315 research outputs found

    Update NPS / February 2012

    Get PDF
    NPS Distinguished Professor Releases Two Books on Diverse Subjects; NPS Acquires Two USVs, Unveils New Sea Web Lab; Army's Intellectual Center Commander Visits NP

    Identity Management Framework for Internet of Things

    Get PDF

    IoT Health Devices: Exploring Security Risks in the Connected Landscape

    Get PDF
    The concept of the Internet of Things (IoT) spans decades, and the same can be said for its inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential in expanding care. However, the application of the IoT in healthcare is fraught with an array of challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and deeper degrees of damage possible to both consumers and their confidence within health systems, as a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs) are developed, a diverse range of attacks are possible. To understand the risks in this new landscape, it is important to understand the architecture of IoTHDs, operations, and the social dynamics that may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay the groundwork for better understanding security risks in emerging IoTHD modalities through a multi-layer approach, and suggest means for improved governance and interaction. We also discuss technological innovations expected to set the stage for novel exploits leading into the middle and latter parts of the 21st century

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations

    Characterization of the fundamental properties of wireless CSMA multi-hop networks

    Get PDF
    A wireless multi-hop network consists of a group of decentralized and self-organized wireless devices that collaborate to complete their tasks in a distributed way. Data packets are forwarded collaboratively hop-by-hop from source nodes to their respective destination nodes with other nodes acting as intermediate relays. Existing and future applications in wireless multi-hop networks will greatly benefit from better understanding of the fundamental properties of such networks. In this thesis we explore two fundamental properties of distributed wireless CSMA multi-hop networks, connectivity and capacity. A network is connected if and only if there is at least one (multi-hop) path between any pair of nodes. We investigate the critical transmission power for asymptotic connectivity in large wireless CSMA multi-hop networks under the SINR model. The critical transmission power is the minimum transmission power each node needs to transmit to guarantee that the resulting network is connected aas. Both upper bound and lower bound of the critical transmission power are obtained analytically. The two bounds are tight and differ by a constant factor only. Next we shift focus to the capacity property. First, we develop a distributed routing algorithm where each node makes routing decisions based on local information only. This is compatible with the distributed nature of large wireless CSMA multi-hop networks. Second, we show that by carefully choosing controllable parameters of the CSMA protocols, together with the routing algorithm, a distributed CSMA network can achieve the order-optimal throughput scaling law. Scaling laws are only up to order and most network design choices have a significant effect on the constants preceding the order while not affecting the scaling law. Therefore we further to analyze the pre-constant by giving an upper and a lower bound of throughput. The tightness of the bounds is validated using simulations

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Ein mehrschichtiges sicheres Framework fĂĽr Fahrzeugsysteme

    Get PDF
    In recent years, significant developments were introduced within the vehicular domain, evolving the vehicles to become a network of many embedded systems distributed throughout the car, known as Electronic Control Units (ECUs). Each one of these ECUs runs a number of software components that collaborate with each other to perform various vehicle functions. Modern vehicles are also equipped with wireless communication technologies, such as WiFi, Bluetooth, and so on, giving them the capability to interact with other vehicles and roadside infrastructure. While these improvements have increased the safety of the automotive system, they have vastly expanded the attack surface of the vehicle and opened the door for new potential security risks. The situation is made worse by a lack of security mechanisms in the vehicular system which allows the escalation of a compromise in one of the non-critical sub-systems to threaten the safety of the entire vehicle and its passengers. This dissertation focuses on providing a comprehensive framework that ensures the security of the vehicular system during its whole life-cycle. This framework aims to prevent the cyber-attacks against different components by ensuring secure communications among them. Furthermore, it aims to detect attacks which were not prevented successfully, and finally, to respond to these attacks properly to ensure a high degree of safety and stability of the system.In den letzten Jahren wurden bedeutende Entwicklungen im Bereich der Fahrzeuge vorgestellt, die die Fahrzeuge zu einem Netzwerk mit vielen im gesamten Fahrzeug verteile integrierte Systeme weiterentwickelten, den sogenannten Steuergeräten (ECU, englisch = Electronic Control Units). Jedes dieser Steuergeräte betreibt eine Reihe von Softwarekomponenten, die bei der Ausführung verschiedener Fahrzeugfunktionen zusammenarbeiten. Moderne Fahrzeuge sind auch mit drahtlosen Kommunikationstechnologien wie WiFi, Bluetooth usw. ausgestattet, die ihnen die Möglichkeit geben, mit anderen Fahrzeugen und der straßenseitigen Infrastruktur zu interagieren. Während diese Verbesserungen die Sicherheit des Fahrzeugsystems erhöht haben, haben sie die Angriffsfläche des Fahrzeugs erheblich vergrößert und die Tür für neue potenzielle Sicherheitsrisiken geöffnet. Die Situation wird durch einen Mangel an Sicherheitsmechanismen im Fahrzeugsystem verschärft, die es ermöglichen, dass ein Kompromiss in einem der unkritischen Subsysteme die Sicherheit des gesamten Fahrzeugs und seiner Insassen gefährdet kann. Diese Dissertation konzentriert sich auf die Entwicklung eines umfassenden Rahmens, der die Sicherheit des Fahrzeugsystems während seines gesamten Lebenszyklus gewährleistet. Dieser Rahmen zielt darauf ab, die Cyber-Angriffe gegen verschiedene Komponenten zu verhindern, indem eine sichere Kommunikation zwischen ihnen gewährleistet wird. Darüber hinaus zielt es darauf ab, Angriffe zu erkennen, die nicht erfolgreich verhindert wurden, und schließlich auf diese Angriffe angemessen zu reagieren, um ein hohes Maß an Sicherheit und Stabilität des Systems zu gewährleisten

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    • …
    corecore