87 research outputs found

    Clutter Mitigation in Echocardiography Using Sparse Signal Separation

    Get PDF
    In ultrasound imaging, clutter artifacts degrade images and may cause inaccurate diagnosis. In this paper, we apply a method called Morphological Component Analysis (MCA) for sparse signal separation with the objective of reducing such clutter artifacts. The MCA approach assumes that the two signals in the additive mix have each a sparse representation under some dictionary of atoms (a matrix), and separation is achieved by finding these sparse representations. In our work, an adaptive approach is used for learning the dictionary from the echo data. MCA is compared to Singular Value Filtering (SVF), a Principal Component Analysis- (PCA-) based filtering technique, and to a high-pass Finite Impulse Response (FIR) filter. Each filter is applied to a simulated hypoechoic lesion sequence, as well as experimental cardiac ultrasound data. MCA is demonstrated in both cases to outperform the FIR filter and obtain results comparable to the SVF method in terms of contrast-to-noise ratio (CNR). Furthermore, MCA shows a lower impact on tissue sections while removing the clutter artifacts. In experimental heart data, MCA obtains in our experiments clutter mitigation with an average CNR improvement of 1.33 dB

    FIELD-PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF EMPIRICAL MODE DECOMPOSITION ALGORITHM FOR ELECTROCARDIOGRAM PROCESSING

    Get PDF
    The electrocardiogram (ECG) signal contains important information that is utilized by physicians for the diagnosis and analysis of heart diseases. Therefore, good quality ECG signal is required. Hilbert-Huang transform (HHT) is a method to analyze non-stationary and non-linear signals. Empirical mode decomposition (EMD) is the core of HHT. EMD breaks down signals into smaller number of components. These components form a complete and nearly orthogonal basis for the original signal. This algorithm is implemented on field-programmable gate array using the process of extrema generation, envelope generation, and stopping criterion.Â

    Localization of CO2 leakage from transportation pipelines through low frequency acoustic emission detection

    Get PDF
    Carbon Capture and Storage is a technology to reduce greenhouse gas emissions. CO2 leak from high pressure CO2 transportation pipelines can pose a significant threat to the safety and health of the people living in the vicinity of the pipelines. This paper presents a technique for the efficient localization of CO2 leakage in the transportation pipelines using acoustic emission method with low frequency and narrow band sensors. Experimental tests were carried out on a lab scale test rig releasing CO2 from a stainless steel pipe. Further, the characteristics of the acoustic emission signals are analyzed in both the time and the frequency domains. The impact of using the transverse wave speed and the longitudinal wave speed on the accuracy of the leak localization is investigated. Since the acoustic signals are expected to be attenuated and dispersed when propagating along the pipe, empirical mode decomposition, signal reconstruction and a data fusion method are employed in order to extract high quality data for accurate localization of the leak source. It is demonstrated that a localization error of approximately 5% is achievable with the proposed detecting system

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number
    corecore