External Memory in a Hybrid Ant Colony System for a
2D Strip Packing

Carolina Salté, Guillermo Leguizaron?, and Enrique Alba
1 LISI - Universidad Nacional de La Pampa, Calle 110 esq. 9, Gral Pico, La Pampa, Argentina
saltoc@ing.unlpam.edu.ar
2 LIDIC - Universidad Nacional de San Luis, &fito de los Andes 950, San Luis, Argentina.
legui@unsl.edu.ar
3 GISUM - Universidad de Mlaga, Campus de Teatinos, 2907 Bldya, Spain.
eat@lcc.uma.es

Abstract. In this paper we present a study of an Ant Colony System (ACS) for
the two-dimensional strip packing problem. In our computational study, we em-
phasize the influence of incorporating an external memory, which store partial
packing patterns, regarding solution quality and execution times. The stored par:
tial solutions are used by the ants in the construction of their solutions to provide
further exploitation around potential solutions. We show that our external mem-
ory based ACS algorithm to the 2SPP was able to devise solutions of quality
comparable to that of those reported by an existing ACS but exhibiting low exe-
cution times.

1 Introduction

Ant Colony System (ACS) [6, 5] is one of the most representative algorithms derived
from the Ant Colony Optimization (ACO) metaheuristic to deal with combinatorial
optimization and other problems. It uses a colony of artificial ants which stochasti-
cally build new solutions using a combination of heuristic information and artificial
pheromone trail. This pheromone trail is reinforced according to the quality of the so-
lutions built by the ants.

Recently the idea of knowledge incorporation from previous iterations of the ACO
became attractive, mainly inspired from studies in genetic algorithms. This incorpo-
ration can be made using internal or external memory [7, 13]. Under the ACO meta-
heuristic, the first internally implemented memory-based approach is the work of Mont-
gomery and Randall [11], while the work of Guntsch et al.[8] is the first example of an
external memory implementation. Recently, Acan [1] proposed another external mem-
ory strategies for ACO. The memory is composed of variable size solution segments
obtained from elite ants from previous iterations. A segment is extracted from a solution
choosing the initial and final position in a random way. Moreover the objective value of
the selected solution is associated to the segment as a quality value. The solution con-
struction process followed by an ant is modified in order to consider the information
from the external memory. Based on the quality value associated to each segment, an
ant takes a segment from the memory. The end component of the segment is consid-
ered by the ant as the starting point and completes the solution in the traditional way.



A posterior work from the same author [2] proposed another ACO with external mem-
ory composed of partial permutation sequences. The partial permutation sequence is
obtained by randomly selecting an arbitrary number of solution components from the
solution. The proposed approaches achieved significantly better solutions than conven-
tional ACO algorithms.

In this work, we introduce an external memory based ACS to solve a two-dimensional
strip packing problem (2SPP), inspired in the ideas of Acan’s works. In this case, we
use the external memory to store partial permutation solutions. But instead of selecting
randomly positioned variable-size segments from a solution, we consider some specific
knowledge from the problem, such as information about the layout of the pieces, in or-
der to select groups of pieces to copy to the external memory. We select group of pieces
that appear to lead to better solutions. In a way we follow the idea of buildings blocks of
genetic algorithms. One motivation for introducing external memory is to keep track of
good combination of pieces which leads levels with minimal waste. Hence, the method
we propose is to cop these good levels to a new solution (exploitation of previos good
information) and let the ant build the rest of the levels using the pheromone trail and
the heuristic information to promote a exploration phase. The main goal of this paper is
to find an improved ACS to solve a strip packing problem, and to quantify the effects
of including an external memory in terms of both solution quality and the convergence
speed.

The article is organized as follows. Section 2 contains an explanation of the 2SPP.
Section 3 describes the hybrid ACS used to solve the 2SPP, meanwhile Section 4
presents the details of the actual external memory implementation. In Section 5, we
explain the parameter settings of the algorithms used in the experimentation. Section 6
reports on the algorithm performances, and finally, in Section 7 we give some conclu-
sions and analyze future lines of research.

2 The 2D Strip Packing Problem

Packing problems involve the construction of an arrangement of pieces that minimize
the total space required for that arrangement. In this paper, we specifically consider the
two-dimensional Strip Packing Problem (2SPP), which consists of a 4étretctangu-
lar pieces, each one defined by a width< W and a height,;, (i = 1...M). The goal
is to pack the pieces in a larger rectangle,gtig, with a fixed widthi¥ and unlimited
length, minimizing the required strip length; an important restriction is that the pieces
have to be packed with their sides parallel to the sides of the strip, without overlapping.
In the present study some additional constrains are imposed: pieces must not be
rotated and they have to be packed into three-stage level packing patterns. In these
patterns, pieces are packed by horizontal levels (parallel to the bottom of the strip).
Inside each level, pieces are packed bottom left justified and, when there is enough room
in the level, pieces with the same width are stacked one above the other. Three-stage
level patterns are used in many real applications in the glass, wood, and metal industries,
and this is the reason for incorporating this restriction in the problem. The 2SPP is
representative of a wide class of combinatorial problems, being a NP-hard [9] one.



Algorithm 1 ACS

Initialize pheromone values
repeat
for (eachankt {k = 1,...,a}) do
repeat
Choose a random piegdrom the non selected pieces
Open an empty levél(l.height = h;)
repeat
J = {1, ..., j} {set of pieces that still fit i}
for (w=1to|J|) do
T = sum of the pheromone betwedifw] and all pieces already
in the levell
Divide T" by the number of pieces ih(|!|)
end for
Choose a piecéfrom J according to the calculated probabilities
J=J—{i}
Update the pheromone trgilocal updaté
until none of the remaining pieces fit in the level
until all pieces are placed
Calculate the objective value for that solution
end for
Apply local search ta/2 solutions
Find the iteration best ant
Replace the globally best ant if the iteration best was fitter
Actualize the pheromone traflglobal updaté
until the maximum number of iterations is reached

3 Applying the ACS to the 2SPP

In this section we present how the ACS was adapted to solve the 2SPP (see Algorithm
1 for the general structure). The ACS description includes the heuristic information
considered, pheromone trail definition, state transition rule,objective function which is
calculated considering the layout obtained from a permutation of pieces, and the local
search procedure used in order to improve the solution quality.

3.1 Heuristic definition

For many optimization problems, problem-dependent heuristic information can be used
to give the ants additional hints for their decisions. For the 2SPP, the heuristic value for
apiecej isn; = hj, i.e., the height of piecg.

3.2 Pheromone definition

The definition of the meaning of the pheromone trail is important to the quality of an
ACS. The pheromone information should reflect the most relevant information for the
process of solution construction. We maintain solutions in the form of permutations of
the set of pieces [4], which will be directly translated into the corresponding packing
pattern by a layout algorithm. The idea here is to favor the piece/level pair because there
is a correspondence between the piece and the level where the corresponding piece will
be allocated into. Trait;; thus encodes the desirability of having a pieesmd; in the

same level [10]. Building blocks consisting of a partial packing in a solution (subset of
several pieces to be allocated together) can emerge by reinforcing contiguous positions
of the piece subset. The pheromone matrix hiows andV columns (in a first stage,



each piece is assigned to a different level, in that way initially we have M different
levels).

Once all ants have completed their packing patterns, the pheromone is updated, i.e.,
a global pheromone updating rule is applied. In this case, only the best ant (which the
respective solution is****) is allowed to place pheromone after each iteration. This is
done according to the following expression:

Tij = P X Tij + 1/f(3b68t) 1)

where0 < p < 1is the pheromone decay parameter, #itg***) is the objective value
of sPst in the current iteration. Global updating is intended to provide a greater amount
of pheromone to good packing patterns.

Moreover, while ants construct a solution, a local pheromone updating rule is ap-
plied. The effect of local updating is to make the desirability of edges change dynami-
cally. The local updating is made according to the following expression:

Tw:(lff) X’Tij +§XAT¢]' (2)

where0 < ¢ < 1is a parameter andr;; is set asr,,;,. Dorigo and Gambardella [6]
used this expression to run their experiments with good results.

Another way to promote exploration is by defining a lower limi,(,) for the
pheromone values. The following formula sets the value,gf, [10] as:

_ (/L= p)( — ¥fphest) a)
e (avg — 1) Y/ pbest
wherepbest is the approximation of the real probability to construct the best solution,
avg is the average number of pieces to choose from at every decision point when build-
ing a solution, defined a&//2. Also an evaporation phase occurs at each iteration by
updating the pheromone trail by:

Tij =7 X Tij (4)

where0 < v < 1 is a parameter.

3.3 State transition rule definition

The state transition rule gives the probability with which antill choose a piecg as
the next piece for its current leviin the partial solutiors,which is given by [10]:

j= max;e s, (s,0) [71(J)] X [Uj]ﬁ if g <qo (5)
S otherwise

wherer;(j) is the pheromone value for piegen level [, n; is the heuristic informa-
tion guiding the ant, and is a parameter which determines the relative importance of
pheromone information versus heuristic informatigis a random number uniformly
distributed in [0..1],qo is a constant parameted < g9 < 1) which determines the



relative importance of exploitation versus exploratiSris a random variable selected
according to the probability distribution given in Equation 6.

g [n@)xn;]”

pk(s, l,j) = { gEJk(s,l)[Tl(g)]X[ny
0

I if j S Jk(s,l)
otherwise

(6)

In Equations 5 and 6](s, ) is the set of pieces that qualify for inclusion in the
current level by ank. The setincludes those pieces that are still left after partial solution
s is formed, and are light enough to fit in levelThe pheromone valug(;) for a piece
jinalevell is given by:

Tij

1€EA B

n()=1q T ALY (7)
1 otherwise

whereA4, is the set of current pieces allocated in lelvéh other wordsy; () is the sum

of all the pheromone values of pieces already in lIéveivided by the number of pieces

in that level. This approach is similar to the one followed by Levine and Ducatelle [10].

3.4 The objective function

To assess the quality of the solutions, we first need to achieve the corresponding pieces
layout. In order to generate a 3-stage level pattern, i.e., the pieces layout, we adopt
a modifiednext-fit decreasing heighiteuristic (NFDH) —in the following referred as
modified next-fitor MNF— which was proven to be very efficient in [12, 15]. A more
in-depth explanation of the MNF procedure can be found in [15].

The objective value of a solutionis defined as the strip length needed to build the
corresponding packing pattern. An important consideration is that two packing patterns
could have the same length —so their objective values will be equal— however, from
the point of view of reusing the trim loss, one of them can be actually better because the
trim loss in the last level (which still connects with the remainder of the strip) is greater
than the one present in last level in the other layout. Therefore we use the following
objective function:

l.waste

f(s) = strip.length — strip.length x W ®

wherestrip.length is the length of the packing pattern corresponding to the permu-
tation s andl.waste is the area of reusable trim loss in the last levef the packing
pattern. Hence, functiofi is both simple and accurate.

3.5 The local search procedure

The local search procedure used in this work consists of the application of a modified
version of first-fit decreasing heuristic (FFDH), called MFF, similar to the adjustment
operator presented in a preliminary work [15]. In this way, the local search starts from
a solution created by the ACS towards to the nearest local optimum for that solution,
with the aim of improving the trim loss of all levels. After this improvement phase,
the pheromone trail is updated, so it is in fact a form of Lamarckian search. A more
in-depth explanation of the MFF procedure can be found in [15].



4 The external memory based ACS

In our proposed method, an external memory is maintained from which the ants acquire
parts of solutions during the solution construction process [2]. This external memory
storesL solution’s sequences (partial permutations) of variable size taken from good
solutions (packing patterns with small strip length) of previous iterations. In this case,
the sequences are made upkdévels (set of pieces) from a solution, selected by con-
sidering their respective waste values. Since, we do not know in advance the number
of pieces in the selected levels to be stored in the memory, each row of the memory
must have the length of a complete solutidd); Hence, the dimensions of the external
memory isL x M, whereL is the number of elements or rows in the memory and

is the number of pieces.

Each partial permutation has associated a lifetime vdlije{ime) and also the
objective value dost) of the solution from which it was extracted. The lifetime value
initially is set to one, and is increased by 1 at each iteration. There is a maximum life-
time of partial permutation solution in the external memory, and itis set to 10 iterations.
These values permit to assign a score to each partial permupdtion p < M), which
is calculated as(p) = cost(p) + lifeTime?(p) [2]. This value is used by an ant to
select a partial permutation when a new solution is to be created.

The ACS begins the evolutionary process with an empty external memory, which
is fill immediately after some iterations performed by the ACS algorithm. A best
solutions are considered at each iteration and a number of levels are selected from that
solutions and stored in the memory. At the early iterations the ACS fills the external
memory. Notice that at this stage the ants build their solutions following only the clas-
sical probabilistic procedure of an ACS algorithm (as described in Section 3). Once the
memory is full, the solution construction phase followed by an ants is modified. Un-
der this implementation some ants constructs a solution by acquiring a part of existing
solution from memory. In this case and for the problem under study, that part is a set
of pieces that constitute a level in the packing pattern. The selection of the sequence
from memory is made using tournament selection aniBrigndomly selected partial
permutation sequences, based on the score value assigned to each sequence. The winner
is the best sequence with the lower score value. This sequence is copied in the first po-
sitions of the solution and in the meantime the local updating pheromone process takes
place in exactly the same way it is done in normal ACS algorithm. Once this process
finishes, the neighborhood has to be updated, deleting the pieces just incorporated in
the solution. Until this point there are missing pieces in the partial solution. Therefore
the remainder of the solution is constructed based;pas usual. In our implementa-
tion, there are a percentage of ants that continues building all their solutions with the
tradicional scheme, this percentage is set to the 50%. The reason is to allow the ants
build a complete new solution from the feedback of the pheromone trail and the heuris-
tic information, which contributes to the exploration of new combination of pieces to
devise new levels.

At the end of each iteration, the ACS updates the memory regarding the newest
generated solutions. Thebest solutions generated by the ants at each iterations are
considered to be donors. From each of these solutiorigsithe amount of levels in
the solution, then thé/2 levels with the lowest waste are selected to be inserted in



some entry of the external memory. In the case the memory is complete, a replacement
strategy must to be applied. The selected element to be replaced is either the one with
the worst objective value or the oldest one.

5 Implementation

Now we will comment on the actual implementation of a traditional ACS (as described
in Section 3) and the ACSMem, a ACS algorithm which adds an external memory to
help the ants during the solution construction process (as described in Section 4), to en-
sure that this work is replicable in the future. All these algorithms have been compared
in terms of the quality of their results.

The number of ants is set to 50. Regarding their initial positioning, ants are placed
randomly. The parameter values are the followifig:2, ¢o = 0.9, = 0.8,7=0.96 and
£=0.1. The initial pheromone value is settg;,. These parameters were used with
success in [14]. The tournament siZeis set to 7 and the be&t = 0.05 x a ants
solutions are used in the update memory phase. The number of memory. rieviix
toa/2.

The algorithms were implemented inside MALLBA [3], a C++ software library
fostering rapid prototyping of hybrid and parallel algorithms. The platform was an Intel
Pentium 4 at 2.4 GHz and 1GB RAM under SuSE Linux with 2.4.19-4 kernel version.

We have considered five randomly generated problem instancesWvigigual to
100, 150, 200, 250, and 300 pieces and a known global optimum equal to 200 (the mini-
mum length of the strip). These instances belong to the subtype of level packing patterns
but the optimum value does not correspond to a 3-stage guillotine pattern. They were
obtained by an own implementation of a data set generator, following the ideas proposed
in [16] with the length-to-width ratio of all rectangles in the rande’3 < [/w < 3.

These instances are publicly availablétgi://mdk.ing.unlpam.edu.ar/lisi/
documentos/datos2spp.zip

6 Computational Analysis

In this section we summarize the results of applying the ACS and the ACSMem. Our
aim is to offer meaningful results and check them from a statistical point of view. For
each algorithm we have performed 30 independent runs per instance using the parame-
ter values described in the previous section.

Table 1 shows the results of the ACS and ACSMem. The columns in this Table
stand respectively for the best objective value obtairms), the average objective
values of the best found feasible solutions along with their standard deviadiogms ),
the average number of evaluations needed to reach the best weadiig (vhich repre-
sents the numerical effort, and the mean times (in seconds) spent in the full SBarch (
The minimumbestvalues are printed in bold. From this table we can observe that both
ACS algorithms present a similar performance in all instances. Hence, we can conclude
nothing about the superiority of any version of the two models: they seem equally well



Table 1. Experimental Results.

ACS ACSMem
Inst t-test
best avgo best avgo

100 215.78 218.29 058 215.00 218.09+ 091
150 216.38 217.82+079 216.84 218.5Q- 097
200 211.61 214.37+ 112 211.78 214.86-118
250 207.68 209.20+0.76 207.80 210.14 070
300 213.66 214.74 057 212.45 214.62+0.94
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Fig. 1. Mean number of evaluations to reach the best value for each instance.

suited and efficient for the instances considered. This affirmation is statically corrobo-
rated more in the half of the instances, since there are no statistical significant differ-
ences between these options because the resppetalees fort-test are greater than

the 0.05 significance level (see the "+ symbols meaning the significance ofdakg).

Now, we turn to the analysis of the number of evaluations, i.e., the numerical effort
to solve the problem. Figure 1 shows the results of the ACS and ACSMem. Overall, it
seems that the two algorithms need a similar effort to solve all the instances of the 2SPP
(statistically corroborated bytatest).

A remarkable aspect of the memory based ACS algorithm can be observed in Fig-
ure 2: the ACSMem produced a faster execution than the ACS. In fact, we can notice
that there exists statistical confidence for this claim. The results can be explained be-
cause an ant begins the solution construction procedure from a partial permutation se-
quence copied from the external memory in ACSMem algorithms. The transfer process
of the selected partial permutation from memory to the ants solution is faster than the
probabilistic decisions needed to build that partial permutation.

Therefore, the lower execution times and the good results presented by ACSMem
convert our proposal in a good approach to solve the 2SPP.
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Fig. 2. Mean execution time for each instance.

7 Conclusions

In this paper we have presented a hybrid ACS using external memory to solve the 2SPP
with additional constrains. The external memory store partial solutions in the form of
group of pieces from elite solutions obtained in previous iterations. This partial solu-
tions are selected regarding information from the layout instead of making the choice
in a random way. In this particular case the group of pieces form a level with mini-
mal waste. During solution construction, the ants copy part of the solution from the
external memory, and after that they made the best possible choice, as indicated by the
pheromone trail and heuristic information.

Computational results of the ACS with external memory are similar than those ob-
tained with a traditional ACS. However, the incorporation of external memory helps
to reduce the execution times of the ACS, since the spent time in the copy process of
the partial solution already available from memory is smaller than the time inverted to
construct that partial solution using probabilistic decisions as in the tradicional ACS.

There are several issues which seem to be worth for further investigation. One issue
deals with the setting of parameters of the external memory implementation, such us
the effects of different memory update strategies. Another issue can be the investigation
of search space characteristics and their relation to the algorithm performance.
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