
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2011, Article ID 836460, 12 pages
doi:10.1155/2011/836460

Research Article

Prime Field ECDSA Signature Processing for
Reconfigurable Embedded Systems

Benjamin Glas, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser, and Jürgen Becker

Institute for Information Processing Technology (ITIV), 76131 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Correspondence should be addressed to Benjamin Glas, glas@kit.edu

Received 27 August 2010; Accepted 10 February 2011

Academic Editor: Gilles Sassatelli

Copyright © 2011 Benjamin Glas et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Growing ubiquity and safety relevance of embedded systems strengthen the need to protect their functionality against malicious
attacks. Communication and system authentication by digital signature schemes is a major issue in securing such systems.
This contribution presents a complete ECDSA signature processing system over prime fields for bit lengths of up to 256 on
reconfigurable hardware. By using dedicated hardware implementation, the performance can be improved by up to two orders
of magnitude compared to microcontroller implementations. The flexible system is tailored to serve as an autonomous subsystem
providing authentication transparent for any application. Integration into a vehicle-to-vehicle communication system is shown as
an application example.

1. Introduction

With emerging ubiquity of embedded electronic systems
and a growing part of distributed systems and functions
even in safety relevant areas, the security of embedded
systems and their communication gains importance quickly.
One major concern of security is authenticity of com-
munication peers and information exchange. Especially if
many different remote participants have to communicate
or not all participants are known in advance, asymmetric
signature schemes are beneficial for authentication pur-
poses. In contrast to symmetric schemes like the Keyed-
Hash Message Authentication Code HMAC [1], asymmetric
signature schemes like RSA [2], DSA [3], and the ECDSA
scheme [3] considered in this contribution get along without
key exchange or predistributed keys, relying usually on a
certification authority as trusted third party instead.

This benefit comes at the cost of a much greater
computational complexity of these schemes compared to
authentication techniques based on symmetric ciphers or
solely on hashing. This imposes major problems especially
for embedded systems, where resources are scarce.

This contribution presents a hardware-implemented
system for complete prime field ECDSA signature processing

on FPGAs. It can be integrated as an autonomous subsys-
tem for signature processing in embedded devices. As an
application example the integration in a vehicle-to-vehicle
communication unit is presented.

The remainder of this paper is organized as follows.
In Section 2 some related work is given, Section 3 presents
basics of the implemented signature scheme ECDSA, and
Section 4 outlines the assumed situation and requirements
for the system. The structure and implementation of the
signature system itself is presented in Section 5, and Section 6
shows an application example and integration in a wireless
communication system. Section 7 details performance and
resource usage that are further discussed in Section 8. The
paper is concluded in Section 9.

2. Related Work

Since elliptic curves were proposed as basis for public key
cryptography in 1985 by Koblitz [4] and Miller [5] inde-
pendently, many implementations of the prime field Elliptic
Curve Digital Signature Algorithm (ECDSA) and Elliptic
Curve Cryptography (ECC) in general have been published.
Software implementations on general purpose processors



2 International Journal of Reconfigurable Computing

need a lot of computation power. The eBACS ECRYPT
benchmark [6] gives values for 256-bit ECDSA of, for
example, 1.88 ms for generation and 2.2 ms for verification
on an Intel Core 2 Duo at 1.4 GHz and 2.9 ms respectively,
3.4 ms on an Intel Atom 330 at 1.6 GHz. Values for a crypto
system based on an ARM7 32-bit microcontroller are given
in [7] for a key bit length of 233 bit. Using a comb table
precomputation (w = 4) 742 ms are needed for a generation
and 1240 ms for a verification of an ECDSA signature. An
implementation for a RIM Blackberry [8] using an ARM 9EJ-
S core realizes 150 ms for a signature generation and 168 ms
for a signature verification [9].

To achieve usable throughputs and latencies on embed-
ded systems, various specialized hardware solutions have
been proposed, for example, many approaches for imple-
mentation of Fp arithmetic and the ECC primitives point
add and point double on reconfigurable hardware. A survey
of hardware implementations can be found in [10]. McIvor
et al. [11] propose a special ECC processor for Fp on a Virtex
II Pro FPGA, calculating a 256-bit scalar multiplication
in 3.86 ms using a clock frequency of 39.5 MHz. Orlando
and Paar [12] achieve for a bit length of 192 a scalar
multiplication in 3 ms on a Virtex-E FPGA. Güneysu and
Paar present in [13] a very fast approach based on special
DSP FPGA slices, achieving processing times of 620 μs
for a 256-bit scalar multiplication on a Virtex-4 FPGA.
The implementation presented here is based on an Fp
ALU presented by Ghosh et al. in [14]. Implementation
approaches on CMOS standard cells can be found, for
example, in [15, 16], achieving scalar multiplications in 256-
bit length in 2.68 ms and 4.3 ms, respectively.

Nevertheless, open implementations of full signature
processing units performing complete ECDSA are scarce.
Järvinen and Skyttä [17] present a Nios II-based ECDSA
system on an Altera Cyclone II FPGA for a key length
of 163-bit performing signature generation in 0.94 ms and
verification in 1.61 ms.

This contribution presents an FPGA-based autonomous
ECDSA system for longer key lengths of 256 bit containing all
necessary subsystems for application in embedded systems
on reconfigurable hardware.

3. ECDSA Fundamentals

The Elliptic Curve Digital Signature Algorithm (ECDSA) is
based on a group structure defined on an elliptic curve E over
a finite field Fq. Mostly two types of underlying finite fields
are technically used: binary fields F2n of characteristic two
and prime fields Fp with large primes p and corresponding
characteristic. This paper focuses on prime fields Fp with
characteristic char (Fp) � 3. In this case the group E and
the respective operation is defined as follows.

Definition 1 (group operation on E). Let E be an elliptic
curve over a finite field Fp of characteristic char (Fp) � 3
given by the Weierstrass equation

E : y2 = x3 + ax + b, (1)

Input: Domain parameter D = (q, a, b,G,n,h), secret key d,
message m

Output: Signature (r, s)

(1) Chose random k ∈ [1,n− 1], k ∈ N
(2) Compute kG = (x1, y1)
(3) Compute r = x1 mod n. If r = 0 goto step 1.
(4) Compute e = H(m)
(5) Compute s = k−1(e + dr) mod n. If s = 0 goto step 1.
(6) return (r, s).

Algorithm 1: ECDSA signature generation.

with a, b ∈ Fp, 4a3 + 27b2 /= 0, and P = (x1, y1), Q = (x2, y2)
points on E. A group on E ∪ {O}, O being the special point
at infinity, and the group law

+ : E × E −→ E, (P,Q) �−→ P + Q =: R = (x3, y3
)

(2)

on E is defined by the following

(i) P + O = O + P = P for all P ∈ E.

(ii) For P = (x1, y1) ∈ E, the point P = (x1,−y1) is also
∈ E and P + (−P) = O.

(iii) For P /= ±Q and P /= − P, the operation for R = P +
Q = (x3, y3) is given by

x3 =
(
y2 − y1

x2 − x1

)2

− x1 − x2,

y3 =
(
y2 − y1

x2 − x1

)
(x1 − x3)− y1.

(3)

(iv) For P = Q and P /= − P, there is R = 2P = (x3, y3)
defined by

x3 =
(

3x2
1 + a

2y1

)2

− 2x1,

y3 =
(

3x2
1 + a

2y1

)

(x1 − x3)− y1.

(4)

The set E ∪ {O} with the defined group law + is an abelian
group with neutral element O. The inverse to a point P =
(x, y) is given by −P = (x,−y).

For the use of ECDSA a set of common domain param-
eters is needed to be known to all participants. These are the
modulus p identifying the underlying field, parameters a, b
defining the elliptic curve E used, a base point G ∈ E, the
order n of G, and the cofactor h = order (E)/n. In addition
a cryptographic hash function H is needed. The signature
generation and verification for a key pair (Q,d), Q ∈ E being
a point on the curve and d a scalar factor with Q = dG, can
then be performed using the secret key d or the public key Q,
respectively. The procedures needed are shown in Algorithms
1 and 2.



International Journal of Reconfigurable Computing 3

Input: Domain parameter D = (q, a, b,G,n,h),
public key Q, message m, signature (r, s).

Output: Acceptance or Rejection of the signature

(1) if¬(r, s ∈ [1,n− 1]∩N) then
(2) return “reject”
(3) end if
(4) Compute e = H(m)
(5) Compute w = s−1 mod n.
(6) Compute u1 = ew mod n and u2 = rw mod n.
(7) Compute X = (xX , yX) = u1G + u2Q.
(8) if X = ∞ then
(9) return “reject”
(10) end if
(11) Compute v = xX mod n.
(12) if v = r then
(13) return “accept”
(14) else
(15) return “reject”
(16) end if

Algorithm 2: ECDSA signature verification.

For identification of the most demanding operations, a
tracing of the algorithms based on the hardware implemen-
tation presented in Section 5 and the possible parallelization
was done. Of the total of 395,521 clock cycles needed
for signature generation with the modulus p256 used (see
Section 4), a percentage of 99.8% or 394,752 cycles were
spent computing the scalar multiplication kG. For signature
verification the amount of cycles spent for the double
scalar multiplication X = u1G + u2Q is even 99.9%.
So in the further consideration we focus on these central
operations.

4. Setup and Situation

Objective of a digital signature is to guarantee authenticity
and integrity of a signed message to the receiver and prove
the identity of the sender, including nonrepudiation. The
usual method based on an asymmetric primitive like ECDSA
contains three protocol steps. First the sender generates a key
pair consisting of a secret signature key SK (d in the ECDSA
case) and a public verification key VK (Q for ECDSA) and
publishes VK to all possible verifiers. To sign a message m
of arbitrary length, the sender generates a digest H(m) of the
message using a publicly known cryptographic hash function
H . This digest is of a fixed length and can be seen as a
fingerprint of the message in the sense that finding a different
messagem′ /=mwithH(m) = H(m′) is infeasible. This digest
is then signed, meaning encrypted using the signing key SK
of the sender, and sent along with the original plain text
message m. The receiver or verifier is then able to verify
the signature by decrypting the received hash value using
the sender’s public verification key PK and comparing the
decrypted value to the output of H applied to the received
plain message. If the two values match, the signature is
positively verified (see Algorithm 3).

The security and correctness of the signature method
is based on the assumption that a signed value (encrypted
with the secret key) can only be verified (decrypted) with
knowledge of the corresponding public key and vice versa
and that the secret key cannot be computed from the public
key. Secondly the mapping of public keys to identities has
to be guaranteed in some way. This is usually done using
certification authorities as trusted third parties that verify the
identity and issue a certificate for the public key.

We assume an embedded system communicating with
several peers which are not entirely known in advance.
Therefore, the exchanged signed messages are sent with a
certificate attached, that is, issued, to a commonly trusted
certification authority. As an example scenario the vehicle-
to-vehicle (V2V) communication is considered in Section 6.

This contribution focuses on prime field ECDSA as it
is proposed for vehicle-to-vehicle communications which is
our general focus application (see also Application Example).
Implemented are especially two elliptic curves recommended
by the U.S. National Institute of Standards and Technology
(NIST) in [18] and Certicom Research in [19], namely,
the curves p224 (secp224r1) and p256 (secp256r1) with bit
lengths 224 and 256, respectively, and the corresponding
domain parameters also given in the standard.

The proposed system works as a security subsystem
exclusively performing signature processing and passing and
receiving messages m to and from the external system.

5. Signature Processing System

Processing of ECDSA consists of several layers of com-
putation. On the top level the signature generation and
verification algorithms as well as the certificate validation
are performed. This signature scheme-dependent layer is
based on the group operations point add (PA) and point
double (PD) in the underlying elliptic curve. These are
in turn based on the underlying finite prime field (Fp)
arithmetic, that is, modular arithmetic modulo a prime p.
For the main operation of signature verification, the double
scalar multiplication kG + rQ, the respective number of
underlying operations needed on each layer to perform
a single operation on the respective upper layer is given
in Figure 1. In an even higher layer, there is also the
communication protocol to consider at least partially as
needed for the signature system.

The architecture and presentation of the system reflects
this layering. The two upper layers are implemented as finite
state machines (FSM) and make use of a basic Fp arithmetic
logical unit (ALU) and some additional auxiliary modules.
Figure 2 outlines the structure of the system. The different
building blocks are detailed in the following paragraphs.

5.1. Fp Modular ALU. The central processing is done by
a specialized Fp-ALU for primes of maximum 256-bit
length. It is based on the ALU proposed by Ghosh et al.
in [14]. Figure 3 depicts the implemented structure. The
ALU contains one Fp adder, subtractor, multiplier, and
divider/inverter each. All registers and datapaths between



4 International Journal of Reconfigurable Computing

Input: Sender: Hash function H , secret key SK of sender, message m.
Output: Signed message (m, Sig(m))

(1) Compute hash value H(m) of m.
(2) Compute Sig(m) = EncSK (H(m)) by encrypting the hash digest

H(m) using the sender’s secret key.
(3) Send (m, Sig(m)) to receiver.

Input: Receiver: Hash function H , public key PK of sender,
received packet (m′, x).

Output: Proof that Message m′ originates from sender.

(1) Compute y = DecPK (x) by decrypting the received signature x using
the public key of sender.

(2) Compute hash value H(m′) of received message m′.
(3) if y == H(m′) then

accept signature
(4) else

reject signature
(5) end if

Algorithm 3: General digital signature procedure.

kG + rQ Signature verification (ECDSA):

double scalar multiplication on E

Group operations on E:
point addition and point doubling

addition, multiplication, division mod p

1 5 5 3 2 3 1 1

PA PD

257 256

Prime field operations in GF(p):
Add Sub Mul Div

Figure 1: Execution layers of double scalar multiplication on E. On each layer the numbers of operations are given that are needed for a
single operation on the respective upper layer.

Signature unit:

signature generation and verification

Elliptic curve unit:
scalar mult. on E
PA, PD

Modular

Certificate
cache

Hash
engine

PRNG

Control
FSM

Control
FSM

Fp-ALU

Figure 2: Overview of the signature system.

the modules are 256 bit wide so that complete operands
up to 256-bit width (as in the p256 case) can be stored
and transmitted within a single clock cycle. Four inputs,

two outputs, and four combined operand/result register
as well as a flexible interconnect allow a start of two
operations each at the same time as long as they do not
use the same basic arithmetic units. The units perform
operations independently, so that using different starting
points parallel execution in all four subunits is possible. This
allows parallelisation especially in the scalar multiplication
(see Section 5.2.1).

The Fp-adder and -subtractor perform each operation in
a single clock cycle as a general addition/subtraction with
subsequent reduction. The Fp multiplying module computes
the modular multiplication iteratively as shift-and-add with
reduction mod p in every step. It therefore needs |p| clock
cycles for one modular multiplication, |p| being the bit
length of the modulus and thereby also the maximum bit
length of the operands.

Modular inversion and division is the most complex task
of the ALU. It is based on a binary division algorithm on Fp;
see [14] for details. The runtime depends on the input values,



International Journal of Reconfigurable Computing 5

in reg pa sel in reg pd sel

MUX

Reg 1 Reg 2 Reg 3 Reg 4

Out1 Out2

M
U
X

M
U
X

In3 In4

mod mod mod mod
+ − × /

Reg

In1 In2

div sel

add sel mult sel

sub sel

A B A B A AB B
StartStart

ReadyReady

6-bit control wires

4-bit control wires

256-bit register

256-bit interconnects

Figure 3: Schematic overview of the Fp ALU.

Table 1: Hardware execution of point addition.

Step Fp unit No. of cycles

(1) t1 = y2 − y1 Sub 1

(2) t2 = x2 − x1 Sub 1

(3) t2 = t1/t2(= λ); t3 = x1 + x2 div; add max. 2|p|
(4) t1 = t2 · t2 Mult |p|
(5) t1 = t1 − t3(= x3) Sub 1

(6) t1 = x1 − t1 Sub 1

(7) t1 = t2 · t1 Mult |p|
(8) t1 = t1 − y1(= y3) Sub 1

max. 4|p| + 5

maximum runtime being 2|p| clock cycles, in the p256 case
therefore up to 512 cycles. Statistical analysis showed an
average runtime of 1.5 · |p| clock cycles.

ALU control is performed over multiplexer and module
control wires and is implemented as a finite state machine
presented in the following paragraph. The complete ALU
allocates 14256 LUT/FF pairs in a Xilinx Virtex-5 FPGA
and allows a maximum clock frequency of 41.2 MHz (after
synthesis).

In addition to the 256-bit arithmetic based on the mod-
ulus p256 the ECDSA unit also implements the arithmetic
for modulus p224. This is done using the same hardware
and is also implemented in the overlaying FSM. Theoretically
all moduli up to 256-bit width are supported by the ALU.
Nevertheless, in the following, all given data refers to the
256-bit key case. Details on resource consumption and
performance values are given in Section 7.

Table 2: Hardware execution of point doubling.

Step Fp unit No. of cycles

(1) t1 = x1 · x1 Mult |p|
(2) t2 = t1 + t1 Add 1

(3) t1 = t1 + t2 Add 1

(4) t1 = t1 + a Add 1

(5) t2 = y1 + y1 Add 1

(6) t2 = t1/t2(= λ); t3 = x1 + x1 div; add max. 2|p|
(7) t1 = t2 · t2 Mult |p|
(8) t1 = t1 − t3(= x3) Sub 1

(9) t1 = x1 − t1 Sub 1

(10) t1 = t2 · t1 Mult |p|
(11) t1 = t1 − y1(= y3) Sub 1

max. 5|p| + 7

5.2. Elliptic Curve Processing. On the elliptic curve E addition
of points is defined as group operation. Doubling of a point is
specially implemented as it requires a different computation
because general point addition is not defined with operands
being equal (see Section 3). A comprehensive introduction to
elliptic curve arithmetic including algorithms can be found
in [20]. To map the algorithms to the implemented specific
ALU, the single operation steps have to be scheduled to the
respective units. The operation schedules for point addition
and point doubling for execution on the ALU are given in
Tables 1 and 2.

In the tables, |p| stands for the bit length of the modulus
p. In the case of p256, this means |p| = 256. The execution
schedules map the operations to the executing units using



6 International Journal of Reconfigurable Computing

Input: Point P ∈ E; Integer k =∑l−1
i=0 ki2

i

with ki ∈ {0, 1} and kl−1 = 1.

Output: Point Q = kP ∈ E.

(1) P1 = P
(2) P2 = 2P
(3) for i = l − 2 downto 0 do
(4) if k = 0 then
(5) Pnew

1 = 2Pold
1

(6) Pnew
2 = Pold

1 + Pold
2

(7) else
(8) Pnew

1 = Pold
1 + Pold

2

(9) Pnew
2 = 2Pold

2

(10) end if
(11) end for
(12) return Q = P1

Algorithm 4: Scalar multiplication in E.

Point addition

Point doubling

Add Sub Mul Div

Figure 4: Parallel Scheduling of PA and PD.

three auxiliary register t1, t2, t3 for storing intermediate
results. As can be seen in the tables, the third register t3 is
used only once in each point operation and reduces the cycle
count in each case by one. If this additional clock cycle is
accepted, one 256-bit register can be saved.

5.2.1. Scalar Multiplication on E. Scalar multiplication in
step 2 is the central operation of the signature generation of
Algorithm 1. Computation is done iteratively using the so-
called Montgomery ladder [21, 22] showed in Algorithm 4.

The operations in the branches inside the for-loop,
meaning steps 5 and 6 in the if-branch, respectively, steps 8
and 9 in the else-branch, can be executed in parallel. Since it

Input: Point P,Q ∈ E; Integers k =∑l−1
i=0 ki2

i and

r =∑l−1
i=0 ri2

i with ki, ri ∈ {0, 1} and kl−1 ∨ rl−1 = 1.

Output: Point X = kP + rQ ∈ E.

(1) Precomputation: P + Q
(2) X = O (point at infinity)
(3) for i = l − 2 downto 0 do
(4) X = 2X
(5) X = X + (kiP + riG)
(6) end for
(7) return X

Algorithm 5: Simultaneous multiple point multiplication.

is a point addition and a point doubling each, a real parallel
execution on the ALU is possible using a tailored scheduling.
Figure 4 depicts the implemented schedule. Although the
computation of PA and PD is now done in parallel, a total
of five registers for intermediate results is sufficient because
the respective t3 register of PA and PD is not needed at the
same time and can therefore be shared.

The execution time using this schedule is 6|p| + 7 clock
cycles for a single pair of point addition and point doubling.
Compared to the time of (4|p| + 5) + (5|p| + 7) = 9|p| + 12
clock cycles needed for a sequential processing of PA and
PD, a performance gain of 33% can be achieved. Execution
time for the complete scalar multiplication is therefore at
maximum ((|p| − 1) · (6|p|+ 7) + (5|p|+ 7)) = 6|p|2 + 6|p|
clock cycles for the combination of point add and point
double.

5.2.2. Double Scalar Multiplication. For verification of
ECDSA signatures two independent scalar multiplications
have to be executed (see Algorithm 2, step 7). Instead of
computing independently in sequence, it is faster to compute
them together using an approach proposed originally by
Shamir (see [23]) also known as “Shamir’s trick” shown in
Algorithm 5.

In contrast to Algorithm 4, the central operations in steps
4 and 5 of Algorithm 5 cannot be parallelized as they depend
directly on each other. The maximum time consumption of
the algorithm is therefore

(
4
∣
∣p
∣
∣ + 5

)
+
∣
∣p
∣
∣ · ((5∣∣p∣∣ + 7

)
+
(
4
∣
∣p
∣
∣ + 5

))

= 9
∣
∣p
∣
∣2 + 16

∣
∣p
∣
∣ + 5

(5)

clock cycles for a double scalar multiplication. This is never-
theless less than the

2 ·
((

6
∣
∣p
∣
∣2 + 6

∣
∣p
∣
∣
)

+
(
4
∣
∣p
∣
∣ + 5

)) = 12
∣
∣p
∣
∣2 + 16

∣
∣p
∣
∣ + 5

(6)



International Journal of Reconfigurable Computing 7

kG + rQ

1 5 5 3 2 3 1 1

PA PD

257 256

1029 cc
20.6 µs

1287 cc
25.7 µs

1 cc
20 ns

1 cc
20 ns

256 cc
5.12 µs

512 cc
10.24 µs

7.9 ms
394.752 cc

Add Sub Mul Div

Figure 5: Complexity of execution layers of double scalar multipli-
cation on E. On each level, the number of clock cycles needed for
the respective operation is given. The times given refer to a clock
frequency of 50 MHz.

cycles that two independent scalar multiplications would
consume. Assuming uniform distribution step 5 is omitted
in 25% of the cases leaving an estimated runtime of

((
4
∣
∣p
∣
∣ + 5

)
+
∣
∣p
∣
∣ · ((5∣∣p∣∣ + 7

)
+ 0.75 · (4∣∣p∣∣ + 5

)))

= 8
∣∣p
∣∣2 + 14.75

∣∣p
∣∣ + 5

(7)

clock cycles. The composition of the double scalar multi-
plication on the different levels of computation is shown in
Figure 5.

5.3. Signature and Certificate Control System. On top of
the elliptic curve (EC) operations and the control FSM
performing them, the actual signature algorithms and the
certificate verification are implemented. This is done in a
separate FSM, controlling the EC arithmetic FSM, some
registers, and the auxiliary hashing and random number
generation. Figure 6 shows the sequence of operations of
the signature verification. See Algorithms 1 and 2 for the
implemented procedures.

This FSM is the upmost layer of the signature module
and provides a register interface for operands like messages,
signatures, certificates, and keys. For integration in an
embedded system, it has to be wrapped to support the
message format and create the inputs to select the function
needed. An example for an integration is given in Section 6.

5.4. SHA2 Hashing Module. The SHA2 hashing unit provides
functions SHA-224 and SHA-256 according to the Secure
Hash Algorithm (SHA) standard [24]. It is based on a
freely available verilog SHA-256 IP-core (available as SHA
IP Core at http://opencores.com/) adapted with a wrapper
performing precomputation of the input data and providing
a simple register interface accepting data in 32-bit chunks. In
addition the core has been enhanced to support SHA-224.

The unit processes input data in blocks of 512 bit needing
68 clock cycles each at a maximum clock frequency of
120 MHz (after synthesis) and a resource usage of 2277
LUT/FF pairs. After finishing the operation, the result is
available in a 256-bit output register.

5.5. Pseudorandom Number Generation. For ECDSA signa-
ture generation, a random value k is needed. To provide this k
the system incorporates a Pseudorandom Number Generator
(PRNG) consisting of two linear feedback shift registers
(LFSR), one with 256 bit length, feedback polynomial x255 +
x251 +x246 +1, and a cycle length of 2256−1 and a second LFSR
with 224 bit length, feedback polynomial x222 +x217 +x212 +1,
and a cycle length of 2224 − 1, both taken from [25].

The LFSR occupies 480 LUT/FF pairs and allows a
maximum clocking of 870 MHz although operated in the
system in the general system clock of 50 MHz. It is operated
continuously to reduce predictability of the produced num-
bers. The current register content is read out on demand.

For further improvement of the security level, a True
Random Number Generator (TRNG) could be integrated.
An example implementation of an FPGA-based TRNG can
be found in [26].

5.6. Certificate Cache. Usually digital signatures or their
respective public keys needed for verification are endorsed by
a certificate issued by a trusted third party, a so-called certifi-
cation authority (CA), to prove its authenticity. Verification
of the certificate requires a signature verification itself and is
therefore equally complex as the main signature verification
of the message. If communicating several messages with the
same communication peer using the same signature key, the
certificate can be stored hence saving the effort for repetitive
verification.

The system incorporates a certificate cache for up to 81
certificates stored in two BRAM blocks. It can be searched
in parallel with the signature verification (see Figure 6).
Replacement of certificates is performed using a least recently
used (LRU) policy.

6. Application Example

The system offers complete ECDSA signature and certificate
handling and can be used in a variety of embedded systems
seeking authentication and security of communication. As an
application example, we show the integration into a vehicle-
to-X (V2X) communication system. V2X communication is
an emerging topic aiming at information exchange between
vehicles on the road and between vehicles and infrastructure
like roadside units [27]. This can be used to enhance safety
on roads, optimize traffic flow, and help to avoid traffic
congestions [28]. Usually two types of broadcasted messages
are used, a network beacon sent regularly with a frequency
of 2–10 Hz containing status information of the sender and
additional event-triggered messages notifying about special
events and situations. Latter messages can also be forwarded
over several hops to reach receivers outside the direct wireless
communication range.



8 International Journal of Reconfigurable Computing

SHA-2(Msg)

HIT?

Cert cache
lookup

X = u1∗G + u2∗Q

Certificate

validation

(on ECC HW)

Coefficient
calculation

Check signature

Signature

valid?

End

No

Certificate
valid

Yes

No

No Yes

buffer

Certificate

Read

(LRU)

Write

Yes

Message RX

Store msg. In TX

cache

Store certificate

Discard message

Figure 6: Procedure for signature and certificate verification on the implemented ALU. The blue states mark the main steps.

Intervehicle domain Intravehicle
domain

Routing

Signature processing module Bridge

Information processing

module (IPM)

Message
evaluation

Firewall

BusNoC wide (32 bit)

BusNoC small (8 bit)

In-vehicle
gateway

Wireless
interface

Eth./WiFi
bridge

Figure 7: Schematic overview of the V2X-OBU.

To be able to base decisions and applications on infor-
mation received from other vehicles, trustworthiness of
this information is mandatory. To ensure the validity and
authenticity of information, signature schemes are used
to protect the messages broadcasted by the participating
vehicles against malicious attacks [29, 30]. As V2X com-
munication is at present in the process of standardization,
no fixed settings are available yet, but the use of ECDSA
is proposed in the IEEE 1609 Wireless Access in Vehicular
Environments (WAVE) standard draft [31] as well as the
proposals of European consortia [32], put together by the
COMeSafety project [33].

In the chosen realization V2X communication is per-
formed by a modular FPGA-based On Board-Unit (OBU)
presented in [34]; see Figure 7.

It consists of different functional modules connected by
a packet-based on-chip communication system [35]. The
signature verification system is integrated as a submodule
and performs signature handling for incoming and outgoing
messages automatically, being therefore transparent to the
other modules except for the unavoidable processing latency.
It is connected to two different on-chip communication
systems, one transmitting unsecured messages over an 8-
bit wide communication structure (BusNoC small), and the



International Journal of Reconfigurable Computing 9

PicoBlaze

Register set

DNA
controller

Message
RAM

Data Data

Data

Control

Control

Status
Status

Key Control

Data

2

NOC interface 1

NOC interface

Status
+

data

Status
+

data

Control

Control

Small bus

Wide bus

TPM/IF

Timer

Hash
engine

Unit
CTRL

LRU
manager

Certificate cache

ECDSA

container

ECC
engine

Figure 8: Wrapping of the signature system for V2X integration.

Table 3: Resource usage on an XC5VLX110T with 69.120 LUTs.

LUT-FF Pairs
(synthesis)

Rel. res. usage
on FPGA

Max. frequency
(MHz)

Signature unit 32.299 46.7% 50

ECDSA unit 24.637 36% 50.1

Hashing unit 2.277 3% 120.8

PRNG 482 0.7% 872.6

Fp-ALU 14.256 20% 41.2

Fp-ADD 858 1.2% 83

Fp-SUB 857 1.2% 92.8

Fp-MUL 2.320 3.4% 42.3

Fp-DIV 5.670 8.2% 73.4

other (BusNoC wide) transmitting only secured messages
containing signatures and certificates. These messages are
larger because of the additional data, and the latter commu-
nication structure is therefore 32 bit wide. A short descrip-
tion of the security system and its system integration is given
in [36]. Figure 8 depicts the wrapped signature system with
the interfacing to both communication structures.

This interfacing consists of a Direct Network Access
(DNA) controller and two interfaces to the Network-on-
Chip (NoC) communication structures. An 8-bit PicoBlaze
processor controls and configures the components. The
DNA controller manages the intramodular procedure and
generates the input and control data to the encapsulated
ECDSA module. The register set serves as data interface and
buffer for intermediate results.

The signature system accepts incoming messages, verifies
signatures and certificates, and passes only verified messages

Table 4: Performance of signature verification at 50 MHz.

Verification secp224r1 secp256r1

Compute time Worst case 7.23 9.42

(ms/Sig) Simulated 7.17 9.09

Throughput Worst case 138 106

(Sig/s) Simulated 140 110

Latency Worst case 361.151 471.111

(Cycles/Sig) Simulated 358.478 454.208

Table 5: Performance of signature generation at 50 MHz.

Generation secp224r1 secp256r1

Compute time Worst case 5.56 7.26

(ms/Sig) Simulated 5.45 7.15

Throughput Worst case 180 138

(Sig/s) Simulated 184 140

Latency Worst case 278.097 362.881

(Cycles/Sig) Simulated 272.345 357.315

on to the Information Processing Module (IPM) for further
processing. In case of an invalid signature the outer system
(IPM and Routing) is informed. For outgoing messages,
signatures are generated, and the corresponding certificate
is attached to the message which is then passed on to the
wireless interface.

6.1. Key Container. In the V2X environment privacy of
participants is of major importance. As messages containing



10 International Journal of Reconfigurable Computing

Table 6: Performance comparison for signature verification and generation for ECDSA on GF(p). Values marked with an asterisk (∗) are
only for the core operations scalar multiplication and multiple scalar multiplication, respectively, without all pre- and postprocessing and
hashing.

Bit length |p| Hardware resources Clk (MHz)
Generation (kG) Verification (Kg + rQ)

Time #/s Time #/s

Microcontroller implementations

Drutarovsky and
Varchola [7]

233 ARM7 25 742 ms 1.35 1240 ms 0.8

RIM [9] 256 ARM9EJ-S N.a. 168 ms 5.95 150 ms 6.7

PC processor implementations

eBACS [6] 256 Motorola PowerPC G4 7410 533 11.7 ms 85.2 14.1 ms 70.7

Petit [37] 256 Intel Pentium D 3400 3.33 ms 300 6.63 ms 151

eBACS [6] 256 Intel Atom 330 1600 2.9 ms 345 3.4 ms 294

eBACS [6] 256 Intel Core 2 Duo U9400 1400 1.88 ms 532 2.2 ms 455

Brown et al. [38] 256 Intel Pentium II 400 ∗1.67 ms ∗599 ∗6.4 ms ∗156

FPGA implementations

McIvor et al. [11] 256 Xilinx Virtex II Pro, 15755 CLB, 256 MUL 39.5 ∗3.86 ms ∗259 N.a. N.a.

Orlando and Paar [12] 192 Xilinx Virtex-E, 11416 LUT, 35 BRAM 40 ∗3 ms ∗333 N.a. N.a.

This paper 256 Xilinx Virtex 5, 14256 LUT/FF pairs 20 7.15 ms 140 9.09 ms 110

ASIC implementations

Sakiyama et al. [16] 256 243K gates (0.25 μm) 159 ∗4.3 ms ∗233 N.a. N.a.

Satoh and Takano [15] 256 120K gates (0.13 μm) 138 ∗2.68 ms ∗373 N.a. N.a.

vehicle type and further information like current position,
speed, and heading are continuously broadcasted from twice
to up to ten times a second, these messages could easily be
used by an eavesdropper to trace participants. To counter
such attempts anonymity in the form of pseudonyms is used
that are changed on a regular basis. A number of pseudonyms
for change are stored directly in the signature module’s key
container (see Figure 8). It also contains the public keys
of trusted certification authorities needed for verification
of certificates. The change itself is triggered by a dedicated
message sent to the signature processing system by the central
information processing module of the C2X system. For all
other modules this privacy function is fully transparent as
well.

6.2. Caching of Certificates. As V2X communication is not
deployed in the fleet so far and also realistic field tests with
larger numbers of vehicles are only just beginning (e.g.,
simTD [39] in Germany), large-scale predictions of message
numbers and network behaviour have to be based on simu-
lations and estimations. For an estimation of the expected
cache hit rate results from the literature are used. Seada
[40] show based on real-world measurements on American
freeways that the average communication time between two
vehicles is approximately 65 seconds. Based on that and
assuming a beaconing frequency of 10 Hz and a sufficient
cache size in only one out of 650 messages, the certificate
has to be validated. In addition pseudonym change has to

be regarded. Papadimitratos et al. [41] propose exchange
of pseudonyms every 60 seconds. Assuming stochastical
independence of both values, a cache hit rate of 99.68%
is possible. Since the communication is regular while the
peer vehicle is in range, an LRU strategy is suitable. The
required cache size depends strongly on the number of
vehicles in range and should therefore be adapted to the
expected situations.

7. Resources and Performance

The presented system has been realized using a Xilinx
XC5VLX110T Virtex-5 FPGA [42] on a Digilent XUP ML509
evaluation board [43]. The following values refer to an
implementation of the complete signature generation and
verification unit with interfacing for the application example
given previously. Table 3 shows an overview of the resource
usage.

After integration of all submodules, the ECDSA unit
allows a maximum clock frequency of 50 MHz that has
been successfully tested. Table 4 shows signature verification
performance values of the ECDSA unit at 50 MHz. Values for
signature generation are given in Table 5.

In both tables the worst case values given are calculations
based on the statistically estimated runtime of the algorithms
for scalar multiplication. As these runtimes depend on the
operand values, the measured average computation times are
different.



International Journal of Reconfigurable Computing 11

Direct comparison of the system’s performance is diffi-
cult, because implementations of complete ECDSA signature
and verification units with certificate handling are scarce.
So we can only compare the performance of the GF(p)
processing unit, where values are available. Table 6 gives an
overview in comparison to some implementations presented
already in Section 2.

8. Discussion

The presented system implements the complete ECDSA
signature processing in a modular way. As shown in the
application example, it can be integrated as an autonomous
subsystem to authenticate message traffic and provide ver-
ified information to the overlaying system. In comparison
to known full implementations (see Section 2), the system’s
performance of up to 110 verifications per second is by
one to two orders of magnitude better than software
implementations on microcontrollers, providing sufficient
performance for most applications. For high-performance
applications like the V2X application example given in detail
in Section 6, a still higher throughput of up to 1600 [41, 44],
respectively, over 2500 [45] signatures per second is needed
though. This can be achieved by a number of optimization
steps; see Section 9.

The complete signature module from Section 6 is nev-
ertheless prepared for further improvements. As can be
seen in Figure 8, the ECDSA system is encapsulated as a
submodule wrapped by the control and communication
system that fits to the external system structure. The ECDSA
system can therefore easily be replaced by a more performant
system without having to adapt the overall system struc-
ture.

9. Conclusion and Further Work

We presented a hardware-implemented subsystem for
ECDSA signature processing for integration into embedded
systems based on reconfigurable hardware. It can be inte-
grated as a stand-alone subsystem performing transparent
authentication functionality for communication systems.
Applicability of the system has been shown using vehicle-to-
X communication as a practical example.

The performance values presented in Section 7 are
sufficient for applications like entry control systems or
electronic payment, where the number of communica-
tion peers is small. For V2X communication even larger
throughput is necessary. Further work therefore includes
speeding up the computation. Promising approaches that
are subject to ongoing work here are the use of win-
dowing techniques on algorithmic level, the tailored use
of optimized representations like projective coordinates on
mathematical level, and the speedup of the field operations
on implementation level, for example, by the use of hardware
multipliers. Also the use of low-cost FPGAs and reduction
of the footprint is required for the use in embedded sys-
tems.

References

[1] FIPS, “Pub 197: Advanced Encryption Standard (AES),”
Federal information processing standards publication, U.S.
Department of Commerce, Information Technology Labora-
tory (ITL), National Institute of Standards and Technology
(NIST), Gaithersburg, Md, USA, 2001.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[3] FIPS, Pub 186-3: Digital signature standard (dss), Federal infor-
mation processing standards publication, U.S. Department
of Commerce, Information Technology Laboratory, National
Institute of Standards and Technology (NIST), Gaithersburg,
Md, USA, 2009.

[4] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987.

[5] V. S. Miller, “Use of elliptic curves in cryptography,” in
Proceedings of the Advances in Cryptology (CRYPTO ’85), pp.
417–426, 1986.

[6] eBACS, “ECRYPT Benchmarking of Cryptographic Systems,”
2010, http://bench.cr.yp.to/ebats.html.

[7] M. Drutarovsky and M. Varchola, “Cryptographic system on
a chip based on actel ARM7 soft-core with embedded true
random number generator,” in Proceedings of the 11th IEEE
Workshop on Design and Diagnostics of Electronic Circuits and
Systems (DDECS ’08), pp. 164–169, IEEE Computer Society,
Washington, DC, USA, 2008.

[8] RIM Blackberry 7230, “Datasheet,” 2010, http://pdadb.net/
index.php?m=specs&id=1467&view=1&c=rim.

[9] D. Hankerson, “Implementing elliptic curve cryptography (a
narrow survey),” in Proceedings of the Workshop in Implemen-
tation of Cryptographic Methods (WIMC ’05), 2005.

[10] G. Meurice de Dormale and J. J. Quisquater, “High-speed
hardware implementations of Elliptic Curve Cryptography: a
survey,” Journal of Systems Architecture, vol. 53, no. 2-3, pp.
72–84, 2007.

[11] C. J. McIvor, M. McLoone, and J. V. McCanny, “Hardware
elliptic curve cryptographic processor over GF(p),” IEEE
Transactions on Circuits and Systems I, vol. 53, no. 9, pp. 1946–
1957, 2006.

[12] G. Orlando and C. Paar, “A scalable gf(p) elliptic curve proces-
sor architecture for programmable hardware,” in Proceedings
of the Workshop on Cryptographic Hardware and Embedded
Systems (CHES ’01), vol. 2162 of Lecture Notes in Computer
Science, pp. 348–363, 2001.

[13] T. Güneysu and C. Paar, “Ultra high performance ecc over
nist primes on commercial fpgas,” in Proceedings of the
Workshop on Cryptographic Hardware and Embedded Systems
(CHES ’08), Lecture Notes in Computer Science, pp. 62–78,
Washington, DC, USA, 2008.

[14] S. Ghosh, M. Alam, I. S. Gupta, and D. R. Chowdhury,
“A robust GF(p) parallel arithmetic unit for public key
cryptography,” in Proceedings of the 10th Euromicro Conference
on Digital System Design Architectures, Methods and Tools
(DSD ’07), pp. 109–115, Washington, DC, USA, 2007.

[15] A. Satoh and K. Takano, “A scalable dual-field elliptic curve
cryptographic processor,” IEEE Transactions on Computers,
vol. 52, no. 4, pp. 449–460, 2003.

[16] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede,
“Multicore curve-based cryptoprocessor with reconfigurable
modular arithmetic logic units over GF (2n),” IEEE Transac-
tions on Computers, vol. 56, no. 9, pp. 1269–1282, 2007.



12 International Journal of Reconfigurable Computing

[17] K. Järvinen and J. Skyttä, “Cryptoprocessor for Elliptic Curve
Digital Signature Algorithm (ECDSA),” Tech. Rep., Helsinki
University of Technology, Signal Processing Laboratory, 2007.

[18] NIST, “Recommended elliptic curves for federal government
use,” Tech. Rep., National Institute of Standards and Technol-
ogy, U.S. Department of Commerce, 1999.

[19] Certicom Research, “Standards for Efficient Cryptography,
SEC 2: Recommended Elliptic Curve Domain Parameters,”
2000.

[20] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography, Springer, New York, NY, USA, 2004.

[21] P. L. Montgomery, “Modular multiplication without trial
division,” Mathematics of Computation, vol. 44, pp. 519–521,
1985.

[22] P. L. Montgomery, “Speeding the Pollard and elliptic curve
methods of factorization,” Mathematics of Computation, vol.
177, pp. 243–264, 1987.

[23] T. El Gamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions on
Information Theory, vol. 31, 1985.

[24] FIPS, Pub 180-2: Secure hash standard (shs), Federal infor-
mation processing standards publication, U.S. Department of
Commerce, National Institute of Standards and Technology
(NIST), Gaithersburg, USA, 2002.

[25] R. Ward and T. Molteno, “Table of Linear Feedback Shift
Registers,” 2007, http://www.otagophysics.ac.nz/px/research/
electronics/papers/technical-reports/lfsr table.pdf.

[26] D. Schellekens, B. Preneel, and I. Verbauwhede, “FPGA vendor
agnostic true random number generator,” in Proceedings of
the International Conference on Field Programmable Logic and
Applications (FPL ’06), pp. 139–144, August 2006.

[27] “CAR 2 CAR Communication Consortium, Manifesto—
Overview of the C2C-CC System v1.1,” 2007.

[28] Commission of the European Communities, “European trans-
port policy for 2010: time to decide,” white paper com
370 final, 2001, http://ec.europa.eu/transport/strategies/doc/
2001 white paper/lb com 2001 0370 en.pdf.

[29] P. Papadimitratos, L. Buttyan, T. Holczer et al., “Secure
vehicular communication systems: design and architecture,”
IEEE Communications Magazine, vol. 46, no. 11, pp. 100–109,
2008.

[30] F. Kargl, P. Papadimitratos, L. Buttyan et al., “Secure vehicular
communication systems: design and architecture,” IEEE Com-
munications Magazine, vol. 46, no. 11, pp. 110–118, 2008.

[31] IEEE Vehicular Technology Society, ITS Committee, IEEE
Trial-Use Standard for Wireless Access in Vehicular Environ-
ments (WAVE)—Security Services for Applications and Man-
agement Messages, 2006.

[32] COMeSafety Project, “European ITS Communication
Architecture—Overall Framework,” 2008, http://www.come-
safety.org/.

[33] COMeSafety Project—Communication for eSafety, “Project
website,” 2010, http://www.comesafety.org/.

[34] O. Sander, B. Glas, C. Roth, J. Becker, and K. D. Müller-Glaser,
“Design of a vehicle-to-vehicle communication system on
reconfigurable hardware,” in Proceedings of the International
Conference on Field-Programmable Technology (FPT ’09), pp.
14–21, IEEE, 2009.

[35] O. Sander, B. Glas, C. Roth, J. Becker, and K. D. Müller-
Glaser, “Priority-based packet communication on a bus-
shaped structure for FPGA-systems,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhi-
bition (DATE ’09), pp. 178–183, April 2009.

[36] B. Glas, O. Sander, V. Stuckert, K. D. Müller-Glaser, and
J. Becker, “Car-to-car communication security on reconfig-
urable hardware,” in Proceedings of the IEEE 69th Vehicular
Technology Conference (VTC ’09), Barcelona, Spain, 2009.

[37] J. Petit, “Analysis of ecdsa authentication processing in vanets,”
in Proceedings of the 3rd International Conference on New
Technologies, Mobility and Security (NTMS ’09), pp. 388–392,
IEEE Press, Piscataway, NJ, USA, 2009.

[38] M. Brown, D. Hankerson, and A. Menezes, “Software imple-
mentation of the nist elliptic curves over prime fields,” in
Proceedings of the Topics in Cryptology (CT-RSA ’01), vol. 2020
of Lecture Notes in Computer Science, pp. 250–265, Springer,
Berlin, Germany, 2001.

[39] simTD, “Sichere Intelligente Mobilität: Testfeld Deutschland.
Project webpage,” 2008.

[40] K. Seada, “Insights from a freeway car-to-car real-world exper-
iment,” in Proceedings of the 3rd ACM International Workshop
on Wireless Network Testbeds, Experimental Evaluation and
Characterization (WiNTECH ’08), pp. 49–55, ACM, New York,
NY, USA, 2008.

[41] P. Papadimitratos, G. Calandriello, J. P. Hubaux, and A. Lioy,
“Impact of vehicular communications security on transporta-
tion safety,” in Proceedings of the IEEE INFOCOM Workshops,
April 2008.

[42] Xilinx Inc., UG190: Virtex-5 FPGA User Guide. v5.2, 2009.
[43] Xilinx Inc., UG347: ML505/ML506/ML507 Evaluation

Platform—User Guide, 2009. v3.1.1, 2009.
[44] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle

safety messaging in DSRC,” in Proceedings of the 1st ACM Inter-
national Workshop on Vehicular Ad Hoc Networks (VANET’04),
pp. 19–28, October 2004.

[45] M. Torrent Moreno, Inter-vehicle communications: achieving
safety in a distributed wireless environment, Dissertation,
Shaker, 2007.



Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical 
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Journal of 

Sensors

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Active and Passive  
Electronic Components

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
Observation

 International Journal of


