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ABSTRACT 

 

Wearable sensors for continuous physiological monitoring have the potential to 

change the paradigm for healthcare by providing information in scenarios not covered by 

the existing clinical model. One key challenge for wearable physiological sensors is that 

their signal-to-noise ratios are low compared to those of their medical grade counterparts 

in hospitals. Two primary sources of noise are the sensor-skin contact interface and 

motion artifacts due to the user’s daily activities. These are challenging problems 

because the initial sensor placement by the user may not be ideal, the skin conditions can 

change over time, and the nature of motion artifacts is not predictable. The objective of 

this research is twofold. The first is to design sensors with reconfigurable contact to 

mitigate the effects of misplaced sensors or changing skin conditions. The second is to 

leverage signal processing techniques for accurate physiological parameter estimation 

despite the presence of motion artifacts. 

In this research, the sensor contact problem was specifically addressed for dry-

contact electroencephalography (EEG). The proposed novel extension to a popular 

existing EEG electrode design enabled reconfigurable contact to adjust to variations in 

sensor placement and skin conditions over time. Experimental results on human subjects 

showed that reconfiguration of contact can reduce the noise in collected EEG signals 

without the need for manual intervention. To address the motion artifact problem, a 

particle filter based approach was employed to track the heart rate in cardiac signals 

affected by the movements of the user. The algorithm was tested on cardiac signals from 



 

iii 

 

human subjects running on a treadmill and showed good performance in accurately 

tracking heart rate. Moreover, the proposed algorithm enables fusion of multiple 

modalities and is also computationally more efficient compared to other contemporary 

approaches. 
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1. INTRODUCTION  

1.1 Wearable Sensors 

In recent times, a significant amount of research has been dedicated to realizing 

pervasive, around-the-clock personal physiological monitoring systems that are both 

easy to use and accurate [1-6]. The standard practice for healthcare is for individuals to 

rely primarily on doctor and hospital visits. This model could be significantly augmented 

with the help of dedicated wearable sensors. The market for wearable medical devices 

was valued at approximately $3.3 billion in 2015, and is projected to rise to $7.8 billion 

by 2020 [7].  

Apart from generally being more convenient and cheaper than corresponding 

devices in a hospital, continuously monitoring wearable devices will be invaluable for 

identifying health-related events for which sporadic monitoring is insufficient. For 

example, wearable sensors can help manage patients with chronic obstructive pulmonary 

disease through early detection of ‘exacerbation episodes’ such as increased dyspnea or 

cough [8]. The data collected from wearable sensors can help better keep track of 

illnesses that require longer-term monitoring; for example, monitoring the vital signs of 

patients with congestive heart failure [8]. The collected data could also allow physicians 

to better predict outcomes and prevent more serious complications [9]. For instance, in a 

previous investigation, parameters such as heart rate and respiration rate collected over a 

number of days were used to build mortality prediction models [10]. Moreover, 

monitoring outside of clinics could also drive down healthcare costs [11]. This would be 

of significant benefit particularly in the United States where in 2015, health care 
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expenditure was about $3.2 trillion (i.e. $9,990-per-person), which accounted for 17.8% 

of the GDP [12]. 

There are a number of key requirements to maximize the usefulness and 

effectiveness of wearable sensor systems. Sensors must be robust to changes in 

placement by the user as well as changes in skin condition over time. The sensors must 

unobtrusively monitor the required parameters without unduly restricting the user’s 

choice of movements or activities. Finally, the signal processing by the sensor system 

must be power-aware to enable prolonged use without the need for a battery recharge. 

With the growth of the wearable medical device market, one also has to take into 

account the heterogeneity of the available devices. Heart rate for example could be 

measured by bio-potential, optical, bio-impedance and even motion sensors as in the 

case of the seismocardiogram. There could be multiple sensors simultaneously 

associated with a user. A successful signal processing framework can take advantage of 

this by not only being capable of working with different sensing modalities, but also 

through the fusion of multiple sensors. 

 

1.2 Summary of Noise Sources 

When it comes to body-worn physiological sensors, there are two key sources of 

noise: 

a) Improper contact with the sensing site on the body 

b) Motion artifacts introduced into the signals due to the user’s movements 
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The research presented in this dissertation tackles these two problems in the 

context of two different physiological signals. For the problem of improper sensor 

contact, the focus was on dry-contact bio-potential electrodes worn on the head for 

electroencephalography (EEG). For the problem of overcoming motion artifacts in the 

signal, the focus was on two signal modalities used to estimate heart rate: the bio-

potential based electrocardiogram (ECG) and the optical photoplethysmogram (PPG). 

The motivation and context for each of these two problems – sensor contact and motion 

artifacts – are presented in this section. 

For both the problems, the proposed solution targets the scenario of continuous, 

long-term monitoring with wearable sensors outside of a clinical setting as the user goes 

about their daily lives. The problems of sensor contact and motion artifacts are 

particularly exacerbated in this scenario due to the need for convenient dry contact and 

the natural activities of the user, respectively. This is one of the reasons these types of 

sensors are currently not deemed reliable enough to be medical grade equipment for 

healthcare [13]. 

We first describe the sensor contact problem. For wearable sensors outside of a 

clinical setting, the user is expected to be able to use these sensors independently and 

will not necessarily have the requisite expertise or inclination to rigorously ensure proper 

placement of the sensor each time. Furthermore, since these sensors are expected to be 

worn continuously as the user goes about their daily activities, the original placement as 

well as the skin conditions at the sensor location can vary over time as well.  For bio-
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potential sensors, improper placement can mean a higher impedance contact with the 

skin. This in turn typically leads to an increased amount of noise in the signal.  

EEG, a recording of the brain’s electrical activity, is measured by bio-potential 

sensors. When the brain initiates a task, the stimulus to complete the required action is 

communicated through a network of neurons, which are electrically excitable cells. One 

neuron can electrically excite its neighbors, thus building a chain of electrical signaling. 

When the electrical excitation is high enough, a voltage difference called the “action 

potential” is achieved and this traverses the neurons in the network. The electrodes 

placed on the head are designed to read this wave of electrical activity going across the 

scalp. Different tasks produce different patterns in different parts of the scalp and there 

are certain readily identifiable patterns. For example, upon closing the eyes there is a 

steady rhythm in the EEG in the frequency range of 8 – 12Hz, known as the alpha 

rhythm.  

EEG is especially sensitive to the quality of sensor contact. Currently the only 

solution to the sensor contact problem for dry electrodes is to take additional care in the 

initial placement and hope that the electrodes are robust enough to remain in the same 

position throughout the necessary period. Continuous monitoring of patients’ EEG  

outside of clinical settings using dry electrodes will be valuable for detecting the onset of 

medical conditions such as epilepsy,  and for facilitating communication with a brain-

computer interface (BCI). BCI provides an excellent non-muscular avenue for a user to 

interface with an external device. A good BCI infers the user’s intentions by interpreting 

the measured brain signals, perhaps elicited as a result of a specifically designed 



 

5 

 

paradigm, and performs the required action or actuation. This method of communication 

and control would be a very valuable asset in improving the quality of life of otherwise 

physically disabled individuals such as patients living with ALS or other paralyzing 

conditions [14]. This requires the development of a wearable dry-contact EEG system 

that takes into account not only the signal quality but also the robustness of the system 

for everyday use. 

 Wet or gel-based electrodes still represent the standard for medical grade EEG 

equipment [15]. Several noise sources associated with EEG acquisition have been linked 

to high impedance contact [16, 17] and so the gel solution in wet electrodes helps to 

create a suitably low impedance interface with the scalp. The signal-to-noise ratio (SNR) 

is consequently excellent for wet electrodes. However, most wet electrode based systems 

require long preparation times; and regular reapplication of the gel is needed to prevent 

the contact interface from drying out after long time periods. Wet electrode systems also 

sometimes require scalp abrasion to improve contact, causing scalp irritation and posing 

an infection risk.  For all these reasons, wet electrodes are not typically considered a 

convenient, viable option for a wearable system capable of long term EEG monitoring 

[18]. 

Dry contact electrodes on the other hand, are generally easy for non-experts to 

put on the user, or for the users to put on themselves independently when capable. They 

require no special preparation and are suitable for continuous long term use without 

significant degradation of the quality of the material making contact with the skin. 
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However the primary drawback compared to wet electrodes is the relatively significant 

increase in noise pickup.  

A typical design for dry electrodes is a number of conductive fingers, arranged in 

a circle, that are meant to penetrate through the hair and make a resistive contact with the 

scalp [19-21]. Examples of such electrodes are shown in Figure 1.1. The plurality of 

fingers is primarily for stability and redundancy of contact. Ultimately all the fingers are 

electrically shorted together to give one channel of EEG per electrode. 

 

 

 

Figure 1.1 - Finger based dry electrodes. Individual images taken from (left to 

right) [19-21]. Reprinted from Design Principles and Dynamic Front End 

Reconfiguration for Low Noise EEG Acquisition with Finger Based Dry Electrodes, 

Viswam Nathan and Roozbeh Jafari, IEEE Transactions on Biomedical Circuits 

and Systems, ©2015, IEEE 

 

 

The other source of noise for wearable sensors is motion artifacts. In the context 

of bio-potential sensors, motion can result in additional action potentials from the 

underlying tissue appearing in the target signal. As an example, Figure 1.2 shows two 

versions of the same electrocardiogram (ECG) segment, one clean and the other 

corrupted by motion artifacts with 0 dB SNR. The ECG and the motion artifact noise are 

taken from the MIT-BIH Arrhythmia Database and the MIT-BIH Noise Stress Test 
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Database respectively [22, 23]. In both figures, the true ECG R-peaks are marked in 

blue. The figure on the right annotates all the peaks detected by a wavelet-based peak-

detection algorithm, including false positives that are marked in black. Thus, we can see 

how a heart rate estimation algorithm based on peak detection would suffer due to these 

artifacts. For the optical PPG sensor, motion of the sensor with respect to the skin can 

result in changes in the optical path of the incident light, or changes in the reception of 

ambient light, both of which can lead to unpredictable variations in the signal.  

 

 

 

Figure 1.2 - Clean ECG with R-peaks marked (left) and Motion Artifact affected 

ECG (right). Reprinted from A Particle Filter Framework for the Estimation of 

Heart Rate from ECG Signals Corrupted by Motion Artifacts, Viswam Nathan, 

Ilge Akkaya and Roozbeh Jafari, IEEE Engineering in Medicine and Biology 

Conference, ©2015, IEEE 

 

 

Among the various physiological measures, there has been significant interest in 

wearable continuous heart rate (HR) monitoring, and it would be useful for both health 

and fitness applications. For example, heart rate variability is a condition that could be 

an indicator of myocardial ischemia [24], and continuous monitoring of the heart rate 

would increase the chances of a successful diagnosis. Wearable heart rate monitors could 
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also enable general fitness applications. For example, users would be able to tailor their 

exercise routines according to how their body is responding to the workload. Thus, this 

represents an application where overcoming motion artifacts is key to accurately 

recording an important physiological parameter. 

 

1.3 Research Overview 

1.3.1 Research Approach for Sensor Contact Problem 

To our knowledge, there has been no previous systematic study looking into the 

trade-offs involved in choosing the number, and arrangement, of fingers in a given 

design for dry contact EEG electrodes. The objective for this part of the research was to 

compare different designs of electrodes with each other to see if there were relative 

advantages associated with certain designs. One criterion for relative comparison was 

the impedance of contact under various placement conditions, with the assumption that a 

lower impedance contact results in a lower noise signal. Another criterion for 

comparison was SNR for a specific EEG task, which would indicate effectiveness in a 

BCI. Thus, the first part of the study provides experimental results that shed light on 

which designs perform relatively better in these tests for robustness and effectiveness. 

There has also been no previous study analyzing the signals from each individual 

finger and the dynamics of the mixed signal obtained when all the fingers are shorted 

together on a dry EEG electrode. It is reasonable to expect that the different fingers on 

one electrode have different contact qualities for reasons such as skewed placement of 

the electrode or the interference of hair or sweat causing local effects on only some 
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fingers. One question that follows is whether these local noise effects on a subset of 

fingers can adversely affect the overall EEG signal acquired from the combination of all 

fingers. If this is indeed the case, a natural next step would be to investigate whether 

excluding these ‘bad contact’ fingers from the circuit improves the overall EEG signal. 

In other words, the objective for this part of the research was to show that the SNR of the 

EEG signal from a single electrode improves when using only a subset of ‘good contact’ 

fingers instead of all the fingers. 

This research aims to grant a deeper insight into the electrode skin interface noise 

for dry electrodes, provide guidance for the improvement of existing finger-based 

electrode designs and propose a novel extension to the design that enables dynamic 

reconfiguration of the fingers to continually strive for better SNR under varying scalp 

conditions and sensor placements. 

 

1.3.2 Research Approach for Motion Artifact Problem 

Motion artifacts likely cannot be avoided altogether; it is difficult to imagine a 

sensor design that is eminently wearable and convenient, and at the same time resistant 

to motion artifacts. Therefore, we aim to design a signal processing approach that can 

estimate the target phenomenon despite the presence of motion artifacts. 

The primary objective of this second part of the research is to develop a signal 

processing algorithm to estimate heart rate accurately from a noisy, motion artifact-

affected signal, with results validated on ECG and PPG signals. 
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However, a secondary objective is to develop this algorithm such that it is not 

wholly tied down to signal features specific to ECG and PPG, and it is also capable of 

fusing information from multiple signal sources. The reason for this is that wearable 

sensors to be worn by the user around-the-clock outside of the clinical setting can be in 

many form factors and utilize other signal modalities (such as bio-impedance, motion 

sensors or vision sensors).  

Finally, an important consideration when designing wearable sensors is the 

computational power. Due to form factor and battery lifetime constraints, the processors 

in these systems are relatively modest, and hence it is important to ensure that the 

computational load due to signal processing algorithms is minimized as much as 

possible [25]. Optimizing computations to reduce power consumption was not the focus 

for this research, so the estimation algorithm is not built from the ground-up in a power-

aware fashion. However, once the highest level of accuracy for estimation was 

established, we were interested in tuning parameters of the algorithm to reduce 

computation time and observing how this affected the accuracy. Moreover, we wanted to 

ensure the computation time was comparable to contemporary algorithms for the same 

application. 

This research presents the use of a particle filter to estimate heart rate from a 

variety of noisy signal modalities, as well as the fusion of these. The particle filter is a 

sequential Monte Carlo routine that probabilistically estimates the true state of a given 

system by updating the weights and redistributing a set of ‘particles’. More details on the 
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working of the particle filter will be given in a subsequent section of this document and 

can also be found in other works [26, 27]. 

Based on sensor observations, the implementation of the particle filter in this 

research tracks multiple possibilities for the target parameter and rewards those that are 

consistent over time. We know that the human heart rate is relatively steady over short 

time intervals, and so this design is suitable for tracking heart rate accurately. This 

assumption of consistency and quasi-periodicity applies to other phenomena as well, 

such as respiration rate or continuous arterial blood pressure (ABP). As such, not only is 

the proposed implementation independent of specific signal modalities or features, it is 

also potentially adaptable for other applications in the same domain. 

1.3.3 Research Contributions 

 The contributions of the research are as follows: 

1. Novel experiments comparing robustness (consistency of low impedance contact

under different conditions) and effectiveness (SNR for EEG BCI task) of 

different arrangements of fingers on a finger-based dry EEG electrode. 

2. Findings on the local noise effects and differences among fingers of a single dry

EEG electrode using a custom design that could separately examine signals from 

each individual finger. 

3. Introduced the concept of finger selection and reconfiguration of contact on

finger-based dry EEG electrodes to improve SNR. An innovative reconfigurable 
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electrode was designed and tested on real human subjects to prove the 

effectiveness of the concept. 

4. A novel particle filter formulation for estimation of heart rate from noisy sensor 

streams without dependence on specific signal features. 

5. Demonstration of the accuracy of the proposed heart rate estimation technique 

using actual motion-artifact affected ECG and PPG data. 

6. Proof of the particle filter implementation’s potential for fusion of multiple 

modalities by using simultaneous ECG and PPG streams as well as motion 

information from an accelerometer to improve heart rate estimates. 

7. Demonstration of improved computational efficiency of the particle filter based 

heart rate estimation solution compared to contemporary related works. 

 

1.4 Organization of this Dissertation 

The rest of this dissertation document is organized as follows: Section 2 details 

the necessary background information for the theoretical concepts and hardware systems 

used during the course of this research. Section 3 lays out the various published related 

works to give a sense of the current status of research contributions to the problems 

being studied and how it contrasts with the contributions of this dissertation. Section 4 

describes the research looking into the comparison of different arrangements of fingers 

on a finger-based dry EEG electrode, whereas Section 5 describes the research 

investigating the noise effects on individual fingers of a finger-based dry EEG electrode 

and the possibility of improving the overall signal through finger selection on an 
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individual electrode. Section 6 describes the research pertaining to the use of a particle 

filter to estimate heart rate in noisy cardiac signals corrupted by motion artifacts. Finally, 

Section 7 summarizes and highlights the primary conclusions of this work. 
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2. PRELIMINARIES 

This section expands on some background topics to better contextualize the 

research described in subsequent sections. We first describe the known theory regarding 

the noise sources at the skin-electrode interface that cause the issues associated with 

improper sensor contact. This is then followed by a description of the EEG acquisition 

system used in this study to collect EEG data in order to validate the various ideas for 

improving sensor contact for finger-based dry EEG electrodes. Then, the following sub-

section presents the known theory surrounding motion artifacts and how they affect 

signals measured by wearable sensors. This is followed by a brief summary of the 

human heart rate model and associated assumptions, which encapsulates domain-specific 

knowledge that will be leveraged in the particle filter algorithm for heart rate estimation. 

The following sub-section defines the various hardware systems used to collect 

experimental data for the heart rate estimation study. Finally, the last sub-section 

provides a high-level overview of particle filters in general. 

 

2.1 Skin Electrode Noise 

The circuits and electronics for physiological monitoring have developed to the 

extent that they are no longer the dominant source of noise in bio-potential 

measurements using dry electrodes; instead it is the various noise effects at the electrode 

skin interface [28], especially in the frequencies of interest for physiological applications 

from 1 to 100Hz [29]. This noise is electrochemical in origin, due to the non-stationary 

conditions of the ionic skin surface [30]. The amplitude of this noise can be as high as 
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60µVp-p, which is much higher than several target evoked potentials for EEG BCI 

applications [16]. Moreover, this noise has a frequency characteristic that is anywhere 

between 1/f and 1/f2, meaning it has a larger effect on lower frequencies which are 

usually the frequencies of interest for physiological signals such as ECG and EEG. 

Studies have also shown that these noise sources, while not yet fully understood, have a 

definite correlation with impedance of contact. The half-cell effect, for example, 

happens when the metal of the electrode comes into contact with an electrolyte such as 

salt and sweat on the skin, causing an exchange of ions and the development of a 

potential difference directly proportional to the impedance of contact [16, 17]. This 

suggests that studying and monitoring the impedance of contact is crucial to the 

proposed investigations of electrode design and reconfigurable contact. There are other 

external sources of interference such as capacitively coupled 50/60Hz power line noise 

[31], but in this study, the electrodes are designed to be buffered and shielded to mitigate 

external interference. Moreover these are at higher frequencies outside the range of 

interest and it is assumed they can be digitally filtered out for most applications. In any 

event, even for external interference, lower impedances of electrodes usually means 

better impedance matching and hence better rejection of common mode interferences 

such as 50/60Hz noise.  

In summary, the underlying mechanisms of skin electrode noise are not yet fully 

understood, yet they have a tangible, unpredictable and unavoidable effect on wearable 

bio-potential sensors. It has been established however, that the impedance of contact is 

correlated with the noise from the skin-electrode interface. 
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2.2 EEG Acquisition System 

The specifics of the custom electrode designs for the investigations into the 

effects of the arrangement of fingers will be presented in Section 4, and the designs for 

analysis of signals from individual fingers and selection of subsets of fingers will be 

presented in Section 5. In this section we describe the general overall EEG acquisition 

system that was used to collect data for this study.  

The platform used to acquire the EEG signals is a custom PCB designed by our 

lab that is shown in Figure 2.1. The platform incorporates two daisy-chained TI 

ADS1299 analog front ends for 16-channel EEG signal acquisition, condition and 

digitization, the TI MSP430 microcontroller for controlling the communication of the 

digitized results, and a BlueRadios dual mode Bluetooth radio for wireless 

communication of the data to a PC. A gain of 1 is used on the ADS1299 differential 

amplifiers so as not to saturate them. Additional gain is not necessary as the 24-bit ADC 

has a resolution of roughly 0.4 µV. The board is battery powered and can recharge the 

battery using a micro-USB interface. The board also incorporates an active driven right 

leg (DRL) circuit for better common mode rejection based on the design in a previous 

work [15].  

We assembled our own custom dry electrodes which consist of two pieces that 

snap together as shown in Figure 2.2. The first piece shown to the left in the figure has 

an LMP7721 low-noise buffer that receives the measured signals through the snap and 

then transmits them through the wires. Consequently these buffered signals are not 

affected by motion artifacts or other external noise affecting the cables carrying the 
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signals to the board. This interfaces with the piece that actually makes contact with a 

scalp: a circular PCB with multiple spring loaded fingers; the fingers are the same ones 

used and verified in a previous work [21]. Each of these electrodes is connected to a 

single input channel of the EEG acquisition board. This overall setup allows dry contact 

based EEG signal acquisition, whereas custom changes to the electrode design facilitates 

our research contributions to be described in Sections 4 and 5. 

 

 

 

Figure 2.1 - 16-channel EEG platform designed by our lab 
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Figure 2.2 – Electrode snap with buffer circuit (left) attached to finger based dry 

electrode (right) 

 

 

2.3 Motion Artifacts 

Motion artifacts are a well-known and challenging problem for most wearable 

sensor applications. First, there are the obvious ill-effects of the sensor itself moving 

without having a stable contact, which is especially the case when there is a need to use 

dry contact instead of adhesive sensors which are more stable. This is especially 

problematic for optical sensors, wherein even small movements can result in large and 

non-deterministic changes in the sensed PPG waveform due to changes in the optical 

path. 

However, even if the sensor is housed in such a way that it is relatively 

stationary, bio-potential sensors are still susceptible to motion artifacts. This is because 

motion inherently causes additional unwanted potentials which are picked up by the 

sensors. Much like the skin electrode artifacts described earlier, there is no scientific 

consensus in the literature for the true underlying causes of these potentials, but there are 

some theories. Sweat on the surface of the skin can act as an electrolyte, causing junction 
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potentials between the electrode and the skin that are sensitive to motion [31]. There is 

also an inherent stable potential difference between the outer and inner layers of the skin, 

and any kind of stretching or deformation can change this potential which in turn is 

picked up by differential voltage sensors [31]. According to one study, this change could 

be the result of an influence on active metabolic processes, or simply a change in 

impedance due to the deformation of the skin [32]. This study also showed that even if 

the skin returns to its stable state and impedance, the changes in potential can continue to 

last beyond this. Other theories include piezoelectric effects of skin tissue and the 

varying alignment of Donnan potentials in layers of charged proteins on the skin [33]. 

Another important point to note is that the frequency spectrum of these motion 

artifacts overlaps with those of the typical signals of interest, so simple filtering is not a 

feasible solution. In summary, motion artifacts in wearable systems likely cannot be 

avoided through hardware design solutions, and sophisticated signal processing is 

required to monitor physiological parameters during periods of user motion. 

 

2.4 Assumptions on Human Heart Rate 

The exact model governing the change in human heart rate over time is complex, 

and there is still no complete definition or consensus in the literature. There is some 

evidence that the distribution of beat to beat intervals has multifractal and non-Gaussian 

properties [34-36]; however, perhaps understandably due to the many factors affecting 

this physiological process, there is no closed form equation defining the fluctuations in 

heart rate over time. However, our hypothesis is that the particle filter can provide a 
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good approximation of this underlying distribution through the observations from the 

sensors. Moreover, even though we do not know the dynamics of the heart rate exactly, 

we can assume that the cardiac signals such as the ECG and PPG are quasi-periodic in 

nature, as was done in a couple of previous works [37, 38].  

 

2.5 Cardiac Signal Acquisition Systems 

For the research aiming to estimate heart rate accurately from motion artifact 

affected cardiac signals, a significant portion of the data is taken from a freely available 

database. However, we also collected some ECG and PPG signals ourselves, and the 

systems used to acquire them are described in this section. 

 

2.5.1 ECG Acquisition System 

Since the ECG is also a biopotential signal like the EEG, we leveraged the same 

EEG acquisition platform described in section 2.2. The only change is that we did not 

use the finger-based contact, which is intended to penetrate through hair on the scalp. 

Instead, for a dry contact we used the first piece of the electrode alone with the metal of 

the snap making contact with the skin. When a wet contact was needed, to provide more 

reliable ECG for reference, we used Arbo pre-gelled electrodes. These electrodes had an 

adhesive gel underside that made contact with the skin, and incorporated a metal button 

on the topside that snapped into our electrode just as the finger-based contact for EEG.  
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2.5.2 PPG Acquisition System 

To acquire PPG signals from the wrist while the subject performed activities 

such as walking or running, we used a system previously designed by our lab called 

BioWatch. The BioWatch incorporated the TI AFE4400 analog front-end for PPG signal 

acquisition. The underside of the watch houses the PPG sensor, which includes green 

LEDs and a photodiode operating in reflective mode. This sensor remains flush against 

the skin when the watch is worn, and is capable of measuring the PPG accurately when 

the person is at rest, as shown in some of our previous works using the BioWatch [39-

41]. Images of the BioWatch are shown below in Figure 2.3. In addition, the BioWatch 

also incorporates the MPU-9150, which is a 9-axis inertial sensor. We use the 

accelerometer data from this sensor as an additional source of information in the 

proposed particle filtering framework to estimate heart rate. 
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Figure 2.3 - BioWatch top (left) and bottom (right). Reprinted from BioWatch — A 

wrist watch based signal acquisition system for physiological signals including 

blood pressure, Simi Susan Thomas et al, IEEE Engineering in Medicine and 

Biology Conference, ©2014, IEEE  

 

 

2.6 Particle Filtering 

Particle Filtering is a tool used to solve the state estimation problem, wherein a 

certain state changes over time, and the sensor used to measure the state is noisy and 

imperfect. State estimation problems are widely found in the real world, where the state 

being estimated can be anything from the position of an object in a room to the price of a 

stock. 

These problems are typically formulated with two models: a system model or 

state transition model that describes how the true state changes over time, as well as an 

observation model that describes how the observations from the noisy sensor relate to 

the state being estimated. If one assumes that these two models are linear functions and 
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the posterior probability density of the true state is Gaussian, then the Kalman filter 

provides an optimal solution to the state estimation problem. However, in real-world 

scenarios often these assumptions do not hold true, due to non-linearities. The Extended 

Kalman Filter attempts to circumvent this by approximating the non-linearities through 

local linearization, but this still may not be a suitable and sufficient approximation for 

certain highly non-linear models. 

The particle filter on the other hand, requires no assumptions about the shape of 

the posterior distribution and can accept arbitrary functions for the state transition and 

observation models. The algorithm works by instantiating a number of ‘particles’ in the 

state space and weighting them such that they altogether represent the posterior 

probability distribution of the state to be estimated. The weights are updated iteratively 

according to the observations from the noisy sensor in each time step. It is in a sense 

emulating a Bayesian filter through Monte Carlo simulations. It has been proven that as 

the number of particles in the system approaches infinity, the distribution of particles 

converges to the true posterior probability distribution of the state, or in other words the 

optimal Bayesian estimate. The particle filter has already been used in a number of 

different application domains that require non-linear modeling, such as robot 

localization.  

One key oft-cited drawback for particle filters is the computational cost. If the 

state being estimated is multi-dimensional then the particle filter suffers from the so-

called ‘curse of dimensionality’. There is always a trade-off between the accuracy and 

computational cost when choosing the number of particles. This is an especially 
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important consideration for wearable health monitors wherein processed results may be 

required in near real-time and the processing itself may need to be done on resource-

constrained devices. Therefore this research aimed to leverage the particle filter to 

handle the non-linearity of the heart rate estimation problem, while remaining mindful of 

the computational constraints of this application space. 
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3. RELATED WORK 

3.1 EEG Electrode Design 

The finger based dry electrode design itself has been presented in a few previous 

studies [19, 20, 42-45]. In fact, the part used for the fingers and the active electrode 

design for this work were borrowed from [21]. However, each of these works had a pre-

defined, fixed number of fingers in the electrode design, and this number and 

arrangement varied among the different papers in the literature. There was no real 

reasoning given for each design decision, whether it be effectiveness in penetration 

through hair or quality of elicited EEG signals. By contrast, in this work we compare 

different versions of finger-based dry electrodes to each other and attempt to draw some 

conclusions to aid design decisions. One previous work that attempted to compare 

different 3D-printed designs with varying numbers of fingers did so only on a head 

phantom that does not replicate the effects of hair in a practical scenario, nor allow 

validation on real EEG signals [46]. For instance, they concluded that the impedance of 

contact decreased with surface area of contact, but this does not account for the 

possibility that highly dense designs may not be able to effectively penetrate through the 

hair in the first place. Another work also developed a titanium nitride (TiN) coated 

electrodes with differing numbers of fingers [47]. However this work was tested only on 

a single subject, and the only tangible conclusion was again that the impedance 

decreases always with an increase in the number of fingers, again not taking into 

consideration the effectiveness of penetration through hair in a practical scenario.  
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When it comes to reconfiguration of EEG and BCI systems, there have been 

previous works that allowed reconfiguration of front-end circuitry such as 

programmability of the amplifier gain [48] and analog filters [49]. Other works also 

work on channel selection, which in practice means selecting a subset of the total 

number of electrodes in order to exclude irrelevant or noisy channels from the targeted 

analysis, and also potentially allow a reduction in the total number of electrodes 

necessary in order to improve convenience and comfort. This channel selection can be 

done through analog spatial filters [50] or regression and classification techniques on the 

collected signals from all electrodes [51]. One previous work also incorporated 

impedance measurements similar to what is proposed in this dissertation, but this was 

again done at a higher level for electrode selection among a number of electrodes [52]. 

The analysis of individual finger contacts and the idea of reconfigurable contact through 

selection of a subset of fingers have not been explored before by others. In other words, 

rather than channel selection, we attempt finger selection within a single electrode, and 

to our knowledge this has not been previously investigated. However the impedance 

measurement technique [53] and the assumptions about the associated noise at the 

electrode-skin interface [15, 31] are gleaned from previous studies.  

 

3.2 Heart Rate Estimation 

There have been many proposed approaches in the literature to obtain an accurate 

heart rate estimate from a noisy cardiac signal. Several works have been based on the 

use of an adaptive filter, but such techniques always rely on the presence of an external 
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reference signal, such as accelerometer data [54-56] or electrode tissue impedance [57], 

which may not always be available. Moreover, different reference signals may be better 

correlated with different types of motion artifacts and thus a system based on only one 

reference signal may not represent a generalized solution to handle artifacts from a 

variety of user actions. 

Methods based on a Kalman filter do not rely on an external reference [58] but 

these techniques assume that the signal and observation models are linear functions and 

that the noise is Gaussian, which is not always the case for biomedical applications [59]. 

The extended Kalman filter was introduced to circumvent the disadvantage of the 

linearity assumption [60], but just like the regular Kalman filter it still suffers from the 

fact that only unimodal Gaussian distributions can be tracked [59]. In other words, only 

one possibility for the true state can be tracked at a time and if the estimate diverges 

from the true state, it may continue to diverge beyond recovery. 

Apart from these, there have been a few works that successfully combine several 

signal processing techniques along with heuristic knowledge of signal characteristics to 

build a heart rate detection algorithm. There have been three recent related works of note 

that tackle the problem of heart rate estimation in the presence of extreme motion 

artifacts when running. The first, dubbed TROIKA [61], involves primarily singular 

value decomposition, an optimization approach to find a sparse signal representation of 

the PPG frequency spectrum and finally spectral peak tracking approaches to estimate 

the heart rate. The second technique developed by the same author, called JOSS [62], 

has a similar approach except it jointly estimates the spectra of the accelerometer as well 
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as the PPG and does away with certain steps to save on computation time. The third and 

final work for PPG signals with motion artifacts [63], which will be referred to as 

‘Robust EEMD’, is based on ensemble empirical mode decomposition (EEMD), 

followed by a recursive least squares (RLS) adaptive filter using the accelerometer 

signal as reference. These two techniques are followed by several spectral peak tracking 

approaches as well as heuristic conditional steps to track the heart rate frequency. As 

part of the research, we performed a direct comparison of our proposed particle-filter 

based approach with these three works, both in terms of estimation accuracy as well as 

computational efficiency. 

The particle filter is a probabilistic method that does not depend on any external 

reference signal nor assume a specific distribution for either the signal or the noise as is 

the case for the Kalman filter. It is robust and has the potential to recover from incorrect 

estimates since it can keep track of multiple possibilities. It is generalizable and can be 

adapted to handle a variety of signal and noise models. It is also straightforward to adjust 

the number of particles in use, to trade-off between computation time and accuracy 

depending on the application. 

The particle filter has been previously employed in other similar applications, 

such as identifying the various segments of an ECG in stationary conditions. However, 

apart from not dealing with motion artifacts, these works usually incorporate a complex 

dynamical model for the ECG that involves several state dimensions, which in turn 

increases the computational cost [64-66]. Another work based on an ECG model has a 
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much reduced dimensionality for the state space; however it is only tested for ECG 

contaminated by white or pink noise [67]. 

A particle filter has also been employed for muscle artifact affected ECG de-

noising, however this also relies on a sophisticated model that is specific to the 

progression of ECG with multi-dimensional states and does not seem to be validated on 

ECG signals with a significant amount of noise [68]. Moreover, in all of the above, the 

approach that relies on the use of a single rigid and specific mathematical model may not 

be generalizable to be used for a wider variety of signals from different subjects [69]. 

The key difference in our proposed framework is that the heart rate itself is directly used 

as the state to be estimated in the particle filter model equations, and we design the 

observation densities such that the particle filter simply rewards those observations that 

are consistent with the expected behavior of a human heart rate. Moreover, the use of 

only a single state dimension in the formulation greatly eases the computational load 

compared to previous particle filter implementations in this domain. 
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4. EEG ELECTRODE DESIGN INVESTIGATION*

In this section is described the experiments to compare different configurations 

of finger-based dry electrode designs to each other, to see if a certain number or 

arrangement of fingers translates to better penetration through the hair on the scalp for a 

lower impedance contact and a better SNR for the sensed EEG signal. After descriptions 

of the physical characteristics of the different electrodes tested, this section elaborates on 

the methods used to measure the impedance of contact for each electrode, descriptions of 

the different in vivo experiments, and finally presentation and discussion of the 

experimental results. 

4.1 EEG Electrode Designs 

Figure 4.1(a-e) shows the five different electrode configurations evaluated in this 

work. For all the electrode designs, the distance from the center to the outermost ring of 

fingers remains constant at 7.21mm. We used spring loaded fingers of height 4.5mm for 

all the designs. We also compared our designs to the state-of-the-art g.SAHARA dry 

electrode by g.tec shown in Figure 4.1(f) to ensure that the results from our custom 

designed electrodes are comparable to that of a commercially available one. The 

‘Default 8’ configuration as shown in the figure matches the g.SAHARA electrode, and 

represents one of the sparsest arrangements of fingers we have seen among finger-based 

designs in the literature. Conversely, the ‘Circle 20’ mimics the densest configurations 

*© 2015 IEEE. Reprinted, with permission, from Viswam Nathan, Roozbeh Jafari, Design Principles
and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with Finger 
Based Dry Electrodes, IEEE Transactions on Biomedical Circuits and Systems, 
October 2015 
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seen in works such as those of Matthews et al [19] and Liao et al [20]. The other 

configurations were heuristically chosen to cover the spectrum between these two 

extremes. As mentioned in Section 3, none of the previous investigations with finger-

based electrodes explicitly justified the relative sparsity or density of their arrangements. 

The objective of this part of the research was to directly compare these arrangements 

with each other, with all other factors such as material, thickness and height of fingers 

being equal. The criteria for comparison in this research were low impedance contact 

under varying placement conditions, as well as SNR of EEG in a BCI task. 

Our working assumption throughout this study was that the impedance of contact 

of the dry electrode finger on the scalp is directly proportional to the amount of noise 

induced on the acquired signal. Most noise sources at the scalp electrode interface, such 

as the half-cell effect, have been shown to be directly proportional to the impedance of 

contact by previous studies [31]. Moreover, if the contact with the scalp is disrupted by 

hair, this would result in a high impedance contact and poor pickup of EEG. Hence, in 

sections 4.2 and 4.3 are described two different methods to estimate the impedance of 

contact. These were used in the study evaluating the relative merits of using different 

numbers of fingers in the electrode design. 
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Figure 4.1 – Electrode Configurations. (a) Circle 20: Outer ring of 16 fingers and 

an inner ring of 4 fingers (b) Circle 17: Outer ring of 16 fingers and one finger at 

center (c) Spread12: Outer ring of 8 fingers and an inner ring of 4 fingers (d) 

Center 9: Outer ring of 8 fingers and one finger at center (e) Default 8: Outer ring 

of 8 fingers (f) g.Sahara: Dry electrode by g.tec[9]. Reprinted from Design Principles 

and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with 

Finger Based Dry Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE 

Transactions on Biomedical Circuits and Systems, ©2015, IEEE 

 

 

4.2 Impedance Measurement 

Scalp electrode impedance can be used to compare the effectiveness of different 

electrode types. A lower impedance contact results in a better signal-to-noise ratio 

(SNR) and hence more accurate measurements of EEG. Figure 4.2 shows the details of 

the impedances involved in the contact with the scalp [15, 20]. ZES denotes the electrode 

scalp impedance due to the contact of the fingers. ZS denotes the impedance of the 

epidermis layer of the skin, whereas ZD denotes the impedance of the inner dermis layer. 

The overall impedance faced by the electrode is given by the series combination: 

                                               Zelectrode = ZES + ZS + ZD             (4.1) 
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Figure 4.2 - Electrode skin circuit model. Reprinted from Design Principles and 

Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with Finger 

Based Dry Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE Transactions on 

Biomedical Circuits and Systems, ©2015, IEEE 

 

 

In this work, we investigate the characteristics of the electrode finger design that 

minimizes ZES, thus facilitating a better EEG recording. Since the type of finger used 

and the overall size of the electrodes remain constant in our designs, we hypothesize that 

any major differences in the performances across electrode types will be due to the effect 

of high resistance contact with hair for one or more individual fingers and electrode 

designs that avoid hair consistently will perform better.  

Figure 4.3 shows the overall circuit model when two differential electrodes are 

used to measure EEG on the scalp. The positive or ‘signal’ electrode measures Vsig with 

respect to ground, whereas the negative or ‘reference’ electrode measures Vref with 

respect to ground. If Zoverall denotes the overall impedance between the two electrodes, 

we have:  

                                                 Zoverall = Zelec,sig + ZL + Zelec,ref                  (4.2) 
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The first term Zelec,sig gives the impedance faced by the signal electrode, which is 

the same as  Zelectrode  in  Equation (4.1). Similarly, Zelec,ref refers to the impedance faced 

by the reference electrode. In this work, the type of dry electrode used as the signal 

electrode is varied, but the reference electrode is always a pre-gelled adhesive patch 

electrode. 

Consequently, in the model for the reference electrode, instead of the finger 

impedance ZES we have the impedance of the gel, ZG. So we can re-write Equation (4.2) 

as: 

                                   Zoverall = (ZES + ZS + ZD) + ZL + (ZG + ZS + ZD)                     (4.3) 

The additional term ZL represents the impedance of the length of scalp between 

the two electrodes, thus completing the circuit. Using an adhesive electrode for the 

reference is evidently not feasible for a wearable EEG system, however for the purposes 

of comparing different types of dry electrodes we did not want to introduce the 

uncertainty of using a dry electrode for the reference as well. We assume all impedances 

except ZES described in Equation (4.3) remain constant during experiments for the 

different dry signal electrodes. 

To estimate scalp electrode impedance, we inject current at the signal electrode, 

shown as Ia in Figure 4.3. When this applied current is a sinusoid of known frequency fo 

then the frequency response of Vout at fo is dominated by the voltage drop across the 

impedance of the circuit due to the injected Ia. The power spectral peak of the signal Vout 

at fo is hereby termed the ‘impedance excitation response’, and is directly proportional to 

the impedance faced by the current Ia. 
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Figure 4.3 - Scalp impedance circuit with signal and reference electrodes. Reprinted 

from Design Principles and Dynamic Front End Reconfiguration for Low Noise 

EEG Acquisition with Finger Based Dry Electrodes, Viswam Nathan and Roozbeh 

Jafari, IEEE Transactions on Biomedical Circuits and Systems, ©2015, IEEE 

 

 

4.3 Common Mode Rejection-based Contact Measurement 

Another indirect measure of the scalp electrode contact impedance is the 

common mode rejection ratio (CMRR) of the circuit described in Figure 4.3. CMRR is a 

measure of how well the differential amplifier can reject signals that are common to both 

𝑉𝑠𝑖𝑔  and 𝑉𝑟𝑒𝑓 . The output of the differential amplifier can be written as: 

                                    𝑉𝑜𝑢𝑡 = 𝐺𝑑𝑖𝑓𝑓(𝑉𝑠𝑖𝑔 − 𝑉𝑟𝑒𝑓) + 𝐺𝑐𝑚
(𝑉𝑠𝑖𝑔+𝑉𝑟𝑒𝑓)

2
      (4.4) 
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Where 𝐺𝑑𝑖𝑓𝑓  and 𝐺𝑐𝑚 represent the differential gain and common mode gain of 

the amplifier, respectively. EEG signals of interest are in the difference between the two 

measured signals given by the first term 𝐺𝑑𝑖𝑓𝑓(𝑉𝑠𝑖𝑔 −  𝑉𝑟𝑒𝑓), and the common mode 

between the two electrodes is given by the second term and this is typically comprised of 

uniformly received sources of noise or other undesirable signals. 

In ideal situations this common mode is rejected by the amplifier since 𝐺𝑐𝑚 is 

very small. In the ADS1299 analog front end used in this work for example, the ratio of 

𝐺𝑑𝑖𝑓𝑓  to 𝐺𝑐𝑚 is at least 110dB [70]. However, CMRR decreases when there is an 

impedance mismatch between the two electrodes. For example, we consider the 

measurement of steady state visually evoked potentials (SSVEP), the brain’s response to 

being presented with a visual stimulus at a regular frequency. These potentials are 

strongest at the occipital region at the back of the head [71] and so the signal electrodes 

are placed here while the reference electrode is placed in a region with suitably lower 

magnitude of SSVEP such as the right mastoid. EEG signals appearing elsewhere on the 

scalp, in the frontal region for example, as well as muscle artifacts are assumed to be 

picked up equally by both the signal and reference electrodes and become a part of the 

common mode. If the signal electrode faces a different impedance than the reference 

electrode, then it measures the ‘common’ signals differently too. This in turn means that 

the frontal signals and the artifacts are no longer part of the common mode and become 

part of the differential mode instead. Thus, in the differential signals measured, the 

frontal signals and artifacts will be mixed in with the desired occipital signals. 
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In our experiments, one of the two electrodes is always a wet electrode with 

‘ideal’ skin contact. This means that the relatively poor contact of the dry signal 

electrode results in an impedance mismatch with the reference electrode which in turn 

causes an increase of the common mode at the final output. In other words, as the 

contact impedance of the dry electrode gets better, and matches that of the ideal wet 

contact reference, the CMRR of the circuit improves. In practice, it is not easy to 

measure CMRR as the common noise entering the circuit at any given time is not easily 

characterized. However, a signal with known characteristics intentionally added to the 

common mode can serve as a common mode measurement trace. The CMRR can then 

be readily estimated by measuring the amount of rejection of this known signal at the 

output. 

For bio-potential measurements, apart from the signal and reference electrodes, a 

third bias electrode is also attached to the body as part of an active driven right leg 

(DRL). This bias is applied equally to both the electrodes and hence is also a part of the 

common mode. In our design, shown in Figure 4.3, we add an AC square wave at a 

known frequency on top of this DC bias which will serve as the CMRR measurement 

trace. Any mismatch in contact impedance between electrodes would result in an 

increased presence of the square wave signal in the output. The power of the known 

common mode square wave frequency in 𝑉𝑜𝑢𝑡 is thus directly proportional to the 

impedance faced by the signal electrode. This method of contact impedance estimation 

was previously shown in [53]. 
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4.4 Experimental Setup 

In this section we describe the objectives of the various experiments as well as 

the protocols. Subsection 4.4.1 aims to compare the different electrode types using 

impedance measurements on the scalp. Subsection 4.4.2 compares those same electrode 

types with the performance in a BCI task as the criteria. Subsection 4.4.3 repeats the 

impedance measurements of the electrodes on the hairless forearm to contrast with the 

effects of hair on scalp. 

4.4.1 Impedance Measurement on Scalp 

 We defined three different use cases: 

 No Adjust: The EEG cap is put on and no efforts are made to adjust the contact of the

electrode 

 Adjust:  After putting on the cap, the electrode is twisted and pushed downwards in

an effort to penetrate through the hair and make good contact 

 Headband: After making efforts to penetrate the electrode through hair, we add a

tight headband on top of the electrode to provide an additional downward push for 

better contact. 

The reasoning behind defining these three use cases was to determine whether 

certain electrode designs would exhibit more robustness in the face of varying capping 

scenarios. The EEG cap used was a commercial one which was a part of the g.SAHARA 

system by g.tec. An example of the setup for measurement at scalp location FT8 with 

and without the headband is shown in Figure 4.4. 
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Figure 4.4 – Impedance measurement at FT8 without headband (left) and with 

headband (right). Reprinted from Design Principles and Dynamic Front End 

Reconfiguration for Low Noise EEG Acquisition with Finger Based Dry Electrodes, 

Viswam Nathan and Roozbeh Jafari, IEEE Transactions on Biomedical Circuits 

and Systems, ©2015, IEEE 

 

 

One trial of the experiment consisted of about 10 seconds of current injection, 

with the impedance excitation response collected for each of the 10-second trials under 

each of the three use cases defined above. Three such trials were conducted for each 

electrode type in both the temporal FT8 position and the frontal AFZ position according 

to the 10-20 electrode placement system [72]. The cap was taken off and the hair was 

readjusted between trials to randomize the contact each time. The impedance excitation 

response was collected on six human subjects, with varying amounts of hair across 

subjects. A 24nA sinusoidal AC current at a frequency of 30.5Hz was injected and the 

peak of the power spectral density (PSD) estimate at that frequency was taken as the 
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impedance excitation response in units of mV2/Hz. This in-band frequency is a 

constraint of the hardware being used; the current injection circuits are internal to the 

ADS1299 chip and the frequency of current injection is fixed to be in-band. 

 

4.4.2 SSVEP SNR and CMRR Measurement 

SSVEPs, introduced in Section 4.3, are a well-known EEG response used in BCI 

tasks. We wanted to see if certain electrode designs elicited better, i.e. higher SNR, 

SSVEPs on average due to better contact. One session consisted of 4 separate trials of 10 

seconds each with the subject fixating on the target flashing LED (18Hz frequency). 

Three such sessions were collected for each electrode type, with the cap taken off and 

put back on between sessions to randomize the contact. The data was collected for seven 

subjects in the ‘Headband’ case for the best possible contact scenario. The signal 

electrode was placed at the occipital location OZ, referenced to a wet electrode at the 

right mastoid. Successfully captured SSVEPs would result in a peak in the PSD of the 

EEG data at the target frequency. For SSVEP, SNR was defined as the ratio of the target 

frequency PSD peak to the peaks in the nearby non-target frequencies. The common 

mode square wave of 6mV amplitude was added at 61Hz throughout the tests and the 

PSD peak at this frequency was noted as the common mode signal power measured in 

units of µV2/Hz. Since the common mode injection is done by our own custom circuit, 

the frequency of the signal is controllable and is set to be out-of-band for measurements 

simultaneously with EEG. 
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4.4.3 Impedance Measurement on Forearm 

One of the major reasons we predicted for some electrode designs performing 

better than others was the ability to avoid hair. In order to confirm this effect, we 

designed a control experiment by measuring the impedance excitation response for the 

various electrode types with the signal electrode on the forearm in an area with little to 

no hair for seven subjects. 

 

4.5 Experimental Results 

4.5.1 Scalp Impedance Measurement 

Tables 4.1 and 4.2 show the average impedance excitation responses (defined in 

Section 4.2) for the different electrode types at the FT8 and AFZ scalp locations 

respectively. The data is ordered according to the three use cases: ‘No Adjust’, ‘Adjust’ 

and ‘Headband’ defined in Section 4.4.1. For both the scalp locations, the electrodes 

with lower density of fingers show better impedances in all use cases. 

When comparing the high density electrodes’ (Circle 17 and Circle 20) 

impedance samples with those of the remaining low density electrodes (Default 8, 

Center 9, Spread 12 and g.SAHARA), the one-sided t-test showed a p-value < 0.004, 

thus rejecting the null hypothesis that the lower density electrodes show equal or higher 

impedance. This can be considered a statistically significant result since there are more 

than 100 samples of impedance for each electrode type when the data from all subjects 

and capping conditions is aggregated.  It can also be observed that the higher density 

configurations show exceptionally high impedance excitation responses for the ‘No 
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Adjust’ case and these responses are drastically reduced for the ‘Headband’ case. 

Repeating the above one-sided t-test for only the ‘Headband’ impedance data shows p-

values as high as 0.22. This shows that these high density electrode types depend on 

effective preparation of scalp electrode contact by adjusting the electrode to penetrate 

through the hair, after which they could perform similarly to the low-density ones. 

Conversely, the low density configurations do not show as much variance between the 

‘No Adjust’ and ‘Headband’ cases which indicates that they are more robust in the face 

of varying capping conditions. 

 

 

Table 4.1 - Average impedance excitation response at FT8 

 

 Average Impedance Excitation Response (mV2/Hz) 

Electrode 

Type 
No Adjust Adjust Headband 

Default 8 5,637.5 1,591.3 311.3 

Center 9 8,663.5 1,923.1 287.0 

Spread 12 8,895.9 2,102.5 174.8 

Circle 17 21,617.3 7,679.6 470.3 

Circle 20 46,327.5 19,853.5 1,029.4 

g.SAHARA 9,037.6 3,059.8 511.4 
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Table 4.2 - Average impedance excitation response at AFZ 

 

 Average Impedance Excitation Response (mV2/Hz) 

Electrode 

Type 
No Adjust Adjust Headband 

Default 8 6,812.7 1,753.61 268.2 

Center 9 9,822.0 831.4 67.9 

Spread 12 6,046.5 738.9 38.3 

Circle 17 28,294.4 4,420.1 692.5 

Circle 20 68,994.5 8,026.9 376.0 

g.SAHARA 10,157.2 3,864.9 150.8 

 

 

 

4.5.2 SSVEP SNR and CMRR 

Table 4.3 shows the average SSVEP SNR values (defined in Section 4.4.2) 

across all trials for seven subjects using the different electrode types as well as their 

respective common mode signal powers (defined in Section 4.3). 

 

 

Table 4.3 - Average SSVEP SNR and Common Mode Power 

 

Electrode Type Average SNR 

Average Common 

Mode Signal Power 

(µV2/Hz) 

Default 8 4.097 1107.42 

Center 9 4.035 818.28 

Spread 12 3.927 2906.09 

Circle 17 4.240 1637.51 

Circle 20 3.781 4298.59 

g.SAHARA 4.635 601.05 
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In most cases the SSVEP SNR of each electrode type is strongly correlated with 

its corresponding common mode signal power. As noted before, the SSVEP experiments 

were all conducted under ideal ‘Headband’ conditions, so the disparity in contact 

impedance between high and low density electrodes is not too large. The Circle 17 

common mode power is suitably low due to this preparation, but the Circle 20 continues 

to have relatively poorer contact and this in turn adversely affects its SSVEP SNR. The 

data in general validates the assumption that EEG task performance is inextricably 

linked to the contact quality, and an electrode is unlikely to show a high performance 

with poor impedance contact. There was a negative correlation of -0.797 between 

average SNR of SSVEP and the corresponding common signal power. We also noted a 

significant performance difference between the Default 8 and g.SAHARA 

configurations despite their similar structure. The probable reason for this is the 

increased height and thickness of the fingers on the commercial g.SAHARA compared 

to our designs. 

 

4.5.3 Forearm Impedance Measurement 

Table 4.4 shows the average impedance excitation response collected for each of 

the different electrode types as they were placed on the forearm of the seven subjects in 

an area with no hair. The results support the hypothesis that high density configurations 

suffer in performance primarily due to the effect of hair. Circle 17 and Circle 20 show a 

marked improvement in impedance compared to the other types. 
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Table 4.4 - Average Impedance Excitation Response on forearm 

 

Electrode Type Average Impedance Excitation Response (mV2/Hz) 

Default 8 8285.49 

Center 9 8502.23 

Spread 12 7485.19 

Circle 17 2777.65 

Circle 20 3181.43 

 

 

4.6 Conclusions 

Our findings indicate that there are some trade-offs to be considered when 

designing a dry finger based electrode. The higher density finger configurations showed 

poor scalp electrode impedances for the different use cases as shown by a one-sided 

paired t-test with lower density electrode impedances resulting in a p-value < 0.004. This 

was due to ineffective penetration through hair, as confirmed by the fact that the denser 

configurations showed better impedance when measured in a region of skin with no hair. 

However with effective preparation of the contact, SNR performance for the SSVEP 

EEG task improved. We can conclude that the sparser configurations are more robust to 

varying conditions, but the advantage is not as significant with proper electrode capping 

or if the subject has a lower amount of hair. An open research question is the effect of 

varying the height and thickness of the fingers, as this seems to provide an advantage to 

the commercial g.SAHARA electrode. 
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5. RECONFIGURABLE CONTACT ELECTRODES*

This section describes the research efforts to build novel EEG electrodes that are 

capable of active reconfiguration of contact to establish the best possible physical 

interface with the scalp. This is done through selection of a subset of fingers within each 

electrode, such that only the fingers with a good contact contribute to the overall EEG 

signal sensed by that electrode. First, the method used to establish quality of contact is 

described, followed by physical and functionality descriptions of the novel electrode 

designs developed to study the signals from each individual finger and actively switch 

between subsets of fingers respectively. The section then described the experiments 

conducted to confirm our hypotheses, followed by analysis and discussions of the 

results, including those of in vivo experiments. The objective for this part of the research 

was to develop a novel hardware-centered approach to solve the problem of improper 

sensor contact for wearable sensors, and validate the ideas on real human EEG signals. 

Specifically, the target would be to show that using only a subset of the fingers with a 

good contact on a dry EEG electrode, as opposed to using all the fingers, results in better 

correlation with an ideal ‘gold-standard’ EEG signal from a wet electrode. 

*© 2015 IEEE. Reprinted, with permission, from Viswam Nathan, Roozbeh Jafari, Design Principles
and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with 
Finger Based Dry Electrodes, IEEE Transactions on Biomedical Circuits and 
Systems, October 2015
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5.1 Common Mode-Based Contact Measurement 

To estimate contact impedance for this part of the study, we used the same 

common mode-based contact measurement method described in Section 4.3. Since this 

method was based on injection of an out-of-band signal, it allowed contact measurement 

simultaneous with EEG measurement, which was crucial for this part of the study. Direct 

measurement of the impedance through current injection, as described in Section 4.2, 

was not an option because the available hardware only allowed current injection at an in-

band frequency which would affect the collection of EEG signals.  

 

5.2 Individual Finger Channel (IFC) Electrode 

In order to analyze the local noise effects for each finger contact of the EEG 

electrode, we built a custom electrode that isolated the signals from each finger into 

separate channels. The electrode built for this purpose (Figure 5.1) has an overall PCB 

height of 3.76cm, and consists of 8 fingers arranged and spaced in the exact same 

‘Default 8’ configuration described earlier in Section 4.1. However, the difference with 

this design is that the signal from each finger is immediately buffered before being sent 

through the cables into separate channels of the ADC on the EEG board. The two ICs 

that can be seen on the left image of Figure 5.1 are two TI LMP2234 chips, each of 

which include 4 buffers, thus allowing individual buffering and separation of the 8 

fingers on board. Figures 5.2 and 5.3 illustrate the difference between a traditional 

finger-based electrode and this custom IFC electrode respectively. 
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Figure 5.1 – IFC electrode front and back. Reprinted from Design Principles and 

Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with Finger 

Based Dry Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE Transactions on 

Biomedical Circuits and Systems, ©2015, IEEE 

 

 

Finger 1

To ADC Channel

Finger 2

Finger 3

Finger 4

Finger 5

Finger 6

Finger 7

Finger 8

 

Figure 5.2 –  Traditional finger electrode circuit. Reprinted from Design Principles 

and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with 

Finger Based Dry Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE 

Transactions on Biomedical Circuits and Systems, ©2015, IEEE 
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Finger 1 To ADC Channel 1

Finger 2

Finger 8

Finger 3

To ADC Channel 2

To ADC Channel 3

To ADC Channel 8

 

Figure 5.3 –  IFC electrode circuit. Reprinted from Design Principles and Dynamic 

Front End Reconfiguration for Low Noise EEG Acquisition with Finger Based Dry 

Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE Transactions on Biomedical 

Circuits and Systems, ©2015, IEEE 

 

 

Our hypothesis is that the overall signal from the traditional electrode in Figure 

5.4 could be improved by rejecting the individual signals from one or more fingers in the 

circuit if they are picking up too much noise. Using an estimate of the impedance on 

each finger, we can generate the mixed signal that would be obtained from any 

combination of fingers on the IFC electrode. This can be used to test the hypothesis, and 

the methods to do so are described in detail in Section 5.2.1. It must be stressed that this 

electrode is not meant to be a practical replacement for existing EEG electrodes, and is 
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merely intended for exploratory analysis looking into the difference between individual 

fingers’ signals on one electrode. 

 

5.2.1 Exhaustive IFC Electrode Combination Analysis 

Since the IFC electrode acquired signals from each individual finger 

independently and simultaneously, it afforded us the opportunity to uniformly compare 

the performances of all possible combinations of fingers for the same epoch of EEG. 

Exhaustively looking at all possible combinations is acceptable in this case since this 

electrode is meant only for experimental analysis offline and we wanted to ensure we 

could study the characteristics of the true optimum combination of fingers. 

In our experiments, a wet electrode was placed right next to the IFC electrode to 

provide a ground truth signal. The noise on the wet electrode was assumed to be 

negligible and it is considered an ideal electrode. This is not strictly true since any 

electrode will be subject to some amount of noise, but we can safely assume that the 

amount of noise on the wet electrode is much lower than that on dry contacts and it is the 

best baseline available for EEG. Therefore, for each set of signals we have: 

                                   𝑁𝑜𝑖𝑠𝑒𝑅𝑀𝑆𝑖 = 𝐹𝑖𝑛𝑔𝑒𝑟𝑅𝑀𝑆𝑖 − 𝑊𝑒𝑡𝑅𝑀𝑆                  (5.1) 

Where  

𝑖 indicates a given finger on the electrode,  

𝐹𝑖𝑛𝑔𝑒𝑟𝑅𝑀𝑆𝑖 is the root mean square (RMS) of the signals from Finger i, 

𝑊𝑒𝑡𝑅𝑀𝑆 is the RMS of corresponding signals from the wet electrode and 

𝑁𝑜𝑖𝑠𝑒𝑅𝑀𝑆𝑖 is the RMS noise magnitude for Finger i.  
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In the traditional finger electrode, we can model the finger contacts as 

impedances connected in parallel. Using the contact quality measure, we can obtain the 

impedance Zi, and consequently the admittance Yi, for each finger. Then for any given 

combination of fingers, we can calculate the contribution of each finger to the resulting 

parallel circuit. For example, for Fingers 1, 2 and 3 in parallel, the contribution fraction 

of Finger 1 is given by: 

      𝐶1 =
𝑍2‖𝑍3

𝑍1+(𝑍2‖𝑍3)
=

𝑌1

𝑌1+𝑌2+𝑌3
                             (5.2) 

In truth, the impedance is composed of both a resistance and capacitance so it 

would be frequency dependent; but we are only interested in the low frequency region 

where the electrode-skin interface noise, which is 1/f in nature, would dominate. 

Therefore, we can ignore the effect of the capacitance. Once we have the contribution 

fractions of each finger in a given combination, we can compute the overall RMS noise 

power for that finger combination as: 

√(𝐶1 × 𝑁𝑜𝑖𝑠𝑒𝑅𝑀𝑆1)2 + ⋯ + (𝐶𝑛 × 𝑁𝑜𝑖𝑠𝑒𝑅𝑀𝑆𝑛)2  (5.3) 

where  

𝐶𝑛 is the contribution of finger n in the current combination and  

𝑁𝑜𝑖𝑠𝑒𝑅𝑀𝑆𝑛 is the RMS noise magnitude of individual finger n defined earlier. 

Similarly, we can also estimate the overall EEG signal, as opposed to just the noise, by 

applying the same contribution fraction on the signals from any combination of fingers: 

𝑆𝑖𝑔𝑛𝑎𝑙𝑥 = 𝐶1 × 𝐹𝑖𝑛𝑔𝑒𝑟1 + ⋯ + 𝐶𝑛 × 𝐹𝑖𝑛𝑔𝑒𝑟𝑛     (5.4) 

where  

𝑆𝑖𝑔𝑛𝑎𝑙𝑥 is the mixed EEG signal for finger combination x,  
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𝐶𝑛 is the contribution of finger n in the current combination and 

𝐹𝑖𝑛𝑔𝑒𝑟𝑛 is the EEG signal from Finger n. 

 

5.3 Multiplexer (MUX) Electrode 

In order to validate the analysis from the IFC electrode, we also designed a MUX 

electrode that can actually switch between using any combination of 8 fingers using the 

Analog Devices ADG738 IC that includes an 8:1 analog MUX. Figure 5.4 and Figure 

5.5 show images of the electrode and the circuit schematic respectively. The overall PCB 

height is 3.3cm, and again the same Default 8 configuration is used. As opposed to the 

IFC electrode which was built purely for experimental study, this MUX electrode can be 

considered a prototype to show the functionality of finger selection added to a typical 

electrode design. 

 

 

 

Figure 5.4 – Images of MUX electrode. Reprinted from Design Principles and 

Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with Finger 

Based Dry Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE Transactions on 

Biomedical Circuits and Systems, ©2015, IEEE 
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Finger 1

To ADC Channel

8:1 
MUX

Finger 2

Finger 3

Finger 4

Finger 5

Finger 6

Finger 7

Finger 8

 

Figure 5.5 –  MUX electrode circuit. Reprinted from Design Principles and 

Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with Finger 

Based Dry Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE Transactions on 

Biomedical Circuits and Systems, ©2015, IEEE 

 

 

5.3.1 MUX Electrode Finger Selection 

A key difference between the IFC electrode and the MUX electrode is that 

different combinations of the MUX electrode fingers cannot be uniformly compared to 

each other due to the time delay involved in switching between the different 

combinations. This is an issue because the EEG signals they are measuring as well as the 

noise levels are non-stationary. So an exhaustive comparison of all possible finger 

combinations is not feasible. However, we found through IFC electrode experimental 
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results, to be shown in Sections 5.5.1 and 5.5.2, that individual fingers that exhibit poor 

impedance contact are likely to be noisier as well. Therefore, at the start of every MUX 

electrode experiment we heuristically identified a few good and bad fingers, based on 

the contact quality measure, and defined combinations that avoided the bad fingers. This 

process is further detailed in the experimental protocol of Section 5.4.2. 

 

5.4 Experimental Setup 

We used the commercial Arbo pre-gelled ECG electrode as the reference 

electrode in all experiments in this work. 

 

5.4.1 IFC Electrode Experiments 

Alpha rhythms are strong EEG waveforms with known characteristics observed 

when a subject closes his/her eyes [18]. In contrast to SSVEP, this EEG response can be 

recorded on almost all parts of the scalp. This allowed us to use a wet electrode as an 

ideal electrode placed on the forehead in a region with no hair to ensure a clean gold 

standard signal. The IFC electrode is placed right next to the wet electrode in a region 

with hair for a more realistic, noisy and uneven contact among the different individual 

fingers. We can safely assume that the EEG alpha signal will be almost identical 

between the two electrodes at this distance [19], but at the same time the fingers on the 

IFC electrode will pick up varying amounts of noise due to high impedance contact.  

Data was collected from 5 subjects with two sessions per subject. Each session involved 

20 trials of about 10 seconds of eyes-closed alpha, with the electrode randomly 
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readjusted between sessions to generate a larger variety of contacts to support the data 

set. 

 

5.4.2 MUX Electrode Experiments 

The MUX electrode experiments were designed in a similar manner to the IFC 

electrode experiment: 5 subjects performed the alpha task with the MUX electrode 

placed on the forehead close to a wet electrode for comparison. At the start of every 

session, on the MUX electrode, one finger was switched on while the rest of them were 

disconnected in order to measure that individual finger’s contact impedance. The process 

was repeated in turn for each finger until we had the contact impedance of every 

individual finger. We then heuristically identified 4 or 5 ‘good’ fingers, i.e. those fingers 

that had a relatively low impedance of contact, among the 8 available and then identified 

three combinations for each subject that involved only some subset of these good 

fingers. The objective was to see if any of these ‘good combinations’ performed better 

than the default case of using all eight fingers. So the experiment involved alternating 

between one trial of alpha for the good combination and one trial with the ‘all fingers’ 

combination. There were 30 trials for each combination leading to a total of 90 trials for 

each subject. Over this relatively large number of trials, we assume the better 

combination of fingers would on average show better correlation with the nearby wet 

electrode. 
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5.5 Experimental Results 

5.5.1 Individual Finger Analysis 

In order to test the hypothesis that selecting a subset of fingers on a given 

electrode could improve the overall signal, we first attempted to show that the signals 

obtained from each individual finger could indeed be significantly different. We plotted 

the power spectrum of the signals from each of the fingers on the IFC electrode placed 

on the scalp as well as the signals from a wet electrode placed nearby for comparison. 

An illustrative case for one session of alpha on Human Subject 1 is shown in Figure 5.6. 

Only 7 fingers of the IFC electrode were used since the 8th channel of the EEG 

acquisition board was reserved for the clean signals from the wet electrode. 

 

 

Ranking of fingers by contact quality:
Wet Electrode (best)

Finger 8
Finger 6
Finger 7
Finger 5
Finger 4
Finger 3

Finger 2 (worst)

 

Figure 5.6 – Log scale plot of power spectrum from each of the fingers of IFC 

electrode and wet electrode. Reprinted from Design Principles and Dynamic Front 

End Reconfiguration for Low Noise EEG Acquisition with Finger Based Dry 

Electrodes, Viswam Nathan and Roozbeh Jafari, IEEE Transactions on Biomedical 

Circuits and Systems, ©2015, IEEE 
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Evidently there are significant differences in the frequency spectrum, with at 

least four fingers – Fingers 2, 3, 4 and 5 – showing significantly higher noise levels 

compared to the others. The wet electrode has the least amount of noise and hence the 

lowest power as well. The peak at approximately 10Hz corresponds to the EEG response 

in the state of alpha. Among the three ‘good’ fingers - Fingers 6, 7 and 8 - the frequency 

response is mostly overlapped with that of the wet electrode in the higher frequencies, 

but there is a noticeable separation in the lower frequencies. This confirms that the noise 

experienced by the dry electrode fingers is 1/f in nature, which agrees with previous 

findings on skin interface noise [31]. Another observation is that the fingers with higher 

noise also showed worse contact quality. The example in Figure 5.6 shows in the upper 

right corner the corresponding rankings for the contact quality of the fingers according to 

the common mode based impedance measure described in Section 5.1. This confirms 

that the noise is related to the impedance of the contact and allowed us to use the 

common mode based contact quality measure as the basis for finger selection. 

 

5.5.2 IFC Electrode Experiments 

On the IFC electrode, the mixed signals from all possible combinations of fingers 

were exhaustively generated using the techniques described in Section 5.2.1. The Noise 

RMS for each of these combinations of fingers was generated using Equation (5.3). For 

all subjects and sessions, there were always several combinations better than the ‘all 

fingers’ combination in terms of noise. The top four combinations in terms of noise 

magnitude as well as the combination corresponding to all fingers, averaged across all 
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sessions and subjects are shown in Table 5.1. Note that ‘Best Combination #1’ refers to 

the averaged noise magnitude from the very best combination from each session, but the 

identity and number of fingers that correspond to the best combination varies for different 

subjects and sessions due to the varying contact of the electrode. 

 

 

Table 5.1 - Average RMS Noise magnitude for best finger combinations compared 

with ‘all fingers’ combination 

 

Finger Combinations Average RMS Noise magnitude (μV) 

Best Combination #1 2.160 

Best Combination #2 2.180 

Best Combination #3 2.225 

Best Combination #4 2.246 

All Fingers 3.635 

 

 

When comparing the averaged best combination on each subject to the 

corresponding RMS noise on the ‘all fingers’ case, the improvement is about 1.5μV. To 

put this in context, we can assume the wet electrode signal to be ideal and hence the 

average RMS of this, 13.91μV, estimates the magnitude of the true EEG signal. This 

means that in our experiments, the noise from the ‘all finger’ configuration constitutes 

26% of the EEG signal, and using the best combination of fingers reduces this noise 

level by about 40% on average. This is also a statistically significant trend, as proved by 

the fact that a one-sided paired t-test between the noise from the best combination of 

fingers and the noise from the ‘all fingers’ case showed a p-value < 0.05 for 20 trials, 
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thus invalidating the null hypothesis that choosing fewer fingers does not reduce the 

noise. 

We also generated the overall signal from each of the combinations as described 

by Equation (5.4). Signals from finger combinations with lower noise are expected to 

correlate better with the clean wet signal in the time domain. Again, for every session of 

data there were a few combinations of fingers that showed better correlation than the ‘all 

fingers’ case. The averaged correlation coefficients for the best four combinations of 

fingers, as well as the combination with all fingers, across all subjects and sessions are 

shown in Table 5.2. On average, the improvement in correlation with the wet electrode 

for each session was about 12.6% when using the best subset of fingers. 

 

 

Table 5.2 - Average correlation coefficient with wet electrode for best finger 

combinations compared with ‘all fingers’ combination 

 

Finger Combinations Average Cross Correlation Coefficient 

Best Combination #1 0.815 

Best Combination #2 0.812 

Best Combination #3 0.808 

Best Combination #4 0.808 

All Fingers 0.724 
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5.5.3 MUX Electrode Experiments 

With the MUX electrode, we can directly obtain signals from different 

combinations of fingers without the need for mixing based on electrode impedances. For 

each of the five subjects, at least one of the attempted combinations with fewer fingers 

showed better performance in terms of average correlation with the wet electrode, as 

shown in Table 5.3. These were also statistically significant performance improvements 

over the 15 trials of each session, with p-values < 0.05 in one-sided paired t-tests with 

the correlation coefficients of the nearest ‘all fingers’ trials for 4 of the 5 subjects 

studied. The corresponding p-value for Subject 4 was 0.1 and a possible reason for this 

was that the correlations with the wet electrode for this subject were relatively low for all 

trials and combinations.  

However it must be noted that these combinations were found somewhat 

heuristically. In order to more extensively validate performance improvement on the 

MUX electrode we need to first overcome two challenges. Firstly, there is no a priori 

guarantee that the combination being selected for comparison is actually better than the 

‘all fingers’ scenario. In other words, we are only looking at the contact qualities of the 

individual fingers relative to each other. There is no evidence yet to suggest a hard limit 

on the impedance measure, above which a finger must be considered to have a ‘bad 

contact’ and be excluded from any good combination. In fact, even during the MUX 

electrode experiments of this work, it might well be the case that none of the ‘good’ 

combinations we tried were the actual true optimum combination. Exhaustively trying 

all possible combinations in each new session is not an option; however a machine 
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learning approach that trains over an extensive data set of different combinations of 

fingers and contact qualities may be a more feasible approach to predict a good 

combination. The second challenge is that the strength of the alpha response on a given 

subject may fluctuate during the course of one experiment. So the noise level of two 

different configurations cannot be compared uniformly if the desired signal level itself is 

changing dynamically. 

 

 

Table 5.3 - Performance comparison between selected MUX combinations vs the 

‘all fingers’ combination for all five subjects 

 

Subject 

Average 

Correlation 

Coefficient 

(custom finger 

combination) 

Average 

Correlation 

Coefficient (all 

8 fingers 

selected) 

p-value from 

one-sided 

paired t-test 

Subject 1 

Combo 1 

0.903 (4 out of 8 

fingers) 

0.877 (all 8 

fingers) 
0.0297 

Subject 2 

Combo 1 

0.951 (3 out of 8 

fingers) 

0.935 (all 8 

fingers) 
0.0086 

Subject 2 

Combo 2 

0.962 (4 out of 8 

fingers) 

0.939 (all 8 

fingers) 
0.0151 

Subject 3 

Combo 1 

0.912 (2 out of 8 

fingers) 

0.882 (all 8 

fingers) 
0.0425 

Subject 4 

Combo 2 

0.699 (3 out of 8 

fingers) 

0.662 (all 8 

fingers) 
0.1258 

Subject 5 

Combo 1 

0.746 (2 out of 8 

fingers) 

0.687 (all 8 

fingers) 
0.0458 
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5.6 Conclusions 

In this part of the research, we investigated the possibility of reducing the noise 

level of EEG signals by reconfiguration of finger-based dry electrodes. A custom 

electrode was built and served as a test platform to isolate and analyze the signals from 

each individual finger on an electrode. We observed significant differences in the noise 

levels across different fingers on the same electrode, and confirmed previous findings on 

the nature of the skin-electrode interface noise. Mixed signals from different 

combinations of fingers were generated using this electrode, and we observed that using 

the signals from only a subset of the available fingers could reduce the amount of noise, 

by 1.6μV on average, due to the exclusion of noisy fingers. A validation of this 

conclusion was provided through experimental results that showed that the overall signal 

from a given electrode can be improved by selecting only a subset of fingers with a good 

contact on the scalp. 
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6. PARTICLE FILTERING FOR HEART RATE ESTIMATION*

In this section is described the research looking into using a particle filter based 

state estimation technique to accurately estimate human heart rate while remaining 

resistant to motion artifacts in the associated cardiac signals during periods of exercise. 

The key criterion when evaluating the algorithm was mean absolute error in the 

estimated heart rate over time. This error was to be minimized while ensuring that the 

formulation did not rely on signal-specific features and retained the ability to work with 

multiple signal modalities and their fusion. Moreover, while computation time was not 

specifically optimized for, we took steps to ensure it remained at least comparable to 

contemporary algorithms and was not completely compromised in the pursuit of 

accuracy. 

The section begins with the formulation of the estimation problem in the context 

of the particle filter, and descriptions of the various signal modalities tested, followed by 

a detailed description of the implemented algorithm used to solve this problem. 

Subsequently is described a method to fuse the information from multiple signal sources 

to further improve the estimates, followed by a section describing various additional 

improvements to the algorithm as a result of specific domain knowledge of this problem. 

Finally, the section describes the experiments conducted on real human subjects during 

periods of exercise, followed by analysis of the experimental results, including 

comparison with contemporary related works that have targeted the same problem. The 

*© 2015 IEEE. Reprinted, with permission, from Viswam Nathan, Roozbeh Jafari, Design Principles
and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition with Finger 
Based Dry Electrodes, IEEE Transactions on Biomedical Circuits and Systems, October 
2015
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objective of this part of the research was to formulate a statistical signal processing 

framework to solve the problem of estimation in the presence of motion artifacts, which 

is fundamental to most wearable sensors for daily use. 

 

6.1 Problem Formulation 

In order to formulate the state estimation problem for heart rate detection, we 

first define the state space representation: 

𝒳𝑡~𝜋𝑥(𝒳𝑡) (initial distribution) 

𝑍𝑡|𝒳𝑡~ 𝑔(𝒳𝑡) (observation density) 

𝒳𝑡+1|𝒳𝑡~ 𝑓(𝒳𝑡) (transition density) 

 

where 𝒳𝑡 denotes the true system state, i.e., the true heart rate at time 𝑡, 𝜋𝑥(𝒳𝑡) 

denotes the initial distribution of the system states based on some prior knowledge, 𝑍𝑡 

denotes a set of discrete observations, 𝑔(∙) is a function representing the observations 

conditioned on the true heart rate,  and 𝑓(∙) is the state dynamics or transition model that 

characterizes the heart rate dynamics as a function of time. In essence, the function 

𝑔(𝒳𝑡) denotes the likelihood of observations given the true state, and the function 𝑓(𝒳𝑡) 

describes the progression of the true state due to its own dynamics over time. Instances 

of these functions for the specific purpose of heart rate estimation will be shown in 

Section 6.2. 

The state estimation problem can be delegated to a particle filter, which is a 

sequential Monte Carlo method that solves the problem by maintaining a set of weighted 
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particles, each being a candidate state estimate, its weight being proportional to the 

likelihood of that particle representing the true state. At each step of the particle filtering 

problem, the goal is to estimate the posterior state distribution (𝑝(𝒳𝑡|𝑍𝑡)), i.e., the 

probability distribution of the current true state given a set of observations. This is 

estimated by the weighted sum: 

       𝑝(𝒳𝑡|𝑍𝑡) = ∑ 𝑊𝑋𝑡
𝑝𝛿(

𝑁𝑝

𝑝=1 𝒳𝑡 − 𝑋𝑡
𝑝

)                  (6.1) 

where, 

𝑋𝑡
𝑝
 is the 𝑝𝑡ℎ  particle at window 𝑡, 

𝑊𝑋𝑡
𝑝 denotes the weight of particle 𝑋𝑡

𝑝
,  

𝑁𝑝 is the total number of particles and 

 𝛿(∙) is the Dirac delta function, used to place a mass at the particle’s location in the 

posterior probability density function. 

Once this posterior probability distribution is updated in each time instance, a 

suitable method can be used to best estimate the target state at each time. In this work, 

we use the maximum a posteriori (MAP) estimate. 

 

6.1.1 Problem Characteristics 

There are a number of reasons why the particle filter is a good fit for the 

particular problem of heart rate estimation in noisy signals, when compared to other 

similar techniques. For example, if we consider the problem of heart rate estimation 

using peak detection on the ECG, a common source of noise is motion that causes spike-
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like artifacts. These could lead to false positives for a peak detection algorithm. If we 

consider a specific instance with a true heart rate of 60bpm, if there is a false positive 

peak between two true peaks, then the average estimated heart rate for that period 

becomes, say 120bpm. Thus, it is clear that the noise cannot be modeled as a Gaussian 

distribution around the true value. When using a peak detection based algorithm on an 

ECG signal with several peaks that may or may not be true R-peaks, the probability 

distribution of the heart rate is in fact multi-modal with several distinct possible heart 

rates in the probability space. This is precisely why, as mentioned earlier, it may be 

unsuitable to use the Kalman filter which assumes linear Gaussian models, and the 

Extended Kalman filter that can track only one of these multiple possible modes. 

Moreover, given this multi-modal probability distribution space where the different 

modes can be very far apart in terms of heart rate, we decided to minimize the average 

error by taking the MAP estimate. 

The key insight is that the human heart rate is typically a steady, consistent signal 

over short time windows; in the following sections we will describe the observation 

mechanisms that allow the particle filter to essentially become a structure that amasses 

particles in state space regions that show more consistency. In the dimension of time, 

since the current distribution of the particle filter depends on previous distributions, there 

is an inherent sense of ‘memory’ to facilitate rewarding of consistency. In the dimension 

of state space, N different particles can track N different possible heart rates, thus 

allowing a parallel search for consistency which reduces the chances of permanently 

going off track. 
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Another salient point to note is that the particle filter, as implemented in this 

work, is decoupled from the signal characteristics. In other words, the particle filter 

simply receives noisy observations of heart rate, but is agnostic to how these 

observations were obtained and to what signal modalities and features were used. Thus, 

the particle filter is not married to the particular observation mechanisms described in 

this work, and any changes to these mechanisms – for example to add sophistication, or 

make it more suitable for the given sensor, environment and application scenario – can 

be easily integrated into the same particle filter framework. More importantly, other 

arbitrary signal modalities for heart rate detection, such as the ballistocardiogram (BCG), 

seismocardiogram (SCG), bio-impedance or a camera sensor, could also fit into the same 

framework and fused with estimates from existing sensors. 

 

6.1.2 Signal Characteristics 

Electrocardiogram Signal: 

The ECG is a representation of the electrical activity of the heart. In this work we 

are interested only in the heart rate, and one of the most common ways to estimate the 

heart rate from ECG is using the R-peaks. The R-peak denotes the point of electrical 

depolarization of the ventricles of the heart at the start of each beat. The time between 

successive R-peaks can be used to calculate the beat-to-beat heart rate (Figure 6.1). 

However, as mentioned before, ‘spike’-like effects caused by motion artifacts could be 

falsely identified as R-peaks. This naturally leads to overestimation of the heart rate 

when using peak detection based approaches. 
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Figure 6.1 - R-peak and R-R interval in an ECG waveform. Reprinted from 

Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring using 

Wearable Sensors, Viswam Nathan and Roozbeh Jafari, IEEE Journal of 

Biomedical and Health Informatics, ©2017, IEEE 

 

 

Photoplethysmogram Signal: 

The PPG is obtained by transmitting light of suitable wavelength into the skin 

and measuring the reflected response using a photodiode. Blood flowing in the spot 

being probed absorbs some of the light and hence affects the optical response of the 

photodiode. In effect, this means that the periodic flow of blood corresponding to the 

heart rate will be mirrored in the measured optical response as a pulsatile waveform 

(Figure 6.2). Unlike ECG, since there is no clear time domain feature, we instead use 

frequency domain observations for the PPG as will be described in Section 6.2.1. 
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Figure 6.2 – PPG waveforms showing periodic heartbeat. Reprinted from Particle 

Filtering and Sensor Fusion for Robust Heart Rate Monitoring using Wearable 

Sensors, Viswam Nathan and Roozbeh Jafari, IEEE Journal of Biomedical and 

Health Informatics, ©2017, IEEE 

 

 

Accelerometer Signal 

Frequency analysis of the readings from an accelerometer placed close to the 

heart rate monitoring sensor could prove very useful. It is quite probable that frequencies 

due to the cadence of walking or running motions would be prominently present in both 

ECG and PPG signals. Since these frequencies would also be present in the 

accelerometer’s data, we can leverage this to better inform the estimation process. This 

is particularly important in instances where the motion results in a ‘periodic noise’ in 

either the ECG or PPG signal. The particle filter is designed to exploit the assumed 

quasi-periodicity of the heartbeat and randomness of motion artifacts; thus in the specific 

instance of noise due to periodic motion, the accelerometer observations can prove 

critical to distinguish this from periodic heart rate. 
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6.2 Algorithm Description 

6.2.1 Observation Mechanism 

In each iteration of the particle filter, the sensors provide multiple observations of 

the heart rate, and the particles update their weights according to each of these. 

Photoplethysmogram Observations 

The PPG signal is first bandpass filtered between 0.5 and 15Hz to remove 

baseline wander and unrelated high frequency noise. Subsequently, we use a 

spectrogram based approach to get a set of observations of the heart rate. This involves 

taking moving, overlapping windows of the PPG stream and applying the short-time 

Fourier transform. The window size was set to be 8 seconds, with an overlap of 2 

seconds between successive windows. The frequency spectrum from a window of PPG 

constitutes one set of observations. 

Electrocardiogram Observations 

When processing the time domain ECG signal, we use two back-to-back non-

overlapping windows dubbed Wstart and Wend. For the purposes of calculating heart rate, 

we only consider peak-to-peak intervals that begin with a peak in Wstart and end with a 

peak in Wend. All such intervals taken together constitute a set of observations for a 

given time window. An example of this windowing approach on an ECG signal is shown 

in Figure 6.3.  
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Wstart Wend
 

Figure 6.3 - Windowing illustration on ECG signal. Reprinted from Particle 

Filtering and Sensor Fusion for Robust Heart Rate Monitoring using Wearable 

Sensors, Viswam Nathan and Roozbeh Jafari, IEEE Journal of Biomedical and 

Health Informatics, ©2017, IEEE 

 

 

Note that the peaks that constitute these pairs may or may not be artifacts caused 

by motion or other noise sources. In Figure 6.3, four different heart rate observations 

will be considered based on the peak-to-peak pairs shown. 

We use windows of size 2 seconds in this work, with a step size of approximately 

0.27 seconds. This step size was chosen to accommodate the fact that we expect heart 

rates as high as 220 beats per minute, and a step size bigger than this could potentially 

mean skipping true peak-peak observations in those scenarios. The peak detection is then 

done as follows: 

                                𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝑊𝑖 , 𝐴𝑚𝑖𝑛 , 𝑇𝑚𝑖𝑛) →  {𝑃1, 𝑃2, … , 𝑃𝑘} =  𝑃𝑊𝑖
                (6.2) 
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𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝑊𝑖 , 𝐴𝑚𝑖𝑛 , 𝑇𝑚𝑖𝑛) finds the time of occurrence of all peaks in the signal 𝑊𝑖  

that have amplitude at least 𝐴𝑚𝑖𝑛 and such that no two peaks are within 𝑇𝑚𝑖𝑛 time of 

each other, 

𝑃𝑊𝑖
 is the set of peak locations in time, {𝑃1, 𝑃2, … , 𝑃𝑘}, returned by the ‘findpeaks’ 

function. This function is the default implementation found in MATLAB.  

This peak detection on its own however is somewhat naïve, so we add an 

additional step in the procedure for ECG to reduce the number of false positives. We 

used the continuous wavelet transform (CWT) on the ECG signal with the Mexican Hat 

wavelet, a center frequency of 0.25Hz and a scale of 5.29 as suggested by a previous 

work [73]. This helped to accentuate peaks that more closely resemble an R-peak and 

diminish other trivial peaks. The step described in Equation (2) is then performed on the 

wavelet transformed signal to obtain the peak locations. It must be noted that this merely 

reduces the number of false positives but does not eliminate them. Peak-detection based 

heart rate estimation based solely on the CWT estimate would still overestimate due to 

false positives, as shown in our previous work [74]. 

The heart rate observations are then obtained as follows: 

                                                  𝑃𝑊𝑠𝑡𝑎𝑟𝑡
= {𝑃1, 𝑃2, … , 𝑃𝑘}                                             (6.3) 

                                                  𝑃𝑊𝑒𝑛𝑑
 = {𝑃1, 𝑃2, … , 𝑃𝑚}                                             (6.4) 

                            𝑃𝑃𝑡 ≜ 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 (𝑃𝑏 − 𝑃𝑎), ∀𝑃𝑎 ∈ 𝑃𝑊𝑠𝑡𝑎𝑟𝑡
, 𝑃𝑏 ∈ 𝑃𝑊𝑒𝑛𝑑

 

                                                        𝑍𝑡
𝑛 = (

𝑓𝑠

𝑃𝑃𝑡(𝑛)
) × 60                                              (6.5) 
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𝑃𝑊𝑠𝑡𝑎𝑟𝑡
 and 𝑃𝑊𝑒𝑛𝑑

 refer to the sets of peak locations in a starting and ending window 

respectively, 

𝑓𝑠 is the sampling rate, 

𝑃𝑃𝑡is the set of peak-to-peak intervals with the first peak in a starting window and 

second peak in an ending window, 

𝑍𝑡
𝑛 is the 𝑛𝑡ℎ heart rate observation of window 𝑡 expressed in beats per minute (bpm).  

Taking all 𝑍𝑡
𝑛 in a given window corresponds to the set of observations 𝑍𝑡 

referred to in Section 6.1 when describing the particle filter’s observation model. It must 

be noted that we take steps to avoid duplicate observations, i.e., preventing the same two 

peaks taken as a pair in multiple time windows. We also take steps to ensure any 

observation included in the set is consistent with other observations of similar heart rate 

from the same time window already in the set; for example, when we have multiple false 

peaks we could very well have 4 observations of 50bpm within a 2 second window, but 

it is clearly impossible in reality for all these observations to be true. So in this example, 

only those pairs of peaks corresponding to 50bpm that are consistent with each other are 

taken into the set. This step is necessary to avoid an undue preponderance of lower heart 

rate observations just because of the nature of our relatively naïve observation 

mechanism. 

Accelerometer Observations 

The accelerometer data (denoted as ACC) is processed using the same 

spectrogram approach used for the PPG signal, with identical windowing procedures. 

Since there are 3 axes on the accelerometer, we strived to combine them into a single 
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spectrogram to provide a unified source of observation for the motion noise over time. 

Using only one axis on its own was not an option because there was no certainty about 

which axis captured the most activity across the different subjects in the database. This is 

presumably due to variations in sensor placement and running styles among the different 

subjects. 

We computed the spectrogram for each of the 3 axes, and then stitched together a 

combined spectrogram that always included only the maximum of the three available 

powers for each of the frequencies in each time window. This greedy approach allows to 

always capture the motion frequencies without unduly diminishing their relative power. 

 

6.2.2 Particle Filter Implementation 

The initial distribution for the particle filter, 𝜋𝑥(𝒳𝑡), is defined as follows: 

                                               𝒳𝑡~𝜋𝑥(𝒳𝑡) = 𝑈(𝐻𝑅𝑚𝑖𝑛 , 𝐻𝑅𝑚𝑎𝑥)                                 (6.6) 

Where 𝑈(∙) denotes a uniform distribution between 𝐻𝑅𝑚𝑖𝑛  and 𝐻𝑅𝑚𝑎𝑥 , the assumed 

lower and upper limits of the heart rate defined by reasonable human physiological 

bounds. We made the initial distribution uniform since we have no prior knowledge on 

the initial heart rate, other than extreme limits. 

For the PPG, the probability of an observation with respect to a given state of 

heart rate is computed as follows: 

                                                       𝜑𝑡
𝑖 =  𝑆𝑡

𝑖 ∑ 𝑆𝑡
𝑛𝐹

𝑛=1⁄ , ∀𝑖 ∈ (1, 𝐹)                 (6.7) 

                                                       𝑝(𝑍𝑡|𝒳𝑡) = 𝑔(𝒳𝑡) =  𝜑𝑡
𝑑                                       (6.8) 
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𝑆𝑡
𝑖 is the 𝑖𝑡ℎelement of the vector of observed power spectrum amplitudes (measured as 

described in Section 6.2.1) in time window 𝑡 for the PPG signal, 

𝐹 is the total number of frequencies under consideration, 

𝜑𝑡
𝑖  is the 𝑖𝑡ℎ element of 𝜑𝑡, the probability density function that results from normalizing 

the values of the observed power spectrum to be between 0 and 1 in time window 𝑡, 

𝑑, refers to the frequency in the power spectrum that is closest to the heart rate 𝒳𝑡. 

𝜑𝑡
𝑑 is the probability of the event that the corresponding frequency represents the true 

heart rate. 

This formulation is based on the assumption that a higher power at a given 

frequency means the more likely it is that that frequency represents the heart rate. 

However, we know that with motion artifacts there could be high power at certain 

frequencies as a result of the cadence of motion. This is where the observations from the 

accelerometer sensor come in; we formulate the accelerometer observation function such 

that we reduce the likelihood of a given frequency representing the true heart rate if it is 

present in high power in the accelerometer power spectrum. The formulation is as 

follows: 

                                              �̃�𝑡
𝑖 = ∑ �̃�𝑡

𝑖𝑖+1
𝑖=𝑖−1 ∑ �̃�𝑡

𝑛𝐹
𝑛=1⁄ , ∀𝑖 ∈ (1, 𝐹)                (6.9)     

                                                  𝑝(𝑍𝑡|𝒳𝑡) = 𝑔(𝒳𝑡) =  (1 −  �̃�𝑡
𝑑)                              (6.10) 

�̃�𝑡
𝑖 is the 𝑖𝑡ℎ element of the vector of the observed power spectrum amplitudes in time 

window 𝑡 of the accelerometer spectrogram, 

𝐹 is the total number of frequencies under consideration, 
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�̃�𝑡
𝑖  is the 𝑖𝑡ℎ element of �̃�𝑡, the probability density function for motion noise that results 

from normalizing the values of the observed accelerometer power spectrum to be 

between 0 and 1 in time window 𝑡, 

𝑑, is the index of the power spectrum corresponding to the frequency that most closely 

matches the heart rate 𝒳𝑡. 

�̃�𝑡
𝑑 is the probability of the event that the corresponding frequency is not the heart rate, 

which for our purposes means it is noise. 

For the ECG, in order to create a continuous probability distribution out of the 

discrete observations, we fit Gaussian distributions around each of the observations 

resulting in a Gaussian mixture. The probability of a set of observations is then 

computed as follows: 

                        𝑝(𝑍𝑡|𝒳𝑡) = 𝑔(𝒳𝑡) = ∑ 𝑝(𝑍𝑡
𝑛|𝒳𝑡) 𝑂𝑡

𝑛=1 =  ∑ 𝑁(𝑍𝑡
𝑛 , 𝒳𝑡, 𝜎𝑧) 𝑂𝑡

𝑛=1           (6.11) 

 𝑍𝑡
𝑛 refers to the  nth heart rate observation in window 𝑡,  

𝑂𝑡 is the total number of observations in window 𝑡. 

𝑁(𝑍𝑡
𝑛 , 𝒳𝑡, 𝜎𝑧) denotes a Gaussian distribution with mean equal to the heart rate 𝒳𝑡 in 

window 𝑡, and standard deviation 𝜎𝑧 reflecting the maximum tolerable deviation 

between the true heart rate and the observation, evaluated at 𝑍𝑡
𝑛. 𝜎𝑧 is heuristically set to 

be 3bpm in this work, to ensure that a given particle is reasonably close to an 

observation to gain weight. Making this parameter too high would mean even unrelated 

particles gain weight from a given observation, whereas making it too low would too 

strictly require particles to exactly match the observation to gain weight. 
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These probabilities guide the update of weights of particles based on closeness to 

the observations. The particle filter is initialized as follows: 

                                                  𝑋0
𝑝

=  𝑈(𝐻𝑅𝑚𝑖𝑛 , 𝐻𝑅𝑚𝑎𝑥)                                         (6.12) 

                                                            𝑊𝑋0
𝑝 =

1

𝑁𝑝
                                                        (6.13) 

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑋0
𝑝
 is the 𝑝𝑡ℎ  particle sampled from the uniform distribution between 𝐻𝑅𝑚𝑖𝑛  and 𝐻𝑅𝑚𝑎𝑥 , 

defined to be 40 and 220 bpm respectively for this work, at time 𝑡 = 0, 

𝑊𝑋0
𝑝 is the initial weight of particle 𝑝 at time 𝑡 = 0.  

𝑁𝑝 is the total number of particles, set to be 300 in this work. Choosing the number of 

particles affects a trade-off between estimation accuracy and computation time, which 

we will elaborate further on in Section 6.7.2. 

After this initialization, with each succeeding time window, the particle weights 

are updated as shown in (14). Note that we use the so-called ‘bootstrap filter’ wherein 

the state transition density is used as the importance distribution, making the weights of 

the particles directly proportional to the observation density [26]. We chose to do this to 

simplify the computational load considering the application domain. 

                          𝑊𝑋𝑡
𝑝 = 𝑝(𝑍𝑡|𝑋𝑡

𝑝
) = {

∑ 𝑁(
 𝑂𝑡
𝑛=1 𝑍𝑡

𝑛 , 𝑋𝑡
𝑝

, 𝜎𝑧), 𝑓𝑜𝑟 𝐸𝐶𝐺

𝜑𝑡
𝑑 , 𝑓𝑜𝑟 𝑃𝑃𝐺

(1 −  �̃�𝑡
𝑑), 𝑓𝑜𝑟 𝐴𝐶𝐶

                (6.14) 

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑋𝑡
𝑝
 is the 𝑝𝑡ℎ  particle of window  𝑡,  
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𝑊𝑋𝑡
𝑝 is the weight of particle 𝑋𝑡

𝑝
, 

𝑁(𝑍𝑡
𝑛 , 𝑋𝑡

𝑝
, 𝜎𝑧)  is the value of a Gaussian distribution with mean 𝑋𝑡

𝑝
 and standard 

deviation 𝜎𝑧 evaluated at 𝑍𝑡
𝑛, 

𝜑𝑡
𝑑 is the probability of the event that the frequency corresponding to 𝑋𝑡

𝑝
 represents the 

true heart rate. 

�̃�𝑡
𝑑 is the probability of the event that the frequency corresponding to 𝑋𝑡

𝑝
 is not the heart 

rate, which for our purposes means it is noise. 

The weights are all then normalized to be between 0 and 1: 

                                                         �̂�𝑋𝑡
𝑝 = 𝑊𝑋𝑡

𝑝 ∑ 𝑊𝑋𝑖
𝑟

𝑁𝑝

𝑟=1
⁄                                     (6.15) 

∀𝑝 ∈ (1, 𝑁𝑝) 

�̂�𝑋𝑡
𝑝 is the weight of the 𝑝𝑡ℎ  particle of window  𝑡 normalized so the weights form a 

probability mass function. 

Once the particle weights are calculated the well-known sampling importance 

resampling (SIR) procedure is employed to prevent particle degeneracy [27]: 

                                               𝑀𝑡
𝑝

= ∑ �̂�𝑋𝑡
𝑟

𝑝
𝑟=1 , ∀𝑝 ∈ (1, 𝑁𝑝)                                  (6.16) 

                                               𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎

|𝑅𝑈 ~ 𝑈(0,1) ≤ 𝑀𝑡
𝑎                                   (6.17) 

                                                   𝑋′𝑡
𝑝

= 𝑋𝑡
𝑢 , ∀𝑝 ∈ (1, 𝑁𝑝)                                        (6.18) 

𝑀𝑡
𝑝
 is the 𝑝𝑡ℎ  element of a cumulative sum vector of the normalized particle weights 

𝑋′𝑡
𝑝
 is the updated state of the 𝑝𝑡ℎ  particle of window  𝑡 after resampling,  and  

𝑅𝑈 is a randomly selected number from the uniform distribution between 0 and 1. 
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After this step, the distribution of particles approximates the posterior probability 

distribution of the true heart rate state. To get an estimate for the heart rate in the current 

time window, as mentioned before, we use the MAP estimate. Since the particle weights 

are now equalized, we instead look to the distribution of particles to capture the most 

likely estimate.  

We cluster the particles belonging to a similar heart rate together, and can say 

that the largest cluster represents the most likely state as it is analogous to taking the 

highest weight particle without the SIR procedure. The clusters and the heart rate 

estimate are thus calculated as follows: 

𝐶𝑛 ≜ 𝑆𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑋′𝑡
𝑚 ||𝑋′𝑡

𝑚 − 𝑋′𝑡
𝑛|  < 𝐶𝑆,  ∀𝑚 ∈ (1, 𝑁𝑝), ∀𝑛 ∈ (1, 𝑁𝑝) 

                                                         𝐸𝑡 = ∑ 𝐶𝑚𝑎𝑥
𝑖

𝑖 |𝐶𝑚𝑎𝑥|⁄                                         (6.19) 

𝐶𝑛 is the 𝑛𝑡ℎ cluster of particles 

𝐶𝑆 is the maximum spread of a cluster (set to be 3 bpm) 

𝐶𝑚𝑎𝑥
𝑖  refers to the 𝑖𝑡ℎ member of the largest cluster 𝐶𝑚𝑎𝑥, and 

𝐸𝑡 is the estimate for time window 𝑡. For this specific application, the estimate is heart 

rate in bpm. 

The final step in a given iteration of the particle filter is the model-based update 

that reflects the state transition model defined earlier in Section 6.1. Essentially, as time 

progress the true heart rate is expected to be dynamic to an extent, and not remain 

constant. Therefore, the particles are updated accordingly at the end of each time 

window to approximate this behavior. We assume that the model governing the human 

heart rate changes over time is a normal distribution: 
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                                     𝑋𝑡+1
𝑝

~𝑓(𝑋𝑡
𝑝

)~ 𝑁(𝑋′
𝑖
𝑝

, 𝜎𝑥) = 𝑋′
𝑖
𝑝

+ (𝜎𝑥 × 𝑅𝑁~𝑁(0,1))      (6.20)  

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑅𝑁 is a randomly generated number from the standard normal distribution, and  

𝜎𝑥 is the standard deviation capturing the expected change in heart rate from one 

window to the next. With the window step size being 2 seconds, 𝜎𝑥 is heuristically set to 

be 6 bpm. 

The window then shifts to a new section of the signal and the particle filter 

continues to track the heart rate in this manner iteratively over successive windows. 

 

6.2.3 Particle Weighting Assumptions 

It can be seen from the formulation for ECG that for a given set of observations 

in one time window, we consider all the observations as equally likely. We deemed it 

more generalizable to not rely on any specific features among a set of observations to 

differentiate them. Instead, we assume that the true heart rate for the subject would make 

relatively smooth, continuous and gradual changes over time. Leading on from this, we 

also assume that the observed heart rates as a result of false positive peaks are more 

random and inconsistent. With these assumptions, our expectation is that even though all 

observed heart rates are considered equally likely, the particles will build over the 

correct heart rate as that is observed more consistently over successive time windows. 
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6.3 Fusion with Multiple Sensors 

Since we have formulated the particle filter with only the heart rate as the state to 

be estimated, multiple signal modalities and their observation mechanisms can be fused 

in the same framework. The particle weighting for an arbitrary number of observation 

sources, i.e., sensors, is given by: 

                                                   𝑊
𝑋𝑡

𝑝
𝑓𝑢𝑠𝑖𝑜𝑛

= ∏ 𝑝(𝑍𝑡
𝑠|𝑋𝑡

𝑝
)𝑆

𝑠=1                                       (6.21) 

𝑊
𝑋𝑡

𝑝
𝑓𝑢𝑠𝑖𝑜𝑛

is the weight assigned to particle 𝑋𝑡
𝑝
 when fusing the information from multiple 

sources of observation 

𝑆 is the total number of observation sources 

𝑍𝑡
𝑠 is the set of observations in time window 𝑡 from source 𝑠 

In essence we assume that since the different sources are observing the same 

target phenomenon, particles corresponding to states that are observed with higher 

weight across multiple sources should be rewarded. Conversely, it is unlikely that the 

same false state would be observed with high probability across multiple sources. In 

other words, it would be rare for a source of noise to affect sensors with different 

modalities placed in different locations in the same way.  

In this work, for the fusion of ECG, PPG and ACC sensors, the particle 

weighting process is modified as follows: 

                              𝑊
𝑋𝑡

𝑝
𝑓𝑢𝑠𝑖𝑜𝑛

= 𝑝(𝑍𝑡
𝐸𝐶𝐺|𝑋𝑡

𝑝
) × 𝑝(𝑍𝑡

𝑃𝑃𝐺|𝑋𝑡
𝑝

)  × 𝑝(𝑍𝑡
𝐴𝐶𝐶 |𝑋𝑡

𝑝
)             (6.22) 

                                            𝑝(𝑍𝑡
𝐸𝐶𝐺 |𝑋𝑡

𝑝
) =  ∑ 𝑁(

 𝑂𝑡
𝑛=1 𝑍𝑡

𝑛 , 𝑋𝑡
𝑝

, 𝜎𝑧)                              (6.23) 
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                                                             𝑝(𝑍𝑡
𝑃𝑃𝐺|𝑋𝑡

𝑝
) = 𝜑𝑡

𝑑                                          (6.24) 

 

                                                         𝑝(𝑍𝑡
𝐴𝐶𝐶 |𝑋𝑡

𝑝
) = (1 −  �̃�𝑡

𝑑)                                  (6.25) 

 

Similarly, in the database to be described in more detail in Section 6.5.1, there 

are two separate PPG sensors in addition to the accelerometer in a watch-like device; so 

the formulation above is modified by simply replacing the observations from ECG with 

the observations from the second PPG sensor. 

With this formulation, we can also get an idea of the contribution of each sensor 

or signal modality to the overall particle filter estimate in each time window, as shown 

below: 

                                          𝛽𝑡
𝑠 = ∑ 𝑝(𝑍𝑡

𝑠|𝑋𝑡
𝑝

)𝑋𝑡
𝑝

∈ 𝐶𝑚𝑎𝑥
, ∀𝑠 ∈ 𝑆               (6.26) 

𝛽𝑡
𝑠 is the contribution of sensor s to the particle filter estimate in time window t 

𝑋𝑡
𝑝
 is a particle in the maximum clique  𝐶𝑚𝑎𝑥 for window t 

𝑍𝑡
𝑠 is the set of observations in time window 𝑡 from sensor 𝑠 

𝑆 is the set of all sensors or signal modalities 

This contribution can then be normalized with respect to all the sensors in the 

system and expressed as a percentage: 

                                             𝛽′𝑡
𝑠 = (𝛽𝑡

𝑠 ∑ 𝛽𝑡
𝑚

𝑚 ∈𝑆⁄ ) × 100                                        (6.27) 

This can help determine if one or more sensors in the system are noisy. This 

follows from the fact that sensors producing random, noisy observations will likely have 

a low contribution to the overall particle filter estimate, thus potentially informing 
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dynamic adjustments to the contributions of individual sensors based on perceived signal 

quality in real time. Moreover, prior knowledge of the increased reliability of one sensor 

could allow increased weightage of observations originating from that sensor. In this 

initial work however, we keep it simple and do not assume that any one signal sensor is 

inherently better than the other. The advantage of this overall method of fusion is that it 

is simple and generalizable and can easily be reused for different applications as well as 

an arbitrary number of sensors. 

 

6.4 Additional Improvements 

While the particle filter framework is complete with the implementation 

described so far, we found during the course of our experiments with the data that we 

could make additional improvements to the algorithm to further reduce error for this 

specific scenario of estimating HR for a running subject. These improvements are 

detailed in this section. 

We assume that the power of a frequency in the accelerometer spectrum is 

directly proportional to the probability of that frequency representing motion noise. 

However, in a few subjects’ data there was a harmonic of the movement frequency that 

was somewhat low in strength but still high enough to mislead the particle filter. 

Therefore, we modified the ACC probability function to remove from consideration an 

observation if the power of the corresponding frequency was greater than 10% of the 

maximum power observed in the accelerometer for that time window. 
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There were a few instances wherein the dominant ACC frequency happened to 

overlap with the true heart rate frequency. This would be especially problematic with the 

hard thresholding introduced above. Therefore, we implemented a rough frequency 

margin around the expected heart rate, and if the ACC frequency under consideration 

was within this zone, we did not perform the thresholding. This ensured that we did not 

effectively remove from consideration particles corresponding to the heart rate simply 

because the ACC frequency was close. The bounds for the margin were set by taking the 

average of the previous 3 heart rate estimates in Hz and making a conservative bound of 

+/- 0.1 Hz. This corresponds to an assumption that the heart rate would not change by 

more than 6 bpm in either direction from one time window to the next. 

In all of the data, the subject starts at rest at least for a few seconds before 

beginning any activities. It makes little sense to include the accelerometer observations 

in these states. Therefore, we first find the magnitude of acceleration in each time 

window as follows: 

                                          𝜏 =  √(𝑎𝑥(𝑡))2 + (𝑎𝑦(𝑡))2 + (𝑎𝑧(𝑡))2                          (6.28) 

𝑎𝑥(𝑡) is the x-axis acceleration for the given time window 

𝑎𝑦(𝑡) is the y-axis acceleration for the given time window 

𝑎𝑧(𝑡) is the z-axis acceleration for the given time window 

The observations of the accelerometer are taken into consideration for the final 

heart rate estimate only if this magnitude was above a certain threshold. The threshold 

was heuristically determined to be 1.04 g by examining the data. This parameter has to 
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be heuristically set this way in the absence of more sophisticated activity detection 

algorithms. 

When the subject transitions from a resting state to walking or running, there is 

naturally a sudden increase in heart rate in response to the increased workload. In most 

cases the particle filter tracked these increases as well, but there were a few instances 

where it was slow to catch up simply because there happened to be continued 

observations corresponding to the slower resting state heart rate which turned out to be 

false observations. In these situations, there is an error in heart rate for a few time 

windows because the particle filter already had a preponderance of particles around the 

resting heart rate and continued to see observations consistent with that heart rate. So in 

a sense there may be some ‘latency’ for the particle filter estimates to catch up to the true 

heart rate when there is an abrupt change in the dynamics. 

Therefore we wanted to introduce the notion of context-awareness and have 

multiple operating modes for the particle filter. When we have the accelerometer, we 

have an independent source of information that provides additional context for the user’s 

current state. When the subject is at rest or running steadily, we do not expect rapid 

changes in heart rate and so the particle filter model state update (described in equation 

(20)) will be conservative. Conversely, when the subject’s activity level increases 

rapidly, we can accordingly adjust the model for state update to temporarily allow for 

greater changes. A similar idea for this adaptive changing of model equations based on 

the current context has been previously implemented in other application areas [75].  
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For our problem, when the subject was previously at rest (as determined by the 

magnitude threshold) and the ACC magnitude from (28) changes by a significant margin 

from one time window to the next, we can assume that increased activity has begun. 

Then for the next few time windows, instead of using the state update equation described 

in Equation (6.20), we use the following: 

 

                             𝑋𝑡+1
𝑝

~𝑓(𝑋𝑡
𝑝

)~ 𝑁(𝑋′
𝑖
𝑝

, 𝜎𝑥) = 𝑋′
𝑖
𝑝

+ (𝑅𝑁~𝑁(𝛼, 𝜎𝑥))                    (6.29)  

∀𝑝 ∈ (1, 𝑁𝑝) 

𝑅𝑁 is a randomly generated number from the normal distribution with mean 𝛼 and 

standard deviation 𝜎𝑥 

𝛼 is a positive bias meant to indicate that on average, the heart rate is expected to 

increase. It is set to 6bpm in this work. 

𝜎𝑥 is the standard deviation capturing the change in heart rate from one window to the 

next. It is set to be 10bpm, a larger number to reflect the possible rapid changes in heart 

rate. 

The threshold for required change in acceleration magnitude is set to be 0.04 g, 

and when such a change occurs the alternate update equation (6.29) is used for a period 

of 5 time windows. Note that we do not assume the heart rate definitely must increase 

whenever higher ACC activity is detected, as that is placing too much trust in a 

rudimentary activity detection approach. Rather, we simply allow the particles to be 

more spread out than usual for a few time windows when we detect a possible sign of 

volatility in the heart rate. In other words, there will be more particles than usual in the 
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higher heart rate regions in anticipation of a sudden increase, but there will continue to 

be particles corresponding to the previous steady state, lower heart rates, and everything 

in between. This is one of the core advantages of the particle filter, wherein particles can 

track multiple possible states in parallel. With this context-aware mode-switching 

approach, the instances of particle filter estimate latency due to sharp heart rate changes 

was reduced. We did not observe this latency effect for longer than 3 time windows or 6 

seconds across all subjects tested in this work, and there was no latency at all for many 

subjects. 

 

6.5 Experimental Setup 

6.5.1 Database Description 

Motion artifact affected PPG data was taken from the database used as part of the 

2015 IEEE Signal Processing Cup (SP Cup) [61]. This data was recorded at a sampling 

rate of 125Hz using a wrist-worn dual PPG sensor (i.e., two simultaneous channels of 

PPG) from 12 subjects. The sensor also included a 3-axis accelerometer. Each trial for a 

subject consisted of 30 seconds of resting, followed by four stages of activity each for 1 

minute, and finally 30 seconds of rest again. The four periods of activity consisted of 

alternating between relatively slower (6km/h or 8km/h) and faster (12km/h or 15km/h) 

treadmill speeds. ECG was also simultaneously recorded from the chest using wet 

sensors, and this is used to obtain the ground truth heart rate. Since the three related 

works mentioned earlier – TROIKA, JOSS and Robust EEMD – also all worked on the 

same dataset, we can directly compare the average errors in heart rate estimation.  
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At this juncture, we note that the JOSS work resampled the data to 25Hz 

(presumably to ease the computational load) and also truncated the data for 6 of the 12 

subjects; this is because that algorithm is entirely dependent on a clean start for the 

tracking, and half the subjects had signals with some noise to varying degrees even at the 

initial resting stage. Therefore, to compare with JOSS we also perform the resampling as 

well as the truncations described in that paper [62]. However, one of the key advantages 

of the particle filter is the increased ability to recover from going off-track due to the 

presence of multiple different particles in the state space. So we will also present the 

results from the un-truncated datasets and show that the particle filter effectively 

recovers from these ‘false starts’. 

 

6.5.2 ECG Database with simulated noise 

As the dataset described in the previous section had only clean ECG, we wanted 

to find another solution to obtain motion artifact affected ECG to test the particle filter 

on the estimation of heart rate from the fusion of simultaneous noisy ECG and noisy 

PPG. To the best of our knowledge there was no existing database that provided 

simultaneously recorded ECG and PPG data that were affected by real motion artifacts 

and also had the ground truth heart rate available.  

Therefore, we turned to the MIT-BIH Noise Stress Test Database to get real 

motion artifact noise and add it to the existing clean ECG signals from the 

aforementioned Signal Processing Cup database [22, 23]. The MIT-BIH database, 

including the techniques to synthetically introduce realistic motion artifact noise, is well 
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respected and has been used in several previous works. The owners of the database 

themselves provided a technique to add calibrated amounts of motion noise data to any 

given ECG record from their own database such that the desired SNR level is obtained. 

We have simply adapted this approach to inject the motion artifact noise into the ECG 

data from the SP Cup database. 

In order to test the fusion approach, we used the ECG data injected with motion 

artifacts in conjunction with the PPG data that is already present in the same database 

with real artifacts due to the running activity. The particle filter estimates from these 

fused observations are compared to the heart rate from the unaffected clean ECG data in 

the database. We ensure that the added motion artifact noise for ECG is proportionally 

increased in intensity as and when the running speed increases in a given data record. 

We chose SNR levels of 3dB and -3dB respectively for the slower and faster speeds.  

Of course, it would be unfair to compare the results from this fusion with the 

other related works, since they did not have the noisy ECG; however, we believe the 

results on their own will be illustrative of the ability of the particle filter to effectively 

fuse information from multiple modalities. We will compare the performance of using 

just the individual modalities vs. using the fusion of them to illustrate this. 

 

6.5.3 Experimental Data Collection 

Even though we believe the methodology of adding noise to the ECG described 

in the previous section is sound, we readily concede that the ideal scenario would be to 

have simultaneously collected ECG and PPG data that were both affected by real motion 
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artifacts during the course of the data collection. Since such a database is lacking in the 

literature to our knowledge, we conducted a limited data collection of our own to bolster 

our experimental conclusions. We used a previously developed system called the 

BioWatch [41] that collected one channel of PPG signals from the wrist and also 

included an accelerometer. For the ECG, we used a custom platform based on the TI 

ADS1299, an analog front end for bio-potential signals. One channel of ECG was 

recorded from the chest using adhesive gel electrodes in a Lead II configuration to be 

used as the ground truth. A second channel was recorded using a dry electrode that was 

secured to the forearm just above the BioWatch using medical tape. This was meant to 

provide an ECG signal that was more susceptible to motion artifacts. Both devices 

sampled data at a rate of 125Hz and transmitted data to a PC wirelessly using Bluetooth. 

Data was collected from 5 subjects running on a treadmill after informed consent and 

protocol approval by the IRB at Texas A&M University (IRB2016-0193D). The 

experimental protocol was designed to be similar to that of the database described 

earlier: 30 seconds of rest, followed by four 1-minute periods alternating between 

walking and running, and 30 seconds of rest at the end. Examples of the signals from our 

system after pre-processing (0.5 to 15Hz bandpass for PPG and 0.5 to 30Hz bandpass for 

ECG), for both standing and running scenarios are shown in Figures 6.4 and 6.5 

respectively. 
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Figure 6.4 – ECG, PPG and Accelerometer signals with subject at rest. Reprinted 

from Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring using 

Wearable Sensors, Viswam Nathan and Roozbeh Jafari, IEEE Journal of 

Biomedical and Health Informatics, ©2017, IEEE 

 

 

 

Figure 6.5 – ECG, PPG and Accelerometer signals with subject running. © 2017 

IEEE. Reprinted from Particle Filtering and Sensor Fusion for Robust Heart Rate 

Monitoring using Wearable Sensors, Viswam Nathan and Roozbeh Jafari, IEEE 

Journal of Biomedical and Health Informatics, ©2017, IEEE 
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6.6 Experimental Results 

6.6.1 Heart Rate Estimation Accuracy – PPG Database 

Table 6.1 shows the average heart rate estimation error in bpm for each of the 12 

subjects in the SP Cup database as well as the overall mean and standard deviation of 

error. We can see that the average error is < 2bpm for most subjects. Also shown for 

comparison are the corresponding results from the JOSS, TROIKA and Robust EEMD 

works. Note that Table I shows the results for the truncated data, and results are 

presented for our proposed work as well as the Robust EEMD at both 25Hz and 125Hz 

sampling rate. The average errors are more or less similar for the different methods, with 

the ‘Robust EEMD’ marginally better, whereas the proposed method at 125Hz shows the 

lowest standard deviation of error. The results for the un-truncated data are in Table 6.2, 

and we can see that the error from the particle filter estimates are hardly affected despite 

the noisy initial periods that prohibited the use of the JOSS algorithm. 

In Figure 6.6 is shown the Bland-Altman plot for the particle filter estimates’ 

agreement with the ground truth at the full 125Hz sampling rate. The limits of agreement 

(LOA) were defined following standard practice as [µ - 1.96σ, µ + 1.96σ], where µ is the 

average difference and σ is the standard deviation, 2.35 bpm in this case. The LOA were 

[-4.75, 4.45] bpm, and 95% of the difference values were within this confidence interval. 
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Figure 6.6 – Bland-Altman plot for particle filter agreement with ground truth. © 

2017 IEEE. Reprinted from Particle Filtering and Sensor Fusion for Robust Heart 

Rate Monitoring using Wearable Sensors, Viswam Nathan and Roozbeh Jafari, 

IEEE Journal of Biomedical and Health Informatics, ©2017, IEEE 

 

 

6.6.2 Heart Rate Estimation Accuracy – ECG Database and Fusion 

Table 6.3 shows the estimation error when using the particle filter to estimate 

heart rate from the noisy ECG simulated as described in section 6.5.2. For comparison, 

we show the average estimation error for heart rates as computed by our implementation 

of the well-respected Pan-Tompkins algorithm, which was designed specifically to 

estimate heart rate from ECG signals [76]. Of course, the Pan-Tompkins algorithm was 

not designed for this intensity of motion artifacts, but we included it to show the extent 

of noisiness in the ECG which causes significant issues for an established algorithm. We 

can see how the particle filter also works well with this different modality with low error 

rates. In addition, also shown in the table are the results of fusion of this noisy ECG with 

the two noisy PPG channels and the accelerometer. We can see how the fusion almost 

always improves the accuracy, showing how the particle filter was able to effectively 
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reward the consistent true observations across the different sources and make the best of 

the sensors available.  

 

 

 

Figure 6.7 – Heart rate estimation performance on a single subject. Reprinted from 

Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring using 

Wearable Sensors, Viswam Nathan and Roozbeh Jafari, IEEE Journal of 

Biomedical and Health Informatics, ©2017, IEEE 

 

 

The particle filter tracking over time for Subject 1 is also shown in Figure 6.7 for 

illustrative purposes. In this figure, ‘Findpeaks estimate’ refers to the heart rate estimate 

based solely on the CWT-based peak observation method on ECG, and it can be seen 

how it tends to overestimate as soon as the motion starts, whereas the particle filter 

continues to keep track even as the subject’s heart rate changes substantially during 

periods of motion activity. 
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Table 6.1 - Mean Absolute Heart Rate Estimation Error (in bpm) for the Various 

Algorithms on the Truncated Datasets 

 

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 
Mean ± 

SD 

JOSS [62] 

(25Hz) 
1.33 1.75 1.47 1.48 0.69 1.32 0.71 0.56 0.49 3.81 0.78 1.04 

1.28 ± 

2.61 

TROIKA 

[61] (25Hz) 
3.05 3.31 1.49 2.03 1.46 2.35 1.76 1.43 1.28 5.08 1.8 3.02 

2.34 ± 

2.86 

Robust 

EEMD [63] 

(25Hz) 

1.7 0.84 0.56 1.15 0.77 1.06 0.63 0.53 0.52 2.56 1.05 0.91 
1.02 ± 

1.79 

Particle 

Filter 

(25Hz)(Our 

method) 

2.21 1.71 1.11 1.71 1.1 1.72 1.11 1.29 1.12 3.5 1.68 1.57 
1.65 ± 

2.07 

Robust 

EEMD [63] 

(125Hz) 

1.83 0.85 0.63 1.21 0.65 1.03 0.7 0.5 0.47 2.83 1.14 0.9 
1.06 ± 

2.02 

Particle 

Filter 

(125Hz) 

(Our 

method) 

1.91 1.3 1.08 1.63 1.06 1.64 1.09 1.25 1.1 3.41 1.65 1.59 
1.56 ± 

1.73 
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Table 6.2 - Mean Absolute Heart Rate Estimation Error (in bpm) for the Various 

Algorithms on the Un-truncated Datasets 

 

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 
Mean ± 

SD 

TROIKA 

[61] (25Hz) 
3.05 3.49 1.49 2.03 1.46 2.35 1.76 1.42 1.28 5.73 1.79 3.02 

2.41 ± 

3.45 

Robust 

EEMD [63] 

(25Hz) 

1.64 0.81 0.57 1.44 0.77 1.06 0.63 0.47 0.52 2.94 1.05 0.91 
1.07 ± 

2.17 

Particle 

Filter (25Hz) 

(Our 

method) 

2.21 1.55 1.41 1.65 1.1 1.72 1.11 1.24 1.12 3.63 1.65 1.57 
1.66 ± 

2.17 

TROIKA 

[61] (125Hz) 
2.29 2.19 2 2.15 2.01 2.76 1.67 1.93 1.86 4.7 1.72 2.84 

2.34 ± 

0.82 

Particle 

Filter 

(125Hz) 

(Our 

method) 

1.91 1.46 1.39 1.61 1.06 1.64 1.09 1.25 1.1 3.58 1.73 1.59 
1.62 ± 

2.01 

 

 

 

Table 6.3 - Mean Absolute Heart Rate Estimation Error (in bpm) for the ECG and 

Fusion (ECG+PPG) Particle Filters, and Pan-Tompkins 

 

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 
Mean ± 

SD 

ECG Particle 

Filter (Our 

method) 

1.49 1.83 2.31 1.2 1.05 2.42 1.91 1.53 1.44 1.13 1.04 1.34 
1.56 ± 

2.02 

ECG+PPG 

Particle Filter 

(Our method) 

1.26 1.17 0.85 1.11 0.84 1.03 0.87 0.93 0.87 2.24 1.08 1.16 
1.12 ± 

1.32 

Pan-

Tompkins[76] 
26.1 17.5 19.9 23.5 23.3 24.6 22.7 18.6 18.2 33.9 25.2 24.4 

23.2 ± 

20.02 
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6.6.3 Heart Rate Estimation – Experimental Data Collection 

In Table 6.4 we also present the results of heart rate error from the fusion particle 

filter on the dataset collected ourselves, which guarantees real simultaneous ECG and 

PPG affected by motion artifacts. This shows that the particle filter performance 

continues to be effective even in this scenario. Again, for comparison is shown the error 

rates when using the Pan-Tompkins algorithm on the noisy ECG. Note that for Subject 4 

the Pan-Tompkins algorithm’s adaptive parameters completely went off track early on in 

the data record due to excessive noise, and did not recover estimates thereafter. 

 

 

Table 6.4 - Mean Absolute Estimation Error for Fusion Particle Filter and Pan-

Tompkins on Our Experimental Dataset 

 

Subject # 
Error for Particle Filter 

(bpm) 

Error for Pan-Tompkins [76] 

(bpm) 

1 1.55 13.73 

2 1.63 19.57 

3 1.25 11.46 

4 1.12 N/A 

5 1.47 10.4 

Mean ± SD 1.4 ± 1.55 13.79 ± 17.35 

 

 

6.6.4 Fusion Contribution Analysis 

In order to further illustrate how the fusion of modalities works, we take a closer 

look at the performance on Subject 10 from the database. As can be seen in Tables 6.1 
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and 6.2, estimation performance on this subject is noticeably worse, for our algorithm as 

well as those of other previous works. This suggests that the PPG signals themselves 

were relatively more unreliable for this subject. However, we see that in Table 6.3 when 

using the noisy ECG the performance is much better; so we can assume in this instance 

that the ECG is a more reliable signal at least for certain segments of the data.  

Figure 6.8 shows the relative contribution of each modality – ECG and the two 

PPG sensors – over time for Subject 10, computed as described in equations (6.26) and 

(6.27). In this figure, we plot only a subset of the time windows, spanning about 1 

minute. Moreover, overlaid in red is the particle filter heart rate estimation error for each 

of those windows. The error rises to almost 20 beats per minute around window 10, but 

soon after this the contribution of the ECG to the overall estimate increases. It is clear 

that the particle filter fusion rewards the more consistent observations from the ECG, 

and correspondingly the overall error drops sharply. We see a similar trend on a smaller 

scale around time window 40, where the error is relatively high until the ECG 

contributions become higher and the overall estimation performance becomes better. In 

future work, we aim to implement techniques that can recognize these trends of quality 

of observations and explicitly re-weight individual modalities in the fusion formulation. 
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Figure 6.8 – Relative contribution of ECG and PPG modalities to overall fusion 

particle filter estimate over time for Subject #10. Reprinted from Particle Filtering 

and Sensor Fusion for Robust Heart Rate Monitoring using Wearable Sensors, 

Viswam Nathan and Roozbeh Jafari, IEEE Journal of Biomedical and Health 

Informatics, ©2017, IEEE 

 

 

6.7 Comparison with Related Works 

6.7.1 Discussion of Estimation Performance 

The estimation errors are low, but in order to provide further context, we have 

compared the results to those of recent state-of-the-art works on heart rate estimation in 

the presence of motion artifacts. The estimation error levels are comparable to the most 

recent related works in the area. We note that the other related works were specifically 

developed and optimized for the objective of heart rate monitoring using PPG signals 

with several heuristics; for instance, TROIKA and JOSS use heuristics such as a rigid 

artificial bound on the variability of reported heart rate estimates from one window to 

the next, thresholds for what constitutes a big enough peak in the PPG frequency 

spectrum, and polynomial curve fitting based on previous heart rate estimates to predict 

the next estimate when the tracking does not return a satisfactory result. Similarly, the 
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‘Robust EEMD’ work, in addition to using EEMD and an adaptive filter, has an arbitrary 

‘absolute criterion’ to designate a ‘reliable peak’ in the PPG spectrum for heart rate and 

thresholds for what constitutes a strong enough peak in the PPG spectrum. The 

algorithm also deletes or removes segments of the signal from consideration if the 

corresponding accelerometer magnitude is too high. Moreover, with the EEMD 

approach the user is required to manually detect in a training phase which of the several 

intrinsic mode functions has the pertinent heart rate frequency information, and this also 

changes with sampling rate. It is therefore notable that the relatively more generalized 

particle filter framework introduced here with minimal heuristics or rule-based steps, no 

requirement for clean start, no deletion of data, which can work with other signal 

modalities as shown with ECG, and can also be applied to other physiological signal 

estimation problems, exhibits comparable performance to contemporary works that were 

purpose-built for the heart rate estimation problem on PPG signals. Moreover, as will be 

noted in the next section, this comparable estimation performance is achieved with an 

algorithm that is far more computationally efficient compared to these works. 

 

6.7.2 Analysis of Computation Time 

In this work, due to the formulation with the heart rate state, we mitigated the 

computational load by tracking only one state dimension with just 300 particles. Indeed, 

the contemporary works we can compare this to are significantly more computationally 

intensive. The authors of the ‘Robust EEMD’ work [63] note that the TROIKA 

algorithm takes about 17 minutes and 30 seconds on average to complete heart rate 
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estimation on a single subject at a sampling rate of 125Hz; whereas the Robust EEMD 

algorithm itself takes about 55 seconds per subject. Similarly, at a sampling rate of 

25Hz, the JOSS algorithm takes about 25s on average per subject and the corresponding 

Robust EEMD algorithm takes about 16s. When we measured the execution time of our 

particle filter implementation on MATLAB, the average time per subject was only about 

1.04 seconds for the 25Hz sampling rate, and 1.18 seconds for the 125Hz sampling rate. 

It must be noted that the execution times reported above for the related works were 

gathered from a work that used MATLAB 2013a, whereas we use MATLAB 2017a. 

However, this alone cannot account for the highly significant difference in computation 

time. Furthermore, the machine used to extract these results has similar specifications to 

the one used to report the results for the related works [63]. In particular, we used a 

Windows 10 64-bit PC with an Intel i7-6700 processor at 2.60 GHz and 16GB of RAM. 

We also analyzed the trade-off between the accuracy and computational cost as a 

function of the number of particles. Figure 6.9 shows a comparison of the error rates and 

computation time per minute of data for our particle filter as the number of particles is 

varied for a single subject. As a reminder, we used N = 300 particles in our work. While 

the estimation performance does improve as we increase the number of particles, as 

expected, it is likely that the higher values of N would make it impractical to compute 

these estimates in real-time, especially on wearable sensors. On such systems, one can 

easily adjust the number of particles subject to the availability of computational 

resources. 
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Figure 6.9 – Changes in average estimation error and computation time per minute 

of data on a single subject as the number of particles is changed. Reprinted from 

Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring using 

Wearable Sensors, Viswam Nathan and Roozbeh Jafari, IEEE Journal of 

Biomedical and Health Informatics, ©2017, IEEE 

 

 

6.8 Limitations 

We did not test on patients with heart rate variability or other cardiac conditions; 

this will likely require some tuning of the parameters, but this would be applicable to 

other contemporary signal processing techniques as well. Testing on subjects with 

abnormal cardiac activity will be left for future work. We also note that precise 

computational benchmarking is not the primary goal of this work; the previous section 

was only meant to provide a rough guide indicating a definite computational advantage 

over contemporary related works in the area. Deployment of the algorithm on a system is 

out of the scope of this work; however we submit that the design of such a system is 

eminently feasible, especially if we leverage cloud computing resources or other 

techniques to circumvent the computational constraints on typical wearable systems. 
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6.9 Conclusions 

This part of the research introduced a generalized particle filter framework that 

can be used to track heart rate and proved the feasibility of the technique on real world 

PPG and ECG signals affected by motion artifacts. Furthermore, it was shown how the 

particle filter can be used to successfully improve estimation accuracy by combining 

information from multiple modalities simultaneously measuring the same target 

phenomenon or even the noise associated with the target. This will prove useful in the 

context of the upcoming IoT ecosystem where there are multiple wearable and 

environmental sensors continuously monitoring the physiological status of the user. 
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7. CONCLUSION 

This dissertation document described the research that tackled two primary 

sources of noise pertaining to wearable sensors for continuous non-invasive health 

monitoring: improper sensor contact and motion artifacts. 

The problem of improper sensor contact was explored in the context of EEG 

signal monitoring, since this physiological signal modality is particularly susceptible to 

any deterioration in the skin-electrode interface, and existing solutions do not provide an 

automated, user-friendly approach that maintains the convenience of wearable dry 

electrode solution. The research first explored the relative merits of varying the number 

and density of fingers in a finger-based dry electrode design, since this aspect has not 

been previously studied despite this being a popular design architecture. Experimental 

results on human subjects led to the conclusion that denser configurations with a high 

number of fingers required extra efforts and preparation to properly penetrate through 

the hair and make contact with the scalp, whereas sparser configurations penetrated the 

hair more readily. However, with proper manual adjustment and placing, higher density 

configurations showed lower impedance of contact which led to higher quality signals. 

The next part of the EEG electrode research explored a possible solution to 

adaptively reconfigure the electrodes automatically to continually strive for the best 

possible contact without manual intervention. The noise effects of individual fingers 

were studied on a custom-built finger-based electrode, leading to the conclusion that 

indeed some individual fingers had worse contact and hence more noise compared to 

other fingers. These findings were then leveraged in another custom-built electrode that 



 

105 

 

could actively select any subset of fingers on an electrode, and this was used to prove 

that selecting only the subset of fingers with a good contact could improve the overall 

EEG signal when compared to using all of the fingers as is standard practice with 

existing dry finger-based EEG electrodes. 

The problem of motion artifacts was tackled in the context of continuous heart 

rate monitoring, as this is a relevant metric especially during periods of intense motion 

such as exercise. The developed solution was based on the state estimation technique 

known as particle filtering, with a novel formulation in the context of heart rate 

estimation. The developed algorithm was tested on real motion-artifact affected ECG 

and PPG signals both from an existing database as well as our own experimental data 

collections. The algorithm showed very effective tracking performance, with average 

heart rate estimation error < 2bpm over all subjects tested despite interleaving periods of 

running on a treadmill and associated motion artifacts and heart rate changes. 

Furthermore, the proposed solution was developed to take advantage of multiple sensors 

in the IoT, and was shown to be capable of fusing the information from ECG, PPG and 

Accelerometer sensors to improve the estimates. Finally, the proposed algorithm showed 

comparable accuracy of estimation with respect to contemporary related works, while 

remaining more generalized than those works with substantially faster computational 

performance. 

The findings of this work can help alleviate the most important roadblocks to 

continuous, pervasive physiological signal monitoring using wearable sensors. 
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