8,238 research outputs found

    Laser Based Mid-Infrared Spectroscopic Imaging – Exploring a Novel Method for Application in Cancer Diagnosis

    Get PDF
    A number of biomedical studies have shown that mid-infrared spectroscopic images can provide both morphological and biochemical information that can be used for the diagnosis of cancer. Whilst this technique has shown great potential it has yet to be employed by the medical profession. By replacing the conventional broadband thermal source employed in modern FTIR spectrometers with high-brightness, broadly tuneable laser based sources (QCLs and OPGs) we aim to solve one of the main obstacles to the transfer of this technology to the medical arena; namely poor signal to noise ratios at high spatial resolutions and short image acquisition times. In this thesis we take the first steps towards developing the optimum experimental configuration, the data processing algorithms and the spectroscopic image contrast and enhancement methods needed to utilise these high intensity laser based sources. We show that a QCL system is better suited to providing numerical absorbance values (biochemical information) than an OPG system primarily due to the QCL pulse stability. We also discuss practical protocols for the application of spectroscopic imaging to cancer diagnosis and present our spectroscopic imaging results from our laser based spectroscopic imaging experiments of oesophageal cancer tissue

    Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets

    Get PDF
    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties

    Biomedical Applications of Mid-Infrared Spectroscopic Imaging and Multivariate Data Analysis: Contribution to the Understanding of Diabetes Pathogenesis

    Get PDF
    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of adult vision loss. Although a great deal of progress has been made in ophthalmological examinations and clinical approaches to detect the signs of retinopathy in patients with diabetes, there still remain outstanding questions regarding the molecular and biochemical changes involved. To discover the biochemical mechanisms underlying the development and progression of changes in the retina as a result of diabetes, a more comprehensive understanding of the bio-molecular processes, in individual retinal cells subjected to hyperglycemia, is required. Animal models provide a suitable resource for temporal detection of the underlying pathophysiological and biochemical changes associated with DR, which is not fully attainable in human studies. In the present study, I aimed to determine the nature of diabetes-induced, highly localized biochemical changes in the retinal tissue from Ins2Akita/+ (Akita/+; a model of Type I diabetes) male mice with different duration of diabetes. Employing label-free, spatially resolved Fourier transform infrared (FT-IR) imaging engaged with chemometric tools enabled me to identify temporal-dependent reproducible biomarkers of the diabetic retinal tissue from mice with 6 or 12 weeks, and 6 or 10 months of diabetes. I report, for the first time, the origin of molecular changes in the biochemistry of individual retinal layers with different duration of diabetes. A robust classification between distinctive retinal layers - namely photoreceptor layer (PRL), outer plexiform layer (OPL), inner nuclear layer (INL), and inner plexiform layer (IPL) - and associated temporal-dependent spectral biomarkers, were delineated. Spatially-resolved super resolution chemical images revealed oxidative stress-induced structural and morphological alterations within the nucleus of the photoreceptors. Comparison among the PRL, OPL, INL, and IPL suggested that the photoreceptor layer is the most susceptible layer to the oxidative stress with short-duration of diabetes. Moreover, for the first time, we present the temporal-dependent molecular alterations for the PRL, OPL, INL, and IPL from Akita/+ mice, with progression of diabetes. These findings are potentially important and may be of particular benefit in understanding the molecular and biological activity of retinal cells during oxidative stress in diabetes. Our integrating paradigm provides a new conceptual framework and a significant rationale for a better understanding of the molecular and cellular mechanisms underlying the development and progression of DR. This approach may yield alternative and potentially complimentary methods for the assessment of diabetes changes. It is expected that the conclusions drawn from this work will bridge the gap in our knowledge regarding the biochemical mechanisms of the DR and address some critical needs in the biomedical community

    A methodology to investigate heterogeneous oxidation of thermally aged cross-linked polyethylene by ToF-SIMS

    Get PDF
    Artificial ageing of polymeric insulation jackets is routinely performed in order to assess end-of-life material characteristics. Practical constraints including high temperatures/ short times ageing treatments lead to strong influence of diffusion-limited oxidation (DLO) resulting in unreliable life-time predictions. This study proposes a new experimental approach to the investigation of cable insulation ageing, exploiting analytical techniques capable of resolving chemistry at the length scale relevant for DLO (nano-microscale). When studying the potential effects of DLO using time of flight secondary ion mass spectrometry (ToF-SIMS) sample preparation becomes crucial. This paper presents the development of a methodology to generate suitable specimens to investigate the DLO effect using ToF-SIMS. A reference polymeric material has been thermally aged in various DLO conditions. Cross sections of aged samples were generated using three different methods. In order to assess the most suitable approach for this study, cross-section topography were scanned using a profilometer and the surface chemistry was investigated using ToF-SIMS together with multivariate analysis methods

    Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    Get PDF
    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors, and are practical for use in an operational environment. The proposed anomaly detection methodology adapts multivariate outlier detection algorithms for use with hyperspectral datasets containing tens of thousands of non-homogeneous, high-dimensional spectral signatures. In so doing, the limitations of existing, non-robust, anomaly detectors are identified, an autonomous clustering methodology is developed to divide an image into homogeneous background materials, and competing multivariate outlier detection methods are evaluated for their ability to uncover hyperspectral anomalies. To arrive at a final detection algorithm, robust parameter design methods are employed to determine parameter settings that achieve good detection performance over a range of hyperspectral images and targets, thereby removing the burden of these decisions from the user. The final anomaly detection algorithm is tested against existing local and global anomaly detectors, and is shown to achieve superior detection accuracy when applied to a diverse set of hyperspectral images. The proposed signature matching methodology employs image-based atmospheric correction techniques in an automated process to transform a target reflectance signature library into a set of image signatures. This set of signatures is combined with an existing linear filter to form a target detector that is shown to perform as well or better relative to detectors that rely on complicated, information-intensive, atmospheric correction schemes. The performance of the proposed methodology is assessed using a range of target materials in both woodland and desert hyperspectral scenes
    • 

    corecore