

Efficient Heuristics for Two-Dimensional
Cutting and Packing Problems

Óscar António Maia de Oliveira

Supervisor

Professor Elsa Marília da Costa Silva

Co-supervisor

Professor Dorabela Regina Chiote Ferreira Gamboa

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Engineering and Industrial Management.

2019

ii

iii

To Rúben and Martim.

iv

v

For endless comprehension, thank you Mónica.

For endless joy, thank you Rúben and Martim.

For endless kindness, thank you mother.

For endless patience, support and guidance, I express my gratitude

to my advisors, Professors Dorabela Gamboa and Elsa Silva.

vi

vii

Abstract

Cutting and packing problems are complex combinatorial optimization problems that have

gained a lot of attention from the scientific community. These problems aim to assign to one

or more objects a set of items to either be cut or packed. From this class of problems, this

thesis focusses on those aiming to achieve the layout that maximizes the value of the items

assigned to one object, and on those aiming to assign all items to objects using as fewer

objects as possible.

The importance given to the solution of these problems is, mainly, due to their relevance in

diversified areas, such as economics, industry, health, among many others.

Exact methods ensure the achievement of the problem’s optimal solution at the expense of,

usually, high computational resources, justifying the exploration of alternative approaches,

such as heuristics, that can obtain high-quality solutions with lower resources.

This thesis is divided into three parts. The first part, aside from a comprehensive introduction

to solution methods, discusses the relevant contributions given by the papers included in the

other two parts of this thesis.

The second part is composed by three papers. The first paper gives a deep dive into the cutting

and packing subject and reviews the solution methods for the two-dimensional guillotine and

non-guillotine problems. The second paper is a survey on the datasets used by researchers

when evaluating the solution methods for the two-dimensional rectangular cutting and

packing problems. The third paper presents the resources that were developed aiming to help

the development of our research and that we have made available for the scientific

community.

The third part contains two papers presenting the solution methods proposed for two-

dimensional cutting and packing problems. The first paper presents heuristics to solve non-

guillotine problems, while the second deals with problems that consider guillotine cut

constraints.

The proposed heuristics to solve guillotine and non-guillotine two-dimensional cutting and

packing problems share the same base concept. The idea behind the design of these heuristics

viii

was that, if an ordering (to cut or pack items) generates a good solution, it may be the case

that slight changes to this ordering generate a better solution. And, if the changes do not

improve the current solution, the incremental introduction of more changes to the base

ordering could allow the exploration of more diverse regions of the solution space.

The computational results demonstrate that the proposed heuristics attain good results when

compared with other solution methods, obtaining constantly good quality solutions in

reduced computational times, validating their effectiveness and robustness.

Keywords: Two-dimensional, Rectangular, Guillotine, Non-guillotine, Cutting Problem,

Packing Problem, Heuristics

ix

Resumo

Os problemas de corte e empacotamento são problemas complexos de otimização

combinatória que têm sido foco de muita atenção por parte da comunidade científica. Estes

problemas visam atribuir a um ou mais objetos um conjunto de itens de modo a serem

cortados ou empacotados. Desta família de problemas, esta tese concentra-se naqueles que

procuram atingir o layout que maximiza o valor dos itens atribuídos a um objeto, e nos

problemas que pretendem atribuir todos os itens minimizando o número de objetos

utilizados.

A importância dada à resolução desses problemas deve-se, principalmente, à sua relevância

em áreas diversificadas, como economia, indústria, saúde, entre muitas outras.

Os métodos exatos garantem a obtenção da solução ótima do problema, geralmente, à custa

de elevados recursos computacionais, justificando deste modo a investigação de abordagens

alternativas, como heurísticas, que possam obter soluções de alta qualidade utilizando menos

recursos.

Esta tese é dividida em três partes. A primeira parte, além de uma introdução aos métodos

de resolução, discute as contribuições relevantes dadas pelos artigos incluídos nas outras

duas partes desta tese.

A segunda parte é composta por três artigos. O primeiro artigo explora o tópico de corte e

empacotamento e os métodos de resolução para problemas bidimensionais guilhotinados e

não guilhotinados. O segundo artigo apresenta os conjuntos e os geradores de instâncias que

podem ser encontrados na literatura e que foram usados pelos investigadores para avaliar os

métodos de resolução propostos para os problemas de corte e empacotamento. O terceiro

artigo apresenta os recursos que foram criados para suportar a nossa investigação e que

disponibilizamos para serem usados pela comunidade científica.

A terceira parte é constituída por dois artigos apresentando os métodos de resolução

propostos para problemas de corte e empacotamento bidimensionais considerando cortes

guilhotinados e não guilhotinados. A conceito por detrás das heurísticas propostas é que, se

uma sequência de itens (a serem cortados ou empacotados) gera uma boa solução, pequenas

mudanças nessa sequência podem levar a uma melhor solução. E que, se essas mudanças não

x

melhorarem a solução, a introdução de incrementalmente mais mudanças na sequência de

itens pode permitir a exploração de regiões mais diversificadas do espaço de soluções.

Os resultados computacionais demonstram que as heurísticas propostas alcançam bons

resultados quando comparadas com outros métodos de solução obtendo soluções de boa

qualidade em tempos computacionais reduzidos, validando sua eficácia e robustez.

Palavras-chave: Bidimensional, Retangular, Guilhotinados, Não Guilhotinados, Problema da

Corte, Problemas de Empacotamento, Heurísticas

xi

Contents

Abstract .. vii

Resumo ... ix

Contents .. xi

List of Tables ... xiii

List of Figures .. xix

Part I – Thesis ... 1

1. Introduction ... 2

1.1. Solution Methods .. 3

1.2. Background and Motivation ... 7

2. Thesis Contribution .. 7

3. Conclusions .. 15

References ... 16

Part II – Research Resources .. 19

A Review of Solution Approaches for Two-dimensional Cutting and Packing Problems 21

1. Introduction ... 21

2. Cutting and Packing Problems ... 22

3. Solution Approaches .. 30

4. Conclusion .. 53

Appendix A ... 54

References ... 56

Datasets and Generators for Two-dimensional Cutting and Packing Problems 69

1. Introduction ... 69

2. Literature Benchmarks ... 70

xii

3. Instance Generators ... 85

References ... 86

Resources for Two-dimensional (and Three-dimensional) Cutting and Packing Solution

Methods Research ... 93

1. Introduction ... 93

2. Datasets ... 95

3. GUI for instance and cutting plan visualisation ... 97

4. Website .. 103

5. Conclusion .. 110

References ... 110

Part III – Heuristics ... 113

Adaptive Sequence-based Heuristic for Two-Dimensional Non-Guillotine Packing Problems

.. 115

1. Introduction ... 115

2. Literature Review ... 116

3. Adaptive Sequence-based Heuristic (ASH) .. 119

4. Computational Results ... 121

5. Conclusion .. 127

References ... 127

Adaptive Sequence-based Heuristic for Two-Dimensional Guillotine Cutting Problems .. 131

1. Introduction ... 131

2. Literature Review ... 133

3. Adaptive Sequence-based Heuristic (ASH) .. 138

4. Computational Results ... 141

5. Conclusion .. 150

References ... 151

xiii

List of Tables

Part II – Research Resources

A Review of Solution Approaches for Two-dimensional Cutting and Packing Problems

Table 1. Typology of Dyckhoff - Criteria. ... 29

Table 2. Typology of Wäscher et al. (2007) - Criteria. ... 29

Table 3. Typology of Wäscher et al. (2007). .. 30

Table 4. Solution approaches for cutting and packing problems. ... 54

Datasets and Generators for Two-dimensional Cutting and Packing Problems

Table 1. Datasets for cutting and packing problems. .. 70

Table 2. Features of the instances in AA. ... 72

Table 3. Features of the instances in AB. ... 72

Table 4. Features of the instances in ABM. ... 73

Table 5. Features of the instances in ABMR. ... 73

Table 6. Features of the instances in AH. .. 73

Table 7. Features of the instances in ASSORT. .. 73

Table 8. Features of the instances in ATP. ... 73

Table 9. Features of the instances in B. ... 73

Table 10. Features of the instances in BABU. .. 74

Table 11. Features of the instances in BABU2. .. 74

Table 12. Features of the instances in BENG. .. 74

Table 13. Features of the instances in BKW. ... 74

Table 14. Features of the instances in BRPB. ... 74

Table 15. Features of the instances in CGCUT. .. 74

Table 16. Features of the instances in CH.. 74

Table 17. Features of the instances in CHL. ... 75

Table 18. Features of the instances in CJCM. .. 75

Table 19. Features of the instances in CLASS. ... 75

xiv

Table 20. Features of the instances in CMWX. .. 75

Table 21. Features of the instances in CUI. ... 75

Table 22. Features of the instances in CWL. .. 75

Table 23. Features of the instances in CY. ... 75

Table 24. Features of the instances in CZ. ... 76

Table 25. Features of the instances in D. ... 76

Table 26. Features of the instances in DOWSLAND. .. 76

Table 27. Features of the instances in EL-AAL. .. 76

Table 28. Features of the instances in EP2. ... 76

Table 29. Features of the instances in FHZ. ... 76

Table 30. Features of the instances in FO. ... 77

Table 31. Features of the instances in GARD. .. 77

Table 32. Features of the instances in GCUT. .. 77

Table 33. Features of the instances in HADCHR. ... 77

Table 34. Features of the instances in HERZ. ... 77

Table 35. Features of the instances in HIFI1997a. ... 77

Table 36. Features of the instances in HIFI1997b. ... 78

Table 37. Features of the instances in HIFI2001. ... 78

Table 38. Features of the instances in HOPPER. .. 78

Table 39. Features of the instances in HT2001a. ... 78

Table 40. Features of the instances in HT2001b. .. 78

Table 41. Features of the instances in HZ1. ... 78

Table 42. Features of the instances in HZ2. ... 79

Table 43. Features of the instances in IS. .. 79

Table 44. Features of the instances in IYUAI. .. 79

Table 45. Features of the instances in JAKOBS. ... 79

Table 46. Features of the instances in JLSL. ... 79

Table 47. Features of the instances in KORF. .. 79

Table 48. Features of the instances in KR. ... 79

Table 49. Features of the instances in LC. ... 80

Table 50. Features of the instances in LCT. ... 80

Table 51. Features of the instances in LYT. .. 80

xv

Table 52. Features of the instances in MA. ... 80

Table 53. Features of the instances in MAA. ... 80

Table 54. Features of the instances in MB. .. 80

Table 55. Features of the instances in MB2D. ... 81

Table 56. Features of the instances in MG. ... 81

Table 57. Features of the instances in MP. .. 81

Table 58. Features of the instances in MWV. .. 81

Table 59. Features of the instances in NGCUT. ... 81

Table 60. Features of the instances in NGCUTAP. ... 81

Table 61. Features of the instances in NGCUTCON. .. 82

Table 62. Features of the instances in NGCUTFS. .. 82

Table 63. Features of the instances in NHU... 82

Table 64. Features of the instances in OF. ... 82

Table 65. Features of the instances in OKP. .. 82

Table 66. Features of the instances in ONV. .. 82

Table 67. Features of the instances in PGD. .. 82

Table 68. Features of the instances in PO. .. 83

Table 69. Features of the instances in RAND. .. 83

Table 70. Features of the instances in RSS. ... 83

Table 71. Features of the instances in SCP. ... 83

Table 72. Features of the instances in SCPL. ... 83

Table 73. Features of the instances in SPIEKSMA. ... 83

Table 74. Features of the instances in SS. ... 83

Table 75. Features of the instances in SSOOYKI. ... 84

Table 76. Features of the instances in STS... 84

Table 77. Features of the instances in TEST. ... 84

Table 78. Features of the instances in VAG. .. 84

Table 79. Features of the instances in VASSILIADIS. .. 84

Table 80. Features of the instances in VENKATESWARLU. .. 84

Table 81. Features of the instances in WANG. .. 84

Table 82. Features of the instances in WV. ... 85

Table 83. Features of the instances in WVINT. .. 85

xvi

Table 84. Features of the instances in WWD. .. 85

Table 85. Features of the instances in ZDF. ... 85

Table 86. Lodi et al. Instance Generator. ... 85

Table 87. Wang and Valenzela Instance Generator. ... 86

Table 88. Hopper and Turton Instance Generator. ... 86

Table 89. SLOPPGEN Instance Generator. ... 86

Table 90. ep2 (and ep3) Instance Generator. .. 86

Table 91. 2DCPackGen Instance Generator. .. 86

Part III – Heuristics

Adaptive Sequence-based Heuristic for Two-Dimensional Non-Guillotine Packing Problems

Table 1. Summary of the results obtained... 122

Table 2. Results for Berkey and Wang instances. .. 123

Table 3. Results for Martello and Vigo instances. ... 124

Table 4. Datasets. ... 125

Table 5. Computational results - Problems from literature. ... 125

Table 6. Computational results - Zero-waste problems. ... 126

Adaptive Sequence-based Heuristic for Two-Dimensional Guillotine Cutting Problems

Table 1. Main features of the datasets. ... 141

Table 2. Computational results on the instances of SET1 for exact problems. 142

Table 3. Computational results on the instances of ATP for exact problems. 143

Table 4. Computational results on the instances of SET1 for non-exact problems. 144

Table 5. Computational results on the instances of ATP for non-exact problems. 145

Table 6. Computational results on the subsets of CLASS for exact problems. 145

Table 7. Computational results on the subsets of CLASS for non-exact problems. 146

Table 8. Main features of the datasets. ... 147

Table 9. Computational results for exact constrained two-staged SLOPP - Set HR. 147

Table 10. Computational results for non-exact constrained two-staged SLOPP - Set HR. 148

Table 11. Computational results for non-exact constrained two-staged SLOPP - Set ATP[30-

49]. ... 149

xvii

Table 12. Computational results for non-staged SLOPP - Set ATP. 149

Table 13. Computational results for unconstrained non-staged SLOPP - Set GCUT and CMWX.

.. 150

xviii

xix

List of Figures

Part I – Thesis

Figure 1. Articles timeline. ... 8

Figure 2. Solution approaches comparison map. .. 10

Figure 3. Randomized BubbleSearch. .. 13

Figure 4. Permutation probability variation. ... 13

Part II – Research Resources

A Review of Solution Approaches for Two-dimensional Cutting and Packing Problems

Figure 1. Cutting problem. ... 22

Figure 2. Cutting pattern. ... 23

Figure 3. One-dimensional problem. ... 24

Figure 4. Two-dimensional problem. ... 24

Figure 5. Three-dimensional problem. .. 24

Figure 6. 1.5-dimensional problem. ... 25

Figure 7. Regular and irregular items. ... 25

Figure 8. Non-orthogonal pattern. .. 25

Figure 9. Guillotine and non-guillotine patterns. .. 26

Figure 10. Two- and three-staged cuts. ... 26

Figure 11. Exact and non-exact problems. .. 27

Figure 12. Non-isotropic material. ... 27

Figure 13. Group patterns. ... 28

Figure 14. X-pattern and Y-pattern. ... 28

Figure 15. Discretization Points. .. 34

Figure 16. Reduced Raster Points. ... 34

Figure 17. Difference Process. ... 35

Figure 18. Corner Points. ... 35

Figure 19. Extreme Points. ... 36

xx

Figure 20. Fekete and Schepers’ graph-theoretical characterization – Feasible pattern. 38

Figure 21. Fekete and Schepers’ graph-theoretical characterization – Unfeasible pattern. .. 38

Figure 22. Non-orthogonal packing. .. 40

Figure 23. Jakobs’ BL Heuristic. .. 41

Figure 24. Liu and Teng improved BL algorithm. ... 41

Figure 25. Burke et al. Array of Occupied Positions. ... 42

Figure 26. Solutions generated by the placement procedures BL+LB and BL. 43

Figure 27. Smooth Packing... 43

Figure 28. Patterns: General (left), Normal (middle), Meet-in-the-Middle (right). 44

Figure 29. Potential improvement. .. 48

Figure 30. Sequence Pair representation. ... 49

Resources for Two-dimensional (and Three-dimensional) Cutting and Packing Solution

Methods Research

Figure 1. JSON structure. ... 96

Figure 2. Instance OF1 – Original format. .. 96

Figure 3. Instance OF1 - Converted to JSON. ... 97

Figure 4. Menu icon. .. 97

Figure 5. Instance OF1 – Rendered. ... 98

Figure 6. 2D 2-staged SLOPP – 2D JSON. ... 98

Figure 7. 2D 2-staged SLOPP – 2D render. ... 99

Figure 8. Disk icon. ... 99

Figure 9. 2D 2-staged SLOPP – 3D JSON. ... 100

Figure 10. 2D 2-staged SLOPP – 3D render. ... 100

Figure 11. 3D SBSBPP – Wireframe render. ... 101

Figure 12. 3D SBSBPP – Solid unoccupied space render. .. 102

Figure 13. 3D SBSBPP – Solid render. .. 102

Figure 14. Homepage. .. 103

Figure 15. Literature review. .. 105

Figure 16. Type Keywords – Non-guillotine keyword selected. .. 106

Figure 17. Type Datasets – CGCUT dataset selected. .. 106

Figure 18. Type Comparison – Article Gonçalves and Resende (2011) selected. 107

xxi

Figure 19. Quick view. .. 107

Figure 20. Quick view - CGCUT dataset selected. .. 108

Figure 21. Filter. ... 108

Figure 22. Datasets list. .. 109

Figure 23. Instance generators list. .. 109

Part III – Heuristics

Adaptive Sequence-based Heuristic for Two-Dimensional Non-Guillotine Packing Problems

Figure 1. Difference Process. ... 121

Adaptive Sequence-based Heuristic for Two-Dimensional Guillotine Cutting Problems

Figure 1. Two- and three-staged cuts. ... 132

Figure 2. Exact and non-exact problems. .. 132

xxii

1

Part I – Thesis

2

3

1. Introduction

But still there are many important and practical problems in the industries

waiting to be solved efficiently…

Cheng et al. [1]

Combinatorial optimization problems can be represented by mathematical models that

represent the objectives, resources, constraints, and decision variables of the problems.

Combinatorial optimization is the process of finding the optimal solution among a set of all

possible solutions, determining the configuration for decision variables that allows achieving

the best result considering the objectives, resources and constraints imposed by the model.

Due to the applicability and importance of combinatorial optimization problems in the most

diverse areas, such as economy, industry, transport, medicine, the design of efficient methods

that allow obtaining high-quality results in acceptable computational times has been the

subject of increasing research activities at enterprise and academic levels.

1.1. Solution Methods

He must figure out how few of the boards he can purchase and still be able to

cut all the required lengths from them.

Golden[2]

Solution methods to maximize or minimize the objective function value arise mainly in two

flavours, exact and non-exact methods.

Although exact methods are guaranteed to find the optimal solution for any problem, they

tend to be extremely demanding in computational resources, even for small and medium

sized instances. The search for the optimal solution is performed through, explicit or implicit,

enumeration of the entire solution space. Among the most commonly used exact methods,

we refer to Branch-and-Bound (see Land and Doig [3], and Agin[4]), Dynamic Programming

(see Bellman [5]) and Branch-and-Cut (see Mitchell [6]).

4

In some exact methods, the obtention of the optimal solution is guaranteed only if there is

no time limit for the execution and if the necessary computing resources are provided, which

for large-scale instances, can be totally impractical. Hence, the need for solution methods that

can obtain solutions of good quality with less demanding computing resources and in an

acceptable time.

Approximation algorithms (see Vazirani [7], and Williamson and Shmoys [8]) do not guarantee

the optimal solution for a problem but ensure that the solution is within a quality threshold.

Using as an example a minimization problem whose optimal solution is denoted as 𝑧∗, an

algorithm is said to be an 𝛼-approximation algorithm, if it guarantees that the solution

obtained is always at most 𝛼 × 𝑧∗ (with 𝛼 ≥ 1), i.e., for each solution 𝑧 obtained by this

algorithm, we are guaranteed to have 𝑧∗ ≤ 𝑧 ≤ (𝛼 × 𝑧∗).

On the other side, heuristics are problem-specific approaches that opposite to approximation

algorithms have no guarantee on the quality of the solution obtained but are, usually, much

less demanding in computational resources. Commonly, heuristics used to solve optimization

problems are divided into three types, namely, constructive, local search and metaheuristic-

based heuristics.

Constructive heuristics start with an empty solution and create iteratively a new solution

following a set of rules, e.g., add one element at a time to the current solution considering a

given sequence of elements. A greedy heuristic refers to a heuristic that repeatedly adds the

element that most positively influences the current partial solution considering the objective

function. These heuristics are usually used to create an initial solution to be improved by other

methods, such as local search heuristics.

Local Search (see Yagiura and Ibaraki [9]) heuristics iteratively explore the neighbourhood1 of

the current solution trying to find a solution that is better than the current one. The search

ends when a given iteration fails to improve the current solution with the chosen

neighbourhood structure, thus finding a local optimum. The main disadvantage of this

approach is the inability to escape local optima.

1 Assuming 𝑆 as the space of admissible solutions of a problem 𝑃 and 𝑠 ∈ 𝑆, it is called neighborhood of 𝑠, 𝑁(𝑠),
to the set of solutions 𝑁(𝑠) ⊆ 𝑆 that is possible to reach by means of a move (specific for the neighborhood
structure applied). Each solution of 𝑁(𝑠) is called a neighbor solution of 𝑠.

5

Metaheuristic-based heuristics are the application of a metaheuristic to a specific problem.

Metaheuristics refer to general methodologies for solving combinatorial optimization

problems that are easily adaptable to specific problems and can exploit more efficiently the

solution space. Blum e Roli [10] characterize metaheuristics as follows:

▪ strategies that guide the search process;

▪ the goal is to efficiently explore the search space to find (near-)optimal solutions;

▪ can range from simple local search procedures to complex learning processes;

▪ can incorporate mechanisms to escape local optima;

▪ there are not specific to a problem;

▪ more advanced metaheuristics can incorporate memory to guide the search.

Metaheuristics try to find the correct balance between intensification, referring to a deeper

exploration of neighbourhoods considered more promising, and diversification, referring to

the exploration of less attractive neighbourhoods, to escape local optima.

Some of the most commonly used metaheuristics are the Greedy Randomized Adaptive

Search Procedure (GRASP, Feo and Resende [11]), Tabu Search (Glover [12]), Path Relinking

(Glover et al. [13]), Variable Neighbourhood Search (VNS, Mladenović and Hansen [14]), and

Scatter Search (Glover [15][16]).

GRASP is a multi-start (see Martí et al. [18]) metaheuristic that applies some local search to

solutions that are iteratively generated through a greedy heuristic. This metaheuristic is

randomized, in the sense that randomness is added to the greedy heuristic, and adaptive as

previous selections of elements can influence current ones.

Tabu Search extends the concept of local search in order to allow the exploration of zones in

the solution space that are not considered promising. This metaheuristic makes use of

memory structures to guide the search. In its simplest version, it uses short-term memory to

store characteristics of the moves that will be considered forbidden, i.e., tabu, in following

iterations. Short-term memory may not be enough to allow the search in certain areas of the

solution space since it usually stores only the attributes of the most recently visited solutions.

Long-term memory stores information that can allow to diversify the search to unexplored

regions or to intensify your search for the most promising regions. The tabu state is not

permanent being controlled by a parameter, generally referred to as tabu tenure, which may

6

be, for example, a given number of iterations. Moves considered tabu can only be performed

in the following iterations if they fulfil the criteria defined by an aspiration criterion, e.g., the

move execution leads to the best solution found so far.

Path Relinking incorporates into a solution attributes from another solution exploiting the

trajectories connecting them.

VNS combines the strategy of local search heuristics with the dynamic change of

neighbourhoods to escape the local optimums.

Scatter Search is an evolutionary method, in which a population of solutions evolves with the

combination of its elements. This metaheuristic constructs new solutions from the

combination of solutions belonging to a reference set. This reference set should contain high-

quality and diversified solutions to maximize the information that can be derived from the

combination of solutions.

Many more metaheuristics have been proposed and used to solve optimization problems. A

comprehensive historical perspective on metaheuristic research is presented by Sorensen et

al. [17].

We refer to Blum and Roli [10] and Sirenko [19] for diverse classifications of metaheuristics,

as they can be classified according to various criteria, such as:

▪ Use of memory structures, e.g., Tabu Search uses of the search history, while

Simulated Annealing (Kirkpatrick et al. [20]) is considered a memory-less solution

method.

▪ Origin, e.g., Genetic Algorithm (Koza [21]) is considered a nature inspired approach,

whereas the Tabu Search is considered a non-nature inspired method.

▪ Number of solutions considered at any time, e.g., Genetic Algorithms and Scatter

Search are population-based approaches, while Tabu Seach and VNS are considered

trajectory methods.

For more information on metaheuristics, we refer the readers to the surveys of Boussaïd et

al. [22] and Baghel et al. [23], and the books of El-Ghazali [24], Siarry [25] and Salhi [26].

7

1.2. Background and Motivation

The field of cutting and packing motivates many areas of operations research.

Burke et al. [27]

It is extremely common to find situations in which, aiming to maximize the material (or space)

used, a set of items to fulfil some requirement must be either cut from a large object or

packed into large bins. These problems belong to a class of problems referred to as cutting

and packing problems. Cutting and packing problems are one of the most interesting subjects

in optimization, mainly due to its complexity and wide applicability. The high impact of these

problems in so many industrial areas fosters the need for better and faster solution methods.

Most of the solution methods proposed are specially tailored for specific (theoretical)

problems, and to find the right solution method, if one exists, for a (real) problem is not an

easy task. Even if it is found, the solution method can rely heavily on previous and/or deep

knowledge of optimization concepts, so that only experienced researchers and practitioners

can take full advantage of this method.

The goal of this thesis is to create heuristics to solve various cutting and packing problems

that are simple to implement (dues straightforwardly adapted to promptly respond to

problem domain changes, e.g., market trends changes) and that produce consistently good

results.

2. Thesis Contribution

The problem that wouldn’t go away.

Garey and Johnson [28]2

This chapter aims to fill the gap between the five papers contained in the second and third

parts of this thesis. The papers were included in the order that makes it easier to follow the

sequence taken to accomplish this (hard) endeavour.

2 Denoting the ever-growing application and research made on this subject.

8

The first step of this journey was to clearly state the objectives to attain. The objective of this

thesis was to present simple and effective solution methods for two two-dimensional

problems, belonging to the class of cutting and packing problems, considering both guillotine

and non-guillotine cut constraints. The first problem aims to return the most profitable layout

of items to be cut from an individual object, e.g., raw material. The second problem aims to

cut all items using as few objects as possible to minimize the material losses. If we follow the

typology of Wäscher et al. [29], depending on the assortment of items, the first problem is

classified as a Single Knapsack Problem (SKP) or as a Single Large Object Placement Problem

(SLOPP), and the second problem as a Single Bin Size Bin Packing Problem (SBSBPP) or as a

Single Stock Size Cutting Stock Problem (SSSCSP).

Obviously given the mass of scientific work that occurs it is impossible for any

literature survey to be completely comprehensive…

Beasley [30]

Having in mind the objective to attain, the next step was to define and truly understand the

problems under consideration. Cutting and packing problems are the subject of so many

research in the last decades that to follow its evolution from the very beginning (here,

considered as the seminal work of Gilmore and Gomory [31]) was an exhausting task.

We have gathered and analysed more than 400 documents directly related to the two

problems that we were interested in. Figure 1 provides the timeline on the number of

documents considered, grouped by decades.

19 20

7 10 35 86 184 136

 60 70 80 90 00 10

Figure 1. Articles timeline.

While analysing the articles, we were consistently concerned in collecting as much

information as possible, such as, addressed problems, solution method proposed, with which

methods does the current solution method compares and what data is used for evaluating

the effectiveness of the proposed solution method.

The cutting and packing problems family as so many variants that specific jargon is commonly

used making it difficult to trace back to their origin and recognize the details of each of them.

9

The first paper allows a deep understanding of cutting and packing as it gathers most of the

specific terminology and concepts helping to classify and recognize each specific problem and

its characteristics. This paper, also, reviews the most referred and relevant solution methods

on the two-dimensional cutting and packing problem found in the literature. We consider that

any newcomer to the cutting and packing world can withdraw great value reading this paper

due to the comprehensive information included.

As already mentioned, while reading, anticipating the need for the datasets used by other

researchers for our own computational experiments, we gathered the instances used in the

articles. Some of these datasets were easily retrieved directly from the articles, while others

were obtained from internet websites. We have spent a considerable amount of time tracking

the instances used in the analysed articles.

The second paper gives an extensive review of the datasets and instance generators used in

the articles reviewed. We consider that this paper is a powerful resource for the researchers

in the field of rectangular two-dimensional cutting and packing problem as it provides for

each dataset, the set characteristics, the article in which it was defined, and whenever exists

an internet link for easy retrieval. This paper contains a description of 84 datasets, considering

more than 6300 instances, and 6 instance generators.

Before we started researching for heuristics to solve the problems under consideration, we

have created a set of resources to help our work. These resources, described in the third

paper, are graphic user interfaces that allow visualising the instances and the generated

cutting plans in two- and three-dimensions. The tools provide a powerful resource to

researchers in this subject. Also, to ease the data input we converted all instances from the

datasets considered in the second paper to a JSON format. This format, besides readability,

allows the instance data to be less error-prone due to its structured nature. Finally, a website

was created that apart from hosting all the resources developed, also make available a set of

utilities that allows analysing the information gathered in our literature research. As an

example, as we collected the connection between the solution method and the methods with

which they were compared, we have created an iterative map (depicted in Figure 2 with all

available connections) that allowed us to easily visualise those connections.

10

Figure 2. Solution approaches comparison map.

Noteworthy that the literature review could not be useful as it could be if only focused on the

problems intended to solve. Many of the solution methods analysed were tailored for the

Open Dimensional Problem as some of these can be, and have been, successively adapted for

other problems.

Even apparently similar problems may require radically different heuristic

techniques.

Hinxman [32]

Making a quick overview of the solution methods analysed in the literature review, it can be

noticed that most of the exact methods where based on the Branch-and-Bound and Dynamic

11

Programming, while most heuristics are either constructive or greedy, or are based on more

advanced approaches such as, GRASP, Path Relinking, Tabu Search, Genetic Algorithms,

Simulated Annealing, Variable Neighbourhood Search and hybridizations of these

approaches. Many other approaches were proposed, but not with the representations of the

above-mentioned ones.

While constructive and greedy heuristic are quite simple to implement, usually the results

obtained are not as good as the one obtained by more advanced approaches. Although most

of these approaches provide good results, a set of issues were denoted. These advanced

approaches are heavily based on previous metaheuristics and/or mathematical knowledge.

Even comprehensive articles can be overwhelming due to the underlying complexity of the

methods, not allowing a straightforward understanding and implementation. Others require

so many parametrizations that great part of the method presentation is dedicated to the

study of the parameters to use for specific problems (or datasets). Even methods based on

metaheuristics have so many components that are problem-domain specific that the true

nature of the metaheuristic is lost in the process.

While experienced researchers and practitioners can easily untangle these complex issues

and (re)use state-of-the-art solution methods, this added complexity in search of better

solutions can alienate others. In a perfect world, a good solution method would be the one

that is as simple (to understand and implement) and fast as a constructive heuristic with the

high-quality results of a more advanced approach.

Most of the analysed heuristics were two-phase heuristics. The first phase, that we refer to

as the sequencing phase, generates a sequence of items that will define the order that the

items are to be considered. The second phase, here referred to as the placement phase,

places the items into the object(s) considering the sequence of items generated in the

previous phase.

We started the development of our heuristics with the placement phase as it was counter-

productive to start otherwise. We could use any sequence to evaluate the placement phase,

the opposite was not possible.

For non-guillotine problems, to keep track of every possible empty rectangle space (ERS) to

place the items, we have chosen the Difference Process (Lai and Chan [33]) which has already

12

proven its effectiveness in many works as can be observed in our review on solution

approaches. Noteworthy, the description and exemplification of this method made by the

authors provided a straightforward implementation. Considering a given item ordering, the

placement method for non-guillotine problems, iteratively, places the current item in one

existent ERS.

For problems with guillotine cut constraints, simple bottom-left procedures were

implemented and evaluated. The results with these procedures were not near our

expectations, and an alternative approach had to be devised. We observed during the

literature review, that many placement methods considering guillotine cut constraints used

the Knapsack Problem (KP, see Martello and Toth [34]) to maximize the space used. We knew,

in advance, that the KP could be solved efficiently and most important rapidly by the

algorithms proposed by Pisinger [35], and that these algorithms were freely made available3

for academic purpose. The developed placement method considering a given item ordering

iteratively creates a strip then filled solving the associated KP.

We started to study the sequencing phase, adopting simple sequences of items ordered by

some criteria, such as height, length, area, perimeter, value, randomized. Although extremely

fast, the results were by no means close to our goals in terms of the quality of solutions. This

is explained by the narrow solution space explored, so a sequencing that allowed a wider

exploration of the solution space was needed.

While reading the articles in the literature review phase, we gain a particular interest in the

work of Lesh et al. [36] that creates sequences based on the Kendall-tau distance between

two permutations. This approach, denoted as BubbleSearch, was later generalized by Lesh

and Mitzenmacher in [37] and evaluated on two distinct problems, namely ODP and Jobshop

scheduling, comparing favourably against similar GRASP approaches. As GRASP is one of the

simplest metaheuristics and very effective in so many optimization problems (see Festa et al.

[38], [39], and Resende and Ribeiro[40]) we were impelled to work in this direction.

3 http://hjemmesider.diku.dk/~pisinger/codes.html

http://hjemmesider.diku.dk/~pisinger/codes.html

13

Some variants to the BubbleSearch were proposed by Lesh and Mitzenmacher in [37] to

include randomization to the permutation probability (𝛼) or to consider the replacement of

the current ordering whenever the new ordering provides a better solution than the current.

The Randomized BubbleSearch can be implemented as a simple stochastic process, depicted

in Figure 3 and next briefly described. While there are items of the base sequence (𝑆𝑏𝑎𝑠𝑒) that

are not in the new sequence (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡), a random number is generated iteratively for each

item of 𝑆𝑏𝑎𝑠𝑒 that is not already in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If the generated number is greater than the

permutation probability (𝛼), the item is copied to 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 at the next empty position

otherwise, the item will be copied in a following iteration.

Figure 3. Randomized BubbleSearch.

These variants were implemented with a considerable improvement on the results obtained

over the simple orderings. But, although improved, the results were not aligned with the ones

obtained by more advanced approaches.

We have intensified the search near the solution space of the solution that obtained good

results, i.e., when a new best solution is found, the current ordering will substitute the base

ordering for the next iterations and 𝛼 is reset to its minimum value to generate sequences

with minor differences. To diversify the search space, whenever an ordering does not improve

the best solution, 𝛼 is incremented to generate sequences with incrementally more

differences. As depicted in Figure 4, as 𝛼 is incremented, greater is the difference between

𝑆𝑏𝑎𝑠𝑒 and the new sequence generated.

Figure 4. Permutation probability variation.

14

Now, with each of the major components exposed, i.e., sequencing and placement phases,

the proposed heuristics can be more easily described.

The heuristics, denoted hereafter as Adaptive Sequence-based Heuristics (ASH), start with a

base sequence of items and with 𝛼 set to its minimum value.

A new solution is created at each iteration until the maximum number of iterations or the

optimality criterium is reached. For multiple identical objects problems (SBSBPP and SSSCSP),

as the aim is to place all the items in the minimum number of objects as possible, the

optimality criterium is reached when a solution as an objective function value equal to the

Continuous Lower Bound (𝐶𝐿𝐵 = ⌈∑ 𝑙𝑖ℎ𝑖
𝑚
𝑖=1 𝐿𝐻⁄ ⌉). For problems with only one object (SKP and

SLOPP), as the objective is to obtain the maximum profit pattern, no improvement exists

when a pattern includes all items.

At each iteration, a new ordering is generated considering the current base sequence and the

permutation probability to create a new solution. For multiple identical objects problems, a

solution is created using the placement methods above described until all items are placed.

For the SKP and SLOPP, a solution is generated with only one pattern.

If the solution generated is the best one found so far, the base sequence will be replaced by

the current ordering and 𝛼 is reset to its minimum value. Otherwise, the base sequence

remains the same and 𝛼 is incremented to generate orderings incrementally with more

differences.

The first paper of the third part of this thesis presents the ASH for solving the non-guillotine

SBSBPP and SKP, while the second paper presents the ASH for solving the two- and three-

staged (non-)exact SSSCSP and two- and non-staged (non-)exact (un)constrained SLOPP.

The proposed heuristics attained good results comparing favourably against most of the

state-of-the-art algorithms. Also, the computational times required by ASH, although always

a controversial subject, seems to be extremely low and predictable when compared with

more complex approaches.

The results obtained with ASH for the non-guillotine SBSBPP were published in [41] and the

results obtained for the non-guillotine SKP were presented at the 20th Congress of the

15

Portuguese Operational Research Association and will be published in the "Springer

Proceedings in Mathematics and Statistics" series.

3. Conclusions

The cutting stock problem is a large scale combinatorial problem for which

several solution techniques exist in the literature each with its drawbacks

and/or approximations.

Golden [2]

The complexity of cutting and packing problems encourages the investigation of methods,

mainly heuristics, that allow high-quality solutions to be obtained in acceptable

computational times, since solving these problems through exact methods, especially for

large problems, may be impractical due to the computational resources required.

Besides the two surveys on solution methods and datasets, we have made available a set of

research resources that can be an important contribution helping future research on the

cutting and packing field. We have compiled and converted a great number of datasets into

a common format. Also, graphical user interfaces for instance and solution visualisation, and

a set of utilities for the literature analysis were created. All these resources can be now easily

accessed and used through the website that we have created and made available online.

We propose heuristics to solve two related cutting and packing problems considering

guillotine and non-guillotine cuts. The first problem aims the most valuable layout of items

assigned to one object, while the second one aims to fully assign a given set of items to the

minimum number of available objects possible.

The main concept of our heuristics is to generate orderings that are very similar to those that

provided good solutions and to incrementally introduce more changes to the ordering when

better solutions are not found to diversify the search.

The application of ASH to the considered problems produced very good results with very low

computational times being capable to rival with more complex and tailored solution methods.

16

The proposed solution methods can be seen as effective heuristics to be applied when a fast

solution method must be provided, a high number of variables exist or, to be used combined

with more advanced solution methods to create an initial population of diverse solution or

used on a bounding scheme.

The work of this thesis can be further developed, studying the influence of the parameters

used by ASH to provide an implementation guide. These heuristics should be studied in a real-

world situation to measure their effectiveness using as reference the current state (Filipič and

Tušar [42]). Also, it would be interesting to study the application of ASH applied to other

optimization problems.

References

[1] C. H. Cheng, B. R. Feiring, and T. C. E. Cheng, “The cutting stock problem — A survey,”
Int. J. Prod. Econ., vol. 36, no. 3, pp. 291–305, 1994.

[2] B. L. Golden, “Approaches to the Cutting Stock Problem,” A I I E Trans., vol. 8, no. 2, pp.
265–274, 1976.

[3] A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming
Problems,” Econometrica, vol. 28, no. 3, pp. 497–520, 1960.

[4] N. Agin, “Optimum Seeking with Branch and Bound,” Manage. Sci., vol. 13, no. 4, pp.
B176–B185, 1966.

[5] R. Bellman, “The Theory of Dynamic Programming,” Bull. Am. Math. Soc., vol. 60, no.
6, pp. 503–515, 1954.

[6] J. E. Mitchell, “Branch-and-Cut Algorithms for Combinatorial Optimization Problems,”
Handb. Appl. Optim., pp. 65–77, 2002.

[7] V. V. Vazirani, Approximation Algorithms. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003.

[8] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms, 1st ed.
New York, NY, USA: Cambridge University Press, 2011.

[9] M. Yagiura and T. Ibaraki, “Local Search,” in Handbook of Applied Optimization, P. M.
Pardalos and M. G. C. Resende, Eds. Oxford University Press, 2002, pp. 104–123.

[10] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and
conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, 2003.

[11] T. Feo and M. G. C. Resende, “Greedy randomized adaptive search procedures,” J. Glob.
Optim., pp. 109–133, 1995.

17

[12] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[13] F. Glover, M. Laguna, and R. Martí, “Fundamentals of scatter search and path
relinking,” Control Cybern., vol. 39, no. 3, pp. 653–684, 2000.

[14] N. Mladenović and P. Hansen, “Variable neighborhood search,” Comput. Oper. Res.,
vol. 24, no. 11, pp. 1097–1100, 1997.

[15] F. Glover, “Heuristics for integer programming using surrogate constraints,” Decis. Sci.,
vol. 8, no. 1, pp. 156–166, 1977.

[16] F. Glover, “A template for scatter search and path relinking,” Artif. Evol., vol. 1363, no.
February 1998, pp. 3–51, 1998.

[17] K. Sorensen, M. Sevaux, and F. Glover, “A History of Metaheuristics,” Handb. Heuristics,
no. January, pp. 1–16, 2016.

[18] R. Martí, M. G. C. Resende, and C. C. Ribeiro, “Multi-start methods for combinatorial
optimization,” Eur. J. Oper. Res., vol. 226, no. 1, pp. 1–8, 2013.

[19] S. Sirenko, “Classification of heuristic methods in combinatorial optimization,” Inf.
Theor. Appl., vol. 16, no. 4, pp. 303–322, 2009.

[20] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598. pp. 671–680, 1983.

[21] J. R. Koza, Genetic programming: On the programming of computers by means of
natural selection. Cambridge, MA, USA: MIT Press, 1992.

[22] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf.
Sci. (Ny)., vol. 237, no. February, pp. 82–117, 2013.

[23] M. Baghel, S. Agrawal, and S. Silakari, “Survey of Metaheuristic Algorithms for
Combinatorial Optimization,” Int. J. Comput. Appl., vol. 58, no. 19, pp. 21–31, 2012.

[24] T. El-Ghazali, “Metaheuristics: from design to implementation,” Jonh Wiley Sons Inc.,
Chichester, 2009.

[25] P. Siarry, Metaheuristics. Cham: Springer International Publishing, 2016.

[26] S. Salhi, Heuristic Search. Cham: Springer International Publishing, 2017.

[27] E. K. Burke, G. Kendall, and G. Whitwell, “A New Placement Heuristic for the Orthogonal
Stock-Cutting Problem,” Oper. Res., vol. 52, no. 4, pp. 655–671, 2004.

[28] M. R. Garey and D. S. Johnson, “Approximation Algorithms for Bin Packing Problems: A
Survey,” in Analysis and Design of Algorithms in Combinatorial Optimization, G.
Ausiello and M. Lucertini, Eds. Vienna: Springer Vienna, 1981, pp. 147–172.

[29] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and
packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130, 2007.

[30] J. E. Beasley, “A population heuristic for constrained two-dimensional non-guillotine
cutting,” Eur. J. Oper. Res., vol. 156, no. 3, pp. 601–627, 2004.

18

[31] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-stock
problem,” Oper. Res., vol. 9, no. 6, pp. 849–859, 1961.

[32] A. I. Hinxman, “Trim-Loss and Assortment Problems - a Survey.,” Eur. J. Oper. Res., vol.
5, no. 1, pp. 8–18, 1980.

[33] K. K. Lai and J. W. M. Chan, “Developing a simulated annealing algorithm for the cutting
stock problem,” Comput. Ind. Eng., vol. 32, no. 1, pp. 115–127, 1997.

[34] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. New York: Wiley, 1990.

[35] D. Pisinger, “Algorithms for knapsack problems,” Copengagen, 1995.

[36] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher, “New heuristic and interactive
approaches to 2D rectangular strip packing,” J. Exp. Algorithmics, vol. 10, no. 1, p. 1.2,
2005.

[37] N. Lesh and M. Mitzenmacher, “BubbleSearch: A simple heuristic for improving
priority-based greedy algorithms,” Inf. Process. Lett., vol. 97, no. 4, pp. 161–169, 2006.

[38] P. Festa and M. G. C. Resende, “An annotated bibliography of GRASP,” Oper. Res. Lett.,
vol. 8, no. 1, pp. 67–71, 2004.

[39] P. Festa and M. G. C. Resende, “An annotated bibliography of GRASP – Part II:
Applications,” Int. Trans. Oper. Res., vol. 16, no. 1, pp. 131–172, 2009.

[40] M. G. C. Resende and C. C. Ribeiro, Optimization by GRASP. New York, NY: Springer
New York, 2016.

[41] Ó. Oliveira and D. Gamboa, “Adaptive Sequence-Based Heuristic for the Two-
Dimensional Non-guillotine Bin Packing Problem,” in Hybrid Intelligent Systems, A. M.
Madureira, A. Abraham, N. Gandhi, and M. L. Varela, Eds. Cham: Springer International
Publishing, 2020, pp. 370–375.

[42] B. Filipič and T. Tušar, “Challenges of Applying Optimization Methodology in Industry,”
in Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary
Computation, 2013, pp. 1103–1104.

19

Part II – Research Resources

20

21

A Review of Solution Approaches for Two-dimensional

Cutting and Packing Problems

Abstract Cutting and packing problems have been widely studied in the last decades mainly

due to the variety of industrial applications were the problems emerge. This paper presents

an overview of the solution approaches that have been proposed for solving two-dimensional

rectangular cutting and packing problems. The main emphasis of this work is on two distinct

problems belonging to the cutting and packing problem family. The first problem aims to place

onto an object the maximum-profit subset of items, while the second one aims to place all the

items using as few identical objects as possible. The objective of this review is not to be

exhaustive but to provide a solid grasp on cutting and packing problems describing the most

important and referred solution approaches proposed to solve the problems considered.

Keywords: Two-dimensional, Rectangular, Non-guillotine, Guillotine, Cutting Problems,

Packing Problems

1. Introduction

Cutting and packing problems have been the focus of growing research due to its

computational complexity, which is NP-hard (see Garey and Johnson [1]), and due to its wide

applicability. Another important reason that motivates the research on the cutting and

packing field is that these problems represent a critical logistic and production planning

activity in many industries. Examples can be found in the automotive (e.g., El-Aal [2]), glass

(e.g., Farley [3]), steel (e.g., Vasko et al. [4]), wood-based (e.g., Morábito and Garcia [5]),

paper (e.g., Lai and Chan [6]) and TFT-LCD (e.g., Tsai et al. [7]) industries.

We refer to Sweeney and Paternoster [8] for a categorized application-orientated

bibliography that counts with more than 400 published works related to cutting problems, to

Singh and Jain [9] for a survey on the industrial scope of two-dimensional cutting and packing

problems and to Macedo et al. [10] for a detailed survey on software packages.

22

The cutting and packing problems considered in this paper aim to assign, to either

orthogonally cut or pack, a set of 𝑚 rectangular items to one or more larger identical objects

characterized by their length (𝐿) and height (𝐻). Each item type 𝑖, with 𝑖 = 1 … 𝑚, have

associated length (𝑙𝑖), height (ℎ𝑖), value (𝑣𝑖), and demand (𝑑𝑖). The emphasis of this work is

on two specific problems belonging to the cutting and packing problem family. The first

considers only one object and the objective to attain is to maximize the value of the items

assigned to it, while the second one considers multiple identical objects and the objective is

to minimize the total number of objects used to assign all items.

The objective of this paper is to give an overview of the work related to the two-dimensional

(2D) rectangular cutting and packing problems, providing to the reader a solid grasp on this

subject.

The rest of the paper is organized as follows. Section 2 provides a deep coverage on the cutting

and packing topic describing the main problem characteristics and the typologies presented

in the literature to classify the problems through their common characteristics. Section 3 is

dedicated to the solution approaches available in the literature for solving cutting and packing

problems. Finally, some conclusions are tissue in the last section.

In Appendix A, articles referred in this paper are classified by the cutting and packing problem

for which a solution method was presented.

2. Cutting and Packing Problems

The cutting problem, as depicted in Figure 1, considers the existence of a set of available

objects (a) and a set of items (b) that must be extracted from the objects to fulfil some

demand (c).

a. Objects b. Items c. Demand

Figure 1. Cutting problem.

23

The cutting problem can be found in the literature with different names, deriving essentially

from the industry or economic environment in which the problem arises. For example, it can

appear as a packing problem where items, instead of being extracted from objects, must be

arranged in a larger space aiming at the minimization of the unfilled space.

The expected result when solving this problem is called a cutting plan. A cutting plan is a set

of cutting patterns (Figure 2), each of them with an associated cut frequency, and wherein

the items are allocated to the objects. The residual parts, i.e., figures that occur in patterns

that do not belong to the set of items, are considered losses (depicted with the darker area

in Figure 2). These losses are commonly referred to as trim loss.

Figure 2. Cutting pattern.

The first formulation for cutting and packing problems was presented by the economist

Kantorovich [11] as follows:

minimize 𝑧 = ∑ 𝑦𝑘

𝑘∈𝐾

 (1)

Subject to ∑ 𝑥𝑖𝑘 ≥ 𝑑𝑖

𝑘∈𝐾

 ∀𝑖 ∈ 𝐼 (2)

 ∑ 𝑙𝑖𝑥𝑖𝑘 ≤ 𝐿𝑦𝑘

𝑖∈𝐼

 ∀𝑘 𝑖𝑛 𝐾 (3)

 𝑥𝑖𝑘 ∈ ℕ ∀𝑖 𝑖𝑛 𝐼, ∀𝑘 ∈ 𝐾 (4)

 𝑦𝑘 ∈ {0,1} ∀𝑘 𝑖𝑛 𝐾 (5)

Where 𝐾 is the set of available objects, 𝐿 is the length of the object, 𝐼 is the set of items and

𝑑𝑖 and 𝑙𝑖 are, respectively, the demand and the size of item 𝑖. Considering the value of 𝑦𝑘 as

1 if object 𝑘 is used in the solution (0 otherwise) and 𝑥𝑖𝑘 as the number of times that item 𝑖

is cut in object 𝑘, expression n (1) defines the objective function as the minimization of the

number of objects used to cut all the items, (2) defines the demand constraints, (3) defines

the pattern feasibility constraints and (4) and (5) represent the domain of the variables.

24

In most problems, objects and items represent geometric figures of fixed sizes, and although

in most of the problems related to cutting and packing the space to be considered is three-

dimensional, in some cases, only one or two dimensions are relevant to solve the problem. In

terms of dimensionality, these problems can be considered as:

▪ One-dimensional – Only one dimension is relevant, e.g., cutting a roll of paper into

smaller pieces, in which the only relevant dimension is the length (Figure 3).

Figure 3. One-dimensional problem.

▪ Two-dimensional – Only two dimensions are relevant to solve the problem, e.g., cut

items from a wooden plate that have the same thickness as the plate (Figure 4).

Figure 4. Two-dimensional problem.

▪ Three-dimensional – The three dimensions are relevant, e.g., arrangement of volumes

in a larger space (Figure 5).

Figure 5. Three-dimensional problem.

▪ Multi-dimensional – More than three dimensions are considered, e.g., in addition to

the physical dimensions, a temporal dimension is included.

▪ Open dimensional – One of the dimensions is unbounded in size. A 1.5-dimensional

problem specifies a two-dimensional problem where one dimension is fixed and the

other is variable, while in the 2.5-dimensional, two dimensions are fixed. An example

25

of the former is the cutting process of a roll of textile that has a fixed height but can

be unrolled to accommodate more items when needed (Figure 6).

Figure 6. 1.5-dimensional problem.

We can find a wide variety of cutting and packing problems mainly due to specific

requirements of industries, cutting machinery and, even, the raw material used.

The items to be considered when solving a problem can have regular or irregular shapes.

Figure 7 depicts on the left two regular shapes, namely rectangular and circular, and to the

right an irregular shape.

a. Regular b. Irregular

Figure 7. Regular and irregular items.

Some problems may require an orthogonal placement of the items, i.e., parallel to the sides

of the object, while other problems allow a non-orthogonal placement relative to the object

edges as depicted in Figure 8.

Figure 8. Non-orthogonal pattern.

The cutting machines may only perform straight cuts on objects from one side to the other,

called guillotine cuts. Figure 9 depicts to the left a guillotine pattern, and to the right a non-

guillotine pattern.

26

a. Guillotine b. Non-guillotine

Figure 9. Guillotine and non-guillotine patterns.

Some machines may perform the object rotation (or blade rotation) and carry out the cuts in

stages, i.e., number of rotations. If an upper bound (𝑘) to the number of stages exists, the

problems is considered as 𝑘-staged; otherwise called 𝑛-staged (or non-staged, e.g., Morabito

et al. [12]). Figure 10 depicts two-staged (a) and three-staged (b) patterns. In this figure, the

first stage is horizontal and is identified with the arrows pointing to the right. As staged

patterns are considered, the second stage will perform vertical cuts on the stripes generated

previously. The three-staged pattern (b) has a horizontal third stage, identified with the arrow

pointing to the left.

a. Two-staged b. Three-staged

Figure 10. Two- and three-staged cuts.

A problem is classified as restricted (e.g., Silva et al. [13]) if it is required that all resulting strips

have one of their dimensions defined by one of their contained items, e.g., a strip resulting

from a horizontal cut have the height defined by the highest item included in the strip.

Staged problems can allow an extra cut to trim down the item to its exact dimensions. This

extra cut is often called a trimming cut and the problem is classified as non-exact if trimming

is allowed and as exact otherwise. Figure 11 depicts in the left an exact two-staged pattern

and in the right a non-exact two-staged pattern (the darker grey identifies the extra trimming

cut area).

27

a. Exact two-staged b. Non-exact two-staged

Figure 11. Exact and non-exact problems.

The problems are considered constrained when an upper or lower bound on the quantity of

the items to be cut is defined. Problems are considered double-constrained if both lower and

upper bounds are present. When no bounds are considered to restrict the number of

occurrences of each item, the problem is named as unconstrained.

A problem is considered unweighted if the value of all items is equal to its area or weighted if

each item as another value associated, e.g., cost, priority.

If the objects are uniform in all orientations, i.e., isotropic material, the rotation of items can

be allowed, classifying the problem as non-oriented or as oriented otherwise. Figure 12

illustrates a non-isotropic material in which the orientation of the cuts matters.

Figure 12. Non-isotropic material.

The objects to be considered in stock may vary in the quantity available and in the sizes. The

stock can be considered unlimited when there is a large availability or when the objects can

easily be obtained. All the objects may have the same size or have many different sizes. In the

latter case, the sizes can be standardized or can arise from the use of retails (also found in the

literature as usable leftovers, e.g., Andrade et al. [14]) that result from previous cutting

processes.

A cutting pattern is classified as 1-group pattern if all second stage cuts must be made

simultaneously on all the strips generated on the first stage. A 𝑝-group pattern is a guillotine

pattern composed with 𝑝 1-group pattern forming blocks. Figure 13 illustrates to the left a 1-

group pattern and to the right a 2-group pattern.

28

a. 1-group pattern b. 2-group pattern

Figure 13. Group patterns.

Depending on the requirement for the first cut direction, a cutting pattern can be classified

as an X-pattern and Y-pattern. An X-pattern corresponds to a pattern created with a vertical

first cut direction, i.e., the first stage segments are placed side by side. Y patterns are created

with horizontal first cut direction, i.e., the first stage segments are stacked on top of each

other. Figure 14 illustrates to the left an X-pattern and to the right a Y-pattern.

a. X-pattern b. Y-pattern

Figure 14. X-pattern and Y-pattern.

2.1. Typologies

This wide variety of possible cutting and packing problems led authors to create typologies to

aggregate the problems with common characteristics.

In the typology of Dyckhoff [15], each type of problem is identified by four criteria (see Table

1) with the following structure:

Dimensionality / Kind of assignment / Assortment of large objects / Assortment of small items

The one-dimensional problem, where a set of items with a certain demand must be cut from

available objects with the same size, is classified as 1/V/I/M. If there are many items with few

different sizes it is classified as 1/V/I/R.

To overcome some limitations of the Dyckhoff’s typology, such as the impossibility of

differentiating similar problems that have different characteristics, Wäscher et al. [16]

proposed an improved typology. The authors consider five criteria (see Table 2) and with the

combination of these, three problem types are defined: Basic, Intermediate and Refined.

29

Table 1. Typology of Dyckhoff - Criteria.

Dimensionality

 (𝑛) Number of dimensions

Kind of Assignment

 (B) All objects and a selection of items

 (V) A selection of objects and all items

Assortment of Large Objects

 (O) One object

 (I) Identical figure

 (V) Different figures

Assortment of Small Items

 (F) Few items (of different figures)

 (M) Many items of many different figures

 (R) Many items of relatively few different (non-congruent) figures

 (C) Congruent figures

Table 2. Typology of Wäscher et al. (2007) - Criteria.

Dimensionality

 One-dimensional

 Two-dimensional

 Three-dimensional

Kind of Assignment

Output (value) maximization (like B in Dyckhoff´s typology in which all objects are used for assigning a
selection of items)

Input (value) minimization (like V in Dyckhoff´s typology in which a selection of objects is used for assigning
all items)

Assortment of Small Items

 Identical

 Weakly heterogeneous

 Strongly heterogeneous

Assortment of Large Objects

 One Large Object

 All dimensions fixed

 One or more variable dimensions

 Several Large Objects (only fixed dimensions are considered)

 Identical

 Weakly heterogeneous

 Strongly heterogeneous

Shape of Small Items

 Regular

 Irregular

30

The Basic types result from the combination of the criteria Kind of assignment and Assortment

of small items. The six Basic types are combined with the Assortment of large objects criterion

to obtain fourteen Intermediate problem types (see Table 3).

Table 3. Typology of Wäscher et al. (2007).

Basic Problem Type

Intermediate Problem Type

Assort. of

small items

Assort. of

large objects

K
in

d
 o

f
as

si
gn

m
e

n
t

O
u

tp
u

t
m

ax
im

iz
at

io
n

Identical IIPP Identical Item Packing Problem One object IIPP Identical Item Packing Problem

Weakly
heterogeneous

PP Placement Problem

One object SLOPP Single Large Object PP

Identical MILOPP Multiple Identical Large Object PP

Heterogeneous MHLOPP Multiple Heterogeneous Large Object PP

Strongly
heterogeneous

KP Knapsack Problem

One object SKP Single KP

Identical MIKP Multiple Identical KP

Heterogeneous MHKP Multiple Heterogeneous KP

In
p

u
t

m
in

im
iz

at
io

n

Arbitrary
(Variable

Dimensions)
ODP Open Dimension Problem One object ODP Open Dimension Problem

Weakly
heterogeneous

CSP Cutting Stock Problem

Identical SSSCSP Single Stock Size CSP

Weakly
heterogeneous

MSSCSP Multiple Stock Size CSP

Strongly
heterogeneous

RCSP Residual CSP

Strongly
heterogeneous

BPP Bin Packing Problem

Identical SBSBPP Single Bin Size BPP

Weakly
heterogeneous

MBSBPP Multiple Bin Size BPP

Strongly
heterogeneous

RBPP Residual BPP

The Dimensionality and the Shape of small items (for two- and three-dimensional problems)

combined with Intermediate problem types make up the Refined problems, according to the

following structure:

{ 1, 2, 3 } D { Rectangular, Circular, ..., Irregular } { Intermediate Type of Problem }

The example mentioned above would be classified as 1D Single Bin Size Bin Packing Problem

(or 1D Single Stock Size Cutting Stock Problem, if the items are weakly heterogeneous). A

problem with rectangular items and in which the object has a variable dimension would be

classified as a 2D rectangular Open Dimension Problem.

Wäscher et al. [16] focused their work classifying what they call pure cutting and packing

problems, in which solutions consist in the information about the set of cutting patterns and

the value of the corresponding objective function.

31

Problems with the same properties as the Refined problems but, with additional

characteristics unrelated to the cutting or packing, are considered Extensions, e.g., minimize

the number of different cutting patterns.

When the conditions of a problem are different from those presented in pure problems, it is

considered a Variant, e.g., a problem with more than three dimensions.

The EURO Special Interest Group on Cutting and Packing (ESICUP) website1 provides an

extensive database of publications organized and classified by the Wäscher’s typology.

3. Solution Approaches

The Column Generation procedure proposed by Gilmore and Gomory [17] for solving the CSP

is commonly recognized as the seminal work on the cutting and packing problem research

field. This method allows to find the optimal solution for the linear programming problem

that is obtained relaxing the integrality constraints of the original problem. A last step is

usually required to obtain a feasible solution for the integer problem.

Besides the Column Generation, many more solution approaches have been proposed for

solving cutting and packing problems. These methods can be divided into exact methods, i.e.,

methods in which the obtention of the optimal solution is guaranteed, and in non-exact

methods. Non-exact methods, although without the guarantee of finding the optimal

solution, usually obtain good results with considerably less computational resources than the

ones required by exact methods.

In this section, we review solution methods that have been proposed in the literature for

solving cutting and packing problems, classifying them as exact, heuristic, i.e., non-exact

problem-specific approaches, and metaheuristic, i.e., methods that are based in general

methodologies for solving combinatorial optimization problems that are easily adaptable to

specific problems.

The rest of the section is organized as follows. Due to its relevance for the cutting and packing

research the Column Generation method is reviewed in subsection 3.1. Subsection 3.2. is

1 https://www.euro-online.org/websites/esicup/

https://www.euro-online.org/websites/esicup/

32

devoted to the location approaches, which are used in both exact and non-exact methods, to

enumerate the possible locations to place the items or to keep track of the set of empty

spaces that remain in the object after the placement of the items. Section 3.3. and section

3.4. present the exact and non-exact methods, respectively. While the focus is on the most

recent solution methods, some of the earlier works are also discussed due to their importance

in this research field. Finally, the last section, presents, in chronological order, the published

surveys and reviews on solution methods for solving cutting and packing problems.

3.1. Column Generation

The Column Generation2 (CG, see Ford and Fulkerson [18]) to solve the one-dimensional CSP

was proposed by Gilmore and Gomory [17] [19]. Bearing in mind that even for small problems

it can be impractical and time-consuming to enumerate all possible patterns, Gilmore and

Gomory proposed the CG based on the Simplex method3 (see Dantzig [20]) modelling the

problem as follows:

min{∑ 𝑥𝑗
|𝐽|
𝑗=1 | ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑑𝑖, 𝑖 = 1, … , 𝑚; 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑥𝑗 ∈ ℕ, 𝑗 = 1, … , |𝐽||𝐽|

𝑗=1 } (6)

The set of valid patterns is represented by 𝐽, the number of times items of type 𝑖 are present

in pattern 𝑗 by 𝑎𝑖𝑗 and the cut frequency of pattern 𝑗 by 𝑥𝑗. The proposed approach solves the

following associated linear programming model:

min{∑ 𝑥𝑗
|𝐽|
𝑗=1 | ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑑𝑖, 𝑖 = 1, … , 𝑚; 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑥𝑗 ∈ ℝ, 𝑗 = 1, … , |𝐽||𝐽|

𝑗=1 } (7)

After the linear programming relaxation on the integrality constraint of the decision variables,

an initial set of 𝑚 patterns (columns) is selected. At each iteration of this method, a sub-

problem (min{1 − ∑ 𝜋𝑖𝑥𝑖
𝑚
𝑖=1 } with 𝜋𝑖 as the value of the item type 𝑖 obtained from the current

dual linear programming solution) to find the most negative column is solved generating a

new pattern. For the one-dimensional problem, the sub-problem (ignoring the constant 1)

corresponds to a bounded knapsack problem formulated as:

max{∑ 𝜋𝑖𝑥𝑖
𝑚
𝑖=1 | ∑ 𝑙𝑖𝑥𝑖 ≤ 𝐿; 0 ≤ 𝑥𝑖 ≤ 𝑑𝑖 , 𝑖 = 1, … , 𝑚𝑚

𝑖=1 } (8)

2 See Lübbecke [182] for a recent overview of this method.
3 See Prabhu [183] for a recent overview of this method.

33

where 𝑥𝑖 represents the frequency of item type 𝑖, i.e., number of times that the item appears

in the pattern. This new pattern is added if its value is greater than 1. This process terminates

when no column can be added, thus obtaining the optimal solution of the relaxed problem.

Since this solution may be infeasible for the original problem, an additional method may have

to be applied to obtain an integer solution.

An extension to their previous work was presented by Gilmore and Gomory [21] to deal with

multistage multidimensional CSP and exemplified with the three-dimensional three-staged

case the difficulties of leading with higher dimensions. The authors also tackle the problem in

which scheduling issues must be considered with an application of their method to the

production of corrugated paper boxes.

Considering that the computational effort required by the CG approach is closely related to

the resolution of the auxiliary problem, Oliveira and Ferreira [22] proposed the Faster Delayed

Column Generation (FCG) that reduces the number of times that the auxiliary problem is

solved providing an effective reduction of the computational effort required. The auxiliary

problem is solved to optimality only if a heuristic cannot produce a column that improves the

objective function. The authors present a greedy heuristic to create three-staged and non-

staged patterns that place the items into the object by non-increasing reduced cost.

Solution methods for the SLOPP, SSSCSP, ODP, and MSSCSP were presented by Cintra et al.

[23]. In this work, Dynamic Programming (Bellman [24]) algorithms for the 𝑘- and non-staged

SLOPP are proposed. The algorithms for the SLOPP are used to solve the sub-problem in a CG

approach for the mentioned problems.

A CG based algorithm for the SLOPP with guillotine cuts using mixed integer programming to

obtain an integer solution was proposed by Novianingsih et al. [25].

The Repeated Constrained Column-Generation (RCCG) is a CG based algorithm for the two-

staged SSSCSP proposed by Cui and Zhao [26] that solves the sub-problems as unconstrained

ones, then, repeatedly, the residual problems are also solved through CG solving the

(constrained) sub-problem until all demand is satisfied.

34

3.2. Location

In this section, we present discretization techniques that allows to enumerate the possible

positions for item placement aiming the reduction of the search space. In addition, we present

methods that allow to keep track of the empty spaces in the object which result from the

placement of items.

Herz [27] presented a recursive algorithm for the unconstrained SLOPP with guillotine cuts

that considers for the placement of items only discretization points obtained from the linear

combinations of the items sizes (see Figure 15). Patterns wherein the items are placed at

discretization points at the bottom-left-most possible position without overlapping are

usually referred to as Normal Patterns (Christofides and Whitlock [28]).

Discretization Points

Considering 𝐿𝑚𝑖𝑛 = 𝐿 − min
1≤𝑖≤𝑚

{𝑙𝑖} and 𝐻𝑚𝑖𝑛 = 𝐻 − min
1≤𝑖≤𝑚

{ℎ𝑖}, the discretization points are

calculated as follows:

𝑋𝑑 = {𝑝 ∈ ℤ|𝑝 = ∑ 𝑙𝑖𝑧𝑖 ,𝑚
𝑖=1 0 ≤ 𝑝 ≤ 𝐿𝑚𝑖𝑛 , 0 ≤ 𝑧𝑖 ≤ 𝑑𝑖 , 𝑧𝑖 ∈ ℤ, 𝑖 = 1, … , 𝑚} (1)

𝑌𝑑 = {𝑞 ∈ ℤ|𝑥 = ∑ ℎ𝑖𝑧𝑖 ,𝑚
𝑖=1 0 ≤ 𝑞 ≤ 𝐻𝑚𝑖𝑛, 0 ≤ 𝑧𝑖 ≤ 𝑑𝑖, 𝑧𝑖 ∈ ℤ, 𝑖 = 1, … , 𝑚} (2)

Figure 15. Discretization Points.

A method (and supporting data structure) was presented by Chazelle [29] to report all the

possible locations in which an item can be placed considering the presence of empty spaces

that occur from the placement of other items.

An algorithm to calculated the set of discretization points named as Useful Numbers was

proposed by Carnieri et al. [30].

The Reduced Raster Points (see Figure 16), a subset of the Discretization Points presented by

Herz [27], were described by Scheithauer and Terno [31].

Reduced Raster Points

The Reduced Raster Points are calculated as follows:

𝑋𝑟 = {(𝐿 − 𝑝)𝑥|∀𝑝 ∈ 𝑋𝑑} ⋃ {0} with (𝐿 − 𝑝)𝑥 = max{𝑠 ∈ 𝑋𝑑|𝑠 ≤ 𝐿 − 𝑝} (3)

𝑌𝑟 = {(𝐻 − 𝑞)𝑦|∀𝑞 ∈ 𝑌𝑑} ⋃ {0} with (𝐻 − 𝑞)𝑦 = max{𝑡 ∈ 𝑌𝑑|𝑡 ≤ 𝐻 − 𝑞} (4)

Figure 16. Reduced Raster Points.

35

To keep track of the empty rectangular spaces (ERS) that are created after the placement of

an item, Lai and Chan [6] presented the Difference Process that creates interval lists to

identify current ERSs. This process, first, places the item inside a given ERS, then generates

the new ERSs that result from the intersection of the item with the existing ERSs and removes

intersected ERSs. The last step removes the ERSs that are infinitely thin or are totally inscribed

by other ERSs. This method is illustrated in Figure 17, in which the darker rectangles depict

the available ERS at the beginning of the process (a) and at the end of each item placement

(b and c).

a. Start

b. Placement of the first item

c. Placement of the second item

Figure 17. Difference Process.

Considering the already packed items, Martello et al. [32] presented an algorithm that identify

the locations, called Corner Points, where new items can be placed. In Figure 18, the bullets

identify the Corner Points, i.e., points where the slope of the black line changes from vertical

to horizontal.

Figure 18. Corner Points.

36

An extension to the Corner Points, called Extreme Points, was presented by Crainic et al. [33]

that considers corners that are inside the boundaries defined by the Corner Points. Figure 19

depicts the Extreme Points wherein the darker grey area the region that was not considered

by the Corner Points.

Figure 19. Extreme Points.

Wei et al. [34] presented a greedy heuristic to solve the SLOPP using the concept of skyline

representation of a pattern as a sequence of line segments (𝑠) expressing the rectilinear

contour of the current pattern where the 𝑦 coordinate of 𝑠𝑖 is different of the 𝑦 coordinate

of 𝑠𝑖+1 and the 𝑥 coordinate of the right endpoint of 𝑠𝑖 is the same as the 𝑥 coordinate of the

left endpoint of 𝑠𝑖+1.

To keep track of the gaps resulting from the placement of items, Bennell et al. [35] used a list

of points (𝑥, 𝑦) that define the current profile of packed items. To find the lowest gap, the

minimum 𝑦 value is identified (𝑦𝑚𝑖𝑛), and the gap width is calculated considering the next 𝑥

point in the list (if last, considers 𝐿) and the gap height as 𝐻 − 𝑦𝑚𝑖𝑛.

A review on discretization points types, namely Discretization Points, Useful Numbers,

Reduced Raster Points and Corners Points was presented by Cunha and Queiroz [36]. The

authors denoted an equivalence on the number of points obtained by Discretization Points,

Useful Numbers and Corners Points. The authors concluded that the Reduced Raster Points

provide a higher reduction in the number of points, notwithstanding the lack of investigation

on whether there is or not loss of generality applying this discretization type. We refer to

Nascimento et al. [37] and Cunha and Queiroz [38] for further comparative studies on

discretization points.

37

3.3. Exact Methods

An exact algorithm for the unconstrained two-staged SKP was proposed by Gilmore and

Gomory [21] solving 𝑚 + 1 one-dimensional SKP, one SKP for each of the items types,

creating 𝑚 strips and +1 to fill the object with those strips.

A characterization of knapsack functions and a Dynamic Programming approach for the

unconstrained SKP with guillotine cuts was proposed by Gilmore and Gomory [39], later

improved by Russo et al. [40] [41].

A recursive algorithm for the unconstrained SLOPP with guillotine cuts was presented by Herz

[27] that reduces the computational effort through the use of bounds, memorization, and

considering for the placement of items the linear combinations of the items dimensions, i.e.,

discretization points (see Figure 15). Based on this work, Hifi and Zissimopoulos [42]

presented an exact algorithm providing improved bounds and optimality criteria to reduce

the branching on the generated tree.

A tree-search algorithm for the SLOPP with guillotine cuts was presented by Christofides and

Whitlock [28] that reduces the search space not generating equivalent patterns, i.e., patterns

that contain the same items but with different layouts, and using upper bounds calculated by

means of two methods, the Dynamic Programming procedure proposed by Gilmore and

Gomory [39] to solve the unconstrained related problem and a method proposed by Desler

and Hakimi [43] to solve the Transportation Problem (see Hitchcock [44]). Improvements to

this approach were introduced by Christofides and Hadjiconstantinou [45] and by Hifi and

Zissimopoulos [46].

Making use of an upper bound obtained from the Lagrangean Relaxation (see Fisher [47]) of

the problem and optimized through Subgradient Optimization (see Shor [48]), Beasley [49]

presented a tree-search procedure for the SLOPP.

Martello and Vigo [50] showed that the Continuous Lower Bound (𝐶𝐿𝐵 = ⌈∑ 𝑙𝑖ℎ𝑖
𝑚
𝑖=1 𝐿𝐻⁄ ⌉) for

the SBSBPP has a worst-case performance ratio of 1

4
 and presented new lower bounds that

are used in a Branch-and-Bound (see Land and Doig [51], and Agin[52]) to solve to optimality

this problem. Clautiaux et al. [53] proposed an improvement to this Branch-and-Bound to

avoid equivalent patterns, and presented a second exact algorithm based on a new problem

38

relaxation. A Branch-and-Bound using the Corner Points for finding possible positions for

placing an item was presented by Martello et al. [32] for the three-dimensional SBSBPP.

A tree-search algorithm for the 𝑑-dimensional knapsack problem using a graph-theoretical

characterization of feasible packings was presented by Fekete and Schepers [54][55][56]. In

this characterization, if no overlapping occurs in both graphs (𝑥 and 𝑦 axis projection) the

pattern is feasible (see Figure 20), otherwise unfeasible (see Figure 21, wherein the

overlapping edges are illustrated bolder and darker than the others). The authors refer that

this characterization can be easily extended to higher dimensional problems. These technical

reports were later revised and published in [57], [58] and [59].

Figure 20. Fekete and Schepers’ graph-theoretical characterization – Feasible pattern.

Figure 21. Fekete and Schepers’ graph-theoretical characterization – Unfeasible pattern.

39

Ferreira and Oliveira [60] presented some degenerated cases that can occur when applying

Fekete and Schepers procedure. Ferreira and Oliveira [61] presented an additional property

to the Fekete et al. [59] graph-based algorithm to avoid degenerative packing situations,

verifying that the packing is actually constrained inside the object boundaries.

Lower bounds that dominate the ones presented by Martello and Vigo [50] and Fekete and

Schepers [55] were presented by Boschetti and Mingozzi [62].

Silveira and Morabito [63] proposed a Dynamic Programming and Subgradient Optimization

based algorithm to solve the SLOPP with guillotine cuts.

A two-stage exact algorithm to solve the SKP making use of problem reductions and new

upper bounds to reduce the search space was presented by Baldacci and Boschetti [64]. The

upper bounds are embedded in an enumeration tree, and at each integer solution found a

feasibility check is performed to verify if the subset of items can generate a feasible layout.

The feasibility tests are performed solving to optimality a called Feasibility Problem that the

authors mathematically formulate and present.

Pisinger and Sigurd [65] presented a Branch-and-Price (see Barnhart et al. [66]) algorithm for

the SBSBPP with guillotine cuts. Branch-and-Price based algorithms were also proposed by

Puchinger and Raidl [67] for the three-staged SBSBPP and by Mrad et al. [68] for the two-

staged SSSCSP.

Clautiaux et al. [69] presented a Constraint-based Scheduling model (see Baptiste et al. [70])

for the SKP and a Branch-and-Bound algorithm considering this model.

An integer programming formulation and upper bounds (obtained through the relaxation of

the mathematical formulation) for the SLOPP were proposed by Boschetti et al. [71]. Lodi and

Monaci [72] presented two integer linear programming models for the two-staged SLOPP and

extensions to deal with non-oriented, unconstrained and double-constrained problems. The

authors presented some linear inequalities that remove symmetric solutions from the

solution space highly reducing the computational effort required to solve the models. Silva et

al. [13] proposed an integer programming model for the two- and three-staged SSSCSP. Due

to the flexibility of the model, other issues were addressed such as the rotation of the items,

the lengths of the cuts, and the value of the remaining plates. The model proposed by Silva et

40

al. [13] was extended in Furini et al. [73] for the SKP with guillotine cuts as for the SSSCSP,

ODP, and MSSCSP.

Based on the work of Carvalho [74], Macedo et al. [75] presented an Arc-Flow (see Wolsey

[76]) model for the two-staged SSSCSP. Brandão and Pedroso [77] presented an Arc-Flow

formulation for the Vector Packing Problem (VPP; see Coffman et al. [78]) that can be applied

to model other cutting and packing problems through the reduction to a VPP.

3.4. Non-exact Methods

The non-exact methods for solving cutting and packing problems will be presented next. This

subsection starts with a review of some of the most used and referred placement strategies,

i.e., policy to apply in order to place an item into a given layout, then, the heuristics and the

solution methods based on metaheuristics are also presented.

3.4.1. Placement Strategies

Although most research made on two-dimensional cutting and packing problems deals only

with orthogonal patterns, Cani [79] demonstrated that in practice non-orthogonal cuts or

packing must be considered when it is required the absolute minimal area as they can lead to

better arrangements of items or even make possible the inclusion of items that the

orthogonal case cannot handle. Figure 22 depicts to the left a white square object and three

grey items and it can be noticed that the longest item cannot be orthogonally placed into the

square. To the right, the figure depicts a feasible non-orthogonal pattern considering the

same object and items.

Figure 22. Non-orthogonal packing.

Baker et al. [80] presented a study on heuristics for the ODP in which each item is packed, in

turn, at the lowest possible position, and then left-justified without overlapping, i.e., Bottom-

41

Left (or BL for short) heuristics. The authors evaluated the influence of the order in which

items are packed, concluding that these heuristics achieve reasonable results when the items

are ordered by non-increasing lengths.

The Hybrid First-Fit (HFF) heuristic for the SBSBPP with guillotine cuts, proposed by Chung et

al. [81], starts ordering the items by non-increasing heights, then, in turn, pack the items

through a BL policy at the lowest existent strip that has room to fit the current item. If none

exists, a new strip is created with a length equal to the bin length and the height equal to the

item height. The generated strips are packed into bins by the First-Fit Decreasing (FFD)

heuristic. The First-Fit (FF) is an algorithm for the one-dimensional case that places each item

in turn in the lowest indexed bin in which it fits, while the First-Fit Decreasing (FFD), places

the items as in FF, but assumes that the items are ordered by non-increasing height (see

Johnson [82] and Johnson et al. [83] for further details).

A Bottom-Left approach was proposed by Jakobs [84] that slides the items from the top-right

corner, while possible, downwards until it finds an item or object edge, then to the left-most

position available (see Figure 23).

Figure 23. Jakobs’ BL Heuristic.

The Bottom-Left Fill (BLF) was presented by Hopper and Turton [85] as an improvement to

the Bottom-Left approach used by Jakobs [84], as the later can create large empty regions

due to blocking items. To overcome this weakness, BLF places directly the items in the left-

most and lowest sufficiently large empty region.

An improvement to the Bottom-Left heuristic of Jakobs [84] was proposed by Liu and Teng

[86] in which when moving to the left, whenever possible, the item is placed as downward as

possible first, as depicted in Figure 24.

Figure 24. Liu and Teng improved BL algorithm.

42

Lodi et al. [87] presented two heuristics for the SBSBPP, both starting with 𝐶𝐿𝐵 opened bins

and opening new ones when none of the remaining item fits on the opened bins. The

Alternate Directions heuristic starts sorting the items with non-increasing heights, then packs

a subset of the items into the bins following a Best-Fit Decreasing policy, i.e., packing the

current item onto the shelf that minimizes the residual horizontal space. The remaining items

are packed, alternatively, from left-to-right and from right-to-left at the lowest position

possible. The Touching Perimeter heuristic starts by sorting the items by non-increasing area,

then the position/bin to pack an item is done calculating the percentage of the perimeter that

touches edges, either of the bin or other items.

The Efficient Management of Holes, presented by Beraudo et al. [88], iteratively packs the

items as follows: 1) tries to place the item in the left margin stacked over already placed items,

2) if the item is not placed in the previous step, tries to place the current item in the leftmost

free empty space, i.e., hole, and 3) if the item is not already placed, tries to place it in the

object bottom edge at the right of already placed items.

The Best-Fit heuristic, presented by Burke et al. [89], unlike most approaches in which the

items are pre-sorted and then placed in the object one at a time, examines the lowest

available space and then evaluate the best item to place at this position. This heuristic does

not need to search for each of the free locations due to the use of an array that identifies the

height occupied defining the packing skyline as depicted in Figure 25.

Figure 25. Burke et al. Array of Occupied Positions.

Gonçalves and Resende [90] presented an Genetic Algorithm that considers two placement

strategies, namely Bottom-Left (BL) and Left-Bottom (LB). Using the Difference Process to

43

keep track of the ERS, the BL places the item in the closest ERS relatively to the bottom-left

corner of the object, while LB places the item in the closest ERS to left-bottom corner of the

object. The LB was introduced to overcome the inability of the BL to attain, in some situation,

the optimal solution. Figure 26 a. illustrates the packing for the following sequence,

considering BL and LB, 3 BL, 2 BL, 1 LB, 4 BL. Figure 26 b. illustrates the same sequence

packed only with BL, i.e., 3 BL, 2 BL, 1 BL, 4 BL, and as it can be observed the last

item cannot be placed.

a. Solution with BL and LB b. Solution with BL

Figure 26. Solutions generated by the placement procedures BL+LB and BL.

The Four Corners heuristic, proposed by Binkley and Hagiwara [91], divides a genome (that

represents a sequence of items) into four sets, each of them to be packed in a different object

corner. Alternating through the four sets, the current item is packed as close as possible to its

assigned corner.

The Least Wasted First Heuristic, presented by Wei et al. [92], makes use of the Corner Points

and to reduce the search space, points are discarded when they cannot accommodate

unpacked items. The items are packed in the location that leaves the empty space as smooth

as possible, e.g., packing the darker grey item on the location depicted in Figure 27 provides

a smooth packing since its dimensions are the same as the lines that define the Corner Point.

Figure 27. Smooth Packing.

44

The Meet-in-the-Middle (MIM) principle is presented by Côté and Iori [93] as an alternative

to the Normal Patterns. MIM packing divides the first dimension, e.g., length, by a given

threshold value, then places the items whose left border is at the left of the threshold as left

as possible and the remaining to the right. This process is repeated for the successive

dimensions, e.g., for the height dimension, places the items at the top or at the bottom. Figure

28 depicts a general pattern, corresponding Normal Pattern and the MIM pattern with a

threshold value of 𝐿/2 and 𝐻/2, for length and height dimensions respectively.

Figure 28. Patterns: General (left), Normal (middle), Meet-in-the-Middle (right).

3.4.2. Heuristics

Heuristics to solve the ODP and the SSBSBPP were presented by Bengtsson [94] which aim to

be efficient solution methods for large-scale instances due to the small memory

requirements. The heuristic for the ODP is a procedure that recursively packs the items. The

heuristic for the SBSBPP starts with a rough distribution of items into bins and repeatedly

discards the bin that presents more unused space. The items of the discarded bin are used to

improve the remaining bins.

Wang [95] proposed two heuristics to solve the guillotine SLOPP. The underlying algorithm of

these heuristics is the same, differing in the aspiration criterion used as the condition for the

acceptance of the percentage of waste generated. This implicit enumeration approach builds

successively a larger guillotine rectangle from smaller ones. Parada et al. [96] presented a

computational comparison on approaches based on Wang’s algorithm [95], more specifically,

Oliveira and Ferreira [97] and Parada et al. [98] [99] [100].

Beasley [101] presented an exact algorithm and a heuristic based on Dynamic Programming

for the (non-)staged unconstrained SLOPP. The author demonstrated that considering only

Normal Patterns and discretization points can lead to improved recursion since it permits to

reduce the search space. Denoting that the exact method can become computationally too

demanding for a large set of discretization points, a heuristic is proposed reducing the set

size. Morabito and Arenales [102] compared the heuristic of Beasley [101] and the algorithm

45

of Gilmore and Gomory [21] to solve large-scale unconstrained non-staged SLOPP. Although

the latter considers two-staged problems, it provides feasible solutions for non-staged

problems4. The authors remarked that since Beasley´s heuristic removes some discretization

points it can, in some cases, exclude points essential to achieve optimality. Faced with

increasing object size and number of items, Beasley’s heuristic was not able to attain better

result than the one proposed by Gilmore and Gomory.

Berkey and Wang [103] presented several heuristics for the SBSBPP adapted from heuristics

found in the literature for the ODP. Adaptations to these heuristics for the non-oriented

SBSBPP were proposed by Lodi et al. [104].

Using an And/Or-Graph to represent the solutions, Morabito et al. [12] proposed a hybrid

search heuristic that combines depth-first and hill-climbing search strategies for the

unconstrained SLOPP with guillotine cuts.

The HBP heuristic, proposed by Boschetti and Mingozzi [105] to solve the SBSBPP, generates

solutions using two placement methods and different pricing rules. At the end of each

iteration, the value of the items is updated and a new solution is generated with these values.

Hifi and M'Hallah [106] presented algorithms for the two-staged SLOPP, namely, Strip

Generation Algorithm (SGA), Extended SGA (ESGA), and Hill-climbing ESGA (HESGA). The SGA

solves the problem as a two-stage algorithm, first generating a set of strips then searching for

good combinations of those strips both solving bounded one-dimensional SKP. The ESGA fills

the object dividing it into two sections, one filled with the SGA while the other is filled using

an alternative procedure that makes use of horizontal discretization points. Finally, the HESGA

combines the ESGA with hill-climbing strategies.

The Set-Covering Heuristic (SCH), presented by Monaci and Toth [107] for the SBSBPP,

formulates the problem as a Set-Covering Problem (see Caprara et al. [108]) and solves it

through a two-phase heuristic. The Column-Generation phase generates, thought greedy

heuristics to achieve diversity, a large set of columns that define the Set-Covering instance to

be solved in the Column-Optimization phase.

4 Farley [184] analysed the trade-off between non-exact two-staged patterns and non-staged ones and
concluded that the waste reduction obtained with non-staged may not justify, in some cases, the extra
computational effort required by this cutting style.

46

Five greedy heuristics for the SLOPP with guillotine cuts were presented by Hadjiconstantinou

and Iori [109], namely, the HCKP, HCHV, HCGAP, HCORD, and HCORD2,. The HCKP, considers some

item ordering, iteratively pack, using a BL policy, one item into a strip, then it is completed

solving a one-dimensional SKP. The HCHV pack the items alternatively on top of each other or

side by side until no more items fit in this direction. The HCGAP solves a one-dimensional SKP

to pack vertically items then for each of them a horizontal strip is created and completed

solving a Generalized Assignment Problem (GAP; see Cattrysse and Van Wassenhove [110]).

The HCord creates for each item a strip using HCKP then the best strips are packed considering

the values of the items in the strip until their exit strips that fit. The HCord2 is similar to the

previous one but recreate the strips for each unpacked item after the packing of the best strip

created.

Huang and Chen [111] proposed two heuristics to solve the SKP which placement strategy is

to place the current item in a corner defined either by other items or by the edges of the

object. When evaluating the possible corners to place the items, a caving degree is calculated

to achieve high area usage. The second heuristic is a backtracking process over the solution

generated by the first heuristic.

The Extreme Point First Fit Decreasing (EP-FFD) heuristic and Extreme Point Best Fit

Decreasing (EP-BFD) heuristic were presented by Crainic et al. [33]. Both heuristics consider

a pre-ordering of the items and then, in turn, the items are placed into the bins. The EP-FFD

places the items at the lower and the left-most Extreme Point in which it fits. If the current

bin cannot accommodate a new one is opened, and the item is placed in the left-bottom

corner. The EP-BFD places the item into the bins that present the best merit function. The

authors present and compare several options for the calculation of the merit function.

The Least Wasted First Heuristic, proposed by Wei et al. [92], makes use of the Smooth

Packing to place the items and since the ordering influence the quality of the solution

generated by this placement method, the authors apply a random local search which alters

the order of the items at each call, trying to obtain a better solution.

Based on Christofides and Hadjiconstantinou’s algorithm [45], Morabito and Pureza [112]

presented a heuristic using And/Or-Graph search approach for the (un)weighted SLOPP with

guillotine cuts.

47

The Sequential Grouping Heuristic (SGH) was presented by Cui et al. [113] to solve the SSSCSP

with guillotine cuts where the main objective is the input minimization and the secondary

objective is the minimization of the number of patterns generated. This heuristic uses the

sequential value correction proposed by Belov and Scheithauer [114] and the heuristic

proposed by Cui [115] for the SLOPP.

Three heuristics for the SBSBPP with guillotine cuts were proposed by Fleszar [116], namely

the First-Fit Insertion Heuristic (FFIH), Best-Fit Insertion Heuristic (BFIH), and Critical-Fit

Insertion Heuristic (CFIH). A tree representation of patterns is used, in which, leaf nodes

represent items and the other nodes represent the vertical or horizontal cuts. Considering the

items sorted by their area, the FFIH(/BFIH) packs the items in the first(/best) bin using a fitness

function to evaluate the best location. The CFIH, Iteratively, evaluates all the unpacked items

and packs the critical item on the best insertion point considering the fitness function

adopted. An improvement procedure is presented in which, at each iteration, the last pattern

is removed from the current solution and the unpacked items are packed into a new solution

using FFIH. The patterns from the current solution and the new solution constitute a new

feasible solution, being the new best solution if this (combined) solution uses fewer bins.

Alvelos et al. [117] presented heuristics for the two- and three-staged SBSBPP based on the

SearchCol framework (see Alvelos et al. [118] and Alvelos et al. [119]).

Cui et al. [120] presented a heuristic for the SBSBPP that generates a given number of cutting

plans, adjusting the items’ value after each pattern generation through a correction formula.

The correction formula prioritizes items that do not combine well with the current pattern

and larger items more difficult to pack. The patterns are generated in a similar manner as in

the work presented by Wei et al. [92].

The Residual-Space-Maximized Packing heuristic, presented by Wang and Chen [121], for the

ODP and SBSBPP considers that at each packing step the residual space must be maximized.

The Difference Process is used to keep track of the ERS, and when packing an item all the ERS

corners are evaluated, choosing the one that generates the largest free region after packing.

3.4.3. Metaheuristics

The Genetic-And/Or-Graph (GAO) is a Genetic Algorithm (see Goldberg [122]) proposed by

Parada et al. [99] to solve the SLOPP with guillotine cuts which represents solutions by mean

48

of a string. The string represents a binary tree associated with the cutting pattern where the

items are represented by lowercase letters and the operators V and H represent vertical and

horizontal cuts, respectively. The algorithm applies crossover operations using the above

operators to create from two patterns, four new ones.

A Genetic Algorithm for the Irregular two-dimensional ODP was proposed by Jakobs [84].

Although capable to deal with polygons, the author remarks that the algorithm can,

alternatively, be used on rectangular shapes that embed the polygons to decrease the

computational effort. The author determines the embedding rectangle with the minimum

area on all polygons and then applies the Genetic Algorithm. A last step is performed when

dealing with this embedding approach, called the Shrinking-step, that shifts the polygons

closer to each other.

A Genetic Algorithm for the SKP was proposed by Gonçalves and Resende [90] wherein the

chromosome, besides the representation of the items packing order, contains also the

corresponding packing strategy. This algorithm uses two placement strategies, namely

Bottom-Left (BL) and Left-Bottom (LB). Different layouts with the same assignments will have

the same trim loss, but one can present larger ERSs and so will have a higher improvement

potential, as depicted in Figure 29. Taking this into account, Gonçalves [123] present a Genetic

Algorithm that use a modified trim loss evaluation to measure the quality of a pattern.

Gonçalves and Resende [124] presented a parallel multi-population Genetic Algorithm for

solving the SLOPP.

a. Lower improvement potential b. Higher improvement potential

Figure 29. Potential improvement.

Bortfeldt and Winter [125] presented a Genetic Algorithm approach to solve the

(un)constrained (non-)guillotine SKP/SLOPP.

A Multi-Crossover Genetic Algorithm (see Lee [126]) for the SBSBPP with due dates was

proposed by Bennell et al. [35] where the objective is to minimize the maximum lateness of

49

the items and to minimize the number of bins used. This heuristic searches for the lowest

available gap in the current bin and packs the item that best fills this gap.

Simulated Annealing (see Kirkpatrick et al. [127]) approaches were proposed by Lai and Chan

[6] for solving the SKP, by Parada et al. [100] for the SLOPP with guillotine cuts and by Faina

[128] for the SSSCSP.

Egeblad and Pisinger [129] presented integer programming formulations for the two- and

three-dimensional SKP and a Simulated Annealing that make use of the Sequence Pair

representation proposed by Murata et al. [130] for the VLSI problem. Figure 30 depicts a

packing pattern represented by the sequence of 𝐴 = < 3, 2, 5, 6, 1, 4 > (graph to the left)

and 𝐵 = < 1, 2, 4, 3, 5, 6 > (graph to the right). Considering the two sets 𝐴 and 𝐵, if item 𝑖

precedes 𝑗 in 𝐴 and 𝐵, then 𝑖 is placed to the left of 𝑗. If 𝑖 succeeds 𝑗 in 𝐴 but precedes in 𝐵,

item 𝑖 is placed below 𝑗.

Figure 30. Sequence Pair representation.

Binkley and Hagiwara [91] presented a Simulated Annealing and a Genetic Algorithm for the

SKP using the Four Corners heuristic for item placement.

Hopper and Turton [131], and Leung et al. [132] presented comparative studies on the

performance of Genetic Algorithm and Simulated Annealing. Leung et al. [133] compared a

50

Genetic Algorithm and a hybrid meta-heuristic (Genetic Algorithm with Simulated Annealing)

called MSAGA for the SKP. The objective of this work was to verify if the hybrid approach

could prevent the early convergence observed in the Genetic Algorithm. The results point to

the superiority of the hybrid approach. The decoder, i.e., placement method, uses the

Difference Process proposed by Lai and Chan [6].

A new non-linear mathematical formulation for the SLOPP was presented by Beasley [134]

giving indications on how to extend the formulation to deal with defective areas, multiple size

stock objects and item rotation. Based on this formulation, the author proposed a Population

Heuristic (see Beasley [135]) and reported the results obtained considering large-scale

instances (𝑚 = 1000). Based in this work, Beraudo et al. [136] presented an evolutionary

approach using the Efficient Management of Holes. An Evolutionary Algorithm for the

SKP/SLOPP using a tree-search placement algorithm using a bottom-left placement policy was

presented by Kierkosz and Luczak [137].

Lodi et al. [104], [138] presented a Tabu Search (see Glover [139]) approaches for the SBSBPP

with guillotine cuts and in [87], presented a Unified Tabu Search Framework meant to be

adaptable for each specific problem changing uniquely the inner heuristics to explore the

neighbourhoods. A Tabu Search approach was also presented by Alvarez-Valdés et al. [140]

for solving the SLOPP using an alternative objective function, that considers symmetry,

number of empty rectangles, waste concentration and feasibility (for doubly constrained

problems), to prevent equal objective function values on solutions that although with a

different layout have the same assignments.

Besides a Tabu Search, Alvarez-Valdés et al. [141] presented a Greedy Randomized Adaptive

Search Procedure (GRASP, see Feo and Resende [142]) and a Path Relinking (see Glover [143])

to solve large-scale (un)constrained (un)weighted SLOPP with guillotine cuts. Alvarez-Valdés

et al. [144] proposed a GRASP to solve the double-constrained SLOPP and Alvarez-Valdés et

al. [145] presented two GRASP and a Path Relinking approach for the two-staged SLOPP. In

the later, the Path Relinking makes use of solutions obtained by both GRASP since one

provides high-quality solutions while the other provides a more diverse set of solutions.

Parreño et al. [146] presented a GRASP with Variable Neighbourhood Descent (VND, see

Hansen and Mladenović [147]) based heuristic for the two- and three-dimensional SBSBPP.

51

Alvelos et al. [148] presented a VND algorithm for the two- and three-staged SBSBPP, while

Chan et al. [149] presented a VND to solve the two-staged SBSBPP. Chan et al. [150] presented

a heuristic called Stochastic Neighbourhood Structures (SNS) for the two- and three-staged

SBSBPP. The main difference between SNS and VND is that all neighbourhood structures

explored are stochastics.

A Variable Neighbourhood Search (VNS, see Mladenović and Hansen [151]) heuristic for the

three-staged SSSCSP using the Ruin and Recreate Principle was proposed by Dusberger and

Raidl [152]. The solution is represented by the root node of a cutting tree, in which children’s

root represent individual bins, each consecutive level represents guillotine cuts, and the

leaves represent individual items. Three greedy heuristics are presented, namely, Three-

staged First Fit Decreasing Height with Rotations (3SFFDHR), 3SFFDHR preceded by a

matching step (MATCH) and Fill Strip (FS). The 3SFFDHR first sorts the items by non-increasing

height then, iteratively, tries to accommodate the current item in the cutting tree at the first

possible position using a post-order traversal. The MATCH includes a pre-processing stage,

based on the work proposed by Fritsch and Vornberger [153], pairing items into meta-

rectangles that will be packed alongside with the remaining items using the 3SFFDHR. The FS

is an adaptation of the FFFWS proposed by Puchinger et al. [154]. The solutions are created

using the above greedy heuristics, being the best one selected as the base solution. Following

the Ruin and Recreate Principle, parts of the base solution are destroyed and recreated using

the previously described heuristics. The authors present an integer linear programming model

for the two-staged case that can be used as an alternative method to recreate the solution.

A Guided Local Search (GLS, see Voudouris and Tsang [155]) based heuristic was presented

by Faroe et al. [156] for the two- and three-dimensional SBSBPP. The heuristic starts with an

upper bound on the number of available bins and iteratively decreases this number. This

process is repeated until the time limit is reached or the current solution is the same as a

calculated lower bound.

Jiang et al. [157] presented a hybrid algorithm based on Particle Swarm Optimization (see

Kennedy and Eberhart [158]) and Simulated Annealing to solve the SLOPP. Bao et al. [159]

presented an Artificial Fish Swarm Algorithm (see Li et al. [160]) for the SKP comparing the

results with the ones obtained with the Particle Swarm Optimization. Omar and

52

Ramakrishnan [161] presented an Evolutionary Particle Swarm Optimization (EPSO) for the

SBSBPP combining PSO with concepts of Evolutionary Algorithms to diversify the search.

A Beam Search (see Ow and Morton [162]) algorithm was proposed by Hifi et al. [163] for the

two-staged SLOPP and based on this work, Hifi et al. [164] presented a parallel Beam Search.

3.5. Surveys and Reviews

The following list presents, in chronological order, the surveys and reviews found in the

literature focusing solution approaches for cutting and packing problems.

▪ Golden [165] surveyed the solution approaches found in the literature for the CSP.

▪ Hinxman [166] presented in this work a taxonomy of assortment and trim loss

problems, and surveyed the solution methods found in the literature for these

problems.

▪ Coffman et al. [78] presented an extensive survey on approximation algorithms for

the BPP and for most of the variants associated with this problem.

▪ Dowsland and Dowsland [167] surveyed two- and three-dimensional packing and

related problems focusing on models and solution approaches.

▪ Dyckhoff and Finke [168] presented the Dyckhoff’s typology [15] and an extensive

survey of the works published on cutting and packing problems.

▪ Lirov [169] surveyed the existent literature, discussing the domain of applicability,

model, solution approaches and the related problem of these works.

▪ Cheng et al. [170] surveyed the literature on the one- and two-dimensional CSP and

some of their related problem, such as bin packing problem, pallet loading problem

and VLSI placement problem. The authors focused on the solution methods proposed

and on the practical and industrial aspects of these problems.

▪ Hopper and Turton [171] presented an extensive review of metaheuristics approaches

applied to the two-dimensional regular and irregular strip packing problems, such as

Genetic Algorithm, Simulated Annealing, Tabu Search and Artificial Neural Networks.

▪ Lodi et al. [172] review exact, heuristic and metaheuristic approaches for the two-

dimensional BPP.

▪ Lodi et al. [173] review mathematical models, lower bounds, classical approximation

algorithms, and solution methods for packing problems.

53

▪ Jylänki [174] present an extended review of packing algorithms5. The author presents

most of the packing heuristics found in the literature and performs computational

tests on more than two thousand distinct algorithms.

▪ Chan et al. [175] reviews heuristics for the BPP grouping them as one-phase (items are

packed directly into bins), two-phase (first, strips of items are created and then the

strips are packed into bins), and local search heuristics.

▪ Crainic et al. [176] reviewed and compared models and approaches to solving the two-

and three-dimensional knapsack and bin packing problems.

▪ Delorme et al. [177] reviewed mathematical models and exact algorithms for the

SBSBPP and SSSCSP.

▪ Oliveira et al. [178] presented an extensive review of heuristics proposed, mainly, in

the last decade for the two-dimensional ODP.

▪ Silva et al. [179] presented a review of solution approaches for the two-dimensional

IIPP.

▪ Gonzalez et al. [180] presented a wide overview of CSP focusing on its classification

and solution approaches.

4. Conclusion

As this paper has shown, a great amount of research has been undertaken on the cutting and

packing problem family. In this paper, solution methods for the two-dimensional rectangular

cutting and packings problems have been reviewed with the main emphasis in two distinct

problems. The first aims to generate the layout that maximizes the value of the items to cut

or pack considering only one object, while the second aims to cut or pack all items using as

few identical objects as possible. We review the solution methods that have been proposed

in the literature for solving these problems. Although any other classification criteria could be

adopted, we have chosen a simple classification scheme to group the solution approaches,

classifying them as exact, heuristic or metaheuristic. Furthermore, we present methods to

enumerate the possible positions for item placement and a list of surveys focusing solution

approaches for cutting and packing problems.

5 The review and source code used can be obtained at https://github.com/juj/RectangleBinPack.

https://github.com/juj/RectangleBinPack

54

Appendix A

The following table (Table 4) relates the articles referred in this paper with the types of

problem for which a solution method was presented. This table presents, by order of

appearance, the article reference, the publication year, the problems types following the

typology proposed by Wäscher et al. [16] and, finally, the cut types considered. The cuts are

identified by G for guillotine, NG for non-guillotine, and (N)G when both cut types are

considered by the corresponding article.

Table 4. Solution approaches for cutting and packing problems.

Article Year
Problem

Cut
IIPP PP KP ODP CSP BPP

El-Aal [2] 1994 ● G

Farley [3] 1983 ● G

Vasko et al. [4] 1989 ● G

Morábito and Garcia [5] 1998 ● G

Lai and Chan [6] 1997 ● NG

Tsai et al. [7] 2009 ● NG

Morabito et al. [12] 1992 ● G

Silva et al. [13] 2010 ● G

Andrade et al. [14] 2016 ● G

Gilmore and Gomory [17] 1961 ● ● G

Gilmore and Gomory [19] 1963 ● ● G

Gilmore and Gomory [21] 1965 ● ● ● G

Oliveira and Ferreira [22] 1994 ● ● G

Cintra et al. [23] 2008 ● ● ● G

Novianingsih et al. [25] 2012 ● G

Cui and Zhao [26] 2013 ● G

Herz [27] 1972 ● G

Christofides and Whitlock [28] 1977 ● G

Chazelle [29] 1983 ● NG

Carnieri et al. [30] 1994 ● G

Scheithauer and Terno [31] 1996 ● NG

Martello et al. [32] 2000 ● NG

Crainic et al. [33] 2008 ● NG

Wei et al. [34] 2011 ● ● NG

Bennell et al. [35] 2013 ● NG

Gilmore and Gomory [39] 1966 ● G

Russo et al. [40] 2013 ● G

Russo et al. [41] 2014 ● G

Hifi and Zissimopoulos [42] 1996 ● G

Christofides and Hadjiconstantinou [45] 1995 ● G

Hifi and Zissimopoulos [46] 1997 ● G

Beasley [49] 1985 ● ● NG

55

Article Year
Problem

Cut
IIPP PP KP ODP CSP BPP

Martello and Vigo [50] 1998 ● NG

Clautiaux et al. [53] 2007 ● ● NG

Fekete and Schepers [54][55][56] 2000 ● NG

Fekete and Schepers [57] 2004 ● NG

Fekete and Schepers [58] 2004 ● NG

Fekete et al. [59] 2007 ● NG

Ferreira and Oliveira [60] 2005 ● NG

Ferreira and Oliveira [61] 2008 ● NG

Boschetti and Mingozzi [62] 2003 ● NG

Silveira and Morabito [63] 2002 ● G

Baldacci and Boschetti [64] 2007 ● NG

Pisinger and Sigurd [65] 2007 ● G

Puchinger and Raidl [67] 2007 ● G

Mrad et al. [68] 2013 ● G

Clautiaux et al. [69] 2008 ● NG

Boschetti et al. [71] 2002 ● NG

Lodi and Monaci [72] 2003 ● G

Furini et al. [73] 2016 ● ● ● G

Macedo et al. [75] 2010 ● G

Brandão and Pedroso [77] 2016 ● ● NG

Baker et al. [80] 1980 ● NG

Chung et al. [81] 1982 ● NG

Jakobs [84] 1996 ● NG

Hopper and Turton [85] 1999 ● NG

Liu and Teng [86] 1999 ● NG

Lodi et al. [87] 1999 ● (N)G

Beraudo et al. [88] 2004 ● NG

Burke et al. [89] 2004 ● NG

Gonçalves and Resende [90] 2006 ● NG

Binkley and Hagiwara [91] 2007 ● ● NG

Wei et al. [92] 2009 ● NG

Côté and Iori [181] 2016 ● ● (N)G

Bengtsson [94] 1982 ● ● NG

Wang [95] 1983 ● ● G

Parada et al. [96] 2000 ● G

Oliveira and Ferreira [97] 1990 ● G

Parada et al. [98] 1995 ● G

Parada et al. [99] 1995 ● G

Parada et al. [100] 1998 ● G

Beasley [101] 1985 ● G

Morabito and Arenales [102] 1995 ● G

Berkey and Wang [103] 1987 ● (N)G

Lodi et al. [104] 1999 ● G

Boschetti and Mingozzi [105] 2003 ● NG

Hifi and M'Hallah [106] 2006 ● G

Monaci and Toth [107] 2006 ● NG

56

Article Year
Problem

Cut
IIPP PP KP ODP CSP BPP

Hadjiconstantinou and Iori [109] 2007 ● (N)G

Huang and Chen [111] 2007 ● NG

Morabito and Pureza [112] 2010 ● G

Cui et al. [113] 2013 ● G

Cui [115] 2007 ● G

Fleszar [116] 2013 ● G

Alvelos et al. [117] 2014 ● G

Cui et al. [120] 2015 ● (N)G

Wang and Chen [121] 2015 ● ● NG

Gonçalves [123] 2007 ● NG

Gonçalves and Resende [124] 2011 ● ● NG

Bortfeldt and Winter [125] 2009 ● ● (N)G

Faina [128] 1999 ● (N)G

Egeblad and Pisinger [129] 2009 ● NG

Hopper and Turton [131] 2001 ● NG

Leung et al. [132] 2001 ● NG

Leung et al. [133] 2003 ● NG

Beasley [134] 2004 ● NG

Beraudo et al. [136] 2005 ● NG

Kierkosz and Luczak [137] 2014 ● ● NG

Lodi et al. [138] 1999 ● G

Alvarez-Valdés et al. [140] 2007 ● NG

Alvarez-Valdés et al. [141] 2002 ● G

Alvarez-Valdés et al. [144] 2005 ● NG

Alvarez-Valdés et al. [145] 2007 ● G

Parreño et al. [146] 2010 ● NG

Alvelos et al. [148] 2009 ● G

Chan et al. [149] 2009 ● G

Chan et al. [150] 2011 ● ● G

Dusberger and Raidl [152] 2014 ● G

Puchinger et al. [154] 2004 ● G

Faroe et al. [156] 2003 ● NG

Jiang et al. [157] 2004 ● NG

Bao et al. [159] 2013 ● NG

Omar and Ramakrishnan [161] 2013 ● NG

Hifi et al. [163] 2008 ● G

Hifi et al. [164] 2012 ● G

References

[1] M. R. Garey and D. S. Johnson, “A Guide to the Theory of NP-Completeness,”
Mathematical Sciences. W.H. Freeman and Company, San Francisco, 1979.

[2] R. M. S. A. El-Aal, “An interactive technique for the cutting stock problem with multiple
objectives,” Eur. J. Oper. Res., vol. 78, no. 3, pp. 304–317, 1994.

57

[3] A. Farley, “Trim-loss pattern rearrangement and its relevance to the flat-glass
industry,” Eur. J. Oper. Res., vol. 14, no. 4, pp. 386–392, 1983.

[4] F. J. Vasko, F. E. Wolf, and K. L. Stott, “A practical solution to a fuzzy two-dimensional
cutting stock problem,” Fuzzy Sets Syst., vol. 29, no. 3, pp. 259–275, 1989.

[5] R. Morabito and V. Garcia, “The cutting stock problem in a hardboard industry: A case
study,” Comput. Oper. Res., vol. 25, no. 6, pp. 469–485, 1998.

[6] K. K. Lai and J. W. M. Chan, “Developing a simulated annealing algorithm for the cutting
stock problem,” Comput. Ind. Eng., vol. 32, no. 1, pp. 115–127, 1997.

[7] J. F. Tsai, P. L. Hsieh, and Y. H. Huang, “An optimization algorithm for cutting stock
problems in the TFT-LCD industry,” Comput. Ind. Eng., vol. 57, no. 3, pp. 913–919, 2009.

[8] P. E. Sweeney and E. Paternoster, “Cutting and packing problems: a categorized,
application-orientated research bibliography,” J. Oper. Res. Soc., vol. 43, no. 7, pp. 691–
706, 1992.

[9] K. Singh and L. Jain, “Industrial Scope of 2D packing problems,” Natl. J. Syst. Inf.
Technol., vol. 2, no. 2, pp. 224–237, 2009.

[10] R. Macedo, E. M. da C. Silva, and C. Alves, “2D Cutting Stock Optimization Software
Survey,” 2008.

[11] L. Kantorovich, “Mathematical methods of organizing and planning production,”
Manage. Sci., pp. 366–423, 1960.

[12] R. Morabito, M. N. Arenales, and V. F. Arcaro, “An and-or-graph approach for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 58, no. 2, pp. 263–271, 1992.

[13] E. M. da C. Silva, F. Alvelos, and J. M. V. de Carvalho, “An integer programming model
for two- and three-stage two-dimensional cutting stock problems,” Eur. J. Oper. Res.,
vol. 205, no. 3, pp. 699–708, 2010.

[14] R. Andrade, E. G. Birgin, and R. Morabito, “Two-stage two-dimensional guillotine
cutting stock problems with usable leftover,” Int. Trans. Oper. Res., vol. 23, no. 1–2, pp.
121–145, 2016.

[15] H. Dyckhoff, “A typology of cutting and packing problems,” Eur. J. Oper. Res., vol. 44,
no. 2, pp. 145–159, 1990.

[16] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and
packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130, 2007.

[17] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-stock
problem,” Oper. Res., vol. 9, no. 6, pp. 849–859, 1961.

[18] L. R. Ford and D. R. Fulkerson, “A Suggested Computation for Maximal Multi-
Commodity Network Flows,” Manage. Sci., vol. 50, no. 12_supplement, pp. 1778–1780,
2004.

[19] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting stock
problem-Part II,” Oper. Res., vol. 11, no. 6, pp. 863–888, 1963.

58

[20] G. B. Dantzig, Linear Programming and Extensions. Princeton University Press, 1963.

[21] P. C. Gilmore and R. E. Gomory, “Multistage cutting stock problems of two and more
dimensions,” Oper. Res., vol. 13, no. 1, pp. 94–120, 1965.

[22] J. F. Oliveira and J. S. Ferreira, “A faster variant of the Gilmore and Gomory technique
for cutting stock problems,” Belgian J. of. Oper. Res. Stat. Comput. Sci., vol. 34, no. 1,
pp. 23–38, 1994.

[23] G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier, “Algorithms for two-
dimensional cutting stock and strip packing problems using dynamic programming and
column generation,” Eur. J. Oper. Res., vol. 191, no. 1, pp. 61–85, 2008.

[24] R. Bellman, “The Theory of Dynamic Programming,” Bull. Am. Math. Soc., vol. 60, no.
6, pp. 503–515, 1954.

[25] K. Novianingsih, R. Hadianti, and S. Uttunggadewa, “Column generation technique for
solving two-dimensional cutting stock problems: method of stripe approach,” J.
Indones. Math. Soc., vol. 13, no. 2, pp. 161–172, 2012.

[26] Y. Cui and Z. Zhao, “Heuristic for the rectangular two-dimensional single stock size
cutting stock problem with two-staged patterns,” Eur. J. Oper. Res., vol. 231, no. 2, pp.
288–298, 2013.

[27] J. Herz, “Recursive Computational Procedure for Two-dimensional Stock Cutting,” IBM
J. Res. Dev., vol. 16, no. 5, pp. 462–469, 1972.

[28] N. Christofides and C. Whitlock, “An Algorithm for Two-Dimensional Cutting Problems,”
Oper. Res., vol. 25, no. 1, pp. 30–44, 1977.

[29] B. Chazelle, “The Bottomn-Left Bin-Packing Heuristic: An Efficient Implementation,”
IEEE Trans. Comput. Syst., vol. 32, no. 8, pp. 697–707, 1983.

[30] C. Carnieri, G. A. Mendoza, and L. G. Gavinho, “Solution procedures for cutting lumber
into furniture parts,” Eur. J. Oper. Res., vol. 73, no. 3, pp. 495–501, 1994.

[31] G. Scheithauer and J. Terno, “The G4-Heuristic for the Pallet Loading Problem,” J. Oper.
Res. Soc., vol. 47, no. 4, pp. 511–522, 1996.

[32] S. Martello, D. Pisinger, D. Vigo, R. V. A. N. Slyke, and Y. I. Young, “The Three-
Dimensional Bin Packing Problem,” Oper. Res., vol. 48, no. 2, pp. 256–267, 2000.

[33] T. G. Crainic, G. Perboli, and R. Tadei, “Extreme point-based heuristics for three-
dimensional bin packing,” INFORMS J. Comput., vol. 20, no. 3, pp. 368–384, 2008.

[34] L. Wei, W. C. Oon, W. Zhu, and A. Lim, “A skyline heuristic for the 2D rectangular
packing and strip packing problems,” Eur. J. Oper. Res., vol. 215, no. 2, pp. 337–346,
2011.

[35] J. A. Bennell, L. Soon Lee, and C. N. Potts, “A genetic algorithm for two-dimensional bin
packing with due dates,” Int. J. Prod. Econ., vol. 145, no. 2, pp. 547–560, 2013.

[36] J. Cunha and T. Queiroz, “Malha de Pontos no Problema da Mochila Bidimensional
Limitada,” in Anais do XLVIII Simpósio Brasileiro de Pesquisa Operacional, 2016.

59

[37] O. Nascimento, J. Cunha, and T. Queiroz, “Resolução Do Problema De Empacotamento
Ortogonal com Diferentes Malhas e Restrições Reais,” Rev. eletrônica Pesqui.
Operacional para o Desenvolv., vol. 8, no. 3, pp. 236–264, 2016.

[38] J. G. de A. Cunha and T. A. de Queiroz, “Estudo de Malhas utilizando Atualizacão de
Itens para Problemas de Empacotamento Bidimensional,” in XLIX Simpósio Brasileiro
de Pesquisa Operacional, Blumenau-SC, 27 a 30 de Agosto de 2017., 2017.

[39] P. C. Gilmore and R. E. Gomory, “The theory and computation of knapsack functions,”
Oper. Res., vol. 14, no. August 2015, pp. 1045–1074, 1966.

[40] M. Russo, A. Sforza, and C. Sterle, “An improvement of the knapsack function based
algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine
cutting problem,” Int. J. Prod. Econ., vol. 145, no. 2, pp. 451–462, 2013.

[41] M. Russo, A. Sforza, and C. Sterle, “An exact dynamic programming algorithm for large-
scale unconstrained two-dimensional guillotine cutting problems,” Comput. Oper. Res.,
vol. 50, pp. 97–114, 2014.

[42] M. Hifi and V. Zissimopoulos, “A recursive exact algorithm for weighted two-
dimensional cutting,” Eur. J. Oper. Res., vol. 91, no. 3, pp. 553–564, 1996.

[43] J. Desler and S. Hakimi, “A graph-theoretic approach to a class of integer-programming
problems,” Oper. Res., vol. 17, no. 6, pp. 1017–1033, 1969.

[44] F. Hitchcock, “The Distribution of a Product from Several Sources to Numerous
Localities,” J. Math. Phys., vol. 20, no. 1–4, pp. 224–230, 1941.

[45] N. Christofides and E. Hadjiconstantinou, “An exact algorithm for orthogonal 2-D
cutting problems using guillotine cuts,” Eur. J. Oper. Res., vol. 83, no. 1, pp. 21–38,
1995.

[46] M. Hifi and V. Zissimopoulos, “Constrained two-Dimensional cutting: an improvement
of Christofides and Whitlock’s exact algorithm,” J. Oper. Res. Soc., vol. 48, no. 3, pp.
324–331, 1997.

[47] M. L. Fisher, “The Lagrangian Relaxation Method for Solving Integer Programming
Problems,” Manage. Sci., vol. 50, no. 12 Supplement, pp. 1861–1871, 2004.

[48] N. Z. Shor, “The Subgradient Method,” in Newton Methods for Nonlinear Problems, vol.
18, no. 7, Springer, 1985, pp. 22–47.

[49] J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Tree Search
Procedure,” Oper. Res., vol. 36, no. 1, pp. 49–64, 1985.

[50] S. Martello and D. Vigo, “Exact Solution of the Two-Dimensional Finite Bin Packing
Problem,” Manage. Sci., vol. 44, no. April 2015, pp. 388–399, 1998.

[51] A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming
Problems,” Econometrica, vol. 28, no. 3, pp. 497–520, 1960.

[52] N. Agin, “Optimum Seeking with Branch and Bound,” Manage. Sci., vol. 13, no. 4, pp.
B176–B185, 1966.

60

[53] F. Clautiaux, J. Carlier, and A. Moukrim, “A new exact method for the two-dimensional
orthogonal packing problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1196–1211, 2007.

[54] S. P. Fekete and J. Schepers, “On more-dimensional packing I: Modeling,” ZPR Technical
Report 97.288, 2000.

[55] S. P. Fekete and J. Schepers, “On more-dimensional packing II: Bounds,” ZPR Technical
Report 97.289, 2000.

[56] S. P. Fekete and J. Schepers, “On more-dimensional packing III: Exact Algorithms,” ZPR
Technical Report 97.290, 2000.

[57] S. P. Fekete and J. Schepers, “A Combinatorial Characterization of Higher-Dimensional
Orthogonal Packing,” Math. Oper. Res., vol. 29, no. 2, pp. 353–368, 2004.

[58] S. P. Fekete and J. Schepers, “A general framework for bounds for higher-dimensional
orthogonal packing problems,” Math. Methods Oper. Res., vol. 60, no. 2, pp. 311–329,
2004.

[59] S. P. Fekete, J. Schepers, and J. C. van der Veen, “An Exact Algorithm for Higher-
Dimensional Orthogonal Packing,” Oper. Res., vol. 55, no. 3, pp. 569–587, 2007.

[60] E. Ferreira and J. F. Oliveira, “A note on Fekete and Schepers’ algorithm for the non-
guillotinable two-dimensional packing problem.” Technical report, FEUP, pp. 2–5,
2005.

[61] E. P. Ferreira and J. F. Oliveira, “Fekete and Schepers ’ graph-based algorithm for the
two-dimensional orthogonal packing problem revisited,” in Intelligent Decision Support
- Current Chalenges and Approaches, 2008, pp. 15–31.

[62] M. A. Boschetti and A. Mingozzi, “The two-dimensional finite bin packing problem. Part
I: New lower bounds for the oriented case,” Q. J. Belgian, French Ital. Oper. Res. Soc.,
vol. 1, no. 1, pp. 27–42, 2003.

[63] R. J. Silveira and R. Morabito, “Um método heurístico baseado em programação
dinâmica para o problema de corte bidimensional guilhotinado restrito,” Gestão &
Produção, vol. 9, no. 1, pp. 78–92, 2002.

[64] R. Baldacci and M. A. Boschetti, “A cutting-plane approach for the two-dimensional
orthogonal non-guillotine cutting problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1136–
1149, 2007.

[65] D. Pisinger and M. Sigurd, “Using decomposition techniques and constraint
programming for solving the two-dimensional bin-packing problem,” INFORMS J.
Comput., vol. 19, no. 1, pp. 36–51, 2007.

[66] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance,
“Branch-and-price: Column generation for solving huge integer programs,” Oper. Res.,
vol. 46, no. 3, pp. 316–329, 1998.

[67] J. Puchinger and G. R. Raidl, “Models and algorithms for three-stage two-dimensional
bin packing,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1304–1327, 2007.

[68] M. Mrad, I. Meftahi, and M. Haouari, “A branch-and-price algorithm for the two-stage

61

guillotine cutting stock problem,” J. Oper. Res. Soc., vol. 64, no. 5, pp. 629–637, 2013.

[69] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim, “A new constraint programming
approach for the orthogonal packing problem,” Comput. Oper. Res., vol. 35, no. 3, pp.
944–959, 2008.

[70] P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-based scheduling : applying
constraint programming to scheduling problems. 2001.

[71] M. A. Boschetti, A. Mingozzi, and E. Hadjiconstantinou, “New upper bounds for the
two-dimensional orthogonal non-guillotine cutting stock problem,” IMA J. Manag.
Math., vol. 13, no. 2, pp. 95–119, 2002.

[72] A. Lodi and M. Monaci, “Integer linear programming models for 2-staged two-
dimensional Knapsack problems,” Math. Program., vol. 94, no. 2–3, pp. 257–278, 2003.

[73] F. Furini, E. Malaguti, and D. Thomopulos, “Modeling Two-Dimensional Guillotine
Cutting Problems via Integer Programming,” INFORMS J. Comput., vol. 28, no. 4, pp.
736–751, 2016.

[74] J. M. V. de Carvalho, “Exact solution of bin-packing problems using column generation
and branch-and-bound,” Ann. Oper. Res., vol. 86, pp. 629–659, 1999.

[75] R. Macedo, C. Alves, and J. M. V. de Carvalho, “Arc-flow model for the two-dimensional
guillotine cutting stock problem,” Comput. Oper. Res., vol. 37, no. 6, pp. 991–1001,
2010.

[76] L. A. Wolsey, “Valid Inequalities, Covering Problems and Discrete Dynamic Programs,”
Ann. Discret. Math., vol. 1, pp. 527–538, 1977.

[77] F. Brandão and J. P. Pedroso, “Bin packing and related problems: General arc-flow
formulation with graph compression,” Comput. Oper. Res., vol. 69, pp. 56–67, 2016.

[78] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation Algorithms for Bin-
Packing — An Updated Survey,” in Journal of Mechanical Design, vol. 130, no. 3, G.
Ausiello, M. Lucertini, and P. Serafini, Eds. Vienna: Springer, 1984, pp. 49–106.

[79] P. De Cani, “A Note on the Two-Dimensional Rectangular Cutting-Stock Problem,” J.
Oper. Res. Soc., vol. 29, no. 7, p. 703, 1978.

[80] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest, “Orthogonal Packings in Two
Dimensions,” SIAM J. Comput., vol. 9, no. 4, pp. 846–855, 1980.

[81] F. R. K. Chung, M. R. Garey, and D. S. Johnson, “On Packing Two-Dimensional Bins,”
SIAM J. Algebr. Discret. Methods, vol. 3, no. 1, pp. 66–76, 1982.

[82] D. S. Johnson, “Near-optimal bin packing algorithms,” Massachusetts Institute of
Technology, 1973.

[83] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms,” SIAM J.
Comput., vol. 3, no. 4, pp. 299–325, 1974.

[84] S. Jakobs, “On genetic algorithms for the packing of polygons,” Eur. J. Oper. Res., vol.

62

88, no. 1, pp. 165–181, 1996.

[85] E. Hopper and B. C. H. Turton, “Genetic algorithm for a 2D industrial packing problem,”
Comput. Ind. Eng., vol. 37, no. 1, pp. 375–378, 1999.

[86] D. Liu and H. Teng, “An improved BL-algorithm for genetic algorithm of the orthogonal
packing of rectangles,” Eur. J. Oper. Res., vol. 112, no. 2, pp. 413–420, 1999.

[87] A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems,” INFORMS J. Comput., vol. 11, no. 4, pp. 345–
357, 1999.

[88] V. Beraudo, H. Alfonso, G. Minetti, and C. Salto, “Constrained Two-Dimensional Non-
Guillotine Cutting Problem: an Evolutionary Approach,” in XXIV International
Conference of the Chilean Computer Science Society, 2004, pp. 84–89.

[89] E. K. Burke, G. Kendall, and G. Whitwell, “A New Placement Heuristic for the Orthogonal
Stock-Cutting Problem,” Oper. Res., vol. 52, no. 4, pp. 655–671, 2004.

[90] J. F. Gonçalves and M. G. C. Resende, “A hybrid heuristic for the constrained two-
dimensional non-guillotine orthogonal cutting problem,” 2006.

[91] K. J. Binkley and M. Hagiwara, “Applying self-adaptive evolutionary algorithms to two-
dimensional packing problems using a four corners’ heuristic,” Eur. J. Oper. Res., vol.
183, no. 3, pp. 1230–1248, 2007.

[92] L. Wei, D. Zhang, and Q. Chen, “A least wasted first heuristic algorithm for the
rectangular packing problem,” Comput. Oper. Res., vol. 36, no. 5, pp. 1608–1614, 2009.

[93] J. F. Côté and M. Iori, “The meet-in-the-middle principle for cutting and packing
problems,” INFORMS J. Comput., vol. 30, no. 4, pp. 646–661, 2018.

[94] B. E. E. Bengtsson, “Packing rectangular pieces—a heuristic approach,” Comput. J., vol.
25, no. 3, pp. 253–257, 1982.

[95] P. Y. Wang, “Two Algorithms for Constrained Two-Dimensional Cutting Stock
Problems,” Oper. Res., vol. 31, no. 3, pp. 573–586, 1983.

[96] V. Parada, R. Palma, and D. Sales, “A comparative numerical analysis for the guillotine
two-dimensional cutting problem,” Ann. Oper. Res., vol. 96, pp. 245–254, 2000.

[97] J. F. Oliveira and J. S. Ferreira, “An improved version of Wang’s algorithm for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 44, no. 2, pp. 256–266, 1990.

[98] V. Parada, A. Gómes de Alvarenga, and J. de Diego, “Exact solutions for constrained
two-dimensional cutting problems,” Eur. J. Oper. Res., vol. 84, no. 3, pp. 633–644, 1995.

[99] V. Parada, R. Muñoz, and A. G. de Alvarenga, “A Hybrid Genetic Algorithm for the Two-
Dimensional Guillotine Cutting Problem,” in Evolutionary Algorithms in Management
Applications, J. Biethahn and V. Nissen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 183–196.

[100] V. Parada, M. Sepúlveda, M. Solar, and A. Gómes, “Solution for the constrained
guillotine cutting problem by simulated annealing,” Comput. Oper. Res., vol. 25, no. I,

63

pp. 37–47, 1998.

[101] J. E. Beasley, “Algorithms for Unconstrained Two-Dimensional Guillotine Cutting,” J.
Oper. Res. Soc., vol. 36, no. 4, pp. 297–306, 1985.

[102] R. Morabito and M. N. Arenales, “Performance Of Two Heuristics For Solving Large
Scale Two-Dimensional Guillotine Cutting Problems,” INFOR Inf. Syst. Oper. Res., vol.
33, no. 2, pp. 145–155, 1995.

[103] J. O. Berkey and P. Y. Wang, “Two-Dimensional Finite Bin-Packing Algorithms,” J. Oper.
Res. Soc., vol. 38, no. 5, p. 423, 1987.

[104] A. Lodi, S. Martello, and D. Vigo, “Neighborhood Search Algorithm for the Guillotine
Non-Oriented Two-Dimensional Bin Packing Problem,” in Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, Boston, MA: Springer US, 1999,
pp. 125–139.

[105] M. A. Boschetti and A. Mingozzi, “The Two-Dimensional Finite Bin Packing Problem.
Part II: New lower and upper bounds,” Q. J. Belgian, French Ital. Oper. Res. Soc., vol. 1,
no. 2, pp. 135–147, 2003.

[106] M. Hifi and R. M’Hallah, “Strip generation algorithms for constrained two-dimensional
two-staged cutting problems,” Eur. J. Oper. Res., vol. 172, no. 2, pp. 515–527, 2006.

[107] M. Monaci and P. Toth, “A Set-Covering-Based Heuristic Approach for Bin-Packing
Problems,” Informs J. Comput., vol. 18, no. 1, pp. 71–85, 2006.

[108] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the Set Covering Problem,” Ann.
Oper. Res., vol. 98, no. 1, pp. 353–371, 2000.

[109] E. Hadjiconstantinou and M. Iori, “A hybrid genetic algorithm for the two-dimensional
single large object placement problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1150–
1166, 2007.

[110] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for the generalized
assignment problem,” Eur. J. Oper. Res., vol. 60, no. 3, pp. 260–272, 1992.

[111] W. Huang and D. Chen, “An efficient heuristic algorithm for rectangle-packing
problem,” Simul. Model. Pract. Theory, vol. 15, no. 10, pp. 1356–1365, 2007.

[112] R. Morabito and V. Pureza, “A heuristic approach based on dynamic programming and
and/or-graph search for the constrained two-dimensional guillotine cutting problem,”
Ann. Oper. Res., vol. 179, no. 1990, pp. 1–25, 2010.

[113] Y. Cui, L. Yang, Z. Zhao, T. Tang, and M. Yin, “Sequential grouping heuristic for the two-
dimensional cutting stock problem with pattern reduction,” Int. J. Prod. Econ., vol. 144,
no. 2, pp. 432–439, 2013.

[114] G. Belov and G. Scheithauer, “Setup and Open-Stacks Minimization in One-Dimensional
Stock Cutting,” INFORMS J. Comput., vol. 19, no. 1, pp. 27–35, 2007.

[115] Y. Cui, “Simple block patterns for the two-dimensional cutting problem,” Math.
Comput. Model., vol. 45, pp. 943–953, 2007.

64

[116] K. Fleszar, “Three insertion heuristics and a justification improvement heuristic for two-
dimensional bin packing with guillotine cuts,” Comput. Oper. Res., vol. 40, no. 1, pp.
463–474, 2013.

[117] F. Alvelos, E. M. da C. Silva, and J. M. V. De Carvalho, “A hybrid heuristic based on
column generation for two- and three- stage bin packing problems,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.
8580 LNCS, no. PART 2, pp. 211–226, 2014.

[118] F. Alvelos, A. de Sousa, and D. Santos, “SearchCol: Metaheuristic Search by Column
Generation,” in Hybrid Metaheuristics - Volume 6373 of the series Lecture Notes in
Computer Science, 2010, pp. 190–205.

[119] F. Alvelos, A. de Sousa, and D. Santos, “Combining Column Generation and
Metaheuristics,” in Hybrid Metaheuristics, E.-G. Talbi, Ed. Springer Berlin Heidelberg,
2013, pp. 285–334.

[120] Y.-P. Cui, Y. Cui, and T. Tang, “Sequential heuristic for the two-dimensional bin-packing
problem,” Eur. J. Oper. Res., vol. 240, no. 1, pp. 43–53, 2015.

[121] Y. Wang and L. Chen, “Two-dimensional residual-space-maximized packing,” Expert
Syst. Appl., vol. 42, no. 7, pp. 3297–3305, 2015.

[122] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Boston, MA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[123] J. F. Gonçalves, “A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal
packing problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1212–1229, 2007.

[124] J. F. Gonçalves and M. G. C. Resende, “A parallel multi-population genetic algorithm for
a constrained two-dimensional orthogonal packing problem,” J. Comb. Optim., vol. 22,
no. 2, pp. 180–201, 2011.

[125] A. Bortfeldt and T. Winter, “A genetic algorithm for the two-dimensional knapsack
problem with rectangular pieces,” Int. Trans. Oper. Res., vol. 16, no. 6, pp. 685–713,
2009.

[126] L. S. Lee, “Multicrossover Genetic Algorithms for Combinatorial Optimisation,”
University of Southampton, UK, 2006.

[127] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598. pp. 671–680, 1983.

[128] L. Faina, “An application of simulated annealing to the cutting stock problem,” Eur. J.
Oper. Res., vol. 114, no. 3, pp. 542–556, 1999.

[129] J. Egeblad and D. Pisinger, “Heuristic approaches for the two- and three-dimensional
knapsack packing problem,” Comput. Oper. Res., vol. 36, no. 4, pp. 1026–1049, 2009.

[130] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module placement based on
rectangle-packing by the sequence-pair,” IEEE Trans. Comput. Des. Integr. Circuits Syst.,
vol. 15, no. 12, pp. 1518–1524, 1996.

[131] E. Hopper and B. C. H. Turton, “An empirical investigation of meta-heuristic and

65

heuristic algorithms for a 2D packing problem,” Eur. J. Oper. Res., vol. 128, no. 1, pp.
34–57, 2001.

[132] T. W. Leung, C. H. Yung, and M. D. Troutt, “Applications of genetic search and simulated
annealing to the two-dimensional non-guillotine cutting stock problem,” Comput. Ind.
Eng., vol. 40, no. 3, pp. 201–214, 2001.

[133] T. W. Leung, C. K. Chan, and M. D. Troutt, “Application of a mixed simulated annealing-
genetic algorithm heuristic for the two-dimensional orthogonal packing problem,” Eur.
J. Oper. Res., vol. 145, no. 3, pp. 530–542, 2003.

[134] J. E. Beasley, “A population heuristic for constrained two-dimensional non-guillotine
cutting,” Eur. J. Oper. Res., vol. 156, no. 3, pp. 601–627, 2004.

[135] J. E. Beasley, “Population heuristics,” in Handbook of applied optimization, O. U. Press,
Ed. Oxford: Oxford University Press, 2002, pp. 138–157.

[136] V. Beraudo, A. Orellana, H. Alfonso, G. Minetti, and C. Salto, “Solving the Two
Dimensional Cutting Problem using Evolutionary Algorithms with Penalty Functions,”
Workshop de Agentes y Sistemas Inteligentes (WASI). 2005.

[137] I. Kierkosz and M. Luczak, “A hybrid evolutionary algorithm for the two-dimensional
packing problem,” Cent. Eur. J. Oper. Res., vol. 22, no. 4, pp. 729–753, 2014.

[138] A. Lodi, S. Martello, and D. Vigo, “Approximation algorithms for the oriented two-
dimensional bin packing problem,” Eur. J. Oper. Res., vol. 112, no. 1, pp. 158–166, 1999.

[139] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[140] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit, “A tabu search algorithm for a two-
dimensional non-guillotine cutting problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp.
1167–1182, 2007.

[141] R. Alvarez-Valdés, A. Parajón, and J. M. Tamarit, “A tabu search algorithm for large-
scale guillotine (un)constrained two-dimensional cutting problems,” Comput. Oper.
Res., vol. 29, no. 7, pp. 925–947, 2002.

[142] T. Feo and M. G. C. Resende, “Greedy randomized adaptive search procedures,” J. Glob.
Optim., pp. 109–133, 1995.

[143] F. Glover, “A template for scatter search and path relinking,” Artif. Evol., vol. 1363, no.
February 1998, pp. 3–51, 1998.

[144] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit, “A GRASP algorithm for constrained
two-dimensional non-guillotine cutting problems,” J. Oper. Res. Soc., vol. 56, no. 4, pp.
414–425, 2005.

[145] R. Alvarez-Valdés, R. Martí, J. M. Tamarit, and A. Parajón, “GRASP and path relinking
for the two-dimensional two-stage cutting-stock problem,” INFORMS J. Comput., vol.
19, no. 2, pp. 261–272, 2007.

[146] F. Parreño, R. Alvarez-Valdés, J. F. Oliveira, and J. M. Tamarit, “A hybrid GRASP/VND
algorithm for two- and three-dimensional bin packing,” Ann. Oper. Res., vol. 179, no.

66

1, pp. 203–220, 2010.

[147] P. Hansen and N. Mladenović, “Variable neighborhood search,” Search Methodol.
Introd. Tutorials Optim. Decis. Support Tech., pp. 211–238, 2005.

[148] F. Alvelos, T. M. Chan, P. Vilaca, T. Gomes, E. M. da C. Silva, and J. M. V. de Carvalho,
“Sequence based heuristics for two-dimensional bin packing problems,” Eng. Optim.,
vol. 41, no. 8, pp. 773–791, 2009.

[149] T. M. Chan, F. Alvelos, E. M. da C. Silva, and J. M. V. de Carvalho, “A combined local
search approach for the two-dimensional bin packing problem,” in Proceedings of the
EU/MEeting 2009 European Chapter on Metaheuristics Workshop, 2009, pp. 153–158.

[150] T. M. Chan, F. Alvelos, E. M. da C. Silva, and J. M. V. De Carvalho, “Heuristics with
stochastic neighborhood structures for two-dimensional bin packing and cutting stock
problems,” Asia-Pacific J. Oper. Res., vol. 28, no. 2, pp. 255–278, 2011.

[151] N. Mladenović and P. Hansen, “Variable neighborhood search,” Comput. Oper. Res.,
vol. 24, no. 11, pp. 1097–1100, 1997.

[152] F. Dusberger and G. R. Raidl, “A Variable Neighborhood Search Using Very Large
Neighborhood Structures for the 3-Staged 2-Dimensional Cutting Stock Problem,” in
International Workshop on Hybrid Metaheuristics, 2014, pp. 85–99.

[153] A. Fritsch and O. Vornberger, “Cutting Stock by Iterated Matching,” in Operations
Research Proceedings 1994, Springer Berlin Heidelberg, 1995, pp. 92–97.

[154] J. Puchinger, G. R. Raidl, and G. Koller, “Solving a Real-World Glass Cutting Problem,”
in Evolutionary Computation in Combinatorial Optimization: 4th European Conference,
EvoCOP 2004, Coimbra, Portugal, April 5-7, 2004. Proceedings, vol. 3004, 2004, pp.
165–176.

[155] C. Voudouris and E. Tsang, “Guided local search and its application to the traveling
salesman problem,” Oper. Res., vol. 113, pp. 469–499, 1999.

[156] O. Faroe, D. Pisinger, and M. Zachariasen, “Guided Local Search for the Three-
Dimensional Bin-Packing Problem,” INFORMS J. Comput., vol. 15, no. 3, pp. 267–283,
2003.

[157] J. Q. Jiang, Y. C. Liang, X. H. Shi, and H. P. Lee, “A Hybrid Algorithm Based on PSO and
SA and Its Application for Two-Dimensional Non-guillotine Cutting Stock Problem,” in
Lecture Notes in Computer Science, vol. 3037, no. ICCS 2004, IEEE, 2004, pp. 666–669.

[158] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Neural Networks, 1995.
Proceedings., IEEE Int. Conf., vol. 4, pp. 1942–1948, 1995.

[159] L. Bao, J. Jiang, C. Song, L. Zhao, and J. Gao, “Artificial Fish Swarm Algorithm for Two-
Dimensional Non-Guillotine Cutting Stock Problem,” in Advances in Neural Networks –
ISNN 2013: 10th International Symposium on Neural Networks, Dalian, China, July 4-6,
2013, Proceedings, Part II 2013, 2013, pp. 552–559.

[160] X. Li, Z. Shao, and J. Qian, “An optimizing method based on autonomous animats: fish-
swarm algorithm,” Syst. Eng. Theory Pract., vol. 22, no. 11, pp. 32–38, 2002.

67

[161] M. K. Omar and K. Ramakrishnan, “Solving non-oriented two dimensional bin packing
problem using evolutionary particle swarm optimisation,” Int. J. Prod. Res., vol. 51, no.
20, pp. 6002–6016, 2013.

[162] P. S. Ow and T. E. Morton, “Filtered beam search in scheduling,” Int. J. Prod. Res., vol.
26, no. 1, pp. 35–62, 1988.

[163] M. Hifi, R. M’Hallah, and T. Saadi, “Algorithms for the constrained two-staged two-
dimensional cutting problem,” INFORMS J. Comput., vol. 20, no. 2, pp. 212–221, 2008.

[164] M. Hifi, S. Negre, R. Ouafi, and T. Saadi, “A parallel algorithm for constrained two-
staged two-dimensional cutting problems,” Comput. Ind. Eng., vol. 62, no. 1, pp. 177–
189, 2012.

[165] B. L. Golden, “Approaches to the Cutting Stock Problem,” A I I E Trans., vol. 8, no. 2, pp.
265–274, 1976.

[166] A. I. Hinxman, “Trim-Loss and Assortment Problems - a Survey.,” Eur. J. Oper. Res., vol.
5, no. 1, pp. 8–18, 1980.

[167] K. A. Dowsland and W. B. Dowsland, “Packing problems,” Eur. J. Oper. Res., vol. 56, no.
1, pp. 2–14, 1992.

[168] H. Dyckhoff and U. Finke, Cutting and Packing in Production and Distribution: a
typology and bibliography. 1992.

[169] Y. Lirov, “Knowledge based approach to the cutting stock problem,” Math. Comput.
Model., vol. 16, no. 1, pp. 107–125, 1992.

[170] C. Cheng, B. Feiring, and T. Cheng, “The cutting stock problem — a survey,” Int. J. Prod.
Econ., vol. 36, no. 3, pp. 291–305, 1994.

[171] E. Hopper and B. C. H. Turton, “A Review of the Application of Meta-Heuristic
Algorithms to 2D Strip Packing Problems,” Artif. Intell. Rev., vol. 16, no. 4, pp. 257–300,
2001.

[172] A. Lodi, S. Martello, and D. Vigo, “Recent advances on two-dimensional bin packing
problems,” Discret. Appl. Math., vol. 123, no. 1–3, pp. 379–396, 2002.

[173] A. Lodi, S. Martello, and M. Monaci, “Two-dimensional packing problems: A survey,”
Eur. J. Oper. Res., vol. 141, no. 2, pp. 241–252, 2002.

[174] J. Jylänki, “A thousand ways to pack the bin-a practical approach to two-dimensional
rectangle bin packing,” pp. 1–50, 2010.

[175] T. Chan, F. Alvelos, E. M. da C. Silva, and J. Valériode Carvalho, “Heuristics for Two-
Dimensional Bin-Packing Problems,” in The Industrial Electronics Handbook, 2nd ed., J.
D. I. Bogdan M. Wilamowski, Ed. CRC Press, 2011, pp. 1–18.

[176] T. G. Crainic, G. Perboli, and R. Tadei, “Recent Advances in Multi-Dimensional Packing
Problems,” New Technol. - Trends, Innov. Res., pp. 91–110, 2012.

[177] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock problems:
Mathematical models and exact algorithms,” Eur. J. Oper. Res., vol. 255, no. 1, pp. 1–

68

20, 2016.

[178] J. F. Oliveira, A. Neuenfeldt Júnior, E. M. da C. Silva, and M. A. Carravilla, “A Survey on
Heuristics for the Two-Dimensional Rectangular Strip Packing Problem,” Pesqui.
Operacional, vol. 36, no. 2, pp. 197–226, 2016.

[179] E. Silva, J. F. Oliveira, and G. Wäscher, “The pallet loading problem: A review of solution
methods and computational experiments,” Int. Trans. Oper. Res., vol. 23, no. 1–2, pp.
147–172, 2016.

[180] C. A. Gil Gonzalez, J. P. Orejuela Cabrera, and D. Peña, “El Problema de patrones de
corte, clasificación y enfoques/Cutting stock problem, classification and approaches,”
Prospectiva, vol. 15, no. 1, p. 112, 2017.

[181] J. Côté and M. Iori, “The Meet-in-the-Middle Principle for Cutting and Packing
Problems,” CIRRELT-2016-28, 2016.

[182] M. E. Lübbecke, “Column Generation,” in Wiley Encyclopedia of Operations Research
and Management Science, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011.

[183] N. Prabhu, “The Simplex Method and Its Complexity,” Wiley Encycl. Oper. Res. Manag.
Sci., pp. 1–9, 2010.

[184] A. A. Farley, “Selection of stockplate characteristics and cutting style for two
dimensional cutting stock situations,” Eur. J. Oper. Res., vol. 44, no. 2, pp. 239–246,
1990.

69

Datasets and Generators for Two-dimensional Cutting

and Packing Problems

Abstract We present an extensive survey of datasets and instance generators that are usually

used by the researchers when dealing with two-dimensional rectangular cutting and packing

problems. This paper seeks to help researchers to refer, find, and use these datasets and

instances generators.

Keywords: Datasets, Generators, Two-dimensional, Cutting and Packing Problem

1. Introduction

We present the datasets and the instance generators that have been consistently used in

cutting and packing research of new optimization methods. Some of these datasets have been

used by researchers, maintaining the main characteristics of the instances (e.g., object and

item sizes) or adapting (neglecting, changing or adding) some of their characteristics to

correspond to their needs (e.g., neglecting the items’ value [1], generating randomly demand

[2], adding objects [2], among others).

The motivation for this work is to ease future references to the datasets and provide to

researchers a means to find those datasets as easily and fast as possible. Since some internet

links can become inactive, we have a copy of all these datasets and instances generators that

we will provide upon request1.

The rest of the paper is organized as follows. In Section 2, the datasets are characterized

considering their most relevant features. In Section 3, the instances generators for two-

dimensional rectangular cutting and packing problems are presented.

1 They can also be obtained through our website at https://oscar-oliveira.github.io/2D-Cutting-and-Packing/.

https://oscar-oliveira.github.io/2D-Cutting-and-Packing/

70

2. Literature Benchmarks

In this section, 84 literature datasets are characterized considering their most relevant

features. We tried to maintain as much as possible the datasets names for which they are

best-known and usually referred to in the literature. For the others, we have decided to name

the dataset with an acronym formed by the first letter of the authors names, e.g., the set

defined in Adamowicz and Albano [3] was named as AA.

In Section 2.1, for each dataset alphabetically sorted by name, Table 1 gives the dataset name,

the article(s) in which it was presented, the publication year, and the problems types

considered in the article(s) following the typology proposed by Wäscher et al. [3].

In Section 2.2, Table 2 to Table 85 present, for each dataset, the name, the number of

instances in the set (#), a link (if one exists) to an internet source for download, and the

objects and items characteristics. The objects are characterized by the number of object types

(k), the range of objects length and height (L×H), the range of available stock (e) and the range

of object cost (Cost). The items are characterized by the number of item types (m), the range

of items length and height (lxh), the range of items demand (d), and the range of items value

(value).

2.1. Datasets

Table 1. Datasets for cutting and packing problems.

Dataset Article Year
Problem

IIPP PP KP ODP CSP BPP

AA Adamowicz and Albano [4] 1976 ●

AB Cui and Huang [5] 2012 ●

ABM Andrade et al. [6] 2016 ●

ABMR Andrade et al. [7] 2016 ●

AH Bortfeldt and Gehring [8] 2006 ●

ASSORT Beasley [9] 1985 ●

ATP Alvarez-Valdés et al. [10] 2002 ●

B Cui et al. [11] 2005 ●

BABU Babu and Babu [12] 1999 ●

BABU2 Babu and Babu [13] 2001 ●

BENG Bengtsson [14] 1982 ● ●

BKW Burke et al. [15] 2004 ●

BRPB El-Bouri et al. [16] 2006 ●

CGCUT Christofides and Whitlock [17] 1977 ●

71

Dataset Article Year
Problem

IIPP PP KP ODP CSP BPP

CH Cui and Huang [18] 2012 ●

CHL Cung et al. [19] 2000 ●

CJCM Clautiaux et al. [20] 2008 ●

CLASS
[01-06] Berkey and Wang [21] 1987 ●

[07-10] Martello and Vigo [22] 1998 ●

CMWX Cintra et al. [2] 2008 ● ● ●

CUI Cui [23] 2008 ●

CWL Cui et al. [11] 2005 ●

CY Cui and Yang [24] 2011 ●

CZ Cui and Zhao [25] 2013 ●

D

[1, 2] Ratanapan and Dagli [26] 1997 ●

3 Ratanapan and Dagli [27] 1998 ●

4 Dagli and Poshyanonda [28] 1997 ●

DOWSLAND Dowsland [29] 1984 ●

EL-AAL El-Aal [30] 1994 ●

EP2 Egeblad and Pisinger [31] 2009 ●

FHZ Fayard et al. [32] 1998 ●

FO Ferreira and Oliveira [33] 2005 ●

GARD Gardner [34] 1966 ●

GCUT Beasley [35] 1985 ●

HADCHR Hadjiconstantinou and Christofides [36] 1995 ●

HERZ Herz [37] 1972 ●

HIFI1997a Hifi [38] 1997 ●

HIFI1997b Hifi [39] 1997 ●

HIFI2001 Hifi [40] 2001 ●

HOPPER Hopper [41] 2000 ● ●

HT2001a Hopper and Turton [42] 2001 ●

HT2001b Hopper and Turton [43] 2001 ●

HZ1 Hifi and Zissimopoulos [44] 1996 ●

HZ2 Hifi and Zissimopoulos [45] 1996 ●

IS Israni and Sanders [46] 1982 ●

IYUAI Imahori et al. [47] 2005 ●

JAKOBS Jakobs [48] 1996 ●

JLSL Jiang et al. [49] 2004 ●

KORF Korf et al. [50] 2010 ●

KR Kröger [51] 1995 ●

LC Lai and Chan [52] 1997 ●

LCT Leung et al. [53] 2003 ●

LYT Leung et al. [54] 2001 ●

MA Morabito and Arenales [55] 2000 ●

MAA Morabito et al. [56] 1992 ●

MB Pisinger and Sigurd [57] 2005 ●

MB2D Mack and Bortfeldt [58] 2012 ● ●

MG Morabito and Garcia [59] 1998 ●

MP Morabito and Pureza [60] 2010 ●

MWV Mumford-Valenzuela et al. [61] 2004 ●

72

Dataset Article Year
Problem

IIPP PP KP ODP CSP BPP

NGCUT Beasley [62] 1985 ● ●

NGCUTAP Beasley [63] 2004 ●

NGCUTCON Beasley [63] 2004 ●

NGCUTFS Beasley [63] 2004 ●

NHU Novianingsih et al. [64] 2012 ●

OF Oliveira and Ferreira [65] 1990 ●

OKP Fekete and Schepers [66] 2000 ●

ONV Ortmann et al. [67] 2010 ● ●

PGD Parada et al. [68] 1995 ●

PO Pinto and Oliveira [69] 2005 ●

RAND Martello and Monaci [70] 2015 ●

RSS Russo et al. [71] 2014 ●

SCP Hifi [72] 1998 ●

SCPL Hifi [73] 1999 ●

SPIEKSMA
Spieksma [74] 1994 ●

Caprara and Toth [75] 2001 ●

SS Skalbeck and Schultz [76] 1976 ●

SSOOYKI Shiomi et al. [77] 2007 ●

STS Tschöke and Holthöfer [78] 1995 ●

TEST Yanasse et al. [79] 1991 ●

VAG Vianna et al. [80] 2003 ●

VASSILIADIS Vassiliadis [81] 2005 ●

VENKATESWARLU Venkateswarlu [82] 2001 ●

WANG Wang [83] 1983 ● ●

WV Wang and Valenzuela [84] 2001 ●

WVINT Wei et al. [85] 2011 ● ●

WWD Wan et al. [86] 2005 ●

ZDF
ZDF1-9 Zhang et al. [87] 2013 ●

ZDF10-16 Leung and Zhang [88] 2011 ●

2.2. Characterization

Table 2. Features of the instances in AA.

Name AA

Objects Items

2

k 1 e - m 15 d [8-96]

L×H [12030-36090]×2550 l×h [270-2500]×[74-785]

Cost - Value -

Table 3. Features of the instances in AB.

Name AB

Objects Items

60

k 1 e - m [50-150] d [1-50]

L×H [2003-2997]×[1014-1474] l×h [50-499]×[50-499]

Cost - Value [914-171432]

73

Table 4. Features of the instances in ABM.

Name ABM

Objects Items

20

k [1-4] e [1-8] m [1-37] d [1-17]

L×H [10-290]×[10-183] l×h [1-114]×[1-59]

Cost - Value -

Table 5. Features of the instances in ABMR.

Name ABMR

Objects Items

10

k [2-3] e [1-2] m [1-3] d [1-7]

L×H [13-29]×[10-30] l×h [1-11]×[1-11]

Cost - Value -

Table 6. Features of the instances in AH.

Name AH

Objects Items

360

k 1 e - m 1000 d -

L×H 1000]×[1257-56390] l×h [6-375]×[6-375]

Cost - Value -

URL http://www.computational-logistics.org/orlib/topic/2D%20Strip%20Packing/

Table 7. Features of the instances in ASSORT.

Name ASSORT

Objects Items

12

k 10 e - m [10-30] d [20-[20-39]]

L×H [50-248]×[51-248] l×h [25-124]×[25-124]

Cost - Value -

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/assortinfo.html

Table 8. Features of the instances in ATP.

Name ATP

Objects Items

10

k 1 e - m [31-59] d -

L×H [1674-2899]×[1612-2994] l×h [101-1117]×[81-1192]

Cost - Value -

10

k 1 e - m [36-59] d -

L×H [1793-2885]×[1656-2858] l×h [96-1142]×[82-1143]

Cost - Value [7963-576621]

10

k 1 e - m [27-56] d [1-9]

L×H [241-960]×[124-983] l×h [15-363]×[6-390]

Cost - Value -

10

k 1 e - m [25-59] d [1-9]

L×H [167-931]×[138-917] l×h [8-355]×[6-362]

Cost - Value [68-27446]

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 9. Features of the instances in B.

Name B

Objects Items

7

k 1 e - m [30-180] d -

L×H 4000×2000 l×h [200-695]×[200-698]

Cost - Value -

URL http://lagrange.ime.usp.br/~lobato/utdc/instances.php

74

Table 10. Features of the instances in BABU.

Name BABU

Objects Items

1

k 1 e - m 14 d [1-14]

L×H 1000×375 l×h [15-175]×[50-150]

Cost - Value -

1

k [1-5] e [2-10] m 14 d [1-14]

L×H [100-600]×[400-650] l×h [15-175]×[50-150]

Cost - Value -

Table 11. Features of the instances in BABU2.

Name BABU2

Objects Items

1

k 1 e - m 20 d -

L×H 80×200 l×h [5-35]×[5-35]

Cost - Value -

Table 12. Features of the instances in BENG.

Name BENG

Objects Items

10

k 1 e - m [20-200] d -

L×H [25-40]×[10-25] l×h [1-12]×[1-8]

Cost - Value -

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems

Table 13. Features of the instances in BKW.

Name BKW

Objects Items

13

k 1 e - m [10-3152] d -

L×H [30-640]×[40-960] l×h [1-74]×[1-125]

Cost - Value -

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems

Table 14. Features of the instances in BRPB.

Name BRPB

Objects Items

1

k 3 e - m 5 d [1-9]

L×H [130-149]×[44-51] l×h [19-45]×[10-29]

Cost - Value -

Table 15. Features of the instances in CGCUT.

Name CGCUT

Objects Items

3

k 1 e - m [7-20] d [1-5]

L×H [15-40]×[10-70] l×h [2-33]×[1-43]

Cost - Value [2-582]

URL https://paginas.fe.up.pt/~esicup/datasets

Table 16. Features of the instances in CH.

Name CH

Objects Items

80

k 1 e - m [5-40] d [102-9993]

L×H [2000-2986]×[1000-1498] l×h [5-999]×[50-999]

Cost - Value -

75

Table 17. Features of the instances in CHL.

Name CHL

Objects Items

7

k 1 e - m [10-35] d [1-5]

L×H [62-207]×[55-231] l×h [7-69]×[7-63]

Cost - Value [100-1523]

9

k 1 e - m [10-40] d [1-8]

L×H [20-263]×[20-244] l×h [1-109]×[2-135]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 18. Features of the instances in CJCM.

Name CJCM

Objects Items

42

k 1 e - m [10-19] d [1-4]

L×H 20×20 l×h [1-20]×[2-20]

Cost - Value [2-168]

URL https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/SoftwareAlgoKP

Table 19. Features of the instances in CLASS.

Name CLASS

Objects Items

500

k 1 e - m [20-100] d -

L×H [10-300]×[10-300] l×h [1-100]×[1-100]

Cost - Value -

URL http://or.dei.unibo.it/library/two-dimensional-bin-packing-problem

Table 20. Features of the instances in CMWX.

Name CMWX

Objects Items

4

k 1 e - m [42-82] d -

L×H 3500×3500 l×h [254-970]×[116-1890]

Cost - Value [50924-1081080]

Table 21. Features of the instances in CUI.

Name CUI

Objects Items

21

k 1 e - m [49-96] d [3-15]

L×H [1017-4518]×[1005-4323] l×h [60-1342]×[40-1282]

Cost - Value [653-1006880]

Table 22. Features of the instances in CWL.

Name CWL

Objects Items

50

k 1 e - m 30 d -

L×H 3000×1500 l×h [200-699]×[200-699]

Cost - Value -

Table 23. Features of the instances in CY.

Name CY

Objects Items

300

k 1 e - m [25-200] d [1-30]

L×H [2000-2950]×[1000-1450] l×h [50-700]×[50-700]

Cost - Value [1491-462830]

76

Table 24. Features of the instances in CZ.

Name CZ

Objects Items

5

k 1 e - m 58 d [2-328]

L×H [2000-4200]×[1830-2900] l×h [368-1749]×[474-1589]

Cost - Value -

Table 25. Features of the instances in D.

Name D

Objects Items

4

k 1 e - m [4-8] d [2-9]

L×H [20-60]× - l×h [4-15]×[4-13]

Cost - Value -

URL https://paginas.fe.up.pt/~esicup/datasets

Table 26. Features of the instances in DOWSLAND.

Name DOWSLAND

Objects Items

8

k 1 e - m 1 d -

L×H [22-86]×[16-82] l×h [5-15]×[3-11]

Cost - Value -

Table 27. Features of the instances in EL-AAL.

Name EL-AAL

Objects Items

2

k 1 e - m [4-10] d [1-300]

L×H [20-2000]×[10-1000] l×h [4-1000]×[2-645]

Cost - Value -

Table 28. Features of the instances in EP2.

Name EP2

Objects Items

80

k 1 e - m [30-200] d 1

L×H [33-739]×[65-1479] l×h [1-100]×[1-100]

Cost - Value [1-30000]

URL http://www.diku.dk/~pisinger/codes.html

Table 29. Features of the instances in FHZ.

Name FHZ

Objects Items

11

k 1 e - m [25-50] d [1-9]

L×H [100-977]×[125-985] l×h [20-527]×[25-576]

Cost - Value -

11

k 1 e - m [25-60] d [1-12]

L×H [125-992]×[105-970] l×h [25-636]×[21-623]

Cost - Value [140-999]

11

k 1 e - m [25-60] d -

L×H [500-3500]×[500-3765] l×h [37-2254]×[101-2226]

Cost - Value -

11

k 1 e - m [25-60] d -

L×H [500-3500]×[500-3650] l×h [96-2245]×[98-2354]

Cost - Value [110-748]

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

77

Table 30. Features of the instances in FO.

Name FO

Objects Items

1

k 1 e - m 5 d -

L×H 9×9 l×h [2-5]×[4-5]

Cost - Value -

Table 31. Features of the instances in GARD.

Name GARD

Objects Items

40

k - e - m [1-40] d -

L×H - l×h [1-40]×[1-40]

Cost - Value -

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems

Table 32. Features of the instances in GCUT.

Name GCUT

Objects Items

13

k 1 e - m [10-50] d -

L×H [250-3000]×[250-3000] l×h [62-970]×[63-1890]

Cost - Value [4554-1081080]

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gcutinfo.html

Table 33. Features of the instances in HADCHR.

Name HADCHR

Objects Items

2

k 1 e - m [7-15] d 1

L×H 30×30 l×h [1-22]×[4-21]

Cost - Value [17-828]

Table 34. Features of the instances in HERZ.

Name HERZ

Objects Items

1

k 1 e - m 5 d -

L×H 127x98 l×h [18-54]×[13-65]

Cost - Value [273-1170]

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 35. Features of the instances in HIFI1997a.

Name HIFI1997a

Objects Items

3

k 1 e - m [10-20] d -

L×H [4500-7350]×[4070-6579] l×h [232-2828]×[347-2647]

Cost - Value -

3

k 1 e - m [20-40] d -

L×H [3427-7500]×[2769-7381] l×h [437-5751]×[316-3787]

Cost - Value [398-4351]

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

78

Table 36. Features of the instances in HIFI1997b.

Name HIFI1997b

Objects Items

3

k 1 e - m [5-20] d [1-6]

L×H [50-127]×[60-98] l×h [9-54]×[11-65]

Cost - Value [140-1170]

3

k 1 e - m 20 d [1-5]

L×H [70-132]×[70-100] l×h [9-69]×[11-63]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 37. Features of the instances in HIFI2001.

Name HIFI2001

Objects Items

5

k 1 e - m [40-200] d -

L×H [7350-45237]×[6579-35983] l×h [28-9098]×[80-8726]

Cost - Value -

11

k 1 e - m [10-200] d -

L×H [100-45237]×[156-35983] l×h [16-9098]×[32-8726]

Cost - Value [152-15877830]

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 38. Features of the instances in HOPPER.

Name HOPPER

Objects Items

70

k 1 e - m [17-199] d -

L×H 200×200 l×h [1-178]×[1-180]

Cost - Value -

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/stripinfo.html

Table 39. Features of the instances in HT2001a.

Name HT2001a

Objects Items

21

k 1 e - m [16-197] d -

L×H [20-160]×[15-240] l×h [1-72]×[1-113]

Cost - Value -

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpacktwoinfo.html

Table 40. Features of the instances in HT2001b.

Name HT2001b

Objects Items

15

k 6 e [2-4] m [100-150] d -

L×H [10-60]×[10-120] l×h [1-30]×[1-30]

Cost - Value -

Table 41. Features of the instances in HZ1.

Name HZ1

Objects Items

1

k 1 e - m 6 d -

L×H 78×67 l×h [6-32]×[5-54]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

79

Table 42. Features of the instances in HZ2.

Name HZ2

Objects Items

1

k 1 e - m 5 d -

L×H 99×80 l×h [18-54]×[13-35]

Cost - Value [273-1083]

Table 43. Features of the instances in IS.

Name IS

Objects Items

2

k 1 e - m 20 d [1-25]

L×H 70×40 l×h [1-14]×[1-6]

Cost - Value -

Table 44. Features of the instances in IYUAI.

Name IYUAI

Objects Items

60

k 1 e - m [20-50] d [1-200]

L×H [1400-4000]×[700-2000] l×h [141-996]×[70-500]

Cost - Value -

Table 45. Features of the instances in JAKOBS.

Name JAKOBS

Objects Items

7

k 1 e - m [20-50] d -

L×H [40-120]×[15-80] l×h [2-40]×[2-36]

Cost - Value -

Table 46. Features of the instances in JLSL.

Name JLSL

Objects Items

5

k 1 e - m [5-18] d [1-5]

L×H [40-100]×[20-80] l×h [3-30]×[3-50]

Cost - Value -

Table 47. Features of the instances in KORF.

Name KORF

Objects Items

40

k - e - m [1-40] d -

L×H - l×h [1-40]×[2-41]

Cost - Value -

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems

Table 48. Features of the instances in KR.

Name KR

Objects Items

12

k 1 e - m [25-60] d -

L×H 100×[102-280] l×h [1-40]×[1-40]

Cost - Value -

URL http://www.computational-logistics.org/orlib/topic/2D%20Guillotine%20Strip%20Packing%20Problem/

80

Table 49. Features of the instances in LC.

Name LC

Objects Items

3

k 1 e - m [10-20] d -

L×H 400×[200-400] l×h [30-200]×[30-150]

Cost - Value -

5

k 1 e - m [4-9] d [1-5]

L×H 2325×1825 l×h [200-1350]×[200-1100]

Cost - Value -

Table 50. Features of the instances in LCT.

Name LCT

Objects Items

2

k 1 e - m [40-50] d -

L×H [150-160]×[110-120] l×h [6-48]×[4-40]

Cost - Value -

Table 51. Features of the instances in LYT.

Name LYT

Objects Items

1

k 1 e - m 5 d -

L×H 300×200 l×h [100-200]×[50-120]

Cost - Value -

Table 52. Features of the instances in MA.

Name MA

Objects Items

1

k 5 e [391-3452] m 25 d [368-7308]

L×H [1220-2130]×[2100-3050] l×h [205-680]×[431-2130]

Cost [33550-57747] Value -

1

k 1 e m 15 d [90-4410]

L×H 1850×3670 l×h [250-361]×[348-1956]

Cost - Value -

Table 53. Features of the instances in MAA.

Name MAA

Objects Items

5

k 1 e - m 10 d -

L×H [100-750]×[156-806] l×h [16-445]×[32-449]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 54. Features of the instances in MB.

Name MB

Objects Items

500

k 5 e - m [20-100] d -

L×H [5-300]×[5-300] l×h [1-100]×[1-100]

Cost [10-90000] Value -

URL https://paginas.fe.up.pt/~esicup/datasets

81

Table 55. Features of the instances in MB2D.

Name MB2D

Objects Items

900

k 1 e - m [3-736] d [1-1487]

L×H [404-587]×[50-233] l×h [12-60]×[10-50]

Cost - Value -

URL http://www.fernuni-hagen.de/evis/service/downloads.shtml

Table 56. Features of the instances in MG.

Name MG

Objects Items

1

k 1 e - m 10 d -

L×H 50×50 l×h [5-22]×[13-23]

Cost - Value -

1

k 1 e - m 29 d [200-20000]

L×H 4880×2130 l×h [870-2451]×[615-1232]

Cost - Value -

Table 57. Features of the instances in MP.

Name MP

Objects Items

450

k 1 e - m [10-50] d [1-85]

L×H 100×100 l×h [10-74]×[10-74]

Cost - Value [100-5476]

URL https://paginas.fe.up.pt/~esicup/datasets

Table 58. Features of the instances in MWV.

Name MWV

Objects Items

480

k 1 e - m [24-5000] d -

L×H 100×100 l×h [0,09-100]×[0,09-97,62]

Cost - Value -

URL http://www.vuuren.co.za/benchmarks.html

Table 59. Features of the instances in NGCUT.

Name NGCUT

Objects Items

12

k 1 e - m [5-10] d [1-3]

L×H [10-30]×[10-30] l×h [1-30]×[1-30]

Cost - Value [4-507]

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html

Table 60. Features of the instances in NGCUTAP.

Name NGCUTAP

Objects Items

21

k 1 e - m [5-33] d [0-[1-5]]

L×H [10-100]×[10-100] l×h [1-100]×[1-99]

Cost - Value [4-6668]

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html

82

Table 61. Features of the instances in NGCUTCON.

Name NGCUTCON

Objects Items

21

k 1 e 1 m [5-33] d [[0-1]-[1-5]]

L×H [10-100]×[10-100] l×h [1-100]×[1-99]

Cost 1 Value [4-6668]

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html

Table 62. Features of the instances in NGCUTFS.

Name NGCUTFS

Objects Items

630

k 1 e - m [40-1000] d [0-[1-4]]

L×H 100×100 l×h [2-100]×[2-100]

Cost - Value [4-30000]

URL http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ngcutinfo.html

Table 63. Features of the instances in NHU.

Name NHU

Objects Items

1

k 1 e - m 10 d [5-125]

L×H 35×25 l×h [2-18]×[2-35]

Cost - Value -

Table 64. Features of the instances in OF.

Name OF

Objects Items

2

k 1 e - m 10 d [1-4]

L×H 70×40 l×h [9-55]×[4-39]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

Table 65. Features of the instances in OKP.

Name OKP

Objects Items

5

k 1 e - m [15-33] d [1-5]

L×H 100×100 l×h [1-100]×[1-99]

Cost - Value [12-6668]

Table 66. Features of the instances in ONV.

Name ONV

Objects Items

340

k [2-6] e [1-6] m [25-500] d -

L×H [165-1000]×[153-1000] l×h [1-500]×[1-500]

Cost - Value -

URL http://www.vuuren.co.za/benchmarks.html

Table 67. Features of the instances in PGD.

Name PGD

Objects Items

8

k 1 e - m [4-20] d [1-5]

L×H [8-70]×[4-50] l×h [1-55]×[1-39]

Cost - Value -

83

Table 68. Features of the instances in PO.

Name PO

Objects Items

7

k 1 e - m [50-15000] d -

L×H 400×600 l×h [1-298]×[1-415]

Cost - Value -

URL http://www.computational-logistics.org/orlib/topic/2D%20Strip%20Packing/

Table 69. Features of the instances in RAND.

Name RAND

Objects Items

400

k - e - m [5-20] d -

L×H - l×h [10-190]×[10-190]

Cost - Value -

URL http://or.dei.unibo.it/library/orthogonal-stock-cutting-problems

Table 70. Features of the instances in RSS.

Name RSS

Objects Items

7

k 1 e - m [100-550] d -

L×H [20789-45237]×[23681-35983] l×h [28-9100]×[80-8726]

Cost - Value [448-79389148]

URL https://paginas.fe.up.pt/~esicup/datasets

Table 71. Features of the instances in SCP.

Name SCP

Objects Items

25

k 1 e - m [4-15] d [1-5]

L×H [13-145]×[4-100] l×h [1-55]×[1-51]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/Strip-cutting/

Table 72. Features of the instances in SCPL.

Name SCPL

Objects Items

9

k 1 e - m [20-43] d [1-9]

L×H - ×[127-657] l×h [2-121]×[2-48]

Cost - Value -

URL ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/Strip-cutting/

Table 73. Features of the instances in SPIEKSMA.

Name SPIEKSMA

Objects Items

400

k 1 e - m [24-201] d -

L×H [100-1000]×[100-1000] l×h [2-999]×[2-999]

Cost - Value -

URL http://or.dei.unibo.it/library/two-constraint-bin-packing-problem

Table 74. Features of the instances in SS.

Name SS

Objects Items

1

k 2 e - m 5 d [100-180]

L×H [48-60]×[96-108] l×h [12-28]×[18-30]

Cost - Value -

84

Table 75. Features of the instances in SSOOYKI.

Name SSOOYKI

Objects Items

7

k 1 e - m [7-20] d [100-9000]

L×H - ×[200-250] l×h [15-100]×[15-100]

Cost - Value -

Table 76. Features of the instances in STS.

Name STS

Objects Items

4

k 1 e - m [10-30] d [1-5]

L×H [40-99]×[70-99] l×h [9-44]×[7-49]

Cost - Value [90-1877]

Table 77. Features of the instances in TEST.

Name TEST

Objects Items

2

k [2-5] e [10-20] m [30-32] d [1-6]

L×H [73-2440]×[49-1220] l×h [21,25-2040]×[2-1589]

Cost - Value -

Table 78. Features of the instances in VAG.

Name VAG

Objects Items

1

k 1 e - m 5 d [3-8]

L×H 100×100 l×h [15-40]×[14-44]

Cost - Value -

Table 79. Features of the instances in VASSILIADIS.

Name VASSILIADIS

Objects Items

2

k 1 e - m 7 d [1-18]

L×H - ×200 l×h [5-103]×[5-50]

Cost - Value -

Table 80. Features of the instances in VENKATESWARLU.

Name VENKATESWARLU

Objects Items

1

k 31 e [32-232] m 228 d -

L×H [250-290]×[29-52] l×h [3-21]×[37-76]

Cost - Value -

Table 81. Features of the instances in WANG.

Name WANG

Objects Items

3

k 1 e - m [20-20] d [1-4]

L×H [33-40]×[69-70] l×h [9-33]×[11-43]

Cost - Value -

2

k [2-3] e [163-3000] m [5-10] d [150-700]

L×H [48-66000]×[96-96000] l×h [12-34000]×[18-41125]

Cost - Value -

URL https://paginas.fe.up.pt/~esicup/datasets

85

Table 82. Features of the instances in WV.

Name WV

Objects Items

20

k 1 e - m [10-5000] d -

L×H 100×100 l×h [0.00-100]×[0.00-198.44]

Cost - Value -

URL https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/layout/Outline.html

Table 83. Features of the instances in WVINT.

Name WVINT

Objects Items

72

k 1 e - m [25-5000] d -

L×H 1000×[995-1004] l×h [1-1000]×[1-808]

Cost - Value -

URL http://www.computational-logistics.org/orlib/topic/2D%20Strip%20Packing/

Table 84. Features of the instances in WWD.

Name WWD

Objects Items

1

k 1 e - m 4 d [1-2]

L×H 20×15 l×h [7-15]×[4-7]

Cost - Value -

Table 85. Features of the instances in ZDF.

Name ZDF

Objects Items

16

k 1 e - m [580-75032] d -

L×H [100-9000]× - l×h [1-1890]×[1-970]

Cost - Value -

URL https://paginas.fe.up.pt/~esicup/datasets

3. Instance Generators

In this section, we present, chronologically by year of appearance, six instances generators

found in the literature for two-dimensional rectangular cutting and packing problems.

For each generator, Table 86 to Table 91 give the name of the instance generator, a brief

description, the article(s) in which it was defined and if available online an internet link for

download.

Table 86. Lodi et al. Instance Generator.

Name Lodi et al.

Description
The authors presented an instance generator for the two-dimensional rectangular BPP according to the classes
defined by Berkey and Wang [21] and Martello and Vigo [22].

Article(s) Lodi et al. [89]

URL https://paginas.fe.up.pt/~esicup/problem_generators

86

Table 87. Wang and Valenzela Instance Generator.

Name Wang and Valenzuela

Description
The authors described in this article a recursive procedure to generate datasets of rectangular items to be
placed(/extracted) with zero waste on(/from) a single rectangular large object.

Article(s) Wang and Valenzuela [84]

Table 88. Hopper and Turton Instance Generator.

Name Hopper and Turton

Description
The authors proposed a generator to address the two-dimensional rectangular (non-)guillotine Strip Packing
and Bin Packing Problems.

Article(s) Hopper and Turton [90]

Table 89. SLOPPGEN Instance Generator.

Name SLOPPGEN

Description
The authors presented the SLOPPGEN generator for the two-dimensional rectangular SLOPP in which the large
object includes one or several defective areas.

Article(s) Neidlein and Wäscher [91], Neidlein et al. [92]

Table 90. ep2 (and ep3) Instance Generator.

Name ep2 (and ep3)

Description The authors presented the ep2 (and ep3) PG for two- and three- dimensional rectangular Knapsack Problems.

Article(s) Egeblad and Pisinger [31]

URL http://www.diku.dk/~pisinger/codes.html

Table 91. 2DCPackGen Instance Generator.

Name 2DCPackGen

Description
The authors presented the 2DCPackGen that generates instances for every type of two-dimensional rectangular
Cutting and Packing problems according to the typology of Wäscher et al. [3]. The authors review in this article
other generators found in the literature and describe their main limitations.

Article(s) Silva et al. [93]

URL https://paginas.fe.up.pt/~esicup/problem_generators

References

[1] E. M. da C. Silva, F. Alvelos, and J. M. V. de Carvalho, “An integer programming model
for two- and three-stage two-dimensional cutting stock problems,” Eur. J. Oper. Res.,
vol. 205, no. 3, pp. 699–708, 2010.

[2] G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier, “Algorithms for two-
dimensional cutting stock and strip packing problems using dynamic programming and
column generation,” Eur. J. Oper. Res., vol. 191, no. 1, pp. 61–85, 2008.

[3] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and
packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130, 2007.

[4] M. Adamowicz and A. Albano, “A Solution of the Rectangular Cutting-Stock Problem,”
IEEE Trans. Syst. Man. Cybern., vol. SMC-6, no. 4, pp. 302–310, 1976.

[5] Y. Cui and B. Huang, “Heuristic for constrained T-shape cutting patterns of rectangular
pieces,” Comput. Oper. Res., vol. 39, no. 12, pp. 3031–3039, 2012.

[6] R. Andrade, E. G. Birgin, and R. Morabito, “Two-stage two-dimensional guillotine

87

cutting stock problems with usable leftover,” Int. Trans. Oper. Res., vol. 23, no. 1–2, pp.
121–145, 2016.

[7] R. Andrade, E. G. Birgin, R. Morabito, and D. P. Ronconi, “MIP models for two-
dimensional non-guillotine cutting problems with usable leftovers,” J. Oper. Res. Soc.,
vol. 65, no. 11, pp. 1649–1663, 2014.

[8] A. Bortfeldt and H. Gehring, “New Large Benchmark Instances for the Two-Dimensional
Strip Packing Problem with Rectangular Pieces,” Proc. 39th Annu. Hawaii Int. Conf. Syst.
Sci., vol. 00, no. C, p. 30b, 2006.

[9] J. E. Beasley, “An algorithm for the two-dimensional assortment problem,” Eur. J. Oper.
Res., vol. 19, no. 2, pp. 253–261, 1985.

[10] R. Alvarez-Valdés, A. Parajón, and J. M. Tamarit, “A tabu search algorithm for large-
scale guillotine (un)constrained two-dimensional cutting problems,” Comput. Oper.
Res., vol. 29, no. 7, pp. 925–947, 2002.

[11] Y. Cui, Z. Wang, and J. Li, “Exact and heuristic algorithms for staged cutting problems,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 219, no. 2, pp. 201–207, 2005.

[12] A. R. Babu and N. R. Babu, “Effective nesting of rectangular parts in multiple rectangular
sheets using genetic and heuristic algorithms,” Int. J. Prod. Res., vol. 37, no. 7, pp. 1625–
1643, 1999.

[13] A. R. Babu and N. R. Babu, “A generic approach for nesting of 2-D parts in 2-D sheets
using genetic and heuristic algorithms,” CAD Comput. Aided Des., vol. 33, no. 12, pp.
879–891, 2001.

[14] B. E. E. Bengtsson, “Packing rectangular pieces—a heuristic approach,” Comput. J., vol.
25, no. 3, pp. 253–257, 1982.

[15] E. K. Burke, G. Kendall, and G. Whitwell, “A New Placement Heuristic for the Orthogonal
Stock-Cutting Problem,” Oper. Res., vol. 52, no. 4, pp. 655–671, 2004.

[16] A. El-Bouri, J. Rao, N. Popplewell, and S. Balakrishnan, “An improved heuristic for the
two-dimensional cutting stock problem with multiple sized stock sheets,” Int. J. Ind.
Eng. Theory Appl. Pract., vol. 13, no. 2, pp. 198–206, 2006.

[17] N. Christofides and C. Whitlock, “An Algorithm for Two-Dimensional Cutting Problems,”
Oper. Res., vol. 25, no. 1, pp. 30–44, 1977.

[18] Y. Cui and B. Huang, “Reducing the number of cuts in generating three-staged cutting
patterns,” Eur. J. Oper. Res., vol. 218, no. 2, pp. 358–365, 2012.

[19] V. Cung, M. Hifi, and B. Cun, “Constrained two-dimensional cutting stock problems a
best-first branch-and-bound algorithm,” Int. Trans. Oper. Res., vol. 7, no. 3, pp. 185–
210, 2000.

[20] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim, “A new constraint programming
approach for the orthogonal packing problem,” Comput. Oper. Res., vol. 35, no. 3, pp.
944–959, 2008.

[21] J. O. Berkey and P. Y. Wang, “Two-Dimensional Finite Bin-Packing Algorithms,” J. Oper.

88

Res. Soc., vol. 38, no. 5, p. 423, 1987.

[22] S. Martello and D. Vigo, “Exact Solution of the Two-Dimensional Finite Bin Packing
Problem,” Manage. Sci., vol. 44, no. April 2015, pp. 388–399, 1998.

[23] Y. Cui, “Heuristic and exact algorithms for generating homogenous constrained three-
staged cutting patterns,” Comput. Oper. Res., vol. 35, no. 1, pp. 212–225, 2008.

[24] Y. Cui and Y. Yang, “A recursive branch-and-bound algorithm for constrained
homogenous T-shape cutting patterns,” Math. Comput. Model., vol. 54, no. 5–6, pp.
1320–1333, 2011.

[25] Y. Cui and Z. Zhao, “Heuristic for the rectangular two-dimensional single stock size
cutting stock problem with two-staged patterns,” Eur. J. Oper. Res., vol. 231, no. 2, pp.
288–298, 2013.

[26] K. Ratanapan and C. H. Dagli, “An object-based evolutionary algorithm for solving
rectangular piece nesting problems,” in 1997 IEEE International Conference on Systems,
Man, and Cybernetics. Computational Cybernetics and Simulation, 1997, vol. 2, pp.
989–994.

[27] K. Ratanapan and C. H. Dagli, “An object-based evolutionary algorithm: the nesting
solution,” in IEEE International Conference on Evolutionary Computation Proceedings.
IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, pp. 581–
586.

[28] C. H. Dagli and P. Poshyanonda, “New approaches to nesting rectangular patterns,” J.
Intell. Manuf., vol. 8, no. 3, pp. 177–190, 1997.

[29] K. A. Dowsland, “The Three-Dimensional Pallet Chart : An Analysis of the Factors
Affecting the Set of Feasible Layouts for a Class of Two-Dimensional Packing Problems,”
J. Oper. Res. Soc., vol. 35, no. 10, pp. 895–905, 1984.

[30] R. M. S. A. El-Aal, “An interactive technique for the cutting stock problem with multiple
objectives,” Eur. J. Oper. Res., vol. 78, no. 3, pp. 304–317, 1994.

[31] J. Egeblad and D. Pisinger, “Heuristic approaches for the two- and three-dimensional
knapsack packing problem,” Comput. Oper. Res., vol. 36, no. 4, pp. 1026–1049, 2009.

[32] D. Fayard, M. Hifi, and V. Zissimopoulos, “An efficient approach for large-scale two-
dimensional guillotine cutting stock problems,” J. Oper. Res. Soc., vol. 49, no. 12, pp.
1270–1277, 1998.

[33] E. Ferreira and J. F. Oliveira, “A note on Fekete and Schepers’ algorithm for the non-
guillotinable two-dimensional packing problem.” Technical report, FEUP, pp. 2–5,
2005.

[34] M. Gardner, “Mathematical Games. The problem of Mrs. Perkins’ quilt, and answers to
last month’s puzzles.,” Sci. Am., vol. 2, 1966.

[35] J. E. Beasley, “Algorithms for Unconstrained Two-Dimensional Guillotine Cutting,” J.
Oper. Res. Soc., vol. 36, no. 4, pp. 297–306, 1985.

[36] E. Hadjiconstantinou and N. Christofides, “An exact algorithm for general, orthogonal,

89

two-dimensional knapsack problems,” Eur. J. Oper. Res., vol. 83, no. 1, pp. 39–56, 1995.

[37] J. Herz, “Recursive Computational Procedure for Two-dimensional Stock Cutting,” IBM
J. Res. Dev., vol. 16, no. 5, pp. 462–469, 1972.

[38] M. Hifi, “The DH/KD algorithm: a hybrid approach for unconstrained two-dimensional
cutting problems,” Eur. J. Oper. Res., vol. 97, no. 1, pp. 41–52, 1997.

[39] M. Hifi, “An improvement of Viswanathan and Bagchi’s exact algorithm for constrained
two-dimensional cutting stock,” Comput. Oper. Res., vol. 24, no. 8, pp. 727–736, 1997.

[40] M. Hifi, “Exact algorithms for large-scale unconstrained two and three staged cutting
problems,” Comput. Optim. Appl., vol. 18, no. 1, pp. 63–88, 2001.

[41] E. Hopper, “Two-dimensional Packing utilising Evolutionary Algorithms and other
Meta-Heuristic Methods,” University of Wales, 2000.

[42] E. Hopper and B. C. H. Turton, “An empirical study of meta-heuristics applied to 2D
rectangular bin packing,” Stud. Inform. Universalis, vol. 2, no. 1, pp. 77–106, 2001.

[43] E. Hopper and B. C. H. Turton, “An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem,” Eur. J. Oper. Res., vol. 128, no. 1, pp.
34–57, 2001.

[44] M. Hifi and V. Zissimopoulos, “Une amélioration de l’algorithme récursif de Herz pour
le problème de découpe à deux dimensions,” RAIRO, Rech. Opérationnelle, vol. 30, no.
2, pp. 111–125, 1996.

[45] M. Hifi and V. Zissimopoulos, “A recursive exact algorithm for weighted two-
dimensional cutting,” Eur. J. Oper. Res., vol. 91, no. 3, pp. 553–564, 1996.

[46] S. Israni and J. Sanders, “Two-dimensional cutting stock problem research: A review
and a new rectangular layout algorithm,” J. Manuf. Syst., vol. 1, pp. 169–182, 1982.

[47] S. Imahori, M. Yagiura, S. Umetani, S. Adachi, and T. Ibaraki, “Local search algorithms
for the two-dimensional cutting stock problem with a given number of different
patterns,” Oper. Res. Comput. Sci. Interfaces Ser., vol. 32, 2005.

[48] S. Jakobs, “On genetic algorithms for the packing of polygons,” Eur. J. Oper. Res., vol.
88, no. 1, pp. 165–181, 1996.

[49] J. Q. Jiang, Y. C. Liang, X. H. Shi, and H. P. Lee, “A Hybrid Algorithm Based on PSO and
SA and Its Application for Two-Dimensional Non-guillotine Cutting Stock Problem,” in
Lecture Notes in Computer Science, vol. 3037, no. ICCS 2004, IEEE, 2004, pp. 666–669.

[50] R. E. Korf, M. D. Moffitt, and M. E. Pollack, “Optimal rectangle packing,” Ann. Oper.
Res., vol. 179, no. 1, pp. 261–295, 2010.

[51] B. Kröger, “Guillotineable bin packing: A genetic approach,” Eur. J. Oper. Res., vol. 84,
no. 3, pp. 645–661, 1995.

[52] K. K. Lai and J. W. M. Chan, “Developing a simulated annealing algorithm for the cutting
stock problem,” Comput. Ind. Eng., vol. 32, no. 1, pp. 115–127, 1997.

[53] T. W. Leung, C. K. Chan, and M. D. Troutt, “Application of a mixed simulated annealing-

90

genetic algorithm heuristic for the two-dimensional orthogonal packing problem,” Eur.
J. Oper. Res., vol. 145, no. 3, pp. 530–542, 2003.

[54] T. W. Leung, C. H. Yung, and M. D. Troutt, “Applications of genetic search and simulated
annealing to the two-dimensional non-guillotine cutting stock problem,” Comput. Ind.
Eng., vol. 40, no. 3, pp. 201–214, 2001.

[55] R. Morabito and M. N. Arenales, “Optimizing the cutting of stock plates in a furniture
company,” Int. J. Prod. Res., vol. 38, no. 12, pp. 2725–2742, 2000.

[56] R. Morabito, M. N. Arenales, and V. F. Arcaro, “An and-or-graph approach for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 58, no. 2, pp. 263–271, 1992.

[57] D. Pisinger and M. Sigurd, “The two-dimensional bin packing problem with variable bin
sizes and costs,” Discret. Optim., vol. 2, no. 2, pp. 154–167, 2005.

[58] D. Mack and A. Bortfeldt, “A heuristic for solving large bin packing problems in two and
three dimensions,” Cent. Eur. J. Oper. Res., vol. 20, no. 2, pp. 337–354, 2012.

[59] R. Morabito and V. Garcia, “The cutting stock problem in a hardboard industry: A case
study,” Comput. Oper. Res., vol. 25, no. 6, pp. 469–485, 1998.

[60] R. Morabito and V. Pureza, “A heuristic approach based on dynamic programming and
and/or-graph search for the constrained two-dimensional guillotine cutting problem,”
Ann. Oper. Res., vol. 179, no. 1990, pp. 1–25, 2010.

[61] C. L. Mumford-Valenzuela, J. Vick, and P. Y. Wang, “Heuristics for large strip packing
problems with guillotine patterns: An empirical study,” in Metaheuristics: computer
decision-making, vol. 86, 2003, pp. 501–522.

[62] J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Tree Search
Procedure,” Oper. Res., vol. 36, no. 1, pp. 49–64, 1985.

[63] J. E. Beasley, “A population heuristic for constrained two-dimensional non-guillotine
cutting,” Eur. J. Oper. Res., vol. 156, no. 3, pp. 601–627, 2004.

[64] K. Novianingsih, R. Hadianti, and S. Uttunggadewa, “Column generation technique for
solving two-dimensional cutting stock problems: method of stripe approach,” J.
Indones. Math. Soc., vol. 13, no. 2, pp. 161–172, 2012.

[65] J. F. Oliveira and J. S. Ferreira, “An improved version of Wang’s algorithm for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 44, no. 2, pp. 256–266, 1990.

[66] S. P. Fekete and J. Schepers, “On more-dimensional packing III: Exact Algorithms,” ZPR
Technical Report 97.290, 2000.

[67] F. G. Ortmann, N. Ntene, and J. H. van Vuuren, “New and improved level heuristics for
the rectangular strip packing and variable-sized bin packing problems,” Eur. J. Oper.
Res., vol. 203, no. 2, pp. 306–315, 2010.

[68] V. Parada, A. Gómes de Alvarenga, and J. de Diego, “Exact solutions for constrained
two-dimensional cutting problems,” Eur. J. Oper. Res., vol. 84, no. 3, pp. 633–644, 1995.

[69] E. Pinto and J. F. Oliveira, “Algorithm based on graphs for the non-guillotinable two-

91

dimensional packing problem,” in Second ESICUP Meeting, 2005.

[70] S. Martello and M. Monaci, “Models and algorithms for packing rectangles into the
smallest square,” Comput. Oper. Res., vol. 63, pp. 161–171, 2015.

[71] M. Russo, A. Sforza, and C. Sterle, “An exact dynamic programming algorithm for large-
scale unconstrained two-dimensional guillotine cutting problems,” Comput. Oper. Res.,
vol. 50, pp. 97–114, 2014.

[72] M. Hifi, “Exact algorithms for the guillotine strip cutting/packing problem,” Comput.
Oper. Res., vol. 25, no. 11, pp. 925–940, 1998.

[73] M. Hifi, “The Strip Cutting/Packing Problem: Incremental Substrip Algorithms-Based
Heuristics,” Pesqui. Operacional, Spec. Issue Cut. Pack. Probl., vol. 19, pp. 169–188,
1999.

[74] F. C. R. Spieksma, “Branch-and-bound algorithm for the two-dimensional vector
packing problem,” Comput. Oper. Res., vol. 21, no. 1, pp. 19–25, 1994.

[75] A. Caprara and P. Toth, “Lower bounds and algorithms for the 2-dimensional vector
packing problem,” Discret. Appl. Math., vol. 111, no. 3, pp. 231–262, 2001.

[76] B. A. Skalbeck and H. K. Schultz, “Reducing Trim Waste in Panel Cutting Using Integer
and Linear Programming,” Proc. West. AIDS Conf., pp. 145–147, 1976.

[77] Y. Shiomi et al., “The solution of 2-dimensional rectangular cutting stock problem
considering cutting process,” Proc. 3rd IEEE Int. Conf. Autom. Sci. Eng. IEEE CASE 2007,
pp. 140–145, 2007.

[78] S. Tschöke and N. Holthöfer, “A New Parallel Approach to the Constrained Two-
Dimensional Cutting Stock Problem,” in Workshop on Algorithms for Irregularly
Structured Problems, 1995, pp. 285–299.

[79] H. H. Yanasse, A. S. I. Zinober, and R. G. Harris, “Two-dimensional cutting stock with
multiple stock sizes,” J. Oper. Res. Soc., vol. 42, no. 8, pp. 673–683, 1991.

[80] A. C. G. Vianna, M. N. Arenales, and M. C. N. Gramani, “Two-Stage and Constrained
Two-Dimensional Guillotine Cutting Problems,” USP, no. Notas-Série Computação no
69, pp. 1–28, 2003.

[81] V. S. Vassiliadis, “Two-dimensional stock cutting and rectangle packing: Binary tree
model representation for local search optimization methods,” J. Food Eng., vol. 70, no.
3, pp. 257–268, 2005.

[82] P. Venkateswarlu, “The trim-loss problem in a wooden container manufacturing
company,” J. Manuf. Syst., vol. 20, no. 3, pp. 166–176, 2001.

[83] P. Y. Wang, “Two Algorithms for Constrained Two-Dimensional Cutting Stock
Problems,” Oper. Res., vol. 31, no. 3, pp. 573–586, 1983.

[84] P. Y. Wang and C. L. Valenzuela, “Data set generation for rectangular placement
problems,” Eur. J. Oper. Res., vol. 134, no. 2, pp. 378–391, 2001.

[85] L. Wei, W. C. Oon, W. Zhu, and A. Lim, “A skyline heuristic for the 2D rectangular

92

packing and strip packing problems,” Eur. J. Oper. Res., vol. 215, no. 2, pp. 337–346,
2011.

[86] J. Wan, Y. Wu, and H. Dai, “A Pattern Combination Based Approach to Two-Dimensional
Cutting Stock Problem,” in Advances in Natural Computation: First International
Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part III,
2005, pp. 332–336.

[87] D. Zhang, L. Wei, S. C. H. Leung, and Q. Chen, “A Binary Search Heuristic Algorithm
Based on Randomized Local Search for the Rectangular Strip-Packing Problem,”
INFORMS J. Comput., vol. 25, no. 2, pp. 332–345, 2013.

[88] S. C. H. Leung and D. Zhang, “A fast layer-based heuristic for non-guillotine strip
packing,” Expert Syst. Appl., vol. 38, no. 10, pp. 13032–13042, 2011.

[89] A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems,” INFORMS J. Comput., vol. 11, no. 4, pp. 345–
357, 1999.

[90] E. Hopper and B. C. H. Turton, “Problem Generators for Rectangular Packing Problems,”
Stud. Inform. Univ., vol. 2, pp. 123–136, 2002.

[91] V. Neidlein and G. Wäscher, “SLOPPGEN: A problem generator for the two- dimensional
rectangular single large object placement problem with a single defect,” FEMM Work.
Pap., pp. 1–8, 2008.

[92] V. Neidlein, A. Scholz, and G. Wäscher, “SLOPPGEN: A problem generator for the two-
dimensional rectangular single large object placement problem with defects,” Int.
Trans. Oper. Res., vol. 23, no. 1–2, pp. 173–186, 2016.

[93] E. M. da C. Silva, J. F. Oliveira, and G. Wäscher, “2DCPackGen: A problem generator for
two-dimensional rectangular cutting and packing problems,” Eur. J. Oper. Res., vol. 237,
no. 3, pp. 846–856, 2014.

93

Resources for Two-dimensional (and Three-

dimensional) Cutting and Packing Solution Methods

Research

Abstract We present a set of resources that we have created when studying two-dimensional

rectangular cutting and packing solution methods. We have compiled and converted the

datasets found in the literature into a common format to ease the data input to the solution

methods implementations. We present graphical user interfaces for instance and cutting plan

visualisation. Finally, we present the website developed that, besides hosting all resources

that we have made available, contains a set of utilities that can help on the characterisation

of the articles available in the literature for two-dimensional cutting and packing problems

and the relations between them. These resources are available for use and open for

contributions.

Keywords: Resources, Tools, Instances, Graphical User Interface, Rectangular, Two-

dimensional, Three-dimensional, Cutting and Packing Problem

1. Introduction

Cutting and packing problems intent to place (either to cut or pack) a set of items into larger

objects considering some objective, i.e., minimization of the number of objects used to place

all given items or maximization of the area occupied by items placed, without overlapping,

inside one object. The cutting and packing problem is a wide family of related problems, we

refer to Wäscher et al. [1] for a great overview of this problem family and for a typology to

classify the problems through their common characteristics.

Hopper and Turton [2] stated that: “In general, during the development of packing algorithms

it is useful to visualise final and intermediate layouts in order to judge the quality and the

correctness of the packing routines more easily”. As cutting and packing researchers, we also

have found the need to create tools that helped us to understand in a simpler and clearer

manner the problems in which we were focused on.

94

Most often researchers find themselves searching, adapting or creating new tools that

facilitate the visualisation and analysis of the current state of their research, shifting the

attention from the most important task, i.e., the research for new and better solution

methods.

One common problem shared by researchers is to find and use the instances generated by

other researchers when comparing results of their solution methods. Existent dataset

libraries do not share the same file format to define the instances (in some case, even in the

same library the format varies) and are not comprehensive enough forcing the researchers to

search for another resource in order to find a particular dataset or instance. We have

compiled more than 6000 instances (84 datasets) found in the literature and converted them

into one specific format to help recognise the instance structure and to unify the data input

for the solution method’s implementations.

We present three graphical user interfaces (GUI) that allow to easily visualise the instances

and the cutting plans obtained by the solution methods implementations.

We rely heavily on the key-value pair format JavaScript Object Notation1 (JSON) to structure

all our data, i.e., instance definition and cutting plans. The characteristics associated with this

format justify our choice, being the most relevant in the context of this work the followings:

▪ Lightweight format for store and transport data.

▪ Easy for humans to read, i.e., self-describing.

▪ Easy for machines to parse and generate (most of the programming language have

some sort of built-in or available library to easily read and write JSON files).

As we believe that any work only has value when effectively used and shared, the datasets

and tools mentioned in this work are freely available (MIT License2) at the repository

https://github.com/Oscar-Oliveira. We hope that other researchers and developers engage

and contribute to the improvement of these tools and with the growth of the dataset library.

For those who just want to make use of the resources that we have made available, we have

created a platform, i.e., website, for hosting these resources. This website also contains a set

1 See http://www.json.org/.
2 See https://opensource.org/licenses/MIT for license template and further resources on this license.

https://github.com/Oscar-Oliveira
http://www.json.org/
https://opensource.org/licenses/MIT

95

of tools that allows to visualise and filter the existent literature related to the two-

dimensional rectangular cutting and packing problem.

For the best of our knowledge, no resource set, like the one presented in this paper, exists or

have been made available so far.

The rest of the paper is organized as follows. Section 2 describes the datasets conversion to

the JSON format. Section 3 presents the GUI to visualise the instances converted to the JSON

format and the two-dimensional and three-dimensional cutting plan viewers. Section 4

describes the main features of the website for hosting the resources created for helping our

(and future) research. Finally, conclusions and future work directions are given in the last

section.

The examples given in the following sections consider the two-dimensional instance OF1 from

Oliveira and Ferreira [3] and the three-dimensional instance 10 (Class 8, 𝑚 = 200) of the

dataset generated by Martello et al. [4]3.

2. Datasets

We have compiled more than 80 datasets usually used by the researchers when evaluating

and comparing their solution method implementations. At is was expected, many formats to

define the instances characteristics have emerged from this diversity, and to ease the data

input for the implementation of the solution methods, we converted all the instances to JSON

format with the structure depicted in Figure 1.

The instances were converted considering the following set of rules:

▪ Objects with the same dimensions are aggregated.

▪ The cost equals the area of the object if the cost is not defined.

▪ Items with the same dimensions and value are aggregated.

▪ The demand equals 1 if the demand is not defined.

▪ The value equals the area of the items, if the value is not defined.

3 Generator available at http://hjemmesider.diku.dk/~pisinger/codes.html

http://hjemmesider.diku.dk/~pisinger/codes.html

96

Each instance converted to this format has a name, a set of objects and a set of items. Each

object has a length, height, stock, and cost, while each item has length, height, demand, a

maximum demand (for double-constrained problems) and value.

{ "Name": STRING,
 "Objects": [
 { "Length": INT,
 "Height": INT,
 "Stock": null|INT,
 "Cost": INT|DOUBLE
 }
],
 "Items": [
 { "Length": INT|DOUBLE,
 "Height": INT|DOUBLE,
 "Demand": INT,
 "DemandMax": null|INT,
 "Value": INT|DOUBLE
 }
]
}

Figure 1. JSON structure.

The file of instance OF14 is depicted in Figure 2.

70 40
10
29 5 1
9 39 4
55 9 1
31 15 1
11 16 2
23 21 3
29 14 4
16 19 3
9 36 2
22 4 2

Figure 2. Instance OF1 – Original format.

At it can be seen, the instance is not self-described, to parse of this instance we must rely

upon the position of the data, i.e., the first line defines the object dimensions, the second line

defines the number of items, then for each item/line, the item dimensions and the demand.

In this type of format, the reader must be perfectly aware of the structure and slight variations

that can occur (as it is frequent that instances in the same dataset have minor differences,

e.g., two spaces or a tab rather than one space). The same instance converted to our JSON

format is depicted in Figure 3. After converted the instances are more readable, self-

explanatory and less error-prone.

4 Obtained from ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

ftp://cermsem.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

97

{ "Name": "OF1",
 "Objects": [
 { "Length": 70, "Height": 40, "Stock": null, "Cost": 2800 }
],
 "Items": [
 { "Length": 29, "Height": 5, "Demand": 1, "DemandMax": null, "Value": 145 },
 { "Length": 9, "Height": 39, "Demand": 4, "DemandMax": null, "Value": 351 },
 { "Length": 55, "Height": 9, "Demand": 1, "DemandMax": null, "Value": 495 },
 { "Length": 31, "Height": 15, "Demand": 1, "DemandMax": null, "Value": 465 },
 { "Length": 11, "Height": 16, "Demand": 2, "DemandMax": null, "Value": 176 },
 { "Length": 23, "Height": 21, "Demand": 3, "DemandMax": null, "Value": 483 },
 { "Length": 29, "Height": 14, "Demand": 4, "DemandMax": null, "Value": 406 },
 { "Length": 16, "Height": 19, "Demand": 3, "DemandMax": null, "Value": 304 },
 { "Length": 9, "Height": 36, "Demand": 2, "DemandMax": null, "Value": 324 },
 { "Length": 22, "Height": 4, "Demand": 2, "DemandMax": null, "Value": 88 }
]
}

Figure 3. Instance OF1 - Converted to JSON.

3. GUI for instance and cutting plan visualisation

In this section, we present the instance and cutting plan viewers. The usage of these tools is

very similar, to visualise the content of a JSON file in a viewer, drag-and-drop the file inside

the top-left corner box. At the top-right corner, the viewers present an icon, depicted in Figure

4, that provides more information and help.

Figure 4. Menu icon.

3.1. Instance viewer

To help visualise the converted instances, we have created an instance viewer, depicted in

Figure 5 with instance OF1. The left column presents the characteristics of the objects. The

centre column presents the items characteristics, and at the right column, the instance is

illustrated with the objects colourized with a darker grey and the items with a lighter grey.

98

Figure 5. Instance OF1 – Rendered.

3.2. Two-dimensional cutting plan viewer

We provide a tool to help visualise two-dimensional cutting plans. Solution methods can

export the solution obtained to a JSON file as depicted in Figure 6. As it can be observed, the

key pattern can contain a set of patterns each of then seen as a shelf with position (x and

y), dimension (w and h), frequency (f), pattern trim loss (tl) and first cut orientation (o).

Noteworthy, shelves can contain other shelves. Solving a 2D 2-staged Single Large Object

Placement Problem (SLOPP, see Wäscher et al. [1]) using the data of instance OF1, Figure 6

depicts the JSON file that contains the resulting cutting plan to be visualised using the two-

dimensional viewer.

{ "pattern": [
 { "x": 0, "y": 0, "w": 70, "h": 40, "f": 1, "tl": 87, "o":"Horizontal", "shelves": [
 { "x": 0, "y": 0, "w": 70, "h": 21, "shelves": [
 { "x": 0, "y": 0, "w": 23, "h": 21 },
 { "x": 23, "y": 0, "w": 23, "h": 21 },
 { "x": 46, "y": 0, "w": 23, "h": 21 }
]},
 { "x": 0, "y": 21, "w": 70, "h": 19, "shelves": [
 { "x": 0, "y": 0, "w": 16, "h": 19 },
 { "x": 16, "y": 0, "w": 16, "h": 19 },
 { "x": 32, "y": 0, "w": 16, "h": 19 },
 { "x": 48, "y": 0, "w": 11, "h": 16 },
 { "x": 59, "y": 0, "w": 11, "h": 16 }
]}
]}
]}

Figure 6. 2D 2-staged SLOPP – 2D JSON.

99

The cutting plan viewer, depicted in Figure 7, presents in the left column the information of

patterns contained in the JSON file.

Figure 7. 2D 2-staged SLOPP – 2D render.

Clicking in the top-right disk icon of each pattern, depicted in Figure 8, allows to download an

image of the respective pattern.

Figure 8. Disk icon.

The centre column presents the items contained in the currently selected pattern, identifying

the dimension and position of each one of them. The right column illustrates the currently

selected pattern. A zoom controller is present at the bottom-right corner of the two-

dimensional cutting plan viewer.

3.3. Three-dimensional cutting plan viewer

As for the two-dimensional case, solution methods can export the obtained solution to a JSON

file, as depicted in Figure 9, to be rendered in the three-dimensional cutting plan viewer.

Continuing with instance OF1 solved as a 2D 2-staged SLOPP, Figure 9 depicts the JSON file

that contains the resulting cutting plan to be visualised in the three-dimensional viewer

(Figure 10). This JSON file contains the bins dimensions (w, h, d), the frequency of cut (f), trim

100

loss (tl) and the items to be placed inside the respective bin (items). For each item, we can

find the identification (i), dimensions (w, h, d), position (x, y, z) and a Boolean flag to identify

if the item was rotated by the solution method (r).

{"box": [
 {"w": 70, "h": 40, "d": 4, "f": 1, "tl": 87, "items": [
 {"i": 5, "w": 23, "h": 21, "d": 4, "x": 0, "y": 0, "z": 0, "r": 0},
 {"i": 5, "w": 23, "h": 21, "d": 4, "x": 23, "y": 0, "z": 0, "r": 0},
 {"i": 5, "w": 23, "h": 21, "d": 4, "x": 46, "y": 0, "z": 0, "r": 0},
 {"i": 7, "w": 16, "h": 19, "d": 4, "x": 0, "y": 21, "z": 0, "r": 0},
 {"i": 7, "w": 16, "h": 19, "d": 4, "x": 16, "y": 21, "z": 0, "r": 0},
 {"i": 7, "w": 16, "h": 19, "d": 4, "x": 32, "y": 21, "z": 0, "r": 0},
 {"i": 4, "w": 11, "h": 16, "d": 4, "x": 48, "y": 21, "z": 0, "r": 0},
 {"i": 4, "w": 11, "h": 16, "d": 4, "x": 59, "y": 21, "z": 0, "r": 0}
]}
]}

Figure 9. 2D 2-staged SLOPP – 3D JSON.

The three-dimensional cutting plan viewer, as depicted in Figure 10, presents to the left the

bins contained in the JSON file, the centre column the items contained inside the currently

selected bin. Each item has a radio button associated that allows stopping the rendering at

the current item to visualise the packing order followed by the solution method. At the right

column, the packing is rendered allowing to rotate in all axis using the keyboard navigation

keys (a.k.a., arrow keys) and mouse.

Figure 10. 2D 2-staged SLOPP – 3D render.

101

At the bottom-right corner a toolset is present that, in order of appearance from top to

bottom, capture a picture of the currently selected bin, block the navigation, toggle camera

type, toggle the visibility of the axis, toggle the visibility of the planes and the last three radio

buttons allow to display the items as wireframe (Figure 11), as solid unoccupied space (Figure

12) and as solid items (Figure 13). With the latter display selected, the bottom checkbox

assigns a randomly a colour using a grey scale for the items.

Figure 11 to Figure 13 depict the different visualisations of the three-dimensional instance

solved as a three-dimensional Single Bin Size Bin Packing Problem (SBSBPP, see Wäscher et

al. [1]).

Figure 11. 3D SBSBPP – Wireframe render.

102

Figure 12. 3D SBSBPP – Solid unoccupied space render.

Figure 13. 3D SBSBPP – Solid render.

103

4. Website

The website created to group all resources developed during our research can be accessed

through the following URL: https://oscar-oliveira.github.io/2D-Cutting-and-Packing/.

The website presents to the left a menu (black vertical bar, see Figure 14) with nine icons

running from top to bottom letting the user switch between resources. In short, the menu

items allow the access to:

 Homepage

 Literature review - Visualisations

 Literature review - Quick view

 Literature review - Filter

 List of datasets

 List of instance generators

 2D instance viewer (see section 3.1.)

 2D cutting plan viewer (see section 3.2.)

 3D cutting plan viewer (see section 3.3.)

The homepage (see Figure 14) contains some metrics on the data gathered.

Figure 14. Homepage.

https://oscar-oliveira.github.io/2D-Cutting-and-Packing/

104

To minimize the work required updating the information, all data is stored in JSON format

and used to generate the content. Four groups of data are stored:

▪ Keywords – List of keywords that can be used to characterise the articles.

▪ Datasets – List of datasets (see Section 2). For each dataset, the following information

is stored: name, reference and URL from which the instances were obtained.

▪ Generators – List of the two-dimensional instance generators found in the literature.

For each generator, the following information is stored: short name, reference, URL

from which the source code was obtained and download URL.

▪ Articles – List of articles related to the two-dimensional cutting and packing problems.

For each article, the following information is stored: name (key), year of publication,

URL5, reference, list of keywords that characterise the article, list of datasets used by

the authors, and list of articles (keys) used for evaluating the results obtained.

Next, we briefly describe the webpages that relates to the literature review and to the list of

datasets and instance generators. We do not describe the last three menu items as they allow

access to the GUI for instance and cutting plan visualisation described in Section 3.

4.1. Literature review - Visualisations

This webpage lets visualise the literature related to the two-dimensional cutting and packing

problem. Observing Figure 15, it can be seen on the left side a vertical action bar that allows

to choose: 1) the type of visualisation, 2) the order in which the articles appear, i.e., sorted by

year of publication or by name, 3) the diagram size, 4) to download the diagram as a Scalable

Vector Graphics6 (SVG) and 5) the action button. When the visualisation type Comparison is

selected an additional option is made available that allows to choose the line tension between

articles.

The types of visualisation generate diagrams that depicts the relation between: 1) the articles

and keywords (type Keywords), 2) the articles and used datasets (type Datasets) and 3) the

articles used for comparison when evaluating the results obtained (type Comparison). Rolling

the cursor over a keyword, dataset or article highlight the existent relations. It is worth noting

5 Whenever available, we use the Digital Object Identifier (DOI, see https://www.doi.org/) based URL.
6 https://www.w3.org/Graphics/SVG/

https://www.doi.org/
https://www.w3.org/Graphics/SVG/

105

that at the top-left corner of the diagram area, a legend appears with the currently selected

item.

Figure 15. Literature review.

To characterize the articles, we have chosen the following keywords:

• IIPP, PP, KP, ODP, CSP and BPP - to identify the (basic) problems types following

Wäscher’s typology [1].

• Guillotine and Non-guillotine - to identify the cut type.

• 2-staged, 3-staged and k-staged - to identify the number of cuts stages.

• Constrained and Unconstrained - to identify if the demand if bounded or not.

• Oriented and Non-oriented - to identify if rotation of items can be allowed or

not.

• Survey - to identify if the article is a survey (or a review).

• Non-orthogonal - to identify articles that deal with non-orthogonal placement.

Figure 16 depicts the articles that are characterised by the keyword Non-guillotine.

106

Figure 16. Type Keywords – Non-guillotine keyword selected.

Figure 17 illustrates the articles that use the dataset CGCUT.

Figure 17. Type Datasets – CGCUT dataset selected.

Figure 18 highlights the comparisons made considering the article presented by Gonçalves

and Resende [5]. This diagram highlights (black lines) the four articles that Gonçalves and

Resende used to evaluate the results obtained by their heuristic and highlights (red line) that

Kierkosz and Luczakone [6] used the results obtained in [5] for comparison.

107

Figure 18. Type Comparison – Article Gonçalves and Resende (2011) selected.

4.2. Literature review - Quick view

Figure 19 illustrates the Quick view webpage and as in the previous diagrams, rolling the

cursor over a keyword, dataset or article highlights the existent relations. Figure 20 illustrates

the webpage with the dataset CGCUT selected, highlighting all articles that use this dataset.

Figure 19. Quick view.

108

Figure 20. Quick view - CGCUT dataset selected.

4.3. Literature review - Filter

Figure 21 depicts the Filter webpage that allows to easily find articles using search words,

keyword list (using logical operators is necessary) and decades selection. For each article that

satisfies the search parameters, it is presented in a tabular format the publication year, the

article reference, the keywords and the URL for access.

Figure 21. Filter.

109

4.4. Lists of datasets and instance generators

Figure 22 and Figure 23 show the datasets and instance generators lists webpages that allows

an easy access to these resources. The tables present for each entry (dataset or instance

generator), the name, the reference, a link to the URL from which it was obtained and a link

that allows to download the respective entry from our repository.

Figure 22. Datasets list.

Figure 23. Instance generators list.

110

5. Conclusion

We present a set of resources as we consider that they can be useful for researchers and

practitioners whose interest lies in the study of cutting and packing problems. We have made

available a wide set of datasets found in the literature, all converted into the same format to

provide a consistent experience when researching for new solution methods. We, also, have

made available three graphical user interfaces, one to visualise the instances and the other

two to visualise the solutions obtained in a two-dimensional or three-dimensional view.

The last resource presented is a website, that allows easy access to all resource created. This

website besides hosting the datasets, generators and GUI, contains a set of utilities for helping

the analysis of the literature related to the two-dimensional cutting and packing problems.

Noteworthy that an extension of this website can be developed to characterise other

combinatorial problems with minor changes. We expect that these resources allow the

researchers to focus on the actual research and not in the tool making as they occupy a great

amount of time and resources. As we make these resources available, we hope for the

contribution of others to improve the work made so far. A great amount of work can be

undergone to improve these resources, we have identified a few, such as, unify the viewers

into one tool, unify the JSON format and validate the JSON structure through a JSON schema7

(the three-dimensional viewer already uses a JSON schema to validate the JSON files). We

envision a wide group of researchers discussing and contributing to improve these tools

allowing to regain the focus in the research of solution methods.

References

[1] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and
packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130, 2007.

[2] E. Hopper and B. C. H. Turton, “Problem Generators for Rectangular Packing Problems,”
Stud. Inform. Univ., vol. 2, pp. 123–136, 2002.

[3] J. F. Oliveira and J. S. Ferreira, “An improved version of Wang’s algorithm for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 44, no. 2, pp. 256–266, 1990.

[4] S. Martello, D. Pisinger, and D. Vigo, “The Three-Dimensional Bin Packing Problem,”

7 https://json-schema.org/

111

Oper. Res., vol. 48, no. 2, pp. 256–267, 2000.

[5] J. F. Gonçalves and M. G. C. Resende, “A parallel multi-population genetic algorithm for
a constrained two-dimensional orthogonal packing problem,” J. Comb. Optim., vol. 22,
no. 2, pp. 180–201, 2011.

[6] I. Kierkosz and M. Luczak, “A hybrid evolutionary algorithm for the two-dimensional
packing problem,” Cent. Eur. J. Oper. Res., vol. 22, no. 4, pp. 729–753, 2014.

112

113

Part III – Heuristics

114

115

Adaptive Sequence-based Heuristic for Two-

Dimensional Non-Guillotine Packing Problems

Abstract We present heuristics for two related two-dimensional non-guillotine packing

problems. The first problem aims to pack a set of items into the minimum number of larger

identical bins, while the second aims to pack the items that generates most value into only

one bin. Our approach successively creates sequences of items that defines a packing order

considering the knowledge obtained from sequences generated previously. Computational

experiments demonstrated that the proposed heuristics are very effective in terms of solution

quality and with small computing times.

Keywords: Two-dimensional, Rectangular, Non-guillotine, Knapsack Problem, Bin Packing,

Heuristics

1. Introduction

We present heuristics to solve two related non-guillotine packing problems both considering

a finite set of 𝑚 rectangular items types with associated length (𝑙𝑖), height (ℎ𝑖), value (𝑣𝑖), and

demand (𝑑𝑖). In the first problem, the set of items must be packed into the minimum number

of identical bins, while the second one, aims to maximize the value of the items packed into

one bin. The items must be packed orthogonally and cannot be rotated. All bins are

rectangular and have identical length (𝐿) and height (𝐻).

Giving that, the proposed heuristics deal with each demanded item individually, the first

problem, following the typology of Wäscher et al. [1], is classified as Single Bin Size Bin Packing

Problem (SBSBPP) while the second one is classified as Single Knapsack Problem (SKP).

The remaining of the paper is organized as follows. Section 2 gives an overview of the

solutions approaches proposed in the literature to solve both problems. In Section 3, a

description of our heuristics, hereafter denoted as Adaptive Sequence-based Heuristics (ASH),

is presented, and in Section 4, computational results are reported comparing our approach

116

to other solution methods from the literature. Finally, conclusions and future work directions

are given in Section 5.

2. Literature Review

Since the work of Gilmore and Gomory [2] the interest on cutting and packing problems has

been growing, due to its complexity (NP-hard, see Garey and Johnson [3]) and great practical

applicability (see Singh and Jain [4]).

The next two sub-sections present the most relevant solution methods proposed for the

Single Bin Size Bin Packing Problem (SBSBPP) and Single Knapsack Problem (SKP), respectively.

2.1. Single Bin Size Bin Packing Problem

Berkey and Wang [5] studied the performance of heuristics for the SBSBPP adapted from

heuristics proposed in the literature for the Open Dimensional Problem (ODP, see Wäscher

et al. [1]).

Regarding the lower bounds, Martello and Vigo [6] showed that the Continuous Lower Bound

(𝐶𝐿𝐵 = ⌈
∑ 𝑙𝑖ℎ𝑖

𝑚
𝑖=1

𝐿𝐻
⌉) for the SBSBPP has a worst-case performance ratio of

1

4
 and presented new

lower bounds that are used in a Branch-and-Bound algorithm. In Boschetti and Mingozzi [8]

new lower bounds are proposed and in [9] the same authors presented a heuristic called HBP,

for the SBSBPP. HBP generates solutions considering the current allocation method and

updating the value of the items at the end of each iteration.

Lodi et al. [7] presented heuristics to solve the 2D (non-)oriented (non-)guillotine SBSBPP and

a Unified Tabu Search Framework that is adaptable for each specific problem changing

uniquely the inner heuristic to explore the neighbourhood.

A heuristic algorithm based on Guided Local Search (GLS, see Voudouris and Tsang [11]) for

the 3D SBSBPP was proposed by Faroe et al. [10]. This approach was adapted by the authors

for the 2D case providing the same depth for bins and items. The algorithm starts with an

upper bound on the number of available bins and iteratively decreases this number for the

next cutting plan generation. This process is repeated until the time limit is reached or the

current solution is the same as the calculated lower bound.

117

Monaci and Toth [12] presented the Set-Covering Heuristic (SCH) formulating the problem as

a Set-Covering Problem. SCH generates, through heuristic procedures, a large set of columns

to define the Set-Covering instance, then the problem is solved by means of a Lagrangean-

based heuristic.

A Greedy Randomized Adaptive Search Procedure (GRASP, see Feo and Resende [14]) with

Variable Neighbourhood Descent (VND, see Hansen and Mladenovic [15]) for the 2D and 3D

SBSBPP was proposed by Parreño et al. [13].

In Blum and Schmid [16] a hybrid algorithm called EA-LGFi is presented. In EA-LGFi an

evolutionary approach is used to generate the input sequences to the LGFi heuristic proposed

by Wong et al. [17] in order to perform the placement of the items.

2.2. Single Knapsack Problem

Exact approaches to solve the SKP have been proposed in the literature by several authors.

Beasley [18] presented a Branch-and-Bound algorithm that uses an upper bound obtained

through the Lagrangean relaxation of a 0-1 integer linear programming formulation of the

problem and a Subgradient Optimization procedure to minimize its value.

An integer programming formulation where binary variables specify the item position

relatively to another item was proposed by Scheithauer and Terno [19]. The authors

presented a Branch-and-Bound in which Subgradient Optimization is used to minimize the

upper bound obtained through the Lagrangean Relaxation of the problem. The authors

perform reduction tests that limit the size of the tree, therefore, reducing the computational

efforts required by the algorithm.

Fekete and Schepers [20][21][22] presented a tree-search algorithm for the 𝑑-dimensional

Knapsack Problem using a graph-theoretical characterization of packings. In this

characterization, if no overlapping occurs in both 𝑥 and 𝑦 axis projection graphs, the pattern

is feasible.

Boschetti et al. [23] presented new upper bounds obtained through the relaxation of their

integer programming formulation of the problem.

118

Four exact algorithms based on the relaxation of SKP given by the one-dimensional case are

presented in Caprara and Monaci [24]. Exact algorithms were also proposed for the Knapsack

problem in which only guillotine cuts are allowed, without a limitation on the number of

stages, in Dolatabadi et al. [25] and more recently in Fleszar [26] and in Furini et al. [27].

Heuristics methods have, also, been proposed to solve the SKP. Lai and Chan [28] presented

a heuristic based on the Simulated Annealing using an ordered list of items that encodes the

order in which the items will be packed into the bin through a placement algorithm. The

placement algorithm packs each item, in turn, without overlapping, into the empty

rectangular space (ERS) that is closest to the bin bottom-left corner. This heuristic keeps track

of the ERS through a called Difference Process that creates interval lists after each item

packing. In Leung et al. [42] a Simulated Annealing algorithm is also used, combined with a

greedy strategy.

Leung et al. [29] performed a comparison of the Genetic Algorithm with bottom-left approach

proposed for the Strip Packing Problem by Jakobs [30] and the Simulated Annealing with

Difference Process proposed by Lai and Chan [28]. In Leung et al. [31] a pure Genetic

Algorithm and a hybrid approach (Genetic Algorithm with Simulated Annealing) called MSAGA

are compared, aiming to verify if the latter could prevent the early convergence observed in

the pure approach. The decoder, i.e., placement algorithm, uses the Difference Process.

A Genetic Algorithm based on a new non-linear mathematical formulation was presented in

Beasley [32]. In Alvarez-Valdés et al. [33] a GRASP is proposed and in Alvarez-Valdés et al. [34]

a Tabu Search (see Glover [35]) to solve the SKP is presented.

Hadjiconstantino and Iori [36] presented a greedy heuristic and a hybrid Genetic Algorithm.

The greedy heuristic called HCHV packs the items at the bottom-left position possible,

alternatively on top of each other or side by side until no more items fit in the current

direction. In the genetic approach, the items are placed at the position where the highest

fraction of its perimeter touches edges, either of another item or bin boundaries.

A hybrid Genetic Algorithm based on random keys was proposed in Gonçalves [37]. The

genetic part of this heuristic is responsible to generate and evolve the sequence of items that

defines the packing order. The placement method makes use of the Difference Process

proposed by Lai and Chan [28] to keep track of the ERS created after each placement. In

119

Gonçalves and Resende [39] a parallel implementation of a multi-population Genetic

Algorithm where the chromosome encodes the items sequence and the associated placement

rule (bottom-left or left-bottom) is presented. As in the hybrid Genetic Algorithm based on

random keys, the Difference Process is used again to keep track of the ERS that are created

after placing an item.

Bortfeldt and Winter [38] also presented a Genetic Algorithm approach to solve the

(un)constrained (non-)guillotine SKP and Single Large Object Placement Problem (SLOPP, see

Wäscher et al. [1]). In Kierkosz and Luczak [43] an Evolutionary Algorithm is presented, using

as a placement algorithm a tree-search that places the items using a bottom-left strategy.

Wei et al. [40] presented a Tabu Search using the concept of Skyline representation which is

a sequence of line segments that expresses the rectilinear contour of the current packed

items.

A two-stage heuristic for solving the SKP is presented in He et al. [41]. In the first phase, a

solution is generated placing the items in the empty space with the highest fit degree

(calculated with the number of touching edges and a smooth degree that considers the

number of empty spaces remaining if the item is placed at this position), then the solution is

improved through a partial tree-search.

3. Adaptive Sequence-based Heuristic (ASH)

We propose a Multi-start heuristic (see Martí et al. [44]) that iteratively creates a new

sequence of items used to define the packing order.

The main concept behind the proposed heuristics is that if a good solution was packed using

some ordering (𝑆𝑏𝑎𝑠𝑒), it is possible that a better solution exists changing the order of few

items, creating a new packing sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. If no improvement is obtained with this new

ordering, it may be the case that an ordering with more changes can led to a better solution.

So, we incrementally allow more changes to the base ordering. When an ordering generates

a new best solution, this will replace the base ordering to be used in the next iterations. The

main steps of the proposed heuristics are shown in Algorithm 1.

120

Algorithm 1. ASH main steps.

𝑆𝑏𝑎𝑠𝑒 ← Items ordered by efficiency with value as tiebreaker

𝛼 ← 𝛼𝑚𝑖𝑛

Generate a new solution with sequence 𝑆𝑏𝑎𝑠𝑒

While stopping criteria are not met do

 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Generate a new sequence of items based on 𝑆𝑏𝑎𝑠𝑒 and 𝛼

 Generate a new solution with sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 If a new best solution is found then

 𝑆𝑏𝑎𝑠𝑒 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 𝛼 ← 𝛼𝑚𝑖𝑛

 Otherwise

 𝛼 ← min{𝛼 + 𝛼𝑖𝑛𝑐 , 𝛼𝑚𝑎𝑥}

Starting with 𝑆𝑏𝑎𝑠𝑒, the sequence of items ordered by efficiency 𝑒𝑖 =
𝑣𝑖

(𝑙𝑖×ℎ𝑖)
 (see Alvarez-

Valdés et al. [33]) using 𝑣𝑖 as a tiebreaker, at each iteration, a new sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is

generated using the current probability 𝛼. The sequences are generated (see Algorithm 2)

based on the algorithm proposed by Lesh et al. [45] which creates a new sequence adding

with a probability of 𝛼, one element at a time from the input sequence to the new sequence.

Algorithm 2. Sequence generator.

Input: sequence 𝐼𝑛, probability 𝛼

𝑂𝑢𝑡 ← ∅

𝑛 ← |𝐼𝑛|

for 𝑖 ← 1, … , 𝑛 do

 𝑗 ← 1

 𝑂𝑢𝑡𝑖 ← ∅

 while 𝑂𝑢𝑡𝑖 = ∅ do

 if 𝛼 ≤ generated random value then

 𝑂𝑢𝑡𝑖 ← 𝐼𝑛𝑗

 𝐼𝑛 ← 𝐼𝑛 ∖ {𝐼𝑛𝑗}

 𝑗 ← (𝑗 𝐦𝐨𝐝 |𝐼𝑛|) + 1

return 𝑂𝑢𝑡

If the solution generated with 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the best one so far, this ordering replaces 𝑆𝑏𝑎𝑠𝑒 and

𝛼 is set to its minimum value 𝛼𝑚𝑖𝑛. Otherwise, 𝑆𝑏𝑎𝑠𝑒 is inaltered and 𝛼 is updated to

min{𝛼 + 𝛼𝑖𝑛𝑐, 𝛼𝑚𝑎𝑥}.

When a new best solution is found, we seek to intensify the search near to this solution, which

is accomplished by setting 𝛼 to its minimum value, aiming to generate sequences that are

very similar to the base. While higher 𝛼 allows to diversify the search space producing

sequences that differ incrementally more from the base sequence.

Following the ordering of 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the items are packed into the bin, one at a time on the

empty rectangle space (ERS) with the smallest area with enough space to fit the item. To

121

prevent the creation of very small empty spaces, after packing an item, we try to pack items

that fit exactly into existing ERS.

We keep track of the ERS resulting from the packing of items using the Difference Process (Lai

and Chan [28]). This process, first, places the box inside the given ERS, then generates the

new ERSs that result from the intersection of the box with the existing ERS and removes

intersected ERSs. The last phase removes the ERSs that are infinitely thin or are totally

inscribed by other ERSs. The Difference Process is illustrated in Figure 1, in which the darker

rectangles depict the available ERS at the beginning of the process (a) and at the end of each

item placement (b and c).

a)

b)

c)

Figure 1. Difference Process.

The main difference between solving SBSBPP and SKP instances is that for SBSBPP, new

patterns are created and added to the solution until all items are packed, while for the SKP, a

solution is created considering only one bin.

ASH iterates until a maximum number of iterations has been performed or the optimality is

guaranteed (if the solution value is equal to the Continuous Lower Bound (𝐶𝐿𝐵) for the

SBSBPP, and if all the items are packed inside the bin for the SKP).

4. Computational Results

The proposed heuristic was implemented in C and the tests were run on a computer with an

Intel Core i7-4800MQ at 2.70 GHz with 8 Gb RAM and operating system Linux Ubuntu 18.04.

The next two sub-sections present the computational results for the Single Bin Size Bin

Packing Problem (SBSBPP) and Single Knapsack Problem (SKP), respectively. For both

problems, the values of 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 𝛼𝑖𝑛𝑐 were set through experiments carried out

122

considering different options, and the datasets considered correspond to the ones used by

the algorithms that were used for comparison.

4.1. Single Bin Size Bin Packing Problem

We have considered to evaluate the results of our heuristic for solving the SBSBPP, the set of

instances, usually referred to as CLASS, generated by Berkey and Wang [5] (CLASS 1 to 6) and

by Martello and Vigo [6] (CLASS 7 to 10). This set is divided into 10 classes of 50 instances.

Each class contains 5 subsets composed of 10 instances for each value of 𝑚 ∈

[20, 40, 60, 80, 100], with 𝑚 = ∑ 𝑑𝑖𝑖 . The bin dimensions range from 10 × 10 to 300 × 300.

Each instance was run only once, generating at most 2000 cutting plans with 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and

𝛼𝑖𝑛𝑐 set to 0.1, 0.65, and 0.002, respectively.

Table 1 presents the results solving all the instances of the dataset CLASS by the heuristics

HBP [9], GLS [10], SCH [12], GRASP/VND [13], EA_LGFi [16], and in the last column by ASH.

The first line denotes the number of bins needed for the 500 instances, and the average and

maximum time to solve a subset. The results from HBP and GLS were retrieved directly from

Boschetti and Mingozzi [9] and those of SCH, GRASP/VND and EA_LGFi were retrieved directly

from Blum and Schmid [16].

Table 1. Summary of the results obtained.

Algorithm HBP GLS SCH GRASP/VND EA_LGFi ASH

Number of bins 7275 7284 7243 7241 7239 7269

Average time 21.01 1000 7.89 2.20 1.77 0.04

Maximum time 114.07 1000 55.77 12.00 27.33 0.11

Observing Table 1, the best results are clearly obtained by SCH, GRASP/VND and EA_LGFi. The

results obtained by those approaches and by ASH solving Berkey and Wang instances are

given in Table 2, and in Table 3 the results solving Martello and Vigo instances.

The first column of Table 2 and Table 3 gives the class number, the second column denotes

the number of items of each subset, then for each of the heuristics the number of bins and

the average time, in seconds, needed to solve each subset.

123

Table 2. Results for Berkey and Wang instances.

CLASS 𝒎
SCH GRASP/VND EA_LGFi ASH

Bins t (s) Bins t (s) Bins t (s) Bins t (s)

1

20 71 0.06 71 0.00 71 0.00 71 0.01

40 134 2.42 134 0.00 134 0.00 134 0.02

60 200 7.26 200 4.50 200 0.01 200 0.04

80 275 4.63 275 1.50 275 0.00 275 0.07

100 317 5.21 317 0.00 317 0.00 317 0.08

2

20 10 0.06 10 0.00 10 0.00 10 0.00

40 19 0.67 19 0.00 19 0.00 19 0.00

60 25 0.07 25 0.00 25 0.00 25 0.00

80 31 0.07 31 0.00 31 0.00 32 0.01

100 39 0.79 39 0.00 39 0.00 39 0.00

3

20 51 0.07 51 0.00 51 0.02 51 0.01

40 94 2.66 94 3.00 94 0.01 94 0.02

60 139 6.21 139 4.60 139 0.27 140 0.06

80 189 8.80 189 4.10 189 20.68 192 0.08

100 223 12.80 223 4.90 224 26.17 225 0.11

4

20 10 0.06 10 0.00 10 0.00 10 0.00

40 19 0.07 19 0.00 19 0.00 19 0.00

60 25 6.15 25 3.00 23 12.18 25 0.02

80 32 10.35 31 1.90 31 0.00 32 0.03

100 38 4.72 38 1.50 37 0.00 38 0.03

5

20 65 0.06 65 0.00 65 0.00 65 0.00

40 119 1.98 119 0.00 119 0.03 119 0.02

60 180 1.93 180 1.50 180 0.14 181 0.06

80 247 20.66 247 9.00 247 0.03 247 0.09

100 282 18.50 282 5.20 284 27.33 287 0.11

6

20 10 0.06 10 0.00 10 0.00 10 0.00

40 17 6.85 17 3.00 17 0.03 18 0.03

60 21 0.66 21 0.10 21 0.00 22 0.01

80 30 0.23 30 0.00 30 0.00 30 0.00

100 34 6.29 34 3.00 32 0.58 34 0.00

ASH could not provide better results than those obtained by the best approaches already

mentioned, but it is extremely effective considering the execution time presented.

Noteworthy that the gap between the average and maximum time presented by ASH is very

tight when compared with the other approaches (e.g., 1.77 seconds of average time to 27.33

seconds for the EA_LGFi). This tight gap makes ASH a robust heuristic with a predictable

execution time.

Our approach is very fast, simple to implement and can be an effective approach to solve the

SBSBPP or to be used in a bounding scheme on more complex solution methods.

124

Table 3. Results for Martello and Vigo instances.

CLASS 𝒎
SCH GRASP/VND EA_LGFi ASH

Z time(s) Z time(s) Z time(s) Z time(s)

7

20 55 0.13 55 0.00 55 0.00 55 0.01

40 111 3.02 111 3.00 111 0.01 112 0.03

60 158 8.85 159 4.50 159 0.00 159 0.06

80 232 54.79 232 12.00 232 0.00 232 0.08

100 271 25.06 271 3.10 271 0.01 273 0.10

8

20 58 0.06 58 0.00 58 0.03 58 0.01

40 113 0.96 113 1.50 113 0.00 113 0.03

60 162 9.05 161 4.20 161 0.02 162 0.06

80 224 11.60 224 1.60 224 0.00 226 0.09

100 279 47.13 278 6.10 277 0.25 278 0.00

9

20 143 0.06 143 0.00 143 0.00 143 0.01

40 278 0.07 278 0.00 278 0.00 278 0.03

60 437 0.07 437 0.10 437 0.00 437 0.07

80 577 0.08 577 0.00 577 0.00 577 0.10

100 695 0.11 695 0.00 695 0.00 695 0.00

10

20 42 0.12 42 0.00 42 0.02 43 0.01

40 74 0.11 74 0.00 74 0.00 74 0.02

60 101 8.89 100 4.50 101 0.71 102 0.05

80 128 38.26 129 9.40 128 0.06 130 0.08

100 159 55.77 159 9.20 160 0.08 161 0.11

4.2. Single Knapsack Problem

To evaluate the performance of ASH for the SKP, we have considered the following

benchmark datasets, NGCUT (Beasley [18]), HADCHR (Hadjiconstantinou and Christofides

[46]), WANG (Wang [47]), CGCUT (Christofides and Whitlock [48]), OKP (Fekete et al. [49]), LC

(Lai and Chan [28]), JAKOBS (Jakobs [30]), LCT (Leung et al. [31]), and HT (Hopper and Turton

[50]).

The details of the datasets are given in Table 4 which presents, in order of appearance, the

dataset name, the number of instances, the range of the bins and items dimensions, and the

range of the number of demanded items (𝑚). The first five datasets are referred to as

Problems from literature and the remaining four referred to as Zero-waste problems.

The results obtained by ASH are shown in Table 5 and Table 6. Each instance was run only

once, generating at most 2000 solutions with 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 𝛼𝑖𝑛𝑐 set to 0.1, 0.9, and 0.005

respectively.

125

Table 4. Datasets.

Dataset
Number of

instances

Bin

𝒘 × 𝒉

Items

𝒘 × 𝒉
𝒎

NGCUT 12 [10-30]x[10-30] [1-30]x[1-30] [7-22]

HADCHR 2 30x30 [1-22]x[4-21] [7-15]

WANG 1 70x40 [9-33]x[11-43] 42

CGCUT 1 40x70 [9-33]x[11-43] 62

OKP 5 100x100 [1-100]x[1-99] [30-97]

LC 3 400x[200-400] [30-200]x[30-150] [10-20]

JAKOBS 5 [65-120]x[45-80] [5-40]x[4-36] [20-30]

LCT 2 [150-160]x[110-120] [6-48]x[4-40] [40-50]

HT 21 [20-160]x[20-240] [1-72]x[1-113] [16-197]

The content of Table 5 and Table 6 is the following. The columns identify, in order of

appearance, the dataset name, the instance number, the optimal solution, and the result

obtained by GRASP [33], Tabu Search [34], the Parallel Multi-population Genetic Algorithm

(MPGA) [39], and finally, by ASH. For each dataset, the last rows present the number of

optimal solutions obtained and the average time needed to solve each instance. Table 6

includes two more rows, the maximum time spent to solve one instance and the average gap

between the optimal solution and the solution obtained.

Table 5. Computational results - Problems from literature.

Set # Z* GRASP TABU MPGA ASH

NGCUT

1 164 164 164 164 164
2 230 230 230 230 230
3 247 247 247 247 247
4 268 268 268 268 268
5 358 358 358 358 358
6 289 289 289 289 289
7 430 430 430 430 430
8 834 834 834 834 834
9 924 924 924 924 924

10 1452 1452 1452 1452 1452
11 1688 1688 1688 1688 1688
12 1865 1865 1865 1865 1865

 Optimums 12 12 12 12
 Avg. time (s) 0.07 0.03 0.01 0.01

HADCHR

3 1178 1178 1178 1178 1178
11 1270 1270 1270 1270 1270

 Optimums 2 2 2 2
 Avg. time (s) 0.00 0.00 0.01 0.01

WANG

 2726 2726 2726 2726 2721

 Optimums 1 1 1 0

 Avg. time (s) 0.77 0.11 0.02 0.01

0CGCUT

3 1860 1860 1860 1860 1860

 Optimums 1 1 1 1

 Avg. time (s) 0.39 0.06 0.05 0.02

OKP

1 27718 27589 27718 27718 27486
2 22502 21976 22502 22502 22119
3 24019 23743 24019 24019 24019
4 32893 32893 32893 32893 32893
5 27923 27923 27923 27923 27923

 Optimums 2 5 5 3
 Avg. time (s) 2.03 1.25 0.16 0.03

126

Table 5 presents the results obtained by solving the datasets on Problems from the literature.

The results show that both TABU and MPGA obtained all optimal solutions and that ASH

obtained results close to those obtained by GRASP. Although execution time is not easy to

compare, our time remains constantly small on all datasets, while the other approaches it

increases greatly as the problem size grows.

The results for the Zero-waste problems are given in Table 6. The results show that ASH, when

compared with the GRASP, obtains a higher number of optimal solutions, and only for one

dataset, the average gap obtained is higher.

Table 6. Computational results - Zero-waste problems.

Set # Z* GRASP TABU MPGA ASH

LC

1 80000 80000 80000 80000 80000
2 79000 79000 79000 79000 79000
3 160000 154600 154600 154600 154600

 Optimums 2 3 3 2
 Avg. time (s) 1.37 0.13 1.26 0.01
 Max. time (s) 4.12 0.38 3.10 0.02
 Avg. GAP (%) 1.13 0 0 1.13

JAKOBS

1 5600 5447 5600 5600 5600
2 5600 5455 5512 5540 5263
3 5400 5328 5400 5400 5400
4 4050 3978 4050 4050 4050
5 2925 2871 2925 2925 2871

 Optimums 0 4 4 3
 Avg. time (s) 12.68 4.54 4.29 0.02
 Max. time (s) 15.44 16.88 11.52 0.04
 Avg. GAP (%) 2.06 0.21 0.21 1.57

LCT

1 16500 15856 16280 16340 15876

2 19200 18628 19044 19116 18516

 Optimums 0 0 0 0

 Avg. time (s) 111.39 58.16 19.45 0.05

 Max. time (s) 132.26 63.95 23.71 0.09

 Avg. GAP (%) 3.44 1.07 0.70 3.67

HT

1 400 400 400 400 400
2 400 386 400 400 386
3 400 400 400 400 400
4 600 590 600 600 594
5 600 597 600 600 600
6 600 600 600 600 600
7 1800 1765 1800 1800 1773
8 1800 1755 1800 1796 1758
9 1800 1774 1800 1800 1764

10 3600 3528 3580 3591 3536
11 3600 3524 3564 3588 3542
12 3600 3544 3580 3594 3560
13 5400 5308 5342 5396 5328
14 5400 5313 5361 5400 5319
15 5400 5312 5375 5392 5338
16 9600 9470 9548 9582 9467
17 9600 9453 9448 9595 9501
18 9600 9450 9565 9582 9506
19 38400 37661 38026 38146 37771
20 38400 37939 38145 38374 38074
21 38400 37745 37867 38254 37866

 Optimums 3 9 9 4
 Avg. time (s) 612.00 572.30 118.30 0.49
 Max. time (s) 3760.14 5615.75 808.03 2.64
 Avg. GAP (%) 1.50 0.47 0.13 1.24

127

The average time of ASH maintains very low, while for the three other approaches grows

greatly needing in some cases minutes to solve one instance.

Considering the other approaches, ASH is much simpler to implement and to parametrize (i.e.,

maximum number of iterations, and minimum, maximum and increment of the probability

𝛼). GRASP needs a Restricted Candidate List and improvement methods, Tabu Search requires

neighbourhood structures and memory strategies, and Genetic Algorithms needs

chromosomes and an evolutionary process. The results show that this heuristic, although

simple, can generate high-quality solutions using small computing times.

5. Conclusion

We have developed the ASH to solve the non-guillotine Single Bin Size Bin Packing Problem

and the non-guillotine Single Knapsack Problem. The ASH iteratively creates new sequences

that define the packing order, incorporating knowledge from the previous packing order and

during the packing procedure the Difference Process is used to keep track of the ERS resulting

from packing the items.

Extensive computational experiments have been performed for both problems with well-

known problem instances from the literature. The computational results show that our

approach is competitive with other proposed solution methods for the problems considered.

Noteworthy the implementation simplicity and the little parameterization required by this

approach. We intend to extend the proposed method to the solution of other cutting and

packing problems.

References

[1] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and
packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130, 2007.

[2] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-stock
problem,” Oper. Res., vol. 9, no. 6, pp. 849–859, 1961.

[3] M. R. Garey and D. S. Johnson, “A Guide to the Theory of NP-Completeness,”
Mathematical Sciences. W.H. Freeman and Company, San Francisco, 1979.

[4] K. Singh and L. Jain, “Industrial Scope of 2D packing problems,” Natl. J. Syst. Inf.
Technol., vol. 2, no. 2, pp. 224–237, 2009.

128

[5] J. O. Berkey and P. Y. Wang, “Two-Dimensional Finite Bin-Packing Algorithms,” J. Oper.
Res. Soc., vol. 38, no. 5, p. 423, 1987.

[6] S. Martello and D. Vigo, “Exact Solution of the Two-Dimensional Finite Bin Packing
Problem,” Manage. Sci., vol. 44, no. April 2015, pp. 388–399, 1998.

[7] A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems,” INFORMS J. Comput., vol. 11, no. 4, pp. 345–
357, 1999.

[8] M. A. Boschetti and A. Mingozzi, “The two-dimensional finite bin packing problem. Part
I: New lower bounds for the oriented case,” Q. J. Belgian, French Ital. Oper. Res. Soc.,
vol. 1, no. 1, pp. 27–42, 2003.

[9] M. A. Boschetti and A. Mingozzi, “The Two-Dimensional Finite Bin Packing Problem.
Part II: New lower and upper bounds,” Q. J. Belgian, French Ital. Oper. Res. Soc., vol. 1,
no. 2, pp. 135–147, 2003.

[10] O. Faroe, D. Pisinger, and M. Zachariasen, “Guided Local Search for the Three-
Dimensional Bin-Packing Problem,” INFORMS J. Comput., vol. 15, no. 3, pp. 267–283,
2003.

[11] C. Voudouris and E. Tsang, “Guided local search and its application to the traveling
salesman problem,” Oper. Res., vol. 113, pp. 469–499, 1999.

[12] M. Monaci and P. Toth, “A Set-Covering-Based Heuristic Approach for Bin-Packing
Problems,” Informs J. Comput., vol. 18, no. 1, pp. 71–85, 2006.

[13] F. Parreño, R. Alvarez-Valdés, J. F. Oliveira, and J. M. Tamarit, “A hybrid GRASP/VND
algorithm for two- and three-dimensional bin packing,” Ann. Oper. Res., vol. 179, no.
1, pp. 203–220, 2010.

[14] T. Feo and M. G. C. Resende, “Greedy randomized adaptive search procedures,” J. Glob.
Optim., pp. 109–133, 1995.

[15] P. Hansen and N. Mladenović, “Variable neighborhood search,” Search Methodol.
Introd. Tutorials Optim. Decis. Support Tech., pp. 211–238, 2005.

[16] C. Blum and V. Schmid, “Solving the 2D bin packing problem by means of a hybrid
evolutionary algorithm,” Procedia Comput. Sci., vol. 18, pp. 899–908, 2013.

[17] L. Wong, L. S. Lee, and U. P. M. Serdang, “Heuristic Placement Routines for Two-
Dimensional Bin Packing Problem,” J. Math. Stat., vol. 5, no. 4, pp. 334–341, 2009.

[18] J. E. Beasley, “An Exact Two-Dimensional Non-Guillotine Cutting Tree Search
Procedure,” Oper. Res., vol. 36, no. 1, pp. 49–64, 1985.

[19] G. Scheithauer and J. Terno, “Modeling of packing problems,” Optimization, vol. 28, no.
1, pp. 63–84, 1993.

[20] S. P. Fekete and J. Schepers, “On more-dimensional packing I: Modeling,” ZPR Technical
Report 97.288, 2000.

[21] S. P. Fekete and J. Schepers, “On more-dimensional packing II: Bounds,” ZPR Technical

129

Report 97.289, 2000.

[22] S. P. Fekete and J. Schepers, “On more-dimensional packing III: Exact Algorithms,” ZPR
Technical Report 97.290, 2000.

[23] M. A. Boschetti, A. Mingozzi, and E. Hadjiconstantinou, “New upper bounds for the
two-dimensional orthogonal non-guillotine cutting stock problem,” IMA J. Manag.
Math., vol. 13, no. 2, pp. 95–119, 2002.

[24] A. Caprara and M. Monaci, “On the two-dimensional Knapsack Problem,” Oper. Res.
Lett., vol. 32, no. 1, pp. 5–14, 2004.

[25] M. Dolatabadi, A. Lodi, and M. Monaci, “Exact algorithms for the two-dimensional
guillotine knapsack,” Comput. Oper. Res., vol. 39, no. 1, pp. 48–53, 2012.

[26] K. Fleszar, “An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine
Cutting/Packing Decision Problem,” INFORMS J. Comput., vol. 28, no. 4, pp. 703–720,
2016.

[27] F. Furini, E. Malaguti, and D. Thomopulos, “Modeling Two-Dimensional Guillotine
Cutting Problems via Integer Programming,” INFORMS J. Comput., vol. 28, no. 4, pp.
736–751, 2016.

[28] K. K. Lai and J. W. M. Chan, “Developing a simulated annealing algorithm for the cutting
stock problem,” Comput. Ind. Eng., vol. 32, no. 1, pp. 115–127, 1997.

[29] T. W. Leung, C. H. Yung, and M. D. Troutt, “Applications of genetic search and simulated
annealing to the two-dimensional non-guillotine cutting stock problem,” Comput. Ind.
Eng., vol. 40, no. 3, pp. 201–214, 2001.

[30] S. Jakobs, “On genetic algorithms for the packing of polygons,” Eur. J. Oper. Res., vol.
88, no. 1, pp. 165–181, 1996.

[31] T. W. Leung, C. K. Chan, and M. D. Troutt, “Application of a mixed simulated annealing-
genetic algorithm heuristic for the two-dimensional orthogonal packing problem,” Eur.
J. Oper. Res., vol. 145, no. 3, pp. 530–542, 2003.

[32] J. E. Beasley, “A population heuristic for constrained two-dimensional non-guillotine
cutting,” Eur. J. Oper. Res., vol. 156, no. 3, pp. 601–627, 2004.

[33] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit, “A GRASP algorithm for constrained
two-dimensional non-guillotine cutting problems,” J. Oper. Res. Soc., vol. 56, no. 4, pp.
414–425, 2005.

[34] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit, “A tabu search algorithm for a two-
dimensional non-guillotine cutting problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp.
1167–1182, 2007.

[35] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[36] E. Hadjiconstantinou and M. Iori, “A hybrid genetic algorithm for the two-dimensional
single large object placement problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1150–
1166, 2007.

130

[37] J. F. Gonçalves, “A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal
packing problem,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1212–1229, 2007.

[38] A. Bortfeldt and T. Winter, “A genetic algorithm for the two-dimensional knapsack
problem with rectangular pieces,” Int. Trans. Oper. Res., vol. 16, no. 6, pp. 685–713,
2009.

[39] J. F. Gonçalves and M. G. C. Resende, “A parallel multi-population genetic algorithm for
a constrained two-dimensional orthogonal packing problem,” J. Comb. Optim., vol. 22,
no. 2, pp. 180–201, 2011.

[40] L. Wei, W. C. Oon, W. Zhu, and A. Lim, “A skyline heuristic for the 2D rectangular
packing and strip packing problems,” Eur. J. Oper. Res., vol. 215, no. 2, pp. 337–346,
2011.

[41] K. He, W. Huang, and Y. Jin, “An efficient deterministic heuristic for two-dimensional
rectangular packing,” Comput. Oper. Res., vol. 39, no. 7, pp. 1355–1363, 2012.

[42] S. C. H. Leung, D. Zhang, C. Zhou, and T. Wu, “A hybrid simulated annealing
metaheuristic algorithm for the two-dimensional knapsack packing problem,” Comput.
Oper. Res., vol. 39, no. 1, pp. 64–73, 2012.

[43] I. Kierkosz and M. Luczak, “A hybrid evolutionary algorithm for the two-dimensional
packing problem,” Cent. Eur. J. Oper. Res., vol. 22, no. 4, pp. 729–753, 2014.

[44] R. Martí, M. G. C. Resende, and C. C. Ribeiro, “Multi-start methods for combinatorial
optimization,” Eur. J. Oper. Res., vol. 226, no. 1, pp. 1–8, 2013.

[45] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher, “New heuristic and interactive
approaches to 2D rectangular strip packing,” J. Exp. Algorithmics, vol. 10, no. 1, p. 1.2,
2005.

[46] E. Hadjiconstantinou and N. Christofides, “An exact algorithm for general, orthogonal,
two-dimensional knapsack problems,” Eur. J. Oper. Res., vol. 83, no. 1, pp. 39–56, 1995.

[47] P. Y. Wang, “Two Algorithms for Constrained Two-Dimensional Cutting Stock
Problems,” Oper. Res., vol. 31, no. 3, pp. 573–586, 1983.

[48] N. Christofides and C. Whitlock, “An Algorithm for Two-Dimensional Cutting Problems,”
Oper. Res., vol. 25, no. 1, pp. 30–44, 1977.

[49] S. P. Fekete, J. Schepers, and J. C. van der Veen, “An Exact Algorithm for Higher-
Dimensional Orthogonal Packing,” Oper. Res., vol. 55, no. 3, pp. 569–587, 2007.

[50] E. Hopper and B. C. H. Turton, “An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem,” Eur. J. Oper. Res., vol. 128, no. 1, pp.
34–57, 2001.

131

Adaptive Sequence-based Heuristic for Two-

Dimensional Guillotine Cutting Problems

Abstract We present heuristics for two related two-dimensional guillotine cutting problems.

The first problem aims to minimize the number of identical objects required to extract all

demanded items, while the second problem aims to maximize the value of the items that are

extracted from one object. The proposed heuristics create iteratively a new sequence of items

types that defines the cutting order to generate a new cutting plan. The heuristics are

adaptive in the sense that try to retain, in the next sequence to be generated and evaluated,

characteristics of previous sequences that provided good results. Also, for one of the

problems considered in this work, a Path Relinking procedure is combined with the proposed

heuristic to improve the results. Computational results show that these heuristics can

generate high-quality solutions using small computing times and are competitive with other

approaches from the literature.

Keywords: Two-dimensional, Rectangular, Guillotine, Placement Problem, Cutting Problem,

Heuristics

1. Introduction

Given a set of items types with a size of 𝑚, cutting problems intent to extract those items

from larger objects considering the objective to attain and the associated constraints. As we

consider the two-dimensional rectangular case, objects and item types 𝑖 (with 𝑖 = 1. . 𝑚) are

characterized by length and height (𝐿 × 𝐻, and 𝑙𝑖 × ℎ𝑖, respectively).

If each item type 𝑖 has an associated upper bound 𝑑𝑖 on the number of units that a solution

can contain, the problem is referred to as constrained, otherwise is unconstrained. Each item

type as, also an associated value 𝑣𝑖 and the problem is referred to as unweighted if all item

types’ values are equal to its area, otherwise is referred to as weighted problem.

132

Cut constraints are also considered in this paper. The cutting patterns generated must only

consider guillotine cuts, i.e., all cuts must be performed in a straight line from one edge of the

object to the opposite one. The cut sequence must be performed in stages, i.e., perpendicular

rotation of the blades at each stage is considered. The cutting patterns generated consider

horizontal first stage cuts, meaning that the object will be cut, while possible, into horizontal

strips and the height of the strips is defined by the taller item included, usually referred to as

restricted problem, i.e., at least one item that can be extracted with just one additional cut,

without trimming cut. The second stage is vertical and will perform the same action but now

considering the strips created at the first stage. The process continues until the maximum

number of stages is met. When a bound on the maximum number of stages (𝑘) exists, the

problem is referred to as 𝑘-staged, otherwise referred to as non-staged. Figure 1 depicts to

the left a two-staged pattern and to the right a three-staged pattern.

a. Two-staged b. Three-staged

Figure 1. Two- and three-staged cuts.

If a problem considers that an extra trimming cut is allowed, the problem is referred to as

non-exact, otherwise referred to as exact. Figure 2 depicts to the left an exact two-staged

pattern and to the right a non-exact two-staged pattern in which the darker grey identifies

the trimming area.

a. Exact two-staged b. Non-exact two-staged

Figure 2. Exact and non-exact problems.

In this paper, we address two related problems belonging to the cutting and packing problem

family. Following the typology of Wäscher et al. [1], the first problem is classified as Single

Stock Size Cutting Stock Problem (SSSCSP) and aims to cut from an unlimited number of

133

identical objects an entire set of small item types, targeting the minimization of the number

of objects used. The second problem is classified as Single Large Object Placement Problem

(SLOPP) and aims to maximize the sum of the values of the items to be extracted from one

object. Considering the cut and demand constraints, the problems considered in this paper

are denoted as (non-)exact two- and three-staged SSSCSP, (non-)exact two-staged

constrained SLOPP, and non-staged unconstrained SLOPP. We consider that the items cannot

be rotated and must be orthogonally cut from the object.

Since the seminal work of Gilmore and Gomory in [2] and [3], proposing a Column Generation

approach for the Cutting Stock Problem, the interest on the cutting and packing topic has

been growing in the literature. Mainly due to its complexity (NP-hard, see Garey and Johnson

[4]) and due to the high impact on practice in many areas, e.g., industry (wood, metal, and

glass) and logistic (packing of boxes and load of containers).

The remaining of the paper is organized as follows. Section 2 presents, chronologically by year

of publication, the most relevant articles found in the literature for the problems considered

in this paper. Section 3 presents a description of our heuristics, hereafter denoted as Adaptive

Sequence-based Heuristics (ASH), and in Section 4, computational results are reported

comparing our approach to other solution methods from the literature. Finally, conclusions

and future work directions are given in Section 5.

2. Literature Review

Gilmore and Gomory [5] extended for the two-dimensional CSP the Column Generation

approach taken in [2] and [3]. The authors presented an algorithm for the unconstrained two-

staged Single Knapsack Problem (SKP, see Wäscher et al. [1]) solving a one-dimensional SKP

for each one of the item types to create strips. The strips created are then used to fill the

object through the resolution of a one-dimensional SKP.

A recursive algorithm for the unconstrained SLOPP making use of discretization points to

reduce the search space was proposed in Herz [6].

134

In Christofides and Whitlock [7] a tree-search for the constrained SLOPP is presented.

Improvements to this work were presented by Christofides and Hadjiconstantinou [8], and by

Hifi and Zissimopoulos [9].

Chung et al. [10] presented a two-phase approximation algorithm, called Hybrid First-Fit (HFF)

for the Single Bin Size Bin Packing Problem (SBSBPP, see Wäscher et al. [1]). The items are

ordered by non-increasing heights and are packed into strips following a First-Fit policy, then

the strips are packed into an object using the same policy.

Two algorithms to solve the constrained SLOPP were presented by Wang [11]. The proposed

enumeration approach builds successively a bigger rectangle combining smaller rectangles,

usually denominated as a bottom-up approach, as opposed to the top-down approach taken

by Christofides and Whitlock [7]. Improvements to Wang’s algorithm were proposed by Vasko

[12], and Oliveira and Ferreira [13].

Both exact and heuristic algorithms for the unconstrained SLOPP based on Dynamic

Programming (see Bellman [15]) were proposed by Beasley [14].

Berkey and Wang [16] studied the adaptation for the SBSBPP of several heuristics found in

the literature for the Open Dimensional Problem (ODP, see Wäscher et al. [1]), namely, Finite

Next-fit (FNF), Finite First-Fit (FFF), Finite Best-strip (FBS), Finite Bottom-left (FBL) and Hybrid

First-Fit (HFF). The level approach FNF fills the bins by packing one item at a time at the current

level, considering the items pre-ordered by non-increasing heights. New bins and new levels

are only started when needed. While the FNF only evaluates one bin at a time, the FFF,

evaluates all previously opened bins, packing the current item into the lowest level of the first

bin in which it fits. The FBS and HFF use a similar approach where strips are created and then

considered to fill the bins, the FBS uses a best-fit policy while the HFF uses the first-fit policy.

The FBL is not a level-approach and packs the items, one at a time, at the bottom-left position

possible considering all the started bins.

A heuristic for the unconstrained SLOPP that combines depth-first and hill-climbing search

strategies using an And/Or-Graph (see Chang and Slagle [18]) to represent the solutions was

presented in Morabito et al. [17].

135

A Branch-and-Bound (see Land and Doig [20], and Agin[21]) procedure to solve the

constrained SLOPP taking a bottom-up approach was proposed in Viswanathan and Bagchi

[19]. Improvements to this procedure were proposed in Hifi [22] and in Cung et al. [23].

An approximation algorithm for the unconstrained SLOPP making use of a selection of strips

obtained by solving a sequence one-dimensional SKP through Dynamic Programming is

presented in Fayard and Zissimopoulos [24]. A generalization of the approach to deal with

large-scale (un)constrained (un)weighted SLOPP is proposed later in Fayard et al. [25].

Morabito and Arenales [26] compared the results obtained by the approaches proposed by

Beasley [14] and by Gilmore and Gomory [5] to solve large-scale unconstrained SLOPP.

Beasley’s algorithm was not able to obtain better results than the ones proposed in [5] (which

considers the two-staged case but produces feasible solutions for the non-staged) since the

discretization points removed to reduce the search space can in some cases be necessary to

achieve the optimal solution.

In Morabito and Arenales [27], an algorithm for the constrained 𝑘-staged SLOPP that

combines backtracking and hill-climbing search strategies using a And/Or-Graph

representation is presented.

Heuristics to the (non-)guillotine SBSBPP are presented in Lodi et al. [28]. A Knapsack Packing

heuristic for the two-staged problem is presented, the strips are created iteratively, first

packing the highest unpacked item, then a knapsack problem is solved to fill the rest of the

strip considering all unpacked items that do not exceed the height of the strip, i.e., height of

the first element. The generated strips are then used to fill the bins solving the associated

one-dimensional SBSBPP. In the same work, a Unified Tabu Search Framework is proposed,

this procedure is adaptable for each specific problem by changing uniquely the inner heuristic

to explore the neighbourhood.

Hifi [29] presented an exact algorithm for large-scale unconstrained two- and three-staged

SLOPP. In Hifi and Roucairol [30] both approximate and exact algorithms to solve the

(un)weighted two-staged SLOPP are presented. The first algorithm, based on the algorithm

proposed by Gilmore and Gomory [5] for the unconstrained case, builds horizontal and

vertical strips, then selects the best strips to generate the cutting pattern solving a series of

one-dimensional SKP through a Dynamic Programming procedure. This heuristic is used to

136

create an initial lower bound to a Branch-and-Bound procedure to solve to optimality the

problem.

Constructive heuristics, a Greedy Randomized Adaptive Search Procedure (GRASP, see Feo

and Resende [32]), a Tabu Search (see Glover [33]), and a Path Relinking (see Glover [34]) to

solve large-scale (un)constrained (un)weighted SLOPP were proposed in Alvarez-Valdés et al.

[31].

Two integer linear programming models for the two-staged SLOPP are presented in Lodi and

Monaci [35] and in Lodi et al. [36] new integer programming models and bounds are proposed

for the two-staged ODP and SBSBPP.

Hifi and M'Hallah [37] presented an exact algorithm for the constrained two-staged SLOPP

based on the one proposed by Hifi and Roucairol [30] but with different bounds and with new

pruning strategies to avoid duplicated patterns.

Branch-and-Cut-and-Price procedures (BCP, see Jünger and Thienel [39]) for the one-

dimensional SSSCSP and for the two-dimensional two-staged SLOPP are proposed by Belov

and Scheithauer [38]. The Branch-and-Cut-and-Price algorithm combines Branch-and-Bound,

Cutting Planes and Column Generation.

In Hifi and M'Hallah [40] three algorithms for the constrained two-staged SLOPP, namely, the

Strip Generation Algorithm (SGA), Extended SGA (ESGA), and the Hill-Climbing ESGA (HESGA)

are presented. The SGA first generates a set of uniform strips and general strips and then

searches for good combinations of strips to fill the object. The ESGA fills one section of the

object with the SGA, then uses a procedure that takes into consideration discretization points

to fill the second section. HESGA combines the ESGA with hill-climbing strategies.

Alvarez-Valdés et al. [41] presented two GRASP and a Path Relinking approach for the two-

staged SLOPP. One of the GRASP approaches is based on items, while the other is based on

strips generated by solving knapsack problems. Making use of the high-quality solutions

obtained by the GRASP based on strips and the more diverse set of solutions obtained by the

GRASP based on items, the authors presented a Path Relinking.

137

An integer linear programming model and a Branch-and-Price algorithm for the three-staged

SBSBPP is presented in Puchinger and Raidl [42]. A Branch-and-Price for the SBSBPP was also

presented by Pisinger and Sigurd [43].

Cintra et al. [44] proposed Dynamic Programming algorithms for the 𝑘- and non-staged

SLOPP. The SLOPP algorithms are then used to solve the sub-problem in a Column Generation

approach for solving the SSSCSP, ODP and Multiple Stock Size Cutting Stock Problem (MSSCSP,

see Wäscher et al. [1]).

A Beam Search (see Ow and Morton [46]) based algorithm for the two-staged SLOPP is

proposed in Hifi et al. [45]. The Beam Search is based on the best-first search in which at each

step of the search only the most promising 𝑛 (𝑛 as the beam width) nodes are considered for

branching.

A Variable Neighbourhood Descent (VND, see Hansen and Mladenovic [48]) for the two- and

three-staged SBSBPP is presented in Alvelos et al. [47]. The VND is an iterative improvement

method that systematically switches between neighbourhoods.

Regarding mathematical formulations, Macedo et al. [49] presented an Arc-Flow model for

the two-staged SSSCSP based on the work of Valério de Carvalho [50] for the one-dimensional

case and Silva et al. [51] proposed integer programming models for the two- and three-staged

(non-) exact SSSCSP (with extensions for the MSSCSP).

Chan et al. [52] presented a heuristic for the two- and three-staged SBSBPP called Stochastic

Neighbourhood Structures (SNS). The SNS, based on the VND, requires that all neighbourhood

structures explored to be stochastics.

In Cui and Zhao [53] an algorithm for the two-staged SSSCSP, denoted as Repeated

Constrained Column-Generation (RCCG), that uses the Column Generation approach to solve

the sub-problems and the residual problems is proposed.

An algorithm for the (un)weighted SLOPP that combines the bottom-up and top-down

approaches is proposed in Wei and Lim [54].

138

3. Adaptive Sequence-based Heuristic (ASH)

We propose a Multi-start heuristic (see Martí et al. [55]) that iteratively creates a given

number of solutions (cutting plans), each of them considering a new ordering of items types

used to generate the pattern(s) to include into the solution. The main difference between

solving SSSCSP and SLOPP instances is that for SSSCSP new patterns are created and added to

the solution until all items have their cut position defined, while for the SLOPP, a solution is

created considering only one object.

The main concept behind the proposed heuristics is that if a good solution was packed using

some base ordering 𝑆𝑏𝑎𝑠𝑒, it may be the case that a better solution can be reached introducing

few changes to the base ordering by generating a new packing sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Otherwise,

if no improvement is obtained, the heuristic incrementally allows more changes to the base

ordering to provide diversification through the search. Orderings that generate a new best

solution are used as base ordering in the next iterations. The main steps of the proposed

heuristics are shown in Algorithm 1.

Algorithm 1. ASH main steps.

𝑆𝑏𝑎𝑠𝑒 ← Items ordered by efficiency with decreasing value as tiebreaker

𝛼 ← 𝛼𝑚𝑖𝑛

Generate a new solution with sequence 𝑆𝑏𝑎𝑠𝑒

While stopping criteria are not met do

 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Generate a new sequence of boxes based on 𝑆𝑏𝑎𝑠𝑒 and 𝛼

 Generate a new solution with sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 If a new best solution is found then

 𝑆𝑏𝑎𝑠𝑒 ← 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 𝛼 ← 𝛼𝑚𝑖𝑛

 Otherwise

 𝛼 ← min{𝛼 + 𝛼𝑖𝑛𝑐 , 𝛼𝑚𝑎𝑥}

ASH iterates until a maximum number of iterations has been performed or the optimality is

guaranteed, i.e., for the SSSCSP the solution value is equal to the Continuous Lower Bound

(𝐶𝐿𝐵 = ⌈
∑ 𝑙𝑖ℎ𝑖

𝑚
𝑖=1

𝐿𝐻
⌉, see Martello and Vigo [56]) and for the SLOPP all the items are included in

the cutting pattern.

We use as starting base sequence 𝑆𝑏𝑎𝑠𝑒 the items types ordered by efficiency 𝑒𝑖 =
𝑣𝑖

(𝑙𝑖×ℎ𝑖)
 as

defined in Alvarez-Valdés et al. [42] using decreasing 𝑣𝑖 as a tiebreaker. With this ordering,

ASH starts with a base sequence of item types ordered by efficiency for weighted problems,

139

and with a base sequence ordered by decreasing area for unweighted problems since 𝑒𝑖 is

equal to 1 for all item types.

At each iteration, a new sequence 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is generated, based on 𝑆𝑏𝑎𝑠𝑒 and using a

probability 𝛼, which will define the cutting order to be used when creating a new solution. If

the newly created solution is the best one found so far, the current sequence becomes the

current base and 𝛼 is reset to its minimum value 𝛼𝑚𝑖𝑛. Otherwise, the base sequence is not

changed and 𝛼 is updated as follows, 𝛼 = min{𝛼 + 𝛼𝑖𝑛𝑐, 𝛼𝑚𝑎𝑥}. The reset of 𝛼 to its minimum

value will generate a new sequence that is very similar to the base sequence intensifying the

search to regions of the solution space considered promising. Incrementing 𝛼 will allow to

diversify the search generating sequences that differ incrementally more from the base

sequence.

The new sequences are generated based on the algorithm proposed by Lesh et al. [57]. This

method (see Algorithm 2) creates a new sequence (𝑂𝑢𝑡) adding with a probability of 𝛼 one

element at a time from the input sequence (𝐼𝑛) into the new sequence until all elements from

𝐼𝑛 are in 𝑂𝑢𝑡.

Algorithm 2. Sequence generator.

Input: sequence 𝐼𝑛, probability 𝛼
𝑂𝑢𝑡 ← ∅
𝑛 ← |𝐼𝑛|
for 𝑖 ← 1, … , 𝑛 do
 𝑗 ← 1
 𝑂𝑢𝑡𝑖 ← ∅
 while 𝑜𝑢𝑡𝑖 = ∅ do
 if 𝛼 ≤ generated random value then
 𝑂𝑢𝑡𝑖 ← 𝐼𝑛𝑗

 𝐼𝑛 ← 𝐼𝑛 ∖ {𝐼𝑛𝑗}

 𝑗 ← (𝑗 𝐦𝐨𝐝 |𝐼𝑛|) + 1
return 𝑂𝑢𝑡

The patterns are generated as follows. Iteratively, horizontal strips are created with the first

item type, considering the ordering defined by 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, that fits into the remaining object

height. When created, the first-stage strips are filled solving bounded 1D SKP using the

solution method proposed by Pisinger [58]1. For problems where the maximum number of

stages is greater than 2, each of the resulting strips is filled solving the associated SKP. The

1 Code available online at http://www.diku.dk/~pisinger/codes.html for academic and non-commercial
purposes.

http://www.diku.dk/~pisinger/codes.html

140

SKP solved to generate the patterns only consider items that fit at the current strip, have

residual demand and can be included due to the cut constraints.

For the SSSCSP, the patterns generated are added to the current solution with the maximum

frequency of cut allowed by the current residual demand.

Path Relinking

ASH can be further enhanced searching for even better results with the inclusion of search

strategies, such as local search after the cutting plan generation, or with more sophisticated

ones such as a Path Relinking (proposed by Glover et al. [59]) as a final phase of this heuristic.

The Path Relinking creates new solutions incorporating into an (initializer) solution attributes

from another (guiding) solution exploiting trajectories that connect them.

To improve the results of the SLOPP, all (distinct) patterns generated by ASH are added to a

pool of patterns ordered decreasingly by their objective function value. The best 𝑅𝑒𝑓𝑆𝑒𝑡𝑠𝑖𝑧𝑒

solutions from the pool are considered by the Path Relinking procedure either as initializer or

guiding solutions.

Considering one initializer and one guiding pattern, one at a time, first stage strips from the

guiding pattern are added to the current initializer pattern. At each new strip inclusion, the

procedure regains the solution feasibility by means of two methods, both, iteratively

removing strips (without considering the newly added strip) from the initializer pattern. The

first, iteratively, removes the strips that reduces more the demand infeasibility. Next, if the

object remaining height is negative, the second method iteratively removes the taller strip

until feasibility is achieved.

The best pattern found, at the end of each Path Relinking between one initializer and one

guiding pattern, is filled as previously described considering the sequence of items types

ordered by efficiency (𝑒𝑖) and decreasing value (𝑣𝑖) as tiebreaker.

Each pattern generated through the Path Relinking is improved by means of a simple local

search. This local search swaps items that increase the objective function value between

those in the pattern and those who have residual demand greater than 0. The local search

performs the first swap possible, while such move exists.

141

4. Computational Results

The proposed heuristics were implemented in C and the computational experiments were run

on a computer with an Intel Core i7-4800MQ at 2.70 GHz with 8 Gb RAM and operating system

Linux Ubuntu 18.04.

The results obtained by the Adaptive Sequence-Based Heuristic (ASH) for solving both the

Single Stock Size Cutting Stock Problem and the Single Large Object Placement Problem are

next presented. Each instance was run only once generating at most 2000 cutting patterns

with 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 and 𝛼𝑖𝑛𝑐 set to 0.1, 0.9 and 0.005, respectively.

For both problems, the values of 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥, and 𝛼𝑖𝑛𝑐 were set through experiments carried

out considering different options, and the datasets considered correspond to the ones used

by the algorithms that were used for comparison.

4.1. Single Stock Size Cutting Stock Problem

Three datasets were used to test the performance of ASH for the SSSCSP. The first dataset,

identified in this paper as SET1, was defined by Fayard et al. [25] and contains 30 instances

previously used by other authors to evaluate their solution methods. The dataset ATP

contains the last 20 instances (APT30 to ATP49) defined in Alvarez-Valdés et al. [31]. The

dataset CLASS contains 500 instances, grouped in 10 subsets of 50 instances each, and was

defined by Berkey and Wang [16] and Martello and Vigo [56]. The main characteristics of the

datasets are presented in Table 1, where the columns show in the order of appearance, the

name of the dataset, the number of instances, the objects dimensions range, the number of

different item types, the item types dimension range and the average demand.

Table 1. Main features of the datasets.

Dataset
Number of

instances

Object

𝒘 × 𝒉

Number of

item types

Items

𝒘 × 𝒉

Average

demand

SET1 30 [20-267]x[20-244] [5-40] [1-170]x[2-135] 2.5

ATP 20 [167-960]×[124-983] [25-58] [8-363]×[6-390] 5.0

CLASS 500 [10-300]×[10-300] [18-100] [1-100]×[1-100] 1.1

The results obtained by ASH are shown in Table 2 to Table 7. The first column, identified in

Table 2 to Table 5 with column header Instance, gives the name that each instance is best-

known, while in Table 6 and Table 7, identified with column header subset, gives the subset

142

identification. In Table 2 to Table 5, the lower bounds for each instance (denoting the

minimum number of bins required to fulfil the demand reported by Silva et al. [16]) are shown

in column 𝑍𝑙𝑏. The next columns, present the results obtained by other approaches and by

ASH, grouped by the number of stages considered (identified at the first line of those

columns). The last row shows, in Table 2 to Table 5, the average execution times for each

instance, while, in Table 6 and Table 7, the average time to solve each subset is reported.

In the following tables, we will use the following notation. The symbol = denotes that the

approach obtained a result equal to 𝑍𝑙𝑏. The symbol ∗ denotes that the approach failed to

obtain a solution within the computation time limit. The symbol – denotes an unavailable

value.

Table 2. Computational results on the instances of SET1 for exact problems.

Instance
2-staged exact 3-staged exact

𝑍𝑙𝑏 Silva ASH 𝑍𝑙𝑏 Silva ASH

A1 27 = = 23 = =

A2 15 = = 12 = =

A3 10 = = 8 = =

A4 8 = = 5 = =

A5 8 = = 4 = 5

CHL1 11 = = 6 = =

CHL2 4 = = 3 = =

CHL5 5 = = 3 = 4

CHL6 9 = = 5 6 6

CHL7 9 = = 6 = =

CU1 15 = 16 12 = =

CU2 20 = 21 14 = 15

CW1 13 = = 10 = =

CW2 17 = = 12 = 13

CW3 22 = 23 16 = 17

Hchl2 9 = 10 6 = =

Hchl3s 4 = = 3 = =

Hchl4s 3 = = 2 = =

Hchl6s 7 = = 5 = =

Hchl7s 11 = 12 7 = 8

Hchl8s 3 = = 2 = =

Hchl9 14 = 15 10 = 11

HH 2 = = 2 = =

OF1 5 = = 4 = =

OF2 6 = = 4 = 5

STS2 17 = 18 12 = 13

STS4 6 = = 5 = =

W 31 = = 24 = =

2 3 = = 2 = =

3 24 = = 23 = =

Avg. time (s) 0.42 0.01 335.28 0.02

143

Table 2 presents the results for the instances of SET1 solved as two- and three-staged exact

problems. We compare our results with the exact algorithm proposed by Silva et al. [16]

(column Silva). The results presented in Table 2 show that although achieving better results

for this dataset, the computational time required by the exact method grows extremely from

two- to three-staged problems, while ASH maintains a low computational time to solve the

instances. It can be noted that the maximum gap to the optimal solution is 1.

The results for the instances of ATP solved as two- and three-staged exact problems are

presented in Table 3. It must be noted that Silva et al. [16] set a computational time limit of

7200 seconds to solve each instance and was not able to attain a feasible solution for two

instances, ATP31 and ATP40, for the three-staged exact problem.

Table 3. Computational results on the instances of ATP for exact problems.

Instance
2-staged exact 3-staged exact

𝑍𝑙𝑏 Silva ASH 𝑍𝑙𝑏 Silva ASH

ATP30 12 = = 8 9 9

ATP31 19 = = 14 * =

ATP32 16 = = 12 14 13

ATP33 18 = = 12 13 13

ATP34 9 = = 6 = =

ATP35 10 = = 8 = =

ATP36 11 = = 8 = =

ATP37 16 = = 11 15 12

ATP38 15 = = 10 12 11

ATP39 16 = = 11 12 12

ATP40 20 = = 15 * 16

ATP41 16 = = 12 = =

ATP42 21 = = 15 17 16

ATP43 18 = = 12 15 13

ATP44 14 = = 9 = =

ATP45 11 = = 8 = =

ATP46 16 = 17 11 12 12

ATP47 18 = = 12 14 13

ATP48 11 = = 8 9 =

ATP49 8 = = 5 6 =

Avg. time (s) 217.1 0.04 5561.78 0.10

From Table 3, we can observe that for the two-staged case only for one instance the solution

does not match the optimal solution, while for the three-staged case, considering the

imposed time limit, better results than those obtained by the exact method were obtained.

Table 4 presents the results obtained solving the instances of SET1 as two- and three-staged

non-exact problems, while Table 5, presents the results for the non-exact case for the set ATP.

144

We compare these results with the approaches of Silva et al. [16] and the Column Generation

based approach presented by Cui and Zhao [18] (column RCCG) for the two-staged problem.

As can be observed in Table 4 and Table 5, the proposed heuristic is able to attain results very

similar to those obtained by the RCCG. It is noteworthy the growth of the execution time in

both Silva and RCCG from SET1 to ATP making clear that the extra complexity influence in a

great manner the performance of these approaches.

Table 4. Computational results on the instances of SET1 for non-exact problems.

Instance
2-staged non-exact 3-staged non-exact

𝑍𝑙𝑏 Silva RCCG ASH 𝑍𝑙𝑏 Silva ASH

A1 23 = = = 23 = =

A2 12 = 13 = 12 = =

A3 8 = = = 8 = =

A4 5 = = = 5 = =

A5 5 = = = 4 = 5

CHL1 6 = = = 6 = =

CHL2 3 = = = 3 = =

CHL5 4 = = = 3 = 4

CHL6 6 = = = 5 = 6

CHL7 6 = = = 6 = =

CU1 12 = = = 12 = =

CU2 15 = = = 14 = 15

CW1 10 = = = 10 = =

CW2 12 = 13 13 12 = 13

CW3 16 = = 18 16 = 17

Hchl2 6 = = = 6 = =

Hchl3s 3 = = = 3 = =

Hchl4s 2 = 3 = 2 = =

Hchl6s 5 = = = 5 = =

Hchl7s 7 = = 8 7 = =

Hchl8s 2 = = = 2 = =

Hchl9 10 = = 11 10 = 11

HH 2 = = = 2 = =

OF1 4 = = = 4 = =

OF2 5 = = = 4 = 5

STS2 12 = = 13 12 = 13

STS4 5 = = = 5 = =

W 24 = = = 24 = =

2 2 = = = 2 = =

3 23 = 24 = 23 = =

Avg. time (s) 8.85 0.19 0.02 121.33 0.02

As can be observed in Table 5, with respect to the three-staged problem our approach

obtained, considering the time limit imposed, better results than the exact approach with a

computational time extremely low. Again, the exact algorithm was not able to give,

145

considering the time limit imposed, a feasible solution for two instances, namely ATP30 and

ATP40.

Table 5. Computational results on the instances of ATP for non-exact problems.

Instance
2-staged non-exact 3-staged non-exact

𝑍𝑙𝑏 Silva RCCG ASH 𝑍𝑙𝑏 Silva ASH

ATP30 9 = = = 8 * 9

ATP31 14 15 = = 14 15 =

ATP32 13 = = = 12 14 13

ATP33 12 13 13 13 12 13 13

ATP34 6 = = = 6 = =

ATP35 8 = = = 8 = =

ATP36 8 = = = 8 = =

ATP37 12 = = = 11 12 12

ATP38 11 = = = 10 11 11

ATP39 11 = = 12 11 12 12

ATP40 15 = = 16 15 * 16

ATP41 12 = = = 12 = =

ATP42 15 16 = 16 15 16 16

ATP43 13 14 = = 12 14 13

ATP44 9 = = = 9 10 =

ATP45 8 = = = 8 = =

ATP46 11 = = 12 11 12 12

ATP47 13 = = = 12 13 13

ATP48 8 9 9 9 8 9 9

ATP49 5 = 6 6 5 6 6

Avg. time (s) 3642.58 9.5 0.08 5809.76 0.1

Table 6 and Table 7 present the results obtained using the CLASS dataset. We show in the

following two tables the results obtained when solving this dataset as two- and three-staged

exact (Table 6) and non-exact problems (Table 7).

Table 6. Computational results on the subsets of CLASS for exact problems.

Subset
2-staged exact 3-staged exact

SNS VND ASH SNS VND ASH

CLASS 1 1134 1134 1134 1012 1021 1018

CLASS 2 167 167 167 128 128 128

CLASS 3 998 999 1002 728 731 735

CLASS 4 270 270 270 127 128 132

CLASS 5 1386 1386 1390 921 925 930

CLASS 6 383 383 383 116 117 118

CLASS 7 1059 1061 1064 845 846 851

CLASS 8 1556 1556 1556 861 867 859

CLASS 9 2320 2320 2320 2130 2131 2131

CLASS 10 891 892 897 525 523 536

Avg. time (s) 17.35 - 1.35 12.71 - 1.69

We compare our results with solution methods for solving the SBSBPP (as the CLASS dataset

average demand is close to 1), namely, SNS (Chan et al. [17]) and VND (Alvelos et al. [12]).

146

The VND results were obtained from Chan et al. [17]. Before interpreting the computation

results, it must be referred that Chan et al. [17] presented the best results obtained from 30

runs.

Table 7. Computational results on the subsets of CLASS for non-exact problems.

Subset
2-staged non-exact 3-staged non-exact

SNS VND ASH SNS VND ASH

CLASS 1 1023 1029 1023 1015 1019 1016

CLASS 2 131 131 131 128 128 125

CLASS 3 729 731 736 730 731 734

CLASS 4 130 130 132 126 126 127

CLASS 5 920 925 931 915 925 928

CLASS 6 117 117 118 116 116 116

CLASS 7 848 848 858 841 844 846

CLASS 8 863 867 859 854 865 857

CLASS 9 2130 2131 2131 2130 2130 2131

CLASS 10 528 527 537 521 522 523

Avg. time (s) 10.76 12.32 1.42 10.6 - 1.63

The SNS attains better results in almost all subsets. Although a direct comparison is not

possible, our approach seems to require much less time to solve these subsets. ASH, when

compared with the SBSBPP specifically tailored heuristics, was able to attain interesting

results, especially when compared with the VND heuristic. Considering the good

computational results obtained and the implementation simplicity of ASH, one can conclude

that the heuristics proposed are a very attractive approach to solve both the Cutting Stock

and the Bin Packing Problems.

4.2. Single Large Object Placement Problem

Four datasets from the literature are used to test the performance of ASH and ASH combined

with a Path Relinking procedure (ASH+PR) for the SLOPP. The main characteristics of the

datasets are presented in Table 8. The columns show, in the order in which they appear, the

name of the dataset, the number of instances, the objects dimensions ranges, the number of

different item types, the item types dimension ranges, and the average demand. The dataset

HR (Hifi and Roucairol [30]) and ATP (Alvarez-Valdés et al. [31]) contains both weighted and

unweighted instances. Datasets ATP[10-29], GCUT (Beasley [14]) and CMWX (Cintra et al.

[44]) were created for unconstrained problems, which means the items does not have

associated demand, denoted in Table 8 with the symbol –.

147

Table 8. Main features of the datasets.

Dataset Instances
Object

𝒘 × 𝒉
m

Items

𝒘 × 𝒉

Average

demand

HR 38 [20-267]x[20-244] [5-40] [1-170]x[2-135] 2.5

ATP[10-29] 20 [1674-2899]x[1612-2994] [31-59] [96-1142]x[81-1192] -

ATP[30-49] 20 [167-960]x[124-983] [25-58] [8-363]x[6-390] 5.0

GCUT 13 [250-3000]x[250-3000] [10-50] [62-970]x[63-1890] -

CMWX 4 3500x3500 [42-82] [254-970]x[116-1890] -

The results obtained by ASH and by ASH+PR when solving the four datasets are shown in Table

9 to Table 13. The 𝑅𝑒𝑓𝑆𝑒𝑡𝑠𝑖𝑧𝑒 for the ASH+PR was set to 50.

The content of the columns in Table 9 to Table 11 is the following. The first column, identified

with column header First cut, gives the first cut direction considered when solving the

instances. The column Algorithm denotes the algorithm name. Columns GAP (%), Optimums,

and Time (s) give, respectively, the average GAP, the number of optimal solutions obtained,

and the average execution time in seconds.

To solve the problems with first cut direction vertical, we exchange the dimensions of both

objects and item types, and then solve the problem considering horizontal first cut direction.

Table 9 presents the results obtained by solving the dataset HR as a constrained two-staged

SLOPP with exact cuts. We compare our results with the ones presented by Hifi and Roucairol

[30] denoted as Exact and Approximate algorithms.

Table 9. Computational results for exact constrained two-staged SLOPP - Set HR.

First cut Algorithm GAP (%) Optimums Time (s)

Horizontal

Approximate 0.44 31 0.10

Exact 0.00 38 1.17

ASH 0.11 34 0.01

ASH+PR 0.01 36 0.01

Vertical

Approximate 0.74 31 0.10

Exact 0.00 38 1.17

ASH 0.40 35 0.01

ASH+PR 0.04 37 0.01

From the results presented in Table 9, we can observe the high-quality results that the ASH

approaches obtained for this problem/set, achieving almost all the optimal solutions in both

first cut directions. It must be noted that both ASH approaches obtained better results than

the Approximate approach and that the computational times needed is very low.

148

Table 10 and Table 11 present the results obtained for dataset HR and ATP[30-49],

respectively, as a constrained non-exact two-staged SLOPP. We compare our results with the

ones presented by Hifi and Roucairol [30] (Exact and Approximate), Lodi and Monaci [35] (M1

and M2), Hifi and M'Hallah [37] (ALGO_ESGA and ALGO_SGA), Belov and Scheithauer [38]

(BCP CG cuts, BCP M1, and BCP), Hifi and M'Hallah [40] (SGA, ESGA, and HESGAa), Alvarez-

Valdés et al. [41] (GRASP_Piece, GRASP_Strip, and PR), and Hifi et al. [45] (LBSd
3 and GBSd

2).

Table 10. Computational results for non-exact constrained two-staged SLOPP - Set HR.

First cut Algorithm GAP (%) Optimums Time (s)

Horizontal

Approximate 4.68 8 0.12

Exact 0.00 38 249.19

M1 0.00 38 27.54

M2 0.00 38 38.80

ALGO_ESGA 0.00 38 1.03

ALGO_SGA 0.00 38 2.03

BCP CG cuts 0.00 38 3.62

BCP M1 0.00 38 10.28

SGA 3.08 9 0.10

ESGA 0.58 22 0.80

GRASP_Piece 2.24 10 0.04

GRASP_Strip 0.22 35 0.18

PR 0.00 38 0.50

ASH 0.31 29 0.02

ASH+PR 0.22 36 0.02

Vertical

Approximate 5.08 7 0.12

Exact 0.00 38 268.88

M1 0.00 38 23.96

M2 0.00 38 57.62

PR 0.00 37 0.50

ASH 0.43 28 0.02

ASH+PR 0.10 35 0.02

The results in Table 10 demonstrate that ASH and the Path Relinking approach, applied to the

solution obtained by ASH, can obtain extremely good results with a computational time

extremely low.

As can be observed in Table 11, the GBSd
2 approach outperform all the other heuristic, but

ASH and ASH+PR obtain results close to those obtained by GRASP_Strip and PR. For the

vertical case, ASH+PR obtained a GAP that is considerably lower than the one obtained by PR.

Noteworthy that our Path Relinking, applied to the subset of the population pattern, does not

produce a notable time overhead, when compared with ASH computational time and

considerably improves the results obtained.

149

Table 11. Computational results for non-exact constrained two-staged SLOPP - Set ATP[30-49].

First cut Algorithm GAP (%) Optimums Time (s)

Horizontal

BCP 0.01 18 142.91

SGA 2.06 2 -

ESGA 0.80 6 -

HESGAa 0.30 9 13.53

GRASP_Piece 4.06 0 0.17

GRASP_Strip 0.23 11 0.74

PR 0.08 14 1.18

LBSd3 4.05 4 0.05

GBSd2 0.00 20 0.20

ASH 0.49 6 0.04

ASH+PR 0.21 11 0.05

Vertical

HESGAa 0.35 5 14.42

GRASP_Piece 2.88 0 0.17

GRASP_Strip 0.31 13 0.89

PR 0.18 14 1.34

LBSd3 4.04 5 0.05

GBSd2 0.00 20 0.20

ASH 0.50 8 0.04

ASH+PR 0.08 13 0.05

Table 12 presents the results for the dataset ATP considering both unconstrained and

constrained non-staged problems. We compare our results with the ones presented by

Alvarez-Valdés et al. [31] (CONS, GRASP, GRASP+PR, and TABU500) for unrestricted problems.

Table 12 presents the average GAP for both unconstrained (instances 10 to 29) and

constrained (instances 30 to 49) problems. The last column gives the average time to solve

the complete dataset.

We handle unconstrained problems setting the demand for each item type as the maximum

number of units that is possible to include in a pattern considering the object dimensions.

Table 12. Computational results for non-staged SLOPP - Set ATP.

Algorithm

GAP (%)

Time (s) Unconstrained Constrained

ATP[10-29] ATP[30-49]

CONS 4.79 4.09 0.40

GRASP 2.05 1.89 23.70

GRASP+PR 1.73 1.13 63.70

TABU500 0.27 0.45 450.40

ASH 2.11 1.40 0.06

ASH+PR 1.80 1.27 0.07

Although our placement heuristic deals only with restricted patterns, the results observed in

Table 12 make clear that ASH and ASH+PR can outperform, in both unconstrained and

150

constrained problems, other approaches specifically designed for problems that consider

unrestricted patterns. The computational times are low, and the results are very close to

those obtained by the GRASP and GRASP+PR.

The results obtained for the datasets GCUT and CMWX unconstrained two-, four-, and non-

staged SLOPP are presented in Table 13. We compare the results obtained with the ones

presented by Cintra et al. [44] for unconstrained problems. This table gives the average waste

produced, the average execution time in seconds, and the maximum execution time

observed. We only present the results obtained by ASH and ASH+PR with non-staged cuts

because two-, four- and non-staged produced the same result.

From the observation of Table 13, we emphasize the low waste reduction that can be

obtained from considering two-staged patterns and non-staged patterns, thus may not justify

the extra computational effort required by this cutting style, as already observed in Farley

[60].

Table 13. Computational results for unconstrained non-staged SLOPP - Set GCUT and CMWX.

Algorithm Stages Waste (%) Time (s) Max. time (s)

CINTRA two-staged 2.49 37.38 223.13

CINTRA four-staged 2.10 40.23 456.00

CINTRA non-staged 2.09 83.87 212.66

ASH non-staged 2.68 0.04 0.21

ASH+PR non-staged 2.60 0.05 0.24

ASH and AHS+PR were capable to attain constantly good results with low computational times

for all the presented variants of the problem. The results show that the proposed heuristics

produce optimal and near-optimal solutions and are also competitive when compared with

other heuristics from the literature specially tailored for specific problems. It is noteworthy

the implementation simplicity and little to no parametrization needed by both ASH and

AHS+PR.

5. Conclusion

We present heuristics for two related cutting problems. The first problem aims the maximum-

profit subset of items to extract from an object, while the second problem intent to extract

all the items from a given set using the minimum number of objects. The object and items

considered are rectangular and must be extracted through guillotine cuts without

151

overlapping. In the proposed heuristics, a new sequence is generated at each iteration to

create a new solution, i.e., cutting plan. The sequences generated try to incorporate some

knowledge from previous sequences in order to intensify and diversify the solution space

explored. To evaluate the performance of the proposed heuristics several computational

experiments have been performed and discussed. The computational results validate the

effectiveness of the proposed heuristic since it provides high-quality solutions with very low

computational times in all problems considered. As the proposed approach seems to be very

promising, a future research direction could be to apply it to other combinatorial optimization

problems. The problems to be considered could be the three-dimensional cutting and packing

problems, the facility location problems (e.g., the sequences can represent the order in which

the location will be opened or the order to assign the clients to facilities) or the Travel

Salesman Problem (e.g., the sequences could represent possible paths between the cities).

References

[1] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting and
packing problems,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1109–1130, 2007.

[2] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-stock
problem,” Oper. Res., vol. 9, no. 6, pp. 849–859, 1961.

[3] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting stock
problem-Part II,” Oper. Res., vol. 11, no. 6, pp. 863–888, 1963.

[4] M. R. Garey and D. S. Johnson, “A Guide to the Theory of NP-Completeness,”
Mathematical Sciences. W.H. Freeman and Company, San Francisco, 1979.

[5] P. C. Gilmore and R. E. Gomory, “Multistage cutting stock problems of two and more
dimensions,” Oper. Res., vol. 13, no. 1, pp. 94–120, 1965.

[6] J. Herz, “Recursive Computational Procedure for Two-dimensional Stock Cutting,” IBM
J. Res. Dev., vol. 16, no. 5, pp. 462–469, 1972.

[7] N. Christofides and C. Whitlock, “An Algorithm for Two-Dimensional Cutting Problems,”
Oper. Res., vol. 25, no. 1, pp. 30–44, 1977.

[8] N. Christofides and E. Hadjiconstantinou, “An exact algorithm for orthogonal 2-D
cutting problems using guillotine cuts,” Eur. J. Oper. Res., vol. 83, no. 1, pp. 21–38,
1995.

[9] M. Hifi and V. Zissimopoulos, “Constrained two-Dimensional cutting: an improvement
of Christofides and Whitlock’s exact algorithm,” J. Oper. Res. Soc., vol. 48, no. 3, pp.
324–331, 1997.

152

[10] F. R. K. Chung, M. R. Garey, and D. S. Johnson, “On Packing Two-Dimensional Bins,”
SIAM J. Algebr. Discret. Methods, vol. 3, no. 1, pp. 66–76, 1982.

[11] P. Y. Wang, “Two Algorithms for Constrained Two-Dimensional Cutting Stock
Problems,” Oper. Res., vol. 31, no. 3, pp. 573–586, 1983.

[12] F. J. Vasko, “A computational improvement to Wang’s two-dimensional cutting stock
algorithm,” Comput. Ind. Eng., vol. 16, no. 1, pp. 109–115, 1989.

[13] J. F. Oliveira and J. S. Ferreira, “An improved version of Wang’s algorithm for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 44, no. 2, pp. 256–266, 1990.

[14] J. E. Beasley, “Algorithms for Unconstrained Two-Dimensional Guillotine Cutting,” J.
Oper. Res. Soc., vol. 36, no. 4, pp. 297–306, 1985.

[15] R. Bellman, “The Theory of Dynamic Programming,” Bull. Am. Math. Soc., vol. 60, no.
6, pp. 503–515, 1954.

[16] J. O. Berkey and P. Y. Wang, “Two-Dimensional Finite Bin-Packing Algorithms,” J. Oper.
Res. Soc., vol. 38, no. 5, p. 423, 1987.

[17] R. Morabito, M. N. Arenales, and V. F. Arcaro, “An and-or-graph approach for two-
dimensional cutting problems,” Eur. J. Oper. Res., vol. 58, no. 2, pp. 263–271, 1992.

[18] C. L. Chang and J. R. Slagle, “An admissible and optimal algorithm for searching AND/OR
graphs,” Artif. Intell., vol. 2, no. 2, pp. 117–128, 1971.

[19] K. V Viswanathan and A. Bagchi, “Best-First Search Methods for Constrained Two-
Dimensional Cutting Stock Problems,” Oper. Res., vol. 41, no. 4, pp. 768–776, 1993.

[20] A. H. Land and A. G. Doig, “An Automatic Method of Solving Discrete Programming
Problems,” Econometrica, vol. 28, no. 3, p. 497, 1960.

[21] N. Agin, “Optimum Seeking with Branch and Bound,” Manage. Sci., vol. 13, no. 4, pp.
B176–B185, 1966.

[22] M. Hifi, “An improvement of Viswanathan and Bagchi’s exact algorithm for constrained
two-dimensional cutting stock,” Comput. Oper. Res., vol. 24, no. 8, pp. 727–736, 1997.

[23] V. Cung, M. Hifi, and B. Cun, “Constrained two-dimensional cutting stock problems a
best-first branch-and-bound algorithm,” Int. Trans. Oper. Res., vol. 7, no. 3, pp. 185–
210, 2000.

[24] D. Fayard and V. Zissimopoulos, “An approximation algorithm for solving
unconstrained two-dimensional knapsack problems,” Eur. J. Oper. Res., vol. 84, no. 3,
pp. 618–632, 1995.

[25] D. Fayard, M. Hifi, and V. Zissimopoulos, “An efficient approach for large-scale two-
dimensional guillotine cutting stock problems,” J. Oper. Res. Soc., vol. 49, no. 12, pp.
1270–1277, 1998.

[26] R. Morabito and M. N. Arenales, “Performance Of Two Heuristics For Solving Large
Scale Two-Dimensional Guillotine Cutting Problems,” INFOR Inf. Syst. Oper. Res., vol.
33, no. 2, pp. 145–155, 1995.

153

[27] R. Morabito and M. N. Arenales, “Staged and constrained two-dimensional guillotine
cutting problems: An AND/OR-graph approach,” Eur. J. Oper. Res., 1996.

[28] A. Lodi, S. Martello, and D. Vigo, “Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems,” INFORMS J. Comput., vol. 11, no. 4, pp. 345–
357, 1999.

[29] M. Hifi, “Exact algorithms for large-scale unconstrained two and three staged cutting
problems,” Comput. Optim. Appl., vol. 18, no. 1, pp. 63–88, 2001.

[30] M. Hifi and C. Roucairol, “Approximate and Exact Algorithms for Constrained (Un)
Weighted Two-dimensional Two-staged Cutting Stock Problems,” J. Comb. Optim., vol.
5, no. 4, pp. 465–494, 2001.

[31] R. Alvarez-Valdés, A. Parajón, and J. M. Tamarit, “A tabu search algorithm for large-
scale guillotine (un)constrained two-dimensional cutting problems,” Comput. Oper.
Res., vol. 29, no. 7, pp. 925–947, 2002.

[32] T. Feo and M. G. C. Resende, “Greedy randomized adaptive search procedures,” J. Glob.
Optim., pp. 109–133, 1995.

[33] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[34] F. Glover, “A template for scatter search and path relinking,” Artif. Evol., vol. 1363, no.
February 1998, pp. 3–51, 1998.

[35] A. Lodi and M. Monaci, “Integer linear programming models for 2-staged two-
dimensional Knapsack problems,” Math. Program., vol. 94, no. 2–3, pp. 257–278, 2003.

[36] A. Lodi, S. Martello, and D. Vigo, “Models and bounds for two-dimensional level packing
problems,” J. Comb. Optim., vol. 8, no. 3, pp. 363–379, 2004.

[37] M. Hifi and R. M’Hallah, “An exact algorithm for constrained two-dimensional two-
staged cutting problems,” Oper. Res., vol. 53, no. 1, pp. 140–150, 2005.

[38] G. Belov and G. Scheithauer, “A branch-and-cut-and-price algorithm for one-
dimensional stock cutting and two-dimensional two-stage cutting,” Eur. J. Oper. Res.,
vol. 171, no. 1, pp. 85–106, 2006.

[39] M. Jünger, S. Thienel, and J. Michael, “The ABACUS system for branch-and-cut-and-
price algorithms in integer programming and combinatorial optimization,” Softw.
Pract. Exp., vol. 30, no. 11, pp. 1325–1352, 2000.

[40] M. Hifi and R. M’Hallah, “Strip generation algorithms for constrained two-dimensional
two-staged cutting problems,” Eur. J. Oper. Res., vol. 172, no. 2, pp. 515–527, 2006.

[41] R. Alvarez-Valdés et al., “GRASP and path relinking for the two-dimensional two-stage
cutting-stock problem,” INFORMS J. Comput., vol. 19, no. 2, pp. 261–272, 2007.

[42] J. Puchinger and G. R. Raidl, “Models and algorithms for three-stage two-dimensional
bin packing,” Eur. J. Oper. Res., vol. 183, no. 3, pp. 1304–1327, 2007.

[43] D. Pisinger and M. Sigurd, “Using decomposition techniques and constraint

154

programming for solving the two-dimensional bin-packing problem,” INFORMS J.
Comput., vol. 19, no. 1, pp. 36–51, 2007.

[44] G. F. Cintra, F. K. Miyazawa, Y. Wakabayashi, and E. C. Xavier, “Algorithms for two-
dimensional cutting stock and strip packing problems using dynamic programming and
column generation,” Eur. J. Oper. Res., vol. 191, no. 1, pp. 61–85, 2008.

[45] M. Hifi, R. M’Hallah, and T. Saadi, “Algorithms for the constrained two-staged two-
dimensional cutting problem,” INFORMS J. Comput., vol. 20, no. 2, pp. 212–221, 2008.

[46] P. S. Ow and T. E. Morton, “Filtered beam search in scheduling,” Int. J. Prod. Res., vol.
26, no. 1, pp. 35–62, 1988.

[47] F. Alvelos, T. M. Chan, P. Vilaca, T. Gomes, E. M. da C. Silva, and J. M. V. de Carvalho,
“Sequence based heuristics for two-dimensional bin packing problems,” Eng. Optim.,
vol. 41, no. 8, pp. 773–791, 2009.

[48] P. Hansen and N. Mladenović, “Variable neighborhood search,” Search Methodol.
Introd. Tutorials Optim. Decis. Support Tech., pp. 211–238, 2005.

[49] R. Macedo, C. Alves, and J. M. V. de Carvalho, “Arc-flow model for the two-dimensional
guillotine cutting stock problem,” Comput. Oper. Res., vol. 37, no. 6, pp. 991–1001,
2010.

[50] J. M. V. de Carvalho, “Exact solution of bin-packing problems using column generation
and branch-and-bound,” Ann. Oper. Res., vol. 86, pp. 629–659, 1999.

[51] E. M. da C. Silva, F. Alvelos, and J. M. V. de Carvalho, “An integer programming model
for two- and three-stage two-dimensional cutting stock problems,” Eur. J. Oper. Res.,
vol. 205, no. 3, pp. 699–708, 2010.

[52] T. M. Chan, F. Alvelos, E. M. da C. Silva, and J. M. V. De Carvalho, “Heuristics with
stochastic neighborhood structures for two-dimensional bin packing and cutting stock
problems,” Asia-Pacific J. Oper. Res., vol. 28, no. 2, pp. 255–278, 2011.

[53] Y. Cui and Z. Zhao, “Heuristic for the rectangular two-dimensional single stock size
cutting stock problem with two-staged patterns,” Eur. J. Oper. Res., vol. 231, no. 2, pp.
288–298, 2013.

[54] L. Wei and A. Lim, “A bidirectional building approach for the 2D constrained guillotine
knapsack packing problem,” Eur. J. Oper. Res., vol. 242, no. 1, pp. 63–71, 2015.

[55] R. Martí, M. G. C. Resende, and C. C. Ribeiro, “Multi-start methods for combinatorial
optimization,” Eur. J. Oper. Res., vol. 226, no. 1, pp. 1–8, 2013.

[56] S. Martello and D. Vigo, “Exact Solution of the Two-Dimensional Finite Bin Packing
Problem,” Manage. Sci., vol. 44, no. April 2015, pp. 388–399, 1998.

[57] N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher, “New heuristic and interactive
approaches to 2D rectangular strip packing,” J. Exp. Algorithmics, vol. 10, no. 1, p. 1.2,
2005.

[58] D. Pisinger, “A Minimal Algorithm for the Bounded Knapsack Problem,” INFORMS J.
Comput., vol. 12, no. 1, pp. 75–82, 2000.

155

[59] F. Glover, M. Laguna, and R. Martí, “Fundamentals of scatter search and path
relinking,” Control Cybern., vol. 39, no. 3, pp. 653–684, 2000.

[60] A. A. Farley, “Selection of stockplate characteristics and cutting style for two
dimensional cutting stock situations,” Eur. J. Oper. Res., vol. 44, no. 2, pp. 239–246,
1990.

156

