656 research outputs found

    A simulation-based algorithm for solving the resource-assignment problem in satellite telecommunication networks

    Get PDF
    This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.En este trabajo se propone una heurística para la programación de las solicitudes de capacidad y la asignación periódica de los recursos de radio en las redes de satélites geoestacionarios (GEO) con topología en estrella, con la demanda de acceso múltiple de asignación (DAMA) de protocolo en la capa de enlace, y el Multi-Frequency Time Division (Acceso múltiple por MF-TDMA) y codificación y modulación Adaptable (ACM) en la capa física.En aquest treball es proposa una heurística per a la programació de les sol·licituds de capacitat i l'assignació periòdica dels recursos de ràdio en les xarxes de satèl·lits geoestacionaris (GEO) amb topologia en estrella, amb la demanda d'accés múltiple d'assignació (DAMA) de protocol en la capa d'enllaç, i el Multi-Frequency Time Division (Accés múltiple per MF-TDMA) i codificació i modulació Adaptable (ACM) a la capa física

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Meta-heuristic Algorithms for Nesting Problem of Rectangular Pieces

    Get PDF
    Nesting problems consist of placing multiple items onto larger shapes finding a good arrangement. The goal of the nesting process is to minimize the waste of material. It is common to assume, as in the present work, that the stock sheet has fixed width and infinite height, since in the real world a company may have to cut pieces from a roll of material. The complexity of such problems is often faced with a two-stage approach, so-called \u201chybrid algorithm\u201d, combining a placement routine and a meta-heuristic algorithm. Starting from a given positioning sequence, the placement routine generates a non-overlapping configuration. The encoded solution is manipulated and modified by the meta-heuristic algorithm to generate a new sequence that brings to a better value of the objective function (in this case the height of the strip). The proposed method consists in placing the rectangles inside a strip and in combining the meta-heuristic algorithms with the No Fit Polygon algorithm. The software has been developed in Python language using proper libraries to solve the meta-heuristic techniques (Inspyred) and the geometric problems (Polygon). The results show the effectiveness of the proposed method; moreover, with regard to problems reported in literature employed as benchmark of the nesting algorithms, the degree of occupation values (Efficiency Ratio, ER) are shown to be higher than 90%

    A comparison of different recombination operators for the 2-dimensional strip packing problem

    Get PDF
    In this paper, the three-stage two-dimensional rectangular strip packing problem is tackled using genetic algorithms. A new problem dependent recombination operator, called best inherited levels recombination (BIL), is introduced. A comparison of its performance is carried out with respect to four classical recombination operators. A complete study of the influence of the recombination operators on the genetic search, including the trade-off between exploration and exploitation in the search process, is presented. The results show that the use of our specialized BIL recombination outperforms the others more generic on all problem instances for all the metrics testedVII Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    External memory in a hybrid ant colony system for a 2D strip packing

    Get PDF
    In this paper we present a study of an Ant Colony System (ACS) for the two-dimensional strip packing problem. In our computational study, we emphasize the influence of incorporating an external memory, which store partial packing patterns, regarding solution quality and execution times. The stored partial solutions are used by the ants in the construction of their solutions to provide further exploitation around potential solutions. We show that our external memory based ACS algorithm to the 2SPP was able to devise solutions of quality comparable to that of those reported by an existing ACS but exhibiting low execution times.Presentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI

    Greedy seeding procedure for GAs solving a strip packing problem

    Get PDF
    In this paper, the two-dimensional strip packing problem with 3-stage level patterns is tackled using genetic algorithms (GAs). We evaluate the usefulness of a greedy seeding procedure for creating the initial population, incorporating problem knowledge. This is motivated by the expectation that the seeding will speed up the GA by starting the search in promising regions of the search space. An analysis of the impact of the seeded initial population is offered, together with a complete study of the influence of these modifications on the genetic search. The results show that the use of an appropriate seeding of the initial population outperforms existing GA approaches on all the used problem instances, for all the metrics used, and in fact it represents the new state of the art for this problem.Red de Universidades con Carreras en Informática (RedUNCI
    corecore