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Abstract 

Cutting and packing problems are complex combinatorial optimization problems that have 

gained a lot of attention from the scientific community. These problems aim to assign to one 

or more objects a set of items to either be cut or packed. From this class of problems, this 

thesis focusses on those aiming to achieve the layout that maximizes the value of the items 

assigned to one object, and on those aiming to assign all items to objects using as fewer 

objects as possible. 

The importance given to the solution of these problems is, mainly, due to their relevance in 

diversified areas, such as economics, industry, health, among many others. 

Exact methods ensure the achievement of the problem’s optimal solution at the expense of, 

usually, high computational resources, justifying the exploration of alternative approaches, 

such as heuristics, that can obtain high-quality solutions with lower resources. 

This thesis is divided into three parts. The first part, aside from a comprehensive introduction 

to solution methods, discusses the relevant contributions given by the papers included in the 

other two parts of this thesis.  

The second part is composed by three papers. The first paper gives a deep dive into the cutting 

and packing subject and reviews the solution methods for the two-dimensional guillotine and 

non-guillotine problems. The second paper is a survey on the datasets used by researchers 

when evaluating the solution methods for the two-dimensional rectangular cutting and 

packing problems. The third paper presents the resources that were developed aiming to help 

the development of our research and that we have made available for the scientific 

community.  

The third part contains two papers presenting the solution methods proposed for two-

dimensional cutting and packing problems. The first paper presents heuristics to solve non-

guillotine problems, while the second deals with problems that consider guillotine cut 

constraints. 

The proposed heuristics to solve guillotine and non-guillotine two-dimensional cutting and 

packing problems share the same base concept. The idea behind the design of these heuristics 
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was that, if an ordering (to cut or pack items) generates a good solution, it may be the case 

that slight changes to this ordering generate a better solution. And, if the changes do not 

improve the current solution, the incremental introduction of more changes to the base 

ordering could allow the exploration of more diverse regions of the solution space. 

The computational results demonstrate that the proposed heuristics attain good results when 

compared with other solution methods, obtaining constantly good quality solutions in 

reduced computational times, validating their effectiveness and robustness. 

Keywords: Two-dimensional, Rectangular, Guillotine, Non-guillotine, Cutting Problem, 

Packing Problem, Heuristics 
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Resumo 

Os problemas de corte e empacotamento são problemas complexos de otimização 

combinatória que têm sido foco de muita atenção por parte da comunidade científica. Estes 

problemas visam atribuir a um ou mais objetos um conjunto de itens de modo a serem 

cortados ou empacotados. Desta família de problemas, esta tese concentra-se naqueles que 

procuram atingir o layout que maximiza o valor dos itens atribuídos a um objeto, e nos 

problemas que pretendem atribuir todos os itens minimizando o número de objetos 

utilizados. 

A importância dada à resolução desses problemas deve-se, principalmente, à sua relevância 

em áreas diversificadas, como economia, indústria, saúde, entre muitas outras. 

Os métodos exatos garantem a obtenção da solução ótima do problema, geralmente, à custa 

de elevados recursos computacionais, justificando deste modo a investigação de abordagens 

alternativas, como heurísticas, que possam obter soluções de alta qualidade utilizando menos 

recursos. 

Esta tese é dividida em três partes. A primeira parte, além de uma introdução aos métodos 

de resolução, discute as contribuições relevantes dadas pelos artigos incluídos nas outras 

duas partes desta tese. 

A segunda parte é composta por três artigos. O primeiro artigo explora o tópico de corte e 

empacotamento e os métodos de resolução para problemas bidimensionais guilhotinados e 

não guilhotinados. O segundo artigo apresenta os conjuntos e os geradores de instâncias que 

podem ser encontrados na literatura e que foram usados pelos investigadores para avaliar os 

métodos de resolução propostos para os problemas de corte e empacotamento. O terceiro 

artigo apresenta os recursos que foram criados para suportar a nossa investigação e que 

disponibilizamos para serem usados pela comunidade científica.  

A terceira parte é constituída por dois artigos apresentando os métodos de resolução 

propostos para problemas de corte e empacotamento bidimensionais considerando cortes 

guilhotinados e não guilhotinados. A conceito por detrás das heurísticas propostas é que, se 

uma sequência de itens (a serem cortados ou empacotados) gera uma boa solução, pequenas 

mudanças nessa sequência podem levar a uma melhor solução. E que, se essas mudanças não 
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melhorarem a solução, a introdução de incrementalmente mais mudanças na sequência de 

itens pode permitir a exploração de regiões mais diversificadas do espaço de soluções. 

Os resultados computacionais demonstram que as heurísticas propostas alcançam bons 

resultados quando comparadas com outros métodos de solução obtendo soluções de boa 

qualidade em tempos computacionais reduzidos, validando sua eficácia e robustez. 

Palavras-chave: Bidimensional, Retangular, Guilhotinados, Não Guilhotinados, Problema da 

Corte, Problemas de Empacotamento, Heurísticas 
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1. Introduction 

But still there are many important and practical problems in the industries 

waiting to be solved efficiently… 

Cheng et al. [1] 

Combinatorial optimization problems can be represented by mathematical models that 

represent the objectives, resources, constraints, and decision variables of the problems. 

Combinatorial optimization is the process of finding the optimal solution among a set of all 

possible solutions, determining the configuration for decision variables that allows achieving 

the best result considering the objectives, resources and constraints imposed by the model. 

Due to the applicability and importance of combinatorial optimization problems in the most 

diverse areas, such as economy, industry, transport, medicine, the design of efficient methods 

that allow obtaining high-quality results in acceptable computational times has been the 

subject of increasing research activities at enterprise and academic levels. 

1.1. Solution Methods 

He must figure out how few of the boards he can purchase and still be able to 

cut all the required lengths from them. 

Golden[2] 

Solution methods to maximize or minimize the objective function value arise mainly in two 

flavours, exact and non-exact methods. 

Although exact methods are guaranteed to find the optimal solution for any problem, they 

tend to be extremely demanding in computational resources, even for small and medium 

sized instances. The search for the optimal solution is performed through, explicit or implicit, 

enumeration of the entire solution space. Among the most commonly used exact methods, 

we refer to Branch-and-Bound (see Land and Doig [3], and Agin[4]), Dynamic Programming 

(see Bellman [5]) and Branch-and-Cut (see Mitchell [6]). 
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In some exact methods, the obtention of the optimal solution is guaranteed only if there is 

no time limit for the execution and if the necessary computing resources are provided, which 

for large-scale instances, can be totally impractical. Hence, the need for solution methods that 

can obtain solutions of good quality with less demanding computing resources and in an 

acceptable time. 

Approximation algorithms (see Vazirani [7], and Williamson and Shmoys [8]) do not guarantee 

the optimal solution for a problem but ensure that the solution is within a quality threshold. 

Using as an example a minimization problem whose optimal solution is denoted as 𝑧∗, an 

algorithm is said to be an 𝛼-approximation algorithm, if it guarantees that the solution 

obtained is always at most 𝛼 × 𝑧∗ (with 𝛼 ≥ 1), i.e., for each solution 𝑧 obtained by this 

algorithm, we are guaranteed to have 𝑧∗ ≤ 𝑧 ≤ (𝛼 × 𝑧∗). 

On the other side, heuristics are problem-specific approaches that opposite to approximation 

algorithms have no guarantee on the quality of the solution obtained but are, usually, much 

less demanding in computational resources. Commonly, heuristics used to solve optimization 

problems are divided into three types, namely, constructive, local search and metaheuristic-

based heuristics. 

Constructive heuristics start with an empty solution and create iteratively a new solution 

following a set of rules, e.g., add one element at a time to the current solution considering a 

given sequence of elements. A greedy heuristic refers to a heuristic that repeatedly adds the 

element that most positively influences the current partial solution considering the objective 

function. These heuristics are usually used to create an initial solution to be improved by other 

methods, such as local search heuristics. 

Local Search (see Yagiura and Ibaraki [9]) heuristics iteratively explore the neighbourhood1 of 

the current solution trying to find a solution that is better than the current one. The search 

ends when a given iteration fails to improve the current solution with the chosen 

neighbourhood structure, thus finding a local optimum. The main disadvantage of this 

approach is the inability to escape local optima. 

 
1 Assuming 𝑆 as the space of admissible solutions of a problem 𝑃 and 𝑠 ∈ 𝑆, it is called neighborhood of 𝑠, 𝑁(𝑠), 
to the set of solutions 𝑁(𝑠) ⊆ 𝑆 that is possible to reach by means of a move (specific for the neighborhood 
structure applied). Each solution of 𝑁(𝑠) is called a neighbor solution of 𝑠. 
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Metaheuristic-based heuristics are the application of a metaheuristic to a specific problem. 

Metaheuristics refer to general methodologies for solving combinatorial optimization 

problems that are easily adaptable to specific problems and can exploit more efficiently the 

solution space. Blum e Roli [10] characterize metaheuristics as follows: 

▪ strategies that guide the search process; 

▪ the goal is to efficiently explore the search space to find (near-)optimal solutions; 

▪ can range from simple local search procedures to complex learning processes; 

▪ can incorporate mechanisms to escape local optima; 

▪ there are not specific to a problem; 

▪ more advanced metaheuristics can incorporate memory to guide the search. 

Metaheuristics try to find the correct balance between intensification, referring to a deeper 

exploration of neighbourhoods considered more promising, and diversification, referring to 

the exploration of less attractive neighbourhoods, to escape local optima. 

Some of the most commonly used metaheuristics are the Greedy Randomized Adaptive 

Search Procedure (GRASP, Feo and Resende [11]), Tabu Search (Glover [12]), Path Relinking 

(Glover et al. [13]), Variable Neighbourhood Search (VNS, Mladenović and Hansen [14]), and 

Scatter Search (Glover [15][16]). 

GRASP is a multi-start (see Martí et al. [18]) metaheuristic that applies some local search to 

solutions that are iteratively generated through a greedy heuristic. This metaheuristic is 

randomized, in the sense that randomness is added to the greedy heuristic, and adaptive as 

previous selections of elements can influence current ones. 

Tabu Search extends the concept of local search in order to allow the exploration of zones in 

the solution space that are not considered promising. This metaheuristic makes use of 

memory structures to guide the search. In its simplest version, it uses short-term memory to 

store characteristics of the moves that will be considered forbidden, i.e., tabu, in following 

iterations. Short-term memory may not be enough to allow the search in certain areas of the 

solution space since it usually stores only the attributes of the most recently visited solutions. 

Long-term memory stores information that can allow to diversify the search to unexplored 

regions or to intensify your search for the most promising regions. The tabu state is not 

permanent being controlled by a parameter, generally referred to as tabu tenure, which may 
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be, for example, a given number of iterations. Moves considered tabu can only be performed 

in the following iterations if they fulfil the criteria defined by an aspiration criterion, e.g., the 

move execution leads to the best solution found so far. 

Path Relinking incorporates into a solution attributes from another solution exploiting the 

trajectories connecting them. 

VNS combines the strategy of local search heuristics with the dynamic change of 

neighbourhoods to escape the local optimums. 

Scatter Search is an evolutionary method, in which a population of solutions evolves with the 

combination of its elements. This metaheuristic constructs new solutions from the 

combination of solutions belonging to a reference set. This reference set should contain high-

quality and diversified solutions to maximize the information that can be derived from the 

combination of solutions. 

Many more metaheuristics have been proposed and used to solve optimization problems. A 

comprehensive historical perspective on metaheuristic research is presented by Sorensen et 

al. [17]. 

We refer to Blum and Roli [10] and Sirenko [19] for diverse classifications of metaheuristics, 

as they can be classified according to various criteria, such as:  

▪ Use of memory structures, e.g., Tabu Search uses of the search history, while 

Simulated Annealing (Kirkpatrick et al. [20]) is considered a memory-less solution 

method. 

▪ Origin, e.g., Genetic Algorithm (Koza [21]) is considered a nature inspired approach, 

whereas the Tabu Search is considered a non-nature inspired method. 

▪ Number of solutions considered at any time, e.g., Genetic Algorithms and Scatter 

Search are population-based approaches, while Tabu Seach and VNS are considered 

trajectory methods.  

For more information on metaheuristics, we refer the readers to the surveys of Boussaïd et 

al. [22] and Baghel et al. [23], and the books of El-Ghazali [24], Siarry [25] and Salhi [26]. 
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1.2. Background and Motivation 

The field of cutting and packing motivates many areas of operations research. 

Burke et al. [27] 

It is extremely common to find situations in which, aiming to maximize the material (or space) 

used, a set of items to fulfil some requirement must be either cut from a large object or 

packed into large bins. These problems belong to a class of problems referred to as cutting 

and packing problems. Cutting and packing problems are one of the most interesting subjects 

in optimization, mainly due to its complexity and wide applicability. The high impact of these 

problems in so many industrial areas fosters the need for better and faster solution methods. 

Most of the solution methods proposed are specially tailored for specific (theoretical) 

problems, and to find the right solution method, if one exists, for a (real) problem is not an 

easy task. Even if it is found, the solution method can rely heavily on previous and/or deep 

knowledge of optimization concepts, so that only experienced researchers and practitioners 

can take full advantage of this method. 

The goal of this thesis is to create heuristics to solve various cutting and packing problems 

that are simple to implement (dues straightforwardly adapted to promptly respond to 

problem domain changes, e.g., market trends changes) and that produce consistently good 

results. 

2. Thesis Contribution 

The problem that wouldn’t go away. 

Garey and Johnson [28]2 

This chapter aims to fill the gap between the five papers contained in the second and third 

parts of this thesis. The papers were included in the order that makes it easier to follow the 

sequence taken to accomplish this (hard) endeavour. 

 
2 Denoting the ever-growing application and research made on this subject. 
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The first step of this journey was to clearly state the objectives to attain. The objective of this 

thesis was to present simple and effective solution methods for two two-dimensional 

problems, belonging to the class of cutting and packing problems, considering both guillotine 

and non-guillotine cut constraints. The first problem aims to return the most profitable layout 

of items to be cut from an individual object, e.g., raw material. The second problem aims to 

cut all items using as few objects as possible to minimize the material losses. If we follow the 

typology of Wäscher et al. [29], depending on the assortment of items, the first problem is 

classified as a Single Knapsack Problem (SKP) or as a Single Large Object Placement Problem 

(SLOPP), and the second problem as a Single Bin Size Bin Packing Problem (SBSBPP) or as a 

Single Stock Size Cutting Stock Problem (SSSCSP). 

Obviously given the mass of scientific work that occurs it is impossible for any 

literature survey to be completely comprehensive… 

Beasley [30] 

Having in mind the objective to attain, the next step was to define and truly understand the 

problems under consideration. Cutting and packing problems are the subject of so many 

research in the last decades that to follow its evolution from the very beginning (here, 

considered as the seminal work of Gilmore and Gomory [31]) was an exhausting task. 

We have gathered and analysed more than 400 documents directly related to the two 

problems that we were interested in. Figure 1 provides the timeline on the number of 

documents considered, grouped by decades. 

19   20   
 

7 10 35 86 184 136 
 

  

 60 70 80 90 00 10  

Figure 1. Articles timeline. 

While analysing the articles, we were consistently concerned in collecting as much 

information as possible, such as, addressed problems, solution method proposed, with which 

methods does the current solution method compares and what data is used for evaluating 

the effectiveness of the proposed solution method. 

The cutting and packing problems family as so many variants that specific jargon is commonly 

used making it difficult to trace back to their origin and recognize the details of each of them. 
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The first paper allows a deep understanding of cutting and packing as it gathers most of the 

specific terminology and concepts helping to classify and recognize each specific problem and 

its characteristics. This paper, also, reviews the most referred and relevant solution methods 

on the two-dimensional cutting and packing problem found in the literature. We consider that 

any newcomer to the cutting and packing world can withdraw great value reading this paper 

due to the comprehensive information included. 

As already mentioned, while reading, anticipating the need for the datasets used by other 

researchers for our own computational experiments, we gathered the instances used in the 

articles. Some of these datasets were easily retrieved directly from the articles, while others 

were obtained from internet websites. We have spent a considerable amount of time tracking 

the instances used in the analysed articles. 

The second paper gives an extensive review of the datasets and instance generators used in 

the articles reviewed. We consider that this paper is a powerful resource for the researchers 

in the field of rectangular two-dimensional cutting and packing problem as it provides for 

each dataset, the set characteristics, the article in which it was defined, and whenever exists 

an internet link for easy retrieval. This paper contains a description of 84 datasets, considering 

more than 6300 instances, and 6 instance generators. 

Before we started researching for heuristics to solve the problems under consideration, we 

have created a set of resources to help our work. These resources, described in the third 

paper, are graphic user interfaces that allow visualising the instances and the generated 

cutting plans in two- and three-dimensions. The tools provide a powerful resource to 

researchers in this subject. Also, to ease the data input we converted all instances from the 

datasets considered in the second paper to a JSON format. This format, besides readability, 

allows the instance data to be less error-prone due to its structured nature. Finally, a website 

was created that apart from hosting all the resources developed, also make available a set of 

utilities that allows analysing the information gathered in our literature research. As an 

example, as we collected the connection between the solution method and the methods with 

which they were compared, we have created an iterative map (depicted in Figure 2 with all 

available connections) that allowed us to easily visualise those connections. 
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Figure 2. Solution approaches comparison map. 

Noteworthy that the literature review could not be useful as it could be if only focused on the 

problems intended to solve. Many of the solution methods analysed were tailored for the 

Open Dimensional Problem as some of these can be, and have been, successively adapted for 

other problems. 

Even apparently similar problems may require radically different heuristic 

techniques. 

Hinxman [32] 

Making a quick overview of the solution methods analysed in the literature review, it can be 

noticed that most of the exact methods where based on the Branch-and-Bound and Dynamic 
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Programming, while most heuristics are either constructive or greedy, or are based on more 

advanced approaches such as, GRASP, Path Relinking, Tabu Search, Genetic Algorithms, 

Simulated Annealing, Variable Neighbourhood Search and hybridizations of these 

approaches. Many other approaches were proposed, but not with the representations of the 

above-mentioned ones. 

While constructive and greedy heuristic are quite simple to implement, usually the results 

obtained are not as good as the one obtained by more advanced approaches. Although most 

of these approaches provide good results, a set of issues were denoted. These advanced 

approaches are heavily based on previous metaheuristics and/or mathematical knowledge. 

Even comprehensive articles can be overwhelming due to the underlying complexity of the 

methods, not allowing a straightforward understanding and implementation. Others require 

so many parametrizations that great part of the method presentation is dedicated to the 

study of the parameters to use for specific problems (or datasets). Even methods based on 

metaheuristics have so many components that are problem-domain specific that the true 

nature of the metaheuristic is lost in the process. 

While experienced researchers and practitioners can easily untangle these complex issues 

and (re)use state-of-the-art solution methods, this added complexity in search of better 

solutions can alienate others. In a perfect world, a good solution method would be the one 

that is as simple (to understand and implement) and fast as a constructive heuristic with the 

high-quality results of a more advanced approach. 

Most of the analysed heuristics were two-phase heuristics. The first phase, that we refer to 

as the sequencing phase, generates a sequence of items that will define the order that the 

items are to be considered. The second phase, here referred to as the placement phase, 

places the items into the object(s) considering the sequence of items generated in the 

previous phase. 

We started the development of our heuristics with the placement phase as it was counter-

productive to start otherwise. We could use any sequence to evaluate the placement phase, 

the opposite was not possible. 

For non-guillotine problems, to keep track of every possible empty rectangle space (ERS) to 

place the items, we have chosen the Difference Process (Lai and Chan [33]) which has already 
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proven its effectiveness in many works as can be observed in our review on solution 

approaches. Noteworthy, the description and exemplification of this method made by the 

authors provided a straightforward implementation. Considering a given item ordering, the 

placement method for non-guillotine problems, iteratively, places the current item in one 

existent ERS. 

For problems with guillotine cut constraints, simple bottom-left procedures were 

implemented and evaluated. The results with these procedures were not near our 

expectations, and an alternative approach had to be devised. We observed during the 

literature review, that many placement methods considering guillotine cut constraints used 

the Knapsack Problem (KP, see Martello and Toth [34]) to maximize the space used. We knew, 

in advance, that the KP could be solved efficiently and most important rapidly by the 

algorithms proposed by Pisinger [35], and that these algorithms were freely made available3 

for academic purpose. The developed placement method considering a given item ordering 

iteratively creates a strip then filled solving the associated KP. 

We started to study the sequencing phase, adopting simple sequences of items ordered by 

some criteria, such as height, length, area, perimeter, value, randomized. Although extremely 

fast, the results were by no means close to our goals in terms of the quality of solutions. This 

is explained by the narrow solution space explored, so a sequencing that allowed a wider 

exploration of the solution space was needed. 

While reading the articles in the literature review phase, we gain a particular interest in the 

work of Lesh et al. [36] that creates sequences based on the Kendall-tau distance between 

two permutations. This approach, denoted as BubbleSearch, was later generalized by Lesh 

and Mitzenmacher in [37] and evaluated on two distinct problems, namely ODP and Jobshop 

scheduling, comparing favourably against similar GRASP approaches. As GRASP is one of the 

simplest metaheuristics and very effective in so many optimization problems (see Festa et al. 

[38], [39], and Resende and Ribeiro[40]) we were impelled to work in this direction.  

 
3 http://hjemmesider.diku.dk/~pisinger/codes.html 

http://hjemmesider.diku.dk/~pisinger/codes.html
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Some variants to the BubbleSearch were proposed by Lesh and Mitzenmacher in [37] to 

include randomization to the permutation probability (𝛼) or to consider the replacement of 

the current ordering whenever the new ordering provides a better solution than the current. 

The Randomized BubbleSearch can be implemented as a simple stochastic process, depicted 

in Figure 3 and next briefly described. While there are items of the base sequence (𝑆𝑏𝑎𝑠𝑒) that 

are not in the new sequence (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡), a random number is generated iteratively for each 

item of 𝑆𝑏𝑎𝑠𝑒 that is not already in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If the generated number is greater than the 

permutation probability (𝛼), the item is copied to 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 at the next empty position 

otherwise, the item will be copied in a following iteration. 

 

Figure 3. Randomized BubbleSearch. 

These variants were implemented with a considerable improvement on the results obtained 

over the simple orderings. But, although improved, the results were not aligned with the ones 

obtained by more advanced approaches. 

We have intensified the search near the solution space of the solution that obtained good 

results, i.e., when a new best solution is found, the current ordering will substitute the base 

ordering for the next iterations and 𝛼 is reset to its minimum value to generate sequences 

with minor differences. To diversify the search space, whenever an ordering does not improve 

the best solution, 𝛼 is incremented to generate sequences with incrementally more 

differences. As depicted in Figure 4, as 𝛼 is incremented, greater is the difference between 

𝑆𝑏𝑎𝑠𝑒 and the new sequence generated. 

 

Figure 4. Permutation probability variation. 
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Now, with each of the major components exposed, i.e., sequencing and placement phases, 

the proposed heuristics can be more easily described. 

The heuristics, denoted hereafter as Adaptive Sequence-based Heuristics (ASH), start with a 

base sequence of items and with 𝛼 set to its minimum value. 

A new solution is created at each iteration until the maximum number of iterations or the 

optimality criterium is reached. For multiple identical objects problems (SBSBPP and SSSCSP), 

as the aim is to place all the items in the minimum number of objects as possible, the 

optimality criterium is reached when a solution as an objective function value equal to the 

Continuous Lower Bound (𝐶𝐿𝐵 = ⌈∑ 𝑙𝑖ℎ𝑖
𝑚
𝑖=1 𝐿𝐻⁄ ⌉). For problems with only one object (SKP and 

SLOPP), as the objective is to obtain the maximum profit pattern, no improvement exists 

when a pattern includes all items. 

At each iteration, a new ordering is generated considering the current base sequence and the 

permutation probability to create a new solution. For multiple identical objects problems, a 

solution is created using the placement methods above described until all items are placed. 

For the SKP and SLOPP, a solution is generated with only one pattern. 

If the solution generated is the best one found so far, the base sequence will be replaced by 

the current ordering and 𝛼 is reset to its minimum value. Otherwise, the base sequence 

remains the same and 𝛼 is incremented to generate orderings incrementally with more 

differences. 

The first paper of the third part of this thesis presents the ASH for solving the non-guillotine 

SBSBPP and SKP, while the second paper presents the ASH for solving the two- and three-

staged (non-)exact SSSCSP and two- and non-staged (non-)exact (un)constrained SLOPP. 

The proposed heuristics attained good results comparing favourably against most of the 

state-of-the-art algorithms. Also, the computational times required by ASH, although always 

a controversial subject, seems to be extremely low and predictable when compared with 

more complex approaches. 

The results obtained with ASH for the non-guillotine SBSBPP were published in [41] and the 

results obtained for the non-guillotine SKP were presented at the 20th Congress of the 
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Portuguese Operational Research Association and will be published in the "Springer 

Proceedings in Mathematics and Statistics" series. 

3. Conclusions 

The cutting stock problem is a large scale combinatorial problem for which 

several solution techniques exist in the literature each with its drawbacks 

and/or approximations. 

Golden [2] 

The complexity of cutting and packing problems encourages the investigation of methods, 

mainly heuristics, that allow high-quality solutions to be obtained in acceptable 

computational times, since solving these problems through exact methods, especially for 

large problems, may be impractical due to the computational resources required. 

Besides the two surveys on solution methods and datasets, we have made available a set of 

research resources that can be an important contribution helping future research on the 

cutting and packing field. We have compiled and converted a great number of datasets into 

a common format. Also, graphical user interfaces for instance and solution visualisation, and 

a set of utilities for the literature analysis were created. All these resources can be now easily 

accessed and used through the website that we have created and made available online. 

We propose heuristics to solve two related cutting and packing problems considering 

guillotine and non-guillotine cuts. The first problem aims the most valuable layout of items 

assigned to one object, while the second one aims to fully assign a given set of items to the 

minimum number of available objects possible. 

The main concept of our heuristics is to generate orderings that are very similar to those that 

provided good solutions and to incrementally introduce more changes to the ordering when 

better solutions are not found to diversify the search. 

The application of ASH to the considered problems produced very good results with very low 

computational times being capable to rival with more complex and tailored solution methods. 
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The proposed solution methods can be seen as effective heuristics to be applied when a fast 

solution method must be provided, a high number of variables exist or, to be used combined 

with more advanced solution methods to create an initial population of diverse solution or 

used on a bounding scheme. 

The work of this thesis can be further developed, studying the influence of the parameters 

used by ASH to provide an implementation guide. These heuristics should be studied in a real-

world situation to measure their effectiveness using as reference the current state (Filipič and 

Tušar [42]). Also, it would be interesting to study the application of ASH applied to other 

optimization problems. 
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A Review of Solution Approaches for Two-dimensional 

Cutting and Packing Problems 

 

Abstract Cutting and packing problems have been widely studied in the last decades mainly 

due to the variety of industrial applications were the problems emerge. This paper presents 

an overview of the solution approaches that have been proposed for solving two-dimensional 

rectangular cutting and packing problems. The main emphasis of this work is on two distinct 

problems belonging to the cutting and packing problem family. The first problem aims to place 

onto an object the maximum-profit subset of items, while the second one aims to place all the 

items using as few identical objects as possible. The objective of this review is not to be 

exhaustive but to provide a solid grasp on cutting and packing problems describing the most 

important and referred solution approaches proposed to solve the problems considered. 

Keywords: Two-dimensional, Rectangular, Non-guillotine, Guillotine, Cutting Problems, 

Packing Problems 

1. Introduction 

Cutting and packing problems have been the focus of growing research due to its 

computational complexity, which is NP-hard (see Garey and Johnson [1]), and due to its wide 

applicability. Another important reason that motivates the research on the cutting and 

packing field is that these problems represent a critical logistic and production planning 

activity in many industries. Examples can be found in the automotive (e.g., El-Aal [2]), glass 

(e.g., Farley [3]), steel (e.g., Vasko et al. [4]), wood-based (e.g., Morábito and Garcia [5]), 

paper (e.g., Lai and Chan [6]) and TFT-LCD (e.g., Tsai et al. [7]) industries. 

We refer to Sweeney and Paternoster [8] for a categorized application-orientated 

bibliography that counts with more than 400 published works related to cutting problems, to 

Singh and Jain [9] for a survey on the industrial scope of two-dimensional cutting and packing 

problems and to Macedo et al. [10] for a detailed survey on software packages. 
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The cutting and packing problems considered in this paper aim to assign, to either 

orthogonally cut or pack, a set of 𝑚 rectangular items to one or more larger identical objects 

characterized by their length (𝐿) and height (𝐻). Each item type 𝑖, with 𝑖 = 1 …  𝑚, have 

associated length (𝑙𝑖), height (ℎ𝑖), value (𝑣𝑖), and demand (𝑑𝑖). The emphasis of this work is 

on two specific problems belonging to the cutting and packing problem family. The first 

considers only one object and the objective to attain is to maximize the value of the items 

assigned to it, while the second one considers multiple identical objects and the objective is 

to minimize the total number of objects used to assign all items. 

The objective of this paper is to give an overview of the work related to the two-dimensional 

(2D) rectangular cutting and packing problems, providing to the reader a solid grasp on this 

subject. 

The rest of the paper is organized as follows. Section 2 provides a deep coverage on the cutting 

and packing topic describing the main problem characteristics and the typologies presented 

in the literature to classify the problems through their common characteristics. Section 3 is 

dedicated to the solution approaches available in the literature for solving cutting and packing 

problems. Finally, some conclusions are tissue in the last section.   

In Appendix A, articles referred in this paper are classified by the cutting and packing problem 

for which a solution method was presented. 

2. Cutting and Packing Problems 

The cutting problem, as depicted in Figure 1, considers the existence of a set of available 

objects (a) and a set of items (b) that must be extracted from the objects to fulfil some 

demand (c). 

  

 

a. Objects b. Items c. Demand 

Figure 1. Cutting problem. 
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The cutting problem can be found in the literature with different names, deriving essentially 

from the industry or economic environment in which the problem arises. For example, it can 

appear as a packing problem where items, instead of being extracted from objects, must be 

arranged in a larger space aiming at the minimization of the unfilled space. 

The expected result when solving this problem is called a cutting plan. A cutting plan is a set 

of cutting patterns (Figure 2), each of them with an associated cut frequency, and wherein 

the items are allocated to the objects. The residual parts, i.e., figures that occur in patterns 

that do not belong to the set of items, are considered losses (depicted with the darker area 

in Figure 2). These losses are commonly referred to as trim loss. 

 

Figure 2. Cutting pattern. 

The first formulation for cutting and packing problems was presented by the economist 

Kantorovich [11] as follows: 

minimize 𝑧 = ∑ 𝑦𝑘

𝑘∈𝐾

  (1) 

Subject to ∑ 𝑥𝑖𝑘 ≥ 𝑑𝑖

𝑘∈𝐾

 ∀𝑖 ∈ 𝐼 (2) 

 ∑ 𝑙𝑖𝑥𝑖𝑘 ≤ 𝐿𝑦𝑘

𝑖∈𝐼

 ∀𝑘 𝑖𝑛 𝐾 (3) 

 𝑥𝑖𝑘 ∈ ℕ ∀𝑖 𝑖𝑛 𝐼, ∀𝑘 ∈ 𝐾 (4) 

 𝑦𝑘 ∈ {0,1} ∀𝑘 𝑖𝑛 𝐾 (5) 

Where 𝐾 is the set of available objects, 𝐿 is the length of the object, 𝐼 is the set of items and 

𝑑𝑖 and 𝑙𝑖 are, respectively, the demand and the size of item 𝑖. Considering the value of 𝑦𝑘 as 

1 if object 𝑘 is used in the solution (0 otherwise) and 𝑥𝑖𝑘 as the number of times that item 𝑖 

is cut in object 𝑘, expression n (1) defines the objective function as the minimization of the 

number of objects used to cut all the items, (2) defines the demand constraints, (3) defines 

the pattern feasibility constraints and (4) and (5) represent the domain of the variables. 
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In most problems, objects and items represent geometric figures of fixed sizes, and although 

in most of the problems related to cutting and packing the space to be considered is three-

dimensional, in some cases, only one or two dimensions are relevant to solve the problem. In 

terms of dimensionality, these problems can be considered as: 

▪ One-dimensional – Only one dimension is relevant, e.g., cutting a roll of paper into 

smaller pieces, in which the only relevant dimension is the length (Figure 3). 

 

Figure 3. One-dimensional problem. 

▪ Two-dimensional – Only two dimensions are relevant to solve the problem, e.g., cut 

items from a wooden plate that have the same thickness as the plate (Figure 4). 

 

Figure 4. Two-dimensional problem. 

▪ Three-dimensional – The three dimensions are relevant, e.g., arrangement of volumes 

in a larger space (Figure 5). 

 

Figure 5. Three-dimensional problem. 

▪ Multi-dimensional – More than three dimensions are considered, e.g., in addition to 

the physical dimensions, a temporal dimension is included. 

▪ Open dimensional – One of the dimensions is unbounded in size. A 1.5-dimensional 

problem specifies a two-dimensional problem where one dimension is fixed and the 

other is variable, while in the 2.5-dimensional, two dimensions are fixed. An example 
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of the former is the cutting process of a roll of textile that has a fixed height but can 

be unrolled to accommodate more items when needed (Figure 6). 

 

Figure 6. 1.5-dimensional problem. 

We can find a wide variety of cutting and packing problems mainly due to specific 

requirements of industries, cutting machinery and, even, the raw material used. 

The items to be considered when solving a problem can have regular or irregular shapes. 

Figure 7 depicts on the left two regular shapes, namely rectangular and circular, and to the 

right an irregular shape. 

 
  

a. Regular b. Irregular 

Figure 7. Regular and irregular items. 

Some problems may require an orthogonal placement of the items, i.e., parallel to the sides 

of the object, while other problems allow a non-orthogonal placement relative to the object 

edges as depicted in Figure 8. 

 

Figure 8. Non-orthogonal pattern. 

The cutting machines may only perform straight cuts on objects from one side to the other, 

called guillotine cuts. Figure 9 depicts to the left a guillotine pattern, and to the right a non-

guillotine pattern. 
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a. Guillotine b. Non-guillotine 

Figure 9. Guillotine and non-guillotine patterns. 

Some machines may perform the object rotation (or blade rotation) and carry out the cuts in 

stages, i.e., number of rotations. If an upper bound (𝑘) to the number of stages exists, the 

problems is considered as 𝑘-staged; otherwise called 𝑛-staged (or non-staged, e.g., Morabito 

et al. [12]). Figure 10 depicts two-staged (a) and three-staged (b) patterns. In this figure, the 

first stage is horizontal and is identified with the arrows pointing to the right. As staged 

patterns are considered, the second stage will perform vertical cuts on the stripes generated 

previously. The three-staged pattern (b) has a horizontal third stage, identified with the arrow 

pointing to the left. 

  
a. Two-staged b. Three-staged 

Figure 10. Two- and three-staged cuts. 

A problem is classified as restricted (e.g., Silva et al. [13]) if it is required that all resulting strips 

have one of their dimensions defined by one of their contained items, e.g., a strip resulting 

from a horizontal cut have the height defined by the highest item included in the strip. 

Staged problems can allow an extra cut to trim down the item to its exact dimensions. This 

extra cut is often called a trimming cut and the problem is classified as non-exact if trimming 

is allowed and as exact otherwise. Figure 11 depicts in the left an exact two-staged pattern 

and in the right a non-exact two-staged pattern (the darker grey identifies the extra trimming 

cut area). 
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a. Exact two-staged  b. Non-exact two-staged 

Figure 11. Exact and non-exact problems. 

The problems are considered constrained when an upper or lower bound on the quantity of 

the items to be cut is defined. Problems are considered double-constrained if both lower and 

upper bounds are present. When no bounds are considered to restrict the number of 

occurrences of each item, the problem is named as unconstrained. 

A problem is considered unweighted if the value of all items is equal to its area or weighted if 

each item as another value associated, e.g., cost, priority. 

If the objects are uniform in all orientations, i.e., isotropic material, the rotation of items can 

be allowed, classifying the problem as non-oriented or as oriented otherwise. Figure 12 

illustrates a non-isotropic material in which the orientation of the cuts matters. 

  

Figure 12. Non-isotropic material. 

The objects to be considered in stock may vary in the quantity available and in the sizes. The 

stock can be considered unlimited when there is a large availability or when the objects can 

easily be obtained. All the objects may have the same size or have many different sizes. In the 

latter case, the sizes can be standardized or can arise from the use of retails (also found in the 

literature as usable leftovers, e.g., Andrade et al. [14]) that result from previous cutting 

processes. 

A cutting pattern is classified as 1-group pattern if all second stage cuts must be made 

simultaneously on all the strips generated on the first stage. A 𝑝-group pattern is a guillotine 

pattern composed with 𝑝 1-group pattern forming blocks. Figure 13 illustrates to the left a 1-

group pattern and to the right a 2-group pattern. 
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a. 1-group pattern  b. 2-group pattern 

Figure 13. Group patterns. 

Depending on the requirement for the first cut direction, a cutting pattern can be classified 

as an X-pattern and Y-pattern. An X-pattern corresponds to a pattern created with a vertical 

first cut direction, i.e., the first stage segments are placed side by side. Y patterns are created 

with horizontal first cut direction, i.e., the first stage segments are stacked on top of each 

other. Figure 14 illustrates to the left an X-pattern and to the right a Y-pattern. 

  
a. X-pattern b. Y-pattern 

Figure 14. X-pattern and Y-pattern. 

2.1. Typologies 

This wide variety of possible cutting and packing problems led authors to create typologies to 

aggregate the problems with common characteristics. 

In the typology of Dyckhoff [15], each type of problem is identified by four criteria (see Table 

1) with the following structure: 

Dimensionality / Kind of assignment / Assortment of large objects / Assortment of small items 

The one-dimensional problem, where a set of items with a certain demand must be cut from 

available objects with the same size, is classified as 1/V/I/M. If there are many items with few 

different sizes it is classified as 1/V/I/R. 

To overcome some limitations of the Dyckhoff’s typology, such as the impossibility of 

differentiating similar problems that have different characteristics, Wäscher et al. [16] 

proposed an improved typology. The authors consider five criteria (see Table 2) and with the 

combination of these, three problem types are defined: Basic, Intermediate and Refined. 



29 

Table 1. Typology of Dyckhoff - Criteria. 

Dimensionality 

 (𝑛) Number of dimensions 

Kind of Assignment  

 (B) All objects and a selection of items 

 (V) A selection of objects and all items 

Assortment of Large Objects 

 (O) One object 

 (I) Identical figure 

 (V) Different figures 

Assortment of Small Items 

 (F) Few items (of different figures) 

 (M) Many items of many different figures 

 (R) Many items of relatively few different (non-congruent) figures 

 (C) Congruent figures 

Table 2. Typology of Wäscher et al. (2007) - Criteria. 

Dimensionality 

 One-dimensional 

 Two-dimensional 

 Three-dimensional 

Kind of Assignment 

 
Output (value) maximization (like B in Dyckhoff´s typology in which all objects are used for assigning a 
selection of items) 

 
Input (value) minimization (like V in Dyckhoff´s typology in which a selection of objects is used for assigning 
all items) 

Assortment of Small Items 

 Identical 

 Weakly heterogeneous 

 Strongly heterogeneous 

Assortment of Large Objects 

 One Large Object 

  All dimensions fixed 

  One or more variable dimensions 

 Several Large Objects (only fixed dimensions are considered) 

  Identical 

  Weakly heterogeneous 

  Strongly heterogeneous 

Shape of Small Items 

 Regular 

 Irregular 
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The Basic types result from the combination of the criteria Kind of assignment and Assortment 

of small items. The six Basic types are combined with the Assortment of large objects criterion 

to obtain fourteen Intermediate problem types (see Table 3). 

Table 3. Typology of Wäscher et al. (2007). 

  

 

Basic Problem Type 

 

Intermediate Problem Type 

  

Assort. of 

small items 

Assort. of 

large objects 

K
in

d
 o

f 
as

si
gn

m
e

n
t 

O
u

tp
u

t 
m

ax
im

iz
at
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n

 

Identical IIPP Identical Item Packing Problem One object IIPP Identical Item Packing Problem 

Weakly 
heterogeneous 

PP Placement Problem 

One object SLOPP Single Large Object PP 

Identical MILOPP Multiple Identical Large Object PP 

Heterogeneous MHLOPP Multiple Heterogeneous Large Object PP 

Strongly 
heterogeneous 

KP Knapsack Problem 

One object SKP Single KP 

Identical MIKP Multiple Identical KP 

Heterogeneous MHKP Multiple Heterogeneous KP 

In
p

u
t 

m
in

im
iz

at
io

n
 

Arbitrary 
(Variable 

Dimensions) 
ODP Open Dimension Problem One object ODP Open Dimension Problem 

Weakly 
heterogeneous 

CSP Cutting Stock Problem 

Identical SSSCSP Single Stock Size CSP 

Weakly 
heterogeneous 

MSSCSP Multiple Stock Size CSP 

Strongly 
heterogeneous 

RCSP Residual CSP 

Strongly 
heterogeneous 

BPP Bin Packing Problem 

Identical SBSBPP Single Bin Size BPP 

Weakly 
heterogeneous 

MBSBPP Multiple Bin Size BPP 

Strongly 
heterogeneous 

RBPP Residual BPP 

The Dimensionality and the Shape of small items (for two- and three-dimensional problems) 

combined with Intermediate problem types make up the Refined problems, according to the 

following structure: 

{ 1, 2, 3 } D { Rectangular, Circular, ..., Irregular } { Intermediate Type of Problem } 

The example mentioned above would be classified as 1D Single Bin Size Bin Packing Problem 

(or 1D Single Stock Size Cutting Stock Problem, if the items are weakly heterogeneous). A 

problem with rectangular items and in which the object has a variable dimension would be 

classified as a 2D rectangular Open Dimension Problem.  

Wäscher et al. [16] focused their work classifying what they call pure cutting and packing 

problems, in which solutions consist in the information about the set of cutting patterns and 

the value of the corresponding objective function.  
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Problems with the same properties as the Refined problems but, with additional 

characteristics unrelated to the cutting or packing, are considered Extensions, e.g., minimize 

the number of different cutting patterns.  

When the conditions of a problem are different from those presented in pure problems, it is 

considered a Variant, e.g., a problem with more than three dimensions. 

The EURO Special Interest Group on Cutting and Packing (ESICUP) website1 provides an 

extensive database of publications organized and classified by the Wäscher’s typology. 

3. Solution Approaches 

The Column Generation procedure proposed by Gilmore and Gomory [17] for solving the CSP 

is commonly recognized as the seminal work on the cutting and packing problem research 

field. This method allows to find the optimal solution for the linear programming problem 

that is obtained relaxing the integrality constraints of the original problem. A last step is 

usually required to obtain a feasible solution for the integer problem.  

Besides the Column Generation, many more solution approaches have been proposed for 

solving cutting and packing problems. These methods can be divided into exact methods, i.e., 

methods in which the obtention of the optimal solution is guaranteed, and in non-exact 

methods. Non-exact methods, although without the guarantee of finding the optimal 

solution, usually obtain good results with considerably less computational resources than the 

ones required by exact methods. 

In this section, we review solution methods that have been proposed in the literature for 

solving cutting and packing problems, classifying them as exact, heuristic, i.e., non-exact 

problem-specific approaches, and metaheuristic, i.e., methods that are based in general 

methodologies for solving combinatorial optimization problems that are easily adaptable to 

specific problems. 

The rest of the section is organized as follows. Due to its relevance for the cutting and packing 

research the Column Generation method is reviewed in subsection 3.1. Subsection 3.2. is 

 
1 https://www.euro-online.org/websites/esicup/ 

https://www.euro-online.org/websites/esicup/
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devoted to the location approaches, which are used in both exact and non-exact methods, to 

enumerate the possible locations to place the items or to keep track of the set of empty 

spaces that remain in the object after the placement of the items. Section 3.3. and section 

3.4. present the exact and non-exact methods, respectively. While the focus is on the most 

recent solution methods, some of the earlier works are also discussed due to their importance 

in this research field. Finally, the last section, presents, in chronological order, the published 

surveys and reviews on solution methods for solving cutting and packing problems. 

3.1. Column Generation 

The Column Generation2 (CG, see Ford and Fulkerson [18]) to solve the one-dimensional CSP 

was proposed by Gilmore and Gomory [17] [19]. Bearing in mind that even for small problems 

it can be impractical and time-consuming to enumerate all possible patterns, Gilmore and 

Gomory proposed the CG based on the Simplex method3 (see Dantzig [20]) modelling the 

problem as follows: 

min{∑ 𝑥𝑗
|𝐽|
𝑗=1 | ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑑𝑖, 𝑖 = 1, … , 𝑚; 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑥𝑗 ∈ ℕ, 𝑗 = 1, … , |𝐽||𝐽|

𝑗=1 } (6) 

The set of valid patterns is represented by 𝐽, the number of times items of type 𝑖 are present 

in pattern 𝑗 by 𝑎𝑖𝑗 and the cut frequency of pattern 𝑗 by 𝑥𝑗. The proposed approach solves the 

following associated linear programming model: 

min{∑ 𝑥𝑗
|𝐽|
𝑗=1 | ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑑𝑖, 𝑖 = 1, … , 𝑚; 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑥𝑗 ∈ ℝ, 𝑗 = 1, … , |𝐽||𝐽|

𝑗=1 } (7) 

After the linear programming relaxation on the integrality constraint of the decision variables, 

an initial set of 𝑚 patterns (columns) is selected. At each iteration of this method, a sub-

problem (min{1 − ∑ 𝜋𝑖𝑥𝑖
𝑚
𝑖=1 } with 𝜋𝑖  as the value of the item type 𝑖 obtained from the current 

dual linear programming solution) to find the most negative column is solved generating a 

new pattern. For the one-dimensional problem, the sub-problem (ignoring the constant 1) 

corresponds to a bounded knapsack problem formulated as: 

max{∑ 𝜋𝑖𝑥𝑖
𝑚
𝑖=1 | ∑ 𝑙𝑖𝑥𝑖 ≤ 𝐿; 0 ≤ 𝑥𝑖 ≤ 𝑑𝑖 , 𝑖 = 1, … , 𝑚𝑚

𝑖=1 }  (8) 

 
2 See Lübbecke [182] for a recent overview of this method. 
3 See Prabhu [183] for a recent overview of this method. 
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where 𝑥𝑖  represents the frequency of item type 𝑖, i.e., number of times that the item appears 

in the pattern. This new pattern is added if its value is greater than 1. This process terminates 

when no column can be added, thus obtaining the optimal solution of the relaxed problem. 

Since this solution may be infeasible for the original problem, an additional method may have 

to be applied to obtain an integer solution. 

An extension to their previous work was presented by Gilmore and Gomory [21] to deal with 

multistage multidimensional CSP and exemplified with the three-dimensional three-staged 

case the difficulties of leading with higher dimensions. The authors also tackle the problem in 

which scheduling issues must be considered with an application of their method to the 

production of corrugated paper boxes. 

Considering that the computational effort required by the CG approach is closely related to 

the resolution of the auxiliary problem, Oliveira and Ferreira [22] proposed the Faster Delayed 

Column Generation (FCG) that reduces the number of times that the auxiliary problem is 

solved providing an effective reduction of the computational effort required. The auxiliary 

problem is solved to optimality only if a heuristic cannot produce a column that improves the 

objective function. The authors present a greedy heuristic to create three-staged and non-

staged patterns that place the items into the object by non-increasing reduced cost. 

Solution methods for the SLOPP, SSSCSP, ODP, and MSSCSP were presented by Cintra et al. 

[23]. In this work, Dynamic Programming (Bellman [24]) algorithms for the 𝑘- and non-staged 

SLOPP are proposed. The algorithms for the SLOPP are used to solve the sub-problem in a CG 

approach for the mentioned problems.  

A CG based algorithm for the SLOPP with guillotine cuts using mixed integer programming to 

obtain an integer solution was proposed by Novianingsih et al. [25]. 

The Repeated Constrained Column-Generation (RCCG) is a CG based algorithm for the two-

staged SSSCSP proposed by Cui and Zhao [26] that solves the sub-problems as unconstrained 

ones, then, repeatedly, the residual problems are also solved through CG solving the 

(constrained) sub-problem until all demand is satisfied. 
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3.2. Location 

In this section, we present discretization techniques that allows to enumerate the possible 

positions for item placement aiming the reduction of the search space. In addition, we present 

methods that allow to keep track of the empty spaces in the object which result from the 

placement of items. 

Herz [27] presented a recursive algorithm for the unconstrained SLOPP with guillotine cuts 

that considers for the placement of items only discretization points obtained from the linear 

combinations of the items sizes (see Figure 15). Patterns wherein the items are placed at 

discretization points at the bottom-left-most possible position without overlapping are 

usually referred to as Normal Patterns (Christofides and Whitlock [28]). 

Discretization Points 

Considering 𝐿𝑚𝑖𝑛 = 𝐿 − min
1≤𝑖≤𝑚

{𝑙𝑖} and 𝐻𝑚𝑖𝑛 = 𝐻 − min
1≤𝑖≤𝑚

{ℎ𝑖}, the discretization points are 

calculated as follows: 

𝑋𝑑 = {𝑝 ∈ ℤ|𝑝 = ∑ 𝑙𝑖𝑧𝑖 ,𝑚
𝑖=1 0 ≤ 𝑝 ≤ 𝐿𝑚𝑖𝑛 , 0 ≤ 𝑧𝑖 ≤ 𝑑𝑖 , 𝑧𝑖 ∈ ℤ, 𝑖 = 1, … , 𝑚} (1) 

𝑌𝑑 = {𝑞 ∈ ℤ|𝑥 = ∑ ℎ𝑖𝑧𝑖 ,𝑚
𝑖=1 0 ≤ 𝑞 ≤ 𝐻𝑚𝑖𝑛, 0 ≤ 𝑧𝑖 ≤ 𝑑𝑖, 𝑧𝑖 ∈ ℤ, 𝑖 = 1, … , 𝑚} (2) 

 

Figure 15. Discretization Points. 

A method (and supporting data structure) was presented by Chazelle [29] to report all the 

possible locations in which an item can be placed considering the presence of empty spaces 

that occur from the placement of other items.  

An algorithm to calculated the set of discretization points named as Useful Numbers was 

proposed by Carnieri et al. [30]. 

The Reduced Raster Points (see Figure 16), a subset of the Discretization Points presented by 

Herz [27], were described by Scheithauer and Terno [31]. 

Reduced Raster Points  

The Reduced Raster Points are calculated as follows: 

𝑋𝑟 = {(𝐿 − 𝑝)𝑥|∀𝑝 ∈ 𝑋𝑑} ⋃ {0} with (𝐿 − 𝑝)𝑥 = max{𝑠 ∈ 𝑋𝑑|𝑠 ≤ 𝐿 − 𝑝}  (3) 

𝑌𝑟 = {(𝐻 − 𝑞)𝑦|∀𝑞 ∈ 𝑌𝑑} ⋃ {0} with (𝐻 − 𝑞)𝑦 = max{𝑡 ∈ 𝑌𝑑|𝑡 ≤ 𝐻 − 𝑞} (4) 
 

Figure 16. Reduced Raster Points. 
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To keep track of the empty rectangular spaces (ERS) that are created after the placement of 

an item, Lai and Chan [6] presented the Difference Process that creates interval lists to 

identify current ERSs. This process, first, places the item inside a given ERS, then generates 

the new ERSs that result from the intersection of the item with the existing ERSs and removes 

intersected ERSs. The last step removes the ERSs that are infinitely thin or are totally inscribed 

by other ERSs. This method is illustrated in Figure 17, in which the darker rectangles depict 

the available ERS at the beginning of the process (a) and at the end of each item placement 

(b and c). 

 
a. Start 

 
b. Placement of the first item 

 
c. Placement of the second item 

Figure 17. Difference Process. 

Considering the already packed items, Martello et al. [32] presented an algorithm that identify 

the locations, called Corner Points, where new items can be placed. In Figure 18, the bullets 

identify the Corner Points, i.e., points where the slope of the black line changes from vertical 

to horizontal. 

 

Figure 18. Corner Points. 
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An extension to the Corner Points, called Extreme Points, was presented by Crainic et al. [33] 

that considers corners that are inside the boundaries defined by the Corner Points. Figure 19 

depicts the Extreme Points wherein the darker grey area the region that was not considered 

by the Corner Points. 

 

Figure 19. Extreme Points. 

Wei et al. [34] presented a greedy heuristic to solve the SLOPP using the concept of skyline 

representation of a pattern as a sequence of line segments (𝑠) expressing the rectilinear 

contour of the current pattern where the 𝑦 coordinate of 𝑠𝑖 is different of the 𝑦 coordinate 

of 𝑠𝑖+1 and the 𝑥 coordinate of the right endpoint of 𝑠𝑖 is the same as the 𝑥 coordinate of the 

left endpoint of 𝑠𝑖+1. 

To keep track of the gaps resulting from the placement of items, Bennell et al. [35] used a list 

of points (𝑥, 𝑦) that define the current profile of packed items. To find the lowest gap, the 

minimum 𝑦 value is identified (𝑦𝑚𝑖𝑛), and the gap width is calculated considering the next 𝑥 

point in the list (if last, considers 𝐿) and the gap height as 𝐻 − 𝑦𝑚𝑖𝑛. 

A review on discretization points types, namely Discretization Points, Useful Numbers, 

Reduced Raster Points and Corners Points was presented by Cunha and Queiroz [36]. The 

authors denoted an equivalence on the number of points obtained by Discretization Points, 

Useful Numbers and Corners Points. The authors concluded that the Reduced Raster Points 

provide a higher reduction in the number of points, notwithstanding the lack of investigation 

on whether there is or not loss of generality applying this discretization type. We refer to 

Nascimento et al. [37] and Cunha and Queiroz [38] for further comparative studies on 

discretization points. 
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3.3. Exact Methods 

An exact algorithm for the unconstrained two-staged SKP was proposed by Gilmore and 

Gomory [21] solving 𝑚 + 1 one-dimensional SKP, one SKP for each of the items types, 

creating 𝑚 strips and +1 to fill the object with those strips. 

A characterization of knapsack functions and a Dynamic Programming approach for the 

unconstrained SKP with guillotine cuts was proposed by Gilmore and Gomory [39], later 

improved by Russo et al. [40] [41]. 

A recursive algorithm for the unconstrained SLOPP with guillotine cuts was presented by Herz 

[27] that reduces the computational effort through the use of bounds, memorization, and 

considering for the placement of items the linear combinations of the items dimensions, i.e., 

discretization points (see Figure 15). Based on this work, Hifi and Zissimopoulos [42] 

presented an exact algorithm providing improved bounds and optimality criteria to reduce 

the branching on the generated tree. 

A tree-search algorithm for the SLOPP with guillotine cuts was presented by Christofides and 

Whitlock [28] that reduces the search space not generating equivalent patterns, i.e., patterns 

that contain the same items but with different layouts, and using upper bounds calculated by 

means of two methods, the Dynamic Programming procedure proposed by Gilmore and 

Gomory [39] to solve the unconstrained related problem and a method proposed by Desler 

and Hakimi [43] to solve the Transportation Problem (see Hitchcock [44]). Improvements to 

this approach were introduced by Christofides and Hadjiconstantinou [45] and by Hifi and 

Zissimopoulos [46]. 

Making use of an upper bound obtained from the Lagrangean Relaxation (see Fisher [47]) of 

the problem and optimized through Subgradient Optimization (see Shor [48]), Beasley [49] 

presented a tree-search procedure for the SLOPP. 

Martello and Vigo [50] showed that the Continuous Lower Bound (𝐶𝐿𝐵 = ⌈∑ 𝑙𝑖ℎ𝑖
𝑚
𝑖=1 𝐿𝐻⁄ ⌉) for 

the SBSBPP has a worst-case performance ratio of 1

4
 and presented new lower bounds that 

are used in a Branch-and-Bound (see Land and Doig [51], and Agin[52]) to solve to optimality 

this problem. Clautiaux et al. [53] proposed an improvement to this Branch-and-Bound to 

avoid equivalent patterns, and presented a second exact algorithm based on a new problem 
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relaxation. A Branch-and-Bound using the Corner Points for finding possible positions for 

placing an item was presented by Martello et al. [32] for the three-dimensional SBSBPP. 

A tree-search algorithm for the 𝑑-dimensional knapsack problem using a graph-theoretical 

characterization of feasible packings was presented by Fekete and Schepers [54][55][56]. In 

this characterization, if no overlapping occurs in both graphs (𝑥 and 𝑦 axis projection) the 

pattern is feasible (see Figure 20), otherwise unfeasible (see Figure 21, wherein the 

overlapping edges are illustrated bolder and darker than the others). The authors refer that 

this characterization can be easily extended to higher dimensional problems. These technical 

reports were later revised and published in [57], [58] and [59].  

 

Figure 20. Fekete and Schepers’ graph-theoretical characterization – Feasible pattern. 

 

 

Figure 21. Fekete and Schepers’ graph-theoretical characterization – Unfeasible pattern. 
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Ferreira and Oliveira [60] presented some degenerated cases that can occur when applying 

Fekete and Schepers procedure. Ferreira and Oliveira [61] presented an additional property 

to the Fekete et al. [59] graph-based algorithm to avoid degenerative packing situations, 

verifying that the packing is actually constrained inside the object boundaries. 

Lower bounds that dominate the ones presented by Martello and Vigo [50] and Fekete and 

Schepers [55] were presented by Boschetti and Mingozzi [62]. 

Silveira and Morabito [63] proposed a Dynamic Programming and Subgradient Optimization 

based algorithm to solve the SLOPP with guillotine cuts. 

A two-stage exact algorithm to solve the SKP making use of problem reductions and new 

upper bounds to reduce the search space was presented by Baldacci and Boschetti [64]. The 

upper bounds are embedded in an enumeration tree, and at each integer solution found a 

feasibility check is performed to verify if the subset of items can generate a feasible layout. 

The feasibility tests are performed solving to optimality a called Feasibility Problem that the 

authors mathematically formulate and present. 

Pisinger and Sigurd [65] presented a Branch-and-Price (see Barnhart et al. [66]) algorithm for 

the SBSBPP with guillotine cuts. Branch-and-Price based algorithms were also proposed by 

Puchinger and Raidl [67] for the three-staged SBSBPP and by Mrad et al. [68] for the two-

staged SSSCSP. 

Clautiaux et al. [69] presented a Constraint-based Scheduling model (see Baptiste et al. [70]) 

for the SKP and a Branch-and-Bound algorithm considering this model. 

An integer programming formulation and upper bounds (obtained through the relaxation of 

the mathematical formulation) for the SLOPP were proposed by Boschetti et al. [71]. Lodi and 

Monaci [72] presented two integer linear programming models for the two-staged SLOPP and 

extensions to deal with non-oriented, unconstrained and double-constrained problems. The 

authors presented some linear inequalities that remove symmetric solutions from the 

solution space highly reducing the computational effort required to solve the models. Silva et 

al. [13] proposed an integer programming model for the two- and three-staged SSSCSP. Due 

to the flexibility of the model, other issues were addressed such as the rotation of the items, 

the lengths of the cuts, and the value of the remaining plates. The model proposed by Silva et 
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al. [13] was extended in Furini et al. [73] for the SKP with guillotine cuts as for the SSSCSP, 

ODP, and MSSCSP. 

Based on the work of Carvalho [74], Macedo et al. [75] presented an Arc-Flow (see Wolsey 

[76]) model for the two-staged SSSCSP. Brandão and Pedroso [77] presented an Arc-Flow 

formulation for the Vector Packing Problem (VPP; see Coffman et al. [78]) that can be applied 

to model other cutting and packing problems through the reduction to a VPP. 

3.4. Non-exact Methods 

The non-exact methods for solving cutting and packing problems will be presented next. This 

subsection starts with a review of some of the most used and referred placement strategies, 

i.e., policy to apply in order to place an item into a given layout, then, the heuristics and the 

solution methods based on metaheuristics are also presented. 

3.4.1. Placement Strategies 

Although most research made on two-dimensional cutting and packing problems deals only 

with orthogonal patterns, Cani [79] demonstrated that in practice non-orthogonal cuts or 

packing must be considered when it is required the absolute minimal area as they can lead to 

better arrangements of items or even make possible the inclusion of items that the 

orthogonal case cannot handle. Figure 22 depicts to the left a white square object and three 

grey items and it can be noticed that the longest item cannot be orthogonally placed into the 

square. To the right, the figure depicts a feasible non-orthogonal pattern considering the 

same object and items. 

 

Figure 22. Non-orthogonal packing. 

Baker et al. [80] presented a study on heuristics for the ODP in which each item is packed, in 

turn, at the lowest possible position, and then left-justified without overlapping, i.e., Bottom-
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Left (or BL for short) heuristics. The authors evaluated the influence of the order in which 

items are packed, concluding that these heuristics achieve reasonable results when the items 

are ordered by non-increasing lengths. 

The Hybrid First-Fit (HFF) heuristic for the SBSBPP with guillotine cuts, proposed by Chung et 

al. [81], starts ordering the items by non-increasing heights, then, in turn, pack the items 

through a BL policy at the lowest existent strip that has room to fit the current item. If none 

exists, a new strip is created with a length equal to the bin length and the height equal to the 

item height. The generated strips are packed into bins by the First-Fit Decreasing (FFD) 

heuristic. The First-Fit (FF) is an algorithm for the one-dimensional case that places each item 

in turn in the lowest indexed bin in which it fits, while the First-Fit Decreasing (FFD), places 

the items as in FF, but assumes that the items are ordered by non-increasing height (see 

Johnson [82] and Johnson et al. [83] for further details). 

A Bottom-Left approach was proposed by Jakobs [84] that slides the items from the top-right 

corner, while possible, downwards until it finds an item or object edge, then to the left-most 

position available (see Figure 23). 

 

Figure 23. Jakobs’ BL Heuristic. 

The Bottom-Left Fill (BLF) was presented by Hopper and Turton [85] as an improvement to 

the Bottom-Left approach used by Jakobs [84], as the later can create large empty regions 

due to blocking items. To overcome this weakness, BLF places directly the items in the left-

most and lowest sufficiently large empty region. 

An improvement to the Bottom-Left heuristic of Jakobs [84] was proposed by Liu and Teng 

[86] in which when moving to the left, whenever possible, the item is placed as downward as 

possible first, as depicted in Figure 24. 

 

Figure 24. Liu and Teng improved BL algorithm. 
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Lodi et al. [87] presented two heuristics for the SBSBPP, both starting with 𝐶𝐿𝐵 opened bins 

and opening new ones when none of the remaining item fits on the opened bins. The 

Alternate Directions heuristic starts sorting the items with non-increasing heights, then packs 

a subset of the items into the bins following a Best-Fit Decreasing policy, i.e., packing the 

current item onto the shelf that minimizes the residual horizontal space. The remaining items 

are packed, alternatively, from left-to-right and from right-to-left at the lowest position 

possible. The Touching Perimeter heuristic starts by sorting the items by non-increasing area, 

then the position/bin to pack an item is done calculating the percentage of the perimeter that 

touches edges, either of the bin or other items. 

The Efficient Management of Holes, presented by Beraudo et al. [88], iteratively packs the 

items as follows: 1) tries to place the item in the left margin stacked over already placed items, 

2) if the item is not placed in the previous step, tries to place the current item in the leftmost 

free empty space, i.e., hole, and 3) if the item is not already placed, tries to place it in the 

object bottom edge at the right of already placed items. 

The Best-Fit heuristic, presented by Burke et al. [89], unlike most approaches in which the 

items are pre-sorted and then placed in the object one at a time, examines the lowest 

available space and then evaluate the best item to place at this position. This heuristic does 

not need to search for each of the free locations due to the use of an array that identifies the 

height occupied defining the packing skyline as depicted in Figure 25. 

 

Figure 25. Burke et al. Array of Occupied Positions. 

Gonçalves and Resende [90] presented an Genetic Algorithm that considers two placement 

strategies, namely Bottom-Left (BL) and Left-Bottom (LB). Using the Difference Process to 
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keep track of the ERS, the BL places the item in the closest ERS relatively to the bottom-left 

corner of the object, while LB places the item in the closest ERS to left-bottom corner of the 

object. The LB was introduced to overcome the inability of the BL to attain, in some situation, 

the optimal solution. Figure 26 a. illustrates the packing for the following sequence, 

considering BL and LB, 3 BL, 2 BL, 1 LB, 4 BL. Figure 26 b. illustrates the same sequence 

packed only with BL, i.e., 3 BL, 2 BL, 1 BL, 4 BL, and as it can be observed the last 

item cannot be placed. 

  
a. Solution with BL and LB b. Solution with BL 

Figure 26. Solutions generated by the placement procedures BL+LB and BL. 

The Four Corners heuristic, proposed by Binkley and Hagiwara [91], divides a genome (that 

represents a sequence of items) into four sets, each of them to be packed in a different object 

corner. Alternating through the four sets, the current item is packed as close as possible to its 

assigned corner. 

The Least Wasted First Heuristic, presented by Wei et al. [92], makes use of the Corner Points 

and to reduce the search space, points are discarded when they cannot accommodate 

unpacked items. The items are packed in the location that leaves the empty space as smooth 

as possible, e.g., packing the darker grey item on the location depicted in Figure 27 provides 

a smooth packing since its dimensions are the same as the lines that define the Corner Point. 

 

Figure 27. Smooth Packing. 
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The Meet-in-the-Middle (MIM) principle is presented by Côté and Iori [93] as an alternative 

to the Normal Patterns. MIM packing divides the first dimension, e.g., length, by a given 

threshold value, then places the items whose left border is at the left of the threshold as left 

as possible and the remaining to the right. This process is repeated for the successive 

dimensions, e.g., for the height dimension, places the items at the top or at the bottom. Figure 

28 depicts a general pattern, corresponding Normal Pattern and the MIM pattern with a 

threshold value of 𝐿/2 and 𝐻/2, for length and height dimensions respectively. 

 

Figure 28. Patterns: General (left), Normal (middle), Meet-in-the-Middle (right). 

3.4.2. Heuristics 

Heuristics to solve the ODP and the SSBSBPP were presented by Bengtsson [94] which aim to 

be efficient solution methods for large-scale instances due to the small memory 

requirements. The heuristic for the ODP is a procedure that recursively packs the items. The 

heuristic for the SBSBPP starts with a rough distribution of items into bins and repeatedly 

discards the bin that presents more unused space. The items of the discarded bin are used to 

improve the remaining bins. 

Wang [95] proposed two heuristics to solve the guillotine SLOPP. The underlying algorithm of 

these heuristics is the same, differing in the aspiration criterion used as the condition for the 

acceptance of the percentage of waste generated. This implicit enumeration approach builds 

successively a larger guillotine rectangle from smaller ones. Parada et al. [96] presented a 

computational comparison on approaches based on Wang’s algorithm [95], more specifically, 

Oliveira and Ferreira [97] and Parada et al. [98] [99] [100]. 

Beasley [101] presented an exact algorithm and a heuristic based on Dynamic Programming 

for the (non-)staged unconstrained SLOPP. The author demonstrated that considering only 

Normal Patterns and discretization points can lead to improved recursion since it permits to 

reduce the search space. Denoting that the exact method can become computationally too 

demanding for a large set of discretization points, a heuristic is proposed reducing the set 

size. Morabito and Arenales [102] compared the heuristic of Beasley [101] and the algorithm 
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of Gilmore and Gomory [21] to solve large-scale unconstrained non-staged SLOPP. Although 

the latter considers two-staged problems, it provides feasible solutions for non-staged 

problems4. The authors remarked that since Beasley´s heuristic removes some discretization 

points it can, in some cases, exclude points essential to achieve optimality. Faced with 

increasing object size and number of items, Beasley’s heuristic was not able to attain better 

result than the one proposed by Gilmore and Gomory. 

Berkey and Wang [103] presented several heuristics for the SBSBPP adapted from heuristics 

found in the literature for the ODP. Adaptations to these heuristics for the non-oriented 

SBSBPP were proposed by Lodi et al. [104]. 

Using an And/Or-Graph to represent the solutions, Morabito et al. [12] proposed a hybrid 

search heuristic that combines depth-first and hill-climbing search strategies for the 

unconstrained SLOPP with guillotine cuts.  

The HBP heuristic, proposed by Boschetti and Mingozzi [105] to solve the SBSBPP, generates 

solutions using two placement methods and different pricing rules. At the end of each 

iteration, the value of the items is updated and a new solution is generated with these values. 

Hifi and M'Hallah [106] presented algorithms for the two-staged SLOPP, namely, Strip 

Generation Algorithm (SGA), Extended SGA (ESGA), and Hill-climbing ESGA (HESGA). The SGA 

solves the problem as a two-stage algorithm, first generating a set of strips then searching for 

good combinations of those strips both solving bounded one-dimensional SKP. The ESGA fills 

the object dividing it into two sections, one filled with the SGA while the other is filled using 

an alternative procedure that makes use of horizontal discretization points. Finally, the HESGA 

combines the ESGA with hill-climbing strategies. 

The Set-Covering Heuristic (SCH), presented by Monaci and Toth [107] for the SBSBPP, 

formulates the problem as a Set-Covering Problem (see Caprara et al. [108]) and solves it 

through a two-phase heuristic. The Column-Generation phase generates, thought greedy 

heuristics to achieve diversity, a large set of columns that define the Set-Covering instance to 

be solved in the Column-Optimization phase. 

 
4 Farley [184] analysed the trade-off between non-exact two-staged patterns and non-staged ones and 
concluded that the waste reduction obtained with non-staged may not justify, in some cases, the extra 
computational effort required by this cutting style. 
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Five greedy heuristics for the SLOPP with guillotine cuts were presented by Hadjiconstantinou 

and Iori [109], namely, the HCKP, HCHV, HCGAP, HCORD, and HCORD2,. The HCKP, considers some 

item ordering, iteratively pack, using a BL policy, one item into a strip, then it is completed 

solving a one-dimensional SKP. The HCHV pack the items alternatively on top of each other or 

side by side until no more items fit in this direction. The HCGAP solves a one-dimensional SKP 

to pack vertically items then for each of them a horizontal strip is created and completed 

solving a Generalized Assignment Problem (GAP; see Cattrysse and Van Wassenhove [110]). 

The HCord creates for each item a strip using HCKP then the best strips are packed considering 

the values of the items in the strip until their exit strips that fit. The HCord2 is similar to the 

previous one but recreate the strips for each unpacked item after the packing of the best strip 

created. 

Huang and Chen [111] proposed two heuristics to solve the SKP which placement strategy is 

to place the current item in a corner defined either by other items or by the edges of the 

object. When evaluating the possible corners to place the items, a caving degree is calculated 

to achieve high area usage. The second heuristic is a backtracking process over the solution 

generated by the first heuristic. 

The Extreme Point First Fit Decreasing (EP-FFD) heuristic and Extreme Point Best Fit 

Decreasing (EP-BFD) heuristic were presented by Crainic et al. [33]. Both heuristics consider 

a pre-ordering of the items and then, in turn, the items are placed into the bins. The EP-FFD 

places the items at the lower and the left-most Extreme Point in which it fits. If the current 

bin cannot accommodate a new one is opened, and the item is placed in the left-bottom 

corner. The EP-BFD places the item into the bins that present the best merit function. The 

authors present and compare several options for the calculation of the merit function. 

The Least Wasted First Heuristic, proposed by Wei et al. [92], makes use of the Smooth 

Packing to place the items and since the ordering influence the quality of the solution 

generated by this placement method, the authors apply a random local search which alters 

the order of the items at each call, trying to obtain a better solution. 

Based on Christofides and Hadjiconstantinou’s algorithm [45], Morabito and Pureza [112] 

presented a heuristic using And/Or-Graph search approach for the (un)weighted SLOPP with 

guillotine cuts. 
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The Sequential Grouping Heuristic (SGH) was presented by Cui et al. [113] to solve the SSSCSP 

with guillotine cuts where the main objective is the input minimization and the secondary 

objective is the minimization of the number of patterns generated. This heuristic uses the 

sequential value correction proposed by Belov and Scheithauer [114] and the heuristic 

proposed by Cui [115] for the SLOPP. 

Three heuristics for the SBSBPP with guillotine cuts were proposed by Fleszar [116], namely 

the First-Fit Insertion Heuristic (FFIH), Best-Fit Insertion Heuristic (BFIH), and Critical-Fit 

Insertion Heuristic (CFIH). A tree representation of patterns is used, in which, leaf nodes 

represent items and the other nodes represent the vertical or horizontal cuts. Considering the 

items sorted by their area, the FFIH(/BFIH) packs the items in the first(/best) bin using a fitness 

function to evaluate the best location. The CFIH, Iteratively, evaluates all the unpacked items 

and packs the critical item on the best insertion point considering the fitness function 

adopted. An improvement procedure is presented in which, at each iteration, the last pattern 

is removed from the current solution and the unpacked items are packed into a new solution 

using FFIH. The patterns from the current solution and the new solution constitute a new 

feasible solution, being the new best solution if this (combined) solution uses fewer bins. 

Alvelos et al. [117] presented heuristics for the two- and three-staged SBSBPP based on the 

SearchCol framework (see Alvelos et al. [118] and Alvelos et al. [119]). 

Cui et al. [120] presented a heuristic for the SBSBPP that generates a given number of cutting 

plans, adjusting the items’ value after each pattern generation through a correction formula. 

The correction formula prioritizes items that do not combine well with the current pattern 

and larger items more difficult to pack. The patterns are generated in a similar manner as in 

the work presented by Wei et al. [92]. 

The Residual-Space-Maximized Packing heuristic, presented by Wang and Chen [121], for the 

ODP and SBSBPP considers that at each packing step the residual space must be maximized. 

The Difference Process is used to keep track of the ERS, and when packing an item all the ERS 

corners are evaluated, choosing the one that generates the largest free region after packing. 

3.4.3. Metaheuristics 

The Genetic-And/Or-Graph (GAO) is a Genetic Algorithm (see Goldberg [122]) proposed by 

Parada et al. [99] to solve the SLOPP with guillotine cuts which represents solutions by mean 
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of a string. The string represents a binary tree associated with the cutting pattern where the 

items are represented by lowercase letters and the operators V and H represent vertical and 

horizontal cuts, respectively. The algorithm applies crossover operations using the above 

operators to create from two patterns, four new ones. 

A Genetic Algorithm for the Irregular two-dimensional ODP was proposed by Jakobs [84]. 

Although capable to deal with polygons, the author remarks that the algorithm can, 

alternatively, be used on rectangular shapes that embed the polygons to decrease the 

computational effort. The author determines the embedding rectangle with the minimum 

area on all polygons and then applies the Genetic Algorithm. A last step is performed when 

dealing with this embedding approach, called the Shrinking-step, that shifts the polygons 

closer to each other. 

A Genetic Algorithm for the SKP was proposed by Gonçalves and Resende [90] wherein the 

chromosome, besides the representation of the items packing order, contains also the 

corresponding packing strategy. This algorithm uses two placement strategies, namely 

Bottom-Left (BL) and Left-Bottom (LB). Different layouts with the same assignments will have 

the same trim loss, but one can present larger ERSs and so will have a higher improvement 

potential, as depicted in Figure 29. Taking this into account, Gonçalves [123] present a Genetic 

Algorithm that use a modified trim loss evaluation to measure the quality of a pattern. 

Gonçalves and Resende [124] presented a parallel multi-population Genetic Algorithm for 

solving the SLOPP. 

  
a. Lower improvement potential b. Higher improvement potential 

Figure 29. Potential improvement. 

Bortfeldt and Winter [125] presented a Genetic Algorithm approach to solve the 

(un)constrained (non-)guillotine SKP/SLOPP. 

A Multi-Crossover Genetic Algorithm (see Lee [126]) for the SBSBPP with due dates was 

proposed by Bennell et al. [35] where the objective is to minimize the maximum lateness of 
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the items and to minimize the number of bins used. This heuristic searches for the lowest 

available gap in the current bin and packs the item that best fills this gap. 

Simulated Annealing (see Kirkpatrick et al. [127]) approaches were proposed by Lai and Chan 

[6] for solving the SKP, by Parada et al. [100] for the SLOPP with guillotine cuts and by Faina 

[128] for the SSSCSP.  

Egeblad and Pisinger [129] presented integer programming formulations for the two- and 

three-dimensional SKP and a Simulated Annealing that make use of the Sequence Pair 

representation proposed by Murata et al. [130] for the VLSI problem. Figure 30 depicts a 

packing pattern represented by the sequence of 𝐴 = < 3, 2, 5, 6, 1, 4 > (graph to the left) 

and 𝐵 = < 1, 2, 4, 3, 5, 6 > (graph to the right). Considering the two sets 𝐴 and 𝐵, if item 𝑖 

precedes 𝑗 in 𝐴 and 𝐵, then 𝑖 is placed to the left of 𝑗. If 𝑖 succeeds 𝑗 in 𝐴 but precedes in 𝐵, 

item 𝑖 is placed below 𝑗. 

 

Figure 30. Sequence Pair representation. 

Binkley and Hagiwara [91] presented a Simulated Annealing and a Genetic Algorithm for the 

SKP using the Four Corners heuristic for item placement. 

Hopper and Turton [131], and Leung et al. [132] presented comparative studies on the 

performance of Genetic Algorithm and Simulated Annealing. Leung et al. [133] compared a 
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Genetic Algorithm and a hybrid meta-heuristic (Genetic Algorithm with Simulated Annealing) 

called MSAGA for the SKP. The objective of this work was to verify if the hybrid approach 

could prevent the early convergence observed in the Genetic Algorithm. The results point to 

the superiority of the hybrid approach. The decoder, i.e., placement method, uses the 

Difference Process proposed by Lai and Chan [6]. 

A new non-linear mathematical formulation for the SLOPP was presented by Beasley [134] 

giving indications on how to extend the formulation to deal with defective areas, multiple size 

stock objects and item rotation. Based on this formulation, the author proposed a Population 

Heuristic (see Beasley [135]) and reported the results obtained considering large-scale 

instances (𝑚 = 1000). Based in this work, Beraudo et al. [136] presented an evolutionary 

approach using the Efficient Management of Holes. An Evolutionary Algorithm for the 

SKP/SLOPP using a tree-search placement algorithm using a bottom-left placement policy was 

presented by Kierkosz and Luczak [137]. 

Lodi et al. [104], [138] presented a Tabu Search (see Glover [139]) approaches for the SBSBPP 

with guillotine cuts and in [87], presented a Unified Tabu Search Framework meant to be 

adaptable for each specific problem changing uniquely the inner heuristics to explore the 

neighbourhoods. A Tabu Search approach was also presented by Alvarez-Valdés et al. [140] 

for solving the SLOPP using an alternative objective function, that considers symmetry, 

number of empty rectangles, waste concentration and feasibility (for doubly constrained 

problems), to prevent equal objective function values on solutions that although with a 

different layout have the same assignments. 

Besides a Tabu Search, Alvarez-Valdés et al. [141] presented a Greedy Randomized Adaptive 

Search Procedure (GRASP, see Feo and Resende [142]) and a Path Relinking (see Glover [143]) 

to solve large-scale (un)constrained (un)weighted SLOPP with guillotine cuts. Alvarez-Valdés 

et al. [144] proposed a GRASP to solve the double-constrained SLOPP and Alvarez-Valdés et 

al. [145] presented two GRASP and a Path Relinking approach for the two-staged SLOPP. In 

the later, the Path Relinking makes use of solutions obtained by both GRASP since one 

provides high-quality solutions while the other provides a more diverse set of solutions. 

Parreño et al. [146] presented a GRASP with Variable Neighbourhood Descent (VND, see 

Hansen and Mladenović [147]) based heuristic for the two- and three-dimensional SBSBPP. 
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Alvelos et al. [148] presented a VND algorithm for the two- and three-staged SBSBPP, while 

Chan et al. [149] presented a VND to solve the two-staged SBSBPP. Chan et al. [150] presented 

a heuristic called Stochastic Neighbourhood Structures (SNS) for the two- and three-staged 

SBSBPP. The main difference between SNS and VND is that all neighbourhood structures 

explored are stochastics. 

A Variable Neighbourhood Search (VNS, see Mladenović and Hansen [151]) heuristic for the 

three-staged SSSCSP using the Ruin and Recreate Principle was proposed by Dusberger and 

Raidl [152]. The solution is represented by the root node of a cutting tree, in which children’s 

root represent individual bins, each consecutive level represents guillotine cuts, and the 

leaves represent individual items. Three greedy heuristics are presented, namely, Three-

staged First Fit Decreasing Height with Rotations (3SFFDHR), 3SFFDHR preceded by a 

matching step (MATCH) and Fill Strip (FS). The 3SFFDHR first sorts the items by non-increasing 

height then, iteratively, tries to accommodate the current item in the cutting tree at the first 

possible position using a post-order traversal. The MATCH includes a pre-processing stage, 

based on the work proposed by Fritsch and Vornberger [153], pairing items into meta-

rectangles that will be packed alongside with the remaining items using the 3SFFDHR. The FS 

is an adaptation of the FFFWS proposed by Puchinger et al. [154]. The solutions are created 

using the above greedy heuristics, being the best one selected as the base solution. Following 

the Ruin and Recreate Principle, parts of the base solution are destroyed and recreated using 

the previously described heuristics. The authors present an integer linear programming model 

for the two-staged case that can be used as an alternative method to recreate the solution. 

A Guided Local Search (GLS, see Voudouris and Tsang [155]) based heuristic was presented 

by Faroe et al. [156] for the two- and three-dimensional SBSBPP. The heuristic starts with an 

upper bound on the number of available bins and iteratively decreases this number. This 

process is repeated until the time limit is reached or the current solution is the same as a 

calculated lower bound. 

Jiang et al. [157] presented a hybrid algorithm based on Particle Swarm Optimization (see 

Kennedy and Eberhart [158]) and Simulated Annealing to solve the SLOPP. Bao et al. [159] 

presented an Artificial Fish Swarm Algorithm (see Li et al. [160]) for the SKP comparing the 

results with the ones obtained with the Particle Swarm Optimization. Omar and 
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Ramakrishnan [161] presented an Evolutionary Particle Swarm Optimization (EPSO) for the 

SBSBPP combining PSO with concepts of Evolutionary Algorithms to diversify the search. 

A Beam Search (see Ow and Morton [162]) algorithm was proposed by Hifi et al. [163] for the 

two-staged SLOPP and based on this work, Hifi et al. [164] presented a parallel Beam Search. 

3.5. Surveys and Reviews 

The following list presents, in chronological order, the surveys and reviews found in the 

literature focusing solution approaches for cutting and packing problems. 

▪ Golden [165] surveyed the solution approaches found in the literature for the CSP. 

▪ Hinxman [166] presented in this work a taxonomy of assortment and trim loss 

problems, and surveyed the solution methods found in the literature for these 

problems. 

▪ Coffman et al. [78] presented an extensive survey on approximation algorithms for 

the BPP and for most of the variants associated with this problem. 

▪ Dowsland and Dowsland [167] surveyed two- and three-dimensional packing and 

related problems focusing on models and solution approaches. 

▪ Dyckhoff and Finke [168] presented the Dyckhoff’s typology [15] and an extensive 

survey of the works published on cutting and packing problems. 

▪ Lirov [169] surveyed the existent literature, discussing the domain of applicability, 

model, solution approaches and the related problem of these works. 

▪ Cheng et al. [170] surveyed the literature on the one- and two-dimensional CSP and 

some of their related problem, such as bin packing problem, pallet loading problem 

and VLSI placement problem. The authors focused on the solution methods proposed 

and on the practical and industrial aspects of these problems. 

▪ Hopper and Turton [171] presented an extensive review of metaheuristics approaches 

applied to the two-dimensional regular and irregular strip packing problems, such as 

Genetic Algorithm, Simulated Annealing, Tabu Search and Artificial Neural Networks. 

▪ Lodi et al. [172] review exact, heuristic and metaheuristic approaches for the two-

dimensional BPP. 

▪ Lodi et al. [173] review mathematical models, lower bounds, classical approximation 

algorithms, and solution methods for packing problems. 
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▪ Jylänki [174] present an extended review of packing algorithms5. The author presents 

most of the packing heuristics found in the literature and performs computational 

tests on more than two thousand distinct algorithms. 

▪ Chan et al. [175] reviews heuristics for the BPP grouping them as one-phase (items are 

packed directly into bins), two-phase (first, strips of items are created and then the 

strips are packed into bins), and local search heuristics. 

▪ Crainic et al. [176] reviewed and compared models and approaches to solving the two- 

and three-dimensional knapsack and bin packing problems. 

▪ Delorme et al. [177] reviewed mathematical models and exact algorithms for the 

SBSBPP and SSSCSP. 

▪ Oliveira et al. [178] presented an extensive review of heuristics proposed, mainly, in 

the last decade for the two-dimensional ODP. 

▪ Silva et al. [179] presented a review of solution approaches for the two-dimensional 

IIPP. 

▪ Gonzalez et al. [180] presented a wide overview of CSP focusing on its classification 

and solution approaches. 

4. Conclusion 

As this paper has shown, a great amount of research has been undertaken on the cutting and 

packing problem family. In this paper, solution methods for the two-dimensional rectangular 

cutting and packings problems have been reviewed with the main emphasis in two distinct 

problems. The first aims to generate the layout that maximizes the value of the items to cut 

or pack considering only one object, while the second aims to cut or pack all items using as 

few identical objects as possible. We review the solution methods that have been proposed 

in the literature for solving these problems. Although any other classification criteria could be 

adopted, we have chosen a simple classification scheme to group the solution approaches, 

classifying them as exact, heuristic or metaheuristic. Furthermore, we present methods to 

enumerate the possible positions for item placement and a list of surveys focusing solution 

approaches for cutting and packing problems. 

 
5 The review and source code used can be obtained at https://github.com/juj/RectangleBinPack. 

https://github.com/juj/RectangleBinPack
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Appendix A 

The following table (Table 4) relates the articles referred in this paper with the types of 

problem for which a solution method was presented. This table presents, by order of 

appearance, the article reference, the publication year, the problems types following the 

typology proposed by Wäscher et al. [16] and, finally, the cut types considered. The cuts are 

identified by G for guillotine, NG for non-guillotine, and (N)G when both cut types are 

considered by the corresponding article. 

Table 4. Solution approaches for cutting and packing problems. 

Article Year 
Problem 

Cut 
IIPP PP KP ODP CSP BPP 

El-Aal [2] 1994     ●  G 

Farley [3] 1983     ●  G 

Vasko et al. [4] 1989     ●  G 

Morábito and Garcia [5] 1998     ●  G 

Lai and Chan [6] 1997   ●    NG 

Tsai et al. [7] 2009     ●  NG 

Morabito et al. [12] 1992  ●     G 

Silva et al. [13] 2010     ●  G 

Andrade et al. [14] 2016     ●  G 

Gilmore and Gomory [17]  1961   ●  ●  G 

Gilmore and Gomory [19] 1963   ●  ●  G 

Gilmore and Gomory [21] 1965   ● ● ●  G 

Oliveira and Ferreira [22] 1994  ●   ●  G 

Cintra et al. [23] 2008  ●  ● ●  G 

Novianingsih et al. [25] 2012     ●  G 

Cui and Zhao [26] 2013     ●  G 

Herz [27] 1972  ●     G 

Christofides and Whitlock [28] 1977  ●     G 

Chazelle [29] 1983    ●   NG 

Carnieri et al. [30] 1994     ●  G 

Scheithauer and Terno [31] 1996 ●      NG 

Martello et al. [32] 2000      ● NG 

Crainic et al. [33] 2008      ● NG 

Wei et al. [34] 2011  ●  ●   NG 

Bennell et al. [35] 2013      ● NG 

Gilmore and Gomory [39] 1966   ●    G 

Russo et al. [40] 2013   ●    G 

Russo et al. [41] 2014  ●     G 

Hifi and Zissimopoulos [42] 1996   ●    G 

Christofides and Hadjiconstantinou [45]  1995  ●     G 

Hifi and Zissimopoulos [46] 1997  ●     G 

Beasley [49] 1985  ●   ●  NG 
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Article Year 
Problem 

Cut 
IIPP PP KP ODP CSP BPP 

Martello and Vigo [50] 1998      ● NG 

Clautiaux et al. [53] 2007   ●   ● NG 

Fekete and Schepers [54][55][56] 2000   ●    NG 

Fekete and Schepers [57]  2004   ●    NG 

Fekete and Schepers [58] 2004   ●    NG 

Fekete et al. [59] 2007   ●    NG 

Ferreira and Oliveira [60] 2005   ●    NG 

Ferreira and Oliveira [61] 2008   ●    NG 

Boschetti and Mingozzi [62] 2003      ● NG 

Silveira and Morabito [63] 2002  ●     G 

Baldacci and Boschetti [64] 2007   ●    NG 

Pisinger and Sigurd [65] 2007      ● G 

Puchinger and Raidl [67]  2007      ● G 

Mrad et al. [68] 2013     ●  G 

Clautiaux et al. [69] 2008   ●    NG 

Boschetti et al. [71] 2002  ●     NG 

Lodi and Monaci [72] 2003   ●    G 

Furini et al. [73] 2016   ● ● ●  G 

Macedo et al. [75] 2010     ●  G 

Brandão and Pedroso [77] 2016     ● ● NG 

Baker et al. [80] 1980    ●   NG 

Chung et al. [81] 1982      ● NG 

Jakobs [84] 1996    ●   NG 

Hopper and Turton [85] 1999    ●   NG 

Liu and Teng [86] 1999    ●   NG 

Lodi et al. [87] 1999      ● (N)G 

Beraudo et al. [88] 2004  ●     NG 

Burke et al. [89] 2004    ●   NG 

Gonçalves and Resende [90] 2006   ●    NG 

Binkley and Hagiwara [91] 2007   ●   ● NG 

Wei et al. [92] 2009   ●    NG 

Côté and Iori [181] 2016     ● ● (N)G 

Bengtsson [94] 1982    ●  ● NG 

Wang [95] 1983  ●   ●  G 

Parada et al. [96] 2000  ●     G 

Oliveira and Ferreira [97] 1990  ●     G 

Parada et al. [98] 1995  ●     G 

Parada et al. [99] 1995  ●     G 

Parada et al. [100] 1998  ●     G 

Beasley [101] 1985  ●     G 

Morabito and Arenales [102] 1995  ●     G 

Berkey and Wang [103] 1987      ● (N)G 

Lodi et al. [104] 1999      ● G 

Boschetti and Mingozzi [105] 2003      ● NG 

Hifi and M'Hallah [106] 2006  ●     G 

Monaci and Toth [107] 2006      ● NG 
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Article Year 
Problem 

Cut 
IIPP PP KP ODP CSP BPP 

Hadjiconstantinou and Iori [109] 2007  ●     (N)G 

Huang and Chen [111] 2007   ●    NG 

Morabito and Pureza [112] 2010  ●     G 

Cui et al. [113] 2013     ●  G 

Cui [115] 2007  ●     G 

Fleszar [116] 2013      ● G 

Alvelos et al. [117] 2014      ● G 

Cui et al. [120] 2015      ● (N)G 

Wang and Chen [121] 2015    ●  ● NG 

Gonçalves [123] 2007   ●    NG 

Gonçalves and Resende [124] 2011  ● ●    NG 

Bortfeldt and Winter [125] 2009  ● ●    (N)G 

Faina [128] 1999     ●  (N)G 

Egeblad and Pisinger [129] 2009   ●    NG 

Hopper and Turton [131] 2001    ●   NG 

Leung et al. [132] 2001   ●    NG 

Leung et al. [133] 2003   ●    NG 

Beasley [134] 2004  ●     NG 

Beraudo et al. [136] 2005  ●     NG 

Kierkosz and Luczak [137] 2014  ● ●    NG 

Lodi et al. [138] 1999      ● G 

Alvarez-Valdés et al. [140] 2007  ●     NG 

Alvarez-Valdés et al. [141] 2002  ●     G 

Alvarez-Valdés et al. [144] 2005  ●     NG 

Alvarez-Valdés et al. [145] 2007  ●     G 

Parreño et al. [146] 2010      ●  NG 

Alvelos et al. [148] 2009      ● G 

Chan et al. [149] 2009      ● G 

Chan et al. [150] 2011     ● ● G 

Dusberger and Raidl [152] 2014     ●  G 

Puchinger et al. [154] 2004     ●  G 

Faroe et al. [156] 2003      ● NG 

Jiang et al. [157] 2004  ●     NG 

Bao et al. [159] 2013  ●     NG 

Omar and Ramakrishnan [161] 2013      ● NG 

Hifi et al. [163] 2008  ●     G 

Hifi et al. [164] 2012  ●     G 
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Datasets and Generators for Two-dimensional Cutting 

and Packing Problems 

 

Abstract We present an extensive survey of datasets and instance generators that are usually 

used by the researchers when dealing with two-dimensional rectangular cutting and packing 

problems. This paper seeks to help researchers to refer, find, and use these datasets and 

instances generators. 

Keywords: Datasets, Generators, Two-dimensional, Cutting and Packing Problem 

1. Introduction 

We present the datasets and the instance generators that have been consistently used in 

cutting and packing research of new optimization methods. Some of these datasets have been 

used by researchers, maintaining the main characteristics of the instances (e.g., object and 

item sizes) or adapting (neglecting, changing or adding) some of their characteristics to 

correspond to their needs (e.g., neglecting the items’ value [1], generating randomly demand 

[2], adding objects [2], among others). 

The motivation for this work is to ease future references to the datasets and provide to 

researchers a means to find those datasets as easily and fast as possible. Since some internet 

links can become inactive, we have a copy of all these datasets and instances generators that 

we will provide upon request1. 

The rest of the paper is organized as follows. In Section 2, the datasets are characterized 

considering their most relevant features. In Section 3, the instances generators for two-

dimensional rectangular cutting and packing problems are presented. 

 
1 They can also be obtained through our website at https://oscar-oliveira.github.io/2D-Cutting-and-Packing/. 

https://oscar-oliveira.github.io/2D-Cutting-and-Packing/
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2. Literature Benchmarks 

In this section, 84 literature datasets are characterized considering their most relevant 

features. We tried to maintain as much as possible the datasets names for which they are 

best-known and usually referred to in the literature. For the others, we have decided to name 

the dataset with an acronym formed by the first letter of the authors names, e.g., the set 

defined in Adamowicz and Albano [3] was named as AA.  

In Section 2.1, for each dataset alphabetically sorted by name, Table 1 gives the dataset name, 

the article(s) in which it was presented, the publication year, and the problems types 

considered in the article(s) following the typology proposed by Wäscher et al. [3]. 

In Section 2.2, Table 2 to Table 85 present, for each dataset, the name, the number of 

instances in the set (#), a link (if one exists) to an internet source for download, and the 

objects and items characteristics. The objects are characterized by the number of object types 

(k), the range of objects length and height (L×H), the range of available stock (e) and the range 

of object cost (Cost). The items are characterized by the number of item types (m), the range 

of items length and height (lxh), the range of items demand (d), and the range of items value 

(value). 

2.1. Datasets 

Table 1. Datasets for cutting and packing problems. 

Dataset Article Year 
Problem 

IIPP PP KP ODP CSP BPP 

AA Adamowicz and Albano [4] 1976     ●  

AB Cui and Huang [5] 2012  ●     

ABM Andrade et al. [6] 2016     ●  

ABMR Andrade et al. [7] 2016     ●  

AH Bortfeldt and Gehring [8] 2006    ●   

ASSORT Beasley [9] 1985     ●  

ATP Alvarez-Valdés et al. [10] 2002  ●     

B Cui et al. [11] 2005   ●    

BABU Babu and Babu [12] 1999   ●    

BABU2 Babu and Babu [13] 2001   ●    

BENG Bengtsson [14] 1982    ●  ● 

BKW Burke et al. [15] 2004    ●   

BRPB El-Bouri et al. [16] 2006     ●  

CGCUT Christofides and Whitlock [17] 1977  ●     
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Dataset Article Year 
Problem 

IIPP PP KP ODP CSP BPP 

CH Cui and Huang [18] 2012     ●  

CHL Cung et al. [19] 2000  ●     

CJCM Clautiaux et al. [20] 2008   ●    

CLASS 
[01-06] Berkey and Wang [21] 1987      ● 

[07-10] Martello and Vigo [22] 1998      ● 

CMWX Cintra et al. [2] 2008  ●  ● ●  

CUI Cui [23] 2008  ●     

CWL Cui et al. [11] 2005   ●    

CY Cui and Yang [24] 2011  ●     

CZ Cui and Zhao [25] 2013     ●  

D 

[1, 2] Ratanapan and Dagli [26] 1997    ●   

3 Ratanapan and Dagli [27] 1998    ●   

4 Dagli and Poshyanonda [28] 1997    ●   

DOWSLAND Dowsland [29] 1984 ●      

EL-AAL El-Aal [30] 1994     ●  

EP2 Egeblad and Pisinger [31] 2009   ●    

FHZ Fayard et al. [32] 1998  ●     

FO Ferreira and Oliveira [33] 2005   ●    

GARD Gardner [34] 1966   ●    

GCUT Beasley [35] 1985  ●     

HADCHR Hadjiconstantinou and Christofides [36] 1995   ●    

HERZ Herz [37] 1972  ●     

HIFI1997a Hifi [38] 1997  ●     

HIFI1997b Hifi [39] 1997  ●     

HIFI2001 Hifi [40] 2001  ●     

HOPPER Hopper [41] 2000    ●  ● 

HT2001a Hopper and Turton [42] 2001      ● 

HT2001b Hopper and Turton [43] 2001    ●   

HZ1 Hifi and Zissimopoulos [44] 1996  ●     

HZ2 Hifi and Zissimopoulos [45] 1996   ●    

IS Israni and Sanders [46] 1982     ●  

IYUAI Imahori et al. [47] 2005     ●  

JAKOBS Jakobs [48] 1996    ●   

JLSL Jiang et al. [49] 2004  ●     

KORF Korf et al. [50] 2010    ●   

KR Kröger [51] 1995    ●   

LC Lai and Chan [52] 1997   ●    

LCT Leung et al. [53] 2003   ●    

LYT Leung et al. [54] 2001   ●    

MA Morabito and Arenales [55] 2000     ●  

MAA Morabito et al. [56] 1992  ●     

MB Pisinger and Sigurd [57] 2005      ● 

MB2D Mack and Bortfeldt [58] 2012     ● ● 

MG Morabito and Garcia [59] 1998     ●  

MP Morabito and Pureza [60] 2010  ●     

MWV Mumford-Valenzuela et al. [61] 2004    ●   
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Dataset Article Year 
Problem 

IIPP PP KP ODP CSP BPP 

NGCUT Beasley [62] 1985  ●   ●  

NGCUTAP Beasley [63] 2004  ●     

NGCUTCON Beasley [63] 2004  ●     

NGCUTFS Beasley [63] 2004  ●     

NHU Novianingsih et al. [64] 2012     ●  

OF Oliveira and Ferreira [65] 1990  ●     

OKP Fekete and Schepers [66] 2000   ●    

ONV Ortmann et al. [67] 2010    ●  ● 

PGD Parada et al. [68] 1995  ●     

PO Pinto and Oliveira [69] 2005   ●    

RAND Martello and Monaci [70] 2015    ●   

RSS Russo et al. [71] 2014  ●     

SCP Hifi [72] 1998    ●   

SCPL Hifi [73] 1999    ●   

SPIEKSMA 
Spieksma [74] 1994      ● 

Caprara and Toth [75] 2001      ● 

SS Skalbeck and Schultz [76] 1976     ●  

SSOOYKI Shiomi et al. [77] 2007    ●   

STS Tschöke and Holthöfer [78] 1995  ●     

TEST Yanasse et al. [79] 1991     ●  

VAG Vianna et al. [80] 2003  ●     

VASSILIADIS Vassiliadis [81] 2005   ●    

VENKATESWARLU Venkateswarlu [82] 2001  ●     

WANG Wang [83] 1983  ●   ●  

WV Wang and Valenzuela [84] 2001   ●    

WVINT Wei et al. [85] 2011  ●  ●   

WWD Wan et al. [86] 2005  ●     

ZDF 
ZDF1-9 Zhang et al. [87] 2013    ●   

ZDF10-16 Leung and Zhang [88] 2011    ●   

2.2. Characterization  

Table 2. Features of the instances in AA. 

Name AA 

# Objects Items 

2 

k 1 e - m 15 d [8-96] 

L×H [12030-36090]×2550 l×h [270-2500]×[74-785] 

Cost - Value - 

Table 3. Features of the instances in AB. 

Name AB 

# Objects Items 

60 

k 1 e - m [50-150] d [1-50] 

L×H [2003-2997]×[1014-1474] l×h [50-499]×[50-499] 

Cost - Value [914-171432] 
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Table 4. Features of the instances in ABM. 

Name ABM 

# Objects Items 

20 

k [1-4] e [1-8] m [1-37] d [1-17] 

L×H [10-290]×[10-183] l×h [1-114]×[1-59] 

Cost - Value - 

Table 5. Features of the instances in ABMR. 

Name ABMR 

# Objects Items 

10 

k [2-3] e [1-2] m [1-3] d [1-7] 

L×H [13-29]×[10-30] l×h [1-11]×[1-11] 

Cost - Value - 

Table 6. Features of the instances in AH. 

Name AH 

# Objects Items 

360 

k 1 e - m 1000 d - 

L×H 1000]×[1257-56390] l×h [6-375]×[6-375] 

Cost - Value - 

URL http://www.computational-logistics.org/orlib/topic/2D%20Strip%20Packing/ 

Table 7. Features of the instances in ASSORT. 

Name ASSORT 

# Objects Items 

12 

k 10 e - m [10-30] d [20-[20-39]] 

L×H [50-248]×[51-248] l×h [25-124]×[25-124] 

Cost - Value - 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/assortinfo.html 

Table 8. Features of the instances in ATP. 

Name ATP 

# Objects Items 

10 

k 1 e - m [31-59] d - 

L×H [1674-2899]×[1612-2994] l×h [101-1117]×[81-1192] 

Cost - Value - 

10 

k 1 e - m [36-59] d - 

L×H [1793-2885]×[1656-2858] l×h [96-1142]×[82-1143] 

Cost - Value [7963-576621] 

10 

k 1 e - m [27-56] d [1-9] 

L×H [241-960]×[124-983] l×h [15-363]×[6-390] 

Cost - Value - 

10 

k 1 e - m [25-59] d [1-9] 

L×H [167-931]×[138-917] l×h [8-355]×[6-362] 

Cost - Value [68-27446] 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 9. Features of the instances in B. 

Name B 

# Objects Items 

7 

k 1 e - m [30-180] d - 

L×H 4000×2000 l×h [200-695]×[200-698] 

Cost - Value - 

URL http://lagrange.ime.usp.br/~lobato/utdc/instances.php 
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Table 10. Features of the instances in BABU. 

Name BABU 

# Objects Items 

1 

k 1 e - m 14 d [1-14] 

L×H 1000×375 l×h [15-175]×[50-150] 

Cost - Value - 

1 

k [1-5] e [2-10] m 14 d [1-14] 

L×H [100-600]×[400-650] l×h [15-175]×[50-150] 

Cost - Value - 

Table 11. Features of the instances in BABU2. 

Name BABU2 

# Objects Items 

1 

k 1 e - m 20 d - 

L×H 80×200 l×h [5-35]×[5-35] 

Cost - Value - 

Table 12. Features of the instances in BENG. 

Name BENG 

# Objects Items 

10 

k 1 e - m [20-200] d - 

L×H [25-40]×[10-25] l×h [1-12]×[1-8] 

Cost - Value - 

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems 

Table 13. Features of the instances in BKW. 

Name BKW 

# Objects Items 

13 

k 1 e - m [10-3152] d - 

L×H [30-640]×[40-960] l×h [1-74]×[1-125] 

Cost - Value - 

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems 

Table 14. Features of the instances in BRPB. 

Name BRPB 

# Objects Items 

1 

k 3 e - m 5 d [1-9] 

L×H [130-149]×[44-51] l×h [19-45]×[10-29] 

Cost - Value - 

Table 15. Features of the instances in CGCUT. 

Name CGCUT 

# Objects Items 

3 

k 1 e - m [7-20] d [1-5] 

L×H [15-40]×[10-70] l×h [2-33]×[1-43] 

Cost - Value [2-582] 

URL https://paginas.fe.up.pt/~esicup/datasets 

Table 16. Features of the instances in CH. 

Name CH 

# Objects Items 

80 

k 1 e - m [5-40] d [102-9993] 

L×H [2000-2986]×[1000-1498] l×h [5-999]×[50-999] 

Cost - Value - 
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Table 17. Features of the instances in CHL. 

Name CHL 

# Objects Items 

7 

k 1 e - m [10-35] d [1-5] 

L×H [62-207]×[55-231] l×h [7-69]×[7-63] 

Cost - Value [100-1523] 

9 

k 1 e - m [10-40] d [1-8] 

L×H [20-263]×[20-244] l×h [1-109]×[2-135] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 18. Features of the instances in CJCM. 

Name CJCM 

# Objects Items 

42 

k 1 e - m [10-19] d [1-4] 

L×H 20×20 l×h [1-20]×[2-20] 

Cost - Value [2-168] 

URL https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/SoftwareAlgoKP 

Table 19. Features of the instances in CLASS. 

Name CLASS 

# Objects Items 

500 

k 1 e - m [20-100] d - 

L×H [10-300]×[10-300] l×h [1-100]×[1-100] 

Cost - Value - 

URL http://or.dei.unibo.it/library/two-dimensional-bin-packing-problem 

Table 20. Features of the instances in CMWX. 

Name CMWX 

# Objects Items 

4 

k 1 e - m [42-82] d - 

L×H 3500×3500 l×h [254-970]×[116-1890] 

Cost - Value [50924-1081080] 

Table 21. Features of the instances in CUI. 

Name CUI 

# Objects Items 

21 

k 1 e - m [49-96] d [3-15] 

L×H [1017-4518]×[1005-4323] l×h [60-1342]×[40-1282] 

Cost - Value [653-1006880] 

Table 22. Features of the instances in CWL. 

Name CWL 

# Objects Items 

50 

k 1 e - m 30 d - 

L×H 3000×1500 l×h [200-699]×[200-699] 

Cost - Value - 

Table 23. Features of the instances in CY. 

Name CY 

# Objects Items 

300 

k 1 e - m [25-200] d [1-30] 

L×H [2000-2950]×[1000-1450] l×h [50-700]×[50-700] 

Cost - Value [1491-462830] 
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Table 24. Features of the instances in CZ. 

Name CZ 

# Objects Items 

5 

k 1 e - m 58 d [2-328] 

L×H [2000-4200]×[1830-2900] l×h [368-1749]×[474-1589] 

Cost - Value - 

Table 25. Features of the instances in D. 

Name D 

# Objects Items 

4 

k 1 e - m [4-8] d [2-9] 

L×H [20-60]× - l×h [4-15]×[4-13] 

Cost - Value - 

URL https://paginas.fe.up.pt/~esicup/datasets 

Table 26. Features of the instances in DOWSLAND. 

Name DOWSLAND 

# Objects Items 

8 

k 1 e - m 1 d - 

L×H [22-86]×[16-82] l×h [5-15]×[3-11] 

Cost - Value - 

Table 27. Features of the instances in EL-AAL. 

Name EL-AAL 

# Objects Items 

2 

k 1 e - m [4-10] d [1-300] 

L×H [20-2000]×[10-1000] l×h [4-1000]×[2-645] 

Cost - Value - 

Table 28. Features of the instances in EP2. 

Name EP2 

# Objects Items 

80 

k 1 e - m [30-200] d 1 

L×H [33-739]×[65-1479] l×h [1-100]×[1-100] 

Cost - Value [1-30000] 

URL http://www.diku.dk/~pisinger/codes.html 

Table 29. Features of the instances in FHZ. 

Name FHZ 

# Objects Items 

11 

k 1 e - m [25-50] d [1-9] 

L×H [100-977]×[125-985] l×h [20-527]×[25-576] 

Cost - Value - 

11 

k 1 e - m [25-60] d [1-12] 

L×H [125-992]×[105-970] l×h [25-636]×[21-623] 

Cost - Value [140-999] 

11 

k 1 e - m [25-60] d - 

L×H [500-3500]×[500-3765] l×h [37-2254]×[101-2226] 

Cost - Value - 

11 

k 1 e - m [25-60] d - 

L×H [500-3500]×[500-3650] l×h [96-2245]×[98-2354] 

Cost - Value [110-748] 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 
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Table 30. Features of the instances in FO. 

Name FO 

# Objects Items 

1 

k 1 e - m 5 d - 

L×H 9×9 l×h [2-5]×[4-5] 

Cost - Value - 

Table 31. Features of the instances in GARD. 

Name GARD 

# Objects Items 

40 

k - e - m [1-40] d - 

L×H - l×h [1-40]×[1-40] 

Cost - Value - 

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems 

Table 32. Features of the instances in GCUT. 

Name GCUT 

# Objects Items 

13 

k 1 e - m [10-50] d - 

L×H [250-3000]×[250-3000] l×h [62-970]×[63-1890] 

Cost - Value [4554-1081080] 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gcutinfo.html 

Table 33. Features of the instances in HADCHR. 

Name HADCHR 

# Objects Items 

2 

k 1 e - m [7-15] d 1 

L×H 30×30 l×h [1-22]×[4-21] 

Cost - Value [17-828] 

Table 34. Features of the instances in HERZ. 

Name HERZ 

# Objects Items 

1 

k 1 e - m 5 d - 

L×H 127x98 l×h [18-54]×[13-65] 

Cost - Value [273-1170] 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 35. Features of the instances in HIFI1997a. 

Name HIFI1997a 

# Objects Items 

3 

k 1 e - m [10-20] d - 

L×H [4500-7350]×[4070-6579] l×h [232-2828]×[347-2647] 

Cost - Value - 

3 

k 1 e - m [20-40] d - 

L×H [3427-7500]×[2769-7381] l×h [437-5751]×[316-3787] 

Cost - Value [398-4351] 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 
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Table 36. Features of the instances in HIFI1997b. 

Name HIFI1997b 

# Objects Items 

3 

k 1 e - m [5-20] d [1-6] 

L×H [50-127]×[60-98] l×h [9-54]×[11-65] 

Cost - Value [140-1170] 

3 

k 1 e - m 20 d [1-5] 

L×H [70-132]×[70-100] l×h [9-69]×[11-63] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 37. Features of the instances in HIFI2001. 

Name HIFI2001 

# Objects Items 

5 

k 1 e - m [40-200] d - 

L×H [7350-45237]×[6579-35983] l×h [28-9098]×[80-8726] 

Cost - Value - 

11 

k 1 e - m [10-200] d - 

L×H [100-45237]×[156-35983] l×h [16-9098]×[32-8726] 

Cost - Value [152-15877830] 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 38. Features of the instances in HOPPER. 

Name HOPPER 

# Objects Items 

70 

k 1 e - m [17-199] d - 

L×H 200×200 l×h [1-178]×[1-180] 

Cost - Value - 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/stripinfo.html 

Table 39. Features of the instances in HT2001a. 

Name HT2001a 

# Objects Items 

21 

k 1 e - m [16-197] d - 

L×H [20-160]×[15-240] l×h [1-72]×[1-113] 

Cost - Value - 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpacktwoinfo.html 

Table 40. Features of the instances in HT2001b. 

Name HT2001b 

# Objects Items 

15 

k 6 e [2-4] m [100-150] d - 

L×H [10-60]×[10-120] l×h [1-30]×[1-30] 

Cost - Value - 

Table 41. Features of the instances in HZ1. 

Name HZ1 

# Objects Items 

1 

k 1 e - m 6 d - 

L×H 78×67 l×h [6-32]×[5-54] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 
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Table 42. Features of the instances in HZ2. 

Name HZ2 

# Objects Items 

1 

k 1 e - m 5 d - 

L×H 99×80 l×h [18-54]×[13-35] 

Cost - Value [273-1083] 

Table 43. Features of the instances in IS. 

Name IS 

# Objects Items 

2 

k 1 e - m 20 d [1-25] 

L×H 70×40 l×h [1-14]×[1-6] 

Cost - Value - 

Table 44. Features of the instances in IYUAI. 

Name IYUAI 

# Objects Items 

60 

k 1 e - m [20-50] d [1-200] 

L×H [1400-4000]×[700-2000] l×h [141-996]×[70-500] 

Cost - Value - 

Table 45. Features of the instances in JAKOBS. 

Name JAKOBS 

# Objects Items 

7 

k 1 e - m [20-50] d - 

L×H [40-120]×[15-80] l×h [2-40]×[2-36] 

Cost - Value - 

Table 46. Features of the instances in JLSL. 

Name JLSL 

# Objects Items 

5 

k 1 e - m [5-18] d [1-5] 

L×H [40-100]×[20-80] l×h [3-30]×[3-50] 

Cost - Value - 

Table 47. Features of the instances in KORF. 

Name KORF 

# Objects Items 

40 

k - e - m [1-40] d - 

L×H - l×h [1-40]×[2-41] 

Cost - Value - 

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems 

Table 48. Features of the instances in KR. 

Name KR 

# Objects Items 

12 

k 1 e - m [25-60] d - 

L×H 100×[102-280] l×h [1-40]×[1-40] 

Cost - Value - 

URL http://www.computational-logistics.org/orlib/topic/2D%20Guillotine%20Strip%20Packing%20Problem/ 
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Table 49. Features of the instances in LC. 

Name LC 

# Objects Items 

3 

k 1 e - m [10-20] d - 

L×H 400×[200-400] l×h [30-200]×[30-150] 

Cost - Value - 

5  

k 1 e - m [4-9] d [1-5] 

L×H 2325×1825 l×h [200-1350]×[200-1100] 

Cost - Value - 

Table 50. Features of the instances in LCT. 

Name LCT 

# Objects Items 

2 

k 1 e - m [40-50] d - 

L×H [150-160]×[110-120] l×h [6-48]×[4-40] 

Cost - Value - 

Table 51. Features of the instances in LYT. 

Name LYT 

# Objects Items 

1 

k 1 e - m 5 d - 

L×H 300×200 l×h [100-200]×[50-120] 

Cost - Value - 

Table 52. Features of the instances in MA. 

Name MA 

# Objects Items 

1 

k 5 e [391-3452] m 25 d [368-7308] 

L×H [1220-2130]×[2100-3050] l×h [205-680]×[431-2130] 

Cost [33550-57747] Value - 

1 

k 1 e  m 15 d [90-4410] 

L×H 1850×3670 l×h [250-361]×[348-1956] 

Cost - Value - 

Table 53. Features of the instances in MAA. 

Name MAA 

# Objects Items 

5 

k 1 e - m 10 d - 

L×H [100-750]×[156-806] l×h [16-445]×[32-449] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 54. Features of the instances in MB. 

Name MB 

# Objects Items 

500 

k 5 e - m [20-100] d - 

L×H [5-300]×[5-300] l×h [1-100]×[1-100] 

Cost [10-90000] Value - 

URL https://paginas.fe.up.pt/~esicup/datasets 
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Table 55. Features of the instances in MB2D. 

Name MB2D 

# Objects Items 

900 

k 1 e - m [3-736] d [1-1487] 

L×H [404-587]×[50-233] l×h [12-60]×[10-50] 

Cost - Value - 

URL http://www.fernuni-hagen.de/evis/service/downloads.shtml 

Table 56. Features of the instances in MG. 

Name MG 

# Objects Items 

1 

k 1 e - m 10 d - 

L×H 50×50 l×h [5-22]×[13-23] 

Cost - Value - 

1 

k 1 e - m 29 d [200-20000] 

L×H 4880×2130 l×h [870-2451]×[615-1232] 

Cost - Value - 

Table 57. Features of the instances in MP. 

Name MP 

# Objects Items 

450 

k 1 e - m [10-50] d [1-85] 

L×H 100×100 l×h [10-74]×[10-74] 

Cost - Value [100-5476] 

URL https://paginas.fe.up.pt/~esicup/datasets 

Table 58. Features of the instances in MWV. 

Name MWV 

# Objects Items 

480 

k 1 e - m [24-5000] d - 

L×H 100×100 l×h [0,09-100]×[0,09-97,62] 

Cost - Value - 

URL http://www.vuuren.co.za/benchmarks.html 

Table 59. Features of the instances in NGCUT. 

Name NGCUT 

# Objects Items 

12 

k 1 e - m [5-10] d [1-3] 

L×H [10-30]×[10-30] l×h [1-30]×[1-30] 

Cost - Value [4-507] 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html 

Table 60. Features of the instances in NGCUTAP. 

Name NGCUTAP 

# Objects Items 

21 

k 1 e - m [5-33] d [0-[1-5]] 

L×H [10-100]×[10-100] l×h [1-100]×[1-99] 

Cost - Value [4-6668] 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html 
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Table 61. Features of the instances in NGCUTCON. 

Name NGCUTCON 

# Objects Items 

21 

k 1 e 1 m [5-33] d [[0-1]-[1-5]] 

L×H [10-100]×[10-100] l×h [1-100]×[1-99] 

Cost 1 Value [4-6668] 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html 

Table 62. Features of the instances in NGCUTFS. 

Name NGCUTFS 

# Objects Items 

630 

k 1 e - m [40-1000] d [0-[1-4]] 

L×H 100×100 l×h [2-100]×[2-100] 

Cost - Value [4-30000] 

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html 

Table 63. Features of the instances in NHU. 

Name NHU 

# Objects Items 

1 

k 1 e - m 10 d [5-125] 

L×H 35×25 l×h [2-18]×[2-35] 

Cost - Value - 

Table 64. Features of the instances in OF. 

Name OF 

# Objects Items 

2 

k 1 e - m 10 d [1-4] 

L×H 70×40 l×h [9-55]×[4-39] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

Table 65. Features of the instances in OKP. 

Name OKP 

# Objects Items 

5 

k 1 e - m [15-33] d [1-5] 

L×H 100×100 l×h [1-100]×[1-99] 

Cost - Value [12-6668] 

Table 66. Features of the instances in ONV. 

Name ONV 

# Objects Items 

340 

k [2-6] e [1-6] m [25-500] d - 

L×H [165-1000]×[153-1000] l×h [1-500]×[1-500] 

Cost - Value - 

URL http://www.vuuren.co.za/benchmarks.html 

Table 67. Features of the instances in PGD. 

Name PGD 

# Objects Items 

8 

k 1 e - m [4-20] d [1-5] 

L×H [8-70]×[4-50] l×h [1-55]×[1-39] 

Cost - Value - 
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Table 68. Features of the instances in PO. 

Name PO 

# Objects Items 

7 

k 1 e - m [50-15000] d - 

L×H 400×600 l×h [1-298]×[1-415] 

Cost - Value - 

URL http://www.computational-logistics.org/orlib/topic/2D%20Strip%20Packing/ 

Table 69. Features of the instances in RAND. 

Name RAND 

# Objects Items 

400 

k - e - m [5-20] d - 

L×H - l×h [10-190]×[10-190] 

Cost - Value - 

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems 

Table 70. Features of the instances in RSS. 

Name RSS 

# Objects Items 

7 

k 1 e - m [100-550] d - 

L×H [20789-45237]×[23681-35983] l×h [28-9100]×[80-8726] 

Cost - Value [448-79389148] 

URL https://paginas.fe.up.pt/~esicup/datasets 

Table 71. Features of the instances in SCP. 

Name SCP 

# Objects Items 

25 

k 1 e - m [4-15] d [1-5] 

L×H [13-145]×[4-100] l×h [1-55]×[1-51] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/Strip-cutting/ 

Table 72. Features of the instances in SCPL. 

Name SCPL 

# Objects Items 

9 

k 1 e - m [20-43] d [1-9] 

L×H - ×[127-657] l×h [2-121]×[2-48] 

Cost - Value - 

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/Strip-cutting/ 

Table 73. Features of the instances in SPIEKSMA. 

Name SPIEKSMA 

# Objects Items 

400 

k 1 e - m [24-201] d - 

L×H [100-1000]×[100-1000] l×h [2-999]×[2-999] 

Cost - Value - 

URL http://or.dei.unibo.it/library/two-constraint-bin-packing-problem 

Table 74. Features of the instances in SS. 

Name SS 

# Objects Items 

1 

k 2 e - m 5 d [100-180] 

L×H [48-60]×[96-108] l×h [12-28]×[18-30] 

Cost - Value - 
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Table 75. Features of the instances in SSOOYKI. 

Name SSOOYKI 

# Objects Items 

7 

k 1 e - m [7-20] d [100-9000] 

L×H - ×[200-250] l×h [15-100]×[15-100] 

Cost - Value - 

Table 76. Features of the instances in STS. 

Name STS 

# Objects Items 

4 

k 1 e - m [10-30] d [1-5] 

L×H [40-99]×[70-99] l×h [9-44]×[7-49] 

Cost - Value [90-1877] 

Table 77. Features of the instances in TEST. 

Name TEST 

# Objects Items 

2 

k [2-5] e [10-20] m [30-32] d [1-6] 

L×H [73-2440]×[49-1220] l×h [21,25-2040]×[2-1589] 

Cost - Value - 

Table 78. Features of the instances in VAG. 

Name VAG 

# Objects Items 

1 

k 1 e - m 5 d [3-8] 

L×H 100×100 l×h [15-40]×[14-44] 

Cost - Value - 

Table 79. Features of the instances in VASSILIADIS. 

Name VASSILIADIS 

# Objects Items 

2 

k 1 e - m 7 d [1-18] 

L×H - ×200 l×h [5-103]×[5-50] 

Cost - Value - 

Table 80. Features of the instances in VENKATESWARLU. 

Name VENKATESWARLU 

# Objects Items 

1 

k 31 e [32-232] m 228 d - 

L×H [250-290]×[29-52] l×h [3-21]×[37-76] 

Cost - Value - 

Table 81. Features of the instances in WANG. 

Name WANG 

# Objects Items 

3 

k 1 e - m [20-20] d [1-4] 

L×H [33-40]×[69-70] l×h [9-33]×[11-43] 

Cost   - Value - 

2 

k [2-3] e [163-3000] m [5-10] d [150-700] 

L×H [48-66000]×[96-96000] l×h [12-34000]×[18-41125] 

Cost - Value - 

URL https://paginas.fe.up.pt/~esicup/datasets 
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Table 82. Features of the instances in WV. 

Name WV 

# Objects Items 

20 

k 1 e - m [10-5000] d - 

L×H 100×100 l×h [0.00-100]×[0.00-198.44] 

Cost - Value - 

URL https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/layout/Outline.html 

Table 83. Features of the instances in WVINT. 

Name WVINT 

# Objects Items 

72 

k 1 e - m [25-5000] d - 

L×H 1000×[995-1004] l×h [1-1000]×[1-808] 

Cost - Value - 

URL http://www.computational-logistics.org/orlib/topic/2D%20Strip%20Packing/ 

Table 84. Features of the instances in WWD. 

Name WWD 

# Objects Items 

1 

k 1 e - m 4 d [1-2] 

L×H 20×15 l×h [7-15]×[4-7] 

Cost - Value - 

Table 85. Features of the instances in ZDF. 

Name ZDF 

# Objects Items 

16 

k 1 e - m [580-75032] d - 

L×H [100-9000]× - l×h [1-1890]×[1-970] 

Cost - Value - 

URL https://paginas.fe.up.pt/~esicup/datasets 

3. Instance Generators 

In this section, we present, chronologically by year of appearance, six instances generators 

found in the literature for two-dimensional rectangular cutting and packing problems.  

For each generator, Table 86 to Table 91 give the name of the instance generator, a brief 

description, the article(s) in which it was defined and if available online an internet link for 

download. 

Table 86. Lodi et al. Instance Generator. 

Name Lodi et al. 

Description 
The authors presented an instance generator for the two-dimensional rectangular BPP according to the classes 
defined by Berkey and Wang [21] and Martello and Vigo [22]. 

Article(s) Lodi et al. [89] 

URL https://paginas.fe.up.pt/~esicup/problem_generators 
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Table 87. Wang and Valenzela Instance Generator. 

Name Wang and Valenzuela 

Description 
The authors described in this article a recursive procedure to generate datasets of rectangular items to be 
placed(/extracted) with zero waste on(/from) a single rectangular large object. 

Article(s) Wang and Valenzuela [84] 

Table 88. Hopper and Turton Instance Generator. 

Name Hopper and Turton 

Description 
The authors proposed a generator to address the two-dimensional rectangular (non-)guillotine Strip Packing 
and Bin Packing Problems. 

Article(s) Hopper and Turton [90] 

Table 89. SLOPPGEN Instance Generator. 

Name SLOPPGEN 

Description 
The authors presented the SLOPPGEN generator for the two-dimensional rectangular SLOPP in which the large 
object includes one or several defective areas. 

Article(s) Neidlein and Wäscher [91], Neidlein et al. [92] 

Table 90. ep2 (and ep3) Instance Generator. 

Name ep2 (and ep3) 

Description The authors presented the ep2 (and ep3) PG for two- and three- dimensional rectangular Knapsack Problems. 

Article(s) Egeblad and Pisinger [31] 

URL http://www.diku.dk/~pisinger/codes.html 

Table 91. 2DCPackGen Instance Generator. 

Name 2DCPackGen 

Description 
The authors presented the 2DCPackGen that generates instances for every type of two-dimensional rectangular 
Cutting and Packing problems according to the typology of Wäscher et al. [3]. The authors review in this article 
other generators found in the literature and describe their main limitations. 

Article(s) Silva et al. [93] 

URL https://paginas.fe.up.pt/~esicup/problem_generators 
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Resources for Two-dimensional (and Three-

dimensional) Cutting and Packing Solution Methods 

Research 

Abstract We present a set of resources that we have created when studying two-dimensional 

rectangular cutting and packing solution methods. We have compiled and converted the 

datasets found in the literature into a common format to ease the data input to the solution 

methods implementations. We present graphical user interfaces for instance and cutting plan 

visualisation. Finally, we present the website developed that, besides hosting all resources 

that we have made available, contains a set of utilities that can help on the characterisation 

of the articles available in the literature for two-dimensional cutting and packing problems 

and the relations between them. These resources are available for use and open for 

contributions. 

Keywords: Resources, Tools, Instances, Graphical User Interface, Rectangular, Two-

dimensional, Three-dimensional, Cutting and Packing Problem 

1. Introduction 

Cutting and packing problems intent to place (either to cut or pack) a set of items into larger 

objects considering some objective, i.e., minimization of the number of objects used to place 

all given items or maximization of the area occupied by items placed, without overlapping, 

inside one object. The cutting and packing problem is a wide family of related problems, we 

refer to Wäscher et al. [1] for a great overview of this problem family and for a typology to 

classify the problems through their common characteristics. 

Hopper and Turton [2] stated that: “In general, during the development of packing algorithms 

it is useful to visualise final and intermediate layouts in order to judge the quality and the 

correctness of the packing routines more easily”. As cutting and packing researchers, we also 

have found the need to create tools that helped us to understand in a simpler and clearer 

manner the problems in which we were focused on. 
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Most often researchers find themselves searching, adapting or creating new tools that 

facilitate the visualisation and analysis of the current state of their research, shifting the 

attention from the most important task, i.e., the research for new and better solution 

methods. 

One common problem shared by researchers is to find and use the instances generated by 

other researchers when comparing results of their solution methods. Existent dataset 

libraries do not share the same file format to define the instances (in some case, even in the 

same library the format varies) and are not comprehensive enough forcing the researchers to 

search for another resource in order to find a particular dataset or instance. We have 

compiled more than 6000 instances (84 datasets) found in the literature and converted them 

into one specific format to help recognise the instance structure and to unify the data input 

for the solution method’s implementations. 

We present three graphical user interfaces (GUI) that allow to easily visualise the instances 

and the cutting plans obtained by the solution methods implementations. 

We rely heavily on the key-value pair format JavaScript Object Notation1 (JSON) to structure 

all our data, i.e., instance definition and cutting plans. The characteristics associated with this 

format justify our choice, being the most relevant in the context of this work the followings: 

▪ Lightweight format for store and transport data. 

▪ Easy for humans to read, i.e., self-describing. 

▪ Easy for machines to parse and generate (most of the programming language have 

some sort of built-in or available library to easily read and write JSON files). 

As we believe that any work only has value when effectively used and shared, the datasets 

and tools mentioned in this work are freely available (MIT License2) at the repository 

https://github.com/Oscar-Oliveira. We hope that other researchers and developers engage 

and contribute to the improvement of these tools and with the growth of the dataset library. 

For those who just want to make use of the resources that we have made available, we have 

created a platform, i.e., website, for hosting these resources. This website also contains a set 

 
1 See http://www.json.org/. 
2 See https://opensource.org/licenses/MIT for license template and further resources on this license. 

https://github.com/Oscar-Oliveira
http://www.json.org/
https://opensource.org/licenses/MIT
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of tools that allows to visualise and filter the existent literature related to the two-

dimensional rectangular cutting and packing problem. 

For the best of our knowledge, no resource set, like the one presented in this paper, exists or 

have been made available so far. 

The rest of the paper is organized as follows. Section 2 describes the datasets conversion to 

the JSON format. Section 3 presents the GUI to visualise the instances converted to the JSON 

format and the two-dimensional and three-dimensional cutting plan viewers. Section 4 

describes the main features of the website for hosting the resources created for helping our 

(and future) research. Finally, conclusions and future work directions are given in the last 

section. 

The examples given in the following sections consider the two-dimensional instance OF1 from 

Oliveira and Ferreira [3] and the three-dimensional instance 10 (Class 8, 𝑚 = 200) of the 

dataset generated by Martello et al. [4]3. 

2. Datasets 

We have compiled more than 80 datasets usually used by the researchers when evaluating 

and comparing their solution method implementations. At is was expected, many formats to 

define the instances characteristics have emerged from this diversity, and to ease the data 

input for the implementation of the solution methods, we converted all the instances to JSON 

format with the structure depicted in Figure 1. 

The instances were converted considering the following set of rules: 

▪ Objects with the same dimensions are aggregated. 

▪ The cost equals the area of the object if the cost is not defined. 

▪ Items with the same dimensions and value are aggregated. 

▪ The demand equals 1 if the demand is not defined. 

▪ The value equals the area of the items, if the value is not defined. 

 
3 Generator available at http://hjemmesider.diku.dk/~pisinger/codes.html 

http://hjemmesider.diku.dk/~pisinger/codes.html
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Each instance converted to this format has a name, a set of objects and a set of items. Each 

object has a length, height, stock, and cost, while each item has length, height, demand, a 

maximum demand (for double-constrained problems) and value. 

{ "Name": STRING, 
  "Objects": [ 
    { "Length": INT, 
      "Height": INT, 
      "Stock":  null|INT, 
      "Cost":   INT|DOUBLE 
    } 
  ], 
  "Items": [ 
    { "Length":    INT|DOUBLE, 
      "Height":    INT|DOUBLE, 
      "Demand":    INT, 
      "DemandMax": null|INT, 
      "Value":     INT|DOUBLE 
    } 
  ] 
} 

Figure 1. JSON structure. 

The file of instance OF14 is depicted in Figure 2. 

70 40 
10 
29 5 1 
9 39 4 
55 9 1 
31 15 1 
11 16 2 
23 21 3 
29 14 4 
16 19 3 
9 36 2 
22 4 2 

Figure 2. Instance OF1 – Original format. 

At it can be seen, the instance is not self-described, to parse of this instance we must rely 

upon the position of the data, i.e., the first line defines the object dimensions, the second line 

defines the number of items, then for each item/line, the item dimensions and the demand. 

In this type of format, the reader must be perfectly aware of the structure and slight variations 

that can occur (as it is frequent that instances in the same dataset have minor differences, 

e.g., two spaces or a tab rather than one space). The same instance converted to our JSON 

format is depicted in Figure 3. After converted the instances are more readable, self-

explanatory and less error-prone. 

 
4 Obtained from ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/ 

ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/
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{ "Name": "OF1", 
  "Objects": [ 
     { "Length": 70, "Height": 40, "Stock": null, "Cost": 2800 } 
  ], 
  "Items": [ 
     { "Length": 29, "Height": 5,  "Demand": 1, "DemandMax": null, "Value": 145 }, 
     { "Length": 9,  "Height": 39, "Demand": 4, "DemandMax": null, "Value": 351 }, 
     { "Length": 55, "Height": 9,  "Demand": 1, "DemandMax": null, "Value": 495 }, 
     { "Length": 31, "Height": 15, "Demand": 1, "DemandMax": null, "Value": 465 }, 
     { "Length": 11, "Height": 16, "Demand": 2, "DemandMax": null, "Value": 176 }, 
     { "Length": 23, "Height": 21, "Demand": 3, "DemandMax": null, "Value": 483 }, 
     { "Length": 29, "Height": 14, "Demand": 4, "DemandMax": null, "Value": 406 }, 
     { "Length": 16, "Height": 19, "Demand": 3, "DemandMax": null, "Value": 304 }, 
     { "Length": 9,  "Height": 36, "Demand": 2, "DemandMax": null, "Value": 324 }, 
     { "Length": 22, "Height": 4,  "Demand": 2, "DemandMax": null, "Value": 88  } 
  ] 
} 

Figure 3. Instance OF1 - Converted to JSON. 

3. GUI for instance and cutting plan visualisation 

In this section, we present the instance and cutting plan viewers. The usage of these tools is 

very similar, to visualise the content of a JSON file in a viewer, drag-and-drop the file inside 

the top-left corner box. At the top-right corner, the viewers present an icon, depicted in Figure 

4, that provides more information and help. 

 

Figure 4. Menu icon. 

3.1. Instance viewer 

To help visualise the converted instances, we have created an instance viewer, depicted in 

Figure 5 with instance OF1. The left column presents the characteristics of the objects. The 

centre column presents the items characteristics, and at the right column, the instance is 

illustrated with the objects colourized with a darker grey and the items with a lighter grey. 
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Figure 5. Instance OF1 – Rendered. 

3.2. Two-dimensional cutting plan viewer 

We provide a tool to help visualise two-dimensional cutting plans. Solution methods can 

export the solution obtained to a JSON file as depicted in Figure 6. As it can be observed, the 

key pattern can contain a set of patterns each of then seen as a shelf with position (x and 

y), dimension (w and h), frequency (f), pattern trim loss (tl) and first cut orientation (o). 

Noteworthy, shelves can contain other shelves. Solving a 2D 2-staged Single Large Object 

Placement Problem (SLOPP, see Wäscher et al. [1]) using the data of instance OF1, Figure 6 

depicts the JSON file that contains the resulting cutting plan to be visualised using the two-

dimensional viewer. 

{ "pattern": [ 
  { "x": 0, "y": 0, "w": 70, "h": 40, "f": 1, "tl": 87, "o":"Horizontal", "shelves": [ 
    { "x": 0, "y": 0, "w": 70, "h": 21, "shelves": [ 
      { "x": 0,  "y": 0, "w": 23, "h": 21 }, 
      { "x": 23, "y": 0, "w": 23, "h": 21 }, 
      { "x": 46, "y": 0, "w": 23, "h": 21 } 
    ]}, 
    { "x": 0, "y": 21, "w": 70, "h": 19, "shelves": [ 
      { "x": 0,  "y": 0, "w": 16, "h": 19 }, 
      { "x": 16, "y": 0, "w": 16, "h": 19 }, 
      { "x": 32, "y": 0, "w": 16, "h": 19 }, 
      { "x": 48, "y": 0, "w": 11, "h": 16 }, 
      { "x": 59, "y": 0, "w": 11, "h": 16 } 
    ]} 
  ]} 
]} 

Figure 6. 2D 2-staged SLOPP – 2D JSON. 
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The cutting plan viewer, depicted in Figure 7, presents in the left column the information of 

patterns contained in the JSON file. 

 

Figure 7. 2D 2-staged SLOPP – 2D render. 

Clicking in the top-right disk icon of each pattern, depicted in Figure 8, allows to download an 

image of the respective pattern. 

 

Figure 8. Disk icon. 

The centre column presents the items contained in the currently selected pattern, identifying 

the dimension and position of each one of them. The right column illustrates the currently 

selected pattern. A zoom controller is present at the bottom-right corner of the two-

dimensional cutting plan viewer. 

3.3. Three-dimensional cutting plan viewer 

As for the two-dimensional case, solution methods can export the obtained solution to a JSON 

file, as depicted in Figure 9, to be rendered in the three-dimensional cutting plan viewer. 

Continuing with instance OF1 solved as a 2D 2-staged SLOPP, Figure 9 depicts the JSON file 

that contains the resulting cutting plan to be visualised in the three-dimensional viewer 

(Figure 10). This JSON file contains the bins dimensions (w, h, d), the frequency of cut (f), trim 
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loss (tl) and the items to be placed inside the respective bin (items). For each item, we can 

find the identification (i), dimensions (w, h, d), position (x, y, z) and a Boolean flag to identify 

if the item was rotated by the solution method (r). 

{"box": [ 
  {"w": 70, "h": 40, "d": 4, "f": 1, "tl": 87, "items": [ 
    {"i": 5, "w": 23, "h": 21, "d": 4, "x": 0,  "y": 0,  "z": 0, "r": 0}, 
    {"i": 5, "w": 23, "h": 21, "d": 4, "x": 23, "y": 0,  "z": 0, "r": 0}, 
    {"i": 5, "w": 23, "h": 21, "d": 4, "x": 46, "y": 0,  "z": 0, "r": 0}, 
    {"i": 7, "w": 16, "h": 19, "d": 4, "x": 0,  "y": 21, "z": 0, "r": 0}, 
    {"i": 7, "w": 16, "h": 19, "d": 4, "x": 16, "y": 21, "z": 0, "r": 0}, 
    {"i": 7, "w": 16, "h": 19, "d": 4, "x": 32, "y": 21, "z": 0, "r": 0}, 
    {"i": 4, "w": 11, "h": 16, "d": 4, "x": 48, "y": 21, "z": 0, "r": 0}, 
    {"i": 4, "w": 11, "h": 16, "d": 4, "x": 59, "y": 21, "z": 0, "r": 0} 
  ]} 
]} 

Figure 9. 2D 2-staged SLOPP – 3D JSON. 

The three-dimensional cutting plan viewer, as depicted in Figure 10, presents to the left the 

bins contained in the JSON file, the centre column the items contained inside the currently 

selected bin. Each item has a radio button associated that allows stopping the rendering at 

the current item to visualise the packing order followed by the solution method. At the right 

column, the packing is rendered allowing to rotate in all axis using the keyboard navigation 

keys (a.k.a., arrow keys) and mouse.  

 

Figure 10. 2D 2-staged SLOPP – 3D render. 
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At the bottom-right corner a toolset is present that, in order of appearance from top to 

bottom, capture a picture of the currently selected bin, block the navigation, toggle camera 

type, toggle the visibility of the axis, toggle the visibility of the planes and the last three radio 

buttons allow to display the items as wireframe (Figure 11), as solid unoccupied space (Figure 

12) and as solid items (Figure 13). With the latter display selected, the bottom checkbox 

assigns a randomly a colour using a grey scale for the items.  

Figure 11 to Figure 13 depict the different visualisations of the three-dimensional instance 

solved as a three-dimensional Single Bin Size Bin Packing Problem (SBSBPP, see Wäscher et 

al. [1]). 

 

Figure 11. 3D SBSBPP – Wireframe render. 
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Figure 12. 3D SBSBPP – Solid unoccupied space render. 

 

Figure 13. 3D SBSBPP – Solid render. 



103 

4. Website 

The website created to group all resources developed during our research can be accessed 

through the following URL: https://oscar-oliveira.github.io/2D-Cutting-and-Packing/. 

The website presents to the left a menu (black vertical bar, see Figure 14) with nine icons 

running from top to bottom letting the user switch between resources. In short, the menu 

items allow the access to: 

 Homepage 

 Literature review - Visualisations 

 Literature review - Quick view 

 Literature review - Filter  

 List of datasets 

 List of instance generators 

 2D instance viewer (see section 3.1.) 

 2D cutting plan viewer (see section 3.2.) 

 3D cutting plan viewer (see section 3.3.) 

The homepage (see Figure 14) contains some metrics on the data gathered.  

 

Figure 14. Homepage. 

https://oscar-oliveira.github.io/2D-Cutting-and-Packing/
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To minimize the work required updating the information, all data is stored in JSON format 

and used to generate the content. Four groups of data are stored: 

▪ Keywords – List of keywords that can be used to characterise the articles. 

▪ Datasets – List of datasets (see Section 2). For each dataset, the following information 

is stored: name, reference and URL from which the instances were obtained. 

▪ Generators – List of the two-dimensional instance generators found in the literature. 

For each generator, the following information is stored: short name, reference, URL 

from which the source code was obtained and download URL. 

▪ Articles – List of articles related to the two-dimensional cutting and packing problems. 

For each article, the following information is stored: name (key), year of publication, 

URL5, reference, list of keywords that characterise the article, list of datasets used by 

the authors, and list of articles (keys) used for evaluating the results obtained. 

Next, we briefly describe the webpages that relates to the literature review and to the list of 

datasets and instance generators. We do not describe the last three menu items as they allow 

access to the GUI for instance and cutting plan visualisation described in Section 3. 

4.1. Literature review - Visualisations 

This webpage lets visualise the literature related to the two-dimensional cutting and packing 

problem. Observing Figure 15, it can be seen on the left side a vertical action bar that allows 

to choose: 1) the type of visualisation, 2) the order in which the articles appear, i.e., sorted by 

year of publication or by name, 3) the diagram size, 4) to download the diagram as a Scalable 

Vector Graphics6 (SVG) and 5) the action button. When the visualisation type Comparison is 

selected an additional option is made available that allows to choose the line tension between 

articles.  

The types of visualisation generate diagrams that depicts the relation between: 1) the articles 

and keywords (type Keywords), 2) the articles and used datasets (type Datasets) and 3) the 

articles used for comparison when evaluating the results obtained (type Comparison). Rolling 

the cursor over a keyword, dataset or article highlight the existent relations. It is worth noting 

 
5 Whenever available, we use the Digital Object Identifier (DOI, see https://www.doi.org/) based URL. 
6 https://www.w3.org/Graphics/SVG/ 

https://www.doi.org/
https://www.w3.org/Graphics/SVG/
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that at the top-left corner of the diagram area, a legend appears with the currently selected 

item.  

 

Figure 15. Literature review. 

To characterize the articles, we have chosen the following keywords: 

• IIPP, PP, KP, ODP, CSP and BPP - to identify the (basic) problems types following 

Wäscher’s typology [1]. 

• Guillotine and Non-guillotine - to identify the cut type. 

• 2-staged, 3-staged and k-staged - to identify the number of cuts stages. 

• Constrained and Unconstrained - to identify if the demand if bounded or not. 

• Oriented and Non-oriented - to identify if rotation of items can be allowed or 

not. 

• Survey - to identify if the article is a survey (or a review). 

• Non-orthogonal - to identify articles that deal with non-orthogonal placement. 

Figure 16 depicts the articles that are characterised by the keyword Non-guillotine. 
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Figure 16. Type Keywords – Non-guillotine keyword selected. 

Figure 17 illustrates the articles that use the dataset CGCUT. 

 

Figure 17. Type Datasets – CGCUT dataset selected. 

Figure 18 highlights the comparisons made considering the article presented by Gonçalves 

and Resende [5]. This diagram highlights (black lines) the four articles that Gonçalves and 

Resende used to evaluate the results obtained by their heuristic and highlights (red line) that 

Kierkosz and Luczakone [6] used the results obtained in [5] for comparison.  
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Figure 18. Type Comparison – Article Gonçalves and Resende (2011) selected. 

4.2. Literature review - Quick view 

Figure 19 illustrates the Quick view webpage and as in the previous diagrams, rolling the 

cursor over a keyword, dataset or article highlights the existent relations. Figure 20 illustrates 

the webpage with the dataset CGCUT selected, highlighting all articles that use this dataset. 

 

Figure 19. Quick view. 
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Figure 20. Quick view - CGCUT dataset selected. 

4.3. Literature review - Filter 

Figure 21 depicts the Filter webpage that allows to easily find articles using search words, 

keyword list (using logical operators is necessary) and decades selection. For each article that 

satisfies the search parameters, it is presented in a tabular format the publication year, the 

article reference, the keywords and the URL for access. 

 

Figure 21. Filter. 
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4.4. Lists of datasets and instance generators 

Figure 22 and Figure 23 show the datasets and instance generators lists webpages that allows 

an easy access to these resources. The tables present for each entry (dataset or instance 

generator), the name, the reference, a link to the URL from which it was obtained and a link 

that allows to download the respective entry from our repository. 

 

Figure 22. Datasets list. 

 

Figure 23. Instance generators list. 
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5. Conclusion 

We present a set of resources as we consider that they can be useful for researchers and 

practitioners whose interest lies in the study of cutting and packing problems. We have made 

available a wide set of datasets found in the literature, all converted into the same format to 

provide a consistent experience when researching for new solution methods. We, also, have 

made available three graphical user interfaces, one to visualise the instances and the other 

two to visualise the solutions obtained in a two-dimensional or three-dimensional view. 

The last resource presented is a website, that allows easy access to all resource created. This 

website besides hosting the datasets, generators and GUI, contains a set of utilities for helping 

the analysis of the literature related to the two-dimensional cutting and packing problems. 

Noteworthy that an extension of this website can be developed to characterise other 

combinatorial problems with minor changes. We expect that these resources allow the 

researchers to focus on the actual research and not in the tool making as they occupy a great 

amount of time and resources. As we make these resources available, we hope for the 

contribution of others to improve the work made so far. A great amount of work can be 

undergone to improve these resources, we have identified a few, such as, unify the viewers 

into one tool, unify the JSON format and validate the JSON structure through a JSON schema7 

(the three-dimensional viewer already uses a JSON schema to validate the JSON files). We 

envision a wide group of researchers discussing and contributing to improve these tools 

allowing to regain the focus in the research of solution methods. 
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Part III – Heuristics 
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Adaptive Sequence-based Heuristic for Two-

Dimensional Non-Guillotine Packing Problems 

 

Abstract We present heuristics for two related two-dimensional non-guillotine packing 

problems. The first problem aims to pack a set of items into the minimum number of larger 

identical bins, while the second aims to pack the items that generates most value into only 

one bin. Our approach successively creates sequences of items that defines a packing order 

considering the knowledge obtained from sequences generated previously. Computational 

experiments demonstrated that the proposed heuristics are very effective in terms of solution 

quality and with small computing times. 

Keywords: Two-dimensional, Rectangular, Non-guillotine, Knapsack Problem, Bin Packing, 

Heuristics 

1. Introduction 

We present heuristics to solve two related non-guillotine packing problems both considering 

a finite set of 𝑚 rectangular items types with associated length (𝑙𝑖), height (ℎ𝑖), value (𝑣𝑖), and 

demand (𝑑𝑖). In the first problem, the set of items must be packed into the minimum number 

of identical bins, while the second one, aims to maximize the value of the items packed into 

one bin. The items must be packed orthogonally and cannot be rotated. All bins are 

rectangular and have identical length (𝐿) and height (𝐻). 

Giving that, the proposed heuristics deal with each demanded item individually, the first 

problem, following the typology of Wäscher et al. [1], is classified as Single Bin Size Bin Packing 

Problem (SBSBPP) while the second one is classified as Single Knapsack Problem (SKP). 

The remaining of the paper is organized as follows. Section 2 gives an overview of the 

solutions approaches proposed in the literature to solve both problems. In Section 3, a 

description of our heuristics, hereafter denoted as Adaptive Sequence-based Heuristics (ASH), 

is presented, and in Section 4, computational results are reported comparing our approach 
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to other solution methods from the literature. Finally, conclusions and future work directions 

are given in Section 5. 

2. Literature Review 

Since the work of Gilmore and Gomory [2] the interest on cutting and packing problems has 

been growing, due to its complexity (NP-hard, see Garey and Johnson [3]) and great practical 

applicability (see Singh and Jain [4]). 

The next two sub-sections present the most relevant solution methods proposed for the 

Single Bin Size Bin Packing Problem (SBSBPP) and Single Knapsack Problem (SKP), respectively. 

2.1. Single Bin Size Bin Packing Problem 

Berkey and Wang [5] studied the performance of heuristics for the SBSBPP adapted from 

heuristics proposed in the literature for the Open Dimensional Problem (ODP, see Wäscher 

et al. [1]). 

Regarding the lower bounds, Martello and Vigo [6] showed that the Continuous Lower Bound 

(𝐶𝐿𝐵 = ⌈
∑ 𝑙𝑖ℎ𝑖

𝑚
𝑖=1

𝐿𝐻
⌉) for the SBSBPP has a worst-case performance ratio of 

1

4
 and presented new 

lower bounds that are used in a Branch-and-Bound algorithm. In Boschetti and Mingozzi [8] 

new lower bounds are proposed and in [9] the same authors presented a heuristic called HBP, 

for the SBSBPP. HBP generates solutions considering the current allocation method and 

updating the value of the items at the end of each iteration. 

Lodi et al. [7]  presented heuristics to solve the 2D (non-)oriented (non-)guillotine SBSBPP and 

a Unified Tabu Search Framework that is adaptable for each specific problem changing 

uniquely the inner heuristic to explore the neighbourhood. 

A heuristic algorithm based on Guided Local Search (GLS, see Voudouris and Tsang [11]) for 

the 3D SBSBPP was proposed by Faroe et al. [10]. This approach was adapted by the authors 

for the 2D case providing the same depth for bins and items. The algorithm starts with an 

upper bound on the number of available bins and iteratively decreases this number for the 

next cutting plan generation. This process is repeated until the time limit is reached or the 

current solution is the same as the calculated lower bound. 
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Monaci and Toth [12] presented the Set-Covering Heuristic (SCH) formulating the problem as 

a Set-Covering Problem. SCH generates, through heuristic procedures, a large set of columns 

to define the Set-Covering instance, then the problem is solved by means of a Lagrangean-

based heuristic. 

A Greedy Randomized Adaptive Search Procedure (GRASP, see Feo and Resende [14]) with 

Variable Neighbourhood Descent (VND, see Hansen and Mladenovic [15]) for the 2D and 3D 

SBSBPP was proposed by Parreño et al. [13]. 

In Blum and Schmid [16] a hybrid algorithm called EA-LGFi is presented. In EA-LGFi an 

evolutionary approach is used to generate the input sequences to the LGFi heuristic proposed 

by Wong et al. [17] in order to perform the placement of the items. 

2.2. Single Knapsack Problem 

Exact approaches to solve the SKP have been proposed in the literature by several authors. 

Beasley [18] presented a Branch-and-Bound algorithm that uses an upper bound obtained 

through the Lagrangean relaxation of a 0-1 integer linear programming formulation of the 

problem and a Subgradient Optimization procedure to minimize its value. 

An integer programming formulation where binary variables specify the item position 

relatively to another item was proposed by Scheithauer and Terno [19]. The authors 

presented a Branch-and-Bound in which Subgradient Optimization is used to minimize the 

upper bound obtained through the Lagrangean Relaxation of the problem. The authors 

perform reduction tests that limit the size of the tree, therefore, reducing the computational 

efforts required by the algorithm. 

Fekete and Schepers [20][21][22] presented a tree-search algorithm for the 𝑑-dimensional 

Knapsack Problem using a graph-theoretical characterization of packings. In this 

characterization, if no overlapping occurs in both 𝑥 and 𝑦 axis projection graphs, the pattern 

is feasible. 

Boschetti et al. [23] presented new upper bounds obtained through the relaxation of their 

integer programming formulation of the problem. 
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Four exact algorithms based on the relaxation of SKP given by the one-dimensional case are 

presented in Caprara and Monaci [24]. Exact algorithms were also proposed for the Knapsack 

problem in which only guillotine cuts are allowed, without a limitation on the number of 

stages, in Dolatabadi et al. [25] and more recently in Fleszar [26] and in Furini et al. [27]. 

Heuristics methods have, also, been proposed to solve the SKP. Lai and Chan [28] presented 

a heuristic based on the Simulated Annealing using an ordered list of items that encodes the 

order in which the items will be packed into the bin through a placement algorithm. The 

placement algorithm packs each item, in turn, without overlapping, into the empty 

rectangular space (ERS) that is closest to the bin bottom-left corner. This heuristic keeps track 

of the ERS through a called Difference Process that creates interval lists after each item 

packing. In Leung et al. [42] a Simulated Annealing algorithm is also used, combined with a 

greedy strategy. 

Leung et al. [29] performed a comparison of the Genetic Algorithm with bottom-left approach 

proposed for the Strip Packing Problem by Jakobs [30] and the Simulated Annealing with 

Difference Process proposed by Lai and Chan [28]. In Leung et al. [31] a pure Genetic 

Algorithm and a hybrid approach (Genetic Algorithm with Simulated Annealing) called MSAGA 

are compared, aiming to verify if the latter could prevent the early convergence observed in 

the pure approach. The decoder, i.e., placement algorithm, uses the Difference Process. 

A Genetic Algorithm based on a new non-linear mathematical formulation was presented in 

Beasley [32]. In Alvarez-Valdés et al. [33] a GRASP is proposed and in Alvarez-Valdés et al. [34] 

a Tabu Search (see Glover [35]) to solve the SKP is presented. 

Hadjiconstantino and Iori [36] presented a greedy heuristic and a hybrid Genetic Algorithm. 

The greedy heuristic called HCHV packs the items at the bottom-left position possible, 

alternatively on top of each other or side by side until no more items fit in the current 

direction. In the genetic approach, the items are placed at the position where the highest 

fraction of its perimeter touches edges, either of another item or bin boundaries. 

A hybrid Genetic Algorithm based on random keys was proposed in Gonçalves [37]. The 

genetic part of this heuristic is responsible to generate and evolve the sequence of items that 

defines the packing order. The placement method makes use of the Difference Process 

proposed by Lai and Chan [28] to keep track of the ERS created after each placement. In 
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Gonçalves and Resende [39] a parallel implementation of a multi-population Genetic 

Algorithm where the chromosome encodes the items sequence and the associated placement 

rule (bottom-left or left-bottom) is presented. As in the hybrid Genetic Algorithm based on 

random keys, the Difference Process is used again to keep track of the ERS that are created 

after placing an item. 

Bortfeldt and Winter [38] also presented a Genetic Algorithm approach to solve the 

(un)constrained (non-)guillotine SKP and Single Large Object Placement Problem (SLOPP, see 

Wäscher et al. [1]). In Kierkosz and Luczak [43] an Evolutionary Algorithm is presented, using 

as a placement algorithm a tree-search that places the items using a bottom-left strategy. 

Wei et al. [40] presented a Tabu Search using the concept of Skyline representation which is 

a sequence of line segments that expresses the rectilinear contour of the current packed 

items. 

A two-stage heuristic for solving the SKP is presented in He et al. [41]. In the first phase, a 

solution is generated placing the items in the empty space with the highest fit degree 

(calculated with the number of touching edges and a smooth degree that considers the 

number of empty spaces remaining if the item is placed at this position), then the solution is 

improved through a partial tree-search. 

3. Adaptive Sequence-based Heuristic (ASH) 

We propose a Multi-start heuristic (see Martí et al. [44]) that iteratively creates a new 

sequence of items used to define the packing order. 

The main concept behind the proposed heuristics is that if a good solution was packed using 

some ordering (𝑆𝑏𝑎𝑠𝑒), it is possible that a better solution exists changing the order of few 

items, creating a new packing sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If no improvement is obtained with this new 

ordering, it may be the case that an ordering with more changes can led to a better solution. 

So, we incrementally allow more changes to the base ordering. When an ordering generates 

a new best solution, this will replace the base ordering to be used in the next iterations. The 

main steps of the proposed heuristics are shown in Algorithm 1. 
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Algorithm 1. ASH main steps. 

𝑆𝑏𝑎𝑠𝑒 ← Items ordered by efficiency with value as tiebreaker 

𝛼 ← 𝛼𝑚𝑖𝑛 

Generate a new solution with sequence 𝑆𝑏𝑎𝑠𝑒 

While stopping criteria are not met do 

    𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Generate a new sequence of items based on 𝑆𝑏𝑎𝑠𝑒 and 𝛼 

    Generate a new solution with sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

    If a new best solution is found then 

        𝑆𝑏𝑎𝑠𝑒 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

        𝛼 ← 𝛼𝑚𝑖𝑛 

    Otherwise 

        𝛼 ← min{𝛼 + 𝛼𝑖𝑛𝑐 , 𝛼𝑚𝑎𝑥} 

Starting with 𝑆𝑏𝑎𝑠𝑒, the sequence of items ordered by efficiency 𝑒𝑖 =  
𝑣𝑖

(𝑙𝑖×ℎ𝑖)
 (see Alvarez-

Valdés et al. [33]) using 𝑣𝑖  as a tiebreaker, at each iteration, a new sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is 

generated using the current probability 𝛼. The sequences are generated (see Algorithm 2) 

based on the algorithm proposed by Lesh et al. [45] which creates a new sequence adding 

with a probability of 𝛼, one element at a time from the input sequence to the new sequence. 

Algorithm 2. Sequence generator. 

Input: sequence 𝐼𝑛, probability 𝛼 

𝑂𝑢𝑡 ← ∅ 

𝑛 ← |𝐼𝑛| 

for 𝑖 ← 1, … , 𝑛 do 

    𝑗 ← 1 

    𝑂𝑢𝑡𝑖 ← ∅ 

    while 𝑂𝑢𝑡𝑖 = ∅ do 

        if 𝛼 ≤ generated random value then 

            𝑂𝑢𝑡𝑖 ← 𝐼𝑛𝑗 

            𝐼𝑛 ← 𝐼𝑛 ∖ {𝐼𝑛𝑗} 

        𝑗 ← (𝑗 𝐦𝐨𝐝 |𝐼𝑛|) + 1 

return 𝑂𝑢𝑡 

If the solution generated with 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the best one so far, this ordering replaces 𝑆𝑏𝑎𝑠𝑒 and 

𝛼 is set to its minimum value 𝛼𝑚𝑖𝑛. Otherwise, 𝑆𝑏𝑎𝑠𝑒 is inaltered and 𝛼 is updated to 

min{𝛼 + 𝛼𝑖𝑛𝑐, 𝛼𝑚𝑎𝑥}. 

When a new best solution is found, we seek to intensify the search near to this solution, which 

is accomplished by setting 𝛼 to its minimum value, aiming to generate sequences that are 

very similar to the base. While higher 𝛼 allows to diversify the search space producing 

sequences that differ incrementally more from the base sequence. 

Following the ordering of 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the items are packed into the bin, one at a time on the 

empty rectangle space (ERS) with the smallest area with enough space to fit the item. To 
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prevent the creation of very small empty spaces, after packing an item, we try to pack items 

that fit exactly into existing ERS. 

We keep track of the ERS resulting from the packing of items using the Difference Process (Lai 

and Chan [28]). This process, first, places the box inside the given ERS, then generates the 

new ERSs that result from the intersection of the box with the existing ERS and removes 

intersected ERSs. The last phase removes the ERSs that are infinitely thin or are totally 

inscribed by other ERSs. The Difference Process is illustrated in Figure 1, in which the darker 

rectangles depict the available ERS at the beginning of the process (a) and at the end of each 

item placement (b and c). 

a) 
 

b) 
 

c) 
 

Figure 1. Difference Process. 

The main difference between solving SBSBPP and SKP instances is that for SBSBPP, new 

patterns are created and added to the solution until all items are packed, while for the SKP, a 

solution is created considering only one bin. 

ASH iterates until a maximum number of iterations has been performed or the optimality is 

guaranteed (if the solution value is equal to the Continuous Lower Bound (𝐶𝐿𝐵) for the 

SBSBPP, and if all the items are packed inside the bin for the SKP). 

4. Computational Results 

The proposed heuristic was implemented in C and the tests were run on a computer with an 

Intel Core i7-4800MQ at 2.70 GHz with 8 Gb RAM and operating system Linux Ubuntu 18.04. 

The next two sub-sections present the computational results for the Single Bin Size Bin 

Packing Problem (SBSBPP) and Single Knapsack Problem (SKP), respectively. For both 

problems, the values of 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 𝛼𝑖𝑛𝑐 were set through experiments carried out 
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considering different options, and the datasets considered correspond to the ones used by 

the algorithms that were used for comparison.  

4.1. Single Bin Size Bin Packing Problem 

We have considered to evaluate the results of our heuristic for solving the SBSBPP, the set of 

instances, usually referred to as CLASS, generated by Berkey and Wang [5] (CLASS 1 to 6) and 

by Martello and Vigo [6] (CLASS 7 to 10). This set is divided into 10 classes of 50 instances. 

Each class contains 5 subsets composed of 10 instances for each value of 𝑚 ∈

[20, 40, 60, 80, 100], with 𝑚 =  ∑ 𝑑𝑖𝑖 . The bin dimensions range from 10 × 10 to 300 × 300. 

Each instance was run only once, generating at most 2000 cutting plans with 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 

𝛼𝑖𝑛𝑐 set to 0.1, 0.65, and 0.002, respectively.  

Table 1 presents the results solving all the instances of the dataset CLASS by the heuristics 

HBP [9], GLS [10], SCH [12], GRASP/VND [13], EA_LGFi [16], and in the last column by ASH. 

The first line denotes the number of bins needed for the 500 instances, and the average and 

maximum time to solve a subset. The results from HBP and GLS were retrieved directly from 

Boschetti and Mingozzi [9] and those of SCH, GRASP/VND and EA_LGFi were retrieved directly 

from Blum and Schmid [16]. 

Table 1. Summary of the results obtained. 

Algorithm HBP GLS SCH GRASP/VND EA_LGFi ASH 

Number of bins 7275 7284 7243 7241 7239 7269 

Average time 21.01 1000 7.89 2.20 1.77 0.04 

Maximum time 114.07 1000 55.77 12.00 27.33 0.11 

Observing Table 1, the best results are clearly obtained by SCH, GRASP/VND and EA_LGFi. The 

results obtained by those approaches and by ASH solving Berkey and Wang instances are 

given in Table 2, and in Table 3 the results solving Martello and Vigo instances. 

The first column of Table 2 and Table 3 gives the class number, the second column denotes 

the number of items of each subset, then for each of the heuristics the number of bins and 

the average time, in seconds, needed to solve each subset. 
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Table 2. Results for Berkey and Wang instances. 

CLASS 𝒎 
SCH GRASP/VND EA_LGFi ASH 

Bins t (s) Bins t (s) Bins t (s) Bins t (s) 

1 

20 71 0.06 71 0.00 71 0.00 71 0.01 

40 134 2.42 134 0.00 134 0.00 134 0.02 

60 200 7.26 200 4.50 200 0.01 200 0.04 

80 275 4.63 275 1.50 275 0.00 275 0.07 

100 317 5.21 317 0.00 317 0.00 317 0.08 

2 

20 10 0.06 10 0.00 10 0.00 10 0.00 

40 19 0.67 19 0.00 19 0.00 19 0.00 

60 25 0.07 25 0.00 25 0.00 25 0.00 

80 31 0.07 31 0.00 31 0.00 32 0.01 

100 39 0.79 39 0.00 39 0.00 39 0.00 

3 

20 51 0.07 51 0.00 51 0.02 51 0.01 

40 94 2.66 94 3.00 94 0.01 94 0.02 

60 139 6.21 139 4.60 139 0.27 140 0.06 

80 189 8.80 189 4.10 189 20.68 192 0.08 

100 223 12.80 223 4.90 224 26.17 225 0.11 

4 

20 10 0.06 10 0.00 10 0.00 10 0.00 

40 19 0.07 19 0.00 19 0.00 19 0.00 

60 25 6.15 25 3.00 23 12.18 25 0.02 

80 32 10.35 31 1.90 31 0.00 32 0.03 

100 38 4.72 38 1.50 37 0.00 38 0.03 

5 

20 65 0.06 65 0.00 65 0.00 65 0.00 

40 119 1.98 119 0.00 119 0.03 119 0.02 

60 180 1.93 180 1.50 180 0.14 181 0.06 

80 247 20.66 247 9.00 247 0.03 247 0.09 

100 282 18.50 282 5.20 284 27.33 287 0.11 

6 

20 10 0.06 10 0.00 10 0.00 10 0.00 

40 17 6.85 17 3.00 17 0.03 18 0.03 

60 21 0.66 21 0.10 21 0.00 22 0.01 

80 30 0.23 30 0.00 30 0.00 30 0.00 

100 34 6.29 34 3.00 32 0.58 34 0.00 

ASH could not provide better results than those obtained by the best approaches already 

mentioned, but it is extremely effective considering the execution time presented. 

Noteworthy that the gap between the average and maximum time presented by ASH is very 

tight when compared with the other approaches (e.g., 1.77 seconds of average time to 27.33 

seconds for the EA_LGFi). This tight gap makes ASH a robust heuristic with a predictable 

execution time. 

Our approach is very fast, simple to implement and can be an effective approach to solve the 

SBSBPP or to be used in a bounding scheme on more complex solution methods. 
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Table 3. Results for Martello and Vigo instances. 

CLASS 𝒎 
SCH GRASP/VND EA_LGFi ASH 

Z time(s) Z time(s) Z time(s) Z time(s) 

7 

20 55 0.13 55 0.00 55 0.00 55 0.01 

40 111 3.02 111 3.00 111 0.01 112 0.03 

60 158 8.85 159 4.50 159 0.00 159 0.06 

80 232 54.79 232 12.00 232 0.00 232 0.08 

100 271 25.06 271 3.10 271 0.01 273 0.10 

8 

20 58 0.06 58 0.00 58 0.03 58 0.01 

40 113 0.96 113 1.50 113 0.00 113 0.03 

60 162 9.05 161 4.20 161 0.02 162 0.06 

80 224 11.60 224 1.60 224 0.00 226 0.09 

100 279 47.13 278 6.10 277 0.25 278 0.00 

9 

20 143 0.06 143 0.00 143 0.00 143 0.01 

40 278 0.07 278 0.00 278 0.00 278 0.03 

60 437 0.07 437 0.10 437 0.00 437 0.07 

80 577 0.08 577 0.00 577 0.00 577 0.10 

100 695 0.11 695 0.00 695 0.00 695 0.00 

10 

20 42 0.12 42 0.00 42 0.02 43 0.01 

40 74 0.11 74 0.00 74 0.00 74 0.02 

60 101 8.89 100 4.50 101 0.71 102 0.05 

80 128 38.26 129 9.40 128 0.06 130 0.08 

100 159 55.77 159 9.20 160 0.08 161 0.11 

4.2. Single Knapsack Problem 

To evaluate the performance of ASH for the SKP, we have considered the following 

benchmark datasets, NGCUT (Beasley [18]), HADCHR (Hadjiconstantinou and Christofides 

[46]), WANG (Wang [47]), CGCUT (Christofides and Whitlock [48]), OKP (Fekete et al. [49]), LC 

(Lai and Chan [28]), JAKOBS (Jakobs [30]), LCT (Leung et al. [31]), and HT (Hopper and Turton 

[50]). 

The details of the datasets are given in Table 4 which presents, in order of appearance, the 

dataset name, the number of instances, the range of the bins and items dimensions, and the 

range of the number of demanded items (𝑚). The first five datasets are referred to as 

Problems from literature and the remaining four referred to as Zero-waste problems. 

The results obtained by ASH are shown in Table 5 and Table 6. Each instance was run only 

once, generating at most 2000 solutions with 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 𝛼𝑖𝑛𝑐 set to 0.1, 0.9, and 0.005 

respectively. 
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Table 4. Datasets. 

Dataset 
Number of 

instances 

Bin 

𝒘 × 𝒉 

Items 

𝒘 × 𝒉 
𝒎 

NGCUT 12 [10-30]x[10-30] [1-30]x[1-30] [7-22] 

HADCHR 2 30x30 [1-22]x[4-21] [7-15] 

WANG 1 70x40 [9-33]x[11-43] 42 

CGCUT 1 40x70 [9-33]x[11-43] 62 

OKP 5 100x100 [1-100]x[1-99] [30-97] 

LC 3 400x[200-400] [30-200]x[30-150] [10-20] 

JAKOBS 5 [65-120]x[45-80] [5-40]x[4-36] [20-30] 

LCT 2 [150-160]x[110-120] [6-48]x[4-40] [40-50] 

HT 21 [20-160]x[20-240] [1-72]x[1-113] [16-197] 

The content of Table 5 and Table 6 is the following. The columns identify, in order of 

appearance, the dataset name, the instance number, the optimal solution, and the result 

obtained by GRASP [33], Tabu Search [34], the Parallel Multi-population Genetic Algorithm 

(MPGA) [39], and finally, by ASH. For each dataset, the last rows present the number of 

optimal solutions obtained and the average time needed to solve each instance. Table 6 

includes two more rows, the maximum time spent to solve one instance and the average gap 

between the optimal solution and the solution obtained. 

Table 5. Computational results - Problems from literature. 

Set # Z* GRASP TABU MPGA ASH 

NGCUT 

1 164 164 164 164 164 
2 230 230 230 230 230 
3 247 247 247 247 247 
4 268 268 268 268 268 
5 358 358 358 358 358 
6 289 289 289 289 289 
7 430 430 430 430 430 
8 834 834 834 834 834 
9 924 924 924 924 924 

10 1452 1452 1452 1452 1452 
11 1688 1688 1688 1688 1688 
12 1865 1865 1865 1865 1865 

 Optimums 12 12 12 12 
 Avg. time (s) 0.07 0.03 0.01 0.01 

HADCHR 

3 1178 1178 1178 1178 1178 
11 1270 1270 1270 1270 1270 

 Optimums 2 2 2 2 
 Avg. time (s) 0.00 0.00 0.01 0.01 

WANG 

 2726 2726 2726 2726 2721 

 Optimums 1 1 1 0 

 Avg. time (s) 0.77 0.11 0.02 0.01 

0CGCUT 

3 1860 1860 1860 1860 1860 

 Optimums 1 1 1 1 

 Avg. time (s) 0.39 0.06 0.05 0.02 

OKP 

1 27718 27589 27718 27718 27486 
2 22502 21976 22502 22502 22119 
3 24019 23743 24019 24019 24019 
4 32893 32893 32893 32893 32893 
5 27923 27923 27923 27923 27923 

 Optimums 2 5 5 3 
 Avg. time (s) 2.03 1.25 0.16 0.03 
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Table 5 presents the results obtained by solving the datasets on Problems from the literature. 

The results show that both TABU and MPGA obtained all optimal solutions and that ASH 

obtained results close to those obtained by GRASP. Although execution time is not easy to 

compare, our time remains constantly small on all datasets, while the other approaches it 

increases greatly as the problem size grows. 

The results for the Zero-waste problems are given in Table 6. The results show that ASH, when 

compared with the GRASP, obtains a higher number of optimal solutions, and only for one 

dataset, the average gap obtained is higher. 

Table 6. Computational results - Zero-waste problems. 

Set # Z* GRASP TABU MPGA ASH 

LC 

1 80000 80000 80000 80000 80000 
2 79000 79000 79000 79000 79000 
3 160000 154600 154600 154600 154600 

 Optimums 2 3 3 2 
 Avg. time (s) 1.37 0.13 1.26 0.01 
 Max. time (s) 4.12 0.38 3.10 0.02 
 Avg. GAP (%) 1.13 0 0 1.13 

JAKOBS 

1 5600 5447 5600 5600 5600 
2 5600 5455 5512 5540 5263 
3 5400 5328 5400 5400 5400 
4 4050 3978 4050 4050 4050 
5 2925 2871 2925 2925 2871 

 Optimums 0 4 4 3 
 Avg. time (s) 12.68 4.54 4.29 0.02 
 Max. time (s) 15.44 16.88 11.52 0.04 
 Avg. GAP (%) 2.06 0.21 0.21 1.57 

LCT 

1 16500 15856 16280 16340 15876 

2 19200 18628 19044 19116 18516 

 Optimums 0 0 0 0 

 Avg. time (s) 111.39 58.16 19.45 0.05 

 Max. time (s) 132.26 63.95 23.71 0.09 

 Avg. GAP (%) 3.44 1.07 0.70 3.67 

HT 

1 400 400 400 400 400 
2 400 386 400 400 386 
3 400 400 400 400 400 
4 600 590 600 600 594 
5 600 597 600 600 600 
6 600 600 600 600 600 
7 1800 1765 1800 1800 1773 
8 1800 1755 1800 1796 1758 
9 1800 1774 1800 1800 1764 

10 3600 3528 3580 3591 3536 
11 3600 3524 3564 3588 3542 
12 3600 3544 3580 3594 3560 
13 5400 5308 5342 5396 5328 
14 5400 5313 5361 5400 5319 
15 5400 5312 5375 5392 5338 
16 9600 9470 9548 9582 9467 
17 9600 9453 9448 9595 9501 
18 9600 9450 9565 9582 9506 
19 38400 37661 38026 38146 37771 
20 38400 37939 38145 38374 38074 
21 38400 37745 37867 38254 37866 

 Optimums 3 9 9 4 
 Avg. time (s) 612.00 572.30 118.30 0.49 
 Max. time (s) 3760.14 5615.75 808.03 2.64 
 Avg. GAP (%) 1.50 0.47 0.13 1.24 
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The average time of ASH maintains very low, while for the three other approaches grows 

greatly needing in some cases minutes to solve one instance. 

Considering the other approaches, ASH is much simpler to implement and to parametrize (i.e., 

maximum number of iterations, and minimum, maximum and increment of the probability 

𝛼). GRASP needs a Restricted Candidate List and improvement methods, Tabu Search requires 

neighbourhood structures and memory strategies, and Genetic Algorithms needs 

chromosomes and an evolutionary process. The results show that this heuristic, although 

simple, can generate high-quality solutions using small computing times. 

5. Conclusion 

We have developed the ASH to solve the non-guillotine Single Bin Size Bin Packing Problem 

and the non-guillotine Single Knapsack Problem. The ASH iteratively creates new sequences 

that define the packing order, incorporating knowledge from the previous packing order and 

during the packing procedure the Difference Process is used to keep track of the ERS resulting 

from packing the items.  

Extensive computational experiments have been performed for both problems with well-

known problem instances from the literature. The computational results show that our 

approach is competitive with other proposed solution methods for the problems considered. 

Noteworthy the implementation simplicity and the little parameterization required by this 

approach. We intend to extend the proposed method to the solution of other cutting and 

packing problems. 
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Adaptive Sequence-based Heuristic for Two-

Dimensional Guillotine Cutting Problems 

 

Abstract We present heuristics for two related two-dimensional guillotine cutting problems. 

The first problem aims to minimize the number of identical objects required to extract all 

demanded items, while the second problem aims to maximize the value of the items that are 

extracted from one object. The proposed heuristics create iteratively a new sequence of items 

types that defines the cutting order to generate a new cutting plan. The heuristics are 

adaptive in the sense that try to retain, in the next sequence to be generated and evaluated, 

characteristics of previous sequences that provided good results. Also, for one of the 

problems considered in this work, a Path Relinking procedure is combined with the proposed 

heuristic to improve the results. Computational results show that these heuristics can 

generate high-quality solutions using small computing times and are competitive with other 

approaches from the literature. 

Keywords: Two-dimensional, Rectangular, Guillotine, Placement Problem, Cutting Problem, 

Heuristics 

1. Introduction 

Given a set of items types with a size of 𝑚, cutting problems intent to extract those items 

from larger objects considering the objective to attain and the associated constraints. As we 

consider the two-dimensional rectangular case, objects and item types 𝑖 (with 𝑖 = 1. . 𝑚) are 

characterized by length and height (𝐿 × 𝐻, and 𝑙𝑖 × ℎ𝑖, respectively). 

If each item type 𝑖 has an associated upper bound 𝑑𝑖 on the number of units that a solution 

can contain, the problem is referred to as constrained, otherwise is unconstrained. Each item 

type as, also an associated value 𝑣𝑖  and the problem is referred to as unweighted if all item 

types’ values are equal to its area, otherwise is referred to as weighted problem. 



132 

Cut constraints are also considered in this paper. The cutting patterns generated must only 

consider guillotine cuts, i.e., all cuts must be performed in a straight line from one edge of the 

object to the opposite one. The cut sequence must be performed in stages, i.e., perpendicular 

rotation of the blades at each stage is considered. The cutting patterns generated consider 

horizontal first stage cuts, meaning that the object will be cut, while possible, into horizontal 

strips and the height of the strips is defined by the taller item included, usually referred to as 

restricted problem, i.e., at least one item that can be extracted with just one additional cut, 

without trimming cut. The second stage is vertical and will perform the same action but now 

considering the strips created at the first stage. The process continues until the maximum 

number of stages is met. When a bound on the maximum number of stages (𝑘) exists, the 

problem is referred to as 𝑘-staged, otherwise referred to as non-staged. Figure 1 depicts to 

the left a two-staged pattern and to the right a three-staged pattern. 

  
a. Two-staged b. Three-staged 

Figure 1. Two- and three-staged cuts. 

If a problem considers that an extra trimming cut is allowed, the problem is referred to as 

non-exact, otherwise referred to as exact. Figure 2 depicts to the left an exact two-staged 

pattern and to the right a non-exact two-staged pattern in which the darker grey identifies 

the trimming area. 

  
a. Exact two-staged  b. Non-exact two-staged 

Figure 2. Exact and non-exact problems. 

In this paper, we address two related problems belonging to the cutting and packing problem 

family. Following the typology of Wäscher et al. [1], the first problem is classified as Single 

Stock Size Cutting Stock Problem (SSSCSP) and aims to cut from an unlimited number of 
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identical objects an entire set of small item types, targeting the minimization of the number 

of objects used. The second problem is classified as Single Large Object Placement Problem 

(SLOPP) and aims to maximize the sum of the values of the items to be extracted from one 

object. Considering the cut and demand constraints, the problems considered in this paper 

are denoted as (non-)exact two- and three-staged SSSCSP, (non-)exact two-staged 

constrained SLOPP, and non-staged unconstrained SLOPP. We consider that the items cannot 

be rotated and must be orthogonally cut from the object. 

Since the seminal work of Gilmore and Gomory in [2] and [3], proposing a Column Generation 

approach for the Cutting Stock Problem, the interest on the cutting and packing topic has 

been growing in the literature. Mainly due to its complexity (NP-hard, see Garey and Johnson 

[4]) and due to the high impact on practice in many areas, e.g., industry (wood, metal, and 

glass) and logistic (packing of boxes and load of containers). 

The remaining of the paper is organized as follows. Section 2 presents, chronologically by year 

of publication, the most relevant articles found in the literature for the problems considered 

in this paper. Section 3 presents a description of our heuristics, hereafter denoted as Adaptive 

Sequence-based Heuristics (ASH), and in Section 4, computational results are reported 

comparing our approach to other solution methods from the literature. Finally, conclusions 

and future work directions are given in Section 5. 

2. Literature Review 

Gilmore and Gomory [5] extended for the two-dimensional CSP the Column Generation 

approach taken in [2] and [3]. The authors presented an algorithm for the unconstrained two-

staged Single Knapsack Problem (SKP, see Wäscher et al. [1]) solving a one-dimensional SKP 

for each one of the item types to create strips. The strips created are then used to fill the 

object through the resolution of a one-dimensional SKP. 

A recursive algorithm for the unconstrained SLOPP making use of discretization points to 

reduce the search space was proposed in Herz [6]. 
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In Christofides and Whitlock [7] a tree-search for the constrained SLOPP is presented. 

Improvements to this work were presented by Christofides and Hadjiconstantinou [8], and by 

Hifi and Zissimopoulos [9]. 

Chung et al. [10] presented a two-phase approximation algorithm, called Hybrid First-Fit (HFF) 

for the Single Bin Size Bin Packing Problem (SBSBPP, see Wäscher et al. [1]). The items are 

ordered by non-increasing heights and are packed into strips following a First-Fit policy, then 

the strips are packed into an object using the same policy. 

Two algorithms to solve the constrained SLOPP were presented by Wang [11]. The proposed 

enumeration approach builds successively a bigger rectangle combining smaller rectangles, 

usually denominated as a bottom-up approach, as opposed to the top-down approach taken 

by Christofides and Whitlock [7]. Improvements to Wang’s algorithm were proposed by Vasko 

[12], and Oliveira and Ferreira [13]. 

Both exact and heuristic algorithms for the unconstrained SLOPP based on Dynamic 

Programming (see Bellman [15]) were proposed by Beasley [14]. 

Berkey and Wang [16] studied the adaptation for the SBSBPP of several heuristics found in 

the literature for the Open Dimensional Problem (ODP, see Wäscher et al. [1]), namely, Finite 

Next-fit (FNF), Finite First-Fit (FFF), Finite Best-strip (FBS), Finite Bottom-left (FBL) and Hybrid 

First-Fit (HFF). The level approach FNF fills the bins by packing one item at a time at the current 

level, considering the items pre-ordered by non-increasing heights. New bins and new levels 

are only started when needed. While the FNF only evaluates one bin at a time, the FFF, 

evaluates all previously opened bins, packing the current item into the lowest level of the first 

bin in which it fits. The FBS and HFF use a similar approach where strips are created and then 

considered to fill the bins, the FBS uses a best-fit policy while the HFF uses the first-fit policy. 

The FBL is not a level-approach and packs the items, one at a time, at the bottom-left position 

possible considering all the started bins. 

A heuristic for the unconstrained SLOPP that combines depth-first and hill-climbing search 

strategies using an And/Or-Graph (see Chang and Slagle [18]) to represent the solutions was 

presented in Morabito et al. [17]. 
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A Branch-and-Bound (see Land and Doig [20], and Agin[21]) procedure to solve the 

constrained SLOPP taking a bottom-up approach was proposed in Viswanathan and Bagchi 

[19]. Improvements to this procedure were proposed in Hifi [22] and in Cung et al. [23]. 

An approximation algorithm for the unconstrained SLOPP making use of a selection of strips 

obtained by solving a sequence one-dimensional SKP through Dynamic Programming is 

presented in Fayard and Zissimopoulos [24]. A generalization of the approach to deal with 

large-scale (un)constrained (un)weighted SLOPP is proposed later in Fayard et al. [25].  

Morabito and Arenales [26] compared the results obtained by the approaches proposed by 

Beasley [14] and by Gilmore and Gomory [5] to solve large-scale unconstrained SLOPP. 

Beasley’s algorithm was not able to obtain better results than the ones proposed in [5] (which 

considers the two-staged case but produces feasible solutions for the non-staged) since the 

discretization points removed to reduce the search space can in some cases be necessary to 

achieve the optimal solution. 

In Morabito and Arenales [27], an algorithm for the constrained 𝑘-staged SLOPP that 

combines backtracking and hill-climbing search strategies using a And/Or-Graph 

representation is presented. 

Heuristics to the (non-)guillotine SBSBPP are presented in Lodi et al. [28]. A Knapsack Packing 

heuristic for the two-staged problem is presented, the strips are created iteratively, first 

packing the highest unpacked item, then a knapsack problem is solved to fill the rest of the 

strip considering all unpacked items that do not exceed the height of the strip, i.e., height of 

the first element. The generated strips are then used to fill the bins solving the associated 

one-dimensional SBSBPP. In the same work, a Unified Tabu Search Framework is proposed, 

this procedure is adaptable for each specific problem by changing uniquely the inner heuristic 

to explore the neighbourhood. 

Hifi [29] presented an exact algorithm for large-scale unconstrained two- and three-staged 

SLOPP. In Hifi and Roucairol [30] both approximate and exact algorithms to solve the 

(un)weighted two-staged SLOPP are presented. The first algorithm, based on the algorithm 

proposed by Gilmore and Gomory [5] for the unconstrained case, builds horizontal and 

vertical strips, then selects the best strips to generate the cutting pattern solving a series of 

one-dimensional SKP through a Dynamic Programming procedure. This heuristic is used to 
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create an initial lower bound to a Branch-and-Bound procedure to solve to optimality the 

problem. 

Constructive heuristics, a Greedy Randomized Adaptive Search Procedure (GRASP, see Feo 

and Resende [32]), a Tabu Search (see Glover [33]), and a Path Relinking (see Glover [34]) to 

solve large-scale (un)constrained (un)weighted SLOPP were proposed in Alvarez-Valdés et al. 

[31]. 

Two integer linear programming models for the two-staged SLOPP are presented in Lodi and 

Monaci [35] and in Lodi et al. [36] new integer programming models and bounds are proposed 

for the two-staged ODP and SBSBPP. 

Hifi and M'Hallah [37] presented an exact algorithm for the constrained two-staged SLOPP 

based on the one proposed by Hifi and Roucairol [30] but with different bounds and with new 

pruning strategies to avoid duplicated patterns. 

Branch-and-Cut-and-Price procedures (BCP, see Jünger and Thienel [39]) for the one-

dimensional SSSCSP and for the two-dimensional two-staged SLOPP are proposed by Belov 

and Scheithauer [38]. The Branch-and-Cut-and-Price algorithm combines Branch-and-Bound, 

Cutting Planes and Column Generation. 

In Hifi and M'Hallah [40] three algorithms for the constrained two-staged SLOPP, namely, the 

Strip Generation Algorithm (SGA), Extended SGA (ESGA), and the Hill-Climbing ESGA (HESGA) 

are presented. The SGA first generates a set of uniform strips and general strips and then 

searches for good combinations of strips to fill the object. The ESGA fills one section of the 

object with the SGA, then uses a procedure that takes into consideration discretization points 

to fill the second section. HESGA combines the ESGA with hill-climbing strategies. 

Alvarez-Valdés et al. [41] presented two GRASP and a Path Relinking approach for the two-

staged SLOPP. One of the GRASP approaches is based on items, while the other is based on 

strips generated by solving knapsack problems. Making use of the high-quality solutions 

obtained by the GRASP based on strips and the more diverse set of solutions obtained by the 

GRASP based on items, the authors presented a Path Relinking. 
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An integer linear programming model and a Branch-and-Price algorithm for the three-staged 

SBSBPP is presented in Puchinger and Raidl [42]. A Branch-and-Price for the SBSBPP was also 

presented by Pisinger and Sigurd [43]. 

Cintra et al. [44] proposed Dynamic Programming algorithms for the 𝑘- and non-staged 

SLOPP. The SLOPP algorithms are then used to solve the sub-problem in a Column Generation 

approach for solving the SSSCSP, ODP and Multiple Stock Size Cutting Stock Problem (MSSCSP, 

see Wäscher et al. [1]). 

A Beam Search (see Ow and Morton [46]) based algorithm for the two-staged SLOPP is 

proposed in Hifi et al. [45]. The Beam Search is based on the best-first search in which at each 

step of the search only the most promising 𝑛 (𝑛 as the beam width) nodes are considered for 

branching. 

A Variable Neighbourhood Descent (VND, see Hansen and Mladenovic [48]) for the two- and 

three-staged SBSBPP is presented in Alvelos et al. [47]. The VND is an iterative improvement 

method that systematically switches between neighbourhoods. 

Regarding mathematical formulations, Macedo et al. [49] presented an Arc-Flow model for 

the two-staged SSSCSP based on the work of Valério de Carvalho [50] for the one-dimensional 

case and Silva et al. [51] proposed integer programming models for the two- and three-staged 

(non-) exact SSSCSP (with extensions for the MSSCSP). 

Chan et al. [52] presented a heuristic for the two- and three-staged SBSBPP called Stochastic 

Neighbourhood Structures (SNS). The SNS, based on the VND, requires that all neighbourhood 

structures explored to be stochastics. 

In Cui and Zhao [53] an algorithm for the two-staged SSSCSP, denoted as Repeated 

Constrained Column-Generation (RCCG), that uses the Column Generation approach to solve 

the sub-problems and the residual problems is proposed. 

An algorithm for the (un)weighted SLOPP that combines the bottom-up and top-down 

approaches is proposed in Wei and Lim [54]. 
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3. Adaptive Sequence-based Heuristic (ASH) 

We propose a Multi-start heuristic (see Martí et al. [55]) that iteratively creates a given 

number of solutions (cutting plans), each of them considering a new ordering of items types 

used to generate the pattern(s) to include into the solution. The main difference between 

solving SSSCSP and SLOPP instances is that for SSSCSP new patterns are created and added to 

the solution until all items have their cut position defined, while for the SLOPP, a solution is 

created considering only one object. 

The main concept behind the proposed heuristics is that if a good solution was packed using 

some base ordering 𝑆𝑏𝑎𝑠𝑒, it may be the case that a better solution can be reached introducing 

few changes to the base ordering by generating a new packing sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Otherwise, 

if no improvement is obtained, the heuristic incrementally allows more changes to the base 

ordering to provide diversification through the search. Orderings that generate a new best 

solution are used as base ordering in the next iterations. The main steps of the proposed 

heuristics are shown in Algorithm 1. 

Algorithm 1. ASH main steps. 

𝑆𝑏𝑎𝑠𝑒 ← Items ordered by efficiency with decreasing value as tiebreaker 

𝛼 ← 𝛼𝑚𝑖𝑛 

Generate a new solution with sequence 𝑆𝑏𝑎𝑠𝑒 

While stopping criteria are not met do 

    𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Generate a new sequence of boxes based on 𝑆𝑏𝑎𝑠𝑒 and 𝛼 

    Generate a new solution with sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

    If a new best solution is found then 

        𝑆𝑏𝑎𝑠𝑒 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

        𝛼 ← 𝛼𝑚𝑖𝑛 

    Otherwise 

        𝛼 ← min{𝛼 + 𝛼𝑖𝑛𝑐 , 𝛼𝑚𝑎𝑥} 

ASH iterates until a maximum number of iterations has been performed or the optimality is 

guaranteed, i.e., for the SSSCSP the solution value is equal to the Continuous Lower Bound 

(𝐶𝐿𝐵 = ⌈
∑ 𝑙𝑖ℎ𝑖

𝑚
𝑖=1

𝐿𝐻
⌉, see Martello and Vigo [56]) and for the SLOPP all the items are included in 

the cutting pattern. 

We use as starting base sequence 𝑆𝑏𝑎𝑠𝑒 the items types ordered by efficiency 𝑒𝑖 =  
𝑣𝑖

(𝑙𝑖×ℎ𝑖)
 as 

defined in Alvarez-Valdés et al. [42] using decreasing 𝑣𝑖  as a tiebreaker. With this ordering, 

ASH starts with a base sequence of item types ordered by efficiency for weighted problems, 
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and with a base sequence ordered by decreasing area for unweighted problems since 𝑒𝑖 is 

equal to 1 for all item types. 

At each iteration, a new sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is generated, based on 𝑆𝑏𝑎𝑠𝑒 and using a 

probability 𝛼, which will define the cutting order to be used when creating a new solution. If 

the newly created solution is the best one found so far, the current sequence becomes the 

current base and 𝛼 is reset to its minimum value 𝛼𝑚𝑖𝑛. Otherwise, the base sequence is not 

changed and 𝛼 is updated as follows, 𝛼 = min{𝛼 + 𝛼𝑖𝑛𝑐, 𝛼𝑚𝑎𝑥}. The reset of 𝛼 to its minimum 

value will generate a new sequence that is very similar to the base sequence intensifying the 

search to regions of the solution space considered promising. Incrementing 𝛼 will allow to 

diversify the search generating sequences that differ incrementally more from the base 

sequence. 

The new sequences are generated based on the algorithm proposed by Lesh et al. [57]. This 

method (see Algorithm 2) creates a new sequence (𝑂𝑢𝑡) adding with a probability of 𝛼 one 

element at a time from the input sequence (𝐼𝑛) into the new sequence until all elements from 

𝐼𝑛 are in 𝑂𝑢𝑡. 

Algorithm 2. Sequence generator. 

Input: sequence 𝐼𝑛, probability 𝛼 
𝑂𝑢𝑡 ← ∅ 
𝑛 ← |𝐼𝑛| 
for 𝑖 ← 1, … , 𝑛 do 
    𝑗 ← 1 
    𝑂𝑢𝑡𝑖 ← ∅ 
    while 𝑜𝑢𝑡𝑖 = ∅ do 
        if 𝛼 ≤ generated random value then 
            𝑂𝑢𝑡𝑖 ← 𝐼𝑛𝑗 

            𝐼𝑛 ← 𝐼𝑛 ∖ {𝐼𝑛𝑗} 

        𝑗 ← (𝑗 𝐦𝐨𝐝 |𝐼𝑛|) + 1 
return 𝑂𝑢𝑡 

The patterns are generated as follows. Iteratively, horizontal strips are created with the first 

item type, considering the ordering defined by 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, that fits into the remaining object 

height. When created, the first-stage strips are filled solving bounded 1D SKP using the 

solution method proposed by Pisinger [58]1. For problems where the maximum number of 

stages is greater than 2, each of the resulting strips is filled solving the associated SKP. The 

 
1 Code available online at http://www.diku.dk/~pisinger/codes.html for academic and non-commercial 
purposes. 

http://www.diku.dk/~pisinger/codes.html
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SKP solved to generate the patterns only consider items that fit at the current strip, have 

residual demand and can be included due to the cut constraints. 

For the SSSCSP, the patterns generated are added to the current solution with the maximum 

frequency of cut allowed by the current residual demand. 

Path Relinking 

ASH can be further enhanced searching for even better results with the inclusion of search 

strategies, such as local search after the cutting plan generation, or with more sophisticated 

ones such as a Path Relinking (proposed by Glover et al. [59]) as a final phase of this heuristic. 

The Path Relinking creates new solutions incorporating into an (initializer) solution attributes 

from another (guiding) solution exploiting trajectories that connect them. 

To improve the results of the SLOPP, all (distinct) patterns generated by ASH are added to a 

pool of patterns ordered decreasingly by their objective function value. The best 𝑅𝑒𝑓𝑆𝑒𝑡𝑠𝑖𝑧𝑒 

solutions from the pool are considered by the Path Relinking procedure either as initializer or 

guiding solutions. 

Considering one initializer and one guiding pattern, one at a time, first stage strips from the 

guiding pattern are added to the current initializer pattern. At each new strip inclusion, the 

procedure regains the solution feasibility by means of two methods, both, iteratively 

removing strips (without considering the newly added strip) from the initializer pattern. The 

first, iteratively, removes the strips that reduces more the demand infeasibility. Next, if the 

object remaining height is negative, the second method iteratively removes the taller strip 

until feasibility is achieved. 

The best pattern found, at the end of each Path Relinking between one initializer and one 

guiding pattern, is filled as previously described considering the sequence of items types 

ordered by efficiency (𝑒𝑖) and decreasing value (𝑣𝑖) as tiebreaker. 

Each pattern generated through the Path Relinking is improved by means of a simple local 

search. This local search swaps items that increase the objective function value between 

those in the pattern and those who have residual demand greater than 0. The local search 

performs the first swap possible, while such move exists. 
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4. Computational Results 

The proposed heuristics were implemented in C and the computational experiments were run 

on a computer with an Intel Core i7-4800MQ at 2.70 GHz with 8 Gb RAM and operating system 

Linux Ubuntu 18.04. 

The results obtained by the Adaptive Sequence-Based Heuristic (ASH) for solving both the 

Single Stock Size Cutting Stock Problem and the Single Large Object Placement Problem are 

next presented. Each instance was run only once generating at most 2000 cutting patterns 

with 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 and 𝛼𝑖𝑛𝑐 set to 0.1, 0.9 and 0.005, respectively.  

For both problems, the values of 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 𝛼𝑖𝑛𝑐 were set through experiments carried 

out considering different options, and the datasets considered correspond to the ones used 

by the algorithms that were used for comparison. 

4.1. Single Stock Size Cutting Stock Problem 

Three datasets were used to test the performance of ASH for the SSSCSP. The first dataset, 

identified in this paper as SET1, was defined by Fayard et al. [25] and contains 30 instances 

previously used by other authors to evaluate their solution methods. The dataset ATP 

contains the last 20 instances (APT30 to ATP49) defined in Alvarez-Valdés et al. [31]. The 

dataset CLASS contains 500 instances, grouped in 10 subsets of 50 instances each, and was 

defined by Berkey and Wang [16] and Martello and Vigo [56]. The main characteristics of the 

datasets are presented in Table 1, where the columns show in the order of appearance, the 

name of the dataset, the number of instances, the objects dimensions range, the number of 

different item types, the item types dimension range and the average demand. 

Table 1. Main features of the datasets. 

Dataset 
Number of 

instances 

Object 

𝒘 × 𝒉 

Number of 

item types 

Items 

𝒘 × 𝒉 

Average 

demand 

SET1 30 [20-267]x[20-244] [5-40] [1-170]x[2-135] 2.5 

ATP 20 [167-960]×[124-983] [25-58] [8-363]×[6-390] 5.0 

CLASS 500 [10-300]×[10-300] [18-100] [1-100]×[1-100] 1.1 

The results obtained by ASH are shown in Table 2 to Table 7. The first column, identified in 

Table 2 to Table 5 with column header Instance, gives the name that each instance is best-

known, while in Table 6 and Table 7, identified with column header subset, gives the subset 
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identification. In Table 2 to Table 5, the lower bounds for each instance (denoting the 

minimum number of bins required to fulfil the demand reported by Silva et al. [16]) are shown 

in column 𝑍𝑙𝑏. The next columns, present the results obtained by other approaches and by 

ASH, grouped by the number of stages considered (identified at the first line of those 

columns). The last row shows, in Table 2 to Table 5, the average execution times for each 

instance, while, in Table 6 and Table 7, the average time to solve each subset is reported. 

In the following tables, we will use the following notation. The symbol = denotes that the 

approach obtained a result equal to 𝑍𝑙𝑏. The symbol ∗ denotes that the approach failed to 

obtain a solution within the computation time limit. The symbol – denotes an unavailable 

value. 

Table 2. Computational results on the instances of SET1 for exact problems. 

Instance 
2-staged exact 3-staged exact 

𝑍𝑙𝑏 Silva ASH 𝑍𝑙𝑏 Silva ASH 

A1 27 = = 23 = = 

A2 15 = = 12 = = 

A3 10 = = 8 = = 

A4 8 = = 5 = = 

A5 8 = = 4 = 5 

CHL1 11 = = 6 = = 

CHL2 4 = = 3 = = 

CHL5 5 = = 3 = 4 

CHL6 9 = = 5 6 6 

CHL7 9 = = 6 = = 

CU1 15 = 16 12 = = 

CU2 20 = 21 14 = 15 

CW1 13 = = 10 = = 

CW2 17 = = 12 = 13 

CW3 22 = 23 16 = 17 

Hchl2 9 = 10 6 = = 

Hchl3s 4 = = 3 = = 

Hchl4s 3 = = 2 = = 

Hchl6s 7 = = 5 = = 

Hchl7s 11 = 12 7 = 8 

Hchl8s 3 = = 2 = = 

Hchl9 14 = 15 10 = 11 

HH 2 = = 2 = = 

OF1 5 = = 4 = = 

OF2 6 = = 4 = 5 

STS2 17 = 18 12 = 13 

STS4 6 = = 5 = = 

W 31 = = 24 = = 

2 3 = = 2 = = 

3 24 = = 23 = = 

Avg. time (s)  0.42 0.01  335.28 0.02 
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Table 2 presents the results for the instances of SET1 solved as two- and three-staged exact 

problems. We compare our results with the exact algorithm proposed by Silva et al. [16] 

(column Silva). The results presented in Table 2 show that although achieving better results 

for this dataset, the computational time required by the exact method grows extremely from 

two- to three-staged problems, while ASH maintains a low computational time to solve the 

instances. It can be noted that the maximum gap to the optimal solution is 1. 

The results for the instances of ATP solved as two- and three-staged exact problems are 

presented in Table 3. It must be noted that Silva et al. [16] set a computational time limit of 

7200 seconds to solve each instance and was not able to attain a feasible solution for two 

instances, ATP31 and ATP40, for the three-staged exact problem. 

Table 3. Computational results on the instances of ATP for exact problems. 

Instance 
2-staged exact 3-staged exact 

𝑍𝑙𝑏 Silva ASH 𝑍𝑙𝑏 Silva ASH 

ATP30 12 = = 8 9 9 

ATP31 19 = = 14 * = 

ATP32 16 = = 12 14 13 

ATP33 18 = = 12 13 13 

ATP34 9 = = 6 = = 

ATP35 10 = = 8 = = 

ATP36 11 = = 8 = = 

ATP37 16 = = 11 15 12 

ATP38 15 = = 10 12 11 

ATP39 16 = = 11 12 12 

ATP40 20 = = 15 * 16 

ATP41 16 = = 12 = = 

ATP42 21 = = 15 17 16 

ATP43 18 = = 12 15 13 

ATP44 14 = = 9 = = 

ATP45 11 = = 8 = = 

ATP46 16 = 17 11 12 12 

ATP47 18 = = 12 14 13 

ATP48 11 = = 8 9 = 

ATP49 8 = = 5 6 = 

Avg. time (s)  217.1 0.04  5561.78 0.10 

From Table 3, we can observe that for the two-staged case only for one instance the solution 

does not match the optimal solution, while for the three-staged case, considering the 

imposed time limit, better results than those obtained by the exact method were obtained. 

Table 4 presents the results obtained solving the instances of SET1 as two- and three-staged 

non-exact problems, while Table 5, presents the results for the non-exact case for the set ATP. 
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We compare these results with the approaches of Silva et al. [16] and the Column Generation 

based approach presented by Cui and Zhao [18] (column RCCG) for the two-staged problem. 

As can be observed in Table 4 and Table 5, the proposed heuristic is able to attain results very 

similar to those obtained by the RCCG. It is noteworthy the growth of the execution time in 

both Silva and RCCG from SET1 to ATP making clear that the extra complexity influence in a 

great manner the performance of these approaches. 

Table 4. Computational results on the instances of SET1 for non-exact problems. 

Instance 
2-staged non-exact 3-staged non-exact 

𝑍𝑙𝑏 Silva RCCG ASH 𝑍𝑙𝑏 Silva ASH 

A1 23 = = = 23 = = 

A2 12 = 13 = 12 = = 

A3 8 = = = 8 = = 

A4 5 = = = 5 = = 

A5 5 = = = 4 = 5 

CHL1 6 = = = 6 = = 

CHL2 3 = = = 3 = = 

CHL5 4 = = = 3 = 4 

CHL6 6 = = = 5 = 6 

CHL7 6 = = = 6 = = 

CU1 12 = = = 12 = = 

CU2 15 = = = 14 = 15 

CW1 10 = = = 10 = = 

CW2 12 = 13 13 12 = 13 

CW3 16 = = 18 16 = 17 

Hchl2 6 = = = 6 = = 

Hchl3s 3 = = = 3 = = 

Hchl4s 2 = 3 = 2 = = 

Hchl6s 5 = = = 5 = = 

Hchl7s 7 = = 8 7 = = 

Hchl8s 2 = = = 2 = = 

Hchl9 10 = = 11 10 = 11 

HH 2 = = = 2 = = 

OF1 4 = = = 4 = = 

OF2 5 = = = 4 = 5 

STS2 12 = = 13 12 = 13 

STS4 5 = = = 5 = = 

W 24 = = = 24 = = 

2 2 = = = 2 = = 

3 23 = 24 = 23 = = 

Avg. time (s)  8.85 0.19 0.02  121.33 0.02 

As can be observed in Table 5, with respect to the three-staged problem our approach 

obtained, considering the time limit imposed, better results than the exact approach with a 

computational time extremely low. Again, the exact algorithm was not able to give, 
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considering the time limit imposed, a feasible solution for two instances, namely ATP30 and 

ATP40. 

Table 5. Computational results on the instances of ATP for non-exact problems. 

Instance 
2-staged non-exact 3-staged non-exact 

𝑍𝑙𝑏 Silva RCCG ASH 𝑍𝑙𝑏 Silva ASH 

ATP30 9 = = = 8 * 9 

ATP31 14 15 = = 14 15 = 

ATP32 13 = = = 12 14 13 

ATP33 12 13 13 13 12 13 13 

ATP34 6 = = = 6 = = 

ATP35 8 = = = 8 = = 

ATP36 8 = = = 8 = = 

ATP37 12 = = = 11 12 12 

ATP38 11 = = = 10 11 11 

ATP39 11 = = 12 11 12 12 

ATP40 15 = = 16 15 * 16 

ATP41 12 = = = 12 = = 

ATP42 15 16 = 16 15 16 16 

ATP43 13 14 = = 12 14 13 

ATP44 9 = = = 9 10 = 

ATP45 8 = = = 8 = = 

ATP46 11 = = 12 11 12 12 

ATP47 13 = = = 12 13 13 

ATP48 8 9 9 9 8 9 9 

ATP49 5 = 6 6 5 6 6 

Avg. time (s)  3642.58 9.5 0.08  5809.76 0.1 

Table 6 and Table 7 present the results obtained using the CLASS dataset. We show in the 

following two tables the results obtained when solving this dataset as two- and three-staged 

exact (Table 6) and non-exact problems (Table 7). 

Table 6. Computational results on the subsets of CLASS for exact problems. 

Subset 
2-staged exact 3-staged exact 

SNS VND ASH SNS VND ASH 

CLASS 1 1134 1134 1134 1012 1021 1018 

CLASS 2 167 167 167 128 128 128 

CLASS 3 998 999 1002 728 731 735 

CLASS 4 270 270 270 127 128 132 

CLASS 5 1386 1386 1390 921 925 930 

CLASS 6 383 383 383 116 117 118 

CLASS 7 1059 1061 1064 845 846 851 

CLASS 8 1556 1556 1556 861 867 859 

CLASS 9 2320 2320 2320 2130 2131 2131 

CLASS 10 891 892 897 525 523 536 

Avg. time (s) 17.35 - 1.35 12.71 - 1.69 

We compare our results with solution methods for solving the SBSBPP (as the CLASS dataset 

average demand is close to 1), namely, SNS (Chan et al. [17]) and VND (Alvelos et al. [12]). 
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The VND results were obtained from Chan et al. [17]. Before interpreting the computation 

results, it must be referred that Chan et al. [17] presented the best results obtained from 30 

runs. 

Table 7. Computational results on the subsets of CLASS for non-exact problems. 

Subset 
2-staged non-exact 3-staged non-exact 

SNS VND ASH SNS VND ASH 

CLASS 1 1023 1029 1023 1015 1019 1016 

CLASS 2 131 131 131 128 128 125 

CLASS 3 729 731 736 730 731 734 

CLASS 4 130  130 132 126 126 127 

CLASS 5 920 925 931 915 925 928 

CLASS 6 117 117 118 116 116 116 

CLASS 7 848 848 858 841 844 846 

CLASS 8 863 867 859 854 865 857 

CLASS 9 2130 2131 2131 2130 2130 2131 

CLASS 10 528 527 537 521 522 523 

Avg. time (s) 10.76 12.32 1.42 10.6 - 1.63 

The SNS attains better results in almost all subsets. Although a direct comparison is not 

possible, our approach seems to require much less time to solve these subsets. ASH, when 

compared with the SBSBPP specifically tailored heuristics, was able to attain interesting 

results, especially when compared with the VND heuristic. Considering the good 

computational results obtained and the implementation simplicity of ASH, one can conclude 

that the heuristics proposed are a very attractive approach to solve both the Cutting Stock 

and the Bin Packing Problems. 

4.2. Single Large Object Placement Problem 

Four datasets from the literature are used to test the performance of ASH and ASH combined 

with a Path Relinking procedure (ASH+PR) for the SLOPP. The main characteristics of the 

datasets are presented in Table 8. The columns show, in the order in which they appear, the 

name of the dataset, the number of instances, the objects dimensions ranges, the number of 

different item types, the item types dimension ranges, and the average demand. The dataset 

HR (Hifi and Roucairol [30]) and ATP (Alvarez-Valdés et al. [31]) contains both weighted and 

unweighted instances. Datasets ATP[10-29], GCUT (Beasley [14]) and CMWX (Cintra et al. 

[44]) were created for unconstrained problems, which means the items does not have 

associated demand, denoted in Table 8 with the symbol –. 
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Table 8. Main features of the datasets. 

Dataset Instances 
Object 

𝒘 × 𝒉 
m 

Items 

𝒘 × 𝒉 

Average 

demand 

HR 38 [20-267]x[20-244] [5-40] [1-170]x[2-135] 2.5 

ATP[10-29] 20 [1674-2899]x[1612-2994] [31-59] [96-1142]x[81-1192] - 

ATP[30-49] 20 [167-960]x[124-983] [25-58] [8-363]x[6-390] 5.0 

GCUT 13 [250-3000]x[250-3000] [10-50] [62-970]x[63-1890] - 

CMWX 4 3500x3500 [42-82] [254-970]x[116-1890] - 

The results obtained by ASH and by ASH+PR when solving the four datasets are shown in Table 

9 to Table 13. The 𝑅𝑒𝑓𝑆𝑒𝑡𝑠𝑖𝑧𝑒 for the ASH+PR was set to 50. 

The content of the columns in Table 9 to Table 11 is the following. The first column, identified 

with column header First cut, gives the first cut direction considered when solving the 

instances. The column Algorithm denotes the algorithm name. Columns GAP (%), Optimums, 

and Time (s) give, respectively, the average GAP, the number of optimal solutions obtained, 

and the average execution time in seconds. 

To solve the problems with first cut direction vertical, we exchange the dimensions of both 

objects and item types, and then solve the problem considering horizontal first cut direction. 

Table 9 presents the results obtained by solving the dataset HR as a constrained two-staged 

SLOPP with exact cuts. We compare our results with the ones presented by Hifi and Roucairol 

[30] denoted as Exact and Approximate algorithms. 

Table 9. Computational results for exact constrained two-staged SLOPP - Set HR. 

First cut Algorithm GAP (%) Optimums Time (s) 

Horizontal 

Approximate 0.44 31 0.10 

Exact 0.00 38 1.17 

ASH 0.11 34 0.01 

ASH+PR 0.01 36 0.01 

Vertical 

Approximate 0.74 31 0.10 

Exact 0.00 38 1.17 

ASH 0.40 35 0.01 

ASH+PR 0.04 37 0.01 

From the results presented in Table 9, we can observe the high-quality results that the ASH 

approaches obtained for this problem/set, achieving almost all the optimal solutions in both 

first cut directions. It must be noted that both ASH approaches obtained better results than 

the Approximate approach and that the computational times needed is very low. 
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Table 10 and Table 11 present the results obtained for dataset HR and ATP[30-49], 

respectively, as a constrained non-exact two-staged SLOPP. We compare our results with the 

ones presented by Hifi and Roucairol [30] (Exact and Approximate), Lodi and Monaci [35] (M1 

and M2), Hifi and M'Hallah [37] (ALGO_ESGA and ALGO_SGA), Belov and Scheithauer [38] 

(BCP CG cuts, BCP M1, and BCP), Hifi and M'Hallah [40] (SGA, ESGA, and HESGAa), Alvarez-

Valdés et al. [41] (GRASP_Piece, GRASP_Strip, and PR), and Hifi et al. [45] (LBSd
3 and GBSd

2). 

Table 10. Computational results for non-exact constrained two-staged SLOPP - Set HR. 

First cut Algorithm GAP (%) Optimums Time (s) 

Horizontal 

Approximate 4.68 8 0.12 

Exact 0.00 38 249.19 

M1 0.00 38 27.54 

M2 0.00 38 38.80 

ALGO_ESGA 0.00 38 1.03 

ALGO_SGA 0.00 38 2.03 

BCP CG cuts 0.00 38 3.62 

BCP M1 0.00 38 10.28 

SGA 3.08 9 0.10 

ESGA 0.58 22 0.80 

GRASP_Piece 2.24 10 0.04 

GRASP_Strip 0.22 35 0.18 

PR 0.00 38 0.50 

ASH 0.31 29 0.02 

ASH+PR 0.22 36 0.02 

Vertical 

Approximate 5.08 7 0.12 

Exact 0.00 38 268.88 

M1 0.00 38 23.96 

M2 0.00 38 57.62 

PR 0.00 37 0.50 

ASH 0.43 28 0.02 

ASH+PR 0.10 35 0.02 

The results in Table 10 demonstrate that ASH and the Path Relinking approach, applied to the 

solution obtained by ASH, can obtain extremely good results with a computational time 

extremely low. 

As can be observed in Table 11, the GBSd
2 approach outperform all the other heuristic, but 

ASH and ASH+PR obtain results close to those obtained by GRASP_Strip and PR. For the 

vertical case, ASH+PR obtained a GAP that is considerably lower than the one obtained by PR. 

Noteworthy that our Path Relinking, applied to the subset of the population pattern, does not 

produce a notable time overhead, when compared with ASH computational time and 

considerably improves the results obtained. 
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Table 11. Computational results for non-exact constrained two-staged SLOPP - Set ATP[30-49]. 

First cut Algorithm GAP (%) Optimums Time (s) 

Horizontal 

BCP  0.01 18 142.91 

SGA 2.06 2 - 

ESGA 0.80 6 - 

HESGAa 0.30 9 13.53 

GRASP_Piece 4.06 0 0.17 

GRASP_Strip 0.23 11 0.74 

PR 0.08 14 1.18 

LBSd3 4.05 4 0.05 

GBSd2 0.00 20 0.20 

ASH 0.49 6 0.04 

ASH+PR 0.21 11 0.05 

Vertical 

HESGAa 0.35 5 14.42 

GRASP_Piece 2.88 0 0.17 

GRASP_Strip 0.31 13 0.89 

PR 0.18 14 1.34 

LBSd3 4.04 5 0.05 

GBSd2 0.00 20 0.20 

ASH 0.50 8 0.04 

ASH+PR 0.08 13 0.05 

Table 12 presents the results for the dataset ATP considering both unconstrained and 

constrained non-staged problems. We compare our results with the ones presented by 

Alvarez-Valdés et al. [31] (CONS, GRASP, GRASP+PR, and TABU500) for unrestricted problems. 

Table 12 presents the average GAP for both unconstrained (instances 10 to 29) and 

constrained (instances 30 to 49) problems. The last column gives the average time to solve 

the complete dataset. 

We handle unconstrained problems setting the demand for each item type as the maximum 

number of units that is possible to include in a pattern considering the object dimensions. 

Table 12. Computational results for non-staged SLOPP - Set ATP. 

Algorithm 

GAP (%) 

Time (s) Unconstrained Constrained 

ATP[10-29] ATP[30-49] 

CONS 4.79 4.09 0.40 

GRASP 2.05 1.89 23.70 

GRASP+PR 1.73 1.13 63.70 

TABU500 0.27 0.45 450.40 

ASH 2.11 1.40 0.06 

ASH+PR 1.80 1.27 0.07 

Although our placement heuristic deals only with restricted patterns, the results observed in 

Table 12 make clear that ASH and ASH+PR can outperform, in both unconstrained and 
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constrained problems, other approaches specifically designed for problems that consider 

unrestricted patterns. The computational times are low, and the results are very close to 

those obtained by the GRASP and GRASP+PR. 

The results obtained for the datasets GCUT and CMWX unconstrained two-, four-, and non-

staged SLOPP are presented in Table 13. We compare the results obtained with the ones 

presented by Cintra et al. [44] for unconstrained problems. This table gives the average waste 

produced, the average execution time in seconds, and the maximum execution time 

observed. We only present the results obtained by ASH and ASH+PR with non-staged cuts 

because two-, four- and non-staged produced the same result. 

From the observation of Table 13, we emphasize the low waste reduction that can be 

obtained from considering two-staged patterns and non-staged patterns, thus may not justify 

the extra computational effort required by this cutting style, as already observed in Farley 

[60]. 

Table 13. Computational results for unconstrained non-staged SLOPP - Set GCUT and CMWX. 

Algorithm Stages Waste (%) Time (s) Max. time (s) 

CINTRA  two-staged 2.49 37.38 223.13 

CINTRA four-staged 2.10 40.23 456.00 

CINTRA non-staged 2.09 83.87 212.66 

ASH non-staged 2.68 0.04 0.21 

ASH+PR non-staged 2.60 0.05 0.24 

ASH and AHS+PR were capable to attain constantly good results with low computational times 

for all the presented variants of the problem. The results show that the proposed heuristics 

produce optimal and near-optimal solutions and are also competitive when compared with 

other heuristics from the literature specially tailored for specific problems. It is noteworthy 

the implementation simplicity and little to no parametrization needed by both ASH and 

AHS+PR. 

5. Conclusion 

We present heuristics for two related cutting problems. The first problem aims the maximum-

profit subset of items to extract from an object, while the second problem intent to extract 

all the items from a given set using the minimum number of objects. The object and items 

considered are rectangular and must be extracted through guillotine cuts without 
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overlapping. In the proposed heuristics, a new sequence is generated at each iteration to 

create a new solution, i.e., cutting plan. The sequences generated try to incorporate some 

knowledge from previous sequences in order to intensify and diversify the solution space 

explored. To evaluate the performance of the proposed heuristics several computational 

experiments have been performed and discussed. The computational results validate the 

effectiveness of the proposed heuristic since it provides high-quality solutions with very low 

computational times in all problems considered. As the proposed approach seems to be very 

promising, a future research direction could be to apply it to other combinatorial optimization 

problems. The problems to be considered could be the three-dimensional cutting and packing 

problems, the facility location problems (e.g., the sequences can represent the order in which 

the location will be opened or the order to assign the clients to facilities) or the Travel 

Salesman Problem (e.g., the sequences could represent possible paths between the cities). 
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