2,477 research outputs found

    Time-course analysis of genome-wide gene expression data from hormone-responsive human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray experiments enable simultaneous measurement of the expression levels of virtually all transcripts present in cells, thereby providing a ‘molecular picture’ of the cell state. On the other hand, the genomic responses to a pharmacological or hormonal stimulus are dynamic molecular processes, where time influences gene activity and expression. The potential use of the statistical analysis of microarray data in time series has not been fully exploited so far, due to the fact that only few methods are available which take into proper account temporal relationships between samples.</p> <p>Results</p> <p>We compared here four different methods to analyze data derived from a time course mRNA expression profiling experiment which consisted in the study of the effects of estrogen on hormone-responsive human breast cancer cells. Gene expression was monitored with the innovative Illumina BeadArray platform, which includes an average of 30-40 replicates for each probe sequence randomly distributed on the chip surface. We present and discuss the results obtained by applying to these datasets different statistical methods for serial gene expression analysis. The influence of the normalization algorithm applied on data and of different parameter or threshold choices for the selection of differentially expressed transcripts has also been evaluated. In most cases, the selection was found fairly robust with respect to changes in parameters and type of normalization. We then identified which genes showed an expression profile significantly affected by the hormonal treatment over time. The final list of differentially expressed genes underwent cluster analysis of functional type, to identify groups of genes with similar regulation dynamics.</p> <p>Conclusions</p> <p>Several methods for processing time series gene expression data are presented, including evaluation of benefits and drawbacks of the different methods applied. The resulting protocol for data analysis was applied to characterization of the gene expression changes induced by estrogen in human breast cancer ZR-75.1 cells over an entire cell cycle.</p

    A bayesian approach to estimation and testing in time-course microarray experiments

    Get PDF
    The objective of the present paper is to develop a truly functional Bayesian method specifically designed for time series microarray data. The method allows one to identify differentially expressed genes in a time-course microarray experiment, to rank them and to estimate their expression profiles. Each gene expression profile is modeled as an expansion over some orthonormal basis, where the coefficients and the number of basis functions are estimated from the data. The proposed procedure deals successfully with various technical difficulties that arise in typical microarray experiments such as a small number of observations, non-uniform sampling intervals and missing or replicated data. The procedure allows one to account for various types of errors and offers a good compromise between nonparametric techniques and techniques based on normality assumptions. In addition, all evaluations are performed using analytic expressions, so the entire procedure requires very small computational effort. The procedure is studied using both simulated and real data, and is compared with competitive recent approaches. Finally, the procedure is applied to a case study of a human breast cancer cell line stimulated with estrogen. We succeeded in finding new significant genes that were not marked in an earlier work on the same dataset

    A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression.

    Get PDF
    BACKGROUND: The analysis of gene expression from time series underpins many biological studies. Two basic forms of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal nature of the data based on a Gaussian process. RESULTS: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing that the proposed approach considerably outperforms the current state of the art. CONCLUSIONS: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we believe Gaussian processes should be a standard tool in the analysis of gene expression time series

    Gene Expression Analysis Methods on Microarray Data a A Review

    Get PDF
    In recent years a new type of experiments are changing the way that biologists and other specialists analyze many problems. These are called high throughput experiments and the main difference with those that were performed some years ago is mainly in the quantity of the data obtained from them. Thanks to the technology known generically as microarrays, it is possible to study nowadays in a single experiment the behavior of all the genes of an organism under different conditions. The data generated by these experiments may consist from thousands to millions of variables and they pose many challenges to the scientists who have to analyze them. Many of these are of statistical nature and will be the center of this review. There are many types of microarrays which have been developed to answer different biological questions and some of them will be explained later. For the sake of simplicity we start with the most well known ones: expression microarrays

    Probabilities of spurious connections in gene networks: Application to expression time series

    Full text link
    Motivation: The reconstruction of gene networks from gene expression microarrays is gaining popularity as methods improve and as more data become available. The reliability of such networks could be judged by the probability that a connection between genes is spurious, resulting from chance fluctuations rather than from a true biological relationship. Results: Unlike the false discovery rate and positive false discovery rate, the decisive false discovery rate (dFDR) is exactly equal to a conditional probability without assuming independence or the randomness of hypothesis truth values. This property is useful not only in the common application to the detection of differential gene expression, but also in determining the probability of a spurious connection in a reconstructed gene network. Estimators of the dFDR can estimate each of three probabilities: 1. The probability that two genes that appear to be associated with each other lack such association. 2. The probability that a time ordering observed for two associated genes is misleading. 3. The probability that a time ordering observed for two genes is misleading, either because they are not associated or because they are associated without a lag in time. The first probability applies to both static and dynamic gene networks, and the other two only apply to dynamic gene networks. Availability: Cross-platform software for network reconstruction, probability estimation, and plotting is free from http://www.davidbickel.com as R functions and a Java application.Comment: Like q-bio.GN/0404032, this was rejected in March 2004 because it was submitted to the math archive. The only modification is a corrected reference to q-bio.GN/0404032, which was not modified at al
    • …
    corecore