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Abstract- In recent years a new type of experiments are changing the way that biologists and other 
specialists analyze many problems. These are called high throughput experiments and the main 
difference with those that were performed some years ago is mainly in the quantity of the data 
obtained from them. Thanks to the technology known generically as microarrays, it is possible to 
study nowadays in a single experiment the behavior of all the genes of an organism under different 
conditions. The data generated by these experiments may consist from thousands to millions of 
variables and they pose many challenges to the scientists who have to analyze them. Many of these 
are of statistical nature and will be the center of this review. There are many types of microarrays 
which have been developed to answer different biological questions and some of them will be 
explained later. For the sake of simplicity we start with the most well known ones: expression 
microarrays. 
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I. Introduction 

icroarrays and other genomic data are different 
in nature from the classical data around which 
most statistical techniques have been 

developed. In consequence, in many cases it has been 
necessary to adapt existing techniques or to develop 
new ones in order to fit the situations encountered. We 
will examine some key components of microarray 
analysis, experimental design, quality control, 
preprocessing and statistical analysis. In the last section 
we will consider some topics where open questions still 
remain and which can be considered attractive for 
statisticians who wish to focus some of their research in 
this field. One of the handicaps for statisticians who may 
consider entering this field is how to start applying their 
knowledge to these problems. We will present some real 
examples, which we will use along the paper to illustrate 
some concepts [1-15]. 
 
 
 
 
 
 
 
 
 
 
 

   
 

 
 

 

Figure 1 : The microarray analysis process 

The goal of this section is to present an 
integrated view of the whole process of analyzing 
microarray data (see figure 1). Many review papers 
discuss the statistical techniques available for the 
analysis at this level. 

II. Methods for Classification 

Different strategies have been proposed over 
the last several years for feature/gene selection: filter, 
wrapper, embedded [16], and more recently ensemble 
techniques [17]. 

Filter techniques assess the discriminative 
power of features based only on intrinsic properties of 
the data. As a general rule, these methods estimate a 
relevance score and a threshold scheme is used to 
select the best-scoring features/ genes. Filter 
techniques are not necessarily used to build predictors. 
As stated in [18], DEGs may also be good candidates 
for genes which can be targeted by drugs. This group of 
techniques is independent of any classification scheme 
but under particular conditions they could give the 
optimal set of features for a given classifier. Saeys et al. 
[1] also stress on the practical advantages of these 
methods stating that “even when the subset of features 
is not optimal, they may be preferable due to their 
computational and statistical scalability.” 

Wrapper techniques select the most 
discriminant subset of features by minimizing the 
prediction error of a particular classifier. These methods 
are dependent on the classifier being used and they are 
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Abstract- In recent years a new type of experiments are 
changing the way that biologists and other specialists analyze 
many problems. These are called high throughput experiments 
and the main difference with those that were performed some 
years ago is mainly in the quantity of the data obtained from 
them. Thanks to the technology known generically as 
microarrays, it is possible to study nowadays in a single 
experiment the behavior of all the genes of an organism under 
different conditions. The data generated by these experiments 
may consist from thousands to millions of variables and they 
pose many challenges to the scientists who have to analyze 
them. Many of these are of statistical nature and will be the 
center of this review. There are many types of microarrays 
which have been developed to answer different biological 
questions and some of them will be explained later. For the 
sake of simplicity we start with the most well known ones: 
expression microarrays.



mainly criticized because of their huge computational 
demands. More than that, there is no guarantee that the 
solution provided will be optimal if another classifier is 
used for prediction. 

Embedded techniques represent a different 
class of methods in the sense that they still allow 
interactions with the learning algorithm but the 
computational time is smaller than wrapper methods. 

Ensemble techniques represent a relatively new 
class of methods for FS. They have been proposed to 
cope with the instability issues observed in many 
techniques for FS when small perturbations in the 
training set occur. These methods are based on 
different sub sampling strategies. A particular FS 
method is run on a number of subsamples and the 
obtained features/genes are merged into a more stable 
subset [19]. 

a) Filter Methods - A Ranking Approach 
Most filter methods consider the problem of FS 

as a ranking problem. The solution is provided by 
selecting the top scoring features/genes while the rest 
are discarded. Generally these methods follow a typical 
scenario described below. 

1. Use a scoring function S(x) to quantify the difference 
in expression between different groups of samples 
and rank features/genes in decreasing order of the 
estimated scores. It is supposed that a high score is 
indicative for a DEG. 

2. Estimate the statistical significance (e.g., p-value, 
confidence intervals) of the estimated scores. 

3. Select the top ranked features/genes which are 
statistically significant as the most informative 
features/ genes (alternatively one could be 
interested in selecting the top ranked 
features/genes only as opposed to the top ranked 
significant ones). 

4. Validate the selected subset of genes. 
In the above-mentioned generic algorithm one 

can identify two aspects specific to this type of methods 
which play an important role in identifying informative 
features/genes: first, the choice of a scoring function to 
compute the relevance indices (or scores) and second, 
the assignment of statistical significance to computed 
scores. They will receive further consideration in order to 
be able to reveal the main differences between different 
methods and therefore helping to categorize them.  As 
an additional remark, the reader should note that ranked 
lists of features/genes can also be obtained via 
wrapper/embedded methods not only for filters, e.g., 
SVM. 

Recursive Feature Elimination (SVMRFE) [20] or 
Greedy Least Square Regression [21].Here we also 
outline the fact that  any combination of a scoring 
function and a statistical significance test designed to 
quantify the relevance of a feature/gene for a target 
annotation can be transformed into a ranking method for 

FS. Since all steps in the generic algorithm described 
above are independent one from another, the users do 
have a lot of freedom in the way they wish to perform the 
selection. 

b) Scoring Functions - Assigning Relevance Indices to 
Features 

Scoring functions represent the core of ranking 
methods and they are used to assign a relevance index 
to each feature/gene. The relevance index actually 
quantifies the difference in expression (or the 
informativeness) of a particular feature/gene across the 
population of samples, relative to a particular target 
annotation. Various scoring functions are reviewed and 
categorized here. They cover a wide range of the 
literature proposed for DEGs or biomarkers discovery. 
The scoring functions are enumerated and categorized 
according to their syntactic similarities. A similar 
approach presenting a very comprehensive survey on 
distance measures between probability density 
functions has been employed in [22]. 

Several groups of scoring functions for gene 
ranking have been identified. In the first group, we 
gathered scoring functions which estimate an average 
rank of genes across all samples. Scoring functions 
from the second group quantify the divergence (or the 
distance) between the distributions of samples 
corresponding to different classes associated to a target 
annotation per feature/gene. The third group contains 
information theory-based scoring functions while the 
fourth group measures the degree of association 
between genes and a target annotation. The last group 
gathers a list of miscellaneous scoring functions which 
cannot be included in the previous four. The big majority 
of scoring functions presented here are usually defined 
to rank single genes but some of them can be easily 
adapted for pairs or groups of genes. 

i. Ranking Samples across Features 
This group is represented by two scoring 

functions: rank sum and rank-product. Supposing x1 
and x2 are the expression levels of a certain gene in 
class c1 and class c2, respectively, the rank-sum 
method first combines all the samples in x1 and x2 and 
sorts them in ascending order. Then the ranks are 
assigned to samples based on that ordering. If k 
samples have the same value of rank i, then each of 
them has an average rank. If n1 and n2 denote the 
numbers of samples in the smaller and larger group, 
respectively, then the rank-sum score is computed by 
summing up the ranks corresponding to samples in c1. 
For a GEM data set, the rank-product method consists 
in ordering the genes across all samples in the value 
ascending order and then for each gene the rank 
product score is obtained by taking the geometrical 
average of the ranks of that gene in all samples. 
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ii. Measuring the Divergence between the Distributions 
of Groups of Samples

Another direction toward the identification of 
informative features/genes is to quantify the difference 
between the distributions of groups of samples 
associated to a target annotation. These scoring 
functions can be generically described as a function 
f(x1; x2) with x1; x2. For this purpose, some simple 
measures rely only on low-order statistics, in particular 
the first and second moment (mean and variance) of the 
distribution of expression levels in different groups. This 
is the simplest way to compare the distributions of two 
populations and implicitly imposes some more or less 
realistic assumptions on the distributions of samples in 
each population (e.g., normal distributed samples). 
Despite this obvious drawback they are still the most 
popular scoring functions used to create filters for FS in 
GEM analysis due to their simplicity. These scoring 
functions can be grouped in two families: fold-change 
family and t-test family. A different strategy in comparing 
the distributions of different populations is to rely on 
different estimates of the probability density function 
(pdf) or the cumulative density function (cdf) of 
populations but these methods are more expensive 
computationally. The different families of scoring 
functions mentioned here will be further presented in this 
section. 

a. Fold-change family
Relative indices are assigned to features/genes 

based only on mean estimates of the expression levels 
across different groups of samples per gene. According 
to [23] two forms are encountered for the fold-change 
scoring functions: fold-change ratio and fold change 
difference. However, the fold-change difference is less 
known and usually researchers who mention fold-
change in this context actually refer to fold change ratio. 
In practice, many packages for GEM analysis typically 
provide the log2 of the ratio between the means of 
group 1 and group 2. The numbers will be either positive 
or negative preserving the directionality of the 
expression change. t-test family. Several forms derived 
from the ordinary two-sample t-test are used to measure 
the difference in expression of genes. In the same 
family, we include the Z-score or the signal to noise ratio 
(SNR) defined as the ratio between the fold-change 
difference and the standardized square error of a 
particular gene. These scoring functions make use of 
both the first and second moments to assign relevance 
indices to genes.

b. Bayesian scoring functions
In several studies, the authors have defined 

scoring functions for informative features discovery in a 
Bayesian framework. The main motivation behind this is 
the difficulty in obtaining accurate estimates of the 
standard deviation of individual genes based on few 
measurements only. In order to cope with the weak 

empirical estimation of variance across a single 
feature/gene, several authors proposed more robust 
estimations of the variance by adding genes with similar 
expression values.

c. PDF-based scoring functions
Scoring functions in this category rely on 

different estimates of the pdfs of populations, from 
simple histograms to more complex estimators such as 
the Parzen window estimator [24]. Only few scoring 
functions based on this idea are used to discover 
informative features/genes. Here we identified 
Kolmogorov-Smirnov (K-S) tests [25], Kullback-Leibler 
divergence [26], or Bhattacharyya distance [27], but the 
mathematical literature abounds in measures 
quantifying the distance between pdfs revealing new 
possibilities to look for informative features/genes. We 
invite the reader to consult for a very comprehensive 
survey on this topic. Note that the use of these scoring 
functions for DEGs discovery is limited by the low 
number of samples in GEMexperiments which results in 
unreliable estimates of the pdf.

iii. Information Theory-Based Scoring Functions
These scoring functions rely on different 

estimates of the information contained both in the target 
feature c and in the gene expression x.

iv. Measuring the Dependency between Features and 
Target Feature as a Function

Scoring functions in this group have the 
advantage that they allow features/genes ranking when 
the target annotation is a continuous variable (which is 
not the case of the previous mentioned scoring 
functions). They measure the dependency between the 
gene’s expression profile x and the target feature c as a 
function f(x,c). Pearson’s correlation coefficient 
(PCCs),Its absolute value equals 1 if x and c are linearly 
correlated and equals 0 if they are uncorrelated. Note 
that PCCs is only applied if c is a continuous variable. 
When c is binary, PCCs comes down to the Z - score. A 
similar measure used for this purpose is Kendall’s rank 
correlation coefficient (KRCCs). A variant of this 
measure adapted to a two-class problem is proposed in 
[28].

v. Other Scoring Functions
A list of scoring functions mentioned in the 

literature for informative gene discovery which cannot be 
grouped in the above-mentioned families is presented 
here. The list presented in Table 1 includes: Area Under 
ROC Curve (AUC), Area Between the Curve and the 
Rising diagonal (ABCR), Between-Within class Sum of 
Squares (BWSS), and Threshold Number of Miss
classifications (TNoM). The reader is encouraged to 
consult the associated references in Table 1 for further 
details about these scoring functions.



Table 1 : Other scoring functions for gene ranking 
AUC 𝑆𝑆 = 𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘

𝑛𝑛0
𝑘𝑘=1   n0 Number of individual values of gene x [29] 

ABCR 𝑆𝑆 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ ||𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘
𝑛𝑛0
𝑘𝑘=1 − 𝐴𝐴𝑘𝑘 ||      Where 𝐴𝐴𝑘𝑘 = 2𝑘𝑘−1

2𝑛𝑛0
2

 [29] 

BWSS
 

𝑆𝑆 = 𝐴𝐴𝐵𝐵 = ∑ ∑ (𝑐𝑐𝑖𝑖=𝑘𝑘)(𝑥𝑥̅𝑘𝑘−𝑥𝑥̅)2𝑘𝑘𝑖𝑖
∑ ∑ (𝑐𝑐𝑖𝑖=𝑘𝑘)(𝑥𝑥𝑘𝑘−𝑥𝑥𝑘𝑘����)2𝑘𝑘𝑖𝑖

 
[30]

 

TNoM
 

S=TNoM= mind,tErr(d,t|x,c) [31]
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c) Estimating Statistical Significance for Relevance 
Indices

Estimating the statistical significance for the 
relevance indices assigned to each feature/gene has 
been long addressed in the quest for DEGs. It is argued 
that statistical significance tests quantify the probability 
that a particular score or relevance index has been 
obtained by chance. It is common practice that 
features/genes ranked high in the list according to the 
relevance index, will be discarded if the computed 
scores are not statistically significant. There are different 
ways one can assign statistical significance despite 
many criticisms the most commonly used statistical 
significance test is the p-value. Many researchers 
advocate for alternative measures such as confidence 
intervals, especially due to the fact that p-values only 
bring evidence against a hypothesis (e.g., the null 
hypothesis of no “correlation” between features/genes 
and target annotation) and “confirm” a new hypothesis 
by rejecting the one which has been tested without 
bringing any evidence in supporting the new one [32]. 
Without entering into this debate, it is important to notice 
that statistical significance tests can be run either by 
exploring gene-wise information across all samples, 
either by exploring the large number of features in GEM 
experiments. Regardless the manner the statistical 
significance tests are performed, a permutation test is 
generally employed. It consists of running multiple tests 
which are identical to the original except that the target 
feature (or the class label) is permuted differently for 
each test. An important concept for estimating the 
statistical significance for DEGs discovery is the multiple 
hypotheses testing which will be described at the end of 
this section.

i. Exploring Feature-Wise Information to Asses 
Statistical Significance

This strategy assumes a large enough number 
of samples in order to infer upon the statistical 
significance of computed relevance indices of genes. 
The statistical significance is estimated for each 
feature/gene individually based on its intrinsic 
information. p-values. In statistics, the p-value is the 
probability of obtaining a test statistic (in our case a 
relevance index) at least as extreme as the one that was 
actually observed. The lower the p-value the more 
significant the result is (in the sense of statistical 

significance). Typical cutoff thresholds are set to 0.05 or 
0.01 corresponding to a 5 or 1 percent chance that the 
tested hypothesis is accepted by chance. Pvalues can 
be estimated empirically by using a permutation test. 
However, standard asymptotic methods also exist, 
reducing substantially the computational time required 
by permutation tests. These methods rely on the 
assumption that the test statistic follows a particular 
distribution and the sample size is sufficiently large. 
When the sample size is not large enough, asymptotic 
results may not be valid, with the asymptotic p-values 
differing substantially from the exact p-values.

ii. Exploiting the Power of Large Number of Features
An alternative strategy to overcome the 

drawback of the small number of samples in GEM 
experiments is to take advantage of the large number of 
features/genes [33]. In order to illustrate this idea we will 
consider the following: a GEM data set containing gene 
information about samples originating from two 
populations c1 and c2, and a filter algorithm to search 
for DEGs between c1 and c2.  

iii. Multiple Hypothesis Testing Approach
The study of Dudoit et al. [34] was the first work 

describing the multiple hypothesis testing for GEM 
experiments in a statistical framework. In the context of 
DEGs discovery, multiple hypothesis testing is seen as 
simultaneously testing for each gene the null hypothesis 
of no association between the expression level and the 
responses or target features [34]. According to them, 
any test can result in two type of errors: false positive or 
Type I errors and false negative or Type II errors. 
Multiple hypothesis testing procedures aim to provide 
statistically significant results by controlling the 
incidence rate of these errors. In other words, provide a 
way of setting appropriate thresholds in declaring a 
result statistically significant. The most popular methods 
for multiple hypothesis testing focus on controlling Type 
I error rate. This is done by imposing a certain threshold 
for the Type I error rate and then applying a method to 
produce a list of rejected hypothesis until the error rate 
is less than or equal with the specified threshold. 

p-value with Bonferroni correction is an 
improved version of the classical p-value and consists in 
increasing the statistical threshold for declaring a gene 
significant by dividing the desired significance with the 
number of statistical tests performed [35].
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False discovery rate (FDR) is a recent 
alternative for significance testing and has been 
proposed as an extension of the concept of p-values 
[36]. The FDR is defined as FDR =[F/G] , where F is the 
number of false positive genes and G is the number of 
genes found as being significant. In order to overcome 
the situations where FDR is not defined (when G = 0), 
Storey [37] proposed a modified version of the FDR 
called positive false discovery rate (pFDR) defined as 
Pfdr= [E/F|G > 0].

A less accurate alternative to the FDR for 
significance testing is the family-wise error rate (FWER) 
which is defined as the probability of at least one truly 
insignificant feature to be called significant. q-value is an 
extension of FDR which has been proposed to answer 
the need of assigning a statistical significance score to 
each gene in the same way that the p-value does [38]. 
The q-value is defined as being the minimum pFDR at 
which a test may be called significant. The reader 
should be aware that the q-value can be defined either 
in terms of the original statistics or in terms of the p-
values.

d) Ranking Methods for FS - Examples
In this section, we discuss and review ranking 

methods for FS by extending the taxonomy presented in 
Fig. 1.

i. Univariate Methods
According to [16], univariate methods for FS 

can be either parametric or nonparametric. Here, we 
provide a brief description of both groups.

a. Parametric methods
These methods rely on some more or less 

explicit assumption that the data are drawn from a given 
probability distribution. The scoring functions used to 
measure the difference in expression between groups of 
samples for each gene provide meaningful results only if 
this assumption holds. In particular, many researchers 
state that the t-test can be used to identify DEGs only if 
the data in each class are drawn from some normal 
distribution with mean and standard deviation.
b. Nonparametric methods

These methods assume by definition that the 
data are drawn from some unknown distribution. The 
scoring functions used to quantify the difference in 
expression between classes rely either on some 
estimates of the pdfs or on averaged ranks of genes or 
samples. Obviously, these methods have a higher 
generalization power but for most of them (especially 
those relying on estimates of the pdfs), the 
computational cost is higher. In [16], univariate 
nonparametric filter techniques are split in two groups: 
pure model-free methods and methods based on 
random permutation associated to parametric tests. 
Pure model free methods use nonparametric scoring 
functions to assign a relevance index to each gene and 

then the statistical relevance of that index is estimated in 
terms of either p-value, FDR or q-value. Methods based 
on random permutations associated with a parametric 
test take advantage on the large number of 
genes/features in order to find genes/features which 
present significant changes in expression. In a first 
instance, they make use of a parametric scoring 
function to assign a relevance index to each gene and 
then employ a nonparametric statistical significance test 
to check for DEGs. The nonparametric significance test 
consists in comparing the distribution of relevance 
indices of genes estimated in the previous step and the 
null distribution of the test statistic (or relevance index). 
The null distribution of the test statistic is usually 
estimated using a permutation test.

ii. Bivariate Ranking Methods
Ranking pairs of genes according to their 

discrimination power between two or more conditions 
can be performed either using a “greedy strategy” or “all 
pair strategy.” Greedy strategies. Methods in this group 
first rank all genes by individual ranking (using one of 
the criteria employed by univariate ranking methods); 
subsequently the highest scoring gene gi is paired with 
the gene gj that gives the highest gene pair score. After 
the first pair has been selected, the next highest ranked 
gene remaining gs is paired with the gene gr that 
maximizes the pair score, and so on. In [39], a greedy 
gene pair ranking method has been proposed where 
initially the t-test was employed to first rank genes 
individually while the pair score measures how well the 
pair in combination distinguishes between two 
populations. Concretely, the gene pair score is the t-test 
of the projected coordinates of each experiment on the 
diagonal linear discriminant (DLD) axis, using only these 
two genes. For further details we invite the reader to 
consult [39].

All pairs strategies. Unlike greedy pairs 
methods, all pairs strategies examine all possible gene 
pairs by computing the pair score for all pairs. The pairs 
are then ranked by pair score, and the gene ranking list 
is compiled by selecting non overlapping pairs, and 
selecting highest scoring pairs first. This method is 
computationally very expensive.

e) Filter Methods - Space Search Approach
The second direction to create filters for FS is to 

adopt an optimization strategy which will come up with 
the most informative and least redundant subset of 
features among the whole set. This strategy implies 
three main steps described as follows:
1. Define a cost function to optimize.
2. Use an optimization algorithm to find the subgroup 

of features which optimizes the cost function.
3. Validate the selected subset of genes.
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III. Our Contribution

This work categorizes the algorithms into 
different categories to emphasize the data structure that 
drives the matching.  We will give in this section some 
characteristics of standard clustering methods in 
relation to microarray data analysis. Hierarchical 
clustering has been mainly used to find a partition of the 
samples more than of the genes because there are 
much less samples than genes so that, with genes, the 
resulting dendrogram is often difficult to interpret.

Algorithms Designed After 2000
In this section we survey the most classical 

micro array algorithms that have been designed after 
year 2000. In particular the algorithms based on 
comparisons and the algorithms based on micro array. 
Most of the comparison-based algorithms presented in 
the last ten years are obtained by improving or 
combining the ideas of previously published algorithms. 
In the following we briefly review the state-of-the-art until 
2014 and the main ideas and the algorithms to which 
the new solutions refer.

a) During 2010
Leila Muresan et.al [40] developed an approach 

for the analysis of high-resolution microarray images. 
First, it consists of a single molecule detection step, 
based on undecimated wavelet transforms, and second, 
a spot identification step via spatial statistics approach 
(corresponding to the segmentation step in the classical 
microarray analysis).  Proposed approach relies on two 
independent steps. First, present a wavelet-based 
method to detect single molecules in each subimage. 
Wavelet transform offers an attractive solution for the 
detection of small bright features, e.g., in astronomical 
images or in the case of microscopy, for the detection of 
subcellular structures. The detection is based on the 
property of the wavelet transform to concentrate the 
information in a few wavelet coefficients, and 
subsequently thresholding the pixels corresponding to 
the signal from background. Second, separate the 
detected molecules inside the spot of interest (the 
hybridization signal) from the unspecifically bound ones. 
This concentration estimation approaches based on 
spatial statistics. The first algorithm matches the 
empirical moments with the moments of a mixture of two 
Poisson distributions representing counts of molecules 
outside and inside the spot. The second algorithm 
separates spot-bound single molecules from dirt, based 
on nearest neighbor distances of all the detected peak 
locations, via an expectation-maximization (EM) 
approach. Since the surface was made antiadsorptive 
for target molecules, we can assume that the 
concentration of peaks outside the spot is lower than the 
concentration of the hybridized molecules inside the 
spot. The detection method was tested on simulated 
images with a concentration range of 0.001 to 0.5 

molecules per square micrometer and signal-to-noise 
ratio (SNR) between 0.9 and 31.6. For SNR above 15, 
the false negatives relative error was below 15%. 
Separation of foreground/background is proved reliable, 
in case foreground density exceeds background by a 
factor of 2. The method has also been applied to real 
data from high-resolution microarray measurements.

Yoshinori Tamada et.al [41] presents a novel 
algorithm to estimate genome-wide gene networks 
consisting of more than 20 000 genes from gene 
expression data using nonparametric Bayesian 
networks. Due to the difficulty of learning Bayesian 
network structures, existing algorithms cannot be 
applied to more than a few thousand genes. Present 
algorithm overcomes this limitation by repeatedly 
estimating sub networks in parallel for genes selected 
by neighbor node sampling. Through numerical 
simulation, finally confirmed that proposed algorithm 
outperformed a heuristic algorithm in a shorter time. 
Proposed algorithm to microarray data from human 
umbilical vein endothelial cells (HUVECs) treated with 
siRNAs, to construct a human genome-wide gene 
network, which compared to a small gene network 
estimated for the genes extracted using a traditional 
bioinformatics method. The results showed that 
genome-wide gene network contains many features of 
the small network, as well as others that could not be 
captured during the small network estimation. The 
results also revealed master-regulator genes that are not 
in the small network but that control many of the genes 
in the small network. These analyses were impossible to 
realize without our proposed algorithm. Analysis of the 
result, we also constructed a gene network with 527 
genes extracted. These 527 genes are selected based 
on the ordinal bioinformatics analysis with SAM 
(Significance Analysis of Microarrays) by applying it to 
another drug-response microarray data which were 
observed for HUVECs stimulated by anti-hyperlipidemia 
drug Fenofibrate. For this smaller gene network, 
performed the bootstrap method. The number of the 
bootstrap iterations is 1000. The final 527 gene network 
is generated by removing edges whose bootstrap 
probabilities are less than 0.5.

Tianwei Yu et.al [42] proposes an imputation 
scheme based on nonlinear dependencies between 
genes. By simulations based on real microarray data, 
show that incorporating non-linear relationships could 
improve the accuracy of missing value imputation, both 
in terms of normalized root mean squared error and in 
terms of the preservation of the list of significant genes 
in statistical testing. In addition, studied the impact of 
artificial dependencies introduced by data normalization 
on the simulation results. Our results suggest that 
methods relying on global correlation structures may 
yield overly optimistic simulation results when the data 
has been subjected to row (gene) – wise mean removal. 
Six datasets were used in the simulation study. They 
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included the B-cell lymphoma profiling data , the dataset 
of yeast transcriptome/translatome comparison, the 
NCI60 cell line gene expression data, and the 
GSE19119 dataset on Atlantic salmon. Two yeast cell 
cycle time series, the alpha factor dataset and the 
elutriation dataset, were used to probe the effect of data 
normalization on simulation results in imputation studies. 
Four popular imputation methods were used for 
comparison. They included the K-nearest neighbor 
(KNN) method, the Bayesian PCA (BPCA) method, the 
local least square (LLS) method, and the SVD method. 
Different percentages of missing (1%, 5%, 10%, 15% 
and 20%) were simulated. 

Jianxing Feng et.al [43] propose a novel Graph 
Fragmentation Algorithm (GFA) for protein complex 
identification. Adapted from a classical maxflow 
algorithm for finding the (weighted) densest subgraphs, 
GFA first finds large (weighted) dense sub graphs in a 
protein-protein interaction network and then breaks each 
such subgraph into fragments iteratively by weighting its 
nodes appropriately in terms of their corresponding log 
fold changes in the microarray data, until the fragment 
subgraphs are sufficiently small. Tests on three widely 
used protein-protein interaction datasets and 
comparisons with several latest methods for protein 
complex identification demonstrate the strong 
performance of proposed method in predicting novel 
protein complexes in terms of its specificity and 
efficiency. Given the high specificity (or precision) that 
method has achieved, finally conjecture that our 
prediction results imply more than 200 novel protein 
complexes. In this paper authors retrieved 51 sets of 
microarray gene expression data concerning yeast from 
the GEO database where the log fold changes of 
expression levels are provided. Each dataset contains 
multiple samples (or conditions). Totally, 824 samples 
are contained in the 51 datasets. Since the genes 
expressed in each sample are different and they could 
also be different from the genes contained in a PPI 
network, use a sample of the microarray data on a PPI 
network if it covers at least 90% of the genes in the 
network under consideration. For genes that have no 
expression data in a certain sample, treat their (log 
transformed) expression values as 0. Finally, chose 
(randomly) 500, 600, and 700 samples to be applied on 
the MIPS, DIP, and BioGRID PPI networks, respectively. 

Jong Kyoung Kim et.al [44] develop a hybrid 
generative/discriminative model which enables us to 
make use of unlabeled sequences in the framework of 
discriminative motif discovery, leading to semi-
supervised discriminative motif discovery. Numerical 
experiments on yeast ChIP-chip data for discovering 
DNA motifs demonstrate that the best performance is 
obtained between the purely-generative and the purely-
discriminative and the semi-supervised learning 
improves the performance when labeled sequences are 
limited. This examined the yeast ChIP-chip data 

published to investigate the effect of α on identifying 
TFBSs, and the benefit of semi-supervised learning for 
motif discovery. The data included the intergenic 
binding locations of yeast TFs which were profiled under 
various environmental conditions. For each TF under a 
particular condition, defined its original positive set to be 
probe sequences that are bound with P-value ≤ 0.001, 
where the binding P-value is evaluated according to 
relative intensities of spots on a microarray.  To establish 
the importance of blending generative and 
discriminative approaches for discovering DNA motifs, 
examined the ability of DMOPSH to find true motifs by 
varying the size of the positive set with different values of 
α. The top K sequences with smallest P values from the 
original positive set were chosen to define a positive set 
and the remaining sequences were defined to be 
unlabeled. Similarly, chose the 3K probe sequences 
with largest P-values for the negative set. We ran each 
experiment three times with different initializations and 
reported the means with ±1 standard error. 

Xin ZHAO et.al [45] Identifying significant 
differentially expressed genes of a disease can help 
understand the disease at the genomic level. A 
hierarchical statistical model named multi-class kernel-
imbedded Gaussian process (mKIGP) is developed 
under a Bayesian framework for a multi-class 
classification problem using microarray gene expression 
data. Specifically, based on a multinomial probit 
regression setting, an empirically adaptive algorithm 
with a cascading structure is designed to find 
appropriate featuring kernels, to discover potentially 
significant genes, and to make optimal tumor/cancer 
class predictions. A Gibbs sampler is adopted as the 
core of the algorithm to perform Bayesian inferences. A 
prescreening procedure is implemented to alleviate the 
computational complexity. The simulated examples 
show that mKIGP performed very close to the Bayesian 
bound and outperformed the referred state-of-the-art 
methods in a linear case, a non-linear case and a case 
with a mislabeled training sample. Its usability has great 
promises to problems that linear model based methods 
become unsatisfactory. The mKIGP was also applied to 
four published real microarray datasets and it was very 
effective for identifying significant differentially 
expressed genes and predicting classes in all of these 
datasets. This work builds a unified kernel-induced 
supervised learning model under a hierarchical 
Bayesian framework to analyze microarray gene 
expression patterns. With a multinomial probit 
regression setting, the introduction of latent variables, 
and a prescreening procedure, the mKIGP model was 
developed for a multi-class classification problem. An 
algorithm with a cascading structure was proposed to 
solve this problem and a Gibbs sampler was built as the 
mechanical core to do the Bayesian inference. Given a 
kernel type (such as a Gaussian kernel) with the training 
data as input, the fitted parameter(s) of the kernel and a 
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set of significant genes can be obtained by running the 
algorithm. The algorithm also offers a probabilistic class 
prediction for each testing sample. 

Alfredo Benso et.al [46] presents a new cDNA 
microarray data classification algorithm based on graph 
theory and able to overcome most of the limitations of 
known classification methodologies. The classifier works 
by analyzing gene expression data organized in an 
innovative data structure based on graphs, where 
vertices correspond to genes and edges to gene 
expression relationships.  One of the main contributions 
of the classifier stems in the ability of combining in a 
single algorithm high accuracy in the classification 
process together with the ability of detecting samples 
not belonging to any of the trained classes, thus 
drastically reducing the number of false positive 
classification outcomes. To validate the efficiency of the 
proposed approach, the paper presents an 
experimental comparison between the GEG-based 
classifier and several generic state-of-the-art multi-class 
and one-class classification methods on a set of cDNA 
microarray experiments for fifteen well known and 
documented diseases. Experimental results show that 
the GEG-based classifier is able to reach the same 
performances reached by multi-class classifiers when 
dealing with samples belonging to the considered class 
library, while it outperforms one-class classifiers in the 
ability of detecting samples not belonging to any of the 
trained classes. To demonstrate the novelty of the 
proposed approach, the authors present an 
experimental performance comparison between the 
proposed classifier and several state-of-the-art 
classification algorithms. 

Yu-Cheng Liu et.al [47] proposed a temporal 
dependency association rule mining method named 3D-
TDAR-Mine for three-dimensional analyzing microarray 
datasets. The mined rules can represent the regulated-
relations between genes. Through experimental 
evaluation, our proposed method can discover the 
meaningful temporal dependent association rules that 
are really useful for biologists. In this paper, define the 
Frequently Coherent Pattern as gene expressions 
reaction. Furthermore, Coherent Pattern is focus on one 
gene in one continuous time segment to compute the 
gene expression value similarity between any two 
samples. Hence, user can depend on their required 
feature of Coherent Pattern to choice the similarity 
measure method. If user wants to discover the Coherent 
Pattern between two samples that have identical shape 
in gene expression value series. They can use the PCC 
(Pearson correlation coefficient). But, in the real life 
reaction, it not always has identical shape. The 
expression value series between samples also have 
Shifting, Scale and Trend relation. Therefore, it proposed 
the TS3 similarity measurement to estimate the Coherent 
Pattern that considers the Shifting, Scale and Trend 
factors. 

Hong-Dong Li et.al [48] presented a new 
approach, called Margin Influence Analysis (MIA), 
designed to work with support vector machines (SVM) 
for selecting informative genes. The rationale for 
performing margin influence analysis lies in the fact that 
the margin of support vector machines is an important 
factor which underlies the generalization performance of 
SVM models. Briefly, MIA could reveal genes which have 
statistically significant influence on the margin by using 
Mann-Whitney U test. The reason for using the Mann-
Whitney U test rather than two-sample t test is that 
Mann-Whitney U test is a nonparametric test method 
without any distribution-related assumptions and is also 
a robust method. Using two publicly available 
cancerous microarray datasets, it is demonstrated that 
MIA could typically select a small number of margin-
influencing genes and further achieves comparable 
classification accuracy compared to those reported in 
the literature.  The method reported here, named margin 
influence analysis (MIA), is quite different from previous 
work. it is developed based model population analysis 
(MPA), which is a general framework for designing 
bioinformatics algorithms. The MIA method is currently 
proposed by strictly implementing the idea of MPA and 
specially designed for variable selection of support 
vector machines. It works by first computing a large 
number of SVM classifiers using randomly sampled 
variables. Each model is associated with a margin. Then 
the nonparametric Mann-Whitney U test is employed to 
calculate a p-value for each variable, aiming at 
uncovering the variable that can increase the margin of 
a SVM model significantly. The rationale behind MIA is 
that the performance of SVM depends heavily on the 
margin of the classifier. As is known, the larger the 
margin is, the better the prediction performance will be. 
For this reason, variables that can increase the margin 
of SVM classifiers should be regarded as informative 
variables or possible biomarker candidates. On the 
whole, the main contributions of MIA are two folds. 
Firstly, it is originally from model population analysis 
which helps statistically establish variable rank by 
analyzing the empirical distributions of margins of 
related SVM classifiers. Secondly, it explicitly utilizes the 
influence of each variable on the margin for variable 
selection. The results for two publicly available 
microarray datasets show that MIA typically selects a 
small number of margin-influencing informative genes, 
leading to comparable classification accuracy 
compared to that reported in the literature. The 
distinguished features and outstanding performance 
may make MIA a good alternative for gene selection of 
high dimensional microarray data. 

Yang Chen, and Jinglu Hu [49] presents a 
constructive heuristic algorithm, featuring an accurate 
reconstruction guided by a set of well-defined criteria 
and rules. Instead of directly reconstructing the original 
sequence, the new algorithm first builds several 
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accurate short fragments, which are then carefully 
assembled into a whole sequence. The eSBH algorithm 
can achieve relatively high accuracy in reconstruction 
from a large spectrum, than other constructive heuristics 
and some meta heuristics, especially for real DNA 
sequences in the benchmark instance sets. The 
experiments on benchmark instance sets demonstrate 
that the proposed method can reconstruct long DNA 
sequences with higher accuracy than current 
approaches in the literature. 

Jong Kyoung Kim and Seungjin Choi [50] 
develop a hybrid generative/discriminative model which 
enables us to make use of unlabeled sequences in the 
framework of discriminative motif discovery, leading to 
semi-supervised discriminative motif discovery. Here the 
authors, assume that each subsequence is generated 
by a finite mixture model with two components 
corresponding to motif and background models.  While 
this generative approach is useful for finding over-
represented motifs in a given target set of sequences, 
our simple generative model has a limitation to capture 
the nature of labeled sequences. Numerical experiments 
on yeast ChIP-chip data for discovering DNA motifs 
demonstrate that the best performance is obtained 
between the purely-generative and the purely 
discriminative and the semi-supervised learning 
improves the performance when labeled sequences are 
limited. 

Gene selection methods aim at determining 
biologically relevant subsets of genes in DNA microarray 
experiments. However, their assessment and validation 
represent a major difficulty since the subset of 
biologically relevant genes is usually unknown. To solve 
this problem a novel procedure for generating 
biologically plausible synthetic gene expression data is 
proposed by Marco Muselli et.al [51]. It is based on a 
proper mathematical model representing gene 
expression signatures and expression profiles through 
Boolean threshold functions. Here authors showed from 
a statistical standpoint that we may obtain artificial data 
reasonably close to real gene expression data. As a 
consequence, we may generate biologically plausible 
virtual gene expression data that may be easily used to 
evaluate gene selection methods, since, in this case, 
know in advance the set of “relevant” genes. On the 
basis of the mathematical model, we proposed an 
algorithmic procedure to generate artificial gene 
expression data, and we showed how to apply the 
algorithm to the analysis of the performance of statistical 
and machine learning based gene selection methods. 
The results show that the proposed procedure can be 
successfully adopted to analyze the quality of statistical 
and machine learning-based gene selection algorithms. 

Leila Muresan et.al [52] developed an approach 
for the analysis of high-resolution microarray images. 
First, it consists of a single molecule detection step, 
based on undecimated wavelet transforms, and second, 

a spot identification step via spatial statistics approach 
(corresponding to the segmentation step in the classical 
microarray analysis). The detection method was tested 
on simulated images with a concentration range of 
0.001 to 0.5 molecules per square icrometer and signal-
to-noise ratio (SNR) between 0.9 and 31.6. For SNR 
above 15, the false negatives relative error was below 
15%. Separation of foreground/background is proved 
reliable, in case foreground density exceeds 
background by a factor of 2. The method has also been 
applied to real data from high-resolution microarray 
measurements. 

Banu Dost et.al [53] introduce here a new 
method, TCLUST, for clustering large, genome-scale 
data sets. The algorithm is based on measures of co-
connectedness to identify dense subgraphs present in 
the data. The authors have applied this method to a 
large reference gene expression data set, and showed 
that the resulting clusters show strong enrichment in 
known biological pathways. Although TCLUST has been 
shown to perform as good as or better than existing 
methodologies, as with any methodology, certain 
caveats must be noted. A possible shortcoming might 
be that once two vertices end up in different clusters, 
they are never reconnected. On the one hand, this 
makes the algorithm converge faster, on the other hand, 
it might lead to some loss of sensitivity for higher error-
rates. In principle, this could be adjusted, by applying 
the tcg thresholds more judiciously, gaining some FN 
edges at the cost of some FP edges, and increasing the 
number of iterations. 

Giorgio Valentini [54] proposed a new 
hierarchical strategy, inspired by the true path rule, for 
gene function prediction extended to the overall 
functional taxonomy of genes. TPR-w ensembles 
significantly outperform both the basic TPR and Top-
down ensembles in the genome and ontology wide 
prediction of gene functions in S. cerevisiae. The 
analysis of the experimental results and a theoretical 
investigation of the flow of information that traverses the 
hierarchical ensemble show the reasons why TPR-w are 
well-suited to the prediction of gene functions, and 
suggest new research lines for the development of new 
hierarchy-aware gene function prediction methods. The 
overall results show that using a single source of 
evidence we can obtain a high precision and recall for 
specific trees of the FunCat forest. 

The prevalence of chronic diseases is 
increasing at an alarming rate. Among them the 
incidence of Type-2 Diabetes is rapidly increasing 
globally. Although genetics could play an important role 
in the higher prevalence of this disease, it is not clear 
how genetic factors interact with environmental and 
dietary factors to increase their incidence. In the current 
study, Gene Expression Analysis was performed by the 
authors [55,56] to find out differentially expressed genes 
between Type-2 Diabetes with and without parental 
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history. For this analysis Multivariate and Univariate 
outlier detection methods are used. This analysis helps 
in identifying the potential Candidate Genes causing 
Type-2 Diabetes. 

b) During 2011 
Mohak Shah and Jacques Corbeil [57] propose 

a general theoretical framework for analyzing 
differentially expressed genes and behavior patterns 
from two homogenous short time-course data. The 
framework generalizes the recently proposed Hilbert-
Schmidt Independence Criterion (HSIC)-based 
framework adapting it to the time-series scenario by 
utilizing tensor analysis for data transformation. The 
proposed framework is effective in yielding criteria that 
can identify both the differentially expressed genes and 
time-course patterns of interest between two time-series 
experiments without requiring to explicitly cluster the 
data. The parameters used in the framework give the 
user explicit control on the type of analysis to be 
performed. For instance, identifying genes pertaining to 
the time-course patterns of interest can be done simply 
by choosing and adjusting an apt weight vector and 
does not require clustering all the genes in predefined 
profile sets unlike traditional clustering-based methods. 
Moreover, the criterion is a generalization of the integer 
fold-change-based methods. It is more sensitive in 
discerning relatively small differential expressions. 
Hence, it enables the user to identify the cases when 
genes undergo less than twofold change but are or can 
potentially be biologically important in our 
understanding of a certain treatment or condition. The 
results, obtained by applying the proposed framework 
with a linear kernel formulation, on various data sets are 
found to be both biologically meaningful and consistent 
with published studies. 

Xin Zhao and Leo Wang-Kit Cheung [58] 
developed a hierarchical statistical model named 
multiclass kernel-imbedded Gaussian process (mKIGP) 
under a Bayesian framework for a multiclass 
classification problem using microarray gene expression 
data. Specifically, based on a multinomial probit 
regression setting, an empirically adaptive algorithm 
with a cascading structure is designed to find 
appropriate featuring kernels, to discover potentially 
significant genes, and to make optimal tumor/cancer 
class predictions. A Gibbs sampler is adopted as the 
core of the algorithm to perform Bayesian inferences. A 
prescreening procedure is implemented to alleviate the 
computational complexity. The simulated examples 
show that mKIGP performed very close to the Bayesian 
bound and outperformed the referred state-of-the-art 
methods in a linear case, a nonlinear case, and a case 
with a mislabeled training sample. Its usability has great 
promises to problems that linear-model-based methods 
become unsatisfactory. The mKIGP was also applied to 
four published real microarray data sets and it was very 

effective for identifying significant differentially 
expressed genes and predicting classes in all of these 
data sets. Comparing to a regular SVM, the most 
popular kernel-induced learning method, the mKIGP has 
three key advantages. First, the probabilistic class 
prediction by the mKIGP could be insightful for 
borderline cases in real applications. Second, the 
mKIGP method has implemented specific procedure for 
tuning the kernel parameter(s) (such as the width 
parameter of a GK) and the model parameters (such as 
the variance of the noise term). Tuning parameters have 
always been one of the key issues for nonlinear 
parametric learning methods. As the gene selection 
procedure is imbedded into the learner, the mKIGP is 
also more consistent in identifying significant genes 
when comparing to regular UR or RFE method with a 
cross-validation procedure. In the simulated studies, 
The authors showed that the mKIGP/GK significantly 
outperformed its SVM or PLR counterparts with either 
RFE or UR as gene selection strategy in the nonlinear 
example and in the example with a mislabeled training 
sample. We also demonstrated that mKIGP functioned 
much better in a multiclass classification problem when 
comparing to another established Gaussian-Processes-
based gene selection method, GP_ARD, for the real 
data sets. Third, the mKIGP method can provide more 
useful information, such as the posterior PDF of the 
parameters, for further statistical analysis and inference. 

Argiris Sakellariou, Despina Sanoudou, and 
George Spyrou [59] investigate the minimum required 
subsets of genes, which best classify neuromuscular 
disease data. For this purpose, we implemented a 
methodology pipeline that facilitated the use of multiple 
feature selection methods and subsequent performance 
of data classification. Five feature selection methods on 
datasets from ten different neuromuscular diseases 
were utilized. Our findings reveal subsets of very small 
number of genes, which can successfully classify 
normal/disease samples. Interestingly, we observe that 
similar classification results may be obtained from 
different subsets of genes. The proposed methodology 
can expedite the identification of small gene subsets 
with high-classification accuracy that could ultimately be 
used in the genetics clinics for diagnostic, prognostic, 
and pharmacogenomic purposes. This study reveals 
that using appropriate bio-informatical tools, 
researchers

 
can identify subsets with very small number 

of genes, which achieve high-classification results, as 
demonstrated for the neuromuscular disease datasets 
analyzed herein. Toward this goal, we applied five 
different feature selection methods on neuromuscular

 

disease data (rare conditions for which only limited 
numbers of samples and microarray datasets are 
available), and investigated the minimum number of 
gene probes for highly accurate patient/sample 
classification.
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Microarray analysis is a method for analyzing 
expression levels of multiple genes at once. This 
method is especially suitable for identifying and 
classifying genes whose expression level differs in two 
samples. The present work focuses [60,61] on 
identifying and classifying genes that cause type-II 
diabetes with two different samples, one with parental 
history and other without parental history. Mahalanobis 
Distance, Minimum Co-variance Determinant are the 
statistical methods used for identifying multivariate and 
univariate outliers for the identified inflammatory genes, 
the functional classification is performed by using Gene 
Ontology and pathway analysis. It is observed that 38 
differentially expressed genes were identified out of 
39400 genes tested between diabetes with and without 
parental history. 

c) During 2012 
Pradipta Maji [62] proposed supervised 

attribute clustering algorithm is based on measuring the 
similarity between attributes using the new quantitative 
measure, whereby redundancy among the attributes is 
removed. The clusters are then refined incrementally 
based on sample categories. The performance of the 
proposed algorithm is compared with that of existing 
supervised and unsupervised gene clustering and gene 
selection algorithms based on the class separability 
index and the predictive accuracy of naive bayes 
classifier, Knearest neighbor rule, and support vector 
machine on three cancer and two arthritis microarray 
data sets. The biological significance of the generated 
clusters is interpreted using the gene ontology. An 
important finding is that the proposed supervised 
attribute clustering algorithm is shown to be effective for 
identifying biologically significant gene clusters with 
excellent predictive capability.  The main contribution of 
this paper is threefold, namely, 
1. Defining a new quantitative measure, based on 

mutual information, to calculate the similarity 
between two genes, which incorporates the 
information of sample categories or class labels. 

2. Development of a new supervised attribute 
clustering algorithm to find coregulated clusters of 
genes whose collective expression is strongly 
associated with the sample categories. 

3. Comparing the performance of the proposed 
method and some existing methods using the class 
separability index and predictive accuracy of 
support vector machine, K-nearest neighbor rule, 
and naive bayes classifier. 

For five microarray data, significantly better 
results are found for the proposed method compared to 
existing methods, irrespective of the classifiers used. All 
the results reported in this paper demonstrate the 
feasibility and effectiveness of the proposed method. It 
is capable of identifying coregulated clusters of genes 
whose average expression is strongly associated with 

the sample categories. The identified gene clusters may 
contribute to revealing underlying class structures, 
providing a useful tool for the exploratory analysis of 
biological data. 

Ola ElBakry, M. Omair Ahmad, and M.N.S. 
Swamy [63]  presents a general statistical method for 
detecting changes in microarray expression over time 
within a single biological group and is based on 
repeated measures (RM) ANOVA. In this method, unlike 
the classical F-statistic, statistical significance is 
determined taking into account the time dependency of 
the microarray data. A correction factor for this RM F-
statistic is introduced leading to a higher sensitivity as 
well as high specificity. We investigate the two 
approaches that exist in the literature for calculating the 
p-values using resampling techniques of gene-wise p-
values and pooled p-values. It is shown that the pooled 
p-values method compared to the method of the gene-
wise p-values is more powerful, and computationally 
less expensive, and hence is applied along with the 
introduced correction factor to various synthetic data 
sets and a real data set. These results show that the 
proposed technique outperforms the current methods. 
The real data set results are consistent with the existing 
knowledge concerning the presence of the genes. The 
algorithms presented are implemented in R and are 
freely available upon request. In this work, RM F-
statistic, which considers the dependency of 
measurements across the time course, has been 
employed for gene identification. The p-values have 
been computed using both the gene-wise and pooled p-
values methods. Since the gene-wise p-values 
procedure is based on the number of permutations for 
each gene, this number has to be large to achieve the 
granularity of the pooled p-values. The synthetic data 
results have shown that the pooled p-values procedure 
is able to detect more true positives than the gene-wise 
p-values method does, and hence, is preferred for 
microarray data analysis. 

Alok Sharma, Seiya Imoto, and Satoru Miyano 
[64] propose a feature selection algorithm in gene 
expression data analysis of sample classifications. The 
proposed algorithm first divides genes into subsets, the 
sizes of which are relatively small (roughly of size h), 
then selects informative smaller subsets of genes (of 
size r < h) from a subset and merges the chosen genes 
with another gene subset (of size r) to update the gene 
subset. It repeats this process until all subsets are 
merged into one informative subset. It illustrates the 
effectiveness of the proposed algorithm by analyzing 
three distinct gene expression data sets. The proposed 
algorithm explores this phenomenon and provides a 
way to investigate important genes. It is observed that 
the algorithm finds a small gene subset that provides 
high classification accuracy on several DNA microarray 
gene expression data sets. These subsets contain top-r 
genes. The small number of (r) genes would help to 
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conduct biological experiments for investigating 
biomarkers in a time-efficient and cost-effective manner. 
This method shows promising classification accuracy for 
all the test data sets. We also show the relevance of the 
selected genes in terms of their biological functions. 

Andrew Janowczyk et.al [65] presents a system 
for accurately quantifying the presence and extent of 
stain on account of a vascular biomarker on tissue 
microarrays. It demonstrate their flexible, robust, 
accurate, and high-throughput minimally supervised 
segmentation algorithm, termed hierarchical normalized 
cuts (HNCuts) for the specific problem of quantifying 
extent of vascular staining on ovarian cancer tissue 
microarrays. The high-throughput aspect of HNCut is 
driven by the use of a hierarchically represented data 
structure that allows us to merge two powerful image 
segmentation algorithms—a frequency weighted mean 
shift and the normalized cuts algorithm. HNCuts rapidly 
traverses a hierarchical pyramid, generated from the 
input image at various color resolutions, enabling the 
rapid analysis of large images (e.g., a 1500 × 1500 
sized image under 6 s on a standard 2.8-GHz desktop 
PC). HNCut is easily generalizable to other problem 
domains and only requires specification of a few 
representative pixels (swatch) from the object of interest 
in order to segment the target class. Across ten runs, 
the HNCut algorithm was found to have average true 
positive, false positive, and false negative rates (on a 
per pixel basis) of 82%, 34%, and 18%, in terms of 
overlap, when evaluated with respect to a pathologist 
annotated ground truth of the target region of interest. 
By comparison, a popular supervised classifier 
(probabilistic boosting trees) was only able to marginally 
improve on the true positive and false negative rates 
(84% and 14%) at the expense of a higher false positive 
rate (73%), with an additional computation time of 62% 
compared to HNCut. 

Blaise Hanczar and Avner Bar-Hen [66] 
propose a new measure of classifier performance that 
takes account of the uncertainty of the error. We 
represent the available knowledge about the costs by a 
distribution function defined on the ratio of the costs. 
The performance of a classifier is therefore computed 
over the set of all possible costs weighted by their 
probability distribution. This method is tested on both 
artificial and real microarray data sets. The costs are 
represented by a distribution function defined on the 
ratio of the costs. Seven new classification cost 
functions have been used in experiments based on both 
artificial and real data sets. These experiments showed 
that the selection of the best classifier is very depending 
on the used cost functions. In many cases, the best 
classifier can be identified by our new measure whereas 
the classic error measures fail. 

Pradipta Maji and Chandra Das [67] proposed 
a gene clustering algorithm is to group genes from 
microarray data. It directly incorporates the information 

of sample categories in the grouping process for finding 
groups of co-regulated genes with strong association to 
the sample categories, yielding a supervised gene 
clustering algorithm. The average expression of the 
genes from each cluster acts as its representative. 
Some significant representatives are taken to form the 
reduced feature set to build the classifiers for cancer 
classification. The mutual information is used to 
compute both gene-gene redundancy and gene-class 
relevance. The performance of the proposed method, 
along with a comparison with existing methods, is 
studied on six cancer microarray data sets using the 
predictive accuracy of naive Bayes classifier, K-nearest 
neighbor rule, and support vector machine. An 
important finding is that the proposed algorithm is 
shown to be effective for identifying biologically 
significant gene clusters with excellent predictive 
capability. 

d) During 2013 & 2014 

Zidong Wang et.al [68] investigates the 
uncertainty quantification and state estimation issues. 
The polytopic uncertainty model (PUM) is exploited for 
describing the GRNs where the parameter uncertainties 
are constrained in a convex polytope domain. To cope 
with the high-dimension problem for GRN models, the 
principal component plane (PCP) algorithm is proposed 
to construct a pruned polytope in order to use as less 
vertices as possible to maintain the essential information 
from original polytope. The so-called system 
equivalence transformation is developed to transform 
the original system into a simpler canonical form and 
therefore facilitate the subsequent state estimation 
problem. For the state estimation problem, a robust 
stability condition is incorporated with guaranteed 
performance via the semi-definite programme method, 
and then a new sufficient condition is derived for the 
desired estimators with several free slack matrices. 
Such a condition is vertex-dependent and therefore 
possesses less conservatism. It is shown, via simulation 
from real-world microarray time-series data, that the 
designed estimators have strong capability of dealing 
with modeling and estimation problems for short but 
high-dimensional gene expression time series. 

Anirban Mukhopadhyay [69] proposed a novel 
interactive genetic algorithm-based multi objective 
approach that simultaneously finds the clustering 
solution as well as evolves the set of validity measures 
that are to be optimized simultaneously. The proposed 
method interactively takes the input from the human 
decision maker (DM) during execution and adaptively 
learns from that input to obtain the final set of validity 
measures along with the final clustering result. The 
algorithm is applied for clustering real-life benchmark 
gene expression datasets and its performance is 
compared with that of several other existing clustering 
algorithms to demonstrate its effectiveness. The results 
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indicate that the proposed method outperforms the 
other existing algorithms for all the datasets considered 
here. The performance of IMOC has been demonstrated 
for two real-life gene expression datasets and compared 
with that of several other existing clustering algorithms. 
Results indicate that IMOC produces more biologically 
significant clusters compared to the other algorithms 
and the better result provided by IMOC is statistically 
significant. 

Ujjwal Maulik  et.al [70] proposed a novel 
approach to combine feature (gene) selection and 
transductive support vector machine (TSVM). We 
demonstrated that 1) potential gene markers could be 
identified and 2) TSVMs improved prediction accuracy 
as compared to the standard inductive SVMs (ISVMs). A 
forward greedy search algorithm based on consistency 
and a statistic called signal-to-noise ratio were 
employed to obtain the potential gene markers. The 
selected genes of the microarray data were then 
exploited to design the TSVM. Experimental results 
confirm the effectiveness of the proposed technique 
compared to the ISVM and low-density separation 
method in the area of semi supervised cancer 
classification as well as gene-marker identification. 

Gui-Fang Shao [71] presented a fully automatic 
gridding technique to break through the limitation of 
traditional mathematical morphology gridding methods. 
First, a preprocessing algorithm was applied for noise 
reduction. Subsequently, the optimal threshold was 
gained by using the improved Otsu method to actually 
locate each spot. In order to diminish the error, the 
original gridding result was optimized according to the 
heuristic techniques by estimating the distribution of the 
spots. Intensive experiments on six different data sets 
indicate that our method is superior to the traditional 
morphology one and is robust in the presence of noise. 

Xiaoxiao Xu [72] analyze the statistical 
performance of these arrays in imaging targets at typical 
low signal-to-noise ratio (SNR) levels. We compute the 
Ziv-Zakai bound (ZZB) on the errors in estimating the 
unknown parameters, including the target 
concentrations. We find the SNR level below which the 
ZZB provides a more accurate prediction of the error 
than the posterior Cramér-Rao bound (PCRB), through 
numerical examples. We further apply the ZZB to select 
the optimal design parameters of the microsphere array 
device and investigate the effects of the experimental 
variables such as microscope point-spread function. An 
imaging experiment on microspheres with protein 
targets verifies the optimal design parameters using the 
ZZB. 

Pablo A. Jaskowiak [73] investigate the choice 
of proximity measures for the clustering of microarray 
data by evaluating the performance of 16 proximity 
measures in 52 data sets from time course and cancer 
experiments. This method considered six correlation 
coefficients, four “classical” distances, and six proximity 

measures specifically proposed for the clustering of 
gene time-course data. Given their differences, we 
evaluated proximity measures separately for cancer and 
time-course experiments. Apart from the comparison of 
proximity measures, we introduced a set of 17 time-
course benchmark data along with a new methodology 
(IBSA) to evaluate distances for the clustering of genes. 
Both data sets and methodology can be used in future 
research to evaluate the effectiveness of new proximity 
measures in this particular scenario. IBSA can be 
employed to evaluate proximity measures regarding any 
gene clustering application, i.e., it is not restricted to 
gene time-course data, the scenario addressed here. 
Results support that measures rarely employed in the 
gene expression literature can provide better results 
than commonly employed ones, such as Pearson, 
Spearman, and euclidean distance. Given that different 
measures stood out for time course and cancer data 
evaluations, their choice should be specific to each 
scenario. To evaluate measures on time-course data, 
we preprocessed and compiled 17 data sets from the 
microarray literature in a benchmark along with a new 
methodology, called Intrinsic Biological Separation 
Ability (IBSA). Both can be employed in future research 
to assess the effectiveness of new measures for gene 
time-course data. 

Cosmin Lazar [74] propose GENESHIFT, a new 
nonparametric batch effect removal method based on 
two key elements from statistics: empirical density 
estimation and the inner product as a distance measure 
between two probability density functions; second we 
introduce a new validation index of batch effect removal 
methods based on the observation that samples from 
two independent studies drawn from a same population 
should exhibit similar probability density functions. This 
evaluated and compared the GENESHIFT method with 
four other state-of-the-art methods for batch effect 
removal: Batch-mean centering, empirical Bayes or 
COMBAT, distance-weighted discrimination, and cross-
platform normalization. Several validation indices 
providing complementary information about the 
efficiency of batch effect removal methods have been 
employed in our validation framework. The results show 
that none of the methods clearly outperforms the others. 
More than that, most of the methods used for 
comparison perform very well with respect to some 
validation indices while performing very poor with 
respect to others. GENESHIFT exhibits robust 
performances and its average rank is the highest among 
the average ranks of all methods used for comparison. 

Telmo Amaral [75] presents a computational 
pipeline for automatically classifying and scoring breast 
cancer TMA spots that have been subjected to nuclear 
immunostaining. Spots are classified based on a bag of 
visual words approach. Immunohistochemical scoring is 
performed by computing spot features reflecting the 
proportion of epithelial nuclei that are stained and the 



 

 
 

 

 

  

 

 

 

 
  

 

 

 

 
 

 

 

 

 

 

 

© 2014   Global Journals Inc.  (US)

Gene Expression Analysis Methods on Microarray Data - A Review
  

  
 

   
 

  
G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
IV

  
Is
su

e 
III

  
V
er
sio

n 
I 

36

  
 

(
DDDD

)
Y
e
a
r

20
14

c

strength of that staining. These are then mapped onto 
an ordinal scale used by pathologists. Multilayer 
perceptron classifiers are compared with latent topic 
models and support vector machines for spot 
classification and with Gaussian process ordinal 
regression and linear models for scoring. Intra-observer 
variation is also reported. The use of posterior entropy to 
identify uncertain cases is demonstrated. Evaluation is 
performed using TMA images stained for progesterone 
receptor.

Wenjie You et.al [76] focuses on extracting the 
potential structure hidden in high-dimensional multi 
category microarray data, and interpreting and 
understanding the results provided by the potential 
structure information. First, we propose using PLS-
based recursive feature elimination (PLSRFE) in multi 
category problems. Then, we perform feature 
importance analysis based on PLSRFE for high-
dimensional microarray data to determine the 
information feature (biomarkers) subset, which relates to 
the studied tumor subtypes problem. Finally, PLS-based 
supervised feature extraction is conducted on the 
selected specific genes subset to extract 
comprehensive features that best reflect the nature of 
classification to have a discriminating ability. The 
proposed algorithm is compared with several state-of-
the-art methods using multiple high-dimensional multi 
category microarray datasets. Our comparison is 
performed in terms of recognition accuracy, relevance, 
and redundancy. Experimental results show that the 
algorithm proposed by us can improve the recognition 
rate and computational efficiency. Furthermore, mining 
potential structure information improves the 
interpretability and understandability of recognition 
results. The proposed algorithm can be effectively 
applied to microarray data analysis for the discovery of 
gene co-expression and co-regulation.

IV. Conclusions

Micro array is a ubiquitous problem that arises 
in a wide range of applications in computing, to full fill 
this we need efficient techniques. In this study we 
concentrate on micro array data and this article gave an 
overview of micro array models as well as programming 
tools. Micro array classification will always be a 
challenge for programmers. Higher-level programming 
models and appropriate programming tools only 
facilitate the process but do not make it a simple task. In 
this we say that, this study will help the researchers to 
develop the better techniques in the field of microarray.
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