3,113 research outputs found

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario

    Congestion control in multi-serviced heterogeneous wireless networks using dynamic pricing

    Get PDF
    Includes bibliographical references.Service providers, (or operators) employ pricing schemes to help provide desired QoS to subscribers and to maintain profitability among competitors. An economically efficient pricing scheme, which will seamlessly integrate users’ preferences as well as service providers’ preferences, is therefore needed. Else, pricing schemes can be viewed as promoting social unfairness in the dynamically priced network. However, earlier investigations have shown that the existing dynamic pricing schemes do not consider the users’ willingness to pay (WTP) before the price of services is determined. WTP is the amount a user is willing to pay based on the worth attached to the service requested. There are different WTP levels for different subscribers due to the differences in the value attached to the services requested and demographics. This research has addressed congestion control in the heterogeneous wireless network (HWN) by developing a dynamic pricing scheme that efficiently incentivises users to utilize radio resources. The proposed Collaborative Dynamic Pricing Scheme (CDPS), which identifies the users and operators’ preference in determining the price of services, uses an intelligent approach for controlling congestion and enhancing both the users’ and operators’ utility. Thus, the CDPS addresses the congestion problem by firstly obtaining the users WTP from users’ historical response to price changes and incorporating the WTP factor to evaluate the service price. Secondly, it uses a reinforcement learning technique to illustrate how a price policy can be obtained for the enhancement of both users and operators’ utility, as total utility reward obtained increases towards a defined ‘goal state’

    Performance Evaluation of v-eNodeB using Virtualized Radio Resource Management

    Get PDF
    With the demand upsurge for high bandwidth services, continuous increase in the number of cellular subscriptions, adoption of Internet of Things (IoT), and marked growth in Machine-to-Machine (M2M) traffic, there is great stress exerted on cellular network infrastructure. The present wireline and wireless networking technologies are rigid in nature and heavily hardware-dependent, as a result of which the process of infrastructure upgrade to keep up with future demand is cumbersome and expensive. Software-defined networks (SDN) hold the promise to decrease network rigidity by providing central control and flow abstraction, which in current network setups are hardware-based. The embrace of SDN in traditional cellular networks has led to the implementation of vital network functions in the form of software that are deployed in virtualized environments. This approach to move crucial and hardware intensive network functions to virtual environments is collectively referred to as network function virtualization (NFV). Our work evaluates the cost reduction and energy savings that can be achieved by the application of SDN and NFV technologies in cellular networks. In this thesis, we implement a virtualized eNodeB component (Radio Resource Management) to add agility to the network setup and improve performance, which we compare with a traditional resource manager. When combined with dynamic network resource allocation techniques proposed in Elastic Handoff, our hardware agnostic approach can achieve a greater reduction in capital and operational expenses through optimal use of network resources and efficient energy utilization. Advisor: Jitender S. Deogu

    Resource and Bandwidth Allocation in Hybrid Wireless Mobile Networks

    Get PDF
    In the lead up to the implementation of 802.16 and 4G wireless networks, there have been many proposals for addition of multi-hop MANET zones or relay stations in order to cut the cost of building a new backbone infrastructure from the ground up. These types of Hybrid Wireless Networks will certainly be a part of wireless network architecture in the future, and as such, simple problems such as resource allocation must be explored to maximize their potential. This study explores the resource allocation problem in three distinct ways. First, this study highlights two existing backbone architectures: max-coverage and max-resource, and how hybridization will affect bandwidth allocation, with special emphasis on OFDM-TMA wireless networks. Secondly, because of the different goals of these types of networks, the addition of relay stations or MANET zones will affect resource availability differently, and I will show how the addition of relay stations impacts the backbone network. Finally, I will discuss specific allocation algorithms and policies such as top-down, bottom-up, and auction-based allocation, and how each kind of allocation will maximize the revenue of both the backbone network as well as the mobile subscribers while maintaining a minimum Quality of Service (or fairness). Each of these approaches has merit in different hybrid wireless systems, and I will summarize the benefits of each in a study of a network system with a combination of the elements discussed in the previous chapters

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page

    POLITICAL ACCEPTABILITY OF PRIVATELY FINANCED MOTORWAYS IN HUNGARY

    Get PDF
    Based on a few research analyses, M1/M15 concession motorway project has been analysed, which was the first tolled and shared financed project in the CEE region with more or less success. The objectives of this analysis were to find answers to institutional questions about how to involve private capital into road infrastructure development in politically acceptable way, using a psycho-economic model. This paper starts with introduction and overview of the Hungarian concession motorway projectÂŽs history. After the short description of the applied model, key actors are identified and described, as the politicians/regulators, transport providers and their interest groups, the public with interest groups and the media. This is followed by findings of in-depth analysis of the motivations and decisions, to be able to set up the stakeholdersÂŽ characteristics and a way of decisions. This systematic description and the positive analysis of the different key actors lead to explanations of the situation and the causalities in occurrence of the Hungarian concession motorway project. The analysis criteria are problem perception, goals, information provision, effectiveness, equity/fairness issues, social environment, implementation process and finally the political and institutional setting. The conclusion attempts to give lessons to be learned, answers to institutional and regulatory questions and policy recommendations for decision-makers

    Empirical Studies in Hospital Emergency Departments

    Get PDF
    This dissertation focuses on the operational impacts of crowding in hospital emergency departments. The body of this work is comprised of three essays. In the first essay, Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department, we study queue abandonment, or left without being seen. We show that abandonment is not only influenced by wait time, but also by the queue length and the observable queue flows during the waiting exposure. We show that patients are sensitive to being jumped in the line and that patients respond differently to people more sick and less sick moving through the system. This study shows that managers have an opportunity to impact abandonment behavior by altering what information is available to waiting customers. In the second essay, Doctors Under Load: An Empirical Study of State-Dependent Service Times in Emergency Care, we show that when crowded, multiple mechanisms in the emergency department act to retard patient treatment, but care providers adjust their clinical behavior to accelerate the service. We identify two mechanisms that providers use to accelerate the system: early task initiation and task reduction. In contrast to other recent works, we find the net effect of these countervailing forces to be an increase in service time when the system is crowded. Further, we use simulation to show that ignoring state-dependent service times leads to modeling errors that could cause hospitals to overinvest in human and physical resources. In the final essay, The Financial Consequences of Lost Demand and Reducing Boarding in Hospital Emergency Departments, we use discrete event simulation to estimate the number of patients lost to Left Without Being Seen and ambulance diversion as a result of patients waiting in the emergency department for an inpatient bed (known as boarding). These lost patients represent both a failure of the emergency department to meet the needs of those seeking care and lost revenue for the hospital. We show that dynamic bed management policies that proactively cancel some non-emergency patients when the hospital is near capacity can lead to reduced boarding, increased number of patients served, and increased hospital revenue

    An investigation into dynamical bandwidth management and bandwidth redistribution using a pool of cooperating interfacing gateways and a packet sniffer in mobile cloud computing

    Get PDF
    Mobile communication devices are increasingly becoming an essential part of almost every aspect of our daily life. However, compared to conventional communication devices such as laptops, notebooks, and personal computers, mobile devices still lack in terms of resources such as processor, storage and network bandwidth. Mobile Cloud Computing is intended to augment the capabilities of mobile devices by moving selected workloads away from resource-limited mobile devices to resource-intensive servers hosted in the cloud. Services hosted in the cloud are accessed by mobile users on-demand via the Internet using standard thick or thin applications installed on their devices. Nowadays, users of mobile devices are no longer satisfied with best-effort service and demand QoS when accessing and using applications and services hosted in the cloud. The Internet was originally designed to provide best-effort delivery of data packets, with no guarantee on packet delivery. Quality of Service has been implemented successfully in provider and private networks since the Internet Engineering Task Force introduced the Integrated Services and Differentiated Services models. These models have their legacy but do not adequately address the Quality of Service needs in Mobile Cloud Computing where users are mobile, traffic differentiation is required per user, device or application, and packets are routed across several network domains which are independently administered. This study investigates QoS and bandwidth management in Mobile Cloud Computing and considers a scenario where a virtual test-bed made up of GNS3 network software emulator, Cisco IOS image, Wireshark packet sniffer, Solar-Putty, and Firefox web browser appliance is set up on a laptop virtualized with VMware Workstation 15 Pro. The virtual test-bed is in turn connected to the real world Internet via the host laptop's Ethernet Network Interface Card. Several virtual Firefox appliances are set up as endusers and generate traffic by launching web applications such as video streaming, file download and Internet browsing. The traffic generated by the end-users and bandwidth used is measured, monitored, and tracked using a Wireshark packet sniffer installed on all interfacing gateways that connect the end-users to the cloud. Each gateway aggregates the demand of connected hosts and delivers Quality of Service to connected users based on the Quality of Service policies and mechanisms embedded in the gateway. Analysis of the results shows that a packet sniffer deployed at a suitable point in the network can identify, measure and track traffic usage per user, device or application in real-time. The study has also demonstrated that when deployed in the gateway connecting users to the cloud, it provides network-wide monitoring and traffic statistics collected can be fed to other functional components of the gateway where a dynamical bandwidth management scheme can be applied to instantaneously allocate and redistribute bandwidth to target users as they roam around the network from one location to another. This approach is however limited and ensuring end-to-end Quality of Service requires mechanisms and policies to be extended across all network layers along the traffic path between the user and the cloud in order to guarantee a consistent treatment of traffic

    A source-destination based dynamic pricing scheme to optimize resource utilization in heterogeneous wireless networks

    Get PDF
    Mobile wireless resources demand is rapidly growing due to the proliferation of bandwidth-hungry mobile devices and applications. This has resulted in congestion in mobile wireless networks (MWN) especially during the peak hours when user traffic can be as high as tenfold the average traffic. Mobile network operators (MNOs) have been trying to solve this problem in various ways. First, MNOs have tried to expand the network capacity but have still been unable to meet the peak hour demand. Focus has then shifted to economic and behavioral mechanisms. The widely used of these economic mechanisms is dynamic pricing which varies the MWN resources' price according to the congestion level in the MWN. This encourages users to shift their non-critical traffic from the busy hour, when the MWN is congested, to off-peak hours when the network is under-utilized. As a result, congestion of the MWN during the peak hours is reduced. At the same time, the MWN utilization during the off-peak hours is also increased. The current dynamic pricing schemes, however, only consider the congestion level in the call-originating cell and neglect the call-destination cell when computing the dynamic price. Due to this feature, we refer the current dynamic pricing schemes as source–based dynamic pricing (SDP) schemes in this work. The main problem with these schemes is that, when the majority of the users in a congested cell are callees, dynamic pricing is ineffective because callers and not callees pay for network services, and resources used by callers and callees are the same for symmetric services. For example, application of dynamic pricing does not deter a callee located in a congested cell from receiving a call, which originates from a caller located in an uncongested cell. Also, when the distribution of prospective callees is higher than that of callers in an underutilized cell, SDP schemes are ineffective as callees do not pay for a call and therefore low discounts do not entice them to increase utilization. In this distribution, dynamic pricing entices prospective callers to make calls but since their distribution is low, the MWN resource utilization does not increase by any significant margin. To address these problems, we have developed a source-destination based dynamic pricing (SDBDP) scheme, which considers congestion levels in both the call-originating and calldestination cells to compute the dynamic price to be paid by a caller. This SDBDP scheme is integrated with a load-based joint call admission control (JCAC) algorithm for admitting incoming service requests in to the least utilized radio access technology (RAT). The load-based JCAC algorithm achieves uniform traffic distribution in the heterogeneous wireless network (HWN). To test the SDBDP scheme, we have developed an analytical model based on M/M/m/m queuing model. New or handoff service requests, arriving when all the RATs in the HWN are fully utilized, lead to call blocking for new calls and call dropping for handoff calls. The call blocking probability, call dropping probability and percentage MWN utilization are used as the performance metrics in evaluating the SDBDP scheme. An exponential demand model is used to approximate the users' response to the presented dynamic price. The exponential demand model captures both the price elasticity of demand and the demand shift constant for different users. The matrix laboratory (MATLAB) tool has been used to carry out the numerical simulations. An evaluation scenario consisting of four groups of co-located cells each with three RATs is used. Both SDP and the developed SDBDP schemes have been subjected under the evaluation scenario. Simulation results show that the developed SDBDP scheme reduces both the new call blocking and handoff call dropping probabilities during the peak hours, for all callercallee distributions. On the other hand, the current SDP scheme only reduces new call blocking and handoff call dropping probabilities only under some caller –callee distributions (When the callers were the majority in the HWN). Also, the SDBDP scheme increases the percentage MWN utilization during the off-peak for all the caller-callee distributions in the HWN. On the other hand, the SDP scheme is found to increase the percentage MWN utilization only when the distribution of callers is higher than that of callees in the HWN. From analyzing the simulations results, we conclude that the SDBDP scheme achieves better congestion control and MWN resource utilization than the existing SDP schemes, under arbitrary caller-callee distribution
    • 

    corecore