performing SSL/TLS

handshakes as quickly as the design by Wang et al., however, the two architectures

cannot be compared directly. The design by Wang et al. consumes much more area

and is a highly parallel architecture. In contrast, the goal of the design presented in this

chapter was to derive an architecture that manages the keys securely. The resulting

architecture is therefore less efficient in terms of the resources it uses as not all of

the logic is used to increase performance. However, the architecture presented in this

chapter offers a much more secure implementation. This comes as a result of including

protection of the secret key data, performing ECC related operations in a side channel

attack resistant way, and including a TRNG in the design which incorporates failure

detection and post-processing of random data.

7.11 Conclusions

In this chapter, a secure coprocessor architecture has been given. The performance

of the system was analysed in a real world environment and the results show a huge

performance increase can be achieved by using a coprocessor in an embedded device.

However, the main result is the architecture that increases security against side chan-

nel and software based attacks. A fully software based design would have significant

weaknesses when subjected to software based attacks. A specific partitioning of func-

tions between hardware and software, in order that the GPP does not require access to

the private keys, has been described. The structure presented is also portable across

multiple platforms.

143

7.11 Conclusions

It has been shown that with the help of a coprocessor, a GPP can achieve a signifi-

cant performance increase. This, however, is to be expected as the Microblaze used in

this design is not optimised to provide high performance in this setting.

144

Chapter 8

Conclusions and Future Work

8.1 Contribution to the Field

The overall theme of the work presented in this thesis has been on the design of cryp-

tographic coprocessors for use in embedded systems. In this section, a summary of

the main contributions of this thesis to the area will be discussed. In Chapter 2, a

background to coprocessor design at the protocol level was introduced. Relevant math-

ematical principles, algorithms, and protocols were discussed with a focus on their

implementation on an FPGA platform. An analysis of currently published work on the

area of cryptographic coprocessor design was conducted and it was found that a secure

architecture has yet to appear in the literature. Therefore, the remaining chapters

of this thesis investigated the implementation of different cryptographic components

required to implement a secure coprocessor at the protocol level.

In Chapter 3, an introduction to ECC was given. Various algorithms were presented

and compared in a hardware-software co-design setting. From the results obtained, it

was confirmed that finite field multiplication was the dominant factor in determining the

overall computation time in a software implementation. Following this result, various

multiplier architectures were presented in order to analyse the effect of ISE on the

performance of the system. It was shown that by using ISE, the dominance of the

finite field multiplications can be reduced. While most ECC algorithms presented in

the literature are designed with the goal of minimising the number of multiplication

operations at the expense of extra additions and subtractions, the results from Chapter

3 shows that this does not always result in the fastest algorithm across all platforms;

as addition and subtractions can become on influencing factor in performance.

Chapter 4 extends the work of Chapter 3 by analysing the implementation of ECC

145

8.1 Contribution to the Field

algorithms using an ECC processor built from FPGA logic. As the processor was

custom designed for the implementation of ECC algorithms, it was expected that sig-

nificant performance over a software based system could be achieved. Once again,

an analysis of the various ECC algorithms was performed. The main contribution

of Chapter 4, however, is the introduction of a processor capable of performing the

ECDSA algorithm. This architecture was developed from the existing work presented

by Byrne et al.. By modifying the architecture of Byrne et al., a more flexible design

was achieved; capable of performing more than one ECC algorithm per processor.

A common operation required by cryptographic protocols is the hashing of data;

hence, in Chapter 5, an analysis of hash function architectures was given. A comparison

of some of the designs from the recent SHA-3 competition was performed, on an FPGA

platform. A fair comparison methodology was introduced in order to accurately and

fairly compare the performance of hash functions of differing architectures. A generic

wrapper structure was developed that incorporated padding. Using this structure a

fairer comparison can be made between the hash functions, as the impact of their

different padding schemes can be taken into account.

A key component of many cryptographic systems is a circuit capable of generating

high quality random data; therefore, in Chapter 6, various TRNG designs were anal-

ysed. Some of the more recent designs published in the literature were implemented on

a Virtex 5 FPGA and their output statistically tested in order to ensure that the circuit

generates statistically high quality random data. The best performing TRNG design

on the Virtex 5 platform was identified and the method of failure detection introduced

by Santoro et al. incorporated into the TRNG design. Using the results from Chapter

5 the CubeHash hash function was chosen for use as a post-processing mechanism for

the TRNG, due to its low area consumption and good throughput for long message

sizes, when compared to SHA256. The TRNG design achieved allows for high quality

random data to be produced in a secure manner.

The final chapter of work presented in this thesis, Chapter 7, defined a secure

architecture for a coprocessor, suitable for the acceleration of the TLS protocol. The

TLS protocol was discussed and the functions requiring acceleration by a coprocessor

were identified. These functions were chosen with the goal of offloading all operations,

involving secret key information, to the coprocessor. This architecture leads to a design

where software based attacks are protected against; as the GPP is never operating

on sensitive data. The processor was implemented in different configurations and a

final design chosen in order to maximise the parallel multiplication capabilities of the

architecture. Finally, the design was implemented in a real world environment and

146

8.2 Future Work

the performance evaluated. In comparison to other designs that have been published

previously, this work has presented the most detailed analysis of a TLS coprocessor to

date.

8.2 Future Work

Although a fully working design was presented in this thesis, there are areas in which

further research might yield improvements to the architecture. One of the main draw-

backs of the design is that the coprocessor is only capable of handling one TLS session

at a time. This was done in order to simplify the interface with the coprocessor and

allow for a more secure design. Additional instructions would be required in order to

allow the GPP to specify a TLS session ID for each block of data that is sent to the

coprocessor; thus, requiring the coprocessor to store key data for multiple sessions. As

all of the keys are stored in registers in the coprocessor, memory space is limited. A

possible solution is to have an external memory component, where all data transfers

to and from the memory are encrypted. This was ruled out as a possibility for use

with the GPP, as there would have been a large impact on the performance of the

GPP. However, the same is not true if implemented as an external memory bank for

the coprocessor, as the coprocessor only requires the key data to be transferred to

the external memory location. All intermediate results are still kept internal to the

coprocessor; therefore, the impact on performance is only on the initial key transfer.

Another area of possible research is the definition of how the coprocessor should

respond to denial of service attacks. These form of attacks are currently possible if an

attacker can cause the TRNG to fail to produce random data. If this happens, the

output of the TRNG will never pass the statistical tests; therefore, random data will

never be released from the TRNG post-processing block. Further investigation of this

area would involve the definition of how the coprocessor should respond to such an

attack in order to minimise its impact on the system, without any loss in security.

In terms of the ECC processor module of the coprocessor, there many areas of re-

search that could be carried out. The design presented in this thesis, worked with NIST

standardised curves, however, many different implementations have been proposed that

use special forms of curves and moduli. In [38], the authors present a construction based

on a Mersenne prime where p = 2127 − 1, over the extension field Fp2 , and make use

of the Gallant, Lambert and Vanstone (GLV) method to speed up the point scalar

multiplication. The design could then make use of one of the multipliers discussed in

Chapter 3 and may lead to a more efficient design.

147

Appendix A

Co-Z Algorithms

In Chapter 3, co-Z algorithms were introduced. In this section, the remaining co-Z

operations are presented.

Algorithm 24 Co-Z addition with update (ZADDU)

Require: P = (X1, Y1, Z) and Q = (X2, Y2, Z)
Output: (R,P) ← ZADDU(P,Q) where R ← P + Q = (X3, Y3, Z3) and P ←

(λ2X1, λ
3Y1, Z3) with Z3 = λZ for some λ 6= 0

1: function ZADDU(P,Q)
2: C ← (X1 −X2)

2

3: W1 ← X1C
4: W2 ← X2C
5: D ← (Y1 − Y2)

2

6: A1 ← Y1(W1 −W2)
7: X3 ← D −W1 −W2

8: Y3 ← (Y1 − Y2)(W1 −X3)−A1

9: Z3 ← Z(X1 −X2)
10: X1 ←W1

11: Y1 ← A1; Z1 ← Z3

12: return (R = (X3, Y3, Z3), P = (X1, Y1, Z1))
13: end function

148

Algorithm 25 Conjugate co-Z addition (ZADDC)

Require: P = (X1, Y1, Z) and Q = (X2, Y2, Z)
Output: (R,S)← ZADDC(P,Q) where R← P +Q = (X3, Y3, Z3) and S ← P −Q =

(X3, Y3, Z3)

1: function ZADDC(P,Q)
2: C ← (X1 −X2)

2

3: W1 ← X1C; W2 ← X2C
4: D ← (Y1 − Y2)

2

5: A1 ← Y1(W1 −W2)
6: X3 ← D −W1 −W2

7: Y3 ← (Y1 − Y2)(W1 −X3)−A1

8: Z3 ← Z(X1 −X2)
9: D ← (Y1 + Y2)

2

10: X3 ← D −W1 −W2

11: Y3 ← (Y1 + Y2)(W1 −X3)−A1

12: return R = (X3, Y3, Z3), S = (X3, Y3, Z3)
13: end function

Algorithm 26 Out-of-place differential addition-and-doubling 1 (AddDblCoZ1)

Require: X1,X2, Z, xD, a, 4b
Output: X ′

1,X
′
2, Z

′

1: function AddDblCoZ1(X1,X2, Z)
2: U = (X1 −X2)

2

3: V = 4X2(X
2
2 + aZ2) + 4bZ3

4: X ′
1 = V

[
2(X1 +X2)(X1X2 + aZ2) + 4bZ3 − xDZU

]

5: X ′
2 = U

[
(X2

2 − aZ2)2 − 8bZ3X2

]

6: Z ′ = UV Z
7: end function

Algorithm 27 Out-of-place differential addition-and-doubling 2 (AddDblCoZ2)

Require: X1,X2, Z, xD, a, 4b
Output: X ′

1,X
′
2, Z

′

1: function AddDblCoZ2(X1,X2, Z)
2: U = (X1 −X2)

2

3: V = 4X2(X
2
2 + aZ2) + 4bZ3

4: X ′
1 = V [(X1 +X2)(X

2
1 +X2

2 − U + 2aZ2) + 4bZ3 − xDZU]
5: X ′

2 = U
[
(X2

2 − aZ2)2 − 8bZ3X2

]

6: Z ′ = UV Z
7: end function

149

Algorithm 28 Out-of-place differential addition-and-doubling 3 (AddDblCoZ3)

Require: X1,X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3

Output: X ′
1,X

′
2, T

′
D, T

′
a, T

′
b

1: function AddDblCoZ3(X1,X2, Z)
2: U = (X1 −X2)

2

3: V = 4X2(X
2
2 + Ta) + Tb

4: W = UV
5: T ′

D = TDW
6: T ′

a = TaW
2

7: T ′
b = TbW

3

8: X ′
1 = V

[
(X1 +X2)(X

2
1 +X2

2 − U + 2Ta) + Tb

]
− T ′

D

9: X ′
2 = U

[
(X2

2 − Ta)
2 − 2X2Tb

]

10: end function

Algorithm 29 Co-Z doubling-addition with update (ZDAU)

Require: P = (X1, Y1, Z) and Q = (X2, Y2, Z)
Output: (R,Q) ← ZDAU(P,Q) where R ← 2P + Q = (X3, Y3, Z3) and Q ←

(λ2X2, λ
3Y2, Z3) with Z3 = λZ for some λ 6= 0

1: function ZDAU(P,Q)
2: C ′ ← (X1 −X2)

2

3: W ′
1 ← X1C

′

4: W ′
2 ← X2C

′

5: D′ ← (Y1 − Y2)
2

6: A′
1 ← Y1(W

′
1 −W ′

2)
7: X̂ ′

3 ← D′ −W ′
1 −W ′

2

8: C ← (X̂ ′
3 −W ′

1)
2

9: Y ′
3 ← [(Y1 − Y2) + (W ′

1 − X̂ ′
3)]

2 −D′ − C − 2A′
1

10: W1 ← 4X̂ ′
3C

11: W2 ← 4W ′
1C

12: D ← (Y ′
3 − 2A′

1)
2

13: A1 ← Y ′
3(W1 −W2)

14: X3 ← D −W1 −W2

15: Y3 ← (Y ′
3 − 2A′

1)(W1 −X3)−A1

16: Z3 ← Z
(
(X1 −X2 + X̂ ′

3 −W ′
1)

2 − C ′ − C
)

17: D ← (Y ′
3 + 2A′

1)
2

18: X2 ← D −W1 −W2

19: Y2 ← (Y ′
3 + 2A′

1)(W1 −X2)−A1

20: Z2 ← Z3

21: return (R = (X3, Y3, Z3), Q = (X2, Y2, Z2))
22: end function

150

Algorithm 30 (X,Y)-only co-Z conjugate-addition–addition with update (ZACAU′)

Require: P ′ = (X1, Y1) and Q′ = (X2, Y2) for some P = (X1, Y1, Z) and Q =
(X2, Y2, Z), and C = (X1 −X2)

2

Output: (R′, S′, C)← ZACAU′(P ′, Q′, C) where R′ ← (X3, Y3) and S′ ← (X4, Y4) for
some R = 2P = (X3, Y3, Z3) and S = P +Q = (X4, Y4, Z4) such that Z3 = Z4, and
C ← (X3 −X4)

2

1: function ZACAU′(P ′, Q′, C)
2: W1 ← X1C
3: W2 ← X2C
4: D ← (Y1 − Y2)

2

5: A1 ← Y1(W1 −W2)
6: X ′

1 ← D −W1 −W2

7: Y ′
1 ← (Y1 − Y2)(W1 −X ′

1)−A1

8: D ← (Y1 + Y2)
2

9: X ′
2 ← D −W1 −W2

10: Y ′
2 ← (Y1 + Y2)(W1 −X ′

2)−A1

11: C ′ ← (X ′
1 −X ′

2)
2

12: X4 ← X ′
1C

′

13: W ′
2 ← X ′

2C
′

14: D′ ← (Y ′
1 − Y ′

2)
2

15: Y4 ← Y ′
1(X4 −W ′

2)
16: X3 ← D′ −X4 −W ′

2

17: C ← (X3 −X4)
2

18: Y3 ← (Y ′
1 − Y ′

2 +X4 −X3)
2 −D′ − C − 2Y4

19: X3 ← 4X3

20: Y3 ← 4Y3

21: X4 ← 4X4

22: Y4 ← 8Y4

23: C ← 16C
24: return (R′ = (X3, Y3), S

′ = (X4, Y4), C)
25: end function

151

A.1 Point Doubling Formulæ with Update in Homogeneous Coordinates.

A.1 Point Doubling Formulæ with Update in Homoge-

neous Coordinates.

A double of point P = (X1, Y1, Z1) on EH, denoted DBLH, is computed as 2P =

(X3, Y3, Z3) with the DBLH operation. The cost of the operation is {5M, 6S, 1C}.
Where, C denotes multiplication by a constant.

Algorithm 31 DBLH Operation

Input: P = (X1, Y1, Z1), a = A paramter of elliptic curve EH.
Output: (R)← DBLH(P) where R = 2P = (X3, Y3, Z3).

1: function DBLH(P)
2: A = 2(aZ2

1 + 3X2
1)

3: B = Y1Z1

4: C = 2[(X1 + Y1B)2 −X2
1 − (Y1B)2]

5: D = A2 − 8C
6: X3 = 4BD
7: Y3 = A(4C −D)− 64(Y1B)2

8: Z3 = 64B3

9: return (R = (X3, Y3, Z3))
10: end function

If Z1 = 1, the cost drops to {3M, 5S}, with

Algorithm 32 DBLH Operation (with Z1 = 1)

Input: P = (X1, Y1, Z1), a = A paramter of elliptic curve EH.
Output: (R)← DBLH(P) where R = 2P = (X3, Y3, Z3).

1: function DBLH(P)
2: A = 2(a+ 3X2

1)
3: α = Y 2

1

4: B = α2

5: C = 2[(X1 + α)2 −X2
1 −B]

6: D = A2 − 8C
7: X3 = 4Y1D
8: Y3 = A(4C −D)− 64B
9: Z3 = 64Y1α

10: return (R = (X3, Y3, Z3))
11: end function

As with other co-Z algorithms, an updated representation of the input P , such

that it has an equivalent Z coordinate to the output point R, is required. This can be

evaluated, in this case, at the cost of one extra multiplication.

152

A.2 Full Coordinate Recovery

P̃ = (64Y1α ·X1, 64B, 64Y1α) ∼ (X1, Y1, Z1) = P.

Let (P̃ , 2P) ← DBLUH(P) denote the corresponding operation, where P̃ and P

share the same Z coordinate. The cost of DBLUH operation (doubling with update) is

{4M, 5S}.
Modifications must be made to the DBLUH algorithm in order to support the

(X,Z)-only operations required by Algorithm 9. This algorithm is denoted DBLUH
∗

and is given by DBLUH
∗(P)← (X(P̃) : X(2P) : Z(2P)) = (X1 ·64Y1α : 4Y1D : 64Y1α).

With a cost of {3M, 5S}.

A.2 Full Coordinate Recovery

The formula for the recovery of the full projective coordinates of the output point

Q = kP , from the X-coordinates R0 = (X1, Z) and R1 = (X2, Z) at the end of the

Montgomery ladder is given by Algorithm 33, costing {8M, 2S, 1Ma, 1M4b, 8A}.

Algorithm 33 Out of place (X,Y,Z)-recovery 1

Require: X1,X2, TD = xDZ, Ta = aZ2, Tb = 4bZ3

Output: R = (X,Y,Z) = (X1,X2, Z)

1: function recoverfullcoordinates1(X1,X2, Z)
2: A = Z2

3: B = ZA
4: C = xDZ
5: D = 4yDX1

6: X1 = DX1A
7: X2 = 2

[
(CX1 + aA)(C +X1)−X2(C −X1)

2
]
+ 4bB

8: Z = DB
9: return R = (X,Y,Z) = (X1,X2, Z)

10: end function

Where D = (xD, yD) represents the invariant, input point P , of the Montgomery ladder

in affine coordinates.

An alternative full coordinates recovery formula required by Algorithm 9 is given

in Algorithm 34, costing {10M, 3S, 8A}.

153

A.3 Point doubling and tripling with co-Z update

Algorithm 34 Out of place (X,Y,Z)-recovery 2

Require: X1,X2, TD, Ta, Tb

Output: R = (X,Y,Z) = (X1,X2, Z)

1: function recoverfullcoordinates2(X1,X2, Z)
2: X1 = 4yDxDT

2
DX1

3: X2 = X3
D[Tb + 2(TDX1 + Ta)(X1 + TD)− 2X2(X1 − TD)

2]
4: Z = 4yDT

3
D

5: return R = (X,Y,Z) = (X1,X2, Z)
6: end function

A.3 Point doubling and tripling with co-Z update

The initialisation step of Algorithms 8, 11, 12, 13 and 14 require a point doubling

or a point tripling operation. These operations are referred to as DBLU and TPLU

respectivly, and are discussed below.

Initial Point Doubling: The double of a point is computed using the DBLU oper-

ation, where

Algorithm 35 DBLU Operation

Input: P ′ = (X1, Y1) for some P = (X1, Y1, Z1), α = A paramter of elliptic curve
Output: (R′, S′)← DBLU(P ′) where R′ = (X2, Y2), S

′ = (X3, Y3) for some R = 2P =
(X2, Y2, Z2) and S = (X3, Y3, Z3) where Z2 = Z3

1: function DBLU(P ′)
2: B = X2

1

3: E = Y 2
1

4: L = E2

5: S = 2((X1 + E)2 −B − L)
6: M = 3B + α
7: X2 = M2 − 2S
8: Y2 = M(S −X2)− 8L
9: X3 = 4X1Y

2
1

10: Y3 = Y 4
1

11: return (R′ = (X2, Y2), S
′ = (X3, Y3))

12: end function

The DBLU operation is then applied such that (2P, P̃)← DBLU(P), where 2P and

P̃ have equivalent Z coordinates. This operation can therefore be used to calculate the

double of the input point P and the S′ output is then used to update the input point

P such that all points used in the scalar multiplication algorithm have equivalent Z

154

A.3 Point doubling and tripling with co-Z update

coordinates. The cost of DBLU operation (doubling with update) is {1M, 5S}.

Initial Point Tripling: The triple of the point P = (X1, Y1, 1) can be evaluated

as 3P = P + 2P using co-Z arithmetic [71]. Using the DBLU operations, such that,

(2P, P̃)← DBLU(P), followed by applying the ZADDU operation as ZADDU(P̃ , 2P),

the value 3P results along with the input P having Z coordinate updated to be equal to

that of 3P . This operation is referred to as the TPLU operation and requires {6M, 7S}.

155

List of Abbreviations

3DES Triple DES

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

BMW Blue Midnight Wish

BRAM Block RAM

CA Certificate Authority

CBC Cipher Block Chaining

CLB Configurable Logic Block

CMAC Cipher-based Message Authentication Code

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DDR Double Data Rate

DDR2 Double Data Rate

DES Data Encryption Standard

DLP Discrete Logarithm Problem

156

List of Abbreviations

DMA Direct Memory Access

DPA Differential Power Analysis

DSA Digital Signature Algorithm

DSP Digital Signal Processing

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

FF Flip Flop

FIFO First In, First Out

FIRO Fibonacci Ring Oscillator

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

FSM Finite State Machine

GARO Galois Ring Oscillator

Gbit/s Gigabits per second

GLV Gallant, Lambert and Vanstone

GPP General-Purpose Processor

GPS Global Positioning System

GPU Graphics Processing Unit

HAIFA Hash Iterative Framework

HMAC Hash-based Message Authentication Code

IC Integrated Circuit

157

List of Abbreviations

I/O Input/Output

IP Intellectual Property

IPsec Internet Protocol Security

ISE Instruction Set Extension

IV Initialisation Vector

kB kilobyte

kbit Kilobit

kbit/s Kilobits per second

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

LUT Lookup Table

MAC Message Authentication Code

MB Megabyte

Mbit/s Megabits per second

MD5 Message-Digest Algorithm 5

MHz Megahertz

MIM Man-in-the-middle

MMU Memory Management Unit

ms millisecond

NIST National Institute of Standards and Technology

nm nanometer

ns nanosecond

NSP Network Security Processor

OPSO Overlapping-Pairs-Sparse-Occupancy

158

List of Abbreviations

OQSO Overlapping-Quadruples-Sparse-Occupancy

PCI Peripheral Component Interconnect

PKI Public Key Infrastructure

PRNG Pseudorandom Number Generator

RA Registration Authority

RAM Random Access Memory

RC4 Rivest Cipher 4

RF Radio Frequency

RISC Reduced Instruction Set Computing

RNG Random Number Generator

ROM Read Only Memory

RSA Rivest-Shamir-Adleman

SCA Side Channel Attack

SHA Secure Hash Algorithm

SHA-0 Secure Hash Algorithm 0

SHA-1 Secure Hash Algorithm 1

SHA-2 Secure Hash Algorithm 2

SHA-3 Secure Hash Algorithm 3

SHA256 256 bit Secure Hash Algorithm

SHS Secure Hash Standard

SIPO Serial-in, parallel-out

SoC System on Chip

SPA Simple Power Analysis

SRAM Static Random Access Memory

159

List of Abbreviations

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TERO Transition Effect Ring Oscillator

TLS Transport Layer Security

TRNG True Random Number Generator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VPN Virtual Private Network

WPA Wi-Fi Protected Access

XOR exclusive OR

160

References

[1] FPGA Implementations of the Round Two SHA-3 Candidates. In The Second

SHA-3 Candidate Conference, August 2010.

[2] IEEE Standard for Information Technology – Telecommunications and Information

Exchange Between Systems Local and Metropolitan Area Networks – Specific Re-

quirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications, March 2012.

[3] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the advanced

encryption standard, 1998.

[4] Brian Baldwin, Andrew Byrne, Liang Lu, Mark Hamilton, Neil Hanley, Maire

O’Neill, and William P. Marnane. FPGA Implementations of the Round Two

SHA-3 Candidates. In International Conference on Field Programmable Logic and

Applications (FPL 2010), pages 400–407. IEEE, 2010.

[5] Brian Baldwin, Raveen R. Goundar, Mark Hamilton, and William P. Marnane.

Co-Z ECC Scalar Multiplications for Hardware, Software and Hardware-Software

Co-Design on Embedded Systems. Journal of Cryptographic Engineering, 2(4):221–

240, 2012. ISSN 2190-8508. doi: 10.1007/s13389-012-0042-2.

[6] Elaine Barker and John Kelsey. Recommendation for Random Number Generation

Using Deterministic Random Bit Generators. NIST Special Publication 800-90A,

January 2012.

[7] Sandro Bartolini, Irina Branovic, Roberto Giorgi, and Enrico Martinelli. Effects of

Instruction-Set Extensions on an Embedded Processor: A Case Study on Elliptic

Curve Cryptography over GF (2m). IEEE Transactions on Computers, 57(5):672–

685, 2008. ISSN 0018-9340. doi: 10.1109/TC.2007.70832.

161

REFERENCES

[8] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyri-

nand, Matt Robshaw, and Yannick Seurin. SHA-3 proposal: ECHO. Submission

to NIST, 2008.

[9] Daniel J. Bernstein. CubeHash specification (2.B.1). Submission to NIST, 2008.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. KECCAK

specifications, September 2009.

[11] Gary W. Bewick. Fast Multiplication: Algorithms and Implementation. PhD thesis,

Electrical Engineering, Stanford University, 1994.

[12] Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions -

HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007.

[13] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. Submission to

NIST (updated), 2009.

[14] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic Curve

Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). RFC 4492,

May 2006. URL http://www.ietf.org/rfc/rfc4492.txt. Updated by RFC 5246.

[15] George R. Blakely. A Computer Algorithm for Calculating the Product AB Mod-

ulo M . IEEE Transactions on Computers, 32(5):497–500, 1983. ISSN 0018-9340.

doi: 10.1109/TC.1983.1676262.

[16] Andrew D. Booth. A Signed Binary Multiplication Technique. Quarterly Journal

of Mechanics and Applied Mathematics,, 4(2):236–240, 1951. doi: 10.1093/qjmam/

4.2.236.

[17] R. T. Braden. RFC 1122: Requirements for Internet hosts — Communication

Layers, October 1989. URL www.ietf.org/rfc/rfc1122.txt.

[18] R. T. Braden. RFC 1123: Requirements for Internet Hosts — Application and

Support, October 1989. URL www.ietf.org/rfc/rfc1123.txt.

[19] Offspark B.V. PolarSSL (1.1.7), June 2013. URL https://polarssl.org/.

[20] Andrew Byrne, Emanuel Popovici, and William P. Marnane. Versatile Processor

for GF(pm) Arithmetic for Use in Cryptographic Applications. In IET Computers

& Digital Techniques, volume 2, pages 253–264, 2008.

162

http://www.ietf.org/rfc/rfc4492.txt
www.ietf.org/rfc/rfc1122.txt
www.ietf.org/rfc/rfc1123.txt‎
https://polarssl.org/

REFERENCES

[21] Çetin Kaya Koç, editor. Cryptographic Engineering. Signals & Communication.

Springer, 2009.

[22] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo

Krawczyk, editor, Advances in Cryptology (CRYPTO), volume 1462 of Lecture

Notes in Computer Science, pages 56–71. Springer Berlin Heidelberg, 1998. ISBN

978-3-540-64892-5. doi: 10.1007/BFb0055720.

[23] Gang Chen, Guoqiang Bai, and Hongyi Chen. A High-Performance Elliptic Curve

Cryptographic Processor for General Curves Over GF(p) Based on a Systolic Arith-

metic Unit. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(5):

412–416, 2007. ISSN 1549-7747. doi: 10.1109/TCSII.2006.889459.

[24] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim

Nguyen, and Frederik Vercauteren. Handbook of Elliptic and Hyperelliptic Curve

Cryptography. Discrete Mathematics and Its Applications. Chapman & Hall/CRC,

2006.

[25] Francis Crowe, Alan Daly, and William Marnane. Optimised Montgomery Domain

Inversion on FPGA. In Proceedings of the 2005 European Conference on Circuit

Theory and Design, volume 1, pages 277–280, 2005. doi: 10.1109/ECCTD.2005.

1522964.

[26] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced

Encryption Standard. Springer-Verlag, 2002. ISBN 3-540-42580-2.

[27] Ivan Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor,

Advances in Cryptology (CRYPTO), volume 435 of Lecture Notes in Computer

Science, pages 416–427. Springer-Verlag, 1989. ISBN 3-540-97317-6.

[28] Markus Dichtl and Jovan Dj. Golić. High-Speed True Random Number Generation

with Logic Gates Only. In Proceedings of the 9th international workshop on Cryp-

tographic Hardware and Embedded Systems, CHES, pages 45–62. Springer, 2007.

ISBN 978-3-540-74734-5.

[29] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version

1.2. RFC 5246 (Proposed Standard), August 2008. URL http://www.ietf.org/

rfc/rfc5246.txt.

[30] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

163

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt

REFERENCES

[31] Morris Dworkin. Recommendation for Block Cipher Modes of Operation : Methods

and Techniques. NIST Special Publication 800-38A, December 2001. URL http://

csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[32] Morris Dworkin. Recommendation for Block Cipher Modes of Operation

: The CMAC Mode for Authentication. NIST Special Publication 800-38B,

May 2005. URL http://csrc.nist.gov/publications/nistpubs/800-38B/

SP_800-38B.pdf.

[33] William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.

Message Verification and Transmission Error Detection by Block Chaining. Patent

US4074066 A, February 1978.

[34] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms. IEEE Transactions on Information Theory, 31(4):469–472,

1985. ISSN 0018-9448. doi: 10.1109/TIT.1985.1057074.

[35] Yadollah Eslami, Ali Sheikholeslami, P. Glenn Gulak, Shoichi Masui, and Kenji

Mukaida. An Area-Efficient Universal Cryptography Processor for Smart Cards.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(1):43–56,

2006. ISSN 1063-8210. doi: 10.1109/TVLSI.2005.863188.

[36] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons,

Inc., 2003.

[37] Kris Gaj. Hardware Interface of a Secure Hash Algorithm (SHA). Functional

Specification, October 2009.

[38] Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for Faster

Elliptic Curve Cryptography on a Large Class of Curves. In EUROCRYPT 2009,

volume 5479 of Lecture Notes in Computer Science, pages 518–535, 2009.

[39] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic Anal-

ysis: Concrete Results. In C. K. Koç, D. Naccache, and C. Paar, editors, Cryp-

tographic Hardware and Embedded Systems (CHES 2001), volume 2162 of Lecture

Notes in Computer Science, pages 251–261. Springer-Verlag, 2001. ISBN 3-540-

42521-7.

[40] Lubos Gaspar, Viktor Fischer, Lilian Bossuet, and Milos Drutarovský. Crypto-

graphic Extension for Soft General-Purpose Processors with Secure Key Manage-

ment. In Proceedings of International Conference on Field Programmable Logic and

164

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

REFERENCES

Applications (FPL 2011), pages 500 – 505, Chania, Crete, Grèce, October 2011.

doi: 10.1109/FPL.2011.99. URL http://hal-ujm.ccsd.cnrs.fr/ujm-00664312.

[41] Lubos Gaspar, Viktor Fischer, Lilian Bossuet, and Robert Fouquet. Secure

Extension of FPGA General Purpose Processors for Symmetric Key Cryptog-

raphy with Partial Reconfiguration Capabilities. ACM Transactions on Recon-

figurable Technology and Systems, 5(3), October 2012. ISSN 1936-7406. doi:

10.1145/2362374.2362380.

[42] Santosh Ghosh, Monjur Alam, Indranil Sen Gupta, and Dipanwita Roy Chowd-

hury. A Robust GF (p) Parallel Arithmetic Unit for Public Key Cryptography. In

10th Euromicro Conference on Digital System Design Architectures, Methods and

Tools, (DSD 2007), pages 109–115, 2007. doi: 10.1109/DSD.2007.4341457.

[43] Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser, and Jürgen

Becker. Prime Field ECDSA Signature Processing for Reconfigurable Embedded

Systems. International Journal of Reconfigurable Computing, 2011, January 2011.

ISSN 1687-7195. doi: 10.1155/2011/836460.

[44] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy,

Jorn Amundsen, and Stig Frode Mjolsnes. Cryptographic Hash Function BLUE

MIDNIGHT WISH. Submission to NIST (Round 2), 2009.

[45] Ian Goldberg and David Wagner. Randomness and the Netscape Browser.

Dr. Dobb’s Journal, January 1996. URL http://www.cs.berkeley.edu/~daw/

papers/ddj-netscape.html.

[46] Jovan Dj. Golić. New Methods for Digital Generation and Postprocessing of Ran-

dom Data. IEEE Transactions on Computers, 55(10):1217–1229, October 2006.

ISSN 0018-9340. doi: 10.1109/TC.2006.164.

[47] Raveen R. Goundar, Marc Joye, and Atsuko Miyaji. Co-Z Addition Formulæ

and Binary Ladders on Elliptic Curves. In Stefan Mangard and Franois-Xavier

Standaert, editors, Cryptographic Hardware and Embedded Systems (CHES 2010),

volume 6225 of Lecture Notes in Computer Science, pages 65–79. Springer-Verlag,

2010. ISBN 978-3-642-15030-2. doi: 10.1007/978-3-642-15031-9 5.

[48] Raveen R. Goundar, Marc Joye, Atsuko Miyaji, Matthieu Rivain, and Alexandre

Vanelli. Scalar Multiplication on Weierstraß Elliptic Curves from Co-Z Arithmetic.

Journal of Cryptographic Engineering, 1(2):161–176, 2011.

165

http://hal-ujm.ccsd.cnrs.fr/ujm-00664312
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

REFERENCES

[49] Conrado P. L. Gouvêa, Leonardo B. Oliveira, and Julio López. Efficient Soft-

ware Implementation of Public-key Cryptography on Sensor Networks Using the

MSP430X Microcontroller. Journal of Cryptographic Engineering, 2(1):19–29, 2012.

ISSN 2190-8508. doi: 10.1007/s13389-012-0029-z.

[50] Torbjrn Granlund and the GMP development team. GNU MP: The GNU Multiple

Precision Arithmetic Library, 5.1.2 edition, February 2013. http://gmplib.org/.

[51] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games - Bringing

Access-Based Cache Attacks on AES to Practice. In IEEE Symposium on Security

and Privacy, pages 490–505, 2011.

[52] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William

Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. Lest We Remember: Cold-boot Attacks on Encryption Keys. In Proceedings

of the 17th USENIX Security Symposium, pages 45–60, August 2008.

[53] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve

Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003. ISBN

038795273X.

[54] Christopher Hargreaves and Howard Chivers. Recovery of Encryption Keys from

Memory Using a Linear Scan. In Third International Conference on Availability,

Reliability and Security (ARES 08), pages 1369–1376, 2008. doi: 10.1109/ARES.

2008.109.

[55] Ahmad Hiasat. New Memoryless, mod (2n ± 1) Residue Multiplier. In IEEE

Electronics Letters, volume 28, pages 314–315, January 1992.

[56] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: Internet X.509 public

key infrastructure certificate and CRL profile, 1999. URL www.ietf.org/rfc/

rfc2459.txt. Status: PROPOSED STANDARD.

[57] Michael Hutter, Marc Joye, and Yannick Sierra. Memory-Constrained Implemen-

tations of Elliptic Curve Cryptography in Co-Z Coordinate Representation. In

A. Nitaj and D. Pointcheval, editors, AFRICACRYPT, volume 6737, pages 170–

187. Springer-Verlag, 2011.

[58] Elliptic Technologies Inc. Crypto Offload Options. Technical report,

May 2008. URL http://elliptictech.com/images/stories/whitepapers/

Crypto_Acceleration_Options_81030.pdf.

166

http://gmplib.org/
www.ietf.org/rfc/rfc2459.txt
www.ietf.org/rfc/rfc2459.txt
http://elliptictech.com/images/stories/whitepapers/Crypto_Acceleration_Options_81030.pdf
http://elliptictech.com/images/stories/whitepapers/Crypto_Acceleration_Options_81030.pdf

REFERENCES

[59] Takashi Isobe, Satoshi Tsutsumi, Koichiro Seto, Kenji Aoshima, and Kazutoshi

Kariya. 10Gbps Implementation of TLS/SSL Accelerator on FPGA. In 18th In-

ternational Workshop on Quality of Service (IWQoS 2010), pages 1–6, 2010. doi:

10.1109/IWQoS.2010.5542723.

[60] Marc Joye. Highly Regular right-to-left Algorithms for Scalar Multiplication. In

P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded

Systems (CHES 2007), volume 4727 of Lecture Notes in Computer Science, pages

135–147. Springer-Verlag, 2007.

[61] Burton S. Kaliski. The Montgomery Inverse and Its Applications. IEEE Trans-

actions on Computers, 44(8):1064–1065, 1995. ISSN 0018-9340. doi: 10.1109/12.

403725.

[62] Wolfgang Killmann and Werner Schindler. Functionality Classes and Evaluation

Methodology for True (physical) Random Number Generators – Version 3.1. Bun-

desamt für Sicherheit in der Informationstechnik (BSI), September 2001.

[63] Neal Koblitz. Elliptic Curve Cryptosystem. Mathematics of Computation, 48(177):

203–209, 1987.

[64] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In N. Koblitz, editor, Advances in Cryptology (CRYPTO 96),

volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag,

1996.

[65] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In

Proceedings of the 19th Annual International Cryptology Conference on Advances

in Cryptology (CRYPTO 99), pages 388–397, London, UK, 1999. Springer-Verlag.

ISBN 3-540-66347-9.

[66] Paul Kohlbrenner and Kris Gaj. An Embedded True Random Number Generator

for FPGAs. In Proceedings of the ACM/SIGDA 12th International Symposium on

Field Programmable Gate Arrays FPGA 04, pages 71–78, New York, NY, USA,

2004. ACM. ISBN 1-58113-829-6. doi: 10.1145/968280.968292.

[67] Gerhard Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia. A Practical

Attack on the MIFARE Classic. In Proceedings of the 8th IFIP WG 8.8/11.2 Inter-

national Conference on Smart Card Research and Advanced Applications (CARDIS

167

REFERENCES

08), LNCS, pages 267–282. Springer-Verlag, 2008. ISBN 978-3-540-85892-8. doi:

10.1007/978-3-540-85893-5 20.

[68] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message

Authentication. RFC 2104 (Informational), February 1997. URL http://www.

ietf.org/rfc/rfc2104.txt. Updated by RFC 6151.

[69] Siew-Hwee Kwok, Yen-Ling Ee, Guanhan Chew, Kanghong Zheng, Khoongming

Khoo, and Chik-How Tan. A Comparison of Post-Processing Techniques for Bi-

ased Random Number Generators. In Claudio A. Ardagna and Jianying Zhou,

editors, Information Security Theory and Practice. Security and Privacy of Mo-

bile Devices in Wireless Communication, volume 6633 of Lecture Notes in Com-

puter Science, pages 175–190. Springer-Verlag, 2011. ISBN 978-3-642-21039-6. doi:

10.1007/978-3-642-21040-2 12.

[70] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their Appli-

cations. Cambridge University Press, New York, USA, 1986. ISBN 0-521-30706-6.

[71] Patrick Longa and Ali Miri. New Composite Operations and Precomputation for

Elliptic Curve Cryptosystems Over Prime Fields. In R. Cramer, editor, Public Key

Cryptography (PKC 2008), volume 4939 of Lecture Notes in Computer Science,

pages 229–247. Springer-Verlag, 2008.

[72] O.L. Macsorley. High-Speed Arithmetic in Binary Computers. In Proceedings of the

IRE, volume 49, pages 67–91, January 1961. doi: 10.1109/JRPROC.1961.287779.

[73] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks –

Revealing the Secrets of Smart Cards. Springer-Verlag, 2007.

[74] George Marsaglia. Diehard battery of tests of randomness, 1995. URL http://

www.stat.fsu.edu/pub/diehard/.

[75] Nikos Mavrogiannopoulos and Simon Josefsson. The GnuTLS Transport Layer

Security Library (3.2.3), February 2013. URL http://www.gnutls.org/.

[76] Máire McLoone and John V. McCanny. A Single-Chip IPsec Cryptographic Proces-

sor. In IEEE Workshop on Signal Processing Systems (SIPS 2002), pages 133–138,

2002. doi: 10.1109/SIPS.2002.1049698.

[77] Nicolas Meloni. New Point Addition Formulæ for ECC Applications. In Claude

Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, volume 4547 of Lecture

168

http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/
http://www.gnutls.org/

REFERENCES

Notes in Computer Science, pages 189–201. Springer-Verlag, 2007. ISBN 978-3-540-

73073-6. doi: 10.1007/978-3-540-73074-3 15.

[78] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[79] Ralph C. Merkle. One Way Hash Functions and DES. In G. Brassard, edi-

tor, Advances in Cryptology – CRYPTO 89, volume 435 of LNCS, pages 428–446.

Springer-Verlag, 1989. ISBN 0-387-97317-6.

[80] Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Re-

sistant Software. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and

Embedded Systems (CHES 2000), volume 1965 of Lecture Notes in Computer Sci-

ence, pages 71–77. Springer-Verlag, 2000.

[81] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Advances in cryptology

– CRYPTO 85, LNCS, pages 417–426. Springer-Verlag, 1986. ISBN 0-387-16463-4.

[82] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathe-

matics of Computation, 44(170):519–521, April 1985.

[83] Peter L. Montgomery. Speeding Up the Pollard and Elliptic Curve Methods of

Factorization. Mathematics of Computation, 48(177):243–264, 1987.

[84] FIPS PUB 180 Secure Hash Standard. National Institute of Standards and Tech-

nology, May 1993.

[85] FIPS PUB 180-1 Secure Hash Standard. National Institute of Standards and Tech-

nology, 1995.

[86] Security Requirements for Cryptographic Modules (FIPS–140-2). National Insti-

tute of Standards and Technology, 2002.

[87] Secure Hash Standard (FIPS 180-2). National Institute of Standards and Tech-

nology, August 2002.

[88] Secure Hash Standard (SHS), (FIPS 180-4). National Institute of Stan-

dards and Technology, 2012.

[89] Digital Signature Standard (DSS), (FIPS 186-4). National Institute of Standards

and Technology (NIST), July 2013.

169

REFERENCES

[90] NIST. Data Encryption Standard (DES) (FIPS–46-3). National Institute of Stan-

dards and Technology, 1999.

[91] NIST. Advanced Encryption Standard (AES) (FIPS–197). National Insti-

tute of Standards and Technology, 2001.

[92] NIST. Announcing Request for Candidate Algorithm Nominations for a New

Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 72(212):66212–

66220, November 2007.

[93] Yun Niu, Liji Wu, Li Wang, Xiangmin Zhang, and Jun Xu. A Configurable IPSec

Processor for High Performance In-Line Security Network Processor. In 7th Inter-

national Conference on Computational Intelligence and Security (CIS 2011), pages

674–678, 2011. doi: 10.1109/CIS.2011.154.

[94] Albert Eugene Novark. Hardening Software Against Memory Errors and At-

tacks. PhD thesis, University of Massachusetts - Amherst, 2011. URL http://

scholarworks.umass.edu/open_access_dissertations/346.

[95] European Network of Excellence in Cryptology II. ECRYPT II Yearly Report on

Algorithms and Keysizes, September 2012.

[96] Network Working Group of the IETF. RFC4301 - Security Architecture for the

Internet Protocol, December 2005.

[97] A. Karatsuba Yu. Ofman. Multiplication of Many-Digital Numbers by Automatic

Computers. Proceedings of the USSR Academy of Sciences, 145:293–294, 1962.

[98] Sean O’Melia and Adam J. Elbirt. Enhancing the Performance of Symmetric-Key

Cryptography via Instruction Set Extensions. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 18(11):1505–1518, 2010. ISSN 1063-8210. doi:

10.1109/TVLSI.2009.2025171.

[99] Gerardo Orlando and Christof Paar. A Scalable GF (p) Elliptic Curve Processor

Architecture for Programmable Hardware. In Cryptographic Hardware and Embed-

ded Systems (CHES 2001), volume 2162 of LNCS, pages 348–363. Springer-Verlag,

May 2001. doi: 10.1007/3-540-44709-1 29.

[100] Siddika Berna Örs, Lejla Batina, and Bart Preneel. Hardware Implementation of

Elliptic Curve Processor over GF(p). In International Journal of Embedded Systems,

pages 433–443, 2003.

170

http://scholarworks.umass.edu/open_access_dissertations/346
http://scholarworks.umass.edu/open_access_dissertations/346

REFERENCES

[101] Özgül Küçük. The hash function Hamsi. Submission to NIST, 2009.

[102] Jon Postel. RFC 793: Transmission Control Protocol, September 1981. URL

www.ietf.org/rfc/rfc793.txt.

[103] The OpenSSL Project. Open Source Toolkit for SSL/TLS – OpenSSL (1.0.1e),

February 2013. URL http://www.openssl.org/.

[104] Matthieu Rivain. Fast and Regular Algorithms for Scalar Multiplication Over El-

liptic Curves. Cryptology ePrint Archive, Report 2011/338, 2011. http://eprint.

iacr.org/.

[105] Ronald L. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). http://

www.ietf.org/rfc/rfc1321.txt?number=1321.

[106] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems. Communications of the ACM,

21(2):120–126, February 1978.

[107] Francisco Rodŕıguez-Henŕıquez, N. A. Saqib, Arturo Dı́az Pérez, and Çetin

Kaya Koç. Cryptographic Algorithms on Reconfigurable Hardware. Signals and

Communication Tecnology. Springer, 2007.

[108] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Ste-

fan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James

Dray, and San Vo. A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications. NIST Special Publica-

tion 800-22, April 2010. URL http://csrc.nist.gov/publications/nistpubs/

800-22-rev1a/SP800-22rev1a.pdf. Revised by Lawrence E Bassham III.

[109] Renaud Santoro, Olivier Sentieys, and Sebastien Roy. On-the-Fly Evaluation of

FPGA-Based True Random Number Generator. In Proceedings of the 2009 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI 09), pages 55–60. IEEE

Computer Society, 2009. ISBN 978-0-7695-3684-2. doi: 10.1109/ISVLSI.2009.33.

[110] Renaud Santoro, Arnaud Tisserand, Olivier Sentieys, and Sébastien Roy. Arith-

metic Operators for On-the-Fly Evaluation of TRNGs. In Advanced Signal Pro-

cessing Algorithms, Architectures and Implementations XVIII, volume 7444, pages

1–12. SPIE, August 2009. doi: 10.1117/12.826336.

171

www.ietf.org/rfc/rfc793.txt
http://www.openssl.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

REFERENCES

[111] Akashi Satoh and Kohji Takano. A Scalable Dual-Field Elliptic Curve Crypto-

graphic Processor. IEEE Transactions on Computers, 52(4):449–460, 2003. ISSN

0018-9340. doi: 10.1109/TC.2003.1190586.

[112] Dries Schellekens, Bart Preneel, and Ingrid Verbauwhede. FPGA Vendor Ag-

nostic True Random Number Generator. In International Conference on Field

Programmable Logic and Applications (FPL 06), pages 1–6, 2006. doi: 10.1109/

FPL.2006.311206.

[113] Werner Schindler and Wolfgang Killmann. Evaluation Criteria for True (Physi-

cal) Random Number Generators Used in Cryptographic Applications. In Revised

Papers from the 4th International Workshop on Cryptographic Hardware and Em-

bedded Systems, CHES, pages 431–449. Springer-Verlag, 2003. ISBN 3-540-00409-2.

[114] Bruce Schneier. Applied Cryptography (2nd ed.): protocols, algorithms, and source

code in C. John Wiley & Sons, Inc., New York, USA, 1995. ISBN 0-471-11709-9.

[115] Azeddien Sllame and Vladimir Drabek. An Efficient List-Based Scheduling Algo-

rithm for High-Level Synthesis. In Euromicro Symposium on Digital System Design

(EUROMICRO 02), pages 316–323, 2002. doi: 10.1109/DSD.2002.1115384.

[116] Berk Sunar, William J. Martin, and Douglas R. Stinson. A Provably Secure

True Random Number Generator with Built-In Tolerance to Active Attacks. IEEE

Transactions on Computers, 58(1):109–119, 2007. ISSN 0018-9340. doi: 10.1109/

TC.2007.250627.

[117] David Barrie Thomas, Lee Howes, and Wayne Luk. A Comparison of CPUs,

GPUs, FPGAs, and Massively Parallel Processor Arrays for Random Number Gen-

eration. In Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA 09), pages 63–72. ACM, 2009. ISBN 978-1-

60558-410-2. doi: 10.1145/1508128.1508139.

[118] Stefan Tillich and Johann Groschdl. Accelerating AES Using Instruction Set Ex-

tensions for Elliptic Curve Cryptography. In Osvaldo Gervasi, MarinaL. Gavrilova,

Vipin Kumar, Antonio Lagan, HeowPueh Lee, Youngsong Mun, David Taniar,

and ChihJengKenneth Tan, editors, Computational Science and Its Applications

(ICCSA 05), volume 3481 of Lecture Notes in Computer Science, pages 665–675.

Springer-Verlag, 2005. ISBN 978-3-540-25861-2. doi: 10.1007/11424826 70.

172

REFERENCES

[119] K. H. Tsoi, K. H. Leung, and P. H. W. Leong. Compact FPGA-Based True and

Pseudo Random Number Generators. In Proceedings of the 11th Annual IEEE Sym-

posium on Field-Programmable Custom Computing Machines (FCCM 03), pages

51–61. IEEE Computer Society, 2003. ISBN 0-7695-1979-2.

[120] Boyan Valtchanov, Viktor. Fischer, Alain Aubert, and Florent Bernard. Charac-

terization of Randomness Sources in Ring Oscillator-Based True Random Number

Generators in FPGAs. In IEEE 13th International Symposium on Design and Di-

agnostics of Electronic Circuits and Systems (DDECS 10), pages 48–53, 2010. doi:

10.1109/DDECS.2010.5491819.

[121] Michal Varchola and Miloš Drutarovský. New High Entropy Element for FPGA

Based True Random Number Generators. In Stefan Mangard and Franois-Xavier

Standaert, editors, Cryptographic Hardware and Embedded Systems (CHES 2010),

volume 6225 of Lecture Notes in Computer Science, pages 351–365. Springer-Verlag,

2010. ISBN 978-3-642-15030-2. doi: 10.1007/978-3-642-15031-9 24.

[122] Ihor Vasyltsov, Eduard Hambardzumyan, Young-Sik Kim, and Bohdan Karpin-

skyy. Fast Digital TRNG Based on Metastable Ring Oscillator. In Elisa-

beth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embed-

ded Systems (CHES 2008), volume 5154 of Lecture Notes in Computer Science,

pages 164–180. Springer-Verlag, 2008. ISBN 978-3-540-85052-6. doi: 10.1007/

978-3-540-85053-3 11.

[123] Alexandre Venelli and François Dassance. Faster Side-Channel Resistant Elliptic

Curve Scalar Multiplication. Contemporary Mathematics, 521:29–40, 2010.

[124] C. D. Walter. Montgomery exponentiation needs no final subtractions. Electronic

Letters, 35(21):1831–1832, October 1999.

[125] Haixin Wang, Guoqiang Bai, and Hongyi Chen. Zodiac: System Architecture Im-

plementation for a High-Performance Network Security Processor. In International

Conference on Application-Specific Systems, Architectures and Processors (ASAP

2008), pages 91–96, 2008. doi: 10.1109/ASAP.2008.4580160.

[126] Haixin Wang, Guoqiang Bai, and Hongyi Chen. A Gbps IPSec SSL Security

Processor Design and Implementation in an FPGA Prototyping Platform. Journal

of Signal Processing Systems, 58(3):311–324, March 2010. ISSN 1939-8018. doi:

10.1007/s11265-009-0371-2.

173

REFERENCES

[127] Haixin Wang, Guoqiang Bai, and Hongyi Chen. Design and Implementation of a

High Performance Network Security Processor. International Journal of Electronics,

97(3):309–325, 2010. doi: 10.1080/00207210903289383.

[128] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full

SHA-1. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume

3621 of LNCS, pages 17–36. Springer-Verlag, August 2005.

[129] LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11e). Xilinx, ds449 edi-

tion, October 2011. URL http://www.xilinx.com/support/documentation/

ip_documentation/fsl_v20/v2_11_e/fsl_v20.pdf.

[130] Xilinx. MicroBlaze Processor Reference Guide. Xilinx, December

2012. URL http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_1/mb_ref_guide.pdf.

[131] Inc. Xilinx. Virtex-5 Family Overview. Technical Report DS100 (v5.0), Febru-

ary 2009. URL http://www.xilinx.com/support/documentation/data_sheets/

ds100.pdf.

[132] Inc. Xilinx. Virtex-5 FPGA User Guide. Technical Report UG190 (v5.3), May

2010. URL http://www.xilinx.com/support/documentation/user_guides/

ug190.pdf.

[133] Inc. Xilinx. Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide.

Technical Report UG194 (v1.10), February 2011. URL http://www.xilinx.com/

support/documentation/user_guides/ug194.pdf.

[134] Inc. Xilinx. Virtex-5 FPGA XtremeDSP Design Considerations. Technical

Report UG193 (v3.5), January 2012. URL http://www.xilinx.com/support/

documentation/user_guides/ug193.pdf.

[135] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol.

RFC 4254 (Proposed Standard), January 2006. URL http://www.ietf.org/rfc/

rfc4254.txt.

[136] Xinmiao Zhang and K.K. Parhi. High-speed VLSI Architectures for the AES

Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

12(9):957–967, 2004. ISSN 1063-8210. doi: 10.1109/TVLSI.2004.832943.

174

http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20/v2_11_e/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20/v2_11_e/fsl_v20.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf‎
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf‎
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug194.pdf
http://www.xilinx.com/support/documentation/user_guides/ug194.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.ietf.org/rfc/rfc4254.txt
http://www.ietf.org/rfc/rfc4254.txt

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Publications

	2 Cryptography for Embedded Systems
	2.1 Introduction
	2.2 Introduction to Cryptographic Systems
	2.3 Mathematical Background
	2.3.1 Groups
	2.3.2 Rings
	2.3.3 Fields
	2.3.4 Finite Fields

	2.4 Generating Random Numbers
	2.5 Private-Key Cryptography
	2.6 Public-Key Cryptography
	2.6.1 Public Key Infrastructure
	2.6.1.1 Digital Signatures
	2.6.1.2 Digital Certificates

	2.7 Cryptographic Protocols
	2.8 Transport Layer Security
	2.8.1 TLS Record Protocol
	2.8.2 TLS Alert Protocol
	2.8.3 TLS ChangeCipherSpec Protocol
	2.8.4 TLS Application Data Protocol
	2.8.5 TLS Handshake Protocol

	2.9 Field Programmable Gate Arrays
	2.9.1 Microblaze Processor
	2.9.2 FSL Bus

	2.10 FPGAs and Cryptography
	2.11 Side Channel Attacks
	2.12 Related Work
	2.12.1 Isobe et al.
	2.12.2 Wang et al.
	2.12.3 Instruction Set Extension
	2.12.4 Secure Key Management

	2.13 Discussion

	3 Hardware-Software Co-Design for Elliptic Curve Cryptography
	3.1 Introduction
	3.2 Background to ECC
	3.2.1 Group operations on Elliptic Curves
	3.2.2 Jacobian Coordinates
	3.2.3 Co-Z Arithmetic

	3.3 Point Scalar Multiplication
	3.3.1 SPA Resistant Point Scalar Multiplication
	3.3.1.1 Combined double-add operation
	3.3.1.2 (X,Y)-only operations

	3.4 Montgomery Multiplication
	3.5 Instruction Set Extension for ECC
	3.5.1 Software

	3.6 Custom Hardware Acceleration
	3.6.1 Montgomery Multiplication in Hardware
	3.6.2 Instruction Set Extension Results

	3.7 Optimisations for the q=2n-1 case
	3.7.1 Serial Multiplier
	3.7.2 Booth Multiplier
	3.7.3 Multiplier with BRAMs and DSP48Es
	3.7.3.1 Multiplier Architecture
	3.7.3.2 Decomposing the Multiplicands
	3.7.3.3 DSP Blocks
	3.7.3.4 Block RAM
	3.7.3.5 The Adder
	3.7.3.6 Controller
	3.7.3.7 Multiplier Operation

	3.7.4 Results

	3.8 Discussion

	4 FPGA Implementation of an ECDSA Coprocessor
	4.1 Introduction
	4.2 ECC Processor
	4.2.1 Fq Addition/Subtraction
	4.2.2 Fq Inversion

	4.3 Comparing Coordinate Performance
	4.4 Applications of Elliptic Curves in TLS
	4.4.1 Elliptic Curve Diffie-Hellman Key Exchange (ECDH)
	4.4.2 Elliptic Curve Digital Signature Algorithm (ECDSA)
	4.4.3 DPA resistant ECDSA
	4.4.4 Simultaneous multiple point multiplication

	4.5 Related Work
	4.6 ECDSA Processor Architecture
	4.7 Implementation Results
	4.8 Discussion

	5 Hash Functions and their Applications
	5.1 Introduction
	5.2 Hash Function Design
	5.2.1 Implementation Options

	5.3 Hash Function Usage
	5.4 Hash Functions and TLS
	5.4.1 HMAC Function
	5.4.2 TLS Pseudorandom Function
	5.4.3 Key derivation
	5.4.4 Finished Message Calculation

	5.5 SHA Algorithms
	5.5.1 SHA256

	5.6 SHA-3 Competition
	5.7 Blue Midnight Wish
	5.8 Hamsi
	5.9 CubeHash
	5.10 Fair Comparison Methodology
	5.10.1 Wrapper Overview
	5.10.2 Communications Protocol
	5.10.3 Padding Protocol

	5.11 Implementation Results
	5.12 Discussion

	6 True Random Number Generators
	6.1 Introduction
	6.2 Implementation of TRNGs
	6.2.1 Analysing the Quality of TRNG Output Data

	6.3 Vasyltsov et al.
	6.4 Varchola and Drutarovský
	6.5 Dichtl and Golic
	6.6 Comparing the Results
	6.7 TRNG Failure Detection
	6.7.1 FPGA Implementation

	6.8 Post-processing of TRNGs
	6.9 Secure Architecture Implementation Results
	6.10 Discussion

	7 Coprocessor Design For the Protocol Level
	7.1 Introduction
	7.2 Designing a Secure Coprocessor
	7.3 Requirements of a TLS Coprocessor
	7.3.1 Public-key algorithms
	7.3.2 Private-key Algorithms
	7.3.3 Hashing Operations
	7.3.4 Operations Involving Private Keys

	7.4 Encryption for TLS
	7.4.1 Cipher Block Chaining
	7.4.2 AES Implementation

	7.5 SHA256 Implementation for TLS
	7.6 Design Overview
	7.7 Hardware/Software Partition
	7.8 Coprocessor Operation
	7.9 Test Platform
	7.9.1 Microblaze Configuration

	7.10 Implementation Results
	7.11 Conclusions

	8 Conclusions and Future Work
	8.1 Contribution to the Field
	8.2 Future Work

	A Co-Z Algorithms
	A.1 Point Doubling Formulæ with Update in Homogeneous Coordinates.
	A.2 Full Coordinate Recovery
	A.3 Point doubling and tripling with co-Z update

	List of Abbreviations
	References

