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The higher computational complexity of an elliptic curve scalar point multiplication operation limits its implementation on general
purpose processors. Dedicated hardware architectures are essential to reduce the computational time, which results in a substantial
increase in the performance of associated cryptographic protocols. This paper presents a unified architecture to compute modular
addition, subtraction, and multiplication operations over a finite field of large prime characteristic GF(𝑝). Subsequently, dual
instances of the unified architecture are utilized in the design of high speed elliptic curve scalarmultiplier architecture.Theproposed
architecture is synthesized and implemented on several different Xilinx FPGA platforms for different field sizes. The proposed
design computes a 192-bit elliptic curve scalar multiplication in 2.3ms on Virtex-4 FPGA platform. It is 34% faster and requires
40% fewer clock cycles for elliptic curve scalar multiplication and consumes considerable fewer FPGA slices as compared to the
other existing designs. The proposed design is also resistant to the timing and simple power analysis (SPA) attacks; therefore it is a
good choice in the construction of fast and secure elliptic curve based cryptographic protocols.

1. Introduction

Elliptic curve based cryptography (ECC) proposed indepen-
dently by Miller [1] and Koblitz [2] has established itself
as a proper alternative to the traditional systems such as
Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) [3].
The National Institute of Standards and Technology (NIST)
recommended 256 bits of key lengths for ECC to achieve the
same level of security as 3072 bits of RSA.

Due to the fact that ECC offers similar security with con-
siderable smaller key sizes than RSA, it has been standardized
by IEEE and NIST [4].Thus, as the result of smaller key sizes,
its implementation led to substantial reduction in power
consumption and storage requirements and offers potentially
higher data rates.These inherent properties rank it as a strong
candidate for providing security in resource-constrained
devices. Unfortunately, due to the underlying complex math-
ematical structure, its implementation on general-purpose

processors (GPP) struggles to meet the speed requirements
of many real-time applications.

Thus, several new implementation platforms have been
explored during the last years. Field programmable gate
array (FPGA) has been established as a proper platform for
implementation of security algorithms such as ECC andRSA.
Its shorter design cycle time, lower design cost, and its recon-
figurabilitymake itmore attractive than other platforms, such
as Application Specific Integrated Circuits (ASICs).

Elliptic curve scalar pointmultiplication is the central and
most time consuming operation in all ECCbased schemes. Its
efficient implementation on various platforms is very critical.
It is achieved by manipulating points on a properly chosen
elliptic curve over a finite field.Mathematically, it is expressed
as𝑄 = 𝑠𝑃, where 𝑃 is a base point, 𝑠 is an integer value, and𝑄
is the resultant point ofmultiplication of 𝑠 and𝑃. For example,
it can be achieved by adding 𝑃 to itself (𝑠 − 1) times. The
strength of any ECC schemes is based on the computational
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hardness of finding 𝑠 given 𝑃 and 𝑄 known as Elliptic Curve
Discrete Logarithm Problem (ECDLP).

There are several elliptic curve representations satisfying
different performance and security requirements. A flexible
design capable of supporting different values for elliptic
curve parameters and a prime 𝑝 is more demanding. The
ECDLP is not the only way of finding scalar 𝑠; it can also be
revealed by monitoring the timing [5] and power consump-
tion of cryptographic devices known as side channel attacks
(SCAs) [6]. The simplest SCAs are based on the timing
and simple power consumption analysis (SPA). Detailed sur-
veys on known SCAs, countermeasures, and secure ECC
implementations are reported previously in [7, 8].

Elliptic curve scalar point multiplication involves many
basic modular arithmetic operations such as addition, sub-
traction, multiplication, inversion, and division. Hence, opti-
mization of these operations can significantly improve the
performance of ECC schemes.

Elliptic curve cryptosystems can be designed on a finite
field either with prime characteristics GF(𝑝) or with binary
characteristics GF(2𝑚). The GF(2𝑚) arithmetic is easier to
implement in hardware than GF(𝑝) because of carry-free
arithmetic. However, field parameters in GF(2𝑚) are mostly
fixed and are not very flexible. Some efficient ECC imple-
mentations over GF(2𝑚) are presented in [9–14]. A very good
survey of high speed hardware implementations of ECC has
been reported in [15].

Several hardware based elliptic curve processors over
GF(𝑝) have also been proposed in the literature [5, 16–
26]. The design reported in [21] proposed two architec-
tures to speed up the EC point multiplication operation.
Both these architectures are based on incorporating parallel
dedicated hardware units to compute arithmetic operations
such as addition, subtraction, multiplication, and division
over GF(𝑝). The GF(𝑝) multiplication unit [21] is based on
a bit-serial interleaved multiplication while, for a division
over GF(𝑝), a dedicated hardware unit based on a binary
version of the extended Euclidean algorithm is used. Ghosh
et al. proposed a speed and area optimized architecture for
EC point multiplication by exploiting a concept of shared
hardware arithmetic over GF(𝑝) [20]. The saving in area
is achieved by sharing hardware resources among different
GF(𝑝) arithmetic operations, while multiple copies of the
arithmetic units are used to speed up EC point multiplica-
tion.

1.1. Contribution. Modern FPGAs have dedicated built-in
arithmetic components (dedicated multipliers, block RAMs,
etc.) to perform different signal processing tasks efficiently.
However, in this work these components are not used due
to the limitations of the adopted technique to perform a
modular multiplication, that is, Interleaved Multiplication
(IM) algorithm [27], which interleaved the reduction step
by reducing each partial product. To the best of authors
knowledge, no work has been reported targeting a digit-
wise implementation of the IM technique. However, available
small-sized dedicated multipliers inside an FPGA can be
very effective in case of the Montgomery multiplication
[28] and the NIST recommended primes [29]. A modular

multiplication using these methods can be performed by
integers multiplication followed by a modular reduction.

This paper presents a novel architecture to speed up the
EC point multiplication in affine coordinates. The proposed
design is based on a unified GF(𝑝) adder, subtractor, and
multiplier (Add/Sub/Mul) unit. The unified Add/Sub/Mul
unit is an extension of our previous GF(𝑝) multiplier design
reported in [30]. The proposed unified unit in this work
performs modular addition and subtraction in a single clock
cycle, whilemodularmultiplication is performed in ⌈𝐾/3⌉+2
clock cycles, where 𝐾 = log

2
𝑝. The careful FPGA imple-

mentation of the proposed EC point multiplication archi-
tecture outperforms the other existing designs. The main
advantages of the proposed design are as follows.

(i) It reduces the number of required clock cycles and
computation time of EC point multiplication to
almost 40% and 35%, respectively, with considerably
smaller FPGA area consumption. The reduction in
clock cycles and computation time is mainly due to
the proposed GF(𝑝)multiplier [30].

(ii) Furthermore, the adopted algorithm for EC point
multiplication with careful implementation of GF(𝑝)
arithmetic primitives is capable of resisting the timing
and SPA attacks [5].

(iii) It is flexible; all parameters (curve parameter 𝑎, EC
point 𝑃, scalar value 𝑠, and the prime value 𝑝) can be
easily changed without FPGA reconfiguration.

This paper is organized as follows. Section 2 briefly
explains EC group operations such as EC point addition and
EC point doubling. In addition, this section also describes the
Montgomery ladder structure for the EC pointmultiplication
algorithm. The unified Add/Sub/Mul unit over GF(𝑝) is pre-
sented in Section 3. Section 4 proposes a novel architecture
for EC point multiplication based on the GF(𝑝) unified
Add/Sub/Mul unit. Implementation results and performance
evaluation are presented in Section 5, and finally the paper is
concluded in Section 6.

2. Elliptic Curve Group Operations

In this paper, we consider an elliptic curve E, defined over
a prime field GF(𝑝), where 𝑝 is a large prime characteristic
number. Field elements are represented as integers in the
range [0, 𝑝 − 1]. An elliptic curve E over GF(𝑝) in short
Weierstrass form is represented as

E : 𝑦
2

= 𝑥
3

+ 𝑎𝑥 + 𝑏, (1)

where, 𝑎, 𝑏, 𝑥, and 𝑦 ∈ GF(𝑝) and 4𝑎3 + 27𝑏2 ̸= 0 (modulo
𝑝). The set of all points (𝑥, 𝑦) that satisfies (1), plus the point
at infinity, makes an abelian group. EC point addition and
EC point doubling operations over such groups are used to
construct many elliptic curve cryptosystems. The EC point
addition and EC point doubling operations in affine coor-
dinates can be represented as follows: let 𝑃

1
= (𝑥
1
, 𝑦
1
) and

𝑃
2
= (𝑥
2
, 𝑦
2
) be two points on the elliptic curve. The group
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Input: An integer 𝑠 and a point 𝑃 on elliptic curve
Output: 𝑠𝑃

(1) 𝑆
1
← 𝑃

(2) 𝑆
2
← 2𝑃

(3) for 𝑖 = 𝐾 − 2 downto 0 do // 𝐾 is the bit length of 𝑠 //
(4) if 𝑠

𝑖
= 1 then

(5) 𝑆
1
← 𝑆
1
+ 𝑆
2
‖ EC Point addition

(6) 𝑆
2
← 2𝑆

2
‖ EC Point doubling

(7) else
(8) 𝑆

2
← 𝑆
1
+ 𝑆
2

(9) 𝑆
1
← 2𝑆

1

(10) return 𝑆
1

Algorithm 1:Montgomery ladder for EC pointmultiplication [20].

operation is the point addition, 𝑃
3
(𝑥
3
, 𝑦
3
) = 𝑃

1
(𝑥
1
, 𝑦
1
) +

𝑃
2
(𝑥
2
, 𝑦
2
), which is defined by the group law and is given as

𝑥
3
= 𝜆
2

− 𝑥
1
− 𝑥
2

𝑦
3
= 𝜆 (𝑥

1
− 𝑥
3
) − 𝑦
1
,

(2)

where

𝜆 =

{{{{

{{{{

{

𝑦
2
− 𝑦
1

𝑥
2
− 𝑥
1

if 𝑃
1
̸= 𝑃
2

3𝑥2
1
+ 𝑎

2𝑦
1

if 𝑃
1
= 𝑃
2
.

(3)

If 𝑃
1
= 𝑃
2
, then a special case of adding a point to itself is

called EC point doubling operation. In affine coordinates the
EC point addition requires one division, two multiplications,
and six addition or subtraction operations, whereas the EC
point doubling can be performed by using one division, three
multiplications, and seven addition or subtraction opera-
tions. Therefore, optimization of these operations impacts
significantly on the overall performance of the EC point
multiplication operation.

2.1. Elliptic Curve Scalar Multiplication. EC cryptosystems
are mostly based on the EC point multiplication operation.
This operation can be performed as a sequence of EC
point addition and EC point doubling operations given in
Algorithm 1, which is known as the Montgomery ladder for
EC point multiplication. Algorithm 1 works on the binary
representation of 𝑠 and it is assumed that the most significant
bit is equal to 1.The EC point addition and EC point doubling
operations are not dependant on the bit pattern of 𝑠, so these
operations can be performed in parallel. As these can be
executed concurrently, therefore Algorithm 1 gives an extra
feature of protection against the timing and simple power
analysis (SPA) attacks.

3. Unified Add/Sub/Mul Unit

In this sectionwe present a unifiedmodular adder, subtractor,
andmultiplier (unified Add/Sub/Mul) unit.This unit is capa-
ble of performing modular addition, subtraction, and multi-
plication operations and supports any prime 𝑝; therefore it

is able to provide hardware support for ECC over a variety
of elliptic curves. Normally, to achieve a better performance
of EC point multiplication on dedicated hardware, multiple
copies of GF(𝑝) adder, subtractor, multiplier, and divider
units are integrated.Thesemultiple copies can help to execute
several operations in parallel at the expense of area and
cost, which can also result in more power consumption.
Our objective is to accelerate the computation of EC point
multiplication operation with minimum number of dedi-
cated arithmetic units. Modular multiplication is a critical
component in the architecture of EC point multiplication
operation. In this regard, several modular multipliers have
been proposed. The design reported in [19] is based on an
iterative addition and reduction algorithm. In every iteration
addition and reduction modulo 𝑝 of partial products are
performed. It computes a 𝐾-bit modular multiplication in
𝐾 + 1 clock cycles. Two novel architectures based on radix-
4 and radix-8 Booth encoding techniques are reported in
[30, 31].

In [30] the radix-4 Booth encoded version computes a
modular multiplication operation in 𝐾/2 + 1 clock cycles,
whereas the radix-8 Booth encodedmultiplier takes ⌈𝐾/3⌉+2
clock cycles. The radix-8 Booth encoded multiplier given in
Algorithm 2 is based on an iterative addition and reduction
modulo 𝑝 of partial products technique proposed by Blakley
reported in [27]. The two main components in the design are
as follows:

(i) Three-bit left shift modulo 𝑝 unit (Step (3)).
(ii) Addition and subtraction modulo 𝑝 unit (Steps (7),

(9), (11), and (13)).

There is also a logic circuit for Booth encoding in addi-
tion to these two core components. The presented unified
Add/Sub/Mul unit is based on the same design. The radix-
8 Booth encoded modular multiplier design has a modular
adder/subtractor unit. Hence this paper modified the radix-
8 Booth encoded modular multiplier design in such a way
that it becomes capable of performing modular addition and
subtraction operations in addition to its main task, that is,
a modular multiplication operation. Due to the proposed
modification dedicated hardware units for modular addition
and subtraction operations are not needed.

The top-level block of unifiedAdd/Sub/Mul unit is shown
in Figure 1.The whole logic components of the radix-8 Booth
encoded modular multiplier are mainly divided into shared
andunshared logic parts.The shared logic components can be
shared to performmodular addition, subtraction, and multi-
plication operations, whereas the unshared logic components
are only dedicated to a modular multiplication operation. A
control unit is responsible for decoding instructions on the
basis of two bits of operational code (opcode) and generates
appropriate signals for the shared and unshared logic parts.

The shared logic is comprised of a modular adder/sub-
tractor unit while the unshared logic consists of three-bit
left shift modulo 𝑝 unit and Booth encoding logic. The
adder/subtractor and three-bit left shift modulo 𝑝 units are
shown in Figure 2. The three-bit left shift modulo 𝑝 unit is
comprised of three identical D1 units cascaded in series. Each



4 International Journal of Reconfigurable Computing

Input: 𝑝, 𝑎, 𝑏 : 0 ≤ 𝑎, 𝑏 < 𝑝
Output: 𝑧 = 𝑎 × 𝑏mod𝑝

(1) 𝑧 = 0, 𝑅
1
= 2𝑎mod𝑝, 𝑅

2
= 3𝑎mod𝑝, 𝑅

3
= 4𝑎mod𝑝.

(2) for 𝑖 = 𝐾 downto 0; 𝑖 = 𝑖 − 3 do //𝐾 is the bit length of 𝑝 //
(3) 𝑧 fl 8𝑧mod𝑝
(4) if (𝑏

(𝑖,𝑖−1,𝑖−2,𝑖−3)
) = ({0000} | {1111}) then

(5) 𝑧 fl 𝑧

(6) else if (𝑏
(𝑖,𝑖−1,𝑖−2,𝑖−3)

) = ({0001} | {0010}{1101} | {1110}) then
(7) 𝑧 fl 𝑧 ± 𝑎

(8) else if (𝑏
(𝑖,𝑖−1,𝑖−2,𝑖−3)

) = ({0011} | {0100}{1011} | {1100}) then
(9) 𝑧 fl 𝑧 ± 𝑅

1

(10) else if (𝑏
(𝑖,𝑖−1,𝑖−2,𝑖−3)

) = ({0101} | {0110}{1001} | {1010}) then
(11) 𝑧 fl 𝑧 ± 𝑅

2

(12) else
(13) 𝑧 fl 𝑧 ± 𝑅

3

(14) return 𝑧

Algorithm 2: Radix-8 BE IM algorithm [30].

op
Control unit

clk
Reset

Unshared logic Shared logic

a

b

p

Addition/subtraction
TBooth recoding logic GF(p)

≪3 GF(p) and

Figure 1: Unified Add/Sub/Mul unit.

D1 unit performs a single bit left shiftmodulo𝑝 operation and
it consists of one 𝐾-bit adder and a multiplexer. Hence, in
total, the unshared logic consists of three 𝐾-bit adders, three
multiplexers, and an additional logic for Booth recoding.The
adder/subtractor unit consists of two 𝐾-bit adders and five
multiplexers.

In the proposed unified Add/Sub/Mul unit, these hard-
ware logic resources are shared with other resources, so two
𝐾-bit adders and five multiplexers are saved. This unit is
not capable of performing modular addition, subtraction,
and multiplication operations in parallel. However, EC point
representation in affine coordinates has a very limited scope
of parallelism.Therefore, the proposed unified Add/Sub/Mul
unit can increase the performance of EC point multiplication
in affine coordinates with a lower area overhead. The pro-
posed unifiedAdd/Sub/Mul unit performsmodular addition,
subtraction, and multiplication operations as given in Table 1
in the following manner.

A GF(𝑝) addition is performed by the shared logic
unit, if the two-bit input opcode = 00. The control unit

Table 1: Operation codes for unified Add/Sub/Mul unit.

Logic operation Opcode Shared logic Unshared
logic

GF(𝑝) addition 00 (𝑎 + 𝑏)mod𝑝 —
GF(𝑝) subtraction 01 (𝑎 − 𝑏)mod𝑝 —
GF(𝑝)multiplication 10 (𝑑1 ± 𝑑2)mod𝑝 8𝑑mod𝑝

decodes the opcode and activates the shared logic block;
that is, the adder/subtractor unit and sets 𝑐in = 0. The
adder/subtractor unit consists of two 𝐾-bit adders and logic
for input output multiplexing shown in Figure 2. The first
𝐾-bit adder performs addition of operands (𝑎 + 𝑏) and the
result is fed into the second 𝐾-bit adder where a modulus
𝑝 is subtracted from it. Similarly, a GF(𝑝) subtraction is
performed by the same unit by setting opcode = 01; the first
𝐾-bit adder performs subtraction (𝑎 − 𝑏) followed by the
addition of a modulus 𝑝. The result of modular addition
and subtraction becomes available at port 𝑇 after a single
clock cycle. In the case of GF(𝑝) multiplication indicated by
opcode = 10, the control unit generates appropriate signals for
the shared and unshared logic components. Partial products
addition or subtraction (𝑑1 ± 𝑑2mod𝑝) is computed by the
shared logic components depending on cin signal generated
by the Booth recoding logic, while three-bit left shift modulo
𝑝 (8𝑑mod𝑝) operation is computed by the unshared logic
components. The detailed execution procedure and control
signals for both shared and unshared logic components are
given in [30]. The unified Add/Sub/Mul architecture takes
⌈𝐾/3⌉ + 2 clock cycles to produce a GF(𝑝) multiplication
result at port 𝑇. The main advantages of the proposed
unified Add/Sub/Mul units are a single unit that can handle
GF(𝑝) addition, subtraction, and multiplication instructions.
It eliminates a need for dedicated hardware units for GF(𝑝)
addition and subtraction operations, which consumes two𝐾-
bit adders in addition to I/O multiplexers. The proposed unit
is not only optimized for hardware resources and required
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Figure 2: Shared and unshared logic components.

number of clock cycles for GF(𝑝) multiplication operation,
but it is also programmable and supports any value for a
modulus 𝑝.

4. Elliptic Curve Scalar Multiplier Architecture

ECC based schemes heavily rely on the EC scalar multipli-
cation operation; therefore, its efficient implementation can
greatly improve the performance of associated ECC based
protocols.

The EC scalar multiplication is the computation of 𝑠𝑃
operation, where 𝑠 is an integer and 𝑃 is a base point of a
chosen elliptic curve. Several algorithms have been proposed
to compute the EC scalar multiplication operation [29].
Standard double-and-add, nonadjacent form (NAF), and a
Montgomery ladder for EC point multiplication are mostly
used. EC point addition and EC point doubling operation
can be executed in parallel using a Montgomery ladder
method given in Algorithm 1. As these EC point operations
are not dependant on the respective scalar bit 𝑠

𝑖
, hence, power

consumptions of these operations are symmetric and it is not
possible for an attacker to extract any information regarding a
secret value 𝑠. Therefore, this technique provides a protection
against simple power analysis attacks. This section presents
an efficient architecture for EC scalar multiplication in affine
coordinates based on the proposed unifiedAdd/Sub/Mul unit
in Section 3. The proposed EC scalar multiplier architecture
executes a scalar multiplication as a sequence of EC point
addition and EC point doubling operations. These EC point
operations can be achieved as a sequence of GF(𝑝) arithmetic
operations as given in Table 2.

The EC point addition operation requires six GF(𝑝) sub-
traction, two GF(𝑝) multiplication, and one GF(𝑝) division
operations. On the other hand, three GF(𝑝) addition, four
GF(𝑝) subtraction, two GF(𝑝) multiplication, and single
GF(𝑝) division operations are required to perform EC point
doubling operation. As depicted in Table 2, the EC point
operations in affine coordinates also require GF(𝑝) division
operation in addition to GF(𝑝) addition, subtraction, and
multiplication operations. A GF(𝑝) division and inversion
can be performed either by Fermat little theorem or by
Extended Euclidean algorithm (EEA). The binary version of
EEA given in [29] is the mostly adopted algorithm for GF(𝑝)
division. The EEA implementation in this work is based on
the guidelines presented in [34]. It takes 2𝐾 clock cycles to
perform a 𝐾-bit GF(𝑝) division or inversion operation.

It is evident from Table 2 that, in the computation of EC
point operations, a scope of parallelism among GF(𝑝) arith-
metic operations is very limited. Therefore, a semiparallel
architecture for EC scalar multiplication is shown in Figure 3.

It consists of two GF(𝑝) unified Add/Sub/Mul units, two
GF(𝑝) divider units, two register files (each comprised of 3
𝐾-bit registers), I/O multiplexers, and a main controller. The
GF(𝑝) unified Add/Sub/Mul unit executes a GF(𝑝) addition,
subtraction, or multiplication operations at a time, while
GF(𝑝) division unit executes GF(𝑝) division (𝑎/𝑏 modulo
𝑝) operation in 2𝐾 clock cycles. Therefore, the proposed
design can execute two GF(𝑝) addition, subtraction, or
multiplication operations in parallel to two GF(𝑝) division
operations. We grouped these GF(𝑝) arithmetic units into
SAU1 and SAU2 units. Each SAU1 and SAU2 consists of
one GF(𝑝) unified Add/Sub/Mul unit, one GF(𝑝) divider
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unit, and one register file. The EC point addition operation
and EC point doubling operation in Algorithm 1 can be
performed in parallel. Therefore, the proposed architecture
performs these EC point operations in parallel; however, on
the unified Add/Sub/Mul unit, GF(𝑝) addition, subtraction,
and multiplication operations can only be performed in a
serial fashion. The SAU1 unit is dedicated to perform the
EC point addition operation, while the EC point doubling
operation is executed by SAU2 unit. The register files store
intermediate results during execution of EC point addition
and EC point doubling operations based on control signals
generated and managed by the main controller.

4.1. Scheduling Strategy. A scheduling policy to compute
EC point addition and EC point doubling operations on
the proposed SAU1 and SAU2 units is shown in Figure 4,
where GF(𝑝) addition, subtraction, multiplication, and divi-
sion operations are denoted as +, −, ×, and /, respectively.
Coordinates of two input points 𝑃

1
, 𝑃
2
are denoted by 𝑥

1
,

𝑥
2
, 𝑦
1
, 𝑦
2
, while resultant point coordinates are shown as

𝑥
3
, 𝑦
3
. The results of + and − operations are available after

one clock cycle, whereas × and / operations are completed
in ⌈𝐾/3⌉ + 2 and 2𝐾 clock cycles, respectively. The register
transfer logic of EC point addition and EC point doubling
operations on SAU1 and SAU2 units can be analyzed using
Figure 4 and Table 2. Initially registers 𝑅

𝑥
1

, 𝑅
𝑦
1

, 𝑅
𝑥
2

, and 𝑅
𝑦
2

are loaded with coordinates of EC input points 𝑃 and 2𝑃,
while register 𝑅

𝑎
is initialized with the EC parameter 𝑎. The

computation of EC point addition on the proposed SAU1
unit is completed in (11 + 8⌈𝐾/3⌉) clock cycles, whereas
SAU2 unit takes (15 + 3𝐾) number of clock cycles to execute
EC point doubling operation. Therefore, a single iteration
of Algorithm 1 is completed in (15 + 3𝐾) clock cycles and
registers 𝑅

𝑥
1

, 𝑅
𝑦
1

, 𝑅
𝑥
2

, and 𝑅
𝑦
2

are updated with new values
of EC point addition and EC point doubling. Let 𝐾

𝑛
be the

total number of required clock cycles to compute the ECpoint
multiplication operation; then on the proposed architecture it
can be estimated as

𝐾
𝑛
= (log

2
(𝑠 − 1)) (15 + 3𝐾) . (4)
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Figure 5: State diagram for main controller.

Table 2: Sequences of GF(𝑝) operations for EC point operations.

GF(𝑝) operation EC point addition #cc GF(𝑝) operation EC point doubling #cc
Subtraction 𝑓

1
= 𝑦
2
− 𝑦
1

1 Multiplication 𝑓
1
= 𝑥
1
× 𝑥
1

1
Subtraction 𝑓

2
= 𝑥
2
− 𝑥
1

2 Addition 𝑓
2
= 𝑓
1
+ 𝑓
1

⌈𝐾/3⌉ + 3

Division 𝑓
1
= 𝑓
1
/𝑓
2

3 Addition 𝑓
1
= 𝑓
1
+ 𝑓
2

⌈𝐾/3⌉ + 4

Multiplication 𝑓
2
= 𝑓
1
× 𝑓
1

2𝐾 + 4 Addition 𝑓
1
= 𝑓
1
+ 𝑎 ⌈𝐾/3⌉ + 5

Subtraction 𝑓
3
= 𝑥
1
− 𝑥
2

7⌈𝐾/3⌉ + 6 Addition 𝑓
2
= 𝑦
1
+ 𝑦
1

⌈𝐾/3⌉ + 6

Subtraction 𝑓
3
= 𝑓
2
− 𝑓
3

7⌈𝐾/3⌉ + 7 Division 𝑓
1
= 𝑓
1
/𝑓
2

⌈𝐾/3⌉ + 7

Subtraction 𝑓
2
= 𝑥
1
− 𝑓
3

7⌈𝐾/3⌉ + 8 Multiplication 𝑓
2
= 𝑓
1
× 𝑓
1

7⌈𝐾/3⌉ + 8

Multiplication 𝑓
1
= 𝑓
1
× 𝑓
2

7⌈𝐾/3⌉ + 9 Addition 𝑓
3
= 𝑥
1
+ 𝑥
1

8⌈𝐾/3⌉ + 10

Subtraction 𝑓
2
= 𝑓
1
− 𝑦
1

8⌈𝐾/3⌉ + 11 Subtraction 𝑓
3
= 𝑓
2
− 𝑓
3

8⌈𝐾/3⌉ + 11

Subtraction 𝑓
2
= 𝑥
1
− 𝑓
3

8⌈𝐾/3⌉ + 12

Multiplication 𝑓
1
= 𝑓
1
× 𝑓
2

8⌈𝐾/3⌉ + 13

Subtraction 𝑓
1
= 𝑓
1
− 𝑦
1

3𝐾 + 15

4.2. Main Controller Logic. The main controller is shown in
Figure 5; it is based on a finite state machine (FSM) logic
comprised of six states. The control unit is responsible for
generating appropriate control signals required to execute EC
point addition and EC point doubling on the proposed SAU1
and SAU2 units according to the scheduling strategy shown
in Figure 4. It waits for the respective done signals, checks the
𝑖th bit of scalar 𝑠, and either decides to update the register files
with new values or outputs the result and stops execution.

5. Implementation Results and Discussion

The elliptic curve scalar multiplier architecture presented in
the previous section has been implemented in Verilog HDL.
For simulation, synthesis, mapping, and routing purposes
Xilinx ISE 9.1 design suite has been used.

Table 3, shows the performance of the proposed archi-
tecture for 160, 192, 224, and 256 bits field sizes on several
different FPGA platforms. It takes 3.2ms, 2.3ms, and 1.4ms
while running at a maximum frequency of 35MHz, 48MHz,
and 81MHz for 192-bit implementation on Virtex-II pro,
Virtex-4, and Virtex-6 FPGA platforms, respectively. As, ISE
9.1 design suit does not have a support for Virtex-6 FPGA,
so implementation on Virtex-6 FPGA has been done using
Xilinx ISE 14.7.

For 192-bit field size our implementation on Virtex-4
computes a single EC scalarmultiplication in 2.3ms in 113,472
clock cycles running at a maximum frequency of 48MHz.
The 192-bit implementation consumes 8,500 slices of Virtex-4
FPGA and has a throughput of 83.5 Kbps.The same design on
Virtex-II pro takes 3.2ms at amaximum frequency of 35MHz
and it uses 7,930 slices. Performance comparison among the
proposed architecture and other FPGA implementations is
analyzed on the basis of clock cycles, computation time,
frequency, occupied FPGA slices, and throughput (TP).

Table 4 shows the required number of clock cycles to
compute the EC scalar multiplication operation. The pro-
posed design computes EC point addition and EC point
doubling operations in (11 + (8⌈𝐾/3⌉)) and (15 + 3𝐾)

clock cycles, respectively. As in the proposed design EC
point operations are executed concurrently; therefore a single
iteration ofAlgorithm 1 is completed in (15+3𝐾) clock cycles.
The designs reported in [21] take (13+5𝐾) clock cycles, which
is almost 40% more than the proposed design. Similarly,
[18, 24–26] require 48%, 179%, 85%, and 62% more clock
cycles to perform the EC scalar multiplication, respectively.

Table 5 demonstrates performance analysis of the sev-
eral existing FPGA based implementations of EC scalar
multiplier. The design reported in [21] is based on parallel
dedicated hardware units for GF(𝑝) addition, subtraction,
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Table 3: Performance evaluation on different FPGA platforms.

Field size Virtex-II pro Virtex-4 Virtex-6
Freq (MHz) Time (ms) Freq (MHz) Time (ms) Freq (MHz) Time (ms)

160 40 1.9 53 1.4 86 0.9
192 35 3.2 48 2.3 81 1.4
224 31 4.9 43 3.5 76 2
256 27 7.4 40 5 70 2.8

Table 4: Clock cycles requirements for different designs.

Design Field size Point addition Point doubling EC point multiplication

This work 160 437 495 79,200
192 523 591 113,472

[21] 160 814 130,240
192 974 187,008

[25] 160 868 668 153,000
[18] 160 809 972 283,000
[24] 167 2120 2540 545,040
[26] 192 — — 300,000
[22] 192 — — 120,000

Table 5: Performance comparison with exiting FPGA implementations.

Design Field size Platform Area (slices) Freq (MHz) Time (ms) TP (Kbps)

This work

160

Virtex-4

7,088 53 1.4 114
192 8,590 48 2.3 83.5
224 10,800 43 3.5 64
256 13,158 40 5 51

This work

160

Virtex-II pro

6,492 40 1.9 84
192 7,930 35 3.2 60
224 9,308 31 4.9 45
256 11,104 27 7.4 34

[21]

160

Virtex-4

12,415 60 2.2 72
192 14,858 53 3.5 55
224 17,331 47 5.4 41
256 20,123 43 7.7 33

[18]
160

Virtex-II
3,433 40 7.1 22

192 4,135 35 11.6 16.5
224 4,808 33 16.8 13.3

[16] 192 Virtex-II pro 20,793 49 7.24 26
[32] 192 Virtex-II pro 3,173 93 9.90 19.3
[33] 256 Virtex-II pro 15,775 39 5.99 42.7

[20]
192

Virtex-II pro
8,972 43 4.47 42

224 10,386 40 6.50 34
256 11,953 36 9.38 27.2

multiplication, and division. It computes a 192-bit EC scalar
multiplication in 3.5ms at a maximum frequency of 53MHz
on the Virtex-4 platform. On the same platform the proposed
design is 34% faster and requires 39% fewer clock cycles with
40% lower FPGA slice consumption as compared to [21].The
proposed design completes a 160-bit EC point multiplication
in 79,200 clock cycles at a maximum frequency of 40MHz.

It consumes 6,492 Virtex-II pro FPGA slices. Embedded
multicore design reported in [32] computes 192-bit EC scalar
multiplication in 9.9ms running at a maximum frequency
of 93MHz and consumed 3,173 Virtex-II pro FPGA slices.
It also uses 6 block BRAMs (BRAM) and sixteen 18 × 18-bit
embedded multipliers. Compared to our design, it is 210%
slower, but it consumes 149% fewer FPGA slices if we ignore
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the slices for BRAM and dedicated embedded multipliers.
The design presented in [33] consumes 15,775 slices and takes
5.99ms to compute one EC scalar multiplication. On the
same platform it is 25% faster but it consumes 28% more
FPGAslices.Thedesign proposed byDaly et al. in [18] is 262%
slower but it consumes 47% lower slices. The design reported
in [20] is 40% slower and consumes 13%more FPGA slices as
compared to the proposed design.

Performance comparison on the basis of throughput rate
is depicted in the last column of Table 5.The proposed design
has 0.5 times, 2.64 times, 1.30 times, 2.1 times, and 0.42 times
higher throughput rate as compared to the designs [21], [18],
[16], [32], and [20], respectively.Thedesign [33] has 1.25 times
higher throughput rate as compared to our design; however,
it consumes 1.42 times more FPGA slices. Therefore, our
design is better in terms of the computation time, slice area,
and throughput rate as compared to all the designs listed in
Table 5. As the proposed design executed EC point addition
and EC point doubling operations concurrently in a fixed
amount of time (15 + 3𝐾), therefore, it provides a protection
against the timing and simple power analysis attacks, which
is an important feature in modern day security applications.
Due to the lower computation time and high throughput rate
it is suitable for network applications like SSL and IPsec. It is
also suitable in the low power resource-constrained environ-
ments because of the smaller area and reduced clock cycles.

6. Conclusion

This paper first introduces a unified arithmetic architecture
for GF(𝑝) addition, subtraction, and multiplication opera-
tions. Then, a high speed elliptic curve scalar multiplier is
developed on the basis of the unified arithmetic architecture.
The proposed design has been synthesized using Xilinx ISE
9.1 and 14.2 Design Suites targeting various Xilinx FPGA
devices. Performance is shown for 160-, 192-, 224-, and 256-
bit elliptic curve scalar multiplication operation. Compared
with other contemporary designs, it gives 34% and 40%better
performance in terms of computation time and number of
required clock cycles, respectively. It is programmable for any
value of prime 𝑝 and is also resilient to timing and simple
power analysis attacks. Therefore, it is a good choice in ECC
based cryptosystems.
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[23] S. B. Örs, L. Batina, B. Preneel, and J. Vandewalle, “Hardware
implementation of an elliptic curve processor over GF(p),” in
Proceedings of the IEEE International Conference onApplication-
Specific Systems, Architectures, and Processors (ASAP ’03), pp.
433–443, IEEE, June 2003.
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