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Abstract
This dissertation focuses on the operational impacts of crowding in hospital emergency departments. The
body of this work is comprised of three essays. In the first essay, "Waiting Patiently: An Empirical Study of
Queue Abandonment in an Emergency Department," we study queue abandonment, or "left without being
seen." We show that abandonment is not only influenced by wait time, but also by the queue length and the
observable queue flows during the waiting exposure. We show that patients are sensitive to being "jumped" in
the line and that patients respond differently to people more sick and less sick moving through the system.
This study shows that managers have an opportunity to impact abandonment behavior by altering what
information is available to waiting customers. In the second essay, "Doctors Under Load: An Empirical Study
of State-Dependent Service Times in Emergency Care," we show that when crowded, multiple mechanisms in
the emergency department act to retard patient treatment, but care providers adjust their clinical behavior to
accelerate the service. We identify two mechanisms that providers use to accelerate the system: early task
initiation and task reduction. In contrast to other recent works, we find the net effect of these countervailing
forces to be an increase in service time when the system is crowded. Further, we use simulation to show that
ignoring state-dependent service times leads to modeling errors that could cause hospitals to overinvest in
human and physical resources. In the final essay, "The Financial Consequences of Lost Demand and Reducing
Boarding in Hospital Emergency Departments," we use discrete event simulation to estimate the number of
patients lost to Left Without Being Seen and ambulance diversion as a result of patients waiting in the
emergency department for an inpatient bed (known as boarding). These lost patients represent both a failure
of the emergency department to meet the needs of those seeking care and lost revenue for the hospital. We
show that dynamic bed management policies that proactively cancel some non-emergency patients when the
hospital is near capacity can lead to reduced boarding, increased number of patients served, and increased
hospital revenue.
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ABSTRACT

EMPRICIAL STUDIES IN HOSPITAL EMERGENCY DEPARTMENTS

Robert Johnson Batt

Christian Terwiesch

This dissertation focuses on the operational impacts of crowding in hospital emergency

departments. The body of this work is comprised of three essays. In the �rst essay, �Waiting

Patiently: An Empirical Study of Queue Abandonment in an Emergency Department,� we

study queue abandonment, or �left without being seen.� We show that abandonment is not

only in�uenced by wait time, but also by the queue length and the observable queue �ows

during the waiting exposure. We show that patients are sensitive to being "jumped" in the

line and that patients respond di�erently to people more sick and less sick moving through

the system. This study shows that managers have an opportunity to impact abandonment

behavior by altering what information is available to waiting customers. In the second essay,

�Doctors Under Load: An Empirical Study of State-Dependent Service Times in Emergency

Care,� we show that when crowded, multiple mechanisms in the emergency department act

to retard patient treatment, but care providers adjust their clinical behavior to accelerate

the service. We identify two mechanisms that providers use to accelerate the system: early

task initiation and task reduction. In contrast to other recent works, we �nd the net e�ect

of these countervailing forces to be an increase in service time when the system is crowded.

Further, we use simulation to show that ignoring state-dependent service times leads to
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modeling errors that could cause hospitals to overinvest in human and physical resources.

In the �nal essay, �The Financial Consequences of Lost Demand and Reducing Boarding in

Hospital Emergency Departments,� we use discrete event simulation to estimate the number

of patients lost to Left Without Being Seen and ambulance diversion as a result of patients

waiting in the emergency department for an inpatient bed (known as boarding). These lost

patients represent both a failure of the emergency department to meet the needs of those

seeking care and lost revenue for the hospital. We show that dynamic bed management

policies that proactively cancel some non-emergency patients when the hospital is near

capacity can lead to reduced boarding, increased number of patients served, and increased

hospital revenue.
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CHAPTER 1 : Introduction

This dissertation focuses on the operational impacts of crowding in hospital emergency de-

partments (EDs). A typical ED encounter progresses through �ve stages: arrival, triage,

waiting, service, and discharge or boarding. Following a survey of the ED operations lit-

erature, the body of this work is comprised of three essays which address each of these

stages.

The �rst essay, �Waiting Patiently: An Empirical Study of Queue Abandonment in an Emer-

gency Department,� focuses on the waiting phase and how crowding a�ects the queue aban-

donment behavior of patients waiting for treatment. Despite a large literature on customer

satisfaction in queues that suggests that people are more tolerant of waiting when they are

kept informed of why and how long they must wait (e.g., Hui and Tse 1996), in most EDs

in America, patients are given little or no information about how long they will be required

to wait for service. Patients are expected to wait patiently until called for service. Hospi-

tals may be reluctant to share queue status information for fear of �sticker shock� causing

patients to abandon quickly. However, a utility theory view of customer behavior suggests

that customers make a stay or abandon decision by weighing the bene�t of obtaining service

against the expected cost of continuing to wait. A major element of that decision is the cus-

tomer's estimate of the remaining wait time. The practice of providing no information does

not take into account the fact that patients can partially observe the queue, and that they

likely make wait time estimates based on what they see. We use patient-level time stamp

data to reconstruct both the queue size and the associated arrival and departure �ows ob-

served by each patient during their waiting experience. Using this data, we �nd that patients

that observe either high queue census or arrivals to the queue exhibit increased likelihood of

abandoning. In contrast, observing a high rate of departures into the service area leads to

a lower abandonment probability. We also �nd that patients infer the relative health status

of those around them and respond di�erently to the movement of patients that are rela-

tively more sick or less sick. All of these e�ects are consistent with patients adjusting their
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wait time estimate based on what they observe. Because patient abandonment behavior is

a�ected by observable queue events, managers have an opportunity to a�ect abandonment

behavior by manipulating the information available to patients.

The second essay, �Doctors Under Load: An Empirical Study of State-Dependent Service

Times in Emergency Care,� focuses on the triage and service phases of the ED encounter.

Speci�cally, we examine how the service process changes in response to crowding in the ED.

Classic queuing theory assumes service times to be independent of the state of the system,

and recent Operations Management literature has shown evidence of service times of worker-

paced systems decreasing with workload. However, in the ED, we observe that service times

exhibit an inverted-U relationship with system load, �rst increasing then decreasing as the

queue grows. We develop a theoretical framework of Speedup and Slowdown e�ects that

gives rise to this nonmonotonic relationship. We show that isolated elements of the ED

service process, such taking an x-ray or receiving a medication, take longer during periods

of high load. This works to lengthen the total service time of the ED encounter. However,

we �nd that care providers (doctors and nurses) alter their clinical behavior to speed up the

service time. When the ED is crowded, triage nurses tend to order more diagnostic tests that

otherwise would be ordered by the doctor later on in the encounter. This early task initiation

reduces the service time by allowing some activities, such as lab processing, to happen while

the patient is in the waiting room rather than in a treatment bed. The other clinical change

is that for some subsets of patients, doctors reduce the overall amount of diagnostic testing

ordered, which also reduces service time. The combination of these Slowdown and Speedup

responses gives rise to the inverted-U relationship of service time and system load. Thus

we show that complex service systems can indeed be state-dependent, in contrast to classic

queuing theory, and that the state-dependency need not be a simple monotonic relationship

as observed in recent Operations Management studies.

The third essay, �The Financial Consequences of Lost Demand and Reducing Boarding in

Hospital Emergency Departments,� examines the connection between �boarding� and lost

2



demand. Boarding is the practice of holding patients in the ED while they wait to be

transferred to an inpatient bed in the hospital. In busy hospitals, boarding patients may wait

for twelve or more hours for an inpatient bed (Carr et al. 2010). Several medical studies have

shown that this has negative clinical consequences for patients (e.g., Carr et al. 2007a, Chal�n

et al. 2007). From an operational perspective, boarding is problematic because it reduces

the e�ective capacity of the ED. This can lead to increased levels of patients abandoning

the queue due to long waits. Further, some hospitals cope with ED congestion by diverting

incoming ambulances to other hospitals. Both abandonment and diversion represent a failure

of the hospital to serve all potential customers and to receive the associated revenue. Thus,

reducing boarding times would lead to lower lost demand and higher revenues. Using discrete

event simulation, we estimate the impact of reducing mean boarding time by one hour and

�nd that it leads to serving an additional 4.2 patients per day, or approximately $12,000 of

revenue per day. However, there is a downside to reducing boarding. Serving more patients

in the ED creates an increase in inpatient bed demand as some of the ED patients are

admitted to the hospital. If non-ED (elective) patients have to be bumped from the schedule

to accommodate the increase in ED-admitted patients, the hospital loses money since, on

average, non-ED admitted patients generate more revenue per day than do patients admitted

from the ED. However, the hospital is rarely running at capacity and thus non-ED patients

do not always have to be bumped. We show that active bed management policies that

proactively bump scheduled non-ED patients only when the hospital approaches capacity

allows the hospital to serve the increase in ED-admit demand without sacri�cing revenue.

In summary, this paper shows the extent to which boarding leads to lost ED demand and

that recapturing this demand through e�orts to reduce boarding times can be �nancially

bene�cial for hospitals.

3



CHAPTER 2 : Literature Review

While each essay of this dissertation provides a detailed review of the literature relevant

for the speci�c topic, we provide here a broad overview of the literature of emergency de-

partment operations in general. Since our intent is for our work to contribute to both the

Operations Management (OM) and the Emergency Medicine (EM) management communi-

ties, this survey draws from both of bodies of work.

We �rst propose a conceptual framework of ED operations to help organize the following

survey. In the OM literature, EDs are most commonly treated as queuing systems in much

the same way call centers are treated as queuing systems. Call centers have been extensively

studied (c.f. Gans et al. 2003), and we borrow concepts for our framework from such

works as Brown et al. (2005) which breaks call center operations into an arrival process, a

waiting/abandonment process, and a service process.

The most in�uential framework of ED operations from the EM literature is the Input-

Throughput-Output model proposed by Asplin et al. (2003). The Input-Throughput-

Output model is a conceptual model of ED operations that was developed to help the EM

community address the problem of ED crowding. Drawing liberally from queuing theory

concepts, the Input-Throughput-Output essentially breaks ED operations into drivers of de-

mand (input), drivers of treatment time (throughput), and barriers to discharging patients

(output).

We propose a di�erent and somewhat more detailed decomposition of ED operations than

Asplin et al. (2003). We view ED operations as being comprised of four segments: Demand

Generation, Front Side Operations, Back Side Operations, and Disposition & Departure.

2.1. Demand Generation

Demand for ED services can be categorized in several ways. Asplin et al. (2003) divide

demand into three categories based on clinical need: emergency care, urgent unscheduled
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care, and safety net care. This categorization is closely related to the triage level classi-

�cation systems used to prioritize patients upon arrival. The three levels of Asplin et al.

(2003) generally correspond to high, medium, and low priority conditions. We refer to this

categorization as de�ning the �type� of care.

Another way to categorize demand is by whether the demand arrives exogenously or endoge-

nously. We refer to this as the �source� of care. Most ED demand is generated exogenously

from the community at large and from the overall health care system. Andersen and Laake

(1987) provides a helpful behavioral model of healthcare demand generation that is driven

by factors such as patient need for healthcare services, predisposing factors that a�ect an

individual's likelihood of seeking care, and enabling factors that a�ect an individual's ability

to access care.

A portion of ED demand is endogenously generated in that it is a result of the ED operations

or decisions made during care. For example, patients that abandon the ED queue (left

without being seen) frequently return within a day or two to seek care, and some return in a

more severe condition requiring increased care than had they been treated upon �rst arrival

(Baker et al. 1991, Rowe et al. 2006). Similarly, patients who are discharged too quickly

may have to return for additional care (Derlet et al. 2001). This revisit or �bounce back�

phenomenon has also been observed with intensive care units and transitional care units in

hospitals (Chan et al. 2012, Kc and Terwiesch 2012). Revisits can also occur if a discharged

patient has poor access to appropriate follow-up care through a primary care physician or

other ambulatory care provider (Rask et al. 1994).

A third classi�cation of demand is by arrival mode. The majority of ED arrivals are �walkin�

arrivals, or patients that come by their own means of transportation. At our study hospital,

over 70% of arrivals are walkin arrivals, while nationally about 75% of arrivals are walkins

(Niska et al. 2010). Ambulance arrivals account for the next largest arrival mode (approx-

imately 25% in the study hospital). The remainder is made up of arrival modes such as

helicopter, police, and other public services.

5



Arrival mode is operationally relevant for two reasons. First, walkin and ambulance arrivals

go through di�erent pre-treatment processes. Walkin arrivals go through a multi-step check-

in, triage, and registration process generally followed by a waiting period before beginning

treatment. Ambulance arrivals, in contrast, generally skip this pre-treatment process and

get moved to a treatment bed quickly, regardless of clinical need. The other reason arrival

mode matters, is that for many hospitals, ambulance arrivals can be diverted to other

hospitals, thereby giving the hospital the ability to partially control the arrival rate to the

ED. In contrast, federal law mandates that all walkin arrivals be provided, at a minimum,

a medical evaluation and stabilizing treatment.

Ambulance diversion is a controversial topic. Theoretically, diversion is a operational mech-

anism that helps pool the medical resources of a community to serve the public, but the

reality of it tends to fall short (Deo and Gurvich 2011). Diversion has also been shown to

lead to longer ambulance transport times which can lead to worse clinical outcomes (Schull

et al. 2003b). Operational factors such as ED size, inpatient utilization, and number of

boarding patients in the ED have all been found to a�ect the use of ambulance diversion

(Deo et al. 2013, Schull et al. 2003a).

Each of these demand categorizations (type, source, arrival mode) provide a di�erent view

of the arriving patients, and each categorization is operationally useful since the patient

routing and required services is potentially di�erent for each type.

2.2. Front Side Operations

Front side operations include all processes and actions that occur before the patient is moved

to a treatment bed (the back side of the ED). Front side operations tend to be focused on

walkin arrivals since other arrivals usually come in a separate entrance and skip many of

the front side steps. In most EDs, the two basic front side processes are triage and waiting.

The triage process involves a nurse making a brief assessment of the patient and assigning

a triage score. The patient then waits until called for service. There is also a registration
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process (providing an address, insurance information, etc.) that occurs at some point during

each ED encounter. This is usually done while the patient is waiting. There are many ways

to accomplish these front side tasks, and there are many variations on these basic tasks

that have been studied both in the OM and EM literature. See Wiler et al. (2010) for an

excellent survey of the relevant EM literature.

The main purpose of the triage process is to assign a triage score. In the United States, the

most common triage system is the �ve-level Emergency Severity Index (ESI) system (Bau-

mann and Strout 2005, Gilboy et al. 2011), but other systems are also in use (Storm-Versloot

et al. 2011). The triage score is an indication of clinical acuteness and is generally used as a

priority classi�cation to determine the order in which patients are served. Sagha�an et al.

(2013) have proposed a triage system that also takes into account the expected complexity

of treating the patient. Thus, their system is essentially a new application of the well-known

cµ-rule for priority queues (Wol� 1989). Argon and Ziya (2009) use the ED triage setting as

motivation to explore the problem of how to assign priorities under imperfect information.

The triage score does not strictly de�ne the order in which patients are served because many

hospitals are now employing separate �tracks� for di�erent categories of patients. The most

common being a FastTrack that serves low-acuteness, quick-service-time patients (Meislin

et al. 1988). FastTracks generally make use of dedicated physical space and care providers

in order to disconnect from the more complex workings of the regular ED.

Several studies have shown FastTracks to be quite e�ective at reducing the length of stay

in the ED for the target population (O'Brien et al. 2006, Nash et al. 2007). FastTracks

have been so e�ective that some hospitals are now testing adding an additional MidTrack

to serve patients of mid-level acuteness but with conditions that have well de�ned and

straightforward care (Soremekun et al. 2012, Urgent Matter Learning Network II 2010).

At least one hospital has attempted creating treatment tracks based on the probability

of a patient needing to be admitted (King et al. 2006). Sagha�an et al. (2012) examine

this type of tracking and �nd that it can be bene�cial in EDs with a high percentage
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of admitted patients and with long boarding times. While the idea of creating separate

service tracks may seem to be counter to the standard �pooling is better� lessons taught in

introductory Operations Research texts (Hillier and Lieberman 2010), several recent papers

have shown that partitioning customers and servers is optimal when there are multiple types

of customers with di�erent service requirements (Whitt 1999a, Ata and Van Mieghem 2009,

Hu and Benjaafar 2009).

Another modi�cation to the standard triage process that has been explored is early initiation

of testing or treatment. In our study hospital triage nurses are given authority to order

several di�erent types of diagnostic tests such as a urinalysis, a basic blood test, or a simple

x-ray. Another common adaptation is what is known as �standing orders� or �advances

triage protocols.� Standing orders allow a triage nurse to order a prede�ned set of tests or

procedures if a patient meets a set of criteria (Campbell et al. 2004, Cooper et al. 2008).

The operational rationale behind early initiation of care is that tasks that would otherwise

be done with the patient in a treatment bed are accomplished while the patient is in the

waiting room. This reduces the amount of time the patient spends in the treatment bed,

which is frequently the bottleneck resource. We discuss this topic in greater detail in 4.

A related approach for achieving early initiation of care is to add a physician to the triage

process. This provides two main bene�ts. First, similar to implementing standing orders,

tests and treatments can be started much earlier in the patient encounter, but without the

limitations placed on triage nurses. Second, for some patients, the physician can provide

all necessary care at the triage station and immediately discharge the patient (Soremekun

et al. 2011). This is not a possibility for the triage nurse because federal law requires that

each patient be seen by a higher level care provider before being discharged. This immediate

treatment and discharge dramatically reduces the patient length of stay and eliminates the

need for a treatment bed for the given patient. Several studies had been published on the use

of a physician at triage with most showing improvements in time until medical evaluation

and total length of stay (e.g., Rogers et al. 2004, Choi et al. 2006).
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The triage process as described above is sometimes modi�ed based on ED busyness. During

busy times, some hospitals position a greeter nurse as the �rst point of contact with an

arriving patient before triage (Weber et al. 2011, Rogg et al. 2013). The greeter nurse

does a very quick medical assessment to determine if immediate care is needed, and collects

basic information, such as name and age, to start a medical chart. The greeter nurse can

also set the order in which patients should be seen by the triage nurse. In essence, the

greeter nurse performs a pre-triage triage. At the other extreme, when there is no queue

and treatment beds are available, some hospitals forgo front side operations altogether and

move arriving patients directly into treatment beds. This is known as direct bedding. This

is usually accompanied by bedside registration, where the registration personnel come to

the treatment bed to collect the necessary information (Bertoty et al. 2007, Takakuwa et al.

2007).

The other major activity that is part of the front side operations is waiting. After triage,

patients wait to be called for service. However, some patients choose to abandon the queue

before they are called for service. This is referred to as �left without being seen� (LWBS).

While the required wait time is almost certainly a factor in the stay or abandon decision,

other factors, such as the patient's condition and the crowd level in the waiting room may

also factor into the decision. Queue abandonment is the focus of Chapter 3 and we direct

the reader there for a detailed review of the related literature.

2.3. Back Side Operations

We de�ne back side operations as all the processes and actions taken to diagnose, treat, and

disposition a patient once the patient is placed in a treatment bed. This is also referred

to as the service or treatment phase of the ED visit (Batt and Terwiesch 2013). There are

many facets to back side operations and they can be analyzed from several perspectives. At

one level, the treatment phase can be viewed as a black-box process that requires a random

amount of processing time. For example, (Batt et al. 2013) examines how the throughput

of the ED back side is a�ected by the number of in-service and boarding patients.
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The process can also be analyzed from the patient point of view wherein the patient is a

�job� moving through a queuing network, not unlike a jobshop (Jackson 1963). From this

vantage point, one is interested in not only total time in system but also the path through

the system and the amount of processing time and waiting time. This viewpoint is also

helpful when considering the amount of pooling or partitioning of servers as described in

Section 2.2.

Back side operations analysis can also focus on the service resources, such as doctors, nurses,

and equipment, rather than the patient. Issues such as sta�ng levels (Green et al. 2006b,

2012) and work load allocation (Armony and Ward 2010) are two key issues. Another topic

of interest is the �what to do next?� question faced by doctors and nurses. These care

provides are responsible for several patients at a time and at the completion of each task

they must decide which task to do next. Sagha�an et al. (2012) shows that the optimal

decision rule depends on whether the care provider is trying to minimize total time or some

short-term objective such as time to �rst order. Similarly, Dobson et al. (2012) shows that

if in-process patients generate work by way of interruptions, then care providers should

prioritize serving patients near the end of treatment and keep the the number of in-process

patients low.

Much recent work has focused on how the state of the system (i.e., busyness) a�ects the

service rate of the various resources. For example, Kc and Terwiesch (2009) �nds that

hospital transport personnel work faster when the workload is high. Kc (2012) examines

physician multi-tasking and shows that productivity has an inverted-U relationship with the

level of multi-tasking. The state-dependent nature of service times in the ED is the focus of

Chapter 4, and we direct the reader there for a detailed review of the related literature.

The EM literature on back side operations (excluding clinical/medical methods) is largely

focused on reporting the results of process improvement projects. For example, studies have

examined the bene�ts of new technologies such as point-of-care testing (Singer et al. 2005,

Jang et al. 2013), electronic patient tracking (Boger 2003, Aronsky et al. 2008), and personal
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communication devices (Le et al. 2004, Walsh and Yamarick 2005). Interestingly, there is

little agreement in the EM community about exactly how to measure ED performance, and

thus it is hard to compare the results of process improvements. Hwang et al. (2011) presents

a comprehensive survey of more than 2,600 studies related to crowding and identi�es over

70 di�erent crowding or performance related metrics used in the studies. Thus, de�ning ED

performance metricsis an important �rst step in future work.

2.4. Disposition & Departure

The term disposition is used as both a noun and a verb in the ED. The noun form refers

to a patient's destination after leaving the ED, usually either admitted to the hospital or

discharged to go home. The verb form refers to the act of deciding not only the post-ED

destination, but also when the patient is ready to leave the ED for that destination. Dis-

positioning a patient is generally the �nal decision the physician must make regarding a

patient and it signals the end of diagnosis and treatment in the ED. Patients that are dis-

charged depart the ED soon after being dispositioned. Patients that are admitted, however,

frequently have to wait in the ED for some time. These patients are referred to as boarders

(Asplin et al. 2008).

While the disposition decision is mainly driven by the patient's medical condition, there

are operational factors that also must be accounted for by the physician. The decision is

complex because the state of the system at the time of disposition a�ects the disposition

decision, and the disposition decision a�ects the future state of the system. For example,

if there are no available inpatient beds, an admitted patient may have to board for several

hours, and this has been shown to have a negative a�ect on clinical outcomes for some types

of patients (e.g., Carr et al. 2007b, Singer et al. 2011). The boarding patient continues to

occupy a treatment bed and thus reduces the e�ective capacity of the ED to serve other

patients. However, a patient that is inappropriately discharged may return later for more

care and may be in a worse condition (Shiber 2010).
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The disposition decision is conceptually similar to a two-tier gatekeeper system where the

gatekeeper must decide whether to serve the customer directly or to pass the customer

along to a higher-skilled, more expensive resource (Shumsky and Pinker 2003). Hasija et al.

(2005) shows that when each tier is modeled as an M/M/N queue there is a critical level

of customer complexity above which all customers should be referred to the second tier.

Likewise, motivated by security checkpoints at border crossings, Zhang et al. (2011) �nds a

similar optimal referral policy that balances waiting costs and misclassi�cation costs.

The routing of patients from the ED to inpatient beds is also an interesting problem. In most

hospitals, the inpatient beds are divided into wards that specialize in certain conditions (e.g.,

ICU, cardiac care, orthopedics, general medicine, etc.). Thus ED doctors not only consider

if any bed is available, but if the right kind of bed is available. Thompson et al. (2009)

formulate this problem as a �nite-horizon Markov decision process and achieve optimal bed

allocation by proactively transferring some inpatients between wards to make room for newly

arriving patients. Mandelbaum et al. (2012) examine a similar bed allocation problem but

further considers fairness in work allocation between the wards.

Boarding has received a great deal of attention in the EM community. It is widely viewed

as one of the major causes of ED crowding (Rabin et al. 2012). Boarding time has been

shown to be correlated with both the number of people in the ED and the utilization level

of inpatient beds (McCarthy et al. 2009). Despite the fact that boarding consumes ED

resources and has a deleterious e�ect on clinical outcomes, it is still a common occurrence.

This has led some to suggest that hospitals tolerate boarding because it implicitly frees up

beds for more pro�table elective patients (Mitka 2008). Chapter 5 explores this topic and

�nds that boarding is not revenue enhancing once the increased abandonment and diversion

caused by boarding are taken into account.

Having presented an overview of ED operations and the relevant areas of research, we now

turn to the three essays that comprise the bulk of this dissertation.
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CHAPTER 3 : Waiting Patiently: An Empirical Study of Queue Abandonment in

an Emergency Department1

3.1. Introduction

The body of knowledge on queuing theory is voluminous and spans almost a century of

research. However, one of the least understood aspects of queuing theory is human behavior

in the queue. Understanding the human element is crucial in designing and managing

service-system queues such as quick-serve restaurants, retail checkout counters, call centers,

and emergency departments.

Speci�cally, queue abandonment (also known as reneging) is one aspect of human behavior

that is poorly understood. Abandonment is undesirable in most service settings because

it leads to a combination of lost revenue and ill-will. In a hospital emergency department,

abandonment takes on the added dimension of the risk of a patient su�ering an adverse

medical event. While the hospital may not be legally responsible for such an event, it is

certainly an undesirable outcome.

Prior literature has explored psychological responses to waiting and has generally found

that people are happier and waiting seems less onerous when people are kept informed of

why they are waiting and how long the wait will last (Hui and Tse 1996). Given these

�ndings, it seems almost trivial that it is bene�cial to provide waiting customers with as

much information as possible about the wait. In practice, however, many service systems,

such as call centers and emergency departments, which provide limited or no information to

waiting customers. One reason for this is that uninformed customers might naively estimate

the waiting time to be short and thus join a queue which they would not join if they were

informed about the expected waiting time. Sharing information with customers about the

queue status is an active area of analytical queuing theory research (e.g. Armony et al.

1This chapter is based on Batt, Robert J., Christian Terwiesch. 2013 �Waiting Patiently: An Empirical
Study of Queue Abandonment in an Emergency Department.� Working Paper.
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2009, Plambeck and Wang 2012). Yet, there exists limited empirical work studying how

queue status information a�ects customers. An exception to this is the recent work by Lu

et al. (2012), which provides evidence that even in a simple queuing system in which all

information is fully observable and customers are served in their order of arrivals, customers

might not use the available information rationally.

The empirical setting of our work is a hospital emergency department (ED). In this setting,

waiting patients can observe the waiting room but they cannot observe the service-delivery

portion of the system (the treatment rooms). Additionally, even though patients can ob-

serve the waiting room, it is not at all clear what they can learn from what they observe.

Factors such as arrival order, priority level, assignment to separate service channels, and the

required service time of others are not readily apparent. Interestingly, most American EDs

provide no queue-related information to the patients. The position of the American Col-

lege of Emergency Physicians is that providing queue information might have �unintended

consequences� and lead to patients who need care leaving without treatment (ACEP 2012).

However, this position does not account for how patients respond to the information they

do have: what they see.

In this paper, we focus on how what patients observe and experience over the course of the

waiting exposure impacts their abandonment decisions. Using detailed timestamp data of

180,000 patient visits that we obtained from the ED's electronic patient tracking system,

we are able to reconstruct a set of variables that patients should rationally have considered

in their decision whether to abandon the queue when they were in the waiting room. Our

theoretical framework hypothesizes that patients observe and consider two types of variables,

stock variables and �ow variables. Stock variables are those that describe the number of

other patients in the waiting room, such as the total number of patients, the total number

of patients with a higher priority, or the total number of patients with a later arrival time.

Flow variables are those that describe the rate with which the queue is depleted as well as

the rate with which new patients arrive, such as the number of arrivals in the last hour, the
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number of departures in the last hour, or the number of patients that have been served in

the last hour before patients who had an earlier arrival time. Some of these variables can be

directly observed by the patient, while others have to be inferred. For example, the number

of patients in the waiting room is directly observable to the patient, while, given that the

priority data is not shared with all patients, the number of patients in the waiting room

with a high priority score can only be inferred. This novel approach towards predicting

and estimating abandonment behavior of ED patients allows us to make the following four

contributions:

1. We �nd that for patients of moderate severity, observing an additional patient in the

queue increases the probability of abandonment by half a percentage point, even when

appropriately controlling for wait time. This is equivalent to a 15 minute increase in

wait time and extends the prior result of Lu et al. (2012) from a deli counter to an

emergency room.

2. We show that the observed �ow of patients in and out of the waiting room has an ef-

fect on abandonment, with arrivals leading to increased abandonment and departures

leading to decreased abandonment. Given the unknown priority of newly arriving pa-

tients, the patients in the waiting room are more likely to abandon the queue when new

patients arrive after them, as they fear being overtaken by these new arrivals. Regard-

ing departures, we show that patients respond di�erently to out�ows that maintain

�rst-come-�rst-served order and those that do not. For example, observing an ad-

ditional waiting room departure that maintains �rst-come-�rst-served order reduces

the probability of abandonment by 0.6 percentage points, equivalent to a 19 minute

reduction in wait time. In contrast, observing an additional waiting room departure

that violates �rst-come-�rst-served has an insigni�cant impact on abandonment.

3. We show that patients respond to more than just the �facts� that they observe. They

make inferences about the severity of other patients and respond di�erently to the �ow

of more and less severe patients. For example, we �nd that observing an additional
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arrival of a patient sicker than oneself increases the probability of abandonment by

one percentage point whereas observing the arrival of a patient less sick than oneself

has no discernible e�ect on abandonment. Further, we show that patients are quite

adept at making these relative severity inferences.

4. We show that early initiation of a service task, such as diagnostic testing, reduces

abandonment. For example, receiving an order for a diagnostic test during the triage

process reduces the probability of abandonment by 1.8 percentage points. This is

particularly interesting because unlike the other variables examined in this paper,

early service initiation does not impact the waiting time.

These contributions show that patient abandonment behavior is a�ected by the waiting

patients experience while in the waiting room. Thus, a queue is not either visible (like in a

grocery store) or invisible (like in a call center), but often times combines aspects of both.

In such settings, providing no information to customers does not mean that customers are

without queue information. Further, to the extent the visual queue information is misleading

or does not lead to the desired behavior, managers have an opportunity to intervene by

altering what information is available to the patients. For example, providing separate

waiting rooms for di�erent triage levels would reduce abandonment due to observing a

crowded waiting room and due to obscuring arrivals of higher priority patients.

3.2. Clinical Setting

Our study is based on data from a large, urban, teaching hospital with an average of 4,700

ED visits per month over the study period of January, 2009 through December, 2011. The

ED has 25 treatment rooms and 15 hallway beds for a theoretical maximum treatment

capacity of 40 beds. However, the actual treatment capacity at any given moment can

�uctuate for various reasons. The hospital also operates an express lane or FastTrack (FT)

for low acuity patients. The FT is generally open from 8am to 8pm on weekdays, and from

9am to 6pm on weekends. The FT operates somewhat autonomously from the rest of the
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ED in that it utilizes seven dedicated beds and is usually sta�ed by a dedicated group of

Certi�ed Registered Nurse Practitioners rather than Medical Doctors.

We focus solely on patients that are classi�ed as �walk-ins� or �self� arrivals, as opposed to

ambulance, police, or helicopter arrivals. This is because the walk-ins go through a more

standardized process of triage, waiting, and treatment, as described below. In contrast,

ambulance arrivals tend to jump the queue for bed placement, regardless of severity, and

often do not go through the triage process or wait in the waiting room. More than 70% of

ED arrivals are walk-ins.

The study hospital operates in a manner similar to many hospitals across the United States

(Batt and Terwiesch 2013). Upon arrival, patients are checked in by a greeter and an

electronic patient record is initiated for that visit. Only basic information (name, age,

complaint) is collected at check-in. Shortly thereafter, the patient is seen by a triage nurse

who assesses the patient, measures vital signs, and records the o�cial chief complaint. The

triage nurse assigns a triage level, which indicates acuteness, using the �ve-level Emergency

Severity Index (ESI) triage scale with 1 being most severe and 5 being least severe (Gilboy

et al. 2011). The triage nurse also has the option of ordering diagnostic tests, for example

an x-ray or a blood test. Patients are generally not informed of their assigned triage level

nor are they given any queue status information.

After triage, patients wait in a single waiting room to be called for service. Patients are

in no way visibly identi�ed, thus a waiting patient does not know what triage level other

patients have been assigned. Further, patients can sit anywhere in the waiting room, thus

there is no ready visual signal of arrival order. There is no queue status information posted

in the waiting room.

Patients are called for service when a treatment bed is available. If only the ED is open,

patients are generally (but not strictly) called for service in �rst-come-�rst-served (FCFS)

order by triage level. If the FT is open, then the FT will serve triage level 4 and 5 patients
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in FCFS order by triage level and the ED will serve patients of triage levels 1 through 3 in

FCFS order by triage level. These routing procedures are �exible, however. For example,

the ED might serve a triage level 4 patient if the patient has been waiting a long time and

there are not more acute patients that need immediate attention. Similarly, the FT might

serve a triage level 3 patient if the patient has been waiting a long time and the patient's

needs can be met by the nurse practitioners in the FT.

Most patients likely have little or no understanding that the ED and FT coexist and work

as separate service channels. Further, since patients go through the same doors to begin

service in either the ED or the FT, there is no visual indication to the remaining waiting

patients as to which service channel a patient has been assigned.

Once a patient is called for service, a nurse escorts the patient to a treatment room and

the treatment phase of the visit begins. When treatment is complete, the patient is either

admitted to the hospital or discharged to go home. If a patient is not present in the waiting

room when called for service, that patient is temporarily skipped and is called again later,

up to three times. If the patient is not present after a third call, the patient is considered to

have abandoned, the patient record is classi�ed as Left Without Being Seen (LWBS), and is

closed out. The time until a record is closed out as LWBS is usually quite long, with a mean

time of over four hours (about triple the mean wait time for those who remain). Note that

a patient is free to abandon the ED at any time. However, for this study, we focus solely on

abandonment that occurs before room placement.

3.3. Literature Review

The classical queuing theory approach to modeling queue abandonment is the Erlang-A

model �rst introduced by Baccelli and Hebuterne (1981). In the Erlang-A model, each cus-

tomer has a maximum time she is willing to wait, and she waits in the queue until she either

enters service or reaches her maximum wait time, at which point she abandons the queue.

The maximum wait times are usually assumed to be i.i.d. draws from some distribution,
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commonly the exponential (Gans et al. 2003). Examples of work using the Erlang-A model

include Brown et al. (2005) and Mandelbaum and Momcilovic (2012). Modeling abandon-

ment in this way provides analytical tractability, but does not shed light on the actual drivers

of customer behavior.

An alternative view of queue abandonment is based on customer utility maximization. In

such models, customers are assumed to be forward-looking and balance the expected reward

from service completion against the expected waiting costs. Thus, there are generally three

terms of interest in these models: the reward for service, the instantaneous unit waiting

cost, and the estimated residual waiting time (Mandelbaum and Shimkin 2000, Aksin et al.

2012). Some models also include a discount rate, which adds a fourth term of interest.

One of the key �ndings from this body of literature is that abandoning the queue is not

rational in many M/M/c type queues (Hassin and Haviv 2003). However, since this conclu-

sion does not match well with observation of real queuing systems, there is a rich literature

of studies which modify the basic queue model to generate rational abandonments. For

example, Haviv and Ritov (2001) and Shimkin and Mandelbaum (2004) consider the case of

nonlinear waiting costs leading to abandonment. Mandelbaum and Shimkin (2000) consid-

ers customer abandonment from a system with a possible �fault state� in which service will

never be initiated. Such a fault state can occur in an overloaded multi-class queue, such as

in an ED. If the arrival rate of high priority customers is large enough, the queue becomes

unstable for low priority customers and the wait goes to in�nity (Chan et al. 2011). See

Hassin and Haviv (2003) for a review of assumptions that lead to rational abandonments.

Another possibility is that customers are boundedly rational, meaning that there is some

error in their estimation of the cost of waiting. Bounded rationality has been studied in

several settings, as reviewed by Gino and Pisano (2008). Huang et al. (2012) examines how

bounded rationality a�ects the queue joining decision and Kremer and Debo (2012) �nds

evidence of bounded rationality in queue joining in laboratory experiments. To the best of

our knowledge, bounded rationality has not been studied in regard to queue abandonment.
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A related avenue of active queuing research addresses queues with various levels of informa-

tion. Much of this work is motivated by the call-center industry and determining what in-

formation a call center should provide to its customers. For example, Guo and Zipkin (2007)

compare M/M/1 queue performance when no, partial, and full information is revealed. They

�nd that providing information always either improves throughput or customer utility, but

not necessarily both. Similarly, Jouini et al. (2009) and Armony et al. (2009) both exam-

ine the impact of delay announcements on abandonment behavior in multi-server, invisible

queues and �nd that providing more information can improve system performance with little

customer loss. Plambeck and Wang (2012) shows that if customers exhibit time-inconsistent

preferences through hyperbolic discounting, then hiding the queue may be welfare maximiz-

ing while being suboptimal for the service provider.

The question of what to tell waiting customers has also been explored. Many papers have

focused on developing wait time estimators under various queuing disciplines that can be

used to provide customers credible information (e.g, Whitt 1999b, Ibrahim and Whitt 2011).

Given an estimated wait time distribution, Jouini et al. (2011) explores what value from the

wait time distribution should be provided to the customer to balance the customers' balking

probability with the provider's desire for high throughput. Allon et al. (2011) considers the

�what the to tell customers� question under the assumption of strategic behavior by both

customers and providers.

There are many studies from a variety of �elds that identify drivers of queue abandonment.

While they generally do not explicitly mention the three terms of the utility function, they

can be mapped to this framework to aid in understanding their contributions and di�er-

ences. For example, Larson (1987) discusses such issues as perceived queue fairness and

waiting before or after service initiation, both of which likely impact expected residual time.

Janakiraman et al. (2011) studies the psychological phenomena of goal commitment and

increasing �pain� of waiting which are equivalent to increasing service reward and increasing

waiting costs respectively in the utility framework. Bitran et al. (2008) provides a survey of
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other such �ndings from the marketing and behavioral studies domains.

The medical literature contains several empirical studies on drivers of abandonment from

emergency departments. Demographic factors (e.g., age, income, and race), institutional

factors (e.g., hospital ownership and the presence of medical residents), and operational

factors (e.g., utilization level) have all been shown to in�uence patient abandonment (Hobbs

et al. 2000, Polevoi et al. 2005, Pham et al. 2009, Hsia et al. 2011).

While there are several recent empirical Operations Management papers dealing with queu-

ing systems in the healthcare setting (e.g., Batt and Terwiesch 2013, Berry Jaeker and Tucker

2012, Chan et al. 2012), none have focused on queue abandonment. There are, however, two

recent papers that study queue abandonment empirically, one in a call center and one at a

deli. Aksin et al. (2012) uses a structural model to estimate the underlying service reward

and waiting cost values for customers calling into a bank call center. Under assumptions of

an invisible queue, linear waiting costs, and known exogenous hazard functions, the study

�nds that customers are heterogeneous in their parameter values and that ignoring the en-

dogenous nature of abandonment decisions may lead to misleading results in various queuing

models. Our work di�ers from Aksin et al. (2012) in terms of both setting and methodol-

ogy. Our study setting is a semi-visible, multi-class queue (in the ED, the waiting room is

visible but the clinical treatment area is not) as compared to an invisible multi-class queue.

In terms of methodology, to estimate the latent structural parameters, Aksin et al. (2012)

imposes strong structural assumptions (e.g. known common hazard function, linear waiting

costs, past time is sunk, etc.). In contrast, we are not estimating any structural parameters

and thus we use reduced form models which require fewer structural assumptions.

Lu et al. (2012) examines how aspects of a visible queue, such as queue length and number

of servers, a�ect customer purchase behavior at a grocery deli counter. One of the key

�ndings of this paper is that customers are in�uenced by line length but are largely immune

to changes in the number of servers, even though the number of servers has a large impact

on wait time. Stated di�erently, customers are boundedly rational in that they do not

21



appropriately incorporate all available information into their balk or abandon decisions.

Our work di�ers from Lu et al. (2012) in several ways. First, our setting is more complex.

Lu et al. (2012) examines a fully visible, single-class, FCFS queue as compared to the

semi-visible, multi-class queue in the ED. Second, because our data are richer and more

detailed than in Lu et al. (2012) we are able to examine a broader set of questions regarding

queue behavior and we can do so with fewer inferences about the customer experience. For

example, Lu et al. (2012) must infer if a customer observed the queue, when a customer

observed the queue, and what was the length of the queue observed. In contrast, our data

allow us to know both when a patient entered the queue and what was the queue length at

that moment. Further, we observe the dynamics of the queue during the waiting experience

including arrivals, departures, and the patient mix. Thus we are able to not only con�rm the

key result of Lu et al. (2012) regarding queue length, but we are also able to examine how

the observed �ow and fairness of the queue impacts the abandonment decision. Thus, we

believe our work serves to expand the understanding of the behavior of customers waiting

in line.

3.4. Framework & Hypotheses

The primary purpose of this study is to determine to what extent the visible aspects of

the queue impact the abandonment decision. In the ED, just because the hospital does not

provide queue status information does not mean that the patients are completely without

queue status information. Patients can observe the number of people in the waiting room

and the �ow of patients in and out of the waiting room. Understanding the impact of

these visual cues on abandonment will help identify possible ways to in�uence abandonment

behavior by manipulating the information available to waiting patients. We intentionally

do not address the issue of whether abandonment is good or bad. That depends on the

hospital's objective function and de�ning that is beyond the scope of this paper. However,

we provide a few thoughts on the issue in the discussion section of the paper (Section 3.9).
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We now develop a theory of how patients respond to visible queue elements. Abstracting

from the optimal stopping problem formulation of Aksin et al. (2012), we assume that the

abandonment decision is the result of a patient repeatedly evaluating the following personal

utility function:

Utility = max

E

 Service

Reward

−
 Wait

Cost

×
 Residual

Wait


 , 0

 (3.1)

The service reward is the utility gained from receiving treatment. The wait cost is the

disutility incurred for each unit of wait time. The residual wait is the time remaining

until service is commenced. While all three terms of the utility function may have some

uncertainty or may change over the course of the waiting exposure, we are most interested

in the formation of the expected residual wait time as this is the term that is most clearly

a�ected by the queue evolution. Any information that increases the expected residual wait

will increase the probability of the patient abandoning. Also following Aksin et al. (2012),

we assume that past waiting costs are sunk and are irrelevant for future decisions.

Given that the hospital provides no information regarding the residual wait, the waiting

experience itself is the only source of information that should impact the residual wait

estimate. We categorize the visible queue information into four classes of variables created

by the permutations of two pairs of classi�cations: stocks and �ows, and observed and

inferred (Figure 1). The key �stock� of interest is the waiting room census, while the key

��ows� are the arrivals and departures from the waiting room. By �observed� and �inferred�

we mean that some things can be objectively observed, such as the number of arrivals to the

ED, while others can only be inferred, such as the number of patients in the waiting room

with a higher triage classi�cation than one's own.

Quadrant 1 of Figure 1 contains the only observed stock variable: Census. This waiting

room census is the �rst, and perhaps most salient, visual cue that a waiting patient ob-
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Figure 1: Visible Queue State Variables
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serves. If patients behave according to the Erlang-A model, such that wait time is the only

determinant of abandonment, then waiting room census should have no impact on abandon-

ment, controlling for wait time. However, if patients behave in a utility maximizing way,

then increasing waiting room census likely increases the patient's residual time estimate and

abandonment probability (Guo and Zipkin 2007). This leads to our �rst hypothesis:

Hypothesis 1 Controlling for wait time, abandonment increases with waiting room census.

This relationship between census (queue length) and queue balking/abandoning behavior is

the focus of Lu et al. (2012). We compare our results with Lu et al. (2012) in the sequel.

Quadrant 2 lists the observed �ow variables: Arrivals and two types of Departures (nonjump

and jump, de�ned below). At our study hospital, arrivals and departures are quite easy to

observe if a patient chooses to do so. There is a single entry door for walk-in patients,

and there is a single door that leads into the clinical treatment area. If the ED were a

pure �rst-come �rst-served (FCFS) system, then one would expect arrivals to have little or

no e�ect on abandonment. However, since the ED is a priority-based system, new arrivals

may well jump the line and be served before currently waiting patients. Therefore, arrivals

may cause waiting patients to adjust their residual time estimate upward leading to more

abandonment.

Hypothesis 2A Abandonment increases with observed arrivals.
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We de�ne departures from the waiting room to include only departures to begin treatment

(we address abandonments later). Patients that observe a high departure rate may take

this as a signal that the system is moving quickly and therefore adjust their residual time

estimate downward, leading to less abandonment. However, if a departure is a �jump,� that

is Patient A arrives before Patient B but Patient B enters service before Patient A, then this

provides a mixed signal to Patient A. It signals system speed, which presumably reduces the

residual time estimate. However, the jump departure does not move Patient A any closer to

service, and thus the reduction in residual time estimate is less than for a regular departure.

There may also be a psychological e�ect on Patient A if Patient A views the jump as unfair.

This would increase the (psychological) waiting cost in the utility function and cause Patient

A to be more likely to abandon. These possibilities lead to the following two hypotheses.

Hypothesis 2B Abandonment decreases with observed departures.

Hypothesis 2C Jump departures decrease abandonment less than nonjump departures.

Note that what we refer to as a �jump� is equivalent to what Larson (1987) terms a �slip�

and Whitt (1984) terms �overtaking.�

The above hypotheses consider the patient response to observable stock and �ow variables.

We now consider how patient inferences might modify behavior. While patients may not

have a full understanding of the ED queuing system, they are likely aware that the ED

operates on a priority basis rather than a FCFS basis. In fact, there are multiple placards

in the waiting room explaining this point. Thus, patients may recognize that the presence

of sicker patients can impact their wait time di�erently than less sick patients. However,

since all patient information is kept con�dential, patients can only infer the relative priority

of those around them in the waiting room. Certainly, this is an inexact process at best, but

likely not a pointless endeavor.

As we consider the variables shown in Quadrants 3 and 4, we want to determine if patients are

able to di�erentiate between those who are ahead of and behind them in the priority queue
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and if this a�ects their behavior. While we leave the precise de�nitions of the Quadrant

3 and 4 variables to Section 3.5, the general principle is that each variable is split into

two parts. One part measures those who are ahead in line according to the priority queue

scheme and the other part measures those who are behind the given patient according to the

priority queue scheme. A fully informed, rational patient would respond only to those ahead

of them in the queue since those behind them should not impact the patient's wait time.

For example, observing a larger number of patients in the waiting room of equal or higher

priority than an arriving patient (Census Ahead) should increase abandonment (assuming

Hypothesis 1 is true) while the number of people of lower priority (Census Behind) should

have no e�ect on abandonment at all. However, since patients can only infer the priority

of others, they may make some classi�cation errors and react to those behind them in the

queue. Therefore we state our hypotheses in terms of comparing the e�ects of the ahead

and behind variables.

Hypothesis 3 Abandonment increases more with the census of those ahead in the priority

queue than it does with the census of those behind in the priority queue.

Hypothesis 4A Abandonment increases more with arrivals of those ahead in the priority

queue than it does with arrivals of those behind in the priority queue.

Hypothesis 4B For departures that maintain arrival order (nonjump departures), aban-

donment decreases more with departures of those ahead in the priority queue than it

does with those behind in the priority queue

Hypothesis 4C For departures that violate arrival order (jump departures), abandonment

decreases more with departures of those ahead in the priority queue than it does with

those behind in the priority queue.

For each of these four preceding hypotheses, the null hypothesis is that the e�ect of the

ahead and behind variables is equal. This would occur if patients are unable to reliably

distinguish the relative queue position of the other waiting patients.
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While the above hypotheses focus on visual queue elements impacting the expected residual

wait time and hence the abandonment behavior, another factor that potentially impacts

the residual wait time estimate is the patient experience. Speci�cally, early initiation of

diagnostic testing at triage may in�uence abandonment. Being assigned a test by the triage

nurse may lead to a patient perceiving herself as being of relatively high priority and thus

having a lower residual wait time. There could also be a psychological e�ect, as hypothesized

by Maister (1985), that the perception of wait time is shorter once the patient perceives

service to have started. This leads to our �nal hypothesis:

Hypothesis 5 Abandonment decreases with triage testing.

3.5. Data Description, De�nitions, & Study Design

We now describe the dataset and de�ne the key variables. In the discussion below, the index

t indicates an 15-minute interval in the study period, the index T indicates the patient triage

level, and the index i denotes a patient visit to the ED, not a speci�c patient. Note that

some patients do have multiple visits, and we control for this with clustered standard errors

(described in detail in Section 3.6). Further, because we estimate all models for each triage

class separately, the index i is actually an index within the triage class.

Our data include patient level information on over 180,000 patient visits to the ED includ-

ing demographics, clinical information, and timestamps. Patient demographics include age,

gender, and insurance classi�cation (private, Medicare, Medicaid, or none). Clinical infor-

mation includes pain level on a 1 to 10 scale (10 being most severe), chief complaint as

recorded by the triage nurse, and a binary variable indicating if the patient had any diag-

nostic tests, such as labs or x-rays, ordered at triage. Timestamps include time of arrival,

time of placement in a treatment room, and time of departure from the ED. Table 1 pro-

vides descriptive statistics of the patient population by triage level. We do not study ESI 1

patients because these patients do not abandon. However, we do include ESI 1 patients in

all relevant census measures in the analysis.

27



Table 1: Summary Statistics
ESI 2 ESI 3 ESI 4 ESI 5

Age 49.8 39.0 34.7 34.2
(0.11) (0.07) (0.07) (0.14)

%Female 54% 66% 58% 51%
(0.003) (0.002) (0.002) (0.005)

Pain (1-10) 4.5 5.5 5.4 4.1
(0.03) (0.02) (0.02) (0.04)

%FastTrack 2% 3% 68% 67%
(0.001) (0.001) (0.002) (0.005)

Wait Time(hr.) 1.0 1.9 1.3 1.3
(0.01) (0.01) (0.01) (0.01)

Service Time(hr.) 3.7 4.0 1.8 1.2
(0.02) (0.01) (0.01) (0.01)

Census at Arrival 13.9 11.7 11.9 11.4
(0.06) (0.04) (0.05) (0.09)

%LWBS 1.7% 9.5% 4.7% 7.4%
(0.001) (0.001) (0.001) (0.003)

N 27,538 65,773 39,878 10,509

Means shown. Standard error of mean in parentheses

Empirical analysis on customer abandonment is often confounded by censored or missing

data. Ideally, one would observe each customer's willingness to wait and the actual wait time

if she stayed. However, only the minimum of these two is ever realized (actual wait time or

actual abandonment time), leading to censored data. In the study hospital, abandonment

times are not observed, leading to missing data for all patients who abandon. We know

neither when they left, nor how long their wait would have been had they stayed for service.

We address this missing data problem in two ways. In Section 3.7.1 we follow Zohar et al.

(2002) and take averages across time to estimate the system waiting time. In Section 3.7.2

we use the wait times of similar patients who arrived in temporal proximity to create an

estimated o�ered wait time for those who abandon.

For the regression models, we are interested in how the o�ered wait time impacts the aban-

donment decision. The o�ered wait is the wait time had the patient remained for service

(Mandelbaum and Zeltyn 2013). For patients who do remain, this is their actual wait

(WAITi), which we calculate directly from the timestamps. For patients who abandon, we
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must estimate their o�ered wait (ŴAIT i). We do this by calculating the average of the

wait times of the two chronologically adjacent patients (one before and one after) who did

not abandon . To get a sense of the accuracy of the estimated o�ered wait time ŴAIT i, we

examine the deviation between ŴAITi and WAITi for all patients that did not abandon.

The deviation has a mean of 0.00 and a standard deviation of 1.1 hours. 50% of the values

are are between ±0.3hours, and more than 80% of the values are between ±1hour. Thus,

ŴAIT i appears to be unbiased, and is relatively close to the true value.

We then de�ne the o�ered wait time as follows

OWAITi =


WAITi if patient stays

ŴAIT i if patient abandons

(3.2)

To calculate the waiting room census measure, we divide the study period into 15-minute

intervals labeled t, and we use the patient visit timestamps to generate the census variable

INTERV AL_CENSUSt as the number of patients in the waiting room during interval t.

We also decompose the census measure into the waiting room census of each of the �ve ESI

triage classes (INTERV AL_CENSUSt,T , T ∈ {1, 2, 3, 4, 5}). We assign a census value

to each patient (CENSUSi) based on the time of arrival. For example, for patient i who

arrives at time interval t, CENSUSi = INTERV AL_CENSUSt. We likewise create the

variable BEDSi as the number ED treatment beds in use, which is the number of patients

in the treatment phase of the visit.

In order to test Hypothesis 3, we would ideally decompose CENSUSi into those patients

whom patient i perceives to be more sick and less sick than herself. However, since these

perceptions are not observed by the econometrician, we proxy for them by using the triage

classi�cation of the waiting patients to calculate the census of those ahead of and behind pa-

tient i assuming a priority queue system without preemption that serves patients on a FCFS

basis within a priority level. Therefore, any waiting patient of equal or higher priority (lower
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ESI number) is considered as ahead of the arriving patient (CENSUS_AHEADi), and any

waiting patient of lower priority (higher ESI number) is considered as behind the arriving

patient (CENSUS_BEHINDi). We emphasize that these variables are de�ned for each

patient relative to the given patient's own triage level. For example, for an ESI 3 patient, pa-

tients in the waiting room of ESI levels 1 through 3 are counted in the CENSUS_AHEADi

variable and patients of ESI levels 4 and 5 would be counted in the CENSUS_BEHINDi

variable.

The �ow variables needed to test Hypotheses 2A,B,C and 4A,B,C are constructed based

on the patient timestamps. For each patient visit we calculate the number of arrivals

(ARRIV Ei) and departures (DEPARTi) that occur within one hour of patient i's ar-

rival. Further, we create alternative departure variables NONJUMPi and JUMPi based

on whether the departing patient(s) arrived before or after patient i respectively. As with

the census variable, we also decompose the �ow variables by triage level (ARRIV Ei,T ,

DEPARTi,T , NONJUMPi,T , JUMPi,T , T ∈ {1, 2, 3, 4, 5}).

We split each �ow variable into two parts as follows based on those ahead and behind the

given patient according to the priority queuing scheme.

� ARRIV E_AHEADi: Arriving patients with higher priority than patient i

� ARRIV E_BEHINDi: Arriving patients with equal or lower priority than patient i

� DEPART_AHEADi: Departing patients with equal or higher priority than patient

i

� DEPART_BEHINDi: Departing patients with lower priority than patient i

� NONJUMP_AHEADi: Departing patients with equal or higher priority than pa-

tient i and that arrived before patient i

� NONJUMP_BEHINDi: Departing patients with lower priority than patient i and
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that arrived before patient i

� JUMP_AHEADi: Departing patients with higher priority than patient i and that

arrived after patient i

� JUMP_BEHINDi: Departing patients with equal or lower priority than patient i

and that arrived after patient i

Note that the jump/nonjump language indicates relative arrival timing only, while the

ahead/behind language indicates relative position in the priority queue which is a function

of both arrival timing and priority level.

Once we add these �ow variables to the model, we must restrict the sample to those who have

been in the system some moderate amount of time to allow for observation of the system

�ow. Speci�cally, we restrict the sample to only patients with an o�ered wait of greater than

one hour. Since the �ow variables just described (ARRIV Ei, DEPARTi, NONJUMPi,

JUMPi, etc.) are de�ned as the �ows during the �rst hour after arrival of patient i, we are

e�ectively asking the question, �what is the e�ect of �ow during the �rst hour on patients

who stay at least an hour,� rather than the more broad ideal question of, �how does observed

�ow a�ect abandonment?� This sample restriction reduces the sample size by about half,

and makes a signi�cant �nding less likely.

When we restrict the sample to patients with an o�ered time of greater than one hour it

is possible that those who abandon do so quickly and are not actually in the waiting room

for an hour to observe the �ows. However, if this is the case, this should bias our results

toward the null hypothesis of �ow variables having no e�ect since patients who abandon

quickly would not observe many arrivals or departure. Thus, any signi�cant results are

likely conservative estimates of the impact of the �ow variables.
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3.6. Econometric Speci�cation

We now develop the econometric speci�cations for testing our hypotheses. Since we are

studying the behavior of individuals making a binary choice, we turn to models of binary

choice that can be interpreted in a random utility framework. Such models include logit,

probit, skewed logit, and complimentary log log (Greene 2012, p. 684; Nagler 1994). These

models model the di�erence in utility between two possible actions as a linear combination

of observed variables (xβ) plus a random variable (ε) that represents the di�erence in the

unobserved random component of the utility of each option. Since ε is stochastic, these

models can only predict a probability of choosing one action over the other.

Selecting the best model a priori is di�cult because each has theoretical or practical ad-

vantages and disadvantages which we review in Section 3.8. However, for the coe�cients of

interest, all models come to essentially the same conclusions in terms of which coe�cients

are signi�cant and the signs of those coe�cients. All models also return similar predicted

values over the range of interest. For the body of the paper we present the results from the

probit model because it allows for easy comparison to the bivariate probit models necessary

for some results.

We de�ne the variable LWBSi to equal 1 if patient i abandons and 0 otherwise. We

parametrize the basic probit model as follows

Prob (LWBSi = 1|x) =Φ(β0 + β1OWAITi + β2CENSUSi + β3OWAITi × CENSUSi

+ β4TRITESTi + XiβP + ZiβT)

(3.3)

where Φ(·) represents the standard normal cumulative distribution function. TRITESTi

is a binary variable indicating if any diagnostic tests were ordered for patient i at triage.

Xi is a vector of patient-visit speci�c covariates including age, gender, insurance type, chief
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complaint, and pain level. Zi is a vector of time related control variables including year,

a weekend indicator, indicators for time of day by four-hour blocks, and the interaction

of the weekend and time-of-day block variables. As we examine each of the hypotheses,

we gradually add more variables to the model of Equation 3.3. We estimate the model

separately for each triage level between 2 and 5.

The interaction term OWAITi × CENSUSi is included to allow the marginal e�ect of

OWAIT to vary with CENSUS. If we were using ordinary least squares regression, a

negative interaction coe�cient would indicate that the marginal e�ect of OWAIT is reduced

when CENSUS is high. However, due to the non-linear nature of the probit model, the

interaction coe�cient can not be interpreted in such a straightforward way. We discuss

interpretation further in Subsection 3.7.2.1.

The OWAIT variable is a bit di�erent from all the other variables in the model in that

it is not actually observed by the patient. Even for patients that enter service, the o�ered

wait is not known until service begins, at which point abandoning is not an option. This

variable should be thought of as an exposure variable. The o�ered wait is the maximum

time a patient can spend in the system deciding whether to stay or abandon. The Erlang-A

model is built around this idea that the longer a person is in the system, the higher her total

probability of abandoning. Thus, the OWAIT variable picks up this e�ect, that patients

who are given the opportunity to be in the system longer are more likely to abandon, even

though the actual o�ered wait value is not observed by the patient.

Our identi�cation strategy is based on the assumption that OWAIT and CENSUS are

not perfectly correlated and both contain exogenous variation. Essentially, we rely on the

fact that treatment in the ED is a highly complex process with many �moving parts� (e.g.,

sta�ng levels, auxiliary services, coordination of many tasks and resources, etc.). This leads

to high exogenous variation in treatment times for each patient, and this translates into high

variance in o�ered wait times for waiting patients. This is seen in Figure 2 which shows

the scatterplot of OWAIT and CENSUS (Waiting Room Census at Arrival) for ESI 3
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Figure 2: Scatterplot of O�ered Wait and Load for ESI 3 patients
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patients. Note that for any given level of CENSUS there is a wide range of OWAIT .

A potential concern with this model speci�cation is the collinearity between OWAIT and

CENSUS. The pairwise correlation between OWAIT and CENSUS is 0.72. However,

the Variance In�ation Factors (VIF) for the model in Equation 3.3 range from 3.2 to 8.9

across triage levels, which is below the commonly accepted cuto� of 10 (Hair et al. 1995).

Still, to be conservative, we mean center all stock and �ow variables used in all models.

When we do this for Equation 3.3, the VIFs range from 2.4 to 3.2, which is well within the

acceptable range of collinearity.

When we examine Hypothesis 5, there is a potential endogeneity problem with the inclusion

of the dummy variable indicating whether diagnostic tests were ordered at triage. The

concern is that triage testing is not randomly assigned, but rather is assigned by a triage

nurse based on the condition of the patient. As discussed in Batt and Terwiesch (2013), it

is possible that there are unobserved variables, for example pallor, that are common to, or

at least correlated with, both the triage test decision and the abandonment decision. For
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example, a patient who arrives feeling terrible and looking terrible might be more likely to

receive triage testing and less likely to abandon. This can bias not only the estimate of the

coe�cient of the triage test variable in the abandonment model, but can also bias all of the

estimated coe�cients.

We control for potential correlated omitted variables with a simultaneous equation model

such as the bivariate probit model (Greene 2012). This model parametrizes both the triage

test decision and the abandonment decision as simultaneous, latent-variable probit models

as follows:

TRITEST ∗
i =β1,0 + β1,1CENSUSi + β1,2BEDSi + Xiβ1,P + Ziβ1,T + ε1,i

TRITESTi = 1 if TRITEST ∗
i > 0, 0 otherwise

(3.4)

LWBS∗
i =β2,0 + β2,1OWAITi + β2,2CENSUSi + β2,3OWAITi × CENSUSi

+ β2,4TRITESTi + Xiβ2,P + ZiβT2,T + ε2,i

LWBSi = 1 if LWBS∗
i > 0, 0 otherwise

(3.5)

Xi and Zi are speci�ed as before in Equation 3.3. ε1 and ε2 are assumed to be standard

bivariate normally distributed with correlation coe�cient ρ. If ρ = 0, this indicates that

the control variables are adequately controlling for the endogenous triage testing and the

models can be estimated separately without signi�cant bias.

Because approximately 60% of the patients in our data have multiple visits to the ED

during the study period, we use the Huber/White/sandwich cluster-robust standard errors

clustered on patient ID (Greene 2012). This adjusts the covariance matrix for the potential

correlation in errors between multiple visits of a single individual. It also adjusts for potential

misspeci�cation of the functional form of the model. We �nd that this adjustment has very

little e�ect on the results.
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Figure 3: Pr(LWBS) vs. Wait Time
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3.7. Results

3.7.1. Overview Graphs

Following the example of Zohar et al. (2002), we begin by using scatter plots to visualize

the relationship between abandonment and wait time. If patients behave in accordance with

the Erlang-A model such that wait time is the sole determinant of abandonment, then there

should be a linear increasing relationship between expected wait time and probability of

abandonment (Brandt and Brandt 2002, Zohar et al. 2002). Figure 3 shows the relationship

of the probability of LWBS to the mean completed waiting time. Each dot represents a

given year/day-of-week/hour-of-day combination. For example, one of the dots represents

the mean wait and LWBS proportion of patients that arrived on Tuesdays of 2009 during the

4pm hour. Each graph has approximately 504 points (3 years × 7 days × 24 hours=504).

However, points that represent less than 10 observations have been dropped. For example,

there are not many ESI 5 patients at 4am on Mondays and that point has been dropped.

Each subplot of Figure 3 is for a single triage or ESI level. In summary, each dot shows the
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average wait time and percent of people who abandoned for patients that arrived at a given

year/day/hour.

We observe several interesting features in Figure 3. First, there is a linear increasing trend for

all triage levels (See Table 2 for the slope of a linear best-�t line.). While this is as expected,

it is di�erent from Zohar et al. (2002), in that Zohar et al. (2002) �nds the surprising result

that the probability of abandonment does not increase with expected wait (the linear �t is

�at). This suggests that customers become more patient when the system is busy. We �nd

no such evidence in the ED.

Table 2: Model Fit Measures of Regressing Pr(LWBS) on Wait Time
Slope RMSE R2

ESI 2 0.021 (0.002) 0.016 0.238
ESI 3 0.057 (0.001) 0.026 0.874
ESI 4 0.064 (0.003) 0.033 0.598
ESI 5 0.079 (0.005) 0.071 0.369

Secondly, the slope of the linear �t decreases with acuteness (Table 2). This suggests that

sicker patients are less in�uenced by wait time, as one would expect.

The third feature we observe in Figure 3 is that the dispersion from the linear trend decreases

with acuteness. Table 2 quanti�es this e�ect by the root mean squared error (RMSE) for

linear regressions for each of the graphs in Figure 3. Further, from the R2 values in Table 2,

we conclude that mean wait time is a very good predictor of abandonment probability for ESI

3. However, for ESI 4 and 5 patients, there appear to be other factors driving abandonment

beyond just wait time. ESI 2 appears somewhat di�erent. While ESI 2 displays a positive

linear trend with little dispersion (signi�cant positive slope and low RMSE), the model has

the lowest R2 further indicating that wait time explains very little of the the variation in ESI

2 abandonment probability. These di�erences in response across triage levels are particularly

noteworthy when we recall that patients are not informed of their triage classi�cation. Thus,

the ESI triage system is doing a remarkable job of classifying people not only by medical

acuity, but also by queuing behavior.
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Given that wait time only partially explains the observed abandonment behavior, we now

turn to patient-level regression models to better understand the operational drivers of aban-

donment.

3.7.2. Regression Analysis

The graphs in Section 3.7.1 are based on means calculated by aggregating across year/day/hour

combinations. We now shift to patient-level analysis and use the binary-outcome probit re-

gression models described in Section 3.6 to examine the hypotheses. Working at the patient

level allows us to control for patient speci�c covariates such as age, gender, and insurance

class, that we can not do as easily with the consolidated data in Section 3.7.1. For clarity,

we focus on results for triage level ESI 3 in Subsections 3.7.2.1 and 3.7.2.2. We select ESI

3 because it has the largest number of observations, the highest abandonment rate, and

the largest spread of wait times. We present comparisons across triage levels in Subsec-

tion 3.7.2.3, and in Subsection 3.7.2.4 we examine the impact of triage testing on all triage

levels.

3.7.2.1 Observed Variables

Model 1 of Table 3 shows the results of estimating Equation 3.3 on the full sample. Probit

coe�cients are di�cult to interpret directly since they represent a change in the linear z-score

predictor due to a change in an independent variable. The �rst-order terms of O�ered Wait

and Census are positive and signi�cant (β1, β2 > 0), but the negative interaction coe�cient

(β3 < 0) makes it di�cult to draw conclusions about hypotheses by inspection of the table.

Estimated marginal e�ects and predicted values are more informative.

Because the model is nonlinear, the marginal e�ect of a covariate on the predicted probability

is a function of not only the coe�cients but also of the value of all the other covariates. To get

a sense of the magnitude of e�ects, we calculate the mean marginal e�ect (across patients)

of both the o�ered wait and census variables at their respective median values of 1.3 hours
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Table 3: E�ect of Wait Time, Census, and Flow on Pr(LWBS) [ESI 3]
(1) (2) (3) (4)

O�ered Wait (hr.) 0.20∗∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(0.00) (0.01) (0.01) (0.01)
Census 0.07∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.00) (0.00) (0.00) (0.00)
Wait x Census -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00) (0.00) (0.00)
Arrivals 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Depart(all) -0.03∗∗∗

(0.00)
Depart(nonjump) -0.03∗∗∗

(0.00)
Depart(jump) -0.01

(0.01)

N 65,622 35,855 35,855 35,855
BIC 32,767 28,780 28,721 28,729

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Triage Test, Year, Weekend×Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

39



and 10 people. In Model 1, the predicted probability of abandonment increases by 2.0

percentage points with a one hour increase in o�ered wait. The marginal e�ect of observing

an additional person in the waiting room when a patient arrives is a 0.5 percentage point

increase in abandonment for ESI 3 patients. We can alternatively describe the marginal

impact of an additional person in the waiting room as being equivalent to a 15 minute

increase in o�ered wait. This supports Hypothesis 1 and shows that the Erlang-A model

alone does not fully explain abandonment behavior. If it did, census should have no e�ect,

controlling for wait time.

The marginal e�ect of waiting room census ranges from 0.1 to 0.4 percentage points for the

other triage levels. Lu et al. (2012) estimates that a �ve person increase in queue length leads

to a three percentage point drop in deli purchase incidence. This is equivalent to a marginal

e�ect of 0.6 percentage points per person in line, and is quite close to our estimated marginal

e�ect of 0.5 percentage points per person in the ED queue. This similarity in magnitude

is somewhat surprising since waiting at the ED for medical care and waiting at the deli for

cold cuts serve very di�erent purposes and presumably generate markedly di�erent levels of

utility for the patients/customers.

Figure 4 shows the predicted abandonment probabilities at three levels of o�ered wait and

census. O�ered Wait is on the x-axis and the three test points (0.11, 1.29, 5.30 hours) are

the 10th 50th, and 90th percentiles for ESI 3 patients. Each line on the graph represents

the predicted probability of abandonment for a given census level. The three lines are the

10th, 50th, and 90th percentile census levels (1, 10, and 25 people respectively). The error

bars represent the 95% con�dence interval for the prediction. The upward slope of all of

the lines conforms to the standard theory that longer waits lead to increased probability

of abandonment. The vertical separation of the lines, however, indicates that patients are

responding to the census level as well as the wait time. For example, a patient that arrives

when the waiting room is relatively empty and experiences a 1.29 hour wait has a predicted

probability of abandonment of 2%. However, if the waiting room is relatively crowded
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Figure 4: Predicted Pr(LWBS) as a function of O�ered Wait and Census
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and all other covariates are held constant, the same patient has a predicted probability of

abandonment of 19%. Thus, Figure 4 shows that patients respond to both increasing o�ered

wait and waiting room census with increased abandonment.

The large gap between the median and 90th percentile census levels even for very short waits

suggests that large crowds lead to rapid abandonment even when the actual wait time is

low. This also explains why the slope of the 90th percentile census line is relatively �atter.

People are likely abandoning sooner and are not remaining in the system to be impacted by

the experienced wait. In other words, the impact of wait time is lower when the census is

high. In contrast, for low to mid census levels, the e�ect of long wait times is larger.

To examine Hypothesis 2A, Hypothesis 2B, and Hypothesis 2C, we now include �ow variables

in the analysis. Recall that to do so we restrict the sample to those patients with an o�ered

wait of greater than one hour, which reduces the sample size by almost half. Model 2 of

Table 3 is the same as Model 1 (Equation 3.3) but with the restricted sample. We include

it merely for comparison.
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Model 3 of Table 3 adds in variables for the number of arrivals to the ED and for the num-

ber of departures into service. The positive and signi�cant coe�cient on arrivals supports

Hypothesis 2A that arrivals lead to more abandonments. The coe�cient on departures is

signi�cant and negative. This supports Hypothesis 2B that observing departures leads to

reduced abandonment, presumably because waiting patients view these departures as a good

sign of processing speed and progress towards service.

Model 4 of Table 3 splits the departures variable into nonjump and jump departures. The

coe�cient on nonjump departures is signi�cant and negative while the coe�cient on jump

departures is insigni�cant. This continues to support Hypothesis 2B and suggests that Hy-

pothesis 2C is correct. The insigni�cant e�ect of jump departures shows that any positive

information about system speed is negated by the fact that the patient is getting jumped and

is not moving closer to the head of the line. A one-sided z-test comparing the nonjump and

jump coe�cients con�rms Hypothesis 2C and shows that the jump departures coe�cient is

larger (less negative) at a 94% con�dence level. In terms of marginal e�ects, observing an

arrival increases abandonment by 0.3 percentage points and observing a nonjump departure

reduces abandonment by 0.6 percentage points. Figure 5 shows these same marginal e�ects

in wait time equivalents. For example, observing an additional arrival per hour leads to the

same increase in abandonment as an additional nine minutes of o�ered wait time. Simi-

larly, observing a nonjump departure has the same impact on abandonment as a 19 minute

reduction in o�ered wait.

In summary, patients respond to what they observe and the magnitudes of their responses

are similar in magnitude to 10 to 20 minutes of waiting time.

3.7.2.2 Inferred Variables

We now consider inferred system state variables. We are looking for evidence of patients

behaving di�erently in the presence of patients that are ahead of or behind themselves in the

priority queue structure. In practice, patients are not given any information about their own
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Table 4: E�ect of Wait Time and Census on Pr(LWBS) [Probit, ESI 3]
(1) (2)

O�ered Wait (hr.) 0.19∗∗∗ 0.11∗∗∗

(0.00) (0.01)
Census(Ahead) 0.09∗∗∗ 0.08∗∗∗

(0.00) (0.00)
Census(Behind) 0.02∗∗∗ 0.01∗

(0.00) (0.01)
WaitxCensus(Ahead) -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00)
WaitxCensus(Behind) -0.00∗∗∗ -0.00

(0.00) (0.00)
Arrivals(Ahead) 0.05∗∗∗

(0.01)
Arrivals(Behind) 0.00

(0.00)
Depart(Nonjump-Ahead) -0.03∗∗∗

(0.00)
Depart(Nonjump-Behind) -0.01∗

(0.01)
Depart(Jump-Ahead) -0.06∗∗∗

(0.02)
Depart(Jump-Behind) -0.01

(0.01)

N 65,622 35,855
BIC 32,626 28,611

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Triage Test, Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01
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Figure 5: Magnitude of Marginal E�ect in Equivalent Minutes of O�ered Wait
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priority level or other patients' priority levels. If patients truly have no information about

the priority of those around them then one would expect the ahead and behind components

of each queue status variable to have indistinguishable coe�cients.

Model 1 in Table 4 is analogous to Model 1 in Table 3 but with the census variable split

into ahead and behind components as described in Section 3.5. It is estimated on the

full sample. A one-sided z-test shows that the Census(Ahead) coe�cient is larger than

the Census(Behind) coe�cient. A Wald test of the marginal e�ects of Census(Ahead) and

Census(Behind) con�rms that patients respond more strongly to an increase in the census

ahead than an increase in the census behind. This is all evidence in support of Hypothesis 3.

The BIC of Model 1 in Table 4 is smaller than the BIC of Model 1 in Table 3 indicating

that splitting the census into its ahead/behind components improves the �t of the model.

Model 2 in Table 4 is analogous to Model 4 in Table 3 but with the census and �ow variables

split into their respective ahead and behind components. We compare the coe�cients of
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Figure 6: Magnitude of Marginal E�ects in Equivalent Minutes of O�ered Wait
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each ahead/behind pair and �nd that the values are signi�cantly di�erent and that the

ahead component always has a larger magnitude than the behind component. This supports

Hypothesis 4A, Hypothesis 4B, and Hypothesis 4C. Lastly, Model 2 in Table 4 has a smaller

BIC than Model 4 in Table 3 indicating a better model �t with the stock and �ow variables

split into ahead/behind components.

Like Figure 5, Figure 6 shows the marginal e�ects of the split stock and �ow variables in

terms of equivalent wait time minutes. The marginal e�ect of the ahead component of each

variable is much larger than of the behind component, and the magnitude of the e�ects

on this subsample is much larger than for the full sample. We note that while the point

estimates of the Depart(nonjump)Ahead and Depart(jump)Ahead seem quite disparate (-25

minutes and -45 minutes), they are statistically indistinguishable at the 10% level.

These results show that waiting patients respond quite di�erently to the presence and move-

ment of patients of relatively higher and lower priority. The observed behavior is consistent

with the idea that patients anticipate that it is largely the patients ahead of them in the
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queue that interfere with their experience. While the directions of the e�ects are all as ex-

pected, this result is noteworthy because it shows that patients are indeed inferring relative

priority information by observing the other patients.

We create a proxy measure of patients' classi�cation accuracy by constructing the ratio

θ =
βAHEAD

βAHEAD + βBEHIND
(3.6)

Let βAHEAD be the estimated coe�cient of one of the Ahead variables in Table 4 and let

βBEHIND be the estimated coe�cient of the matching Behind variable. If patients believe

that those behind them in line have no impact on residual wait time and if patients were

perfect at classifying those ahead and behind, then βAHEADwould be non-zero, βBEHIND

would be zero and θ would be unity. If, however, patients had no ability to discern those

ahead and behind, then βAHEAD would equal βBEHIND and θ would equal 0.5 indicating

that a patient's ability to classify other patients was no better than a coin toss. For example,

if we focus on Jump Departures in Model 2, βAHEAD = −0.06, βBEHIND = −0.01, Looking

at the other Ahead/Behind variable pairs in Table 4, we see θ range between 0.75 and 1.

While we do not interpret θ as a literal measure of classi�cation accuracy, it does suggest

that patients are doing a fairly good job at classifying the other patients and responding

accordingly.

3.7.2.3 Results Across Triage Levels

Table 5 shows the results of the best �tting model (Model 2 from Table 4) for all triage levels.

The results are similar across triage levels in terms of which coe�cients are signi�cant and the

signs of those coe�cients. At �rst glance, there appear to be two unexpected results for ESI

4 (Model 3). The Census(Behind) coe�cient is larger than the Census(Ahead) coe�cient,

and the Depart(Nonjump-Behind) coe�cient is larger than the Depart(Nonjump-Ahead)

coe�cient. This would seem to suggest that ESI 4 patients are somehow more sensitive to
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Table 5: E�ect of Ahead/Behind variables on Pr(LWBS)
(1) (2) (3) (4)

ESI 2 ESI 3 ESI 4 ESI 5

O�ered Wait 0.14∗∗∗ 0.11∗∗∗ 0.15∗∗∗ 0.00
(0.05) (0.01) (0.02) (0.03)

Census(Ahead) 0.15∗∗∗ 0.08∗∗∗ 0.04∗∗∗ 0.04∗∗∗

(0.02) (0.00) (0.00) (0.01)
Census(Behind) 0.02∗∗ 0.01∗ 0.08∗∗∗

(0.01) (0.01) (0.02)
WaitxCensus(Ahead) -0.02∗∗∗ -0.01∗∗∗ -0.00∗∗∗ -0.00

(0.01) (0.00) (0.00) (0.00)
WaitxCensus(Behind) -0.00 -0.00 -0.01

(0.00) (0.00) (0.01)
Arrival(Ahead) 0.03 0.05∗∗∗ 0.02∗∗∗ 0.02∗∗

(0.17) (0.01) (0.01) (0.01)
Arrival(Behind) 0.01 0.00 0.01 -0.01

(0.01) (0.00) (0.01) (0.03)
Depart(Nonjump-Ahead) -0.08∗∗∗ -0.03∗∗∗ -0.03∗∗∗ -0.03∗∗∗

(0.02) (0.00) (0.01) (0.01)
Depart(Nonjump-Behind) -0.01 -0.01∗ -0.05∗

(0.01) (0.01) (0.03)
Depart(Jump-Ahead) 0.07 -0.06∗∗∗ -0.00 -0.01

(0.22) (0.02) (0.02) (0.02)
Depart(Jump-Behind) -0.06 -0.01 -0.08 0.02

(0.04) (0.01) (0.06) (0.19)

N 8,974 35,855 19,745 5,213
BIC 2,688 28,611 9,568 3,593

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01
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those behind than in front of them. However a Wald test for coe�cient equality shows that

the two census coe�cient are not signi�cantly di�erent at the 10% level, nor are the two

depart coe�cients. Thus, the correct interpretation is that ESI 4 patients do not appear to

di�erentiate between those ahead of and behind in line, at least with regard to census level

and departures.

ESI 5 is the most dissimilar of the four models. First, the variables CENSUS_BEHIND

and NONJUMP_BEHIND are not included in the ESI 5 model because ESI 5 is the

lowest priority level. Second, the O�ered Wait has an insigni�cant e�ect on abandonment

while Census(Ahead) continues to lead to greater abandonment. Without additional data

on actual abandonment times, we are unable to determine if this result is because ESI 5

patients are truly insensitive to waiting time, or because they abandon so rapidly that the

o�ered wait is irrelevant. Either way, it appears that for ESI 5 patients there is not much

value in improving the wait time.

3.7.2.4 Triage Testing

Models 1 through 4 of Table 6 show the results of estimating the basic probit model of

Equation 3.3 for ESI levels 2 through 5. In these models, the Triage Test coe�cient is

negative and signi�cant indicating that those who receive an early diagnostic test order

from the triage nurse are less likely to abandon. However, as described in Section 3.6 there

is an endogeneity concern since triage testing is not randomly assigned. Models 5 through

8 of Table 6 show the results of estimating Equation 3.5 using a bivariate probit model. For

ESI 3 and ESI 4 patients, the estimated correlation coe�cient (ρ) is negative and signi�cant

indicating correlation in the error terms of Equations 3.4 and 3.5. This means that ESI

3 and 4 patients who receive triage testing are inherently more likely to stay. However,

even after controlling for the correlation, triage testing continues to have a signi�cant, albeit

diminished, impact on abandonment, thus supporting Hypothesis 5. This con�rms similar

results reported in Pham et al. (2009). Once the correlation is controlled for, the marginal
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Table 6: E�ect of Triage Testing on Pr(LWBS) (Probit & Bivariate Probit models)
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e�ect of triage testing on abandonment is quite similar across ESI levels 2, 3 and 4, ranging

from -1.3 percentage points to -1.8 percentage points.

The results for ESI 5 patients are slightly di�erent in that the estimated correlation coe�-

cient is positive, albeit insigni�cant (p-value: 0.18). This leads to the estimated coe�cient

on triage testing being larger in magnitude in the bivariate probit model than in the probit

model. For ESI 5 patients, triage testing leads to a 4.3 percentage point reduction in aban-

donment probability, more than double the magnitude of the e�ect for the other triage levels.

This suggests that the behavior of ESI 5 patients is more malleable than is the behavior of

the more acute patients.

Failing to control for an endogenous regressor like triage testing has the potential to bias all

coe�cient estimates in the model. However, Table 6 shows that in our analysis, this does

not appear to be a problem. The coe�cients of the key variables of interest, o�ered wait

and census, remain largely unchanged whether the probit or bivariate probit model is used.

We perform the same bivariate probit analysis (not shown) on the best �tting model for all

triage levels, similar to Table 5, and likewise �nd that while there is evidence of endogenous

triage testing, controlling for it does not alter the estimates of the stock and �ow variable

coe�cients. Thus we conclude that for the purpose of examining the e�ects of wait, census,

and �ows on abandonment, the simpler single equation model is su�cient.

3.8. Robustness of Model Selection

As mentioned in Section 3.6, there are several binary outcome models to choose from: logit,

probit, skewed logit, and complimentary log log. These models di�er in the choice of dis-

tribution of ε which determines the functional form of the response of the prediction to a

change in an independent variable. Choosing either the logistic or the normal distribution

leads to the well known logit and probit models, respectively. Assuming ε follows a com-

plementary log log distribution (F (xβ) = 1 − exp[− exp(xβ)]) leads to the CLL model.

The Burr-10 distribution (Burr 1942) assumes ε is distributed with cumulative distribution
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function F (xβ, α) = 1− 1/ {1 + exp (xβ)}α. As a regression model, it is referred to as the

skewed logistic or scobit model (Nagler 1994). Note that the logit model is a special case of

the scobit model with α = 1.

The logit and probit models are the most commonly used binary models and are quite

similar, especially in the middle of the probability range. The logit has the further advantage

of coe�cients that can be immediately interpreted as impacts on odds-ratios. One advantage

of the probit model is that it can be easily adapted to control for an endogenous regressor

if necessary.

However, the logit and probit models are symmetric about xβ = 0, which imposes the

restriction that observations with predicted probabilities close to 0.5 are most impacted by

a change in the linear predictor. Since abandonment is a rare event (less than 10% of arrivals

result in abandonment), the asymmetric cloglog and scobit models likely provide a better

�t. Unlike the logit and probit models, the asymmetric models have a di�erent �t depending

on whether staying or abandoning is coded as �success.� Thus we have at least six models

to consider: logit, probit, CLL coded two ways, and scobit coded two ways.

Table 7 compares six such model speci�cations for the baseline model with o�ered wait,

census, and the interaction for ESI 3 (cross-reference Table 3, Model 1). The top panel of

the table shows estimated coe�cients for the variables of interest. The middle panel shows

marginal e�ects of the variables of interest at their respective medians. The bottom panel

gives model �t statistics. We see that all the models are similar in terms of �t as indicated

by both the log-likelihood and the BIC. The scobit (LWBS=1) model provides the best �t.

Comparing coe�cient estimates across models is of limited use since the models are parametrized

di�erently. However, we do see that all coe�cients are signi�cant and the signs are all in

agreement. Further, comparing coe�cients of the two versions of the cloglog model and the

scobit model we see that the coe�cients are dramatically di�erent depending on whether

stay or LWBS is coded as �success.� This indicates that the data is skewed to one side, as
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Table 7: Comparing Binary Response Models [ESI 3]
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expected.

Comparing marginal e�ects, we see again that the models all give similar results. A one hour

increase in o�ered wait leads to a two to three percentage point increase in abandonment,

or alternatively, a ten minute increase in o�ered wait leads to a 0.3 to 0.4 percentage point

increase. A one unit increase in census leads to a 0.4 to 0.6 percentage point increase in

abandonment. Note that the probit model, which we use for the presentation of main results

in Section 3.7.2, underestimates the marginal e�ect of o�ered wait and census relative to

the better �tting models. Thus, the results presented are conservative.

3.9. Discussion & Future Work

This study contributes to the understanding of customer waiting behavior by examining

the queue abandonment behavior of patients waiting for treatment at a hospital emergency

department. The essence of our contribution is in providing evidence that waiting customers

glean information from watching the queue around them and update their utility function

in response. Ours is among the �rst works to show customers responding to the actual

functioning of the queue. We expand on prior work showing that the queue length (waiting

room census, in our study) impacts behavior separate from wait time. This shows that in

queues that are at least partially visible, the Erlang-A model does not fully capture aban-

donment behavior. Beyond just the queue length, we �nd that patients respond to other

visual aspects of the queue in very sophisticated ways. For example, patients increase aban-

donment in response to observing arrivals, presumably because waiting patients recognize

that the queue is not FCFS and the new arrivals may be served �rst. Further, waiting

patients infer the relative priority status of those around them and respond di�erently to

those more sick and less sick. For example, we �nd that the arrival of sicker, higher priority

patients increases abandonment of those already waiting more so than does the arrival of

less sick, lower priority patients. Waiting patients likely recognize that it is the sicker pa-

tients that will generally be served �rst. Lastly, we show that patients who have diagnostic

tests ordered during triage are less likely to abandon. All of these e�ects are consistent
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with patients updating their expected residual wait time in response to what they observe

and experience. This is managerially relevant for any organization that wants to manage

customer abandonment.

Throughout this work, we have intentionally avoided making any assumptions about the

�optimal� level of abandonment. To do otherwise would require de�ning the hospital's ob-

jective function, but the hospital's objective is not at all clear. Revenue maximization would

suggest eliminating abandonment and serving everyone who walks in the door. Likewise, a

belief in a social obligation to serve all comers leads to a desire to eliminate abandonment.

Social welfare maximization would suggest providing full information if the hospital believes

that patients can accurately evaluate their own utility. However, if the hospital believes

that patients are boundedly rational or can not accurately assess their need for treatment,

then the hospital may withhold information. Lastly, pro�t maximization would suggest se-

lectively serving only the most pro�table patients while somehow avoiding serving the less

pro�table ones.

In our study hospital, the expressed objective is to minimize abandonment, largely out of a

sense of duty to serve anyone seeking care. This is also a reasonable objective because the

Centers of Medicare and Medicaid Services will soon require hospitals to report ED perfor-

mance measures such as median wait time, median length of stay, and LWBS percentage

(Centers for Medicare & Medicaid Services 2012). Eventually, target values will be estab-

lished and hospitals will be reimbursed based on their performance relative to the targets.

Thus, hospitals will be looking to reduce abandonment at least to the target levels.

If we take minimization of abandonment to be the goal, then the managerial implication

of our results is that the status quo of providing no information to the patients may not

be optimal. Patient abandonment increased substantially with queue length, regardless of

wait time, and thus either hiding the queue or providing more queue information may serve

to reduce abandonment. The hospital could hide the queue by providing separate waiting

rooms for each triage level, or it could provide more information in the form of a wait
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time estimate or a queue status display board. Another implication of our results is that

early initiation of service tends to reduce abandonment. Thus, the hospital could be more

aggressive in ordering tests, perhaps even placebo tests, at triage.

Future work should use these �ndings to motivate and inform a series of controlled experi-

ments. For example, it would be interesting to compare the e�ectiveness of providing more

queue information versus obscuring information. Presumably, obscuring the queue would

shift the behavior toward that of an invisible queue, such as a call center, but this should

be explored empirically. Lessons learned from such experiments will serve to improve both

ED management and our general understanding of human queuing behavior.
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CHAPTER 4 : Doctors Under Load: An Empirical Study of State-Dependent

Service Times in Emergency Care1

4.1. Introduction

The Operations Management community has long been concerned with how crowding a�ects

the performance of queuing systems. Basic queuing theory shows that crowding and high

utilization of queues lead to exponentially increasing wait times. Since long waits are gen-

erally undesirable, it seems reasonable that, when possible, workers in human-paced service

systems would attempt to accelerate the system, a phenomenon we call Speedup. Indeed,

this has been shown to be true both in the lab and in practice (Schultz et al. 1998, Kc and

Terwiesch 2009, Chan et al. 2011). These papers show that workers in settings as varied as

data-entry and hospital intensive care units accelerate service under high load conditions.

In contrast, in domains such as transportation and telecommunications, high load conditions

are well known to lead to service time increases or Slowdown (Chen et al. 2001, Gerla and

Kleinrock 1980). A hallmark of Slowdown-prone systems is that service involves shared

resources and/or servers that are not independent. For example, a highway lane is a shared

resource for all the cars traveling in it and its performance can also be impacted by the tra�c

in adjacent lanes. Likewise, each node in a telecom network is a shared resource for many

users, and it can be impacted by spillover from other nearby nodes (Gerla and Kleinrock

1980).

We bring these two viewpoints together by empirically analyzing a service system where both

Speedup and Slowdown e�ects are present: a hospital emergency department (ED). The ED

provides an excellent study environment for several reasons. First, the service (medical care)

is provided by humans and as such is worker paced. Further, the required work for each

patient is largely determined by the server (nurse or doctor) and the patient has limited

1This chapter is based on Batt, Robert J., Christian Terwiesch. 2013 �Doctors Under Load: An Empirical
Study of State-Dependent Service Times in Emergency Care.� Working Paper.
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Figure 7: Service Time as a Function of Census
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knowledge of his or her own needs. This creates an environment in which the servers have

a great deal of discretion over the encounter. This freedom can be used to alter both the

service content (the speci�c tasks performed for the patient) and the service time (the total

time to complete all tasks). Lastly, the ED is interesting because it is a complex service

environment with many shared resources (nurses, doctors, equipment, hallways, laboratory,

etc.). This suggests that the ED is prone to Slowdown.

Figure 7 previews our data, and motivates our study of Speedup and Slowdown mechanisms.

The �gure plots the mean service time of ED patients that arrive during second shift (3pm

to 11pm) as a function of the waiting room census. Here, and throughout the paper, we

de�ne service time to be the time from when a patient is placed in a treatment bed to when

treatment in the ED is complete as indicated by the patient either departing to go home

or an inpatient bed request is placed in preparation for admission to the hospital. Thus

service time does not include any time spent in the waiting room. The �gure shows that

mean service time rises from about 3.2 hours to 3.9 hours and then falls to 3.3 hours as the

waiting room census ranges from low to high. If Speedup and Slowdown e�ects are monotone
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in census level, then the non-monotone form of Figure 7 suggests that both Speedup and

Slowdown are at work in the ED.

Prior empirical work on state-dependent service times has largely focused on the presence

of state-dependent service times but not the mechanisms generating the state dependencies.

In this paper, we identify and test for several state-dependent mechanisms including task

reduction, early task initiation, multitasking, and interference. The �rst two are Speedup

mechanisms and the latter two are Slowdown mechanisms.

Our study hospital has the additional feature of an �express lane� or FastTrack (FT) for low-

acuity patients that is open only certain hours of the week. The FT is partially isolated from

the rest of the ED operations; it uses dedicated treatment rooms and care providers. How-

ever, it relies on the same auxiliary services, such as the pathology lab and x-ray machines,

as the main ED. We compare the e�ects of crowding on the ED and the FT.

We conduct a detailed econometric analysis of the service times and service content during

more than 100,000 emergency department visits at a major U.S. hospital. We observe

patient-level characteristics (age, gender, race, etc.) as well as timestamps of the progress

of each visit including patient location and all laboratory, radiology, and medication orders.

Survival analysis techniques are used to estimate the e�ects of Slowdown on service time

and several common tasks. Count model regression techniques are used to identify various

forms of service Speedup. Lastly, we use discrete event simulation to determine if these

state-dependencies have a meaningful impact on the system. This research design allows us

to make the following four contributions:

1. We examine several common ED tasks and �nd evidence of Slowdown in all. For

example, time to �rst order (a measure of doctor speed) and medication delivery time

time (a measure of nurse speed) increase by 26% and 11% respectively under high

load.

2. We test for two Speedup mechanisms: early task initiation and task reduction. We
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�nd strong evidence of early task initiation with the expected number of triage tests

increasing from 0.3 to 0.9 in the ED. We �nd only limited use of task reduction in the

ED, while task reduction is more common in the FT.

3. We show that the net e�ect of Speedup and Slowdown is di�erent in the ED and the FT.

In the ED, service time �rst increases then decreases with load as the relative strength

of Speedup and Slowdown mechanisms shifts. In the FT, Speedup and Slowdown

balance out leading to little change in service time with increased crowding.

4. We show that models which ignore the state-dependent service times overestimate the

system utilization and congestion.

These �ndings o�er several operational insights for managers. For example, we show that

implementing early task initiation by increasing the number of tests ordered at triage is

an e�ective way to reduce service time. This suggests that care providers should consider

incorporating state-dependencies into ED care protocols. For both the healthcare domain

and other domains, our �ndings show that understanding the micro-level mechanisms behind

state-dependent service rates is important for properly modeling service systems where the

server has discretion over the service speed and the service content. Our results, particularly

regarding task reduction and task time increases, suggest an operational explanation for the

many studies that have shown a link between crowding and reduced clinical quality in the

ED (e.g., Fee et al. 2007, Pines and Hollander 2008). However, in this paper we remain

focused on the e�ect of crowding on service time.

4.2. Clinical Setting

Our study is based on data from a large, urban, teaching hospital with an average of 4,700

ED visits per month over the study period of January, 2009 through December, 2011. The

ED has 25 treatment rooms and 15 hallway beds for a theoretical maximum treatment

capacity of 40 beds. However, the actual treatment capacity at any given moment can

�uctuate for various reasons. The hospital also operates an express lane or FastTrack (FT)
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for low acuity patients. The FT is generally open from 8am to 8pm on weekdays, and from

9am to 6pm on weekends. The FT operates somewhat autonomously from the rest of the

ED in that it utilizes seven dedicated beds and is usually sta�ed by dedicated group of

Certi�ed Registered Nurse Practitioners (CRNP) rather than Medical Doctors (MD)2 .

In our analysis, we focus solely on patients that are classi�ed as �walk-ins� or �self� arrivals,

as opposed to ambulance, police, or helicopter arrivals. This is because the walk-ins go

through a more standardized process of triage, waiting, and treatment, as described below.

In contrast, ambulance arrivals tend to jump the queue for bed placement, regardless of

severity, and often do not go through the triage process or wait in the waiting room. More

than 70% of ED arrivals are walk-ins. Note, however, that the non-walkin patients are

included in the relevant census measures.

The study hospital operates in a manner similar to many hospitals across the United States.

Upon arrival, patients are checked in and an electronic patient record is initiated for that

visit. Only basic information (name, age, complaint) is collected at check-in. Shortly there-

after, the patient is seen by a triage nurse who assesses the patient, measures vital signs,

and records the o�cial chief complaint. The triage nurse also assigns a triage level which

indicates acuity. The hospital uses a �ve-level Emergency Severity Index triage scale with 1

being most severe and 5 being least severe. The triage nurse also has the option of ordering

pathology lab tests (e.g., urinalysis, blood test) and certain types of radiology imaging scans

(e.g., x-rays).

After triage, all patients wait in a common waiting room to be taken to a treatment room.

Patients are called for service when a treatment bed is available. If only the ED is open,

patients are generally (but not strictly) called for service in �rst-come-�rst-served (FCFS)

order by triage level. If the FT is open, then the FT will serve triage level 4 and 5 patients

2We interchangeably use the term ED to refer to the entire Emergency Department inclusive of the
FastTrack or to just the main emergency department treatment area exclusive of the FastTrack. The use
is generally clear from the context, but we use the term �main ED� to clarify and indicate the primary ED
treatment space when necessary.
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in FCFS order by triage level and the ED will serve patients of triage levels 1 through 3 in

FCFS order by triage level. These routing procedures are �exible, however. For example,

the ED might serve a triage level 4 patient if the patient has been waiting a long time and

there are not more acute patients that need immediate attention. Similarly, the FT might

serve a triage level 3 patient if the patient has been waiting a long time and the patient's

needs can be met by the nurse practitioners in the FT. The mean and median wait times

for ED patients are are 1.6 hours and 0.84 hours, respectively. The mean and median wait

times for FT patients are 1.1 hours and 0.9 hours, respectively.

Patients served by the main ED are eventually assigned to a treatment room by the charge

nurse.3 This marks the beginning of the service time. Soon after being moved to a treatment

room, a physician meets with and examines the patient.4 At this point, the physician

generates a mental list of possible diagnoses, called a di�erential diagnosis, and decides the

trajectory of the diagnosis and treatment process. Frequently, orders for diagnostic tests,

medications, or both are made at this point. All lab test, radiology scan, and medication

orders are recorded electronically in the patient tracking system, but orders are frequently

conveyed orally to the nurses as well.

Lab specimens are drawn by the nurse and most are sent to the hospital's central pathology

lab by pneumatic tube for processing. A small subset of pathology tests are performed

locally in the ED by the nurse. Similarly, the nurse is responsible for delivering medications

to the patient. When the nurse �nishes either of these tasks, the order is closed out and

timestamped in the electronic patient record. Orders for radiology scans trigger a patient

transport request. Transporters work in a �rst-come-�rst-served manner through the request

queue to transport patients to the appropriate scanner and then back to the treatment room.

Eventually, the physician decides that either the patient can leave or the patient needs to

3The treatment location is sometimes a hallway bed rather than a room, but we use the word �room� for
ease of exposition.

4Because the study hospital is a teaching hospital, a medical student or a resident physician may also be
involved in the care of the patient.
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be admitted. If the patient is to be admitted, a bed request is entered in the inpatient bed

management system. At this point, ED service is considered complete. The patient waits for

an available inpatient bed and is considered a �boarder� in the ED. This boarding period can

be quite long with a mean of 3.6 hours. During this time, the patient continues to occupy

a treatment room and requires some attention from the nursing sta�, but the physician is

e�ectively done with the patient. The number of boarding patients in the ED ranges from

zero to 20 with a mean of six. For patients that are discharged, service time ends when the

patient leaves the ED. Mean service time for admitted and discharged patients is 3.6 hours

and 3.8 hours respectively.

For patients served by the FT, the care process is quite similar to that in the ED, except

with a dedicated group of rooms and providers. Once in a treatment room, the care provider

evaluates the patient, orders any necessary tests and medicines, and attempts to provide

treatment as rapidly as possible. Just as in the ED, all lab test, radiology scan, and med-

ication orders are recorded electronically in the patient tracking system. One di�erence

between the FT and the ED is that there is a less clear demarcation between provider and

nurse tasks. For example, a CRNP treating a FT patient may order and deliver medications

him or herself, whereas in the ED, the doctor would order the medicine and the nurse would

deliver it. However, as in the ED, FT labs are generally drawn by a nurse and scan orders

enter the same transport queue as the ED patients. When treatment is complete, the patient

is discharged. In rare cases, the FT provider can reroute the patient to the ED or admit the

patient to the hospital. Mean service time for FT patients is 1.3 hours.

4.3. Framework & Hypotheses

We are interested in examining the mechanisms of state-dependent service times at the server

level. We begin with the assumption from classical queuing theory that the service time

distribution is not a�ected by the system state (Wol� 1989). However, as seen in Figure 7,

it appears that this assumption is false in our setting, and that there is a dependence

between the system state and the service time. Similarly, Armony et al. (2012) includes
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an empirical examination of an ED at the system level and �nds evidence of both Speedup

and Slowdown. However, in contrast to what we show in Figure 7, Armony et al. (2012)

�nds that the ED �rst speeds up and then slows down as load increases from low to high.

Armony et al. (2012) muses (but does not test) that Speedup may be the result of rushing

as care providers respond to a mild increase in congestion, and that Slowdown could also

be caused by factors such as fatigue, shared resources being spread thin, or nurses having

to devote too much time to caring for boarding patients.

We posit that there are several mechanisms that may be at work and that these can be

classi�ed by the direction of their impact on service times and by the number of resources

involved. In the following we describe these mechanisms, their related prior research, and

the hypotheses they motivate.

4.3.1. Slowdown

We focus �rst on Slowdown, or mechanisms that increase service time. Prior literature has

shown that both fatigue and multitasking can lead to Slowdown in individual servers. For

example, several studies in medical and ergonomics journals have shown that fatigue leads to

diminished productivity (e.g., Setyawati 1995, Caldwell 2001). Similarly, Kc and Terwiesch

(2009) �nds that fatigue caused by extended periods of high workload leads to decreased

productivity in both hospital transportation and cardiac ICU care.

In our setting, multitasking refers to a single resource, such as a nurse, being simultaneously

responsible for multiple patients, but individual tasks are not necessarily performed simulta-

neously. For example, a nurse may deliver a medication to one patient and then draw blood

from a second patient. In e�ect, the nurse acts as a single channel server performing tasks

for di�erent patients in rapid succession. As the nurse becomes responsible for more patients

and gets �spread thin,� the arrival rate of tasks to the nurse's virtual queue increases leading

to longer completion times for each individual task from the patient's point of view. The

Psychology literature on human multitasking shows that multitasking additionally incurs
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cognitive switching costs which further hinder productivity (Pashler 1994). These switch-

ing costs increase with increased levels of multitasking. See Kc (2012) for a summary of

this literature. Kc (2012) empirically examines the e�ect of ED physician multitasking on

service time and �nds that multitasking leads to longer service times. A shared resource,

like an x-ray machine, can be thought of as multitasking in a similar manner. With more

patients in treatment, more x-ray requests are generated, the queue for x-rays grows, and

the completion time for each x-ray increases.

Another form of Slowdown can occur with multiple resources. As mentioned in Section 4.1,

the idea of high load causing Slowdown is well established in �elds such as transportation

and telecommunications (Chen et al. 2001, Gerla and Kleinrock 1980). In these settings,

this e�ect is commonly referred to as congestion. However, we refer to this as interference

since this is a di�erent e�ect than is generally referred to in the Operations Management

literature by the word �congestion.� In the Operations Management literature, congestion

usually refers to long queues and long wait and sojourn times, but does not imply any change

in service times. In the transportation and telecommunications settings, and in this paper,

the Slowdown e�ect of interest is an increase in the actual service time, regardless of wait

time. In the ED, examples of interference are crowded hallways that slow workers down and

nurses waiting for computer terminals.

Both multitasking and interference are conceptually similar to queuing models with shared

processors (e.g., Yamazaki and Sakasegawa 1987, Aksin and Harker 2001). Shared processor

models assume that the server (or servers) splits its processing capacity across all items in

service leading to service times increasing as the number of customers in service increases.

For example, Aksin and Harker (2001) models a multi-server call center with multiple cus-

tomer classes and a single shared information management system that slows down as it

performs more simultaneous operations. The key �nding is that the system throughput

decay caused by processor sharing is a function of both the o�ered load on the system and

the proportion of a customer's service that requires use of the shared resource. This is rel-
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evant for our ED setting since many resources in the ED are shared resources (e.g., nurses,

doctors, equipment) and EDs regularly operate under high o�ered loads. Similarly, Jaeker

and Tucker (2012) report evidence of interference caused by high load levels in a hospital

leading to longer inpatient stays.

To test for Slowdown, it is not su�cient to simply examine total service time for a patient

because the service time is a�ected by both Speedup and Slowdown e�ects. To isolate and

test for the existence of Slowdown, we focus on the durations of a few speci�c tasks that are

common to many ED visits such as lab specimen collection time and x-ray completion time.

We suspect that such tasks are susceptible to all the Slowdown mechanisms described above.

For example, lab collection time will increase as a nurse juggles more patients, becomes

fatigued, and has to wait in line to use the pneumatic tube system to send a sample to the

lab. Thus, while we do not attempt to separately identify the Slowdown mechanisms at

work, we test for the presence of Slowdown in general, and we expect crowding to lead to

increased task times.

Hypothesis 1 Task time increases with load: ∂TaskT ime
∂Load > 0

4.3.2. Speedup

Turning now to Speedup, or mechanisms that decrease service times, the subset of queuing

theory focused on optimal control of queues provides theoretical motivation for Speedup

behavior. Dynamic control queues dynamically adjust to system state parameters such

as the queue length. Going back to Crabill (1972), several papers have explored optimal

control policies that minimize average cost per unit time by adjusting the service time, and

have proven under increasingly weaker assumptions the existence of an optimal service time

policy that is monotone decreasing in queue length (e.g., Stidham and Weber 1989, George

and Harrison 2001). The intuition behind such a policy is based on the assumptions that

the system waiting cost per unit time increases with queue length and that there is a cost

to decreased service time, either in terms of labor, e�ort, or reduced quality. Thus, as the
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queue length grows, the waiting costs eventually outweigh the cost of faster service and the

optimal response is to reduce the service time.

Perhaps the simplest form of service time reduction is rushing. That is, the server simply

works faster. Schultz et al. (1998) �nds this sort of acceleration behavior in a lab experi-

ment, and Kc and Terwiesch (2009) is the �rst paper to show this behavior in the �eld. It

�nds that hospital transporters work faster when the workload is high. Similarly, Tan and

Netessine (2012) and Staats and Gino (2012) �nd evidence of rushing Speedup under load

with restaurant waiters and loan application processors, respectively.

Since rushing a�ects task time, we are actually testing the net e�ect of Slowdown and rushing

when we test for the e�ect of load on task time in Hypothesis 1. We have stated Hypothesis 1

as we have (∂TaskT ime∂Load > 0) because we believe that Slowdown dominates rushing in the ED.

In fact, we believe that rushing is not prevalent in many knowledge-intensive services such

as the ED. Despite what is portrayed on TV, doctors and nurses are rarely seen running

through the halls of the ED or performing speci�c procedures faster.

4.3.2.1 Task Reduction

Papers by Hopp et al. (2007) and by Alizamir et al. (2011) build on the optimal queue control

stream and suggest another Speedup mechanism; task reduction. Hopp et al. (2007) describes

a service system with discretionary task completion that is concave-increasing in value with

time. A holding cost is incurred per unit time for each customer in the system. This leads

to an optimal policy that sets a service cuto� time for every value of queue length. This

policy is monotone decreasing in queue length. Alizamir et al. (2011) models a diagnostic

service as a stochastic sequence of diagnostic tests. Each test informs the server's probability

estimation of the customer's type. This speci�cation can lead to an optimal policy that sets

a maximum number of tests for each queue length. This maximum is decreasing in queue

length. The common element of these papers is that it is a change in the service content,

not the service rate (i.e. task completions per time interval), which leads to a change in the
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service time per customer. Oliva and Sterman (2001), Kc and Terwiesch (2009), and Chan

et al. (2011) are all suggestive of this sort of task reduction based Speedup.

The discretionary task completion model of Hopp et al. (2007) forms the basis of our hy-

potheses regarding task reduction. In the Hopp et al. (2007) framework, the variable under

the server's control is service time itself. In our setting, we assume the variable under the

physician's control is the service content, that is the quantity of diagnostic tests ordered.

Further, we assume that utility is concave increasing with the number of tests. As long as

reducing testing quantity reduces service time, the insight from Hopp et al. (2007) that ser-

vice time should be reduced under crowding translates to the hypothesis that testing should

be reduced under crowding. This leads to the following two hypotheses.

Hypothesis 2 Service time increases with diagnostic testing: ∂ServiceT ime
∂Tests > 0

Hypothesis 3 Diagnostic testing decreases with load: ∂Tests
∂Load < 0

The idea that service time should be reduced under crowding seems quite reasonable, perhaps

even obvious, in the settings proposed in Hopp et al. (2007) such as telemarketers and

salespeople. However, in a medical setting such as an ED, the idea of reducing the quantity

-and perhaps quality- of care for Mrs. Jones just because she has the bad luck of being in the

ED when there is a crowd seems less obvious. We leave that discussion for later and simply

draw on the Hopp et al. (2007) model to suggest an interesting hypothesis, that physicians

change the thoroughness of their testing based on crowding. We refer to this behavior with

the admittedly loaded term �cutting corners.�

4.3.2.2 Early Task Initiation

While rushing and task reduction are Speedup mechanisms that can be implemented by a

single server, we propose the mechanism of early task initiation as a Speedup mechanism

that may exist between resources. Early task initiation is similar to concurrent engineering,

which for nearly thirty years has been acknowledged as an e�ective way to speed up product

67



development cycles. First widely publicized by Imai et al. (1985) and Takeuchi and Nonaka

(1986), the concept is to take logically consecutive tasks and execute them with some amount

of temporal overlap. This requires the decision makers at each task to make some guesses or

bets since the exact needs of the other tasks are not yet known. The fundamental tradeo�

is that overlapping the tasks reduces the time to market but that too much overlap leads to

rework or poor �nal design quality (Loch and Terwiesch 1998).

A similar opportunity exists in multi-resource service systems. A service task may be started

early, before it is even fully known if the task is required. For example, in the ED, as

described in Section 4.2, triage nurses have the option of ordering some diagnostic tests.5

If tests are ordered at triage, the tests can be processed while the patient is waiting in the

waiting room. Then when the patient sees the physician the tests are already under way or

may even be ready for review. This reduces service time. However, the downside of triage

testing is that the nurse is �placing bets,� in that the nurse may not be certain what tests the

doctor will want and may order unneeded tests. This could be due to the nurse having less

training and skill than the doctor, or due to the limited information available from a triage

examination. This over-testing is undesirable because it increases �nancial costs, medical

risk for the patient (if the test is risky), and load on the diagnostic resources.

Note that the bene�ts of ordering tests at triage are largest when waiting times are long.

This is because much or all of the test processing time occurs in parallel with the patient

waiting in the waiting room. Conversely, when waiting times are short, there is little bene�t

to triage testing since the service time will be reduced by only a few minutes. However, the

consequences of over-testing do not scale with load in a similar fashion, and therefore we

hypothesize that triage testing will be most common when the system is crowded.

Hypothesis 4 Triage testing increases with load: ∂TriageTest
∂Load > 0

For early task initiation to be bene�cial, an increase in triage testing should lead to a

5These triage tests are commonly referred to as Advanced Triage Protocols in the medical community.

68



Figure 8: State-Dependent Mechanisms
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decrease in doctor testing. If triage nurses have perfect information we would expect a one

for one trade-o� between triage and doctor testing; each incremental triage test would lead

to a one test reduction in doctor testing. However, if the nurses have imperfect information

and �betting� is an apt description, then we would expect the marginal triage test to lead

to a reduction in doctor testing of less than one.

Hypothesis 5 Doctor testing decreases less than one unit for each unit increase in triage

testing: −1 < ∂DocTest
∂TriageTest < 0

4.3.3. Net Impact on Service Time

Figure 8 summarizes the categorization of the mechanisms just described that potentially

lead to state-dependent service times. Since Speedup and Slowdown mechanisms work in

opposing directions, the net impact is indeterminate a priori. Therefore, we do not posit an

hypothesis. Nonetheless, it is worth examining the net change in service time with load to

determine the relative magnitudes of the two e�ects. Based on Figure 7, we suspect that

Slowdown dominates but that Speedup e�ects eventually become large enough such that the

marginal e�ect of load is negative. Stated di�erently, we believe that for low to mid level

loads ∂ServiceT ime
∂Load > 0, and for mid to high level loads ∂ServiceT ime

∂Load < 0.

69



4.3.4. Additional Related Literature

While we have already referenced the prior work to which our study is most closely related,

we also point out connections to two other bodies of literature.

Our work is in�uenced by the portion of the analytical queuing theory literature has been

stimulated by problems in the health care domain. Topics such as capacity planning (e.g.,

Lee and Zenios 2009, Allon et al. 2011), sta�ng (e.g., deVericourt and Jennings 2011,

Yankovic and Green 2012) and patient �ow (e.g., Green et al. 2006a, Ibrahim and Whitt

2011) have all been studied extensively. We direct the reader to Green (2006) for an overview

of this literature. This body of work has largely been focused on characterizing and manag-

ing service systems from a high-level or system design point of view.

Our work also relates to the large body of medical literature on crowding's e�ect on service

and quality. Many of these papers have shown the negative impacts of ED crowding on

such measures as timing of antibiotic delivery for pneumonia patients, pain medication for

patients with severe pain, and nebulizer treatment for patients with asthma (Pines et al.

2006, Fee et al. 2007, Pines and Hollander 2008, Pines et al. 2010). Crowding has also been

associated with reduced patient satisfaction (Pines et al. 2008). Results on the impact of

crowding on length of stay have been mixed. For example, Pines et al. (2010) report a

positive relationship between crowding and length of stay while Lucas et al. (2009) �nd no

signi�cant relationship. McCarthy et al. (2009) report that crowding drives up wait times

but has no e�ect on service times, a result that agrees with traditional queuing theory.

Our contribution to the literature is in bringing attention to the level of the servers (care

providers). We expand on the prior literature by providing detailed evidence of both Speedup

and Slowdown mechanisms occurring simultaneously. By focusing at the micro-level, we can

identify the underlying mechanisms that lead to the service time changing under load. We

hope this will extend the understanding of service system productivity.
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4.4. Data Description & De�nitions

Our data include information for each patient visit such as patient demographics, chief

complaint, attending physician, and timestamps of all major events and physician orders.

Table 8 provides descriptive statistics of the patient population. For much of the analysis,

Table 8: Summary Statistics of Patients
ED FT

Variable Mean Mean

Age 41.2 (0.05) 34.6 (0.08)
Female 61% (0.002) 59% (0.003)
Triage 2 25.1% (0.001) 1.3% (0.001)
Triage 3 59.2% (0.001) 5.3% (0.001)
Race: Black 58.6% (0.002) 64.3% (0.001)
Race: White 24.8% (0.001) 19.8% (0.002)
Diagnostics Ordered 5.38 (0.014) 1.27 (0.010)
Service Time (hr.) 3.77 (0.009) 1.31 (0.006)

N 108,014 36,427

Standard error in parentheses

we focus on a single chief complaint at a time since the testing patterns and response to

crowding can be quite di�erent from one chief complaint to another. Chief complaint is

determined by the triage nurse, and our data contains 129 unique chief complaints. The two

most common chief complaints in the ED are abdominal pain and chest pain, representing

13% and 9% of the ED visits respectively. The two most common chief complaints in the

FT are limb pain and body pain, representing 14% and 9% respectively.

We are primarily concerned with how load a�ects ED performance. In the ED, there are

several census measures that indicate system load. These include waiting room census, ED

in-service census, FT in-service census, and ED boarding census. To calculate these census

measures, we divide the study period (2009-2011) into 15-minute intervals labeled t, and

we use the patient visit timestamps to generate the census variables WAITt, EDSERVt,

FTSERVt, and BOARDt as the number of patients in the given location during interval t.

When we examine task times (Hypothesis 1), we perform the analysis at the per-hour level
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and thus we generate the load variables WAITh, EDSERVh, FTSERVh, and BOARDh

as the average for hour h for each of the census measures

For the rest of our analysis, we focus solely on the waiting room census as the measure of ED

load. We do this because observation and anecdotal evidence suggests that ED nurses and

doctors focus on this number as a key indicator of the crowd level in the ED. Further, the

waiting room census is visible to the triage nurses and the rest of the ED sta� on electronic

dashboards. We also choose to focus on waiting room census because it e�ectively has no

upper bound and thus has a great deal of variability. In contrast, in-service and boarding

census measures are limited by the number of beds in the ED. Lastly, we focus on waiting

room census because we believe that the e�ects of crowding in the ED primarily occur when

the ED is operating in a highly-loaded or overloaded state with all treatment beds �lled.

We assign two load measures to each patient visit: load at arrival, aLOADi, and load at the

start of service, sLOADi. For example, for patient i who arrives at time interval t = 1 and

is put in a treatment room at time t = 8, aLOADi = WAIT1, and sLOADi = WAIT8. We

then convert the variables aLOADi and sLOADi into vectors of dummy variables ˜aLOADi

and ˜sLOADi corresponding to low, mid, and high census levels. The cut points are set

such that 25% of observations are in each of the low and high categories and 50% of the

observations are in the mid category. For ˜aLOADi, the cut points are at 5 and 19, while

for ˜sLOADi the cutpoints are at 4 and 18.

One reason for using a categorical load variable is that it allows for a more general response

to load than would including just linear and quadratic terms of LOADi. The other reason

is that it greatly simpli�es the reporting of results and comparison of various models as will

be seen in Section 4.6.

We examine several dependent variables in this study including task time, service time, and

the counts of various categories of diagnostic tests.

To study task timing, we de�ne the variable TASKTIMEh as the mean task completion
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time across all tasks of a given type ordered during hour h. The tasks we examine are as

follows:

First Order Time: The time from when a patient is put in a treatment room until the �rst

order (lab, scan, or medication) is recorded.

Lab Collection Time: The time from a lab order being placed until the nurse closes out the

order indicating that the specimen has been sent for analysis.

Medication Delivery Time: The time from a medication order being placed until the nurse

closes out the order indicating the medication has been given to the patient.

Scan Completion Time: The time from a radiology scan order being placed until the patient

returns from having the scan performed. This does not include the time required

for a radiologist to perform the o�cial �reading� of the scan.

The �rst task is a proxy for the physician busyness level. The second and third tasks are

proxies for nurse busyness. The fourth task measures the sojourn time for an auxiliary

service that is shared by the entire ED and by other parts of the hospital, depending on the

scan type.

The service time variable, SERV TIMEi, is de�ned as the time from placement in a treat-

ment room until the patient is either discharged or a bed request is placed for admission to

the hospital for patient i. Note that service time does not include any time spent in the

waiting room.

The last major dependent variable is the count of diagnostic tests ordered either by the triage

nurse or doctor. There are two types of diagnostic tests: lab tests and radiology imaging

scans. Lab tests are chemical analyses of patient tissue or �uid such as urinalysis, white

blood cell counts, and electrolyte levels. Most of these tests are performed by the hospital's

central pathology lab that serves both the ED and the rest of the hospital. Radiology

imaging scans include various types of electromagnetic and ultrasonic imaging techniques,
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Figure 9: Number of Diagnostic Tests per ED Patient
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such as x-ray, magnetic resonance imaging, and computed tomography, used to view the

internal structures of the body. For most of our analyses we aggregate these two types of

tests into a single variable TESTi (Figure 9). We also decompose diagnostic test orders

into TRITESTi and DOCTESTi based on whether the test was ordered at triage or in

the treatment room. The average ED patient receives 0.6 triage tests and 4.8 doctor tests,

however 15% receive no diagnostic tests at all. The mean number of diagnostic tests varies

signi�cantly by chief complaint and triage level. For some models, we further decompose

TRITESTi and DOCTESTi into the number of labs and scans ordered at each location.

TRITESTi = TRILABi + TRISCANi (4.1)

DOCTESTi = DOCLABi +DOCSCANi (4.2)
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4.5. Econometric Speci�cation

We now develop the econometric speci�cations for testing our hypotheses. In the discussion

below, the index h indicates an hour in the study period, and the index i denotes a patient

visit to the emergency department.

To test Hypothesis 1, we are interested in how load impacts the duration of various common

ED tasks, thus we turn to survival analysis models. Speci�cally, we use an accelerated-

failure-time (AFT) model with a log-normal distribution. The AFT model relates the log of

service time to a vector of covariates and a random error term ε through a linear equation.

For this analysis, we relate the mean task time in a given hour to a load variable and control

variables as follows:

ln(TASKTIMEh) = α+β1WAITh+β2EDSERVh+β3FTSERVh+β4BOARDh+Ziφ+εh

(4.3)

Zi is a vector of time related control variables including year, month, day of week, hour of

day, and the interaction of day of week and hour of day. Because our dependent variables are

estimated means, we use weighted least squares to estimate the model where the weights are

equal to the number of tasks ordered in hour h (Wooldridge 2009). Also, because the data

forms a time series with possible autocorrelation we use the Newey-West covariance estimator

to provide standard errors that are robust to both heteroskedasticity and autocorrelation

(Greene 2012). Due to these complications, we must assume that εh follows a normal

distribution. Thus, Equation 4.3 is an AFT model with a log-normal underlying distribution.

In this speci�cation, positive coe�cients β or φ indicate an increase in mean task time, and

Hypothesis 1 is supported if β > 0.

We note that the AFT model implies speci�c assumptions about the underlying survival

and hazard functions. Speci�cally the log-normal speci�cation implies a hazard function
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that is �rst increasing and then decreasing. We choose this distribution because this form

resembles the hazard function form of the data and because it allows us to correct for the

weighting and autocorrelation as mentioned above. The major advantage of the AFT model

over the semi-parametric Cox proportional hazard model is that the AFT model coe�cients

can be directly interpreted as changes in duration and a prediction of mean task time can

be calculated.

Hypothesis 2 examines the e�ect of testing on service time. We achieve this by using the

following AFT model speci�cation which includes variables for both labs and scans ordered

at triage and by the doctor.

ln(SERV TIMEi) =α+ ˜aLOADiβ + δ1TRILABi + δ2DOCLABi

+ δ3TRISCANi + δ4DOCSCANi + Wiθ + Ziφ+ εi

(4.4)

The dependent variable is now service time for patient i. Wi is a vector of patient-visit

speci�c covariates such age, gender, race, triage level, and chief complaint. Zi is again a

vector of time related control variables including year, month, hour of day and a weekend

indicator variable. ˜aLOADi is a vector of dummy variables indicating mid and high load

with the low load condition as the omitted category. We now assume ε follows a log-logistic

distribution rather than a log-normal distribution. While the log-logistic and log-normal

distributions assume similarly shaped hazard functions, we use the log-logistic function here

because it better �ts the data based on the Bayesian Information Criterion. Positive values

of the δ coe�cients support the hypothesis that testing leads to longer service times.

Hypotheses 3, 4, and 5 all require examining how test order quantities change with respect

to some load or testing variable. Since the dependent variable is discrete and fairly small,

we need to use a count-type model. Further, as seen in Figure 9, the excess of zero counts

suggests the need for a zero-in�ated model. We use a zero-in�ated negative binomial (ZINB)

model for all of these studies. The ZINB model combines a binary logit process with prob-
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ability density f1(·) and a negative binomial count process with probability density f2(·) to

create the combined density

f(y|x) =

 f1(1|x1) + {1− f1(1|x1)} f2(0|x2) if y = 0

{1− f1(1|x1)} f2(y|x2) if y ≥ 1
(4.5)

Note that this formulation is somewhat counterintuitive (albeit standard practice) in that

a �success� of the binary process corresponds to y = 0, whereas a �failure� corresponds to y

being determined by the negative binomial count process. This model has the conditional

mean

E [y|x] =
1

1 + exp (x1η1)
× exp (x2η2) (4.6)

The covariate vectors x1 and x2 need not be the same, but for our purposes they are the same

unless noted otherwise on the result table. The parameter vectors η1 and η2 are estimated

jointly by maximum likelihood using the log-likelihood function shown in the appendix. For

η1, a positive coe�cient indicates a decrease in the expectation of the dependent variable

with an increase in the given independent variable, while the opposite is true for η2.

To test for the presence of task reduction (Hypothesis 3) we examine how DOCTESTi

changes with load controlling for TRITESTi. We formulate the linear predictors xi,1η1 and

xi,2η2 as follows:

xi,jηj = αj + ˜sLOADiβj + δjTRITESTi + Wi,jθj + Zi,jφj for j = 1, 2 (4.7)

Similar to Equation 4.4, Wi,j is a vector of patient-visit speci�c covariates such as age,

gender, race, triage level, and chief complaint. Zi,j is a vector of time related control
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variables such as year, month, shift, and a weekend indicator variable.6

To test for the presence of early task initiation (Hypothesis 4), we switch to TRITESTi as

the dependent variable of the ZINB model. We formulate the linear predictors as follows:

xi,jηj = αj + ˜aLOADiβj + Wi,jθj + Zi,jφj for for j = 1, 2 (4.8)

To test the marginal impact of triage testing on doctor testing (Hypothesis 5), we use the

model speci�ed in equation 4.7 but focus on the marginal e�ect of TRITEST rather than

of ˜sLOAD.

While we do not o�er an hypothesis for the net impact of Speedup and Slowdown on service

time, we are interested in the empirical result. Since we are again looking at a duration

outcome, we use the following AFT model:

ln(SERV TIMEi) = α+ ˜aLOADiβ + Wiθ + Ziφ+ εi (4.9)

This model is the same as equation 4.4 minus the lab and scan count variables. In this

speci�cation, positive coe�cients β, θ,or φ indicate an increase in service time.

4.6. Results

To test for evidence of Slowdown e�ects, we examine the impact of load on task times

(Hypothesis 1). Tables 9 and 10 show the results for the ED and the FT respectively.

The general pattern we see in both the ED and the FT is that task times increase as

load increases, which supports Hypothesis 1. We also see that the in-service census for the

given area (ED or FT) tends to be the main driver of the increase, which supports the

6The shift variable indicates the three main physician work shifts: 7:00am-3:00pm, 3:00pm-11:00pm, and
11:00pm-7:00am. We use this shift indicator rather than an hour of day indicator because it captures much
of the time of day e�ect with only two dummy variables rather than twenty three.
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Table 9: E�ect of Load on Task Times (ED only)
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Table 10: E�ect of Load on Task Times (FT only)
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idea of nurse or doctor multitasking leading to increased service times. To get a sense of

the magnitude of change in task times, we note that the interquartile range of EDSERV

spans from 15.5 patients to 23 patients; a range of 7.5 patients. Multiplying 7.5 by the

ED In-Service coe�cient and exponentiating the product gives the percent change in the

dependent variable. For example, the First Order Delay for ED patients increases by about

26% (exp(7.5×0.031) = 1.26) as the number of patients in the ED service beds ranges from

the 25th to 75th percentile. That other census measures are signi�cant for some models and

not others shows that Slowdown is caused by di�erent factors for di�erent tasks. Still, the

general �nding remains the same; task times increase with load.

For most of the rest of our analysis, the variable of interest is the three-level load variable.

Because of this, we generally report predicted values and pairwise di�erences between pre-

dicted values. This provides a more intuitive interpretation than simply reporting regression

coe�cients, especially for the ZINB models with two coe�cients for each variable. Also, for

all models, we run and report the results separately for various subsets of the population.

We show results for both the ED and the FT to allow for comparison between these two

systems. Also, we show aggregate results for all chief complaints and then for each of the

most common chief complaints in the ED and the FT individually. We do this because

aggregating patients across chief complaints forces the coe�cients of all the variables to be

the same across all chief complaints. For example, in the aggregate model, the di�erence

in testing between low and high crowding is the same regardless of whether the patient has

a heart attack or a tooth ache. While this is perhaps tolerable for the load variable, it is

outright dubious for other variables such as age and gender. By focusing on a single chief

complaint at a time we sacri�ce sample size but gain tenability.

As we turn our attention to task reduction (Hypothesis 3), we �rst show that diagnostic

tests do indeed increase service time (Hypothesis 2). Table 11 shows the results of esti-

mating Equation 4.4. All coe�cients are positive or insigni�cant. The exponentiated form

of these coe�cients can be interpreted as multipliers of the service time. For example, for

81



Table 11: E�ect of Diagnostic Orders on Service Time
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an abdominal pain patient, each doctor-ordered lab increases the service time by about 4%

(exp(0.038) = 1.039 ). Also note that the doctor-ordered test coe�cient is always signi�-

cantly larger than the related triage-ordered test coe�cient. This speaks to the time savings

provided by early task initiation (Hypothesis 4), discussed below.

For task reduction, we examine how the quantity of doctor-ordered tests changes with load,

controlling for tests ordered at triage (Table 12). For ED patients in aggregate, column 1

Table 12: Doctor Tests (controlling for triage testing)
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shows a small but statistically signi�cant dip in testing at mid level crowding suggesting

some amount of cutting corners. Columns 2 and 3 provide no evidence of cutting corners on

speci�c chief complaints in the ED. The results look quite di�erent for FT patients. Columns

4 and 5 show strong evidence of task reduction for FT patients in aggregate and for limb

pain patients in isolation. For example, the predicted mean number of doctor ordered tests

drops from 1.13 to 0.89 as load goes from low to high. There is no evidence of cutting

corners with body pain patients (Column 6).

To test for early task initiation (Hypothesis 4), we examine how triage testing changes with

load (Table 13). Note that in this table we do not separate by ED and FT since that

distinction is not made until after triage when the patient is placed in a treatment bed.

Thus, we show the results for all patients and for the four most common chief complaints.

We see that across the board, triage testing increases with load. For example, the predicted

mean number of triage tests for an abdominal pain patient almost triples from 0.397 to

1.019 and roughly quadruples from 0.342 to 1.309 for a chest pain patient as load goes from

low to high. This is strong evidence in support of Hypothesis 4. We also examine how

doctors and nurse practitioners respond to triage testing (Hypothesis 5). Table 14 shows

the marginal e�ect ∂DOCTEST
∂TRITEST for several levels of TRITEST . Almost all of the marginal

e�ects are between negative one and zero indicating that doctors are reducing testing in

response to triage testing, but not at a one-for-one ratio. This supports the idea of there

being uncertainty in the triage nurse ordering. Further, for ED patients (columns 1 and 2),

the marginal e�ect of TRITEST approaches zero for larger values of TRITEST indicating

decreasing marginal bene�t of triage testing. This shows that when the triage nurse orders

just one test, there is a high probability that this is a useful test and the doctor can reduce

her testing orders by one. However, as more triage tests are ordered, the uncertainty in their

usefulness increases and each additional test leads to smaller reductions in doctor testing.

In contrast, the marginal bene�t of triage testing is much smaller for FT patients. This

shows that early task initiation is less e�ective in the FT.
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Table 13: Count of Triage Tests
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Table 14: Marginal E�ect of Triage Testing on Doctor Testing
ED FastTrack

(1) (2) (3) (4)
AP CP LP BP

TRITEST
0 -1.09 (0.05) -0.99 (0.05) -0.27 (0.06) -0.11 (0.10)
1 -0.96 (0.04) -0.88 (0.04) -0.35 (0.04) -0.14 (0.04)
2 -0.84 (0.03) -0.79 (0.03) -0.33 (0.02) -0.15 (0.06)
3 -0.73 (0.02) -0.70 (0.02) -0.21 (0.02) -0.14 (0.05)
4 -0.64 (0.01) -0.62 (0.02) -0.10 (0.02) -0.12 (0.03)

N 12,482 8,517 5,113 3,103

Standard error in parentheses

AP: Abdominal Pain, CP: Chest Pain, LP: Limb Pain, BP: Body Pain

Finally, we look at the net e�ect of crowding on service time. Table 15 shows the results of

the log-logistic AFT regression of service time (Equation 4.9). Columns 1, 2, and 3 show

the results for ED patients. We �nd evidence of service time �rst rising and then falling a

bit as load moves from low to mid to high. This result matches the pattern seen in Figure 7.

This suggests that Slowdown e�ects strongly dominate at �rst but then as load continues to

increase Speedup e�ects increase and bring the service time back down. However, there is

no evidence of Speedup ever being so strong as to reduce the high-load service times below

the low-load service times. In contrast, in the FT, there is little evidence of load having

any e�ect on service time. In Column 4 we see an increase of 0.03 hours (1.8 minutes) in

service time for all FT patients when going from low to mid load, but no other predicted

di�erences are signi�cant. These results show that in the ED, Slowdown is the dominant

result of crowding, while the FT is largely immune from crowding a�ecting service times.

4.7. Robustness to Endogenous Treatment and Selection

As with all empirical studies, we must give thought to potential endogeneity issues. There

are two potential sources of endogeneity bias in our study: triage testing and patient aban-

donment. Triage testing is not randomly assigned, but rather is a decision made by a triage

nurse based on the characteristics of the patient, some of which are observed (e.g., age, gen-

der, race) and some of which are unobserved to the researcher (e.g., countenance, sweating,
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Table 15: Mean Service Time Predictions and Di�erences
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pallor). However, triage testing in�uences the testing decision of the doctor (the coe�cient

on TRITEST in Equation 4.7 is signi�cant in all models), and thus it can be considered a

�treatment.� Just like the triage testing decision, the doctor testing decision is likely driven

by many of the same observed and unobserved patient characteristics. A shared unobserved

variable could induce correlation in the triage testing and doctor testing models leading to

biased estimates of the coe�cients. The issue of patient abandonment, also known as Left

Without Being Seen (LWBS), further complicates the issue. Patients sometimes abandon

the queue after being triaged but before being seen by a doctor. This abandonment �lters

the population that the doctor sees. If this �ltering changes with crowding, then the doc-

tor is seeing a di�erent patient mix during times of high and low crowding. Further, this

�ltering is a potential problem because the abandonment rate is a�ected by triage testing

and is possibly driven by the same unobservable covariates a�ecting triage testing and doc-

tor testing. Thus, there is the potential for a three-way interaction between triage testing,

abandonment, and doctor testing. For example, a patient with chest pain who is pale and

sweaty may have an increased probability of receiving diagnostic tests both in triage and

from the doctor, and might be highly likely to wait to be served since the patient feels quite

sick. This would lead to positive uncontrolled correlations among the three equations. Note,

however, that all these potential issues only become problematic if the observed covariates

are not rich enough to capture the di�erences between patients. Also, if there is a bias, it is

likely that the bias is toward sicker patients remaining and being tested during high crowds.

This would be a bias against our hypotheses, and thus our �ndings are conservative.

The �ideal� test for endogeneity would be a three-equation model that simultaneously es-

timates the endogenous treatment (triage testing), the self-selection (abandonment), the

resulting zero-in�ated count outcome (doctor testing) and the respective pairwise correla-

tions. Unfortunately, to the best of our knowledge, no such model exists. The closest model

we are aware of is the sample-selection-endogenous-treatment model from Bratti and Mi-

randa (2011). However, this model uses a Poisson model for the �nal outcome and generally

fails to converge with our overdispersed and zero-in�ated data. In lieu of an ideal test, we
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present several pieces of supporting information that point to the conclusion that our results

are robust to the potential endogeneity problems.

We begin with the patient abandonment issue. Overall, 6.5% of patients abandon the queue.

However, the rate ranges from 3% under low crowding to 12% under high crowding. We use a

Heckman-style bivariate probit selection correction model to test for unobserved correlation

between patient abandonment and doctor testing (de Ven and Praag 1981, Greene 2012). We

treat both the abandonment decision and doctor testing as binary outcomes and formulate

the model as follows:

S∗ = α1 + ˜aLOADβ1 + δ11(TRITEST > 0) + W1θ1 + Z1φ1 + ε1

STAY = 1 if S∗ > 0, 0 otherwise
(4.10)

D∗ = α2 + ˜sLOADβ2 + δ2TRITEST + γ2FT + W2θ2 + Z2φ2 + ε2

DOCTEST_Y N = 1 if D∗ > 0, 0 otherwise
(4.11)

The vectors W1and W2contain the patient covariates age, gender, race, chief complaint,

and triage level. The variable FT is a dummy variable indicating if the patient was treated

in the FastTrack. The vector Z1 contains controls for year, month, weekend, and shift,

while the vector Z2 contains controls for only weekend and shift. We drop the year and

month variables from the second equation to provide an exclusion restriction to help with

model identi�cation even though the model technically is identi�ed by the non-linearity of

the probit equations. ε1 and ε2 are assumed to be standard bivariate normally distributed

with correlation coe�cient ρ, and Equation 4.11 is only observed if STAY = 1. If ρ = 0, this

indicates that the control variables are adequately controlling for the selected sample and the

models can be estimated separately without signi�cant bias. We see in Table 16 that indeed

the estimated correlations are insigni�cantly di�erent from zero for models 2, 3, and 5, but

for models 1 and 4, the correlation is positive and signi�cant. The coe�cients in the upper

panel show that the probability of staying (not abandoning) decreases with load, as one
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Table 16: Heckman Probit Selection model of Abandonment and Doctor Testing
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would expect. The coe�cients in the lower panel indicate that for all patients in aggregate

and for chest pain and limb pain patients (columns 1, 3, and 4), doctors are less likely to

order tests during high crowding, whereas in Table 12 we only saw limited evidence of cutting

corners under load. These results show that while the observed covariates are controlling for

much of the patient di�erences, correcting for the remaining correlation between self-selected

abandonment and doctor testing only strengthens our �ndings.

We also check for unobserved correlation between triage testing and patient abandonment.

We use a bivariate probit model similar to the selection model above, but without needing to

adjust for the selected sample. Table 17 shows that the census coe�cients are all signi�cant

and in the direction we expect; crowding increases triage testing and abandonment. We also

see that models 1, 2, and 5 show signi�cant positive correlation in the errors. However, if

we repeat the analysis for patients of a single triage level at a time, then the correlation

becomes insigni�cant. Together, these two sets of results suggest that patient abandonment

may create a bias in the results, but any bias that does exist makes our �ndings conservative

since the correlations are all positice. Further, these robustness checks suggest that the bias

can largely be corrected for with our control variables and by focusing on a single triage

level at a time.

To examine the potential endogeneity between triage testing and doctor testing we again

use a bivariate probit model. We ignore the middle step of abandonment based on the above

results showing that there is not a signi�cant bias. The results of this analysis are mixed

in that some models show signi�cant between-equation correlation, and others do not (Ta-

ble 18). The coe�cients in the upper panel are all as expected indicating increased triage

testing with increased crowding. With the exception of Column 6, the coe�cients in the

lower panel are as expected, showing either no change or a decrease in doctor testing with

load, controlling for triage testing. Column 6 shows a slight increase in doctor testing when

crowding is at the mid level. However, the two load dummy variables (Wait Census Mid &

Wait Census High) are jointly insigni�cant and the �t of the model actually improves if the
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Table 17: Bivariate Probit of Triage Test and Stay/LWBS
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Table 18: Bivariate Probit of Triage Testing and Doctor Testing
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load variables are removed from the doctor testing equation. Thus, we can safely conclude

that across all six columns of Table 18 we see that correcting for potential unobserved cor-

relation only strengthens our conclusion that doctors sometimes reduce testing as crowding

increases.

To further check the robustness of our �ndings regarding the presence of task reduction

(Hypothesis 3), we repeat the main study reported in Table 12 with two special subsets of

the data. We �rst test for task reduction for patients that receive no triage tests. Clearly,

this is a non-random sample, but it is free of any convoluting e�ects of doctors responding

to triage testing. We �nd largely the same results as in Table 12 with little evidence of task

reduction in the ED while task reduction is present for FT patients in aggregate and for

limb pain patients speci�cally. The second subset we examine is whether abdominal pain

and headache patients receive a radiology scan. About 40% of these patients receive a scan,

but the scan is ordered by the doctor 99% of the time. Thus, this sample is e�ectively clear

of triage testing treatment bias. We �nd no evidence of reduced testing under crowding.

Taken together, all these robustness checks support or strengthen our main �ndings regarding

Hypothesis 3 that doctors make limited use of task reduction under crowding.

4.8. Simulation

Given our �ndings of several forms of state-dependent service times in the ED, we are in-

terested in determining what impact these have on performance models. To estimate the

impact of the state-dependencies, we build a discrete-event-simulation (DES) model of the

ED. Figure 10 diagrams the patient �ow in the model. While the model is abstracted from

reality, we maintain the essential elements that allow for state-dependent service times,

namely the triage testing and doctor testing decisions are state-dependent, and the pro-

cessing times for Lab Draw and Wait for Doc are state-dependent as well.7 One additional

state-dependency included in the model is the Left Without Being Seen or abandonment

7We leave the lab processing time distribution stationary because the lab serves the entire hospital and
the ED demand has little impact on lab times.
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Figure 10: Patient Flow in Simulation Model

������
������

 !�"�#$%

&''(

 ��!"

#$�"%$&

'�("

%��)

'�("

*�$&�++

 ��!"

#$�"%$&

'�("

%��)

'�("

*�$&�++

)*�"

)*�"

+ ,-

.��!"(�#"%&''(

�
��
�
�
�
�

��
��

rate. While we do not focus on this phenomenon in this paper, our data clearly exhibits a

strong positive correlation between LWBS and waiting room census.

We test three con�gurations of the model (Table 19). In the �rst con�guration (column

1), all state-dependent variables are included and the model is tuned to match the average

performance of our study ED. In the second con�guration (column 2), the Speedup and

Slowdown state-dependencies are deactivated by �xing all variables at their mean values. In

the third con�guration (column 3), all state-dependencies, including LWBS, are deactivated.

The simulation is run for 50,000 simulated hours and standard errors are calculated using

the batch-means process with batches of length 200 hours (Law 2007).

Table 19: Simulation Results
(1) (2) (3)

State-Dependent State-Independent State-Independent
Outcome (mean) (except LWBS) (incl. LWBS)

Queue Length 8.3 (0.21) 8.8 (0.17) 9.9 (0.64)
Wait Time (hr.) 1.6 (0.04) 1.7 (0.03) 2.0(0.1)
Length of Stay (hr.) 5.6 (0.05) 5.8 (0.03) 6.1 (0.10)
LWBS % 5.8% (0.002) 6.2% (0.001) 8.6% (0.001)

Standard error in parentheses

Comparing column 2 to column 1 we see that ignoring the Speedup and Slowdown mecha-

nisms leads to a small overestimation of all of the performance measures. Comparing column

3 to column 1 we see that ignoring all state-dependencies leads to a larger overestimation

of all performance measures. This potential overestimation is managerially relevant since

similar models are commonly used for hospital sta�ng and planning purposes. These plan-
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ning models are becoming increasingly important as the Centers of Medicare and Medicaid

Services (CMS) begin to phase in new ED reporting guidelines and performance targets.

Hospitals will soon be required to report performance measures such as median wait time,

median length of stay, and �Left Without Being Seen� percentage (Centers for Medicare &

Medicaid Services 2012). Eventually, target values will be established and hospitals will

be reimbursed based on their performance relative to the targets. Thus, a hospital that is

making planning decisions based on a model which does not include the identi�ed state-

dependencies is likely to overinvest in resources and sta�ng to meet the CMS targets.

4.9. Discussion & Future Work

Prior research has shown that worker-paced service systems tend to exhibit state-dependent

service times. In this paper we explore the mechanisms that lead to state-dependent service

times whether from a single resource or between multiple resources. We �nd evidence of

both Speedup and Slowdown mechanisms. In our setting, the Slowdown e�ects tend to

dominate in the emergency department, while in the FastTrack, the e�ects of Slowdown and

Speedup balance out.

We �nd strong evidence of triage-ordered testing being used to reduce in-room service time

during periods of crowding in both the ED and the FT. Triage testing saves time by starting

tests sooner and allowing at least some of the lab collection and processing time to occur in

parallel with the patient waiting time. The main downside to triage testing is the �nancial

cost of unneeded tests. Since neither an insured patient nor the triage nurse directly incur the

�nancial cost, it likely does not weigh heavily on the testing decision. Given the e�ectiveness

of triage testing as a form of Speedup, it is curious that triage testing is not used more

regularly, regardless of crowd level. Our �ndings suggest that hospitals could potentially

bene�t from increased use of triage testing. Managers should further explore the true costs

of over testing at triage and consider incorporating load-based guidelines into triage nurse

protocols.
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We �nd evidence of care providers reducing testing orders in the FT when the system is

crowded but only limited evidence of this in the ED. In the healthcare setting, task reduction

is clearly a double-edged sword. On the one hand, reducing testing speeds up service, reduces

the load on the auxiliary services, and reduces costs. On the other hand, reduced testing

may result in decreased quality of care. (We found no evidence of crowding leading to an

increase in 72-hour revisits, a common ED quality metric, in either the ED or the FT.)

Determining the �optimal� level of corner cutting is an empirical medical question and is

beyond the scope of this paper. Further, it is related to the philosophical question of what

should be the role of the ED in the larger health care delivery system? Should the ED

be the site of de�nitive medical care, or should it only serve to stabilize and route to the

appropriate resource for full identi�cation and care of the presenting medical condition? This

is an ongoing debate in the medical community (Schuur and Venkatesh 2012, Wiler et al.

2012). As Operations Management researchers, we are satis�ed to show that task reduction

under load does exist in some circumstances and serves to speed up a service system. Thus,

again our work suggests that hospital managers should explore the quality trade-o�s of task

reduction and should potentially include load-based guidelines in care protocols.

Lastly, we �nd that ignoring state-dependencies leads to inaccurate planning models. In

our setting, the error was an overestimation of system busyness. Our results show that it is

important to incorporate state-dependent mechanisms into planning models to avoid overin-

vestment in sta�ng and physical resources. Our results also show the value of identifying and

measuring state-dependencies. While this work focused on server-level state-dependencies,

future work should also look at patient-level state-dependencies.

In conclusion, our work expands upon the prior state-dependent service time literature and

shows that there can be several server-level mechanisms at work as servers respond to work

load. We hope that incorporation of these mechanisms into future normative models will

lead to better understanding and management of similar service systems with high server

discretion.
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Appendix: Log-Likelihood Function of Zero In�ated Negative Binomial Model

The negative binomial logit hurdle model is estimated by maximization of the log-likelihood

function. The function is derived from the combination of a logit model and a negative

binomial count model. The function is given below and is based on the function shown in

Hilbe (2011, p372). However, the formula in the book contains errors.

L (β1, β2; y, α) =



ln

(
1

1+exp(−x′iβ1)

)
+

(
1

1+exp(x′iβ1)

)(
1

1+exp(x′iβ2)

)1/α

if y = 0

ln

(
1

1+exp(x′iβ1)

)
+ 1

α ln

(
1

1+α exp(x′iβ2)

)
+ ln Γ (yi+1/α)

(yi+1)(1/α) + yi ln

(
1− 1

1+α exp(x′iβ2)

)
if y > 0
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CHAPTER 5 : Financial Consequences of Boarding1

5.1. Introduction

Emergency Department (ED) crowding has been identi�ed as a public health problem by the

Institute of Medicine (Institute of Medicine 2007). When EDs are crowded, patients leave

without being seen (LWBS) and some later return for urgent medical needs (Asaro et al.

2007, Rowe et al. 2006, Baker et al. 1991). Ambulance diversion, a hospital's response to

crowding, can delay care for time-sensitive diseases, including thombolysis for acute myocar-

dial infarction (Schull et al. 2004). ED �boarding� is one of the major causes of ED crowding,

where admitted ED patients spend long periods awaiting inpatient beds (Government Ac-

countability O�ce 2009, Hoot et al. 2008, Solberg et al. 2003). As boarding increases within

an ED, fewer ED resources are available for new patients. This leads to delays in antibiotics

for pneumonia and pain control, and higher complication rates (Pines et al. 2007, Pines and

Hollander 2008, Fee et al. 2007, Pines et al. 2009). One study estimated that 15% of the

overall time spent in U.S. EDs by patients boarding (Carr et al. 2010). Boarding itself is

associated with higher medical error rates, and has proven hazardous for patients admitted

to intensive care settings (Carr et al. 2007a, Chal�n et al. 2007, Liu et al. 2009, Kulstad

et al. 2010).

A recent discussion has begun in academic medical journals and the lay press about whether

the practice of ED boarding may actually increase a hospital's revenue (Meisel and Pines

2008, Goldstein 2008). Over�ow capacity in ED hallways can be used as a temporary

holding area, allowing the hospital to operate at higher occupancy than it has in licensed

beds. Concerns have been raised that hospitals have perpetuated ED boarding because

of insu�cient economic incentive to eliminate it. However, data have been mixed. Some

studies suggest that the economic impact of ED crowding and diversion is lost revenue as

1This chapter is reprinted from Pines, Jesse M., Robert J. Batt, Joshua A. Hilton, and Christian Terwi-
esch. "The �nancial consequences of lost demand and reducing boarding in hospital emergency departments."
Annals of Emergency Medicine 58, no. 4 (2011): 331-340. with permission from Elsevier
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patients LWBS and ambulance patients are directed elsewhere (Lucas et al. 2009, Falvo

et al. 2007). Others conclude that ED crowding and diversion maximizes revenue because

ED admissions generate less revenue than non-ED admissions (McHugh et al. 2008). In

a situation where there is plentiful demand for both ED and non-ED admissions, crowded

EDs may allow hospitals to prioritize inpatient beds for elective (non-ED) patients from

whom hospitals can collect higher reimbursement (Pines and Heckman 2009, Handel et al.

2010). During weeks of high diversion, one hospital collected $265,000 more in revenue than

during weeks of low diversion (Handel and John McConnell 2009). The key tradeo� lies in

balancing increased revenue from capturing lost ED demand (lowering LWBS and diversion)

versus the potential lost revenue from reducing non-ED admissions to open capacity to serve

higher ED demand.

We examined the tradeo� between the higher revenue from capturing ED demand versus

potential losses from reducing non-ED admissions by simulating what may happen to hos-

pital revenues if average boarding is reduced by an hour. We also determined how di�erent

bed management policies for reducing non-ED admissions to accommodate additional ED

demands would impact hospital revenue. Our overall goals were to determine if reducing

boarding increases or decreases hospital revenue, and how a hospital could potentially better

manage non-ED demand to ensure that reducing boarding would result in increased revenue.

5.2. Methods

5.2.1. Study Design, Setting, and Selection of Participants

A stepped approach was used to estimate the revenue implications of the balance between

reducing boarding and the need to reduce non-ED admissions to accommodate new ED

demand (LWBS and diversion). We �rst calculated the expected value of lost ED demand,

speci�cally the expected revenue from serving additional LWBS patients and patients who

were diverted to other hospitals. We then calculated the expected value of revenue change

from reducing the mean boarding time by one-hour using two methods: (1) a �nancial
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model informed by the results from regression analyses and (2) a discrete-event simulation

model to validate and extend the �rst analysis by simulating how speci�c types of inpatient

bed management policies (with regard to reducing the in�ow of non-ED admissions) may

increase revenue (or not).

In the simulation, we calculated the percent reduction in non-ED admissions necessary to

serve the increased number of ED admissions that would result from reducing boarding

using two potential bed management policies. First, we estimated how reducing non-ED

admissions by a �xed proportion would impact overall revenue. This was termed a �static�

policy. Next, we estimated how various types of �dynamic� management policies impacted

revenue. Dynamic policies were de�ned by two parameters � the proportion reduction in

non-ED admissions and the speci�c trigger point (i.e. the bed number at which a reduction

would be deployed). Various static and dynamic bed management strategies were tested

to determine which allowed the ED to maintain current service levels and which, if any,

resulted in higher overall revenue at the hospital level.

The data included for the calculations were all ED patients registered and all non-ED pa-

tients (direct admissions and transfers) admitted to a single, inner-city teaching hospital

over a two-year period (FY 2007-8). Excluded were patients admitted to inpatient rehabili-

tation, psychiatry, and labor and delivery because they are not seen in the study ED and do

not compete directly with ED patients for inpatient beds. Also included were actual data

on ambulance diversion (separated by medical and trauma) over the study period. LWBS

patients were included if they were triaged, and each had a triage level which was used for

analysis. Patients who left before treatment complete or left against medical advice were

included as treated and discharged patients because they still resulted in revenue.

For each ED patient, we used data on arrival date, time, and mode (ambulance v. non-

ambulance), triage level, disposition, and actual revenue received. We used timestamps for

patient movement through the ED: earliest arrival, placement in treatment room, inpatient

bed request, and departure from the ED. From these timestamps, durations were calculated
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for wait time (earliest arrival until room placement), service time (room placement to depar-

ture for outpatients or bed request for admitted patients), and boarding time (bed request

to departure for admitted patients). Timestamps were obtained directly from the electronic

medical record, which stores timestamps in real-time as a regular part of ED work�ow.

5.2.2. Outcome Measures

The main outcome was direct revenue. Indirect revenue, including federal payments to

support resident education, was not included. We did not include direct or indirect costs,

and assumed hospital costs were largely �xed (Roberts et al. 1999). Therefore, we did not

calculate actual contribution margins or pro�tability, because cost allocation methods vary

widely between hospitals. Therefore, changes in revenue served as a proxy for changes in

hospital pro�tability. Revenue was classi�ed by the patient type, not by where the revenue

charge was incurred. For example, the total revenue generated from a patient visit that

started in the ED and was then admitted for three days would be classi�ed as ED-admission

revenue.

5.2.3. Primary Data Analysis

To quantify the revenue lost by LWBS and diversion, we estimated the expected value of

LWBS patients and both medical and trauma diversion hours. The expected dollar value of

a LWBS patient was estimated by the following weighted sum:

E[LWBS] =

4∑
i=1

Pr (TriageLeveli) [Pr (admiti)E [Revenueadmiti ]

+ (1− Pr (admiti))E [Revenueouti ]]

(5.1)

Triage level probabilities were calculated from observed LWBS patients. Since there were no

data on admission rates for LWBS patients had they remained for treatment, we used the

admission rates for ambulatory patients, conditional on triage level, as a proxy for LWBS

admission rates since the vast majority of LWBS patients are ambulatory. However, it is
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possible that due to self-selection, LWBS patients would be less likely to be admitted than

those who stayed. We therefore conducted a sensitivity analysis on the LWBS admission

rate and reported results for LWBS admission rates that were assumed in the �nancial model

to be half that of the observed population. However, later in the simulation, we tested an

admission rate of zero for LWBS and the triage-level adjusted rate because of the limitations

of the simulation software. The annual lost revenue from LWBS was obtained by multiplying

the expected value of a single LWBS patient by the number of LWBS patients.

The value of an hour of medical diversion was calculated as the product of the expected

revenue of a single medical ambulance arrival and the expected number of medical arrivals

per hour. The value of a medical arrival was calculated similar to LWBS patients except that

admission probabilities and expected revenues were estimated from medical arrivals. The

expected ambulance arrival rate was estimated by dividing the number of medical arrivals

by the number of hours the hospital was not on medical diversion during the study period.

Annual lost revenue from medical diversion was calculated as the product of the expected

value of an hour of medical diversion and the number of hours the hospital was on medical

diversion in a given year. The value of trauma diversion was estimated similarly from trauma

ambulance arrivals.

Next, we estimated the e�ect of boarding on revenue through two methods: �rst with a

�nancial model informed by regression and second with discrete-event simulation. The re-

gression method used ordinary least squares regression and drew on the relationship between

the mean daily boarding and the number of daily LWBS patients. Since the number of ED

arrivals (i.e. daily demand) in�uences both boarding times and LWBS, we used the following

model:

CountLWBS_Dayt = β0 + β1AvgBoarding + β2CountArrivalst + εt (5.2)

We used similar models for hours of medical and trauma diversion, replacing the count of
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LWBS with the number of hours of diversion per day.

Because of the relatively low explanatory power in the relationship between boarding and

LWBS and diversion (R2 of 0.43, 0.25, and 0.24 respectively for LWBS, medical diversion,

and trauma diversion), discrete-event simulation was used to validate the estimates of the

changes in boarding on revenue. Simulation was also used to extend the analysis to estimate

how the increased inpatient load from the new ED demand would impact overall hospital

operations; speci�cally, the potential reduction in non-ED admissions necessary to serve

the new inpatient load generated by more ED admissions. With the simulation model,

we created a virtual ED and hospital by using patient-level data to estimate probability

distributions of patient �ow. The model permitted us to change a parameter (i.e. mean

boarding time), and observe the e�ects on revenue.

The discrete-event simulation model had three ED arrival streams: medical ambulance,

trauma ambulance, and ambulatory (Figure 11). Each stream was an independent Poisson

arrival process estimated from data and designed to mirror ED operations. To simulate

LWBS behavior, we drew on abandonment and impatience models from queuing theory

(Gans et al. 2003). Each patient was assigned a maximum waiting time drawn from a

probability distribution. A Weibull distribution with shape parameter greater than one was

used to simulate increasing impatience (Gross et al. 2008).

Diversion was triggered by queue length. After crossing a trigger point, the relevant arrival

stream was diverted from the ED for four hours (which mirrored study hospital policy).

After time expired, the arrival stream reopened if the queue length was below the trigger

point, otherwise another four hours of diversion occurred.

Most parameters were estimated directly from the study data (Table 20). However, several

parameters could not be directly estimated: abandonment time distributions, diversion

triggers, and number of beds. Therefore, we used sensitivity analysis and an evolutionary

optimizer to tune the model to match the real results, and independence was veri�ed between
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Figure 11: Discrete-event model of the ED
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Table 20: Descriptive statistics of the study population (�scal year 2007 to 2008, by arrival
type)

Arrival Type

Medical

Ambulance

Trauma

Ambulance Walk-in

Count 17,856 4,914 92,462

Median Age, yr. 46 38 36

% Male 46% 70% 39%

% White 19% 32% 21%

% Black 70% 55% 66%

Arrival Rate,
patients/hr. (SE)

1.12 (0.02) 0.30 (0.01) 5.41 (0.03)

Admit Probability 34% 57% 18%

Boarding Probability 96% 6% 94%

Service Time for

Admitted Patients

Distribution Type Gamma Gamma Gamma

Scale 2.10 2.60 1.99

Shape 1.73 1.60 2.02

Mean (SD) 3.63 (2.74) 4.16 (4.33) 4.02 (3.07)

Median (IQR) 3.03 (3.06) 3.27 (3.11) 3.33 (3.25)

Service Time for

Outpatients

Distribution Type Gamma Gamma Gamma

Scale 3.19 5.96 3.53

Shape 1.59 1.24 1.06

Mean (SD) 5.07 (5.17) 7.39 (6.74) 3.74 (5.00)

Median (IQR) 3.85 (3.75) 4.98 (6.55) 2.57 (3.33)

Boarding Time

Distribution Type Weibull Weibull Weibull

Scale 3.64 3.19 3.52

Shape 0.955 0.936 0.891

Mean (SD) 3.73 (4.71) 3.30 (3.77) 3.75 (5.18)

Median (IQR) 2.34 (2.87) 2.03 (3.11) 2.19 (2.88)

Mean Time in ED, hr.
(SD)

6.2 6.5 6.0

% LWBS 2% 0% 8%

% of time on Diversion 9% 7% N/A

Mean Revenue, $ (SD)
4,672

(12,350)
16,529
(36,370)

2,530
(9,849)

Median Revenue, $
(IQR)

497 (6,031) 5,412 (15,351) 334 (742)

SE, Standard Error; SD, Standard Deviation; IQR, Interquartile Range; LWBS, left without being

seen.
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simulation samples by checking for autocorrelation with the Portmanteau test which found

no signi�cant autocorrelation. The simulation compared a base model with a model where

the mean boarding time was reduced by one-hour (by reducing the scale parameter in a

Weibull distribution). When comparing simulations, we used a paired-t con�dence interval

(Law 2007). To estimate the revenue e�ects from the changed model, the estimated change

in the number of patients served per day by type was multiplied by the expected revenue

for each given patient type.

Next, we estimated the reduction in non-ED admissions that would be required if boarding

was reduced. Reducing boarding creates additional demand for inpatient beds in two ways:

(1) ED-admitted patients move to inpatient beds earlier, (2) lower boarding reduces lost

demand (diversion and LWBS), increasing ED admissions. The required reduction of non-

ED admissions depends upon the degree to which the overall hospital is capacity-constrained

(i.e. the number of beds available on any given day). Consider three scenarios:

1. Inpatient beds are not capacity-constrained. In this scenario, the hospital can serve

the new demand without any cancellations or reductions. It is implicit that boarding

is not directly caused by a lack of inpatient beds (Hoot et al. 2008), but results from

other ine�ciencies.

2. Inpatient beds are completely capacity-constrained. In this case, each patient-hour of

increased ED demand from lower boarding and higher ED admissions would require

elimination of a patient-hour of non-ED admission.

3. Inpatient beds are periodically capacity-constrained. If the hospital is not always

at capacity, only a portion of new demand would necessitate reductions of non-ED

admissions.

The �rst two scenarios serve as boundaries to the potential �nancial outcomes from reducing

boarding (i.e. best and worst case scenario). The third scenario is of primary interest, and

simulation was used to test how various non-ED admission reduction policies would allow
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Figure 12: Hospital census during the study period

the hospital to serve the increased ED demand and maximize estimated revenue. Policies

tested included: 1) a simple across-the-board reduction of the non-ED admission rate (i.e.

a static model) and 2) dynamic policies that actively scaled back non-ED admissions by

speci�c proportions only when the hospital was above a given census trigger point.

To test these policies, we assumed a hospital capacity of 565 beds which was the average

sta�ed-bed capacity of the study hospital (Figure 12). Capacity data was calculated from

actual arrivals and departures of ED and non-ED admissions. Sta�ed-beds were determined

from random daily snapshots of hospitals' sta�ed-beds using Navicare software (Hill-Rom,

Batesville, IN), the management tracking system for sta�ed-beds and census.

We �rst determined in a base-case model the proportion of ED admissions who boarded in the

ED directly due to capacity constraints (i.e. no appropriate bed was available). This served
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as the service level target for all potential scheduling policies. Mean boarding time was then

reduced by one-hour and the service level for a total of 80 potential policies was measured

(10 static and 70 dynamic policies). The �rst question was whether a policy matched or

exceeded the service level, determined as a policy where no additional inpatient capacity

would be needed. We then simulated the daily increase or decrease in daily revenue from

the increase in ED demand and reduction policy for non-ED admissions. The objective was

to �nd the non-ED admission policy or set of policies that would both match or exceed the

target service levels and maximize net revenue gains under the reduced boarding scenario.

Analyses were performed using Microsoft Excel 2007 (Microsoft Corporation, Redmond,

WA), Stata 10 (Stata Corp, College Station, TX), ExtendSim 8 (Imagine That Inc., San

Jose, CA), and JMP 8.0 (SAS Institute Inc., Cary, NC). This study received approval from

the institutional review board.

5.3. Results

A total of 92,456 ED outpatients, 25,753 ED admissions, and 36,393 non-ED admissions

were used for analysis over two-years. Median hospital length of stay for ED and non-ED

admissions was 3 days. Mean revenue for ED outpatients was $647, ED admissions $2,268

per patient-day, and non-ED admissions $4,118 per patient-day (Table 21).

There were 3,186 LWBS encounters during FY2007 and 3,845 during FY 2008. The expected

value for one LWBS patient was $1,096, assuming admission of LWBS patients occurs at half

the rate of the observed ambulatory population, conditional on triage level. In sensitivity

analysis, when all LWBS patients were outpatients, the expected value was $478 and when

LWBS patients were admitted at the same rate as those that stayed by triage level, the

expected value was $1,714. Treating all LWBS patients (assuming an admission rate of ½

the observed ambulatory rate) would have resulted in an additional $3.5 million in revenue

in FY2007 and $4.2 million in revenue in FY2008.

There were 618 and 1,020 medical diversion hours and 479 and 794 trauma diversion hours in
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Table 21: Descriptive statistics of the study population in a single hospital during a 2-year
period (�scal year 2007 to 2008)

Variables

ED

Outpatients

ED

Admissions

Non-ED

Admissions

Patient Count (%) 92,456 (60%) 25,753 (17%) 36,393 (24%)

Revenue, $, millions
(%)

59.8 (5%) 338.7 (26%) 929.2 (70%)

Mean Length of Stay,
days (SD)

N/A 5.8 (9.1) 6.2 (9.4)

Median Length of Stay,
days (IQR)

N/A 3 (4) 3 (5)

Mean Revenue/Patient
per Day, $

647 2,268 4,118

Median
Revenue/Patient per
Day, $ (IQR)

226 (425) 2,242 (1,966) 3,556 (5,482)

N/A, Not Applicable.

FY2007 and FY2008 respectively. During o�-diversion times, there were 1.2 non-ambulance

arrivals per hour for medical patients and 0.3 ambulance arrivals per hour for trauma pa-

tients. The expected revenue for a medical ambulance arrival was $4,670 and the expected

revenue for a trauma arrival was $16,526. The expected lost revenue from one hour of med-

ical diversion was $5,388 and the expected lost revenue from each hour of trauma diversion

was $5,110. Medical diversion resulted in forgone revenue of $3.3 million and $5.5 million in

FY2007 and FY2008. Trauma diversion resulted in $2.4 million and $4.1 million in forgone

revenue in FY2007 and FY2008. The overall estimated lost revenue from lost demand was

$9.3 million for FY2007 and $13.8 million for FY2008.

For the 25,753 ED admissions in FY2007 and FY2008, the mean boarding time was 3.7 hours

(standard deviation [SD] 5.2 hours), and median boarding time was 2.2 hours (Interquartile

range [IQR] 1.1 � 4.1). A one hour change in average boarding time was associated with

a change of 1.1 (95% CI 0.9 - 1.3) patients per day who LWBS. Regression analyses found

that a one-hour reduction in average boarding time was associated with a 1.2 hours per

day (95% CI 0.9-1.5) reduction in medical diversion hours and 0.7 hours per day (95% CI

0.5-1.0) in trauma diversion hours. Using the estimated values of LWBS and diversion, a
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Table 22: Changes in the number of patients served with 1-hour reduction in mean boarding
and expected revenue

Variables

Change in

Mean Patients

Served (SE)

Expected

Revenue per

Patient, $

(SE)

ED Medical Ambulance Admission 0.35 (0.02) 12,296 (235)

ED Trauma Ambulance Admission 0.11 (0.01) 24,352 (856)

ED Ambulatory Admission 0.00 (0.01) 11,704 (159)

ED Medical Ambulance Outpatient 0.85 (0.03) 723 (32)

ED Trauma Ambulance Outpatient 0.09 (0.01) 6,361 (319)

ED Ambulatory Outpatient 2.81 (0.04) 499 (6)

one-hour reduction in average boarding time would increase revenue by $11,301 per day.

This estimate ranged from $10,628 to $11,974 as the LWBS admission rate assumption was

varied from 0% to the observed ambulatory admission rate. In the simulation, if all LWBS

patients were outpatients, this would result in $9,693 increased revenue per day, or $3.5

million per year. When LWBS admission rates mirror ambulatory admission rates, reducing

boarding by an hour would increase revenue by $13,298 per day or $4.9 million per year.

The estimated values used in the simulation for each patient type based on the study data

are listed in Table 22.

A one-hour reduction in mean boarding led to an increase in inpatient bed demand of 4.4 bed-

days per day (1.3 days for reducing boarding and 3.1 days for accommodating additional

ED admissions). Assuming that inpatient beds are never capacity-constrained, reducing

boarding by an hour would increase hospital revenue by $3.5 million per year and require

no reduction in non-ED admissions. Assuming that inpatient beds are always capacity-

constrained, the new inpatient demand would necessitate non-ED admission cancellations

worth $18,172 per day. The hospital would therefore experience a net revenue reduction of

$8,479 per day or $3.1 million per year if it reduced mean boarding time by one hour in a

completely capacity-constrained situation.

In the scenario that inpatient beds are intermittently capacity constrained, the �nancial
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Table 23: Non-ED admission policy comparison for net change in revenue caused by 1-Hour
average ED boarding reduction, in which LWBS patients are all ED outpatients
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Table 24: Non-ED admission policy comparison for net change in revenue caused by 1-Hour
average ED boarding reduction, in which LWBS patients are admitted at rates mirroring
those of patients who stayed for care.
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Figure 13: Changes in revenue due to a 1 hour reduction in mean boarding time

results depend on the non-ED admission policy. Tables 23 and 24 demonstrate the daily

change in revenue under di�erent static and dynamic bed management policies. In the case

where LWBS patients are considered outpatients, 1% reduction in ED admissions or lower

did not meet current service levels and there were no static policies that resulted in increased

revenue for the hospital. The 70 dynamic policies tested ranged from trigger censuses of

530 to 560 beds and a 1% to 10% reduction. Of those, 55 met current service levels and

35 policies would result in higher revenue. The optimal strategy was a 5% reduction in

non-ED admissions at 560 beds resulting in $7,418 higher revenue per day or $2.7 million

per year (Figure 13). In the case where LWBS patients were admitted at the ambulatory

admission rate, all static policies met current service levels and a 1% reduction in non-ED

admissions was the only higher revenue policy resulting in $612 in greater revenue per day

or $223 thousand per year. Of the 70 dynamic policies tested, 25 met current service levels,

and of those, 14 would result in higher revenue. The optimal strategy was an 8% reduction

at 555 beds, resulting in $10,009 or $3.6 million per year.
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5.4. Limitations

A major limitation of our study is that we used data from a single hospital. Other hospitals

with di�erent processes may experience di�erent revenue e�ects than we found (Henneman

et al. 2009). For example, Massachusetts hospitals that are by law no longer permitted to

go on diversion may experience smaller gains from reducing boarding than hospitals that

regularly divert ambulances. We found also that trauma arrivals resulted in considerably

higher revenue than medical arrivals, which may not be seen in other hospitals. This may

be explained by local factors, such as negotiated agreements with payers, or the fact that

in Pennsylvania (the site of the study hospital), a law requires 100% reimbursement of

charges for worker's compensation trauma victims. In addition, because in this inner city

hospital, ED patients were more likely to be uninsured and have Medicaid insurance than

non-ED patients, there was more than 1.5 fold di�erence between ED admission and non-ED

admission revenue. In hospitals with more balanced payer-mixes between ED and non-ED

admissions, we would expect the potential revenue gains from reducing boarding to be

higher. In addition, because this hospital was an inner-city hospital, the potential revenue

losses from diversion would be expected to be higher because of the higher likelihood of

penetrating trauma victims requiring operative management.

Our model was also simplistic in that we assumed bed pooling between speci�c types of beds

(i.e. pooling �oor, telemetry and intensive care), which may not re�ect policies in other hos-

pitals imposing stricter rules about segregating service lines within units. Restrictions on

bed pooling would serve to reduce the gains from lower levels of boarding. In addition,

we assumed the sta�ed-bed capacity to be in our model �xed which was not completely

re�ective of reality (Figure 12). Sta�ed-bed variability may be even greater in many hospi-

tals, which may result in less un�lled sta�ed occupancy. We also made an assumption that

hospital expenses are largely �xed and we used revenue as our main outcome. The degree to

which hospital sta�ng would need to be increased to accommodate the increased demand,

particularly if more expensive temporary sta�ng was used, may lower our estimates of the
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�nancial bene�ts of reducing boarding. Lastly, we did not directly calculate how reducing

ED crowding and boarding may impact outcomes. Given studies that have demonstrated

higher medical error rates and complications associated with crowding (e.g., Pines et al.

2007, Pines and Hollander 2008, Fee et al. 2007), it is likely that the impact on outcomes

such as lower complications and shorter lengths of stay would serve to further increase hos-

pital revenues if boarding is reduced. It is also possible that reducing boarding may have

downstream e�ects, such as changing the likelihood of an emergency physicians' decision to

admit.

5.5. Discussion

Studies on the revenue impacts of boarding have shown mixed results (e.g., Lucas et al. 2009,

Falvo et al. 2007, McHugh et al. 2008). The potential gains from reducing boarding have

been estimated in some studies, while in others direct comparisons between ED admissions

and non-ED admissions have been made that have shown that ED admissions are less

pro�table than non-ED admissions in broad populations. No studies have directly assessed

the tradeo� between potentially lost revenue from LWBS and diversion and the degree to

which any reduction of boarding would necessitate lower numbers of �nancially attractive,

non-ED admissions. We advance the understanding of this balance by demonstrating the

potential revenue gains or losses under various conditions from reducing boarding by one

hour using data from a single hospital. Speci�cally, we demonstrate how overall hospital

revenue can change dramatically based on the di�erent policies employed to manage hospital

capacity by selectively reducing non-ED admissions on higher demand days to allow for lower

ED boarding times.

The two types of policies tested were static - reducing the average number of non-ED ad-

missions per day � and dynamic � using active scheduling to strategically reduce non-ED

admissions on higher demand days. In the case where LWBS patients were outpatients,

there was no static policy that allowed the ED to reduce boarding, maintain current service

levels, and generate revenue gains, while in the case where LWBS patients are admitted at
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the ambulatory rate, a 1% across-the-board reduction was marginally revenue positive. This

indicates that across-the-board reductions in non-ED admissions to improve the functioning

of the ED are likely not a �nancially attractive strategy for hospital managers.

However, many dynamic policies allowed for a maintenance of the same non-ED admission

rate, as long as the hospital census was below a given trigger point. Once the trigger point

was reached, non-ED admissions would be reduced by a given percentage until the census

dropped below the trigger point. Assuming that LWBS patients are outpatients, the optimal

dynamic policy called for a 5% reduction in non-ED admissions when the census reached 560,

while assuming their admission rate is the same as their triaged counterparts who stayed

for care, the optimal policy would be an 8% reduction when the hospital census reached

555. During the study period, the hospital admitted about 50 non-ED patients a day, so a

5-8% reduction would require cancellation of approximately 2-4 non-ED patients when the

trigger census is reached. This assumes that patients are cancelled and their revenue is lost

forever, therefore if patients could be rescheduled rather than lost, the revenue estimates

may underestimate the net revenue change.

Our results also show that a wide range of dynamic policies are acceptable and achieve

relatively similar results. Hospital managers may have various reasons to select a particular

policy (i.e. one that favors a lower trigger or a lower reduction rate). There is also a tradeo�

that certain trigger rates would require hospitals to spend more days in a �non-ED admission

reduction mode.� Higher administrative costs, customer service concerns, or the response

from inpatient services who gain more revenue from non-ED admissions may also play into

which particular active management plan is chosen.

This study also provides evidence that calls into question the commonly held belief that

boarding is largely caused by a lack of inpatient beds (Henneman et al. 2009). In the sim-

ulation, increases in ED admissions were accommodated on most days without any change

to non-ED admissions and the sta�ed-beds were mostly higher than the hospital census

(Figure 12). In fact, reducing boarding rarely pushes existing patients out, assuming that
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the hospital is making best use of its sta�ed-space, which may not be the case. Under the

various policies tested, reducing non-ED admissions was required only 3% - 20% of the time,

suggesting that much of observed ED boarding times may not have been cause by a lack of

physical beds, but rather by other ine�ciencies in the system that slow transitions of care

between hospital units, or requirements that speci�c units house speci�c types of patients

(i.e. the gastroenterology patients can only be on one hospital unit) with little pooling

between similar types of beds. Future studies should in managing hospital capacity should

study the impact of pooling, and other strategies to better balance non-ED admissions to

reduce arti�cial �ow variability through load-leveling (i.e. surgical schedule smoothing).

Several aspects of this calculation make this study generalizable and not generalizable to

other U.S. hospitals. The �ndings would be most generalizable to other large, high-volume,

teaching hospitals because they would be likely to experience similar variability in occupancy,

demonstrated by large swings in census that frequently go below peak capacity. This would

be true particularly in those that have not employed load-leveling of non-ED admission

schedule, as was the case in the study hospital. However, in hospitals without the same

levels of boarding, LWBS, and diversion, our results may be less applicable. This may be

the case in hospitals with no diversion policies or those that make better use of sta�ed beds.

In summary, we found that ED boarding leads to un�lled patient need � as measured by

ambulance diversion and walk-away rates � and large potential losses in hospital revenue.

We also demonstrate that the potential revenue impacts of reducing boarding is highly

dependent on how a hospital manages the variability in bed capacity in a single inner-city,

teaching hospital. Speci�cally, how the hospital chooses to handle inpatient bed management

strategies is vital. How non-ED admissions are reduced to accommodate new demand is the

primary driver of whether reducing boarding increases hospital revenues or not. We identi�ed

several dynamic admissions policies for non-ED patients that could serve higher demand for

ED admissions with minimal e�ect on non-ED patients and lead to a net revenue gain of

$2.7� 3.6 million per year.
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