98 research outputs found

    Optimal fiducial points for pulse rate variability analysis from forehead and finger PPG signals

    Get PDF
    Objective: The aim of this work is to evaluate and compare five fiducialpoints for the temporal location of each pulse wave from forehead and fingerphotoplethysmographic pulse waves signals (PPG) to perform pulse rate variability(PRV) analysis as a surrogate of heart rate variability (HRV) analysis. Approach: Forehead and finger PPG signals were recorded during tilt-table testsimultaneously to the ECG. Artifacts were detected and removed and, five fiducialpoints were computed: apex, middle-amplitude and foot points of the PPG signal,apex point of the first derivative signal and, the intersection point of the tangent tothe PPG waveform at the apex of the derivative PPG signal and the tangent to thefoot of the PPG pulse defined as intersecting tangents method. Pulse period (PP)time intervals series were obtained from both PPG signals and compared to the RRintervals obtained from the ECG. Heart and pulse rate variability signals (HRV andPRV) were estimated and, classical time and frequency domain indices were computed. Main Results: The middle-amplitude point of the PPG signal (nM), the apexpoint of the first derivative (n*A), and the tangents intersection point (nT) are themost suitable fiducial points for PRV analysis, which result in the lowest relativeerrors estimated between PRV and HRV indices, higher correlation coefficients and reliability indexes. Statistically significant differences according to the Wilcoxon testbetween PRV and HRV signals were found for the apex and foot fiducial points ofthe PPG, as well as the lowest agreement between RR and PP series according toBland-Altman analysis. Hence, they have been considered less accurate for variabilityanalysis. In addition, the relative errors are significantly lower fornMandn*Afeaturesby using Friedman statistics with Bonferroni multiple-comparison test and, we proposenMas the most accurate fiducial point. Based on our results, forehead PPG seems toprovide more reliable information for a PRV assessment than finger PPG. Significance: The accuracy of the pulse wave detections depends on the morphologyof the PPG. There is therefore a need to widely define the most accurate fiducial pointto perform a PRV analysis under non-stationary conditions based on different PPGsensor locations and signal acquisition techniques

    Photoplethysmography-Based Biomedical Signal Processing

    Get PDF
    In this dissertation, photoplethysmography-based biomedical signal processing methods are developed and analyzed. The developed methods solve problems concerning the estimation of the heart rate during physical activity and the monitoring of cardiovascular health. For the estimation of heart rate during physical activity, two methods are presented that are very accurate in estimating the instantaneous heart rate at the wrist and, at the same time, are computationally efficient so that they can easily be integrated into wearables. In the context of cardiovascular health monitoring, a method for the detection of atrial fibrillation using the video camera of a smartphone is proposed that achieves a high detection rate of atrial fibrillation (AF) on a clinical pre-study data set. Further monitoring of cardiovascular parameters includes the estimation of blood pressure (BP), pulse wave velocity (PWV), and vascular age index (VAI), for which an approach is presented that requires only a single photoplethysmographic (PPG) signal. Heart rate estimation during physical activity using PPG signals constitutes an important research focus of this thesis. In this work, two computationally efficient algorithms are presented that estimate the heart rate from two PPG signals using a three axis accelerometer. In the first approach, adaptive filters are applied to estimate motion artifacts that severely deteriorate the signal quality. The non-stationary relationship between the measured acceleration signals and the artifacts is modeled as a linear system. The outputs of the adaptive filters are combined to further enhance the signal quality and a constrained heart rate tracker follows the most probable high energy continuous line in the spectral domain. The second approach is modest in computational complexity and very fast in execution compared to existing approaches. It combines correlation-based fundamental frequency indicating functions and spectral combination to enhance the correlated useful signal and suppress uncorrelated noise. Additional harmonic noise damping further reduces the impact of strong motion artifacts and a spectral tracking procedure uses a linear least squares prediction. Both approaches are modest in computational complexity and especially the second approach is very fast in execution, as it is shown on a widely used benchmark data set and compared to state-of-the-art methods. The second research focus and a further major contribution of this thesis lies in the monitoring of the cardiovascular health with a single PPG signal. Two methods are presented, one for detection of AF and one for the estimation of BP, PWV, and VAI. The first method is able to detect AF based on a smartphone filming the finger placed on the video camera. The algorithm transforms the video into a PPG signal and extracts features which are then used to discriminate between AF and normal sinus rhythm (NSR). Perfect detection of AF is already achieved on a data set of 326 measurements (including 20 with AF) that were taken at a clinical pre-study using an appropriate pair of features whereby a decision is formed through a simple linear decision equation. The second method aims at estimating cardiovascular parameters from a single PPG signal without the conventional use of an additional electrocardiogram (ECG). The proposed method extracts a large number of features from the PPG signal and its first and second order difference series, and reconstructs missing features by the use of matrix completion. The estimation of cardiovascular parameters is based on a nonlinear support vector regression (SVR) estimator and compared to single channel PPG based estimators using a linear regression model and a pulse arrival time (PAT) based method. If the training data set contains the person for whom the cardiovascular parameters are to be determined, the proposed method can provide an accurate estimate without further calibration. All proposed algorithms are applied to real data that we have either recorded ourselves in our biomedical laboratory, that have been recorded by a clinical research partner, or that are freely available as benchmark data sets

    Energy Efficient Computing with Time-Based Digital Circuits

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2019. Major: Electrical Engineering. Advisor: Chris Kim. 1 computer file (PDF); xv, 150 pages.Advancements in semiconductor technology have given the world economical, abundant, and reliable computing resources which have enabled countless breakthroughs in science, medicine, and agriculture which have improved the lives of many. Due to physics, the rate of these advancements is slowing, while the demand for the increasing computing horsepower ever grows. Novel computer architectures that leverage the foundation of conventional systems must become mainstream to continue providing the improved hardware required by engineers, scientists, and governments to innovate. This thesis provides a path forward by introducing multiple time-based computing architectures for a diverse range of applications. Simply put, time-based computing encodes the output of the computation in the time it takes to generate the result. Conventional systems encode this information in voltages across multiple signals; the performance of these systems is tightly coupled to improvements in semiconductor technology. Time-based computing elegantly uses the simplest of components from conventional systems to efficiently compute complex results. Two time-based neuromorphic computing platforms, based on a ring oscillator and a digital delay line, are described. An analog-to-digital converter is designed in the time domain using a beat frequency circuit which is used to record brain activity. A novel path planning architecture, with designs for 2D and 3D routes, is implemented in the time domain. Finally, a machine learning application using time domain inputs enables improved performance of heart rate prediction, biometric identification, and introduces a new method for using machine learning to predict temporal signal sequences. As these innovative architectures are presented, it will become clear the way forward will be increasingly enabled with time-based designs

    Embedding Temporal Convolutional Networks for Energy-efficient PPG-based Heart Rate Monitoring

    Get PDF
    Photoplethysmography (PPG) sensors allow for non-invasive and comfortable heart rate (HR) monitoring, suitable for compact wrist-worn devices. Unfortunately, motion artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface. Several data fusion techniques have been introduced to cope with this problem, based on combining PPG signals with inertial sensor data. Until now, both commercial and reasearch solutions are computationally efficient but not very robust, or strongly dependent on hand-tuned parameters, which leads to poor generalization performance. In this work, we tackle these limitations by proposing a computationally lightweight yet robust deep learning-based approach for PPG-based HR estimation. Specifically, we derive a diverse set of Temporal Convolutional Networks for HR estimation, leveraging Neural Architecture Search. Moreover, we also introduce ActPPG, an adaptive algorithm that selects among multiple HR estimators depending on the amount of MAs, to improve energy efficiency. We validate our approaches on two benchmark datasets, achieving as low as 3.84 beats per minute of Mean Absolute Error on PPG-Dalia, which outperforms the previous state of the art. Moreover, we deploy our models on a low-power commercial microcontroller (STM32L4), obtaining a rich set of Pareto optimal solutions in the complexity vs. accuracy space

    A real-time ppg peak detection method for accurate determination of heart rate during sinus rhythm and cardiac arrhythmia

    Get PDF
    Objective: We have developed a peak detection algorithm for accurate determination of heart rate, using photoplethysmographic (PPG) signals from a smartwatch, even in the presence of various cardiac rhythms, including normal sinus rhythm (NSR), premature atrial contraction (PAC), premature ventricle contraction (PVC), and atrial fibrillation (AF). Given the clinical need for accurate heart rate estimation in patients with AF, we developed a novel approach that reduces heart rate estimation errors when compared to peak detection algorithms designed for NSR. Methods: Our peak detection method is composed of a sequential series of algorithms that are combined to discriminate the various arrhythmias described above. Moreover, a novel Poincaré plot scheme is used to discriminate between basal heart rate AF and rapid ventricular response (RVR) AF, and to differentiate PAC/PVC from NSR and AF. Training of the algorithm was performed only with Samsung Simband smartwatch data, whereas independent testing data which had more samples than did the training data were obtained from Samsung’s Gear S3 and Galaxy Watch 3. Results: The new PPG peak detection algorithm provides significantly lower average heart rate and interbeat interval beat-to-beat estimation errors—30% and 66% lower—and mean heart rate and mean interbeat interval estimation errors—60% and 77% lower—when compared to the best of the seven other traditional peak detection algorithms that are known to be accurate for NSR. Our new PPG peak detection algorithm was the overall best performers for other arrhythmias. Conclusion: The proposed method for PPG peak detection automatically detects and discriminates between various arrhythmias among different waveforms of PPG data, delivers significantly lower heart rate estimation errors for participants with AF, and reduces the number of false negative peaks. Significance: By enabling accurate determination of heart rate despite the presence of AF with rapid ventricular response or PAC/PVCs, we enable clinicians to make more accurate recommendations for heart rate control from PPG data

    Assessing the quality of heart rate variability estimated from wrist and finger PPG: A novel approach based on cross-mapping method

    Get PDF
    The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics

    A Survey of PPG's Application in Authentication

    Full text link
    Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential remedy to this problem. In particular, Photoplethysmogram (PPG) measures the change in blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals contain a wealth of individual cardiac information, researchers have begun to explore their potential in cyber security applications. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions.Comment: Accepted by Computer & Security (COSE

    Characterizing the Noise Associated with Sensor Placement and Motion Artifacts and Overcoming its Effects for Body-worn Physiological Sensors

    Get PDF
    Wearable sensors for continuous physiological monitoring have the potential to change the paradigm for healthcare by providing information in scenarios not covered by the existing clinical model. One key challenge for wearable physiological sensors is that their signal-to-noise ratios are low compared to those of their medical grade counterparts in hospitals. Two primary sources of noise are the sensor-skin contact interface and motion artifacts due to the user’s daily activities. These are challenging problems because the initial sensor placement by the user may not be ideal, the skin conditions can change over time, and the nature of motion artifacts is not predictable. The objective of this research is twofold. The first is to design sensors with reconfigurable contact to mitigate the effects of misplaced sensors or changing skin conditions. The second is to leverage signal processing techniques for accurate physiological parameter estimation despite the presence of motion artifacts. In this research, the sensor contact problem was specifically addressed for dry-contact electroencephalography (EEG). The proposed novel extension to a popular existing EEG electrode design enabled reconfigurable contact to adjust to variations in sensor placement and skin conditions over time. Experimental results on human subjects showed that reconfiguration of contact can reduce the noise in collected EEG signals without the need for manual intervention. To address the motion artifact problem, a particle filter based approach was employed to track the heart rate in cardiac signals affected by the movements of the user. The algorithm was tested on cardiac signals from human subjects running on a treadmill and showed good performance in accurately tracking heart rate. Moreover, the proposed algorithm enables fusion of multiple modalities and is also computationally more efficient compared to other contemporary approaches

    Applications Of Wearable Sensors In Delivering Biologically Relevant Signals

    Get PDF
    With continued advancements in wearable technologies, the applications for their use are growing. Wearable sensors can be found in smart watches, fitness trackers, and even our cellphones. The common applications in everyday life are usually step counting, activity tracking, and heart rate monitoring. However, researchers have developed ways to use these similar sensors for clinically relevant diagnostic measures, as well as, improved athletic training and performance. Two areas of interest for the use of wearable sensors are mental health diagnostics in children and heart rate monitoring during intense physical activity from new locations, which are discussed further in this thesis. About 20% of children will experience an anxiety or depressive disorder. These disorders, if left untreated, can lead to comorbidity, substance abuse, and even suicide. Current methods for diagnosis are time consuming and only offered to those most at risk (i.e., reported or referred by a teacher, doctor, or parent). For the children that do get referred to a specialist, the process is often inaccurate. Researchers began using mood induction task to observe behavioral responses to specific stimuli in hopes to improve the accuracy of diagnostics. However, these methods involve long hours of training and watching videos of the activities. Recently, a few studies have focused on using wearable sensors during mood induction tasks in hopes to pick up on relevant movements to distinguish those with and without an internalizing disorder. The first study presented in this thesis focuses on using wearable inertial measurement units during the ‘Bubbles’ mood induction task. A decision tree was developed to identify children with internalizing disorders, accuracy of this model was 71% based on leave-one-subject-out cross validation. The second study focuses on estimating heart rate using wearable photoplethysmography sensors at multiple body locations. Heart rate is an important vital sign used across a variety of contexts. For example, athletes use heart rate to determine whether they are hitting their desired heart rate zones during training and doctors can use heart rate as an early indicator of disease. With the advancements made in wearables, photoplethysmography can now be used to collect signals from devices anywhere on the body. However, estimating heart rate accurately during periods of intense physical activity remains a challenge due to signal corruption cause by motion artifacts. This study focuses on evaluating algorithms for accurately estimating heart rate from photoplethysmograms and determining the optimal body location for wear. A phase vocoder and Wiener filtering approach was used to estimate heart rate from the forearm, shank, and sacrum. The algorithm estimated heart rate to within 6.2 6.9, and 6.7 beats per minute average absolute error for the forearm, shank, and sacrum, respectively, across a wide variety of physical activities selected to induce varying levels of motion artifact
    • …
    corecore