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Abstract: The concept of the Internet of Things (IoT) spans decades, and the same can be said for its
inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential
in expanding care. However, the application of the IoT in healthcare is fraught with an array of
challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and
deeper degrees of damage possible to both consumers and their confidence within health systems, as
a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs)
are developed, a diverse range of attacks are possible. To understand the risks in this new landscape,
it is important to understand the architecture of IoTHDs, operations, and the social dynamics that
may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay
the groundwork for better understanding security risks in emerging IoTHD modalities through a
multi-layer approach, and suggest means for improved governance and interaction. We also discuss
technological innovations expected to set the stage for novel exploits leading into the middle and
latter parts of the 21st century.

Keywords: biocybersecurity; cyberbiosecurity; healthcare; IoT; security risk management

1. Introduction

The Internet of Things (IoT) has been steadily rolled out to numerous devices world-
wide since the mid–late 2000s, starting largely with benign consumer items and increas-
ingly into more sensitive areas, including healthcare, transportation, and more sensitive
services [1]. With the inclusion of the IoT into healthcare, significant gains were realized in
that patients experienced ease in reporting their health status [2,3]. In some cases, those
confined gained autonomy [2,3]. This applies to institutions adopting the IoT, gradual,
sparing legislation adopted in the past 20 years to fast-track and improve the digitalization
and reporting of medical information. It has not been just healthcare facilities that have
boomed with IoT adoption. Modern labs, warehouses, schools, transport equipment, and
agricultural plots use IoT devices in the 21st century [4], and these remain critical in consid-
eration of healthcare impacts as their inputs and interactions impact operations. However,
consumers and institutions alike have raised significant concerns about the continued
digitalization of healthcare. The issues causing these concerns have occurred, from simple
oversights in design to complex implementations of IoT health devices (IoTHDs). These
have been accompanied by the discovery of numerous security vulnerabilities and high
volumes of attacks that have been carried out [5–14]. Vulnerabilities in IoTHD design and
implementation pose immediate data-based threats. These threats include mass data leaks,
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improper forwarding of data, and sometimes even indirectly disrupting the operation of
other connected devices through a lack of communication or coordination [15–17]. We
found vulnerabilities in production-scale and patched devices that have stored data in
unencrypted, non-proprietary, and easy-to-access formats. However, it is worth noting
that proprietary formats can frustrate open-source efforts and are usually financially moti-
vated but more secure. Alternatively, some vulnerabilities leak access to other connected
devices, which is problematic for any roll-out [17]. Relating to attacks, an increasing
amount of health and manufacturing infrastructure has been open [17,18] and subject to
attacks, such as Advanced Persistent Threats (APTs), ransomware, trojans, worms, and log-
gers [19]. These persistent problems within the IoTHD supply chain and health chain of
actions pose numerous threats to patient health, caregiver service, and national security.
Strielkina et al. [15] noted the significant problems networked devices posed, including
random failures, privacy compromise, and deliberate operations disruptions.

This paper examines the architecture components of IoTHD systems dissected in
terms of devices, connected software technologies, the backbone infrastructure, and the
individuals involved—IoTHD stakeholders. The discussion of the devices targets medical
imaging, medical sensors (used to derive data from being taken advantage of and facili-
tate processes in modern healthcare), external and implanted devices, and virtual home
assistants. The software discussion is split between legacy systems and AI-based software
technologies that enable functions within these IoTHDs. The infrastructure discussion
covers the communication and application backbone relevant to achieving medical services.
Lastly, using IoTHDs requires a discussion of the relevant people and communities. These
refer to nation-state actors, healthcare facility personnel, and independent and unorthodox
communities. With knowledge of the landscape, we explore the vulnerabilities in healthcare
infrastructure as a subset of the international bioeconomy through the lens of IoTHDs. We
discuss the components of IoTHDs, vulnerabilities and threats leading to security risks,
and control suggestions to address the security risks in IoTHDs. We propose and apply
a multi-layer approach to IoTHD security risk management as a beneficial method to
facilitate end-to-end security in IoTHDs.

Lastly, we discuss the purpose of modern and emerging IoTHDs. Understanding
this allows for an enhanced understanding of emerging and future vulnerabilities and
threats, i.e., theoretical threat classification due to emerging IoTHD issues (in terms of
novel attack/defense topologies, emerging social dynamics around devices, neuro-link
adjacent devices, brain–computer interfaces, and wearable and minimally invasive device
vulnerabilities) and practical examples with a case report in the literature. Following this,
we discuss future IoTHD controls/countermeasures considerations in terms of device
and culture design, practices and training, and innovations to introduce as relating to
4th industrial revolution (4IR) technologies (relating to AI, blockchain, and others that
assist toward automation), applications of state defense in the vein of defend forward,
and business opportunities that can be capitalized upon by enterprising minds. Overall,
this condensed survey and exploration paper will be a valuable tool for anyone concerned
with the security of IoTHDs and their potential impact on healthcare and other sectors. We
believe that our paper can contribute to navigating the complexities and potential risks of
IoTHDs and those that emerge from them.

2. IoT Healthcare Components

IoTHDs are gaining popularity in healthcare. Some are legacy devices that do not
immediately have IoTHD features that can be retrofitted, but many are newly manufactured
devices that automatically have IoT functionality that can be embedded. Covering impor-
tant common assets they produce in processing patient phenomena is also important. Ac-
cording to the literature, over half of the IoTHDs have critical security vulnerabilities [20,21].
Before enumerating the vulnerabilities of these devices and the future directions of IoTHDs,
we define the different types of IoTHDs that we focus on in this paper.
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2.1. IoT System High-Level Architecture

In the literature, the extent of the reference architecture used for IoT systems in
healthcare examines layered models. The architecture of the IoT in healthcare essentially
consists of three (3) basic layers consisting of the perception, network, and application
layers [22,23]. Fundamentally, medical information is collected from networked medical
devices and wearable or implanted sensors and is transmitted through communication
infrastructures to relevant end-users through software applications for monitoring and
taking appropriate action. We summarize the high-level architecture of IoT components
in healthcare. This is visualized in Figure 1.

Figure 1. IoT architecture layers and their components, adapted from [24].

2.1.1. Perception Layer

This layer comprises devices with sensing capabilities where medical devices and
wearable and implanted sensors are used to obtain real-time patient or end-user medical in-
formation to facilitate diagnosis and high-quality medical treatments. Such devices include
Radio Frequency Identification (RFID) tags, infrared sensors, imaging equipment, GPS,
other medical sensors, and smart device sensors [22,25]. These devices allow for compre-
hensive perception through object identification, image recognition, location recognition,
and actuation and can convert this information to digital signals for transmission [25]. We
discuss more regarding perception-layer devices in Section 2.2.

2.1.2. Network Layer

The network layer constitutes wired and wireless networks, which connect percep-
tion devices, application-layer devices, and other network devices to transmit medical
information collected at the perception layer to the application layer. Communication
between things can occur using short-range communication technologies, such as RFID (Ra-
dio Frequency Identification) and NFC (Near-Field Communication), and medium-range
communication technologies, such as Bluetooth, Zigbee, WiFi, and the global system for
mobile (GSM) communications [22]. However, high-frequency fourth-generation (4G) and
fifth-generation (5G) cellular networks are becoming more readily available and providing
a reliable connection for up to thousands of devices at the same time [25].

2.1.3. Application Layer

The application layer interprets and applies data generated at the perception layer and
transmitted through the network layer. The layer is also responsible for providing usability
to the end-user, delivering application-specific computing services, and data storage.

The end-users could be a doctor monitoring their patient’s data in real time on a
hospital computer, a specialist monitoring their patient’s record on a smart device, and a
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family member of the patient or even the patient themselves monitoring vital signs on their
smart device. We discuss more regarding relevant end-users in Section 2.4.

Most promising IoT medical applications are facilitated using artificial intelligence (AI) for
image analysis in radiology, pathology, and dermatology, electronic medical records (EMRs)
text recognition with natural language processing, and drug activity design, as well as illness
trajectories, medical outcomes and interventions, and re-admissions predictions [26].

Data storage and manipulation are critical aspects of IoT healthcare applications.
Cloud infrastructures support data-intensive electronic medical records (EMRs), patient
portals, medical IoT smartphone applications, and big data analytics driving decision
support systems and therapeutic strategies [27].

2.2. IoT Healthcare Devices

Our analysis focuses on IoTHDs, ranging from networked medical devices to wire-
lessly reprogrammable implantable devices and software applications. In this paper, we
refer to medical devices as any instrument, machine, implant, in vitro reagent, or related
components intended for the diagnosis or in the cure, mitigation, treatment, or prevention
of diseases [28].

We discuss examples of these IoTHDs and their application to healthcare.

2.2.1. Medical Imaging

Medical images are becoming even more important due to the advancements in
telemedicine. Magnetic Resonance Imaging (MRI) and CT (Computed Tomography) are
volumetric medical imaging methods commonly used for medical diagnosis. X-rays are
a more elementary mode of medical imagery. Because these images contain important
information about one’s health concerns, they are usually considered key components
that the healthcare sector needs to protect in the field of cyberbiosecurity [29–31]. One of
the many forms of medical images is Digital Imaging and Communications in Medicine
(DICOM). DICOM is a standard for storing and transmitting medical images, which gives
the biomedical details of the organ that is being examined [32]. DICOM and PACS (picture
archiving and communication systems) are well-known for medical imaging transmission
and storage protocols [33]. Typically, CT and MRI images can be acquired in the DICOM
format and stored in PACS servers where the PACS clients, such as doctors and medical
staff, can access the stored files through the DICOM protocol. However, these medical
imaging systems have been exposed to malicious attacks because of the lack of critical
network security [34,35]. For example, DICOM provides encryption options but has also
been exposed to malicious attacks [36].

Although Generative Adversarial Networks (GANs) are mostly used in image fabrica-
tion, they can also be used in sensing data. Some studies have already shown the feasibility
of using GANs in ubiquitous sensing data other than images. For example, Erol et al. [37]
utilized GANs to generate realistic radar data for human activity recognition [37]. While
these are not relevant for medical procedures, they can be when adapted to specific surgical
or other medical techniques that are machine guided. For example, deep learning was uti-
lized to attempt noise reduction in ultrasound images [38]. This demonstrates the potential
for adversaries to build means that mimic medical devices’ behavior in time. Beyond the
radar data, inertial measurement unit (IMU) sensing data or biometric data can always be
replayed using GANs [39].

In addition, other forms of imaging include smart cameras to assist healthcare delivery,
including wound analysis in patients with diabetes [40], monitoring dermatitis and skin
conditions [41] and heart rates, and monitoring tear film buildup in dry eye disease [42].

2.2.2. Medical Sensors

Besides medical imaging equipment, biometric medical sensors can directly retrieve
digital output readings from human beings [43]. Medical images are predominantly created
at a specialized medical facility, but medical sensing data can be collected at a hospital or
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in daily life [44,45]. This is made possible because IoT technologies have grown rapidly,
and thus ubiquitous sensing is available by wearable devices worn by the user that intercon-
nect wearable sensors through wireless connections [46,47]. For example, vital sign patches
to wirelessly track and monitor heart rate, respiration rate, temperature, step count, sleep
cycle, stress levels, and falls or incapacitation; wireless electrocardiogram monitors [48];
smartwatches and Fitbits (to track activity, heart rate, and sleep patterns); fall detectors,
such as iFall (a wearable accelerometer that communicates with a smartphone and the
cloud), to detect and respond to patient falls [49]; wearable blood pressure monitors [50];
neural sensors to read and understand neural brain signals and to infer the state of the
brain [51]; and finger pulse oximeters to measure oxygen saturation levels in the blood [52].
With the criticality of these devices to patient diagnosis, injecting or removing sensing data
can also cause a significant misdiagnosis. However, a lot of these devices have notably poor
signal quality already. For instance, wrist-mounted pulse oximeter devices are regularly
off by a large margin when addressing patients with darker skin tones [52]. Devices like
these require additional reevaluation on top of their potential to leak data. This presents a
possible compound disruption to the quality of care in analogously deficient devices. As a
result, disruptions can further impede the reliability of healthcare operations. Thus, future
healthcare sectors must ensure that medical sensing data are secure.

2.2.3. Implanted Medical Devices

As micro-electromechanical systems (MEMS) have grown significantly, researchers have
made inroads to propose medical devices that can be implanted into human bodies—yet
popular acceptance of these devices may be many years away. This is to say nothing of the
current reliability of these devices, which may be low. Numerous brain–machine interfaces
aim to communicate with neural signals of human brains to treat disease conditions that are
currently difficult to treat reliably [53–56]. Likewise, implanted medical devices not only stay
in human bodies but will eventually be parts of live devices that can transmit data outside the
body [57]. For example, for digital (smart) medications, an ingestible sensor (a microfabricated
sensor made from copper, magnesium, and silicon, in minute quantities) can communicate
with an external body sensor, such as a wearable sensor patch [23].

In this regard, there are multiple vulnerabilities in using such implanted medical
devices [58]. For example, authentication methods on implanted medical devices are
an especially pertinent topic [59]. It is also important to consume battery power more
efficiently [58]. Implanted devices can be hacked to consume inefficiently and reduce user
life quality. In addition, data availability, integrity, and confidentiality should always be
available to the users [60]. By doing this, healthcare professionals can better manage the
implanted devices.

2.2.4. Virtual Medical Home Assistants

As discussed earlier, advanced IoT technologies can enable patients to be treated at
home. Virtual medical home assistants could be part of healthcare [16,61–63]. For example,
continuous glucose monitors and smart insulin pens (which track dose and time and recom-
mend the correct type of insulin to use) [64]; sleep trackers; home security cameras; and voice
assistants can also be part of healthcare components because they generate medical informa-
tion, e.g., fall events, and transmit them to off-site data storage facilities [65,66]. These de-
vices can be used at home for remotely monitoring patients’ biomedical status remotely [16].

Specifically, smart voice assistants (also known as conversation agents) installed in
the home setting can support users through conversations, answer specific health-related
questions without human contact, and collect data for screening and remote patient moni-
toring [67]. Product designers, security experts, human factors engineers, and regulators
might benefit from considering how the lexicon might affect voice assistants. For example,
they might want to consider how people of different backgrounds/incomes would talk to
a doctor and (presumably) a voice assistant differently. Considerations within this space
might help expose additional vulnerabilities in device operation.
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Additionally, health robots can be applied to support the detection of unhealthy
behaviors, manage medication use, and assist in rehabilitation therapies [68].

Overall, the definition of healthcare input data has expanded substantially. Accord-
ingly, healthcare should protect these wide scopes of input data from malicious adver-
saries [14,69–72]. As healthcare organizations become more distributed in treating and
observing patients, they represent wider attack surfaces.

2.3. IoT Healthcare Supporting Technologies

Various software components and infrastructure technologies support IoTHDs to
function effectively.

2.3.1. IoTHD Software Components

Software components are crucial in enabling various functionalities and facilitating
communication among different devices and systems, and they need to be designed,
developed, and tested with security in mind. Healthcare facilities can choose from a
wide variety of healthcare software programs. Each choice requires high-quality security
implementations to secure patient data and medical facilities. IT solutions in healthcare
support medical professionals by automating manual workflow or supporting medical
workers wherever they work. Most software gathers patient information to coordinate the
best care among qualified healthcare providers. The Electronic Health Record Software
(EHR) and Electronic Medical Record Software (EMR) are the most used healthcare software.
These are the gateways for both patients and providers. Other medical software currently
available includes Medical Diagnosis Software, which enables the real-time transmission
of information between providers, medical databases, visualization and imaging, medical
research, tele-health and telemedicine, and patient engagement software [73]. Software
for the healthcare industry is not currently standardized. Even at its best, some of the
current healthcare software is cumbersome. The user experience was not prioritized in
the design of the system interface. Although EHR is intended to simplify the process, it
can be compromised. As a result, hackers are free to take patient data and hold it hostage
while exploiting it to make money. Some hospitals still use paper medical records because
they have not fully migrated to EHR. Teaching hospital employees the best ways to secure
patient data throughout these changes is crucial. As secure as any software is, medical
professionals will continue making human errors in healthcare. The medical software
should be a backup to the provider to provide the best possible care.

Healthcare systems have also used outdated legacy software that is still in use due
to its critical functionality but is often no longer supported by the manufacturers, making
them vulnerable to security risks and compatibility issues. One major challenge with legacy
software in IoT healthcare device systems is the potential for security vulnerabilities. These
software components no longer receive updates and patches, making them susceptible to
cyberattacks that exploit known vulnerabilities. This could result in compromised sensitive
patient data or the device, potentially harming patients [34,74,75]. Another issue with
legacy software is compatibility. As new technologies and systems are developed, legacy
software may no longer be compatible with newer hardware or software. This can create
issues when integrating older devices into new systems or upgrading existing ones. It is
also important to note that in some cases, healthcare organizations may be required to
continue using legacy software due to regulatory or compliance requirements.

AI-based software also benefits IoTHDs. AI can read available EMR data, including
medical history, physicals, laboratory reports, imaging, and medications, and contextualize
these data to generate treatment and/or diagnosis decisions and/or possibilities. Further,
it can interpret data from various sources. For example, IBM Watson uses AI to read both
structured and unstructured text in EMR, to read images to highlight primary and incidental
findings, and to compile relevant medical literature in response to clinical queries [39].
IoT-based healthcare and deep machine learning can assist health professionals in seeing the
unseeable and providing new and enhanced diagnostic capabilities. Although diagnostic
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confidence may never reach 100%, combining machines and clinician expertise reliably
enhances system performance. For example, compared with the diagnostic evaluation
by 54 ophthalmologists and senior residents, applying AI to retinal images improved
the detection and grading of diabetic retinopathy and macular edema, achieving high
specificity (98%) and sensitivity (90%) [76]. AI and deep learning can also optimize disease
management, provide big data and analysis generated from mHealth apps and IoT devices,
and are seeing adoption in healthcare [77]. Some examples of this include predicting
risk, future medical outcomes, and care decisions in diabetes and mental health [78] and
predicting the progression of congestive heart failure [79,80], bone disease [81], Alzheimer
disease [82], and benign and malignant tumor classification [83]. However, AI-based
threats are new and emerging. These threats used machine learning techniques to rapidly
and comprehensively learn new vulnerabilities and attack routes. A recent survey [84]
listed actual and possible frameworks that can attack devices, software, and other assets in
health security.

2.3.2. IoTHD Supporting Infrastructure

Backbone infrastructures are critical in ensuring IoTHDs function effectively, securely,
and reliably.

IoTHDs generate massive amounts of data that need to be processed and analyzed in
real time, where cloud computing infrastructure provides the necessary processing power
and storage capacity to handle this data. However, with more cloud apps entering the
health market, it is just as important that an evidence base supports its effectiveness and
safety and can deal with the security of health data and the reliability and transparency
of that data by third parties. Furthermore, it has been suggested that centralized cloud
storage will present issues in the future to users, such as excessive data accumulation and
latency, because of the distance between IoT devices and data centers.

IoTHDs require a reliable and secure communication infrastructure to transmit data
between devices, servers, and other systems. This infrastructure includes wired and
wireless networks, protocols, and communication standards. Communicated healthcare
data are often stored on a local machine (often decentralized) or turned over to a central
hospital repository. Cloud-based computing to support the delivery of health services has
many benefits, as it is ubiquitous, flexible, and scalable in terms of data acquisition, storage,
and transmission between devices connected to the cloud [66]. The use of the cloud can
be foreseen to support data-intensive electronic medical records (EMRs), patient portals,
medical IoT devices (which can include smartphone apps), and the big data analytics
driving decision support systems and therapeutic strategies [85].

Decentralized data processing and networking approaches may improve the scalabil-
ity of the IoT in healthcare. Edge cloud is a newer cloud computing concept that allows IoT
sensors and network gateways to process and analyze data themselves (i.e., at the edge) in
a decentralized fashion, reducing the amount of data required to be communicated and
managed at a centralized location [31,86]. Similarly, blockchain storage uses a decentralized
approach to data storage, creating independent blocks containing individual sets of infor-
mation, forming a dependent link in a collective block, and creating a network regulated
by patients rather than a third party [87]. However, the usage of blockchain is minimal
for now. There are examples of platforms engineering blockchain for medical practice
already [20,87]; however, research on edge clouds and blockchains in healthcare is still
limited and is an important area for future research.

2.4. IoT Healthcare Stakeholders

Individuals must interface with IoTHDs on the front end (usually the Graphical User
Interface (GUI)) and back end (usually through medical infrastructure). We focus on
patients and patient family members, healthcare personnel, and IoTHD developers as they
have security impacts on IoTHDs and their related assets.
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2.4.1. Patients and Related Family Members

Patients and their related family members have a tremendous role in accessing and
advocating for quality care. It is important to consider the modes of care and the com-
munication platforms (smartphone vs. hospital-owned medical device(s)). Healthcare
security professionals should consider wide scenarios at play with the transmission of
hospital information. For example, upon obtaining acceptance from the patient, or even
the patient themself on their smartphone, family members will communicate healthcare
details differently.

2.4.2. Healthcare Personnel

We discuss healthcare personnel in degrees of contact with patients. First-degree
personnel commonly include physicians, nurses, students, receptionists, phlebotomists,
technicians, surgeons, scribes, emergency response doctors, janitors, security workers,
and administrators. Contract workers who may be involved with security, the transporta-
tion of materials, information technology staff, and guest scientists or collaborators make
up second-degree personnel. Third-degree personnel can work with or associate with
second-degree personnel or are unpaid, such as students, volunteers, patient visitors,
and police officers, in limited cases of needed operation, participation, and agency.

2.4.3. IoTHD Manufacturers

IoTHD manufacturers cover all those in charge of building, configuring, and maintain-
ing IoTHDs. IoTHD manufacturers can introduce security issues during device manufactur-
ing cycles and should similarly sharpen the protection of their most critical manufactured
assets. These include tighter protocols, vetting, and minimization of interactions with
core IP assets, offline backups, networking segmentation, web filtering, etc. [88]. Addi-
tionally, IoTHD manufacturers should assume they are already targets and be aware
of phishing attacks [88].

2.5. Security Risk Management

To study the security aspects and possible risks with IoTHDs, we apply information sys-
tems security risk management (ISSRM) concepts, defined by Dubois et al. [89], that define
the asset, risk, and risk treatment-related concepts to guide security risk management. We se-
lected the ISSRM method because it supported systematic asset identification and functional
decomposition of the system [90,91] when compared to other risk management methods
used for IoT systems, such as NIST (National Institute of Standards and Technology) [92],
OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation Method) [93],
and TARA (Threat Assessment and Remediation Analysis) [94]. Affia et al. [95] provides a
more detailed comparison of these methods. We also follow a threat-driven approach to se-
curity risk management [96], developed in line with the ISSRM method, to provide security
threat analysis support benefits, including threat and risk treatment coverage, by leveraging
the STRIDE method. We explore major concepts of the ISSRM method below:

• Asset-related concepts—identify relevant assets for security risk analysis. It describes
the business assets—that represent information, data, and processes that bring value
to an organization—and system assets—that support business assets to protect. Asset-
related concepts also describe the security criteria (in terms of confidentiality, integrity,
and availability) that define the security needs of the assets [89].

• Risk-related concepts—illustrate the vulnerability, threat agent, threats, and risk im-
pact analysis of the assets in scope. A security risk is a combination of a security event
and its impact (negation of the security criterion), harming business and system assets.
A vulnerability is a characteristic of system assets, constituting its flaws—an imple-
mentation defect that can lead to a vulnerability [89]. A threat agent refers to an entity
that has the potential to cause damage to information system assets, thereby initiating
a threat and becoming the origin of a risk. Typically, a threat agent is identified by their
motivation, skills, capability, knowledge, available resources, and opportunity to carry
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out an attack [89,97]. A threat event is a component of security risk that occurs when a
threat targets system assets and exploits their vulnerability. The STRIDE method [98]
can then be used for security threat analysis [96]. The abbreviation STRIDE stands
for spoofing (S)—pretending to be someone else to gain access to sensitive data or
resources, tampering (T)—altering data or code to manipulate the application’s behav-
ior or cause it to malfunction, repudiation (R)—denying ones actions or the actions
of others and making it difficult to track down the source of an action, information
disclosure (I)—exposing or gaining access to information one should not be able to
access, denial of service (D)—preventing a system from providing its intended ser-
vice by crashing it, slowing it down, or filling its storage, and elevation of privilege
(E)—gaining access to functionality without authorization [98]. Further in this study,
we use STRIDE to guide a security threat analysis due to its industrial usage, matu-
rity, high research concentration within the security community, and applicability for
guiding risk treatment.

• Risk treatment-related concepts—tackle mitigating the identified security risks, guid-
ing risk mitigation decisions, security requirements, and controls to treat the risks.
Security requirements aim to define conditions to be reached by mitigating identified
security risks and are prerequisites to controls that implement the specified security
requirements [89]. The STRIDE security requirements can thus guide requirements
elicitation for risk treatment [96].

In this study, we apply these security risk management concepts in a multi-layer
approach to understand the security risks within the IoTHD ecosystem.

3. Security Risks in IoT Health Devices

The examination of security risk management in IoT layers through the related
work [24] has brought to light certain issues that may not have been discovered if the
IoT system’s architecture was not considered. These issues include research gaps arising
from an unequal focus on security research on some IoT architecture layers to the detriment
of others, the effect of risk on one layer cascading to other layers, and the necessity of
implementing multi-layer risk analysis and defence strategies. Thus, we seek to apply a
multi-layer approach to IoTHD security management as a beneficial method to facilitate
end-to-end security in IoTHDs. In this section, we summarize our multi-layer IoTHD asset
findings in Table 1, discuss the vulnerabilities of these IoTHD system assets, highlight
relevant threat agents with the motivation and expertise to attack IoTHDs, and then for-
malize threats to IoTHDs in Table 2. We also provide a multi-layer risk analysis based on
real-world scenarios to instantiate our approach.

3.1. IoTHD Assets

Table 1 summarizes the IoTHD assets (system and business assets) based on the
discussed IoTHDs and classifies these assets into functional areas of each layer.
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Table 1. IoTHD Architecture-layer assets.

Layer System Assets Business Assets

Perception [23,25]

Sensing

Neural sensors,
infrared sensors,

RFID (Radio
Frequency

Identification) tags,
light sensors,

magnetometer,
thermometers,
smartwatches,

monitoring patches,
finger pulse
oximeters

Patient biomedical
status: patient

activity, heart rate,
sleep patterns, neural
activity/brain signal,

oxygen saturation
levels, body

temperature, glucose
level in blood

Positioning

Location sensor,
movement sensor,

gyroscope,
accelerometer

Pseudo-range
measurements

Visioning

Smart cameras,
medical imaging

systems (MRI and
CT)

Surveillance (audio,
picture, video) data,
MRI and CT images

Actuating
Medical device

control unit, social
robot actuators

Medical device
commands

Network [23,25,99]

In-device

DICOM, Bluetooth,
WiFi, Zigbee, RFID,

wireless sensor
networks, NFC

(Near-Field
Communication),

Z-wave, MQTT, LoRa
and ultra-wide

bandwidth (UWB),
wireless body area
networks (WBAN)

Transmitted
perception data

Device-to- device

Device-to-
infrastructure

Application [23]

Computing/ Personal
Servers

Web application
platform, mobile

application, PACS
server

Application process,
application data,
perception data

Data Storage

Virtualized storage at
edge computing, local

database, PACS
storage

Perception and
application data

End-user

Patients and related
family members,

healthcare personnel,
IoTHD manufacturers

Application process,
PII, patient

biomedical status

3.2. IoTHD Vulnerabilities

A vulnerability is a weakness in a system asset, group of system assets, or security
control that a threat agent could exploit to cause harm to the system. As such, medical
devices, specifically when they are connected to networks, are just as vulnerable as any
other networked security systems and are subject to security breaches because they are
all interconnected [100]. As the medical world expands in networking and information
technology, there are increased opportunities for threat incidents initiated by malicious



IoT 2023, 4 160

agents that target IoTHD system assets by exploiting their vulnerabilities. IoTHDs have
become more vulnerable to cybersecurity vulnerabilities due to the rapid growth, prior-
itized role in aiding healthcare diagnosis, and greater connectivity between the devices,
leading to high-impact clinical treatment and patient safety [100]. This section discusses
the vulnerabilities of IoTHD system assets within their respective IoT layers.

3.2.1. Perception-Layer Vulnerabilities

IoTHDs, including legacy devices, are vulnerable to physical attacks that render
devices unusable. Those medical devices are usually expensive and mostly managed
by RFID in hospitals [101]. Despite the efforts of the protocol-level approaches, medical
devices are often targeted by physical thefts, which is harder to protect through software
solutions. Additionally, the potential for smart pills to be a target of theft exists as well [102],
alongside medical identity theft by stealing fobs, cards, and other physical means of
accessing healthcare assets. According to Mancini et al. [103], medical identity is used
to access certain medical benefits by adversaries. IoT health devices are also limited in
the power and resources they possess [100]. Thus, encrypting data transmitted by these
devices, for instance, can significantly slow down their operation, reducing their usable
battery life. This is a critical issue as some medical devices rely on prolonged battery life,
and any reduction in it could affect their effectiveness and even pose risks to patients.

Data authentication is crucial to medical device security because these factors are
related to one’s medical history and data privacy. IoTHDs may suffer from an eleva-
tion of privilege attacks (EoP) when device authentication is missing [104]. Implanted
devices that enable communication between brains, brain-stems, and other parts of the
central nervous system are vulnerable to unethical access to consumer/patient neural
information. Although these devices are designed to help mitigate patients’ diseases,
adversaries can potentially exploit the IoTHDs to extract information from our brains.
Several researchers have pointed out that this could be a new ethical threat to humans in
the coming decades [105,106].

3.2.2. Network-Layer Vulnerabilities

Data integrity is a key security criterion for securing data generated and transmitted
by IoTHDs. However, the data integrity of the remotely collected data in communication is
not always easy. Vulnerabilities in communication are likely to persist. For accessibility,
any data generated by IoTHDs are usually always available. While adversaries may block
transmission channels by using jamming or flooding attacks, medical devices should be
able to provide ceaseless data monitoring [107,108]. The lack of accessibility may also cause
data integrity, which can be used for altering data stored on IoTHDs [78,106]. Automation
has boosted medical device manufacturing, providing many advantages in improving
productivity while reducing unnecessary costs [109,110]. However, in medical device
manufacturing, every component created with network capability or means of amplifying,
dampening, or re-routing network communications creates new avenues of attacks [111].
For example, ransomware can cause massive supply-chain disruptions [111].

3.2.3. Application-Layer Vulnerabilities

Many computer vision technologies have been proposed to alter images [1,112]. Thus,
it threatens healthcare sectors that adversaries could apply techniques such as modifi-
cation, swapping, and obscuring toward vulnerable medical images [113,114]. For ex-
ample, injecting or removing medical evidence to and from those medical images can
cause a major misdiagnosis [115,116]. Medical images with insufficient security guidelines
updates can also often suffer from various malicious manipulation attacks [33]. Addi-
tionally, adversaries and researchers have proposed more complicated attacking models
and defense requirements as deep learning techniques evolve. For example, CT-GANs
(Computed Tomography—Generative Adversarial Networks) [117] train GANs to gener-
ate fake CT images by having AI learn real medical images [117].
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At the application layer, web services have become a popular means of interfacing
with existing (and somewhat legacy) systems. However, when it comes to ensuring greater
interoperability, some implementations can be insecure due to weak authentication and
the absence of encryption. As a result, there is a risk of information being tampered
with during transmission. Given the growing importance of IoTHDs, preserving data
integrity is of utmost importance [100]. The human factor is also a component of the
application layer. A lack of awareness of cybersecurity issues, poor security practices,
and the consistent education and training of healthcare personnel, patients, and end-
users of IoTHDs on cybersecurity risks and their impact contributes to the persistent
cybersecurity vulnerabilities [100]. Some examples of these insecure practices include the
insecure disposal of devices containing sensitive information or data, sharing passwords,
and distributing passwords for device access, especially in cases where password protection
is required [100].

3.3. Relevant Threat Agents

A threat agent can be a person, group, or organization that intends to exploit a
vulnerability to cause harm to a system intentionally. A threat agent is characterized by
motivation, available resources, and expertise to use an attack method sufficient to trigger
a threat. The threat agent is, thus, the source of risk. This section highlights relevant threat
agents with the motivation and expertise to attack IoTHDs.

3.3.1. Nation and State Actors

Nation and state actors are parties that operate on behalf of governments—with or
without that government’s public support. These tend to be well-funded entities collab-
orating with other allied countries and often work with “private enterprise” or criminal
associations [118–120]. However, governments can fund operations that are often seen as in-
dependent. They have been known to be the main parties perpetrating cyber warfare largely
through APTs contributing sustained operations [13,121]. For example, various APTs have
been noted for interfering in politics, assisting in IP theft, participating in extortion attempts,
or shoring up military imbalances in capacity between nations. A yet unknown source
has been behind the “Tardigrade” APT targeting biomanufacturing facilities [122]. So far,
Tardigrade has been suspected of gathering intelligence on vaccine production data [88]
to disrupt it. Even more unusual is the metamorphic ability of Tardigrade to learn the
systems it is in, change its signatures when detected, and then act anew. Thus, meaningful
concerns can be had about new Tardigrade-like and Tardigrade derivatives in development
or deployed elsewhere, perhaps even other industries. Limited actions can be performed
while Tardigrade is under examination, but key insights can be gleaned:

• State actors continue to have the means to produce sophisticated works.
• APTs produced are likely to prioritize and maintain autonomy, allowing damages de-

livered to be sustained. Interference can be run through these to disrupt the operations
of critical healthcare [122].

• If APTs can securely deliver hostile software into organizations with enough IoTHDs,
and those devices are distributed widely enough and sufficiently evade patching, they
can be a significant means of surveillance.

• The most relevant APTs toward IoTHDs appear to be those that would target both IP
and operations of such IP. Such could deliver strategic technological gains to nation-
states while offering positioning to control companies of rival nation-states and or
their alliances.

• IoTHD developers should assume they are already targets and sharpen the protection
of their most critical assets, including tighter protocols, vetting, and minimization of
interactions with core IP assets. Further, as per BIO-ISAC’s reported recommendation
for bio manufacturers, all IoTHD developers should similarly consider reviewing the
degree of backups, networking segmentation, and product lead times [88].
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• Owing to automation in APTs and other means of automated attacks, we may see
increased automation in defense.

3.3.2. Healthcare Facilities and Related Personnel

Conversations about healthcare facilities and personnel commonly include physicians,
nurses, students, receptionists, phlebotomists, technicians, surgeons, scribes, emergency
response doctors, janitors, security workers, and administrators. These are first-degree
personnel. The many contract workers who may be involved with security, the transporta-
tion of materials, information technology staff, and guest scientists or collaborators are
important to include, which can make up the second degree. One more degree can be
removed for those who work with or associate with workers at the second degree or are
unpaid, such as students, volunteers, patient visitors, and police officers, in limited cases
of needed operation, participation, and agency. From the first to the third degree, there
is a gradient of access to IoTHDs, from higher to lower. Still, all must be considered to a
degree depending on the tasks at hand and the value of the IoTHD assets, for they can all
provide an input that can determine a valuable output. Each of these degrees of separation
entails different trees of attacks on healthcare assets. Healthcare personnel need to consider
how the IoT either shortens the degree of separation or removes barriers entirely.

3.3.3. Independent and Unorthodox Communities

Unorthodox communities include many diverse actors of different funding groups
and sizes. Independent actors can include from hobbyists and lone actors to organized
groups either looking to exploit for intrigue, the repurposing of devices, or exploitation
or harm. From the ethical hacker end of the spectrum, spaces such as those within Com-
munity Bio and Makerspaces and groups such as “I Am The Calvary” and the “Grinder
[Implant] Community” would be those among whom IoHTDs may find beneficent uses.
These individuals improve technology through identifying vulnerabilities and alerting
manufacturers, addressing the vulnerabilities directly, positively advertising the proper use
of the devices, or repurposing the devices within accepted frameworks. Toward the other
end, lone exhibitors, criminals, and criminal groups can be expected to pose considerable,
irregular threats to IoTHD users.

3.4. IoTHD Security Threats

Medical devices, specifically when they are connected to networks, are just as vulnera-
ble as any other networked security systems and are subject to security breaches because
they are all interconnected. IoT devices have increasingly become prevalent in healthcare
and have improved patient care, remote monitoring, and medical research. However, these
devices pose security threats that malicious actors (see Section 3.3) can exploit. Security
threats to IoT devices in healthcare can occur at different layers, including the perception,
network, and application layers.

We aggregate the results of the security threats to IoTHDs [123–126] following the
STRIDE method [24,96] in Table 2.

Table 2. IoTHD security threats [24,123–126].

System Asset
Security Threats

S T R I D E

Perception
Layer: Sensing,
Positioning,
and Vision
Technologies

Sensor spoofing,
Sybil, node imper-
sonation, replay,
sending deceptive
messages, device
cloning, weak
authentication
scheme

Forgery, data/image ma-
nipulation, data tamper-
ing, falsification of device
readings, data injection,
device tampering

Bogus message Eavesdropping Message satura-
tion, jamming,
DoS, battery
depletion

Backdoor, weak authentica-
tion scheme, malware, re-
mote update of device con-
trol unit, hardware trojan,
compromised node, pass-
word intrusion, physical
theft
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Table 2. Cont.

System Asset
Security Threats

S T R I D E

Network
Layer: In-
Device, Device-
to-Device,
Device-to-
Infrastructure

Routing attacks,
replay attack, mas-
querading, RF
fingerprinting, im-
personation attack,
eavesdropping,
position faking

Firmware modifica-
tion, injection (mes-
sage, command, code,
packet), manipula-
tion/alteration/fabrication,
tampering, forgery,
malicious update (soft-
ware/firmware)

Bogus messages,
message modifi-
cation, rogue re-
pudiation, loss
of event trace-
ability

Eavesdropping,
man-in-the-middle,
location tracking,
sniffing, message
interception, infor-
mation disclosure,
traffic analysis,
side-channel, ARP
Tab. Poisoning

DoS/DDoS, bat-
tery depletion
attack, jam-
ming, flooding,
message suppres-
sion, Blackhole,
Grayhole, Sink-
hole, Wormhole,
MIMO attacks

Malware, Brute Force, gain-
ing control, social engineer-
ing, logical attacks, unau-
thorized access, session hi-
jack

Application
Layer: Human,
Computing,
Data Storage

Spoofing, imper-
sonation, weak
authentication
scheme

Firmware/software mod-
ification, malicious up-
date, SQL injection

Audit log tam-
pering, forgery

Eavesdropping,
location tracking,
privacy leakage,
SQL injection, data
breach, message
disclosure

DoS, DDoS, buffer
overflows

Outdated OSs, social en-
gineering/phishing, unau-
thorized access, malware,
software hijacking, Drop-
bear SSH Server, IaaS cloud
attack, password intrusion,
ransomware

3.5. IoTHD Countermeasures

As the medical world expands in networking and information technology, security
threats in IoTHDs will continue to impact the future of clinical treatment and patient safety
directly. Technical controls, governance, resilience measures, unified reporting, context
expertise, regulation, and standards are general suggestions for the remediation of security
risks due to IoTHD threats [100]. We discuss countermeasures to IoTHD security threats
(see Section 3.4) at the perception, network, and application layers [124,126,127].

3.5.1. Perception/Device-Level Controls

In the era of Healthcare 4.0, all the sensing data from IoTHDs will be transmitted to
remote servers and stored in cloud databases [128–130]. In addition, due to the nature of
IoT devices, various sensing capabilities are used. Especially in implanted medical devices
and sensors, if the data protocols or message formats vary, data protection against a wide
range of malicious attacks can be more difficult [83]. Thus, more unified networks can
be built with unified data encryption and transmission schemes to bring more protection
capabilities against future adversaries [131]. Perception-layer components are prone to
physical attacks, such as tampering or theft. Physical-layer security schemes [124,132]
including RFID-based secure algorithms [101] have been suggested to protect against
physical attacks (i.e., eavesdropping, sniffing, data breach, compromised node and device
cloning attacks).

Researchers have also proposed secure data management protocols for medical iden-
tity protection [133,134] against medical identity theft that allow for privileged attacks.
Mashima et al. [135] pioneered to secure medical systems against physical theft [135] that
creates a trusted domain and an online monitoring system. However, medical identity
threats cannot only be resolved by engineering efforts but also require holistic efforts.
Halstead et al. [136] emphasized the importance of educating healthcare workers to become
aware of these physical threats [136]. Medical professionals are not trained to deal with
security threats, so device manufacturers should provide some security on their devices,
release patches, and ensure secure products. While medical staff have little to do with the
security of their devices, the owner of the healthcare facility can maintain (buy) strong
device security and hire capable cybersecurity teams [137].

IoTHD perception-layer components become a more beneficial target as they collect
patient medical data and control the device. Data hygiene entails the removal or limited
persistence of data created on or entered into the device to reduce the impact of device
data breaches and limit how much sensitive data can be transmitted to other IoT layers.
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Developers must consider protocols that limit the data taken and the data deciphered to
limit thefts, as the ability to decode human biosignatures improves [105]. Additionally,
data authentication schemes (i.e., biometric-based, mutual authentication, etc.) are crucial
to medical device security because these factors are related to the privacy of one’s med-
ical history and data [124]. Such schemes can help remediate impersonation, password
intrusion, reply, weak authentication, and side-channel attacks.

3.5.2. Network/Communication-Level Controls

Vulnerabilities in IoTHD communication can be addressed through key management
schemes (using symmetric or asymmetric approaches) to protect the information exchanges
between IoTHD system components [124]. With key management, the messages to be
transmitted are protected with a key, which allows the packets to be encrypted. However,
with the traditional approaches, there is a possibility of high power consumption and
complexity [138]. There is also a need to adapt to newer technologies such as 5G technology
and the emergence of more complex smart applications [124]. Proxy-based mechanisms
can introduce additional security by adding an entity, layer, or process to secure the data
generated in medical devices and transmitted between medical devices and the healthcare
platform at the application layer. Wu et al. [139] created a proxy-based approach with
ciphertext-policy attribute-based encryption (CP-ABE) to protect the communications and
provide fine-grained access control in devices and WBANs. Similarly, Marwan et al. [140]
proposed the CloudSec framework for data sharing and processing with two cryptosystems
(AES and Paillier cryptosystems) for data encryption and key management.

Secure routing mechanisms such as SDN technology [141] protect IoTHDs from attacks
such as Wormhole, routing attacks, DoS, battery depletion, flooding, Grayhole, etc., that
take advantage of the high power consumption or low processing capabilities of the
transmission mechanisms. Thus, deploying secure gathering and routing strategies to incur
the least communication overheads and transmission costs mitigate these attacks [141,142].
Intrusion detection techniques are also beneficial for discovering attacks or malicious
actions in the network or system [124].

Lastly, as with limiting the data collected through data hygiene methods, limiting the
data transmitted from IoTHDs remains important. Despite implicit agreements upon the
IoTHDs’ vulnerabilities in communication, several studies [143,144] have reviewed the
literature on how to build reliable data communication protocols or systems.

3.5.3. Application-Level Controls

Security at this layer is critical because it manages the exchange of sensitive data
between the device and the user or external systems. Developers of IoT health applications
should follow secure coding practices, such as input validation, output encoding, and data
sanitization, to prevent common application-layer attacks, such as SQL injection and
buffer overflows. While key management schemes protect data in transit between the IoT
device and the user’s mobile device or external systems [100,124], sensitive data should
be encrypted at rest in the user’s mobile device or external systems. Strong encryption
algorithms such as AES symmetric key based-schemes and RSA should be used [124].
IoT health devices must also ensure data integrity of the data transmitted and received,
as incorrect data can lead to life-threatening situations. Mechanisms such as check-sums,
digital signatures, and hash functions can be used to ensure that data have not been
tampered with. Access control mechanisms can also be implemented to limit authorized
users’ access to sensitive data and device functionality. Authentication mechanisms such
as username/password, biometrics, or smart cards can be used to authenticate users.

Secure data aggregation techniques protect the patient’s sensitive information ag-
gregated from distributed medical devices (medical sensors) by applying an aggregation
technique to secure and privatize the information. Tang et al. [145] applied different char-
acteristics to implement secure data aggregation techniques, such as differential privacy
preservation, obliviousness security, patient fair incentives, and data aggregation source
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identification. Chen et al. [146] proposed the federated learning paradigm using trained
models to implement secure data aggregation.

4. Practical Examples Inspired by Real-World Concerns

We have followed a high-level layered architecture perspective to IoT systems, al-
lowing for a more in-depth asset-oriented security risk analysis of IoTHDs within their
perception, network, and application layers. We applied a suitable security risk manage-
ment method—the ISSRM method—and its domain model [89] to guide our analysis. Our
analysis in Section 3 shows that a multi-layer security risk management analysis benefits
securing IoT health devices. By identifying and mitigating potential risks at each layer, IoT
health devices can be made more secure, protecting user privacy and safety. In this section,
we summarize this analysis at each layer.

4.1. Risk 1: Medical Image Modification

Medical imaging systems can comprise sensor equipment to collect CT and MRI
images in various formats and store, transmit, or share them using the picture archiving
and communication system (PACS). PACS is networked medical imaging technology that
facilitates the storage, retrieval, and sharing of medical images.

4.1.1. Perception-Layer Risk Analysis

In the case of medical imaging using PACS, the perception layer includes devices
used to capture and configure the CT and MRI imagery, as well as the software used.
These include the CT scanners, MRI, DR device, ultrasound to capture medical imagery,
and the modality workstation configuring and sending all the imagery in the DICOM
format to the PACS server [117]. Vulnerabilities in the perception layer may arise from
inadequate security measures, such as weak passwords, unpatched software, or default
settings that have not been changed, which can increase the risk of unauthorized access
to these assets. The attacker with physical access to the perception-layer assets, i.e., the
modality workstation, can plant the malware by accessing the unlocked workstation.
To secure against this threat, anti-virus software can be used on modality workstations
and should be kept up to date [117]. Additionally, digital signatures [147] and digital
watermarking [148] with each scan and machine learning techniques [149] can be used to
detect tampered images and, thus, prevent their use for medical diagnosis.

4.1.2. Network-Layer Risk Analysis

The network layer in this scenario refers to the PACS network infrastructure used
to transmit and store the medical images, typically in the DICOM format. The network
layer comprises internal networks, WiFi access points connected to the internal network,
and an internet connection. PACS which are not directly connected to the internet can
be indirectly connected via the facility’s internal network [150] and are thus vulnerable
to attacks. PACS servers exposed to the internet pose a high risk of security threats that
could compromise the confidentiality, integrity, and availability of the medical images
stored on the server. Threats in this layer could include social engineering attacks, physical
access, network intrusions, denial-of-service attacks, and other types of attacks that target
the network infrastructure [151]. The risk of these threats increases when the medical
images are transmitted over unsecured networks or stored in an unencrypted form. For
example, an attacker can access the internal network by hacking WiFi access points with
critical vulnerabilities, such as “Krack” [152] and “BleedingBit” [153], where Bluetooth
and WiFi electronics are integrated into a single chip. To address such threats, healthcare
facilities should enable encryption between the hosts in their PACS network using proper
SSL certificates [117] and remain up to date with patches to vulnerable network software.
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4.1.3. Application-Layer Risk Analysis

In the application layer, the risk of unauthorized access to the medical images stored
on the PACS server can lead to malicious image modification. Although most healthcare
facilities use local servers, a few have transitioned to cloud storage [154], increasing the
potential attack surface. When a PACS server is exposed to the internet, there is a risk of
various security threats that could compromise the confidentiality, integrity, and availability
of the medical images stored on the server. Thus, a threat agent with motivation, exper-
tise, and resources to gain unauthorized access to the PACS server can use the CT-GAN
technique on medical imaging systems, posing a high risk of malicious image modification,
leading to the loss of integrity of MRI/CT images, misdiagnosis of a severe disease, delayed
treatment for the affected patients, and a loss of trust in the medical system. Vulnerabilities
in medical imaging systems, such as inadequate encryption and security measures, increase
the likelihood and severity of this risk.

Mirsky et al. [117] also demonstrated how an attacker could compromise medical
images on PACS servers by designing two conditional GAN models. One injects medical
evidence into healthy images, while the other removes medical evidence from images
with detectable tumors [117]. This approach is critical because it can cause a misdiagno-
sis of severe diseases. Pathologies requiring high-resolution scanning would become a
higher risk of CT-GAN-related attacks [117]. To mitigate this risk, organizations should
implement adequate security controls, such as encryption (of data in motion (DiM) and
data at rest (DaR)) and access controls, and limit the exposure the PACS server has to the
internet [117]. Additionally, organizations should reduce the sensitive data collected (e.g.,
pathologies that do not need a CT scan should be discouraged), prioritize pathologies that
require high-resolution scanning for further security measures, and consider alternatives to
CT scanning for pathologies that do not require it. Finally, organizations should use risk
management methodologies, such as the STRIDE method, to identify and address specific
threats posed by the CT-GAN technique.

4.1.4. Summary

Malicious image modification by malicious actors can have severe consequences for
the affected patients and the medical system. Attacker motivations comprise ideological,
political, money, fame, and revenge motivations; attacker goals vary according to motiva-
tions, including to affect elections (political), hold data hostage (money), insurance fraud
(money), terrorism (revenge), etc.; and the impact includes physical (injury and death), men-
tal (trauma and life course), and monetary (loss and payouts). These point to nation/state
actors and unorthodox communities, although independent actors (i.e., hobbyists and
ethical hackers) may seek to explore such evolving uses of CT-GANs [117]. Therefore, it is
essential to implement appropriate security measures, such as strong authentication and
access control, data encryption, and regular security assessments, to mitigate the risks at
each IoT layer. We illustrate a scenario of malicious image manipulation in Table 3.

4.2. Risk 2: Malicious Synthesis and Camouflage of Genetic Sequences

DNA synthesis has become more common [155]. It now is a non-trivial threat [156]
where genetic sequences being synthesized and analyzed for various purposes, such as
medical research, drug development, and forensic analysis, can be leaked to unauthorized
parties or corrupted.

4.2.1. Perception-Layer Risk Analysis

The perception-layer security risk analysis of the DNA synthesis IoT health device
system involves identifying risks associated with the user’s interaction with the system.
In this case, the risk involves the attack on the synthesizer through sound waves pro-
duced during the operation of the synthesizer. The acoustic side-channel attack is a type of
“sonic malware” or “bioacoustic hacking” that can infer information about the synthesizer’s
operation and the synthesized DNA sequence [157,158]. This attack requires close physi-
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cal proximity to the DNA synthesizer, which means that healthcare or related personnel
could be likely threat agents. Alternatively, an attacker can breach systems in proxim-
ity to the DNA synthesizer (e.g., remote monitoring systems, employee phone/laptop,
etc.) and record the information leaked in the acoustic side-channel of the DNA syn-
thesizer through an existing microphone(s) of those systems [157]. To mitigate acoustic
side-channel risks, Faezi et al. [157] suggested using physically identical components
placed in a geometrically uniform manner to remove any variations in acoustic emissions.
Additionally, preventing unauthorized personnel from accessing any room containing a
DNA synthesizer helps to maintain confidentiality of the synthesized DNA sequences. Any
unapproved devices discovered in the same room as a DNA synthesizer should be reported
as a security threat [157].

4.2.2. Network-Layer Risk Analysis

DNA synthesizers can connect to computers, external drives, and Ethernet cables.
However, operators generally keep the machine disconnected from the internet and lo-
cal networks or use secured protocols to eliminate the possibility of cyberattacks [157].
Although the possibility of network-layer attacks is limited, security risks target the com-
munication between the DNA synthesizer and any integrated external system posing a
significant risk to the confidentiality of the synthesized DNA sequences. Appropriate secu-
rity measures, such as encryption, access controls, and monitoring for suspicious activity
in any room containing a DNA synthesizer, can mitigate network-layer risks [157].

4.2.3. Application-Layer Risk Analysis

The application-layer security risk analysis of the DNA synthesis IoT health device
system involves risk impacts stemming from perception-layer threats. When genetic
sequences are manipulated, these corrupted sequences will be used in various medical
applications, posing significant risks to genetic research and development [157]. Routine
risk assessments can help identify corrupted sequences and prevent malicious actors from
exploiting them.

4.2.4. Summary

DNA synthesis in medical research, drug development, and forensic analysis poses a
significant security risk to genetic research and development integrity. The risk of malicious
DNA synthesis and camouflage, particularly through acoustic side-channel attacks, can
compromise genetic data and misdiagnose severe diseases. Faezi et al. [157] discuss
attacker intent, such as industrial espionage and bioterrorism; however, because most
attacks require close physical proximity to the DNA synthesizer, the healthcare or related
personnel are the likely threat agent (although they can be recruited by a nation/state
actor or an unorthodox group). To mitigate these risks, appropriate security measures must
be implemented at the perception, network, and application layers, including removing
variations in acoustic emissions, encryption, access controls, and monitoring for suspicious
activity. We illustrate a scenario of a genetic sequences attack in Table 3.

4.3. Risk 3: Transport of Critical Materials and Unintentional Advertising

IoT health devices often use expensive and potentially dangerous materials such as
radioactive isotopes to function properly, such as in medical devices used in radiation
therapy or medical imaging. These devices may have communication protocols that could
be vulnerable to malicious attacks or unintentional exposure, leading to serious health
risks for the public. For example, in the Goiânia accident, numerous people were exposed
to radioactive material stolen from a hospital, and this could easily happen again [159].
Therefore, assessing the security risks at the perception, network, and application layers of
these IoT health systems and implementing appropriate security measures to protect against
such risks is important. We illustrate a scenario of attacks exploiting the unintentional
advertising of critical materials in Table 3.
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4.3.1. Perception-Layer Risk Analysis

This IoT health device system’s perception layer involves medical materials containing
high-activity radioactive materials. The lack of comprehensive security protocols to protect
them can result in unintentional advertising, making them a target for theft. The theft of
these materials can pose severe health risks to the public and lead to legal consequences,
damaging the reputation of medical device manufacturers [160]. Therefore, marking these
materials discreetly among professionals is crucial to avoid unnecessary exposure to un-
prepared populations and to implement appropriate security measures to protect against
malicious attacks [161]. For instance, the International Atomic Energy Agency (IAEA) has
established guidelines for the security of radioactive sources, including physical protec-
tion, control and accounting requirements, and detection and response to unauthorized
access [162].

4.3.2. Network-Layer Risk Analysis

The network layer of this IoT health device system involves assessing vulnerabilities
in the communication protocols of IoTHDs. Network-layer security risks may involve
the possibility of a malicious actor gaining access to IoTHD communication protocols and
using them to identify and target medical materials containing radioactive isotopes. This
could involve network scanning or malware to gain unauthorized access to the device
or network.

Implementing appropriate security measures to protect against such attacks, such as
encryption and access controls, and conducting routine vulnerability testing is necessary.
Novel engineering efforts are also required to develop more specified security protocols
to protect against theft and the unintentional exposure of these materials and revised
education and law enforcement for medical professionals and peripheral agencies [163,164].

4.3.3. Application-Layer Risk Analysis

Application-layer security risks could include a malicious actor exploiting vulnerabili-
ties in the software or firmware of medical devices to gain unauthorized access to sensitive
information or materials. This could include tactics such as exploiting software vulnerabili-
ties or using malware to gain access to device settings or data. Implementing appropriate
security measures, such as revising education and law enforcement for medical profes-
sionals and peripheral agencies to ensure the safe handling and disposal of radioactive
materials, can significantly reduce the risk of malicious attacks and unintentional exposure.

4.3.4. Summary

Overall, the security risks associated with medical devices that use expensive and
potentially dangerous materials require careful consideration and appropriate measures to
ensure the safety of the public and the reputation of medical device manufacturers. Health-
care facilities housing high-risk radioactive materials and devices become easy targets
for theft or sabotage. Attackers can be highly motivated and well-resourced unorthodox
communities or state-sponsored threat actors with specific agendas, such as economic
or political gain, terrorism, or activism. This could include insiders with privileged ac-
cess to the medical device manufacturer’s systems or facilities. Due to the high value
of the medical materials involved, the attackers may be highly skilled and sophisticated
and able to leverage a variety of attack vectors and techniques to achieve their objec-
tives [165]. Thus, medical device manufacturers must keep abreast of potential malicious
actors and implement appropriate security measures to protect against malicious attacks
and unintentional exposure. This may require novel engineering efforts such as blockchain
technology to enhance security and traceability in managing radioactive sources in medical
facilities [164], and revised education and law enforcement for medical professionals and
peripheral agencies [163].
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Table 3. Practical Security Risk Examples Inspired by Real-World Concerns.

Risk
Scenario

Image Modification
Using CT-GAN [117]

Genetic Sequences
Attack [157]

Unintentional
Advertising
of Critical Materials [160]

Business
Asset

Medical diagnoses,
MRI/CT images

Patient genetic se-
quences

Critical material advertise-
ment

Security
Criteria

Integrity of medical diag-
noses and MRI/CT im-
ages

Integrity of genetic se-
quences

Confidentiality of presence
of radioactive isotopes
communication protocols

System As-
set

PACS medical imaging
servers

DNA synthesizers Medical devices using ra-
dioactive isotopes, medical
materials, communication
protocol

Vulnerability PACS server accidentally
exposed to the internet
via web access solutions

Sound waves produced
during the operation of
the synthesizer can infer
operational information

Improper development
and application of com-
munication protocols
unintentionally advertise
the availability of radioac-
tive materials, making
them a potential target for
theft

Threat
Agent

Attacker with knowl-
edge of using the
CT-GAN technique with
interest in manipulating
a patient’s MRI/CT
images

Attackers with the capa-
bility and opportunity
to record acoustic sig-
nals produced by the
synthesizer and interest
in manipulating genetic
sequences for financial
gain

Attacker seeking to steal ra-
dioactive materials for ma-
licious purposes

Threat An attacker gains
unauthorized access to
the PACS server and
manipulates a patient’s
MRI/CT image using the
CT-GAN technique to
cause a wrong diagnosis

Attacker records the
acoustic signals pro-
duced by the synthe-
sizer’s pumps to infer
information about the
synthesizer’s operation,
including the synthe-
sized DNA sequence

Attacker seeking to exploit
the vulnerabilities to gain
access to valuable materials
through theft could lead to
exposure and harm to un-
prepared and unshielded
populations

Impact Loss of integrity of
MRI/CT images, mis-
diagnosis of a severe
disease, delayed treat-
ment, loss of trust in the
medical system

Loss of integrity of ge-
netic information, med-
ical research disruption,
and intellectual property
theft

Leak of the presence of ra-
dioactive isotopes, severe
health risks for the public,
damage to the reputation
of medical device manufac-
turers, legal consequences

Risk Treat-
ment

(i) Encryption and se-
cure storage of MRI/CT
PACS servers and medi-
cal images
(ii) Reduce sensitive data
collection
(iii) Authentication and
authorization controls on
PACS servers

(i) Encryption, access
controls, monitoring for
suspicious activity
(ii) Routine risk assess-
ments and vulnerability
testing

(i) Specified security proto-
cols to protect against theft
(ii) Improved logistical ef-
forts to ensure proper han-
dling and disposal of the
materials
(iii) Revised education for
law enforcement and pe-
ripheral agencies

4.4. Lessons Learned

A multi-layer approach to security risk management is essential for IoT health de-
vice systems because it helps identify potential risks and threats across different system
layers. IoT health devices involve interconnected components that operate at different
levels, including perception, network, and application layers. Each of these layers has
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unique vulnerabilities and threats requiring different security measures. At the perception
layer, the physical sensors and actuators that gather and control data are vulnerable to
tampering, eavesdropping, and spoofing attacks. Network-layer vulnerabilities can result
from unsecured wireless communications, weak authentication, and unencrypted data
transmission. The application-layer vulnerabilities arise from the software and applications
used to process and store data, including outdated software, unpatched vulnerabilities,
and weak password policies.

IoT health device manufacturers and healthcare organizations can identify and assess
these vulnerabilities and threats across different system layers by taking a multi-layer
approach to security risk management. This approach enables relevant stakeholders to
implement appropriate security measures that address the specific risks at each layer. It also
helps to ensure that security controls are integrated across all layers to provide end-to-end
security. Furthermore, as we have seen from the scenarios discussed, a multi-layer ap-
proach can help identify risks across different layers. For instance, in the DNA synthesizers
scenario, attacks may require physical proximity to the device (at the perception layer) and
the ability to analyze acoustic signals (at the application layer). This highlights the impor-
tance of considering security risks spanning different IoT system layers and implementing
security measures that address these risks.

5. The Future of IoTHD Security

Many new medical technologies are increasingly accepted and trusted by medical
professionals [166–168]. Specifically, we will briefly address several innovations of the 4th
industrial revolution, including artificial intelligence [169], blockchain [170,171], genetic
engineering, quantum computing, and intersectional/combinatorial use. Innovations with
these technologies can be expected to set the stage for novel exploits leading into the middle
and latter parts of the 21st century.

5.1. Administrative (Laws and Policy Changes)

As discussed above, modern medical devices vary in many aspects, such as software,
operating systems, and communication protocols. More administrative efforts are needed
to achieve cybersecurity in various medical devices, especially at the law and policy levels.

First, governmental health agencies must specifically define their roles in cybersecurity
administration toward devices [86]. Formulating a policy/framework and having vendors
follow the guidelines is required. That said, a single reliable network that supports het-
erogeneous medical devices can be newly defined, and vendors could promptly integrate
existing/new medical devices into the secure network. Depending on laws and policy,
governments may decide whether they utilize existing networks or redesign a network for
future IoTHDs [77]. For example, current MRI/CT images are connected to centralized
pictures archiving and communication system (PACS) networks. Building a new frame-
work should consider those existing networks [172]. In the new form of medical network
frameworks, migrating legacy devices effectively is necessary. These gateway designs can
include but are not limited to data transformation, network protocol design, and encryp-
tion/decryption schemes. Some medical devices do not have network capabilities; thus,
a form of data transformation and secure uploading scheme will be needed. Otherwise,
adversaries could conduct physical data theft attacks or man-in-the-middle attacks.

Vendors are expected to abide by laws/policy changes at any level of cybersecurity.
This can be developing security programs or adding two-factor authentication. Both ad-
ministrations and vendors should collaboratively inspect the quality of security fulfillment.
During the inspection periods, the government may define standardized action items
as validated and deliverable tests. It is recommended that government health agencies
define fine-grained requirements with expected outcomes, eventually decreasing overall
timelines. Vendors can then provide corresponding item results in their lab settings. That
way, health agencies can assess the risk management abilities of the manufacturers. This
process should be performed seamlessly; existing users would not face denial-of-service
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experiences. Overall, being aware of cybersecurity for medical devices in laws and policies
is important. When building a future framework/network, governmental and industrial
efforts can expedite smoother transitions [173].

5.2. Defending Forward

A small but significant amount of the literature on the intersections of biosecurity and
cybersecurity discusses the national security implications at risk. George (2020) speaks
about this at length with the health of citizens and the status of bioeconomies [174]. Palmer
and Karahan [13] discuss how intersectional research is important to consider in light of
cybersecurity defense initiatives under the term “Defend Forward”, given how integral
health infrastructure is. The careless integration of IoTHDs can threaten military operations
if they can be widely and acutely exploited. It, therefore, appears sensible that further
scrutiny be given to IoTHDs as they are considered for purchase and use in proximity
to military and policing forces, regardless of the country. Further, such scrutiny is rea-
sonable to be heightened as 4IR technologies, especially that of artificial intelligence, are
employed [175]. Several AI-based studies [76,81,82,176,177] discuss this at length wherein
AI can meaningfully present further hurdles if misused or taken advantage of. Future con-
siderations toward defend forward applications should be mindful of health infrastructure
that is accessible at these intersections.

5.3. AI Innovations and New Directions

According to Kruk et al. [178], about 3.6 million people die annually due to poor quality
healthcare [178]. There is also an employment gap of 5.9 million nurses globally [179].
This is alarming and has triggered a lot of technological innovations within the space of
artificial intelligence (AI), machine learning, and the Internet of Things (IoT) to solve these
challenges. Machine learning techniques have proven to learn complex representations
and patterns to automate some clinical responsibilities. Internet of Things devices, on the
other hand, have provided the capabilities to collect high-throughput heterogeneous rich
data from patients and individuals for training and improving AI algorithms. Healthcare
workers and patients expect AI to play an important role in diagnosis and treatment
more effectively and accurately than the current methods [180–183]. For example, as AI
in computer vision improves image analysis, patients can obtain better image quality
from medical devices with AI. Likewise, AI characteristics can improve the diagnosis and
disease management process. This is not to say that the applications are not without hurdles,
but there exists evidence for optimism over time as practitioners improve their integration
of artificial intelligence-based modalities [184]. We can expect artificial intelligence to
improve applications in resource-strapped areas.

AI and machine learning have permeated every aspect of healthcare delivery—identifying
and discovering new therapeutics, diagnosing diseases and infections, or aiding in treatment
decision making. Toward the discovery of novel therapeutics and drugs, AI has been used to
speed up the virtual screening of compounds to narrow the search space for lead compounds
or potentially viable drugs [185]. This decreases the cost and time it will take to bring new
drugs to market by pharmaceutical companies. Within disease diagnosis, AI has been used
to diagnose disease and medical abnormalities from data collected with IoT devices (such
as wearable fitness devices), medical imaging devices, and blood chemistry analyzers [186].
In terms of administering treatments, ML algorithms have been used to inform how limited
clinical resources should be allocated [187]. For example, machine learning algorithms have
been used to prioritize patients to maximize how clinical resources are used to treat patients.
Moreover, ML algorithms have aided in determining the optimal time for administering
certain treatments. AI and ML have shown incredible performance in the past and have
demonstrated a lot of potential for the future. Despite these, AI in healthcare poses major
drawbacks that must be addressed as the field evolves. One of these drawbacks is the lack of
ethnic diversity in some datasets used in training these AI systems [188]. An AI system is as
good as the dataset it was built on. Thus, if certain groups of people are not represented in
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these training datasets, AI systems built on these datasets will perform terribly when used on
underrepresented groups. Notable authors who have discussed issues and potential pathways
to solutions regarding representation in data and the algorithms handling them can be found
among [189–195].

Moreover, many AI systems and IoT applications require good infrastructure, such as
reliable internet and electricity. In resource-constrained environments where such amenities
are a challenge, it will be almost impossible to deploy these technological innovations
fully. Thus, more work is needed to investigate ways to deploy these technologies in
resource-constrained settings. With access to medical data, generative AI can generate fake
medical information, including MRI/CT images, for which new security means have been
suggested [117,196,197]. Thus, data generated by IoTHDs must be validated by experts
or high-performing discriminator models. Building a good discriminator model for data
protection can help healthcare sectors to protect from malicious data fabrication attacks.
This approach is needed given the data generated. The same aspects can be applied to
other types of medical data resources. To extrapolate, future cyberbiosecurity models may
apply more complicated discriminative techniques to detect generic sequences of DNA
synthesis or other important biological outputs or signatures. In terms of biomolecules,
biosystems, biomachine interfaces, and biocomputing, there exist many new and dynamic
targets [155,198]. A single organization or academic institute cannot make this approach.
Thus, region-wide or nation-wide data collection and research collaborations are needed
and can expedite more complicated AI solutions [199–203].

5.4. Innovations of Blockchain Technology

Blockchain technology refers to cryptography-linked records in chained blocks. It
is an emerging technology that may prove essential in shoring-up privacy concerns and
adding needed avenues of automation in record processing [204]. With an eye on privacy,
several groups have put forth security solutions at this intersection. For example, Kumar
and Chand [205] revealed a model for using blockchain with the IoT in medical privacy
contexts; this builds on efforts of protocols which aimed to cover the privacy of PII on
the blockchain. Those concerned with regulation would be pleased to note that conversa-
tion at the intersection of blockchain, regulation, and hospital device application is alive.
Sneha et al. [206] introduced a model that “emphasizes distribution and encryption of data,
smart contracts, and permissioned blockchain-based architecture” within the scope of the
FDA review process. Alblooshi et al. [171] developed a protocol specifically for medical
devices. All in all, blockchain efforts exist and are growing. Testing, time, and adoption
will tell if the efforts take root. They present novel avenues for managing medical data.
These reflect just some of the innovations taking place with blockchain technology.

5.5. Genetic Engineering

Genetic engineering is a 4IR technology that has been pacing rapidly [207–210]. It
allows skilled technicians to change fundamental aspects of organism DNA and make pro-
found biomaterials. Of the latter, DNA is being investigated as a programmable 4D scaffold
that may improve wearable technology and offer further bio-digital functionality [211–213];
in fact, IoT functionality with DNA is already a matter of investigation. In the former
case, genetic engineering has immediate healthcare implications as, for example, this can
translate to effective gene therapies and allows for crafting tissue and organ grafts that
have a much lower rejection from those these are implanted into. Sequencing, the decoding
of one’s genome, is required for this. Thankfully, the cost to sequence genomes per base
pair has fallen drastically, and the speed to do so on a population basis for analyzing a
community is here. The advent of COVID-19 provided an important basis and means
to implement effective genetic surveillance to study population susceptibility [214,215].
The means can be minimalized significantly. For example, researchers demonstrated that
Oxford Nanopore sequencing technology could be utilized via a gaming laptop, allowing
for sequencing on the go [216].
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From the individual to the corporate entity to the nation-state, there are many reasons
to be interested in sequencing. The same goes for information about genetic editing. Cheap
gene engineering kits and exploration stations, via companies such as The Odin or Amino
Labs, can be obtained cheaply, allowing for the potential of biomedical exploration and
prototyping by larger swaths of individuals [207,208]. IoTHDs that utilize either gene
editing or sequencing may find themselves targets. Companies might consider adding
these products to their labs and sandboxes to test intermediate attacks between connected
systems. Reverse engineering and purchasing more advanced units, especially industrial
and hospital-grade sequencing and diagnostic units, may heighten preparedness.

5.6. Quantum Computing

Quantum computing conducts complex computations by harnessing quantum states.
Instead of calculations based on binary architecture, quantum computing can hold more
information, significantly reducing computation times and energy usage. This concept
of quantum bit computation could eventually lead to accurate diagnosis and precision
medicine in healthcare [85]. Although the advanced processing ability of quantum comput-
ing may threaten legacy encryption schemes, it can also be used to reinforce the current
encryption systems with quantum computing power. There is ample opportunity for
business opportunities in exploring both sides of these uses.

5.7. Intersectional Fusions of 4th IR Technologies

One potential innovation to be mindful of is the intersection of multiple 4IR technologies
in the future. An example can be found in a recent avant-garde project that fuses biotechnol-
ogy and blockchain in a decentralized autonomous organization (or DAO for short) called
BitMouseDAO, sought to encode cryptocurrency into a mouse [217]. This would involve
genetically engineering the mouse’s DNA to hold the key to access an amount of Bitcoin.
Fifty (50) years ago, this idea would have been considered poor science fiction, but the means
of technology exist. However, less than twenty (20) years ago, considerable amounts of
digital data were converted into DNA reliably stored and played back in text or video format.
In the last decade, a researcher and his team managed to encode malware in DNA and use it
to perform a remote attack on a DNA sequencer, which spelled immediate implications for
future healthcare operations [155]. The takeaway is the value of pondering what creative
teams may produce in their goal to produce novel attacks on IoTHDs.

It is not out of the question that institutions may one day see novel attacks that
act on the synchronized actions of patients who seek medical services that access their
genetic information under the right combination of spiked and submitted samples. It is
possible from here that complex bio-digital DDOS attacks can be made functional for more
devastating malware, perhaps in the form of a condensed but dynamic machine learning
algorithm that eventually winds its way through a facility. This scenario is wonderfully
contrived for the time being. Thankfully, this is not a practical attack in the next few years,
but with time, testing, and a large enough value target, it very well could be in ten (10)
years by an enterprising group. Underestimation is an ever-present vulnerability that must
be frequently assessed.

6. Concluding Remarks

The world of medical devices is diverse, and varieties that utilize internet connectiv-
ity add to this diversity and increase use. IoT health devices have become increasingly
prevalent in the healthcare sector, offering a range of benefits, such as remote monitor-
ing, real-time tracking, and improved patient outcomes. Thus, when rapid technological
advancements outpaced the gradual advancement of healthcare cybersecurity, security
concerns became difficult to manage. Each interconnected medical device has unique
security risks, and there is not a one-size-fits-all approach to securing IoTHDs. In this paper,
we have provided a survey and mapping of IoTHDs, regarding healthcare components and
the communities that use them, a multi-layer security risk management analysis, and future
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and evolving considerations. Each device presents risks that we have classified into the
STRIDE threat categories, showing the need to consider the security risks of IoTHDs in
their environment and focus on security risk management. We introduced the multi-layer
approach to conducting security risk management for these IoTHD systems as it provides
a comprehensive view of the system’s security posture and enables the implementation of
appropriate security measures that address vulnerabilities and threats at each layer while
ensuring end-to-end security. We do not cover all of the forms of IoTHDs but provide
a useful introduction to thinking about the threat landscape of IoTHDs, proposing that
all adoption of IoTHDs is done carefully and with the utmost consideration for security
risk management.
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97. Matulevičius, R. Fundamentals of Secure System Modelling; Springer: Berlin, Germany, 2017.
98. Shostack, A. Threat Modeling: Designing for Security; John Wiley & Sons: Hoboken, NJ, USA, 2014.

https://blogs.lse.ac.uk/africaatlse/2017/03/22/biometrics-surveillance-technologies-and-the-rise-of-the-security-state-in-south-africa/
https://blogs.lse.ac.uk/africaatlse/2017/03/22/biometrics-surveillance-technologies-and-the-rise-of-the-security-state-in-south-africa/
http://dx.doi.org/10.1109/MITP.2010.66
http://dx.doi.org/10.1016/j.giq.2021.101577
http://dx.doi.org/10.1097/01.NAJ.0000794252.99183.5e
http://www.ncbi.nlm.nih.gov/pubmed/34554984
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/about-fda/cdrh-reports/medical-device-safety-action-plan-protecting-patients-promoting-public-health
https://www.fda.gov/about-fda/cdrh-reports/medical-device-safety-action-plan-protecting-patients-promoting-public-health
http://dx.doi.org/10.1038/s41746-021-00520-6
http://www.ncbi.nlm.nih.gov/pubmed/34620993
http://dx.doi.org/10.1126/science.abj7943
http://dx.doi.org/10.3233/KES-180384
http://dx.doi.org/10.1111/1758-5899.12940
http://dx.doi.org/10.1016/j.patter.2021.100241
https://www.webtitan.com/blog/tardigrade-malware-vaccine-manufacturers-biomedical-firms/
http://dx.doi.org/10.15388/infedu.2023.30


IoT 2023, 4 178

99. Jabeen, T.; Ashraf, H.; Ullah, A. A survey on healthcare data security in wireless body area networks. J. Ambient. Intell. Humaniz.
Comput. 2021, 12, 9841–9854. [CrossRef] [PubMed]

100. Williams, P.A.; Woodward, A.J. Cybersecurity vulnerabilities in medical devices: A complex environment and multifaceted
problem. Med. Devices 2015, 8, 305. [CrossRef] [PubMed]

101. Aghili, S.F.; Mala, H.; Kaliyar, P.; Conti, M. SecLAP: Secure and lightweight RFID authentication protocol for Medical IoT. Future
Gener. Comput. Syst. 2019, 101, 621–634. [CrossRef]

102. Cummins, G. Smart pills for gastrointestinal diagnostics and therapy. Adv. Drug Deliv. Rev. 2021, 177, 113931. [CrossRef]
103. Mancini, M. Medical identity theft in the emergency department: Awareness is crucial. West. J. Emerg. Med. 2014, 15, 899.

[CrossRef]
104. Stine, I.; Rice, M.; Dunlap, S.; Pecarina, J. A cyber risk scoring system for medical devices. Int. J. Crit. Infrastruct. Prot. 2017,

19, 32–46. [CrossRef]
105. Lesaja, S.; Palmer, X.L. Brain-Computer Interfaces and the Dangers of Neurocapitalism. arXiv 2020,arXiv:2009.07951.
106. Pycroft, L.; Boccard, S.G.; Owen, S.L.; Stein, J.F.; Fitzgerald, J.J.; Green, A.L.; Aziz, T.Z. Brainjacking: Implant security issues in

invasive neuromodulation. World Neurosurg. 2016, 92, 454–462. [CrossRef]
107. Wood, D.; Apthorpe, N.; Feamster, N. Cleartext data transmissions in consumer iot medical devices. In Proceedings of the 2017

Workshop on Internet of Things Security and Privacy, Dallas, TX, USA, 3 November 2017; pp. 7–12.
108. Kim, J. Energy-efficient dynamic packet downloading for medical IoT platforms. IEEE Trans. Ind. Inform. 2015, 11, 1653–1659.

[CrossRef]
109. Chauhan, A. Robotics and automation: The rescuers of COVID era. In Artificial Intelligence for COVID-19; Springer: Berlin,

Germany, 2021; pp. 119–151.
110. Lepasepp, T.K.; Hurst, W. A systematic literature review of industry 4.0 technologies within medical device manufacturing.

Future Internet 2021, 13, 264. [CrossRef]
111. Richmond, S. Stopping The Attacks: Cybersecurity In Healthcare Manufacturing, 2021. Available online: https:

//www.forbes.com/sites/forbestechcouncil/2021/08/17/stopping-the-attacks-cybersecurity-in-healthcare-manufacturing/
?sh=4db312231a8d (accessed on 3 January 2023).

112. Shen, M.; Deng, Y.; Zhu, L.; Du, X.; Guizani, N. Privacy-preserving image retrieval for medical IoT systems: A blockchain-based
approach. IEEE Netw. 2019, 33, 27–33. [CrossRef]

113. Sun, Y.; Lo, F.P.W.; Lo, B. Security and privacy for the internet of medical things enabled healthcare systems: A survey. IEEE
Access 2019, 7, 183339–183355. [CrossRef]

114. Hatzivasilis, G.; Soultatos, O.; Ioannidis, S.; Verikoukis, C.; Demetriou, G.; Tsatsoulis, C. Review of security and privacy for the
Internet of Medical Things (IoMT). In Proceedings of the 2019 15th international conference on distributed computing in sensor
systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; IEEE: New York, NY, USA, 2019; pp. 457–464.

115. Arpaia, P.; Bonavolontà, F.; Cioffi, A.; Moccaldi, N. Power Measurement-based Vulnerability Assessment of IoT medical devices
at varying countermeasures for cybersecurity. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [CrossRef]

116. Jackson, G.W., Jr.; Rahman, S. Exploring Challenges and Opportunities in Cybersecurity Risk and Threat Communications
Related To The Medical Internet Of Things (MIoT). arXiv 2019, arXiv:1908.00666.

117. Mirsky, Y.; Mahler, T.; Shelef, I.; Elovici, Y. {CT-GAN}: Malicious Tampering of 3D Medical Imagery using Deep Learning. In
Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 461–478.

118. Chen, P.; Desmet, L.; Huygens, C. A study on advanced persistent threats. In Proceedings of the Communications and Multimedia
Security: 15th IFIP TC 6/TC 11 International Conference, CMS 2014, Aveiro, Portugal, 25–26 September 2014; Proceedings 15;
Springer: Berlin, Germany, 2014; pp. 63–72.

119. Moore, T. The economics of cybersecurity: Principles and policy options. Int. J. Crit. Infrastruct. Prot. 2010, 3, 103–117. [CrossRef]
120. Hu, P.; Li, H.; Fu, H.; Cansever, D.; Mohapatra, P. Dynamic defense strategy against advanced persistent threat with insiders. In

Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015;
IEEE: New York, NY, USA, 2015; pp. 747–755.

121. Palmer, X.L.; Potter, L.; Karahan, S. An Exploration on APTs in Biocybersecurity and Cyberbiosecurity. In Proceedings of the
International Conference on Cyber Warfare and Security, Albany, NY, USA, 17–18 March 2022; Volume 17, pp. 532–535.

122. BIO-ISAC Media. BIO-ISAC Releases Advisory to Biomanufacturers. 2021. Available online: https://www.isac.bio/post/
tardigrade (accessed on 3 January 2023).

123. Newaz, A.I.; Sikder, A.K.; Rahman, M.A.; Uluagac, A.S. A survey on security and privacy issues in modern healthcare systems:
Attacks and defenses. ACM Trans. Comput. Healthc. 2021, 2, 1–44. [CrossRef]

124. Martínez, A.L.; Pérez, M.G.; Ruiz-Martínez, A. A comprehensive review of the state of the art on security and privacy issues in
Healthcare. ACM Comput. Surv. 2022, 55, 1–38. [CrossRef]

125. Zubair, M.; Unal, D.; Al-Ali, A.; Shikfa, A. Exploiting bluetooth vulnerabilities in e-health IoT devices. In Proceedings of the 3rd
International Conference on Future Networks and Distributed Systems, Paris, France, 1–2 July 2019; pp. 1–7.

126. Perez, A.J.; Zeadally, S. Recent advances in wearable sensing technologies. Sensors 2021, 21, 6828. [CrossRef]
127. Choi, J.; Choi, C.; Kim, S.; Ko, H. Medical information protection frameworks for smart healthcare based on IoT. In Proceedings of

the 9th International Conference on Web Intelligence, Mining and Semantics, Seoul, Republic of Korea, 26–28 June 2019; pp. 1–5.

http://dx.doi.org/10.1007/s12652-020-02728-y
http://www.ncbi.nlm.nih.gov/pubmed/33425050
http://dx.doi.org/10.2147/MDER.S50048
http://www.ncbi.nlm.nih.gov/pubmed/26229513
http://dx.doi.org/10.1016/j.future.2019.07.004
http://dx.doi.org/10.1016/j.addr.2021.113931
http://dx.doi.org/10.5811/westjem.2014.8.22438
http://dx.doi.org/10.1016/j.ijcip.2017.04.001
http://dx.doi.org/10.1016/j.wneu.2016.05.010
http://dx.doi.org/10.1109/TII.2015.2434773
http://dx.doi.org/10.3390/fi13100264
https://www.forbes.com/sites/forbestechcouncil/2021/08/17/stopping-the-attacks-cybersecurity-in-healthcare-manufacturing/?sh=4db312231a8d
https://www.forbes.com/sites/forbestechcouncil/2021/08/17/stopping-the-attacks-cybersecurity-in-healthcare-manufacturing/?sh=4db312231a8d
https://www.forbes.com/sites/forbestechcouncil/2021/08/17/stopping-the-attacks-cybersecurity-in-healthcare-manufacturing/?sh=4db312231a8d
http://dx.doi.org/10.1109/MNET.001.1800503
http://dx.doi.org/10.1109/ACCESS.2019.2960617
http://dx.doi.org/10.1109/TIM.2021.3088491
http://dx.doi.org/10.1016/j.ijcip.2010.10.002
https://www.isac.bio/post/tardigrade
https://www.isac.bio/post/tardigrade
http://dx.doi.org/10.1145/3453176
http://dx.doi.org/10.1145/3571156
http://dx.doi.org/10.3390/s21206828


IoT 2023, 4 179

128. Mohanthy, S.B. Real time internet application with distributed flow environment for medical IoT. In Proceedings of the 2015
International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 8–10 October 2015; IEEE:
New York, NY, USA, 2015; pp. 832–837.

129. Roy, M.; Chowdhury, C.; Aslam, N. Designing transmission strategies for enhancing communications in medical IoT using
Markov decision process. Sensors 2018, 18, 4450. [CrossRef]

130. Xu, B.; Da Xu, L.; Cai, H.; Xie, C.; Hu, J.; Bu, F. Ubiquitous data accessing method in IoT-based information system for emergency
medical services. IEEE Trans. Ind. Infom. 2014, 10, 1578–1586.

131. Elhoseny, M.; Ramírez-González, G.; Abu-Elnasr, O.M.; Shawkat, S.A.; Arunkumar, N.; Farouk, A. Secure medical data
transmission model for IoT-based healthcare systems. IEEE Access 2018, 6, 20596–20608. [CrossRef]

132. Atat, R.; Liu, L.; Ashdown, J.; Medley, M.J.; Matyjas, J.D.; Yi, Y. A physical layer security scheme for mobile health cyber-physical
systems. IEEE Internet Things J. 2017, 5, 295–309. [CrossRef]

133. Mashima, D.; Ahamad, M. Enabling Robust Information Accountability in E-healthcare Systems. In Proceedings of the HealthSec,
Bellevue, WA, USA, 8–10 August 2012.

134. Blough, D.M.; Liu, L.; Sainfort, F.; Ahamad, M. CT-T: MedVault-Ensuring Security and Privacy for Electronic Medical Records;
Technical report; Georgia Institute of Technology: Atlanta, GA, USA, 2011.

135. Mashima, D.; Srivastava, A.; Giffin, J.T.; Ahamad, M. Protecting E-healthcare Client Devices against Malware and Physical Theft.
In Proceedings of the HealthSec, Washington, DC, USA, 11–13 August 2010.

136. Halstead, S. Educating Health Organization on Cyber Threats. Ph.D. Thesis, Utica College, Utica, NY, USA, 2021.
137. McMahon, E.; Williams, R.; El, M.; Samtani, S.; Patton, M.; Chen, H. Assessing medical device vulnerabilities on the Internet of

Things. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing, China,
22–24 July 2017; IEEE: New York, NY, USA, 2017; pp. 176–178.

138. Lee, Y.S.; Alasaarela, E.; Lee, H. Secure key management scheme based on ECC algorithm for patient’s medical information in
healthcare system. In Proceedings of the The International Conference on Information Networking 2014 (ICOIN2014), Phuket,
Thailand, 10–12 February 2014; IEEE: New York, NY, USA, 2014; pp. 453–457.

139. Wu, L.; Chi, H.; Du, X. A Secure Proxy-based Access Control Scheme for Implantable Medical Devices. arXiv 2018,
arXiv:1803.07751.

140. Marwan, M.; Karti, A.; Ouahmane, H. Proposal for a secure data sharing and processing in cloud applications for healthcare
domain. Int. J. Inf. Technol. Appl. Sci. 2021, 3, 10–17. [CrossRef]

141. Ren, J.; Li, J.; Liu, H.; Qin, T. Task offloading strategy with emergency handling and blockchain security in SDN-empowered and
fog-assisted healthcare IoT. Tsinghua Sci. Technol. 2021, 27, 760–776. [CrossRef]

142. Mehta, R.; Parmar, M. Trust based mechanism for securing iot routing protocol rpl against wormhole &grayhole attacks. In
Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; IEEE:
New York, NY, USA, 2018; pp. 1–6.

143. Rizvi, S.; Kurtz, A.; Pfeffer, J.; Rizvi, M. Securing the internet of things (IoT): A security taxonomy for IoT. In Proceedings of
the 2018 17th IEEE International Conference On Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018;
IEEE: New York, NY, USA, 2018; pp. 163–168.
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