412 research outputs found

    Enhancing State Space Reduction Methods for Model Checking

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    A constraint solver for software engineering : finding models and cores of large relational specifications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 105-120).Relational logic is an attractive candidate for a software description language, because both the design and implementation of software often involve reasoning about relational structures: organizational hierarchies in the problem domain, architectural configurations in the high level design, or graphs and linked lists in low level code. Until recently, however, frameworks for solving relational constraints have had limited applicability. Designed to analyze small, hand-crafted models of software systems, current frameworks perform poorly on specifications that are large or that have partially known solutions. This thesis presents an efficient constraint solver for relational logic, with recent applications to design analysis, code checking, test-case generation, and declarative configuration. The solver provides analyses for both satisfiable and unsatisfiable specifications--a finite model finder for the former and a minimal unsatisfiable core extractor for the latter. It works by translating a relational problem to a boolean satisfiability problem; applying an off-the-shelf SAT solver to the resulting formula; and converting the SAT solver's output back to the relational domain. The idea of solving relational problems by reduction to SAT is not new. The core contributions of this work, instead, are new techniques for expanding the capacity and applicability of SAT-based engines. They include: a new interface to SAT that extends relational logic with a mechanism for specifying partial solutions; a new translation algorithm based on sparse matrices and auto-compacting circuits; a new symmetry detection technique that works in the presence of partial solutions; and a new core extraction algorithm that recycles inferences made at the boolean level to speed up core minimization at the specification level.by Emina Torlak.Ph.D

    Application-Layer Connector Synthesis

    Full text link
    International audienceThe heterogeneity characterizing the systems populating the Ubiquitous Computing environment prevents their seamless interoperability. Heterogeneous protocols may be willing to cooperate in order to reach some common goal even though they meet dynamically and do not have a priori knowledge of each other. Despite numerous e orts have been done in the literature, the automated and run-time interoperability is still an open challenge for such environment. We consider interoperability as the ability for two Networked Systems (NSs) to communicate and correctly coordinate to achieve their goal(s). In this chapter we report the main outcomes of our past and recent research on automatically achieving protocol interoperability via connector synthesis. We consider application-layer connectors by referring to two conceptually distinct notions of connector: coordinator and mediator. The former is used when the NSs to be connected are already able to communicate but they need to be speci cally coordinated in order to reach their goal(s). The latter goes a step forward representing a solution for both achieving correct coordination and enabling communication between highly heterogeneous NSs. In the past, most of the works in the literature described e orts to the automatic synthesis of coordinators while, in recent years the focus moved also to the automatic synthesis of mediators. Within the Connect project, by considering our past experience on automatic coordinator synthesis as a baseline, we propose a formal theory of mediators and a related method for automatically eliciting a way for the protocols to interoperate. The solution we propose is the automated synthesis of emerging mediating connectors (i.e., mediators for short)

    Automated Discovery of porous molecular materials facilitated by characterization of molecular porosity

    Get PDF
    Porous materials are critical to many industrial sectors, including petrochemicals, energy and water. Traditional porous polymers and zeolites are currently most widely employed within membranes, as adsorbents for separations and storage, and as heterogeneous catalysts. The emerging advanced porous materials, e.g. extended framework materials and molecular porous materials, can boost performance and energy-efficiency of the current technologies because of the unprecedented level of control of their structure and function. The enormous possibilities for tuning these materials by changing their building blocks mean that, in principle, optimally performing materials for a variety of applications can be systematically designed. However, the process of finding a set of optimal structures for a given application could take decades using the traditional materials development approaches. These is a substantial payoff for developing tools and approaches that can accelerate this process. Among advanced porous materials, porous molecular materials are one of the most recent members though they have already attracted significant interest......Programa de Doctorado en Ciencia e Ingeniería de Materiales por la Universidad Carlos III de MadridPresidente: Germán Ignacio Sastre Navarro.- Secretario: Javier Carrasco Rodríguez.- Vocal: Andreas Mavrantonaki

    Streamlined constraint reasoning : an automated approach from high level constraint specifications

    Get PDF
    Constraint Programming (CP) is a powerful technique for solving large-scale combinatorial (optimisation) problems. Solving a problem proceeds in two distinct phases: modelling and solving. Effective modelling has a huge impact on the performance of the solving process. Even with the advance of modern automated modelling tools, search spaces involved can be so vast that problems can still be difficult to solve. To further constrain the model a more aggressive step that can be taken is the addition of streamliner constraints, which are not guaranteed to be sound but are designed to focus effort on a highly restricted but promising portion of the search space. Previously, producing effective streamlined models was a manual, difficult and time-consuming task. This thesis presents a completely automated process to the generation, search and selection of streamliner portfolios to produce a substantial reduction in search effort across a diverse range of problems. First, we propose a method for the generation and evaluation of streamliner conjectures automatically from the type structure present in an Essence specification. Second, the possible streamliner combinations are structured into a lattice and a multi-objective search method for searching the lattice of combinations and building a portfolio of streamliner combinations is defined. Third, the problem of "Streamliner Selection" is introduced which deals with selecting from the portfolio an effective streamliner for an unseen instance. The work is evaluated by presenting two sets of experiments on a variety of problem classes. Lastly, we explore the effect of model selection in the context of streamlined specifications and discuss the process of streamlining for Constrained Optimization Problems."This work was supported by: EPSRC funding award EP/N509759/1" -- Fundin

    Recognition and Exploitation of Gate Structure in SAT Solving

    Get PDF
    In der theoretischen Informatik ist das SAT-Problem der archetypische Vertreter der Klasse der NP-vollständigen Probleme, weshalb effizientes SAT-Solving im Allgemeinen als unmöglich angesehen wird. Dennoch erzielt man in der Praxis oft erstaunliche Resultate, wo einige Anwendungen Probleme mit Millionen von Variablen erzeugen, die von neueren SAT-Solvern in angemessener Zeit gelöst werden können. Der Erfolg von SAT-Solving in der Praxis ist auf aktuelle Implementierungen des Conflict Driven Clause-Learning (CDCL) Algorithmus zurückzuführen, dessen Leistungsfähigkeit weitgehend von den verwendeten Heuristiken abhängt, welche implizit die Struktur der in der industriellen Praxis erzeugten Instanzen ausnutzen. In dieser Arbeit stellen wir einen neuen generischen Algorithmus zur effizienten Erkennung der Gate-Struktur in CNF-Encodings von SAT Instanzen vor, und außerdem drei Ansätze, in denen wir diese Struktur explizit ausnutzen. Unsere Beiträge umfassen auch die Implementierung dieser Ansätze in unserem SAT-Solver Candy und die Entwicklung eines Werkzeugs für die verteilte Verwaltung von Benchmark-Instanzen und deren Attribute, der Global Benchmark Database (GBD)

    LOGIC AND CONSTRAINT PROGRAMMING FOR COMPUTATIONAL SUSTAINABILITY

    Get PDF
    Computational Sustainability is an interdisciplinary field that aims to develop computational and mathematical models and methods for decision making concerning the management and allocation of resources in order to help solve environmental problems. This thesis deals with a broad spectrum of such problems (energy efficiency, water management, limiting greenhouse gas emissions and fuel consumption) giving a contribution towards their solution by means of Logic Programming (LP) and Constraint Programming (CP), declarative paradigms from Artificial Intelligence of proven solidity. The problems described in this thesis were proposed by experts of the respective domains and tested on the real data instances they provided. The results are encouraging and show the aptness of the chosen methodologies and approaches. The overall aim of this work is twofold: both to address real world problems in order to achieve practical results and to get, from the application of LP and CP technologies to complex scenarios, feedback and directions useful for their improvement

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore