
 Università degli Studi di Ferrara
DOTTORATO DI RICERCA IN
SCIENZE DELL'INGEGNERIA

CICLO XXIV

COORDINATORE Prof. Stefano Trillo

LOGIC AND CONSTRAINT PROGRAMMING FOR
COMPUTATIONAL SUSTAINABILITY

Settore Scientifico Disciplinare ING-INF/05

Dottorando Tutore
Dott. Cattafi Massimiliano Prof. Gavanelli Marco

_______________________________ _____________________________

Cotutore
 Prof.ssa Lamma Evelina

Anni 2009/2011

Abstract

Computational Sustainability is an interdisciplinary field that aims to develop com-

putational and mathematical models and methods for decision making concerning

the management and allocation of resources in order to help solve environmental

problems.

This thesis deals with a broad spectrum of such problems (energy efficiency, wa-

ter management, limiting greenhouse gas emissions and fuel consumption) giving

a contribution towards their solution by means of Logic Programming (LP) and

Constraint Programming (CP), declarative paradigms from Artificial Intelligence

of proven solidity.

The problems described in this thesis were proposed by experts of the respective

domains and tested on the real data instances they provided. The results are en-

couraging and show the aptness of the chosen methodologies and approaches.

The overall aim of this work is twofold: both to address real world problems

in order to achieve practical results and to get, from the application of LP and

CP technologies to complex scenarios, feedback and directions useful for their

improvement.

Acknowledgements

I would like to thank my advisers Marco Gavanelli and Evelina Lamma for their

constant support and precious teachings, not only during my Ph.D., but throughout

my University studies.

I am grateful to all my co-authors for the fruitful shared work and exchange of

ideas. I would like to mention Marco Alberti and Fabrizio Riguzzi for their guid-

ance in my first projects and publications, Paola Mello, Michela Milano and Mad-

dalena Nonato for their help in completing and extending my range of interests,

Paolo Cagnoli, Marco Franchini, Stefano Alvisi and Federico Malucelli for their

challenging problem proposals.

I am glad I had the opportunity to spend one semester in close, very enjoyable, co-

operation with Rosa Herrero, from the Universitat Autònoma de Barcelona, during

her research visit at our department.

I also had the pleasure to spend one semester in the stimulating environment of the

Cork Constraint Computation Centre and I would like to express my gratitude to

Helmut Simonis for mentoring me and to all the other people of the lab who made

me feel very welcome and contributed to make my experience worthwhile.

I would like to dedicate this thesis to my mom, whose effort to inspire me to-

wards curiosity, creative thought and autonomy proved fundamental also during

the development of this work.

ii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Preliminaries 5

2.1 Logic Programming . 5

2.2 Inductive Logic Programming . 7

2.2.1 Incremental Inductive Logic Programming 12

2.3 Abductive Logic Programming and the SCIFF system 13

2.3.1 Syntax of the SCIFF language . 15

2.3.1.1 Syntax with explicit quantifiers 18

2.4 Constraint Satisfaction Problems . 19

2.4.1 Definition . 19

2.4.2 Algorithms . 19

2.4.3 Consistency Techniques . 19

2.4.4 Systematic Search Algorithms . 21

2.4.4.1 Backtracking . 21

2.4.4.2 Forward Checking . 21

2.4.5 Constraint Optimization Problems . 22

2.4.5.1 Definition . 22

2.4.5.2 Algorithms . 22

2.4.6 Constraint Logic Programming . 23

iii

CONTENTS

3 Computational Logic tools for Green IT 25

3.1 Introduction . 25

3.1.1 Semantic Web Services . 26

3.2 Contracting with SCIFF . 28

3.2.1 A contracting scenario . 28

3.3 Representing domain knowledge with ontologies 30

3.4 Handling semantic knowledge with SCIFF . 33

3.4.1 Interfacing SCIFF and ontological reasoners 33

3.4.2 Experimental evaluation . 34

3.5 Learning and Updating Policies . 34

3.5.1 Business Process Management . 37

3.6 Representing Process Traces and Models with Logic 38

3.7 Learning ICs Theories . 40

3.8 Incremental Learning of ICs Theories . 42

3.9 Experiments . 43

3.9.1 Hotel Management . 45

3.9.2 Auction Protocol . 47

3.10 Related work . 49

3.10.1 Semantic Web Services . 49

3.10.2 Learning and Updating Policies . 50

4 Biomass Plant Placement with Energy-Effective Supply 53

4.1 Introduction . 53

4.2 Problem description . 54

4.3 A CLP(R) Model . 57

4.4 Complexity . 61

4.5 Experimental results . 62

4.6 Related work . 69

5 Aqueduct Valve Placement for Minimal Service Disruption 73

5.1 Introduction . 73

5.2 Problem description . 76

5.3 Game model . 77

5.4 Constraint Logic Programming model . 78

iv

CONTENTS

5.4.1 A minimax implementation in CLP(FD) 78

5.4.2 Reducing the number of moves . 79

5.4.2.1 Redundant valves and symmetries 79

5.4.2.2 Bounding . 80

5.5 Implementation details . 81

5.5.1 Incremental bound computation . 81

5.5.2 Dealing with unintended isolation . 82

5.6 Experimental results . 83

5.7 Related work . 87

6 Workload-Balanced and Loyalty-Enhanced Home Health Care 89

6.1 Introduction . 89

6.1.1 The home health care service in Ferrara 90

6.1.2 The problem data . 91

6.1.3 Aim of the project . 91

6.2 Modeling the problem in CP . 93

6.2.1 Using more Global Constraints . 95

6.2.2 Addressing the Routing . 96

6.3 Search Strategies . 97

6.4 Experiments and Results . 98

6.4.1 ECLiPSe implementation . 98

6.4.2 Comet implementation . 100

6.5 Related work . 103

7 Conclusions 105

7.1 Computational Logic tools for Green IT . 106

7.2 Biomass Plant Placement with Energy-Effective Supply 107

7.3 Aqueduct Valve Placement for Minimal Service Disruption 107

7.4 Workload-Balanced and Loyalty-Enhanced Home Health Care 108

References 109

v

CONTENTS

vi

List of Figures

2.1 ICL learning algorithm . 10

2.2 Inthelex Theory Revision algorithm . 14

2.3 Algorithm AC-3 . 20

2.4 B&B Algorithm . 23

3.1 Model derived carbon emission savings enabled by cloud computing according

to (1) . 26

3.2 A graphical representation of the ontology . 31

3.3 Integration architecture . 33

3.4 IDPML algorithm . 44

3.5 Sealed bid auction protocol. 49

4.1 Map of incompatibility for biomass power plants in the Emilia-Romagna region. 56

4.2 The areas used in our tests . 63

4.3 Detail of the western area. Squares mark optimal placements of plants without

considering plant construction energy investment. Different sizes show the

associated biomass demand and energy production. 64

4.4 Detail of the eastern area. Squares mark optimal placements of plants without

considering plant construction energy investment. Different sizes show the

associated biomass demand and energy production. Forest area spot linked to

plant shows one of the biomass supply points in the optimal provisioning plan.

The cross shows the placement of one plant when the goal is maximizing profit. 65

4.5 Detail of the western area. Squares mark optimal placements of plants without

considering plant construction energy investment. Different sizes show the

associated biomass demand and energy production. 66

vii

LIST OF FIGURES

4.6 Detail of the eastern area. Squares mark optimal placements of plants consid-

ering plant construction energy investment. Different sizes show the associated

biomass demand and energy production. 67

4.7 Net energy (GJ) produced in the eastern area varying the number of installed

power plants. 67

4.8 Net energy (GJ) as a function of (dimensionless) ratios of biomass and trans-

portation related parameters. On x axis, ratio of cost of a biomass load and cost

to move the load for one length unit. On z axis, ratio of energy of a biomass

load and energy to move the load for one length unit. (*) indicates the param-

eter context of previous experiments. 69

5.1 A schematic water distribution system with valves 74

5.2 A network with redundant valves . 80

5.3 A partial assignment: circles mean absence of valve, strokes are variables not

assigned yet . 81

5.4 Example of propagation of the lower bound when joining sectors 82

5.5 Comparison between the approximate Pareto front computed by Giustolisi-

Savić and the optimal Pareto front obtained in CLP(FD) 83

5.6 Computation time of the algorithms including different optimizations 85

5.7 Computation time of the algorithms including different optimizations, log scale 86

5.8 Anytime behaviour of the CLP(FD) algorithm: solution quality with respect to

the computation time. Number of valves Nv = 13 86

6.1 The 9 zones in which the area is divided, dots show where patients are located . 92

6.2 Pareto front of solutions of one weekly instance obtained using the LGS+LNS

search . 99

6.3 Results of the runs on the first week (ECLiPSe). 101

6.4 Results of the runs on the second week (ECLiPSe). 101

6.5 Results of the runs on the third week (ECLiPSe). 102

6.6 Results of the runs on the fourth week (ECLiPSe). 102

viii

List of Tables

3.1 Performance results (all times are in seconds, average over 50 runs) 34

3.2 Revision compared to learning from full dataset for the hotel scenario 47

3.3 Revision compared to learning from dataset for the auction scenario 50

4.1 Excerpt from the interference matrix “sensitivity themes vs. power plants” in

the Emilia-Romagna region . 55

6.1 Excerpt of the services with average service time 90

6.2 Comparison of search strategies and hand-made solution (ECLiPSe). 100

6.3 Comparison of search strategies and hand-made solution (Comet) 103

ix

LIST OF TABLES

x

1

Introduction

Computational Sustainability is an interdisciplinary field whose aim is to apply techniques from

computer science, information science, operations research, applied mathematics, and statistics

for balancing environmental, economic, and societal needs for sustainable development (i.e.,

using the words of the 1983 United Nations Brundtland Commission, development that meets

the needs of the present generation without compromising the ability of future generations to

meet their own needs) (2).

The focus is developing computational and mathematical models and methods for decision

making concerning the management and allocation of resources in order to help solve some of

the most challenging problems related to sustainability.

In this thesis we present various problems related to the domain of Computational Sustain-

ability, on a broad spectrum which encompasses several of its critical aspects: energy efficiency,

water management, limiting greenhouse gas emissions and fuel consumption.

We contribute towards their solution addressing them by means of Logic Programming

(LP) and Constraint Programming (CP), which are paradigms from Artificial Intelligence of

proven theoretical and practical solidity.

LP and CP offer many advantages under the point of view of declarativeness and flexi-

ble expressivity, which are crucial in an area such as Computational Sustainability, where the

scenario is often dynamic and faceted and where problem specifics have to be gathered from

different domains of expertise often difficult to formalize in a straightforward way. The rapid

prototyping features of LP and CP allow one to deliver working models in short time, test them

on scaled-down instances and get quick feedback from the experts of the domain in order to

1

1. INTRODUCTION

(incrementally) refine the model and improve efficiency in a second stage on top of the existent

implementation.

This pattern strongly inspired the approach to the problems described in this thesis, which

were proposed by experts of the respective domains (such as environmental agencies, hydraulic

engineers, human resource departments) and tested on the real data instances they provided.

The results are encouraging and show the aptness of the chosen methodologies and approaches.

The overall aim of this work is twofold: both to address real world problems in order to

achieve practical results and to get from the application of LP and CP technologies to complex

scenarios feedback and directions useful for their improvement.

Publications

Papers containing part of the work described in this thesis were presented in various venues:

Conferences and book chapters:

M. Cattafi, E. Lamma, F. Riguzzi, and S. Storari. Incremental declarative pro-

cess mining. In N. T. Nguyen and E. Szczerbicki, editors, Smart Information and

Knowledge Management: Advances, Challenges, and Critical Issues, volume 260

of Studies in Computational Intelligence, pages 103–127. Springer, Heidelberg,

Germany, 2009.(3)

M. Alberti, M. Cattafi, F. Chesani, M. Gavanelli, E. Lamma, M. Montali, P. Mello,

and P. Torroni. Integrating abductive logic programming and description logics in

a dynamic contracting architecture. Web Services, IEEE International Conference

on 254–261, 2009.(4)

Journals:

M. Alberti, M. Cattafi, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali,

and P. Torroni. A Computational Logic Application Framework for Service Dis-

covery and Contracting. International Journal of Web Services Research, 8(3):1-

25, July-September 2011 (5).

M. Cattafi, M. Gavanelli, M. Milano and P. Cagnoli. Sustainable biomass power

plant location in the Italian Emilia-Romagna region. ACM Transactions on Intelli-

gent Systems and Technology, 2(4), July 2011 (6).

2

http://springerlink.com/content/663tx3001671j503/?p=1581a28611ac48088b750995a9767d5f&pi=4
http://springerlink.com/content/663tx3001671j503/?p=1581a28611ac48088b750995a9767d5f&pi=4
http://conferences.computer.org/icws/2009/
http://conferences.computer.org/icws/2009/
http://www.igi-global.com/article/computational-logic-application-framework-service/58975
http://www.igi-global.com/article/computational-logic-application-framework-service/58975
http://tist.acm.org/papers/TIST-2010-05-0125.R1.html
http://tist.acm.org/papers/TIST-2010-05-0125.R1.html

M. Cattafi, M. Gavanelli, M. Nonato, S. Alvisi, and M. Franchini. Optimal place-

ment of valves in a water distribution network with CLP(FD). Theory and Practice

of Logic Programming, 11(4-5):731-747, 2011. Best paper award at the 27th In-

ternational Conference on Logic Programming (ICLP 2011) (7).

Synopsis

This thesis is organized as follows. We first provide some preliminaries about Logic Program-

ming and Constraint Programming in Chapter 2. In Chapter 3 we present a Computational

Logic framework whose aim is to ease the complexity of Service Oriented Architectures, a

paradigm which can give a considerable contribution in terms of reducing energy consumption

and greenhouse gas emissions of data centres. Energy and greenhouse emissions are also the

subject of Chapter 4, this time on the side of energy production from biomass. Some kinds

of biomass are a promising source of renewable and low carbon footprint energy but careful

assessment of their supply context is necessary in order not to deplete the potential advantages.

Chapter 5 is dedicated to another fundamental aspect of sustainability: water and its careful

distribution by design of (topologically) robust networks. In Chapter 6 focus is on societal

needs and their balance with environmental and economic aspects, the context being home

health care and the challenges it poses. Finally, in Chapter 7 we conclude and suggest some

future work.

3

http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8320700&fulltextType=RA&fileId=S1471068411000275
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8320700&fulltextType=RA&fileId=S1471068411000275

1. INTRODUCTION

4

2

Preliminaries

2.1 Logic Programming

A first order alphabet Σ is a set of predicate symbols and function symbols (or functors) to-

gether with their arity. A term is either a variable or a functor applied to a tuple of terms of

length equal to the arity of the functor. If the functor has arity 0 it is called a constant. An atom

is a predicate symbol applied to a tuple of terms of length equal to the arity of the predicate.

A literal is either an atom a or its negation ¬a. In the latter case it is called a negative literal.

In logic programming, predicate and function symbols are indicated with alphanumeric strings

starting with a lowercase character while variables are indicated with alphanumeric strings

starting with an uppercase character.

A clause is a formula C of the form

h1 ∨ . . . ∨ hn ← b1, . . . , bm

where h1, . . . , hn are atoms and b1, . . . , bm are literals, whose separation by means of commas

represents a conjunction. A clause can be seen as a set of literals, e.g., C can be seen as

{h1, . . . , hn,¬b1, . . . ,¬bm}.

In this representation, the disjunctions among the elements of the set are left implicit.

Which form of a clause is used in the following will be clear from the context. h1∨ . . .∨hn
is called the head of the clause and b1, . . . , bm is called the body. We will use head(C) to

indicate either h1 ∨ . . . ∨ hn or {h1, . . . , hn}, and body(C) to indicate either b1, . . . , bm or

{b1, . . . , bm}, the exact meaning will be clear from the context. When m = 0 and n = 1, C is

5

2. PRELIMINARIES

called a fact. When n = 1, C is called a program clause. When n = 0, C is called a goal. The

conjunction of a set of literals is called a query. A clause is range restricted if all the variables

that appear in the head appear as well in the body.

A theory P is a set of clauses. A normal logic program P is a set of program clauses.

A term, atom, literal, goal, query or clause is ground if it does not contain variables. A

substitution θ is an assignment of variables to terms: θ = {V1/t1, . . . , Vn/tn}. The application

of a substitution to a term, atom, literal, goal, query or clause C, indicated with Cθ, is the

replacement of the variables appearing in C and in θ with the terms specified in θ.

The Herbrand universe HU (P) is the set of all the terms that can be built with function

symbols appearing in P . The Herbrand base HB(P) of a theory P is the set of all the ground

atoms that can be built with predicate and function symbols appearing in P . A grounding of a

clause C is obtained by replacing the variables of C with terms from HU (P). The grounding

g(P) of a theory P is the program obtained by replacing each clause with the set of all of its

groundings. A Herbrand interpretation is a set of ground atoms, i.e. a subset of HB(P). In the

following, we will omit the word ‘Herbrand’.

Let us now define the truth of a formula in an interpretation. Let I be an interpretation and

φ a formula, φ is true in I , written I |= φ if

• a ∈ I , if φ is a ground atom a;

• a 6∈ I , if φ is a ground negative literal ¬a;

• I |= a and I |= b, if φ is a conjunction a ∧ b;

• I |= a or I |= b, if φ is a disjunction a ∨ b;

• I |= ψθ if φ = ∀Xψ for all θ that assign a value to all the variables of X;

• I |= ψθ if φ = ∃Xψ for a θ that assigns a value to all the variables of X.

A clause C of the form

h1 ∨ . . . ∨ hn ← b1, . . . , bm

is a shorthand for the formula

∀Xh1 ∨ . . . ∨ hn ← b1, . . . , bm

where X is a vector of all the variables appearing in C. Therefore, C is true in an interpretation

I iff, for all the substitutions θ grounding C, if I |= body(C)θ then I |= head(C)θ, i.e., if

6

2.2 Inductive Logic Programming

(I |= body(C)θ) → (head(C)θ ∩ I 6= ∅). Otherwise, it is false. In particular, a program rule

is true in an interpretation I iff, for all the substitutions θ grounding C, (I |= body(C)θ) →
h ∈ I .

A theory P is true in an interpretation I iff all of its clauses are true in I and we write

I |= P.

If P is true in an interpretation I we say that I is a model of P . It is sufficient for a single

clause of a theory P to be false in an interpretation I for P to be false in I .

For normal logic programs, we are interested in deciding whether a query Q is a logical

consequence of a theory P , expressed as

P |= Q.

This means that Q must be true in a model M(P) of P that is assigned to P as its meaning by

one of the semantics that have been proposed for normal logic programs (e.g. (8, 9, 10)).

For theories, we are interested in deciding whether a given theory or a given clause is true

in an interpretation I . This can be achieved with the following procedure (11). The truth

of a range restricted clause C on a finite interpretation I can be tested by asking the goal

?-body(C),¬head(C) against a database containing the atoms of I as facts. By ¬head(C) we

mean ¬h1, . . . ,¬hm. If the query fails, C is true in I , otherwise C is false in I .

In some cases, we are not given an interpretation I completely but we are given a set of

atoms J and a normal program B as a compact way of indicating the interpretation M(B∪J).

In this case, if B is composed only of range restricted rules, we can test the truth of a clause C

onM(B∪J) by running the query ?-body(C),¬head(C) against a Prolog database containing

the atoms of J as facts together with the rules of B. If the query fails, C is true in M(B ∪ J),

otherwise C is false in M(B ∪ J).

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) (12) is a research field at the intersection of Machine

Learning and Logic Programming. It is concerned with the development of learning algorithms

that adopt logic for representing input data and induced models. Recently, many techniques

have been proposed in the field and they were successfully applied to a variety of domains.

Logic proved to be a powerful tool for representing the complexity that is typical of the real

7

2. PRELIMINARIES

world. In particular, logic can represent in a compact way domains in which the entities of

interest are composed of subparts connected by a network of relationships. Traditional Ma-

chine Learning is often not effective in these cases because it requires input data in the flat

representation of a single table.

The problem that is faced by ILP can be expressed as follows:

Given:

• a space of possible theories H;

• a set E+ of positive example;

• a set E− of negative examples;

• a background theory B.

Find a theory H ∈ H such that;

• all the positive examples are covered by H

• no negative example is covered by H

If a theory does not cover an example we say that it rules the example out so the last condition

can be expressed by saying the “all the negative examples are ruled out by H”.

The general form of the problem can be instantiated in different ways by choosing appro-

priate forms for the theories in input and output, for the examples and for the covering relation.

In the learning from entailment setting, the theories are normal logic programs, the ex-

amples are (most often) ground facts and the coverage relation is entailment, i.e., a theory H

covers an example e iff

H |= e.

In the learning from interpretations setting, the theories are composed of clauses, the ex-

amples are interpretations and the coverage relation is truth in an interpretation, i.e., a theory

H covers an example interpretation I iff

I |= H.

Similarly, we say that a clause C covers an example I iff I |= C.

We concentrate on learning from interpretation so we report here the detailed definition:

Given:

8

2.2 Inductive Logic Programming

• a space of possible theories H;

• a set E+ of positive interpretations;

• a set E− of negative interpretations;

• a background normal logic program B.

Find a theory H ∈ H such that;

• for all P ∈ E+, H is true in the interpretation M(B ∪ P);

• for all N ∈ E−, H is false in the interpretation M(B ∪N).

The background knowledge B is used to encode each interpretation parsimoniously, by

storing separately the rules that are not specific to a single interpretation but are true for every

interpretation.

The algorithm ICL (13) solves the above problem. It performs a covering loop (function

ICL in Figure 2.1) in which negative interpretations are progressively ruled out and removed

from the set E−. At each iteration of the loop a new clause is added to the theory. Each clause

rules out some negative interpretations. The loop ends when E− is empty or when no clause is

found.

The clause to be added in every iteration of the covering loop is returned by the procedure

FindBestClause (Figure 2.1). We look for clauses that cover as many positive interpretations

as possible and rule out as many negative interpretations as possible. Starting from the clause

false ← true, that rules out all the negative interpretations but also all the positive ones, the

search gradually refines it. The algorithm is based on a beam search: the beam is a (finite)

pool of candidate partial clauses to refine. At each iteration the best one, according to a certain

heuristic, is selected and the worst one, according to the same criterion, is discarded if the beam

is full. We use notation p(|C) for the probability that an example interpretation is classified as

negative given that it is ruled out by the clause C. This probability can be a suitable heuristic

and it is computed as the number of ruled out negative interpretations over the total number

of ruled out interpretations (positive and negative). The refinements of a clause are obtained

by generalization. A clause C is more general than a clause D if the set of interpretations

covered by C is a superset of those covered by D. This is true if D |= C. However, using

logical implication as a generality relation is impractical because of its high computational

cost. Therefore, the syntactic relation of θ-subsumption is used in place of implication: D

9

2. PRELIMINARIES

function ICL(E+, E−, B)
initialize H := ∅
do

C := FindBestClause(E+, E−, B)
if best clause C 6= ∅ then

add C to H
remove from E− all interpretations that are false for C

while C 6= ∅ and E− is not empty
return H

function FindBestClause(E+, E−, B)
initialize Beam := {false← true}
initialize BestClause := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each clause C in Beam do

for each refinement Ref ∈ δ(C) do
if Ref is better than BestClause then BestClause := Ref

if Ref is not to be pruned then
add Ref to NewBeam
if size of NewBeam > MaxBeamSize then

remove worst clause from NewBeam

Beam := NewBeam

return BestClause

Figure 2.1: ICL learning algorithm

10

2.2 Inductive Logic Programming

θ-subsumes C (written D ≥ C) if there exist a substitution θ such that Dθ ⊆ C. If D ≥ C

then D |= C and thus C is more general than D. The opposite, however, is not true, so θ-

-subsumption is only an approximation of the generality relation. For example, let us consider

the following clauses:

C1 = accept(X)← true

C2 = accept(X) ∨ refusal(X)← true

C3 = accept(X)← invitation(X)

C4 = accept(alice)← invitation(alice)

Then C1 ≥ C2, C1 ≥ C3 but C2 6≥ C3, C3 6≥ C2 so C2 and C3 are more general than C1,

while C2 and C3 are not comparable. Moreover C1 ≥ C4, C3 ≥ C4 but C2 6≥ C4 and C4 6≥ C2

so C4 is more general than C1 and C3 while C2 and C4 are not comparable.

From the definition of θ-subsumption, it is clear that a clause can be refined (i.e. general-

ized) by applying one of the following two operations on a clause

• adding a literal to the (head or body of the) clause

• applying a substitution to the clause.

FindBestClause computes the refinements of a clause by applying one of the above two op-

erations. Let us call δ(C) the set of refinements so computed for a clause C. The clauses

are thus gradually generalized until a clause is found that covers all (or most of) the positive

interpretations while still ruling out some negative interpretations.

The literals that can possibly be added to a clause are specified in the language bias, a

collection of statements in an ad hoc language that prescribe which refinements have to be

considered. Two languages are possible for ICL: DLAB and rmode (see (14) for details). Given

a language bias which prescribes that the body literals must be chosen among {invitation(X)}
and that the head disjuncts must be chosen among {accept(X), refusal(X)}, an example of

refinements sequence performed by FindBestClause is the following:

false← true

accept(X)← true

accept(X)← invitation(X)

accept(X) ∨ refusal(X)← invitation(X)

The refinements of clauses in the beam can also be pruned: a refinement is pruned if it is not

statistical significant and if it cannot produce a value of the heuristic function larger than that

of the best clause. As regards the first type of pruning, a statistical test is used, while as regards

11

2. PRELIMINARIES

the second type of pruning, the best refinement that can be obtained is a clause that covers all

the positive examples and rules out the same negative examples as the original clause.

When a new clause is returned by FindBestClause, it is added to the current theory. The

negative interpretations that are ruled out by the clause are ruled out as well by the updated

theory, so they can be removed from E−.

2.2.1 Incremental Inductive Logic Programming

The learning framework presented in Section 2.2 assumes that all the examples are provided to

the learner at the same time and that no previous model exists for the concepts to be learned. In

some cases, however, the examples are not all known at the same time and an initial theory may

be available. When a new example is obtained, one approach consists of adding the example to

the previous training set and learning a new theory from scratch. This approach may turn out

to be too inefficient, especially if the amount of previous examples is very high. An alternative

approach consists in revising the existing theory to take into account the new example, in order

to exploit as much as possible the computation already done. The latter approach is called

Theory Revision and can be described by the following definition:

Given:

• a space of possible theories H;

• a background theory B

• a set E+ of previous positive example;

• a set E− of previous negative examples;

• a theory H that is consistent with E+ and E−

• a new example e.

Find a theory H ′ ∈ H such that;

• H ′ is obtained by applying a number of transformations to H

• H ′ covers e if e is a positive example, or

• H ′ does not cover e if e is a negative example.

12

2.3 Abductive Logic Programming and the SCIFF system

Theory Revision has been extensively studied in the learning from entailment setting of Induc-

tive Logic Programming. In this case, examples are ground facts, the background theory is a

normal logic program and the coverage relation is logical entailment. Among the systems that

have been proposed for solving such a problem are: RUTH (15), FORTE (16) and Inthelex (17)

All these systems perform the following operations:

• given an uncovered positive example e, they generalize the theory T so that it covers it

• given a covered negative example e, they specialize the theory T so that it does not cover

it

As an example of an ILP Theory Revision system, let us consider the algorithm of Inthelex that

is shown in Figure 2.2. Function Generalize is used to revise the theory when the new example

is positive. Each clause of the theory is considered in turn and is generalized. The resulting

theory is tested to see whether it covers the positive example. Moreover, it is tested on all the

previous negative examples to ensure that the clause is not generalized too much. As soon as a

good refinement is found it is returned by the function.

Function Specialize is used to revise the theory when the new example is negative. Each

clause of the theory involved in the derivation of the negative example is considered in turn and

is specialized. The resulting theory is tested to see whether it rules out the negative example.

Moreover, it is tested on all the previous positive examples to ensure that the clause is not

specialized too much. As soon as a good refinement is found it is returned by the function.

While various systems exist for Theory Revision in the learning from entailment setting, to

the best of our knowledge no algorithm has been proposed for Theory Revision in the learning

from interpretation setting.

2.3 Abductive Logic Programming and the SCIFF system

Abductive Logic Programming (18) is useful in a number of situations involving reasoning

with incomplete knowledge and dynamic occurrence of events. SCIFF (19) is an extension of

the IFF abductive language and proof-procedure (20). Its main motivations originate from the

domain of agent interaction where the definition of agent communication languages and proto-

cols, their semantic characterization and their verification are key issues. Its aim is to specify

in a declarative but intensional way what are “admissible interactions” among agents, and to

13

2. PRELIMINARIES

function Generalize(E−, e, B,H)
repeat

pick a clause C from H

obtain a set of generalizations δ(C)

for each clause C ′ ∈ δ(C)

let H ′ := H \ {C} ∪ {C ′}
test H ′ over e and over all the examples in E−

if H ′ cover e and does not cover any negative example then
return H ′

until all the clauses of H have been considered
// no generalization found
add a new clause to H that covers e and is consistent with E−

let H ′ be the new theory
return H ′

function Specialize(E+, e, B,H)
repeat

pick a clause C used in the derivation of e in H
obtain a set of specializations ρ(C)

for each clause C ′ ∈ ρ(C)

let H ′ := H \ {C} ∪ {C ′}
test H ′ over e and over all the examples in E+

if H ′ does not cover e and covers all positive examples then
return H ′

until all the clauses of H used in the derivation of e have been considered
// no specialization found
add e to H as an exception
let H ′ be the new theory
return H ′

Figure 2.2: Inthelex Theory Revision algorithm

14

2.3 Abductive Logic Programming and the SCIFF system

provide a computational tool to decide whether a given interaction is admissible (verification

of compliance).

An Abductive Logic Program (ALP) is defined as the triplet 〈KBS ,A, IC〉, where KBS

is a logic program in which the clauses can contain special atoms, that belong to the set A and

are called abducibles. Such atoms are not defined by means of clauses in the KBS , and, as

such, they cannot be proved: their truth value can be only hypothesized. In order to avoid un-

constrained hypotheses, a set of integrity constraints (IC) must always be satisfied. Integrity

constraints, in SCIFF are in the form of implications, and can relate abducible literals, de-

fined literals, as well as constraints with Constraint Logic Programming semantics (see Section

2.4.6).

Given an abductive logic program T = 〈P,Ab, IC〉 and a formulaG, the goal of abduction

is to find a (possibly minimal) set of ground atoms ∆ (abductive explanation) in predicates in

Ab which, together with P , “entails” G, i.e., P ∪∆ |= G, and such that P ∪∆ “satisfies” IC,

e.g. P ∪ ∆ |= IC (see (18) for other possible notions of integrity constraint “satisfaction”).

Here, the notion of “entailment” |= depends on the semantics associated with the logic program

P (there are many different choices for such semantics (21)).

2.3.1 Syntax of the SCIFF language

The SCIFF language is composed of entities for expressing events and expectations about

events and relationships between events and expectations.

Events are the abstractions used to represent the actual behaviour.

Definition 1 An event is an atom:

• with predicate symbol H;

• whose first argument is a ground term; and

• whose second argument is an integer.

Intuitively, the first argument is meant to represent the description of the happened event, ac-

cording to application-specific conventions, and the second argument is meant to represent the

time at which the event has happened.

Example 1

H(tell(alice, bob, query_ref(phone_number), dialog_id), 10) (2.1)

15

2. PRELIMINARIES

says that alice asked bob his phone_number with a query_ref message, in the context identified
by dialog_id, at time 10.

A negated event is a negative literal not H(. . . , . . .). We will call history a set of happened

events, and denote it with the symbol HAP.

Expectations are the abstractions used to represent the desired events from an external

viewpoint (cannot be enforced, only expected to be as one would like them to be).

Expectations are of two types:

• positive: representing some event that is expected to happen;

• negative: representing some event that is expected not to happen.

Definition 2 A positive expectation is an atom:

• with predicate symbol E;

• whose first argument is a term; and

• whose second argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and the second argu-

ment is meant to tell for what time the event is expected (which should not be confused with the

time at which the expectation is generated, which is not modeled by the SCIFF’s declarative

semantics). Expectations may contain variables, which leaves the expected event not com-

pletely specified. Variables in positive expectations are always existentially quantified: if the

time argument is a variable, for example, this means that the event is expected to happen at any

time.

Example 2 The atom

E(tell(bob, alice, inform(phone_number,X), dialog_id), Ti) (2.2)

says that bob is expected to inform alice that the value for the piece of information identified
by phone_number is X, in the context identified by dialog_id. Such (inform) event should
happen at some time Ti to fulfil the expectation.

A negated positive expectation is a positive expectation with the explicit negation operator

¬ applied to it. Variables in negated positive expectations are quantified as those in positive

expectations.

16

2.3 Abductive Logic Programming and the SCIFF system

Definition 3 A negative expectation is an atom:

• with predicate symbol EN;

• whose first argument is a term; and

• whose second argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and the second ar-

gument is meant to tell in which time points the event is expected not to happen. As well as

positive expectations, negative expectations may contain variables which are typically univer-

sally quantified: for example, if the time argument is a variable, then the event is expected not

to happen at all times.

Example 3 The atom

EN(tell(bob, alice, refuse(phone_number), dialog_id), Tr) (2.3)

means that bob is expected not to refuse to alice his phone_number, in the context identified by
dialog_id, at any time.

A negated negative expectation is a negative expectation with the explicit negation operator

¬ applied to it. Variables in negated negative expectations are quantified as those in negative

expectations.

Is is worth noticing that

¬E(tell(bob, alice, refuse(phone_number), dialog_id), Tr)

is different from

EN(tell(bob, alice, refuse(phone_number), dialog_id), Tr)

. The intuitive meaning of the former is: no refuse is expected by Bob (if he does, we simply

did not expect him to), whereas the latter has a different, stronger meaning: it is expected that

Bob does not utter refuse (by doing so, he would frustrate our expectations).

17

2. PRELIMINARIES

2.3.1.1 Syntax with explicit quantifiers

Although SCIFF offers a very rich, flexible and transparent (i.e., implicit) quantification of vari-

ables, which keeps the language neat and simple, and makes it suitable to express interaction

protocols in an intuitive way, in some contexts it can be useful to explicit the quantifiers.

ICs can thus be expressed as follows:

Body → ∃(ConjP1) ∨ . . . ∨ ∃(ConjPn) ∨ ∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm) (2.4)

where Body, ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m are, as in the conjunctions

of literals built over event atoms, over predicates defined in the background or over built-in

predicates such as ≤,≥, The variables appearing in the body are implicitly universally

quantified with scope the entire formula. The quantifiers in the head apply to all the variables

appearing in the conjunctions and not appearing in the body.

We will useBody(C) to indicateBody andHead(C) to indicate the formula ∃(ConjP1)∨
. . .∨∃(ConjPn)∨∀¬(ConjN1)∨. . .∨∀¬(ConjNm) and call them respectively the body and

the head ofC. We will useHeadSet(C) to indicate the set {ConjP1, . . . , ConjPn, ConjN1, . . . , ConjNm}.

Body(C), ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m will be sometimes interpreted

as sets of literals, the intended meaning will be clear from the context. We will call P conjunc-

tion each ConjPi for i = 1, . . . , n and N conjunction each ConjNj for j = 1, . . . ,m. We

will call P disjunct each ∃(ConjPi) for i = 1, . . . , n and N disjunct each ∀¬(ConjNj) for

j = 1, . . . ,m.

An example of an IC written with explicit quantifiers is:

a(bob, T), T < 10

→∃(b(alice, T1), T < T1)

∨

∀¬(c(mary, T1), T < T1, T1 < T + 10)

(2.5)

IC (2.5) means: if bob has executed action a at a time T < 10, then alice must execute action

b at a time T1 later than T or mary must not execute action c for 9 time units after T . The

disjunct ∃(b(alice, T1), T < T1) stands for ∃T1(b(alice, T1), T < T1) and the disjunct

∀¬(c(mary, T1), T < T1, T1 < T + 10) stands for ∀T1¬(c(mary, T1), T < T1, T1 <

T + 10).

18

2.4 Constraint Satisfaction Problems

2.4 Constraint Satisfaction Problems

2.4.1 Definition

Many problems in Artificial Intelligence can be considered as instances of Constraint Satisfac-

tion Problems.

Definition 4 A Constraint Satisfaction Problem (CSP) is a triple P = 〈X,D,C〉 where X =

{X1, X2, . . . , Xn} is a set of unknown variables, D = {D1, D2, . . . , Dn} is a set of domains
and C = {c1, . . . , cm} is a set of constraints. Each cl(Xi1 , . . . , Xik) is a relation, i.e., a
subset of the Cartesian product of the involved variables Di1 × · · · × Dik . An assignment
A = {X1 7→ d1, . . . , Xn 7→ dn} (where d1 ∈ D1, . . . , dn ∈ Dn) is a solution iff it satisfies all
the constraints.

If all the constraints in a CSP are unary or binary (involve at most two variables), we have

a binary CSP. Binary CSPs are often represented as graphs: each variable is a node and each

constraint is an arc that links the involved variables.

Applications include various domains: scheduling, planning, logistics, timetabling, artifi-

cial vision, molecular biology, etc (22, 23, 24, 25, 26, 27, 28).

2.4.2 Algorithms

In general, the tasks posed in the constraint satisfaction problem paradigm are computationally

intractable (NP-hard). Various types of algorithms have been proposed to solve Constraint Sat-

isfaction Problems; an exhaustive survey is beyond the scope of this thesis. A good introduction

is given in (29).

2.4.3 Consistency Techniques

In order to reduce the complexity of looking for a solution of a CSP, domain values that are

provably not part of any solutions can be deleted (domain filtering) testing consistency.

Definition 5 A unary constraint c(Xi) is Node-Consistent iff ∀v ∈ Di, v ∈ c(Xi); i.e., each
value v belonging to the domain of variable Xi is consistent.

Definition 6 A binary constraint c(Xi, Xj) is Arc-Consistent iff ∀v ∈ Di ∃u ∈ Dj such that
(v, u) ∈ c(Xi, Xj) and vice-versa. In other words, for each value v belonging to the domain
of variable Xi there exists a value u in the domain of Xj that is consistent with v and for each
value in the domain of Xj there exists a supporting value in the domain of Xi.

19

2. PRELIMINARIES

procedure REVISE(Xi, Xj)
DELETE← false;
for each v in Di do

if there is no such u in Dj such that (u, v) is consistent,
then

delete v from Di;
DELETE← true;

endif;
endfor;
return DELETE;

end REVISE

procedure AC-3
Q← C % Set of all the constraints
while not Q empty

select and delete any constraint c(Xk, Xm) from Q;
if REVISE(Xk, Xm) then

Q← Q ∪ {c(Xi, Xk) such that c(Xi, Xk) ∈ C, i 6= k, i 6= m}
endif

endwhile
end AC-3

Figure 2.3: Algorithm AC-3

A Constraint network is Arc-Consistent if all the constraints are Arc-Consistent. Every

binary CSP can be converted into an equivalent (i.e., with the same solution set) CSP which is

Arc-Consistent. Many algorithms achieving Arc-Consistency have been proposed. All these al-

gorithms are based on the following idea: if a binary constraint c(Xi, Xj) is not arc-consistent,

there will be a value v that is not supported. Supposing that v is in the domain of Xi, there

is no value in the domain of Xj that is consistent with v. In this case, v can be safely re-

moved from the domain of Xi. When we delete a value, we have a list of things that must

be re-considered. In AC-3 (30), that is often used because of its simple implementation, the

list contains constraints (or, equivalently, arcs of the constraint graph). AC-3 is reported in

Figure 2.3.

20

2.4 Constraint Satisfaction Problems

Other levels of consistency have been defined: Path-Consistency (31) and k-consistency

(32, 33) achieve higher level of consistency, but they are more expensive. In most cases, Arc-

Consistency is a good tradeoff, hence it is widely used.

If we deal with non-binary constraints (also called global constraints), Arc-Consistency

can be extended:

Definition 7 An n-ary constraint c(X1, . . . , Xn) is Generalized Arc-Consistent (GAC) iff ∀v ∈
Di, ∀j 6= i, ∃vkj ∈ Dj such that (vk1 , . . . , vki−1

, vi, vki+1
, . . . , vkn) ∈ c(X1, . . . , Xn).

Even when a non-binary CSP can be converted into a binary one (34), the use of global

constraints is often beneficial. The model can be expressed in a more declarative, clear and

concise way, and propagation is usually stronger too.

2.4.4 Systematic Search Algorithms

Systematic search algorithms build a search tree and explore it to find a feasible assignment.

2.4.4.1 Backtracking

Backtracking (or Standard Backtracking, or Chronological Backtracking) (35) incrementally

attempts to extend a partial solution that specifies consistent values for some of the variables,

toward a complete solution, by repeatedly choosing a value for another variable consistent with

the values in the current partial solution. We have a labelling phase and a test for consistency

phase.

In the labelling phase an unassigned variable is chosen and assigned a value in its domain.

In the test phase, the last assignment is checked for consistency with all the other variables

that were assigned before. If an inconsistency is detected, the last assignment is undone, and

another value is chosen.

2.4.4.2 Forward Checking

Forward Checking (FC) (36) is a commonly used algorithm for solving CSPs, because it is

simple and effective. This algorithm interleaves a labelling phase and a propagation phase.

In the labelling phase a tentative value v is assigned to a given variable X as in Standard

Backtracking. In the propagation phase, unassigned variables connected to X are considered,

21

2. PRELIMINARIES

and all values inconsistent with v removed from the corresponding domains, so only consistent

values remain.

When a domain becomes empty, we have a failure, and the algorithm (chronologically)

backtracks.

2.4.5 Constraint Optimization Problems

In some cases, finding a feasible solution is not enough, and a preference between solutions

must be expressed. This preference is usually given with a function, that maps solutions into a

cost (for minimization problems) or to a profit (for maximization problems).

2.4.5.1 Definition

For our needs, we define the Constraint Optimization problem as follows:

Definition 8 A Constraint Optimization Problem (COP) is a pair Q = 〈P, g〉 such that P is a
CSP and g : D1 × · · · ×Dn 7→ St (where 〈St,≤〉 is a totally-ordered set) is a merit function
that maps each solution tuple into a value. A solution A of P is also a solution of the COP iff
@A′ solution of P such that g(A) < g(A′).

We have thus a total order induced by the function f on the set of possible CSP solutions. We

will consider a maximization problem, being straightforward the extension to minimization

problems.

2.4.5.2 Algorithms

The usual algorithm for solving COPs is Branch-and-Bound (37).

Branch and Bound is a general search method; a possible description of Branch-and-Bound

is as follows. The whole problem is divided into two or more subproblems, as in a tree-search.

When we find a solution, we impose that the solution must not be worse than the current

optimal solution. A sketch of the algorithm is presented in Figure 2.4.

The comparison between the current optimum and the value in each node of the search

tree can be performed in different ways. In the original formulation, an Upper Bound must be

computed in every node of the search tree; if the Upper Bound is worse than the current best,

the branch can be pruned off, because it cannot lead to an improvement of the solution.

22

2.4 Constraint Satisfaction Problems

let CSP = 〈X,D,C〉, COP = (CSP, g)

let AP = {CSP} % Set of Active Problems
CurSol = −∞ % Current best solution
While AP 6= ∅

choose P ∈ AP, let P = 〈Xp, Dp, Cp〉
if P is inconsistent

AP ← AP \ {P}
Else if P has only one solution Sp

% Add the constraint g(X) > f(Sp) to all the active problems
∀Q ∈ AP,Q = 〈Xq, Dq, Cq〉, Cq ← Cq ∪ {g(Xq) > g(Sp)}
let CurSol← Sp

Else % Branch
Generate the set CP of children of P

AP ← AP \ P ∪ CP
End While

Return CurSol

Figure 2.4: B&B Algorithm

2.4.6 Constraint Logic Programming

Constraint Logic Programming is a class of programming languages at the intersection of Con-

straint Solving and Logic Programming (38). The paradigm of Logic Programming, as shown

in Section 2.1 is declarative and thus allows a separation between logic and control (39). The

logic part is responsible for correctness and describes information, given as facts and relations,

which must be manipulated and combined to compute the desired result. The control part is

responsible for efficiency, and embeds the strategies and control of the manipulations and com-

binations. An ideal programming methodology would be first of all concerned with what is

the desired result; then, if necessary, with efficiency, or how to obtain the result. In Prolog, the

most common logic programming language, the logic is given by first order predicate logic

and the control is based on SLD-resolution.

However, one drawback of Logic Programming is that the manipulated objects are uninter-

preted structures and equality only holds between objects that are syntactically identical. So,

for instance, 1 + 2 is a syntactic object that cannot unify with 3.

The Constrain Logic Programming (CLP) scheme was introduced by Jaffar and Lassez

23

2. PRELIMINARIES

(40). It represents a class of declarative languages, CLP(C) which are parametric in the con-

straint domain C. For example, C can be the set of real numbers, and we have the CLP(R)

(41), or the Finite Domain sort, thus we have CLP(FD). Constraint Logic Programming gives

an interpretation to some of the syntactic structures and replaces unification with constraint

solving in the domain of the computation.

More formally, the constraint domain C contains the following components (42):

• The constraint domain signature ΣC. It is a signature (i.e., a set of functions and predicate

symbols) that represents the subset of the syntactic structures that are interpreted in the

domain C.

• The class of constraints LC, which is a set of fist-order formulas.

• The domain of computation DC, which is a Σ-structure that is the intended interpretation

of the constraints. It consists of a set D and a mapping from the symbols in ΣC to the set

D.

• The constraint theory, TC, which is a Σ-theory that describes the logical semantics of the

constraints.

• The solver, solvC, which is a solver for LC, i.e., a function that maps each formula to

true, false or unknown, indicating that the set of constraints is satisfiable, unsatisfiable

or that it cannot tell.

In this thesis, we will mainly refer to the FD and R sorts. In FD the domain of the

computation can be any finite set of elements. One of the most important instances is the

set of integers comprised between two values [−Max.. + Max]: in this case the signature

contains the integers, plus operations like +,−, ∗, / and constraints like =, <,>,≤,≥ that are

interpreted as in mathematics. In most CLP languages (43, 44, 45), the solver solvFD is based

on (Generalized) Arc-Consistency.

There are various implementations of the R sort with different characteristics, we will

mostly refer to the one presented in (46).

24

3

Computational Logic tools for Green
IT

3.1 Introduction

Service Oriented Architectures (SOA), exploiting the Internet as a means of communication,

are emerging as a simple and effective paradigm for distributed application development. Het-

erogeneous entities, in terms of hardware and software settings, can interoperate effectively

following well established communication standards.

This ‘decentralization’ of software has proved not only to be beneficial under the point of

view of software engineering but also with respect to sustainability. Computing requirements

have risen sharply over the last years, and data centres have acquired a considerable and grow-

ing impact in terms of energy consumption and carbon footprint. According to the American

Environmental Protection Agency, data centers consumed 0.7% of total US electricity in 2000

and 1.5% in 2006, while the Department of Energy estimate for 2010 is around 3% (1).

SOA enables businesses to delegate tasks to specialized structures which can benefit of

economies of scale and thus the whole system can use resources in a more flexible and efficient

way. Some independent analyst firms have conducted quantitative studies in order to show that

“the growth of cloud computing will have a very significant positive effect on data

center energy consumption. Few, if any, clean technologies have the capability to

reduce energy expenditures and greenhouse gas production with so little business

disruption. Software as a service, infrastructure as a service, and platform as a

service are all inherently more efficient models than conventional alternatives, and

25

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

Figure 3.1: Model derived carbon emission savings enabled by cloud computing according to (1)

their adoption will be one of the largest contributing factors to the greening of

enterprise IT.” (47).

According to one of the available reports, “US businesses with annual revenues of more than

$1 billion can cut carbon emissions by 85.7 million metric tons annually by 2020 as a result of

spending 69% of infrastructure, platform and software budgets on cloud services” (1), see also

Figure 3.1.

However organizing software as a composition of services introduces elements of consider-

able complexity related to the need to coordinate their interaction. Interoperability of services

has a ‘syntactic’ aspect, which can be achieved by using standards and expressing interfaces

of what types of data are taken in input and produced in output by services (48). But it needs

to be accompanied by a ‘semantic’ one, with a formal specification of what the service ‘does’

and the technological intelligent tools to understand and elaborate them.

3.1.1 Semantic Web Services

Service providers can expose their policies, in order for potential customers to evaluate the fea-

sibility of a fruitful interaction. Such an evaluation can be performed manually, if the service’s

interface is bound not to change over time.

However, a more promising approach is for customers to choose the appropriate service

provider at run-time, based on the service provider’s exposed policies.

This approach requires a reasoning engine that reasons on the provider and customer’s

goals and policies, in order to devise a sequence of actions that lets both achieve their goals,

while respecting their policies.

26

3.1 Introduction

In (49), Alberti et al. proposed a contracting architecture based on the SCIFF abductive

logic framework presented in Section 2.3. In that work, the policies were expressed by means

of integrity constraints, and the domain knowledge was expressed in SCIFF’s logic clauses.

The sound and complete SCIFF proof procedure was employed to find, if possible, a course of

action that was satisfactory for both.

However, in a practical perspective, we envisage a possible improvement in representing

the domain specific knowledge exploiting the vast body of results from the Knowledge Repre-

sentation field and, in particular, Description Logics. In this way, we can address the Ontology

layer of the Semantic Web stack.

In this chapter, we propose an approach to let SCIFF access existing knowledge, expressed

by means of an ontology: by interfacing SCIFF with ontological reasoners, distinguishing

syntactically the ontology-related predicates and delegating their computation to the external

reasoners.

This approach bears two main practical advantages: first, it makes the knowledge encoded

in ontologies available to SCIFF, and second it takes advantage of the formal properties en-

joyed by the existing ontological reasoners for the associated computational tasks, in particular

concerning decidability and efficiency.

Moreover we deal with a dual aspect of contracting: learning and updating policies from

existent interactions. This is a very important issue because policies can be rather complex

and even experts of the domain can find it very difficult to express them in a formal language.

The overall process can be very time-consuming and error-prone, while classification of an

interaction as compliant (or not) with respect to the intended behaviour is usually easier.

Applying techniques inspired by Inductive Logic Programming (see Section 2.2) authors

of (50) propose a framework for policy learning. We extend it in order to include the cases,

often relevant in the dynamic domain of Web Services, in which policies are already partially

specified and one wants to update them taking advantage of new available knowledge.

After recalling in Section 3.2 how Semantic Web Services contracting can be represented

in SCIFF we show, in Section 3.3, how it could benefit of added ontological expressivity. We

describe a possible implementation and its experimental evaluation in Sections 3.4.1 and 3.4.2

respectively.

In Section 3.5 we discuss in detail the problem of learning policies from histories of pre-

vious interactions. After explaining how this knowledge can be represented in logic in Section

3.6, we present a framework designed to learn policies from such information (Section 3.7) and

27

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

its extension which is able to update policies when new knowledge is available (Section 3.8).

The two approaches are compared in Section 3.9. In Section 3.10 we discuss related work in

the field.

3.2 Contracting with SCIFF

In this section, we briefly recall the SCIFF-based contracting framework (49).

A web service’s policy is defined, in the SCIFF language, as an abductive logic program

(ALP). In particular, the integrity constraints can relate the web services’ information ex-

changes with the expected input from peer web services. The possible relations can be of

various types, and include temporal relations, such as deadlines, linear constraints, inequalities

and disequalities, all defined by means of constraints. The definitions stated in this way are

then used to make assumptions on the possible evolutions of the interaction.

3.2.1 A contracting scenario

In (49) the SCIFF framework is applied to contracting in an e-commerce scenario, which we

extend here in order to demonstrate our approach to integration.

The two actors are eShop (which wants to sell a device) and alice (a potential customer

for that device), each with policies expressed as SCIFF ICs. SCIFF is used as a reasoner in

a component that acts as a mediator, considering the actors’ policies and trying to devise a

course of action that will let both reach their goals. The two actors’ policies, expressed in

SCIFF integrity constraints, are as follows.

28

3.2 Contracting with SCIFF

alice’s policy. “If the shop asks me to pay cash, I will, but if the shop asks me to pay by credit

card, I will require evidence of the shop’s affiliation to the Better Business Bureau.“

H(tell(Shop, alice, ask(pay(Item, cc))), Ta)→

H(tell(alice, Shop, request_guar(BBB)), T rg)∧

E(tell(Shop, alice, give_guar(BBB)), T g) ∧ Tg > Trg ∧ Trg > Ta.

H(tell(Shop, alice, ask(pay(Item, cc))), Ta)∧

H(tell(Shop, alice, give_guar(BBB)), T g)→

H(tell(alice, Shop, pay(Item, cc)), Tp) ∧ Tp > Ta ∧ Tp > Tg.

H(tell(Shop, alice, ask(pay(Item, cash))), Ta)→

H(tell(alice, eShop, pay(Item, cash)), T r) ∧ Ta < Tr.

(3.1)

eShop’s policy. “If an acceptable customer requests an item from me, then I expect the cus-

tomer to pay for the item with an acceptable means of payment. If the customer is not accept-

able, I will inform him/her of the failure. If an acceptable customer pays with an acceptable

means of payment, I will deliver the item. If a customer requests evidence of my affiliation to

the Better Business Bureau (BBB), I will provide it.”

H(tell(Customer, eShop, request(Item)), T r) ∧ accepted_payment(How)→

accepted_customer(Customer) ∧H(tell(eShop,Customer, ask(pay(Item,How))), Ta)∧

E(tell(Customer, eShop, pay(Item,How)), Tp) ∧ Tp > Ta ∧ Ta > Tr

∨ rejected_customer(Customer) ∧H(tell(eShop,Customer, inform(fail)), T i) ∧ Ti > Tr.

H(tell(Customer, eShop, pay(Item,How)), Tp)

∧ accepted_customer(Customer) ∧ accepted_payment(How)→

H(tell(eShop,Customer, deliver(Item)), Td) ∧ Td > Tp.

H(tell(Customer, eShop, request_guar(BBB)), T rg)→

H(tell(eShop,Customer, give_guar(BBB)), T g) ∧ Tg > Trg.

(3.2)

29

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

The notion of acceptability for customers and payment methods from eShop’s viewpoint,

defined by the accepted_customer/1 and accepted_payment/1 predicates, is defined in eShop’s

knowledge base. In (49), only EU residents are accepted customers, as defined by the following

clauses:

accepted_customer(Customer):-

resident_in(Customer, Location),

accepted_destination(Location).

rejected_customer(Customer):-

resident_in(Customer, Location),

not accepted_destination(Location).

accepted_destination(european_union).

accepted_payment(cc).

accepted_payment(cash).

This knowledge is merged with that provided by the customer, for example

resident_in(alice,european_union).

so that in the resulting knowledge base, on which SCIFF operates,

accepted_customer(alice) is true.

However, this method would not work in case the customer declared

resident_in(alice,italy), as italy does not unify with european_union. One

could, of course, add to the knowledge base accepted_destination/1 facts for all the

current EU members, but such knowledge should be updated when new countries join the EU.

In other cases, acceptability could be defined by a transitive, symmetric relation, which could

introduce cycles in the knowledge base, possibly leading to loops.

3.3 Representing domain knowledge with ontologies

An alternative way to represent (part of) the domain specific knowledge is to use technology

and concepts developed, with focus on this very purpose, in the Knowledge Representation

field, and to rely, in particular, on ontologies. The W3C recommendation for ontology repre-

sentation on the Web is the Web Ontology Language (OWL) (51) based on the well established

semantics of Description Logics (52) and on XML and RDF syntax. Using OWL for domain

30

3.3 Representing domain knowledge with ontologies

Figure 3.2: A graphical representation of the ontology

knowledge representation improves expressiveness (with such features as stating sub-class re-

lations, constructing classes on property restrictions or by set operators, defining transitive

properties and so on) yet keeping decidability (if using OWL Lite or OWL DL) in a straight-

forward and domain modeling-oriented notation. Moreover, since OWL is tailored for the Web,

it provides support for expressing knowledge in distributed contexts (identified by URIs) and

its recognized standard status is a warranty on interoperability and reuse issues. As a plus, it

can be mentioned that community driven development of Semantic Web tools already provides

good support for OWL ontology management tasks such as editing (53) also for not KR-skilled

users.

For instance, in Fig. 3.2 we show a possible ontological representation of eShop’s policies

concerning acceptable customers and means of payments, merged with alice’s own knowledge.

The following OWL axiom says that the acceptedCustomer class is a subclass of the

potentialCustomer class, and that it is disjoint from the

31

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

rejectedCustomer class:

<owl:Class rdf:about="#acceptedCustomer">

<rdfs:subClassOf rdf:resource="#potentialCustomer" />

<owl:disjointWith rdf:resource="#rejectedCustomer" />

</owl:Class>

The following fact states that cash is an instance of the acceptedPayment class:

<owl:Thing rdf:about="#cash">

<rdf:type rdf:resource="#acceptedPayment" />

</owl:Thing>

The following axiom declares the paysWith property:

<owl:ObjectProperty rdf:ID="paysWith">

<rdfs:domain rdf:resource="#potentialCustomer" />

<rdfs:range rdf:resource="#payment" />

</owl:ObjectProperty>

The following fact states that alice is an instance of italian, with value ae1254 for the

paysWith property:

<owl:Thing rdf:about="#alice">

<rdf:type rdf:resource="#italian" />

<paysWith rdf:resource="#ae1254" />

</owl:Thing>

It can be noticed that the ontological notation for the KB makes it possible to infer that alice

is European (and therefore an accepted customer) even if she just states being Italian,

while if we had put resident_in(alice, italy) instead of resident_in(alice,

europe) in the KB at the end of Sect. 3.2.1 she would not have been recognized as such.

Moreover, we defined a class premiumCustomer representing the accepted customers

who pay with a credit card, and which we could use to add refinement to policies (for instance

providing a faster delivery). Since alice is an accepted customer and pays with her credit

card, the ontological reasoning allows to recognize her as a premiumCustomer.

32

3.4 Handling semantic knowledge with SCIFF

Figure 3.3: Integration architecture

3.4 Handling semantic knowledge with SCIFF

In this section we describe our implementation of the SCIFF access to OWL ontologies. It

should be noticed that even if OWL relies on the Open World Assumption, when SCIFF comes

to reasoning involving it, the logic programming peculiar Closed World Assumption is rein-

troduced, thus assuming to have all (relevant) information on the domain available at that time

and providing usual features such as negation as failure.

3.4.1 Interfacing SCIFF and ontological reasoners

An external specific ontology-focused component interfaced with SCIFF can be, when nec-

essary, queried in order to perform the actual ontological reasoning and give back results.

As represented in Fig. 3.3, the architecture for this solution involves a Prolog meta-predicate

which invokes the ontological reasoning on desired goals, an intercommunication interface

from SCIFF to the external component (which incorporates a query and results translation

schema) and the actual reasoning module. Both modules can access both local and networked

knowledge.

Goals given to the meta-predicate are handled like suggested in (54) and (55) considering

single arity predicates as “belongs to class (with same name of predicate)" queries and dou-

ble arity ones as “are related by property (with same name of predicate)" queries. To reduce

the overhead caused by external communication, our implementation of the meta-predicate

provides a caching mechanism: it is first checked if a similar query (i.e., involving the same

predicate) has been performed before and, only if not, the external reasoner is invoked and

answers are cached by storing them as Prolog facts (by means of asserta/1}).The OWL

reasoning module uses the Pellet (56) API, while the communication interface uses the Jasper

33

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

N Load time Query time Total

100 ∼ 0 ∼ 0 ∼ 0

500 1.0 ∼ 0 1.0

1000 1.0 ∼ 0 1.0

5000 2.0 1.2 3.2

10000 4.0 2.8 6.8

Table 3.1: Performance results (all times are in seconds, average over 50 runs)

Prolog-Java library (44). This solution enables access to the full OWL(-DL) expressivity, in-

cluding features such as equivalence of classes and properties, transitive properties, declaration

of classes on property restriction and property-based individual classification.

3.4.2 Experimental evaluation

The approach was tested successfully in simple reasoning scenarios, such as the one depicted

in Fig. 3.2.

To assess its scalability, we experimented with randomly generated ontologies. Each ontol-

ogy, composed of N classes, was built starting from its root node, and recursively attempting,

for each node, five attempts of child generation, each with probability 1/3.

The reasoner was queried about the belonging of an entity to the hierarchy root class. We

report in Tab. 3.1 the time spent for loading the ontology into the reasoner (i.e. the time spent

for parsing ICs and loading the ontology into a persistent OWLOntology object) and for the

actual query. The approach appears to scale reasonably (on PC equipped with an Intel Celeron

2.4 GHz CPU), the loading time is usually higher than the query time.

3.5 Learning and Updating Policies

We have shown how the possibility to express Web Service policies in formal languages and

the use of Computational Logic tools to perform reasoning about their composition and coor-

dination has great potential to ease the complexity of these operations, thus bringing the SOA

scenario closer to a feasible extended adoption.

However, writing policies in a formal language is often a very complicated issue itself.

Sometimes not enough knowledge about the domain is available, or the domain expert finds it

difficult to express it formally.

34

3.5 Learning and Updating Policies

For this reason it is often desirable to be able to let computers do the learning of how

policies should be formalized abstracting from the observation of actual interactions which can

be easily labeled as compliant or not compliant by a (human) classifier.

Moreover the dynamic environment in which such services usually operate calls for a suit-

able approach to policy updating when something changes, new evidence is available or a draft

of policy compiled by a human expert needs to be refined.

In order to study this aspect we can get inspiration from the research in the field of Business

Process Management (BPM) (see e.g. (57)).

In the current knowledge society, the set of business processes an organization performs in

order to achieve its mission often represents one of the most important assets of the organiza-

tion. It is thus necessary to be able to describe them in details, so that they can be stored and

analyzed. In this way we can preserve and/or improve them.

Often organizations do not have a formal or precise description of the processes that they

perform. The knowledge necessary to execute the processes is owned by the individual workers

but not by the organization as a whole, thus exposing it to possible malfunctions if a worker

leaves.

However, modern information systems store all the actions performed by individual work-

ers during the execution of a process. These action sequences are called traces and the set of

all the traces recorded in a period of time is called a log. The Process Mining research area

(58) proposes techniques for inferring a model of the process from a log.

Very often processes change over time to reflect mutated external or internal conditions.

In this case, it is necessary to update their models. In particular, given a process model and a

new log, we want to modify the model so that it conforms also with the new log. We call this

activity Incremental Process Mining. In this chapter we show that revising an existing model

may be more effective than learning a new model from scratch from the previous and new log.

Moreover, in some cases the previous log may not be available, thus making model updating

necessary.

We present a technique for solving this problem: we modify the process mining system

DPML (Declarative Process Model Learner) (50) to be able to update a preexisting model

given new traces.

We choose Logic Programming for the representation of traces and process models in order

to exploit its expressiveness for the description of traces together with the wide variety of

learning techniques available for it. An activity can be represented as a logical atom in which

35

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

the predicate name indicates the type of action and the arguments indicate the attributes of the

action. One of the attributes is the time at which the action has been performed. Thus a trace

can be represented as a set of instantiated atoms, i.e., a logical interpretation.

In order to represent process models, we use a subset of the SCIFF language (19, 59). A

model in this language is a set of logical integrity constraints in the form of implications. Given

a SCIFF model and a trace, there exists an interpreter that checks whether the trace satisfies or

not the model. Such a representation of traces and models is declarative in the sense that we do

not explicitly state the allowed execution flows but we only impose high level constraints on

them.

DPML is able to infer a SCIFF theory from a set of positive and negative traces. Positive

traces represent correct executions of the business process, while negative traces represent

process executions that have been judged incorrect or undesirable.

Given that these traces are represented as logical interpretations and that SCIFF integrity

constraints are similar to logical clauses, DPML employs Inductive Logic Programming tech-

niques (12) for learning from interpretations. In particular, it modifies the ICL system (13) that

learns sets of logical clauses from positive and negative interpretations.

We present the system IDPML (Incremental Declarative Process Model Learner) that faces

the problem of revising an existing theory in the light of new evidence. This system is an

adaptation of DPML and adopts techniques developed in Inductive Logic Programming (such

as (17)) to perform theory revision.

IDPML generalizes theories that do not satisfy new positive traces, as well as specializes

theories that do not exclude new negative examples. To this purpose, we exploit the gener-

alization operator presented in (50) for SCIFF theories. Moreover, we define a specialization

operator.

IDPML is experimentally evaluated revising the model of a process regarding a hotel man-

agement and the model of an electronic auction protocol. In the "hotel management" case the

available traces are divided into two sets: one containing “old” traces and one containing “new”

traces. Then two experiments are performed: in the first we learn a theory with DPML using

the “old” traces and we revise the theory with IDPML using the “new” traces, while in the

latter we learn a theory with DPML from “old” and “new” traces. Then we compare the accu-

racy of the final theories obtained and the running time. A similar comparison is performed on

the auction protocol, except that in this case the initial theory is not learned using some “old”

traces but it is a modified (worse) version of the actual model to simulate the revision of an

36

3.5 Learning and Updating Policies

(imperfect) theory written down by a user. Results associated to these experiments show that

revising a theory is more efficient that inducing it from scratch. Moreover, the models obtained

are more accurate on unseen data.

3.5.1 Business Process Management

Every organization performs a number of business processes in order to achieve its mission.

Complex organizations are characterized by complex processes, involving many people, ac-

tivities and resources. The performances of an organization depend on how accurately and

efficiently it enacts its business processes. Formal ways of representing business processes

have been studied in the area of Business Processes Management (see e.g. (60)), so that the

actual enactment of a process can be checked for compliance with a model.

Recently, the problem of automatically inferring such a model from data has been stud-

ied by many authors (see e.g. (58, 61, 62)). This problem has been called Process Mining

or Workflow Mining. The data in this case consists of execution traces (or histories) of the

business process. The collection of such data is made possible by the facility offered by many

information systems of logging the activities performed by users.

Let us now describe in detail the problem that is solved by Process Mining. A process

trace T is a sequence of events. Each event is described by a number of attributes. The only

requirement is that one of the attributes describes the event type. Other attributes may be the

executor of the event or event specific information.

An example of a trace is

〈a, b, d〉

that means that activity a was performed first, then b and finally d.

A process model PM is a description of the process in a language that expresses the con-

ditions a trace must satisfy to be compliant with the process, i.e., to be a correct enactment

of the process. An interpreter of the language must exists that, when applied to a model PM

and a trace T , returns yes if the trace is compliant with the description and no otherwise. In

the first case we write T |= PM , in the second case T 6|= PM . A bag of process traces L is

called a log. Often, in Process Mining, only compliant traces are used as input of the learning

algorithm, see e.g. (58, 61, 62). We consider instead the case where we are given both compli-

ant and non compliant traces. This is the case when we want to distinguish successful process

executions from unsuccessful ones.

37

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

The approaches presented in (58, 61, 62) aim at discovering complex and procedural pro-

cess models, and differ by the structural patterns they are able to mine. While recognizing the

extreme importance of such approaches, recently (63) pointed out the necessity of discovering

declarative logic-based knowledge, in the form of process fragments or business rules/poli-

cies, from execution traces. Declarative languages seem to fit better complex, unpredictable

processes, where a good balance between support and flexibility is of key importance.

(63) presents a graphical language for specifying process flows in a declarative manner.

The language, called ConDec, does not completely fix the control flow among activities, but

rather envisages a set of constraints expressing policies/business rules for specifying what is

forbidden or mandatory in the process. Therefore, the approach is inherently open and flexible,

because workers can perform actions if those are not explicitly forbidden. ConDec adopts an

underlying semantics by means of Linear Temporal Logics (LTL), and can also be mapped

onto the logic programming-based framework SCIFF.

An important topic related to declarative process specifications concerns their discovery

starting from execution traces, i.e., Declarative Process Mining. Most works in this field deal

with the discovery of procedural process models (such as Petri Nets or Event-driven Process

Chains (64, 65)) from data. Recently, some works have started to appear on the discovery of

logic-based declarative models: (50, 66, 67) study the possibility of inferring essential process

constraints, easily understandable by business analysts and not affected by procedural details.

3.6 Representing Process Traces and Models with Logic

A process trace can be represented as a logical interpretation: each event is modeled with an

atom whose predicate is the event type and whose arguments store the attributes of the action.

Moreover, an extra argument is added to the atom indicating the position in the sequence. For

example, the trace:

〈a, b, d〉
can be represented with the interpretation

{a(1), b(2), d(3)}.
If the execution time is an attribute of the event, then the position in the sequence can be

omitted.

Besides the trace, we may have some general knowledge that is valid for all traces. We

assume that this background information can be represented as a normal logic program B. The

38

3.6 Representing Process Traces and Models with Logic

rules of B allow one to complete the information present in a trace I: rather than simply I , we

now consider M(B ∪ I), the model of the program B ∪ I according to one of the semantics

for normal logic programs.

For example, consider the trace

I = {ask_price(bike, 1), tell_price(500, 2), buy(bike, 3)}
of a bike retail store and the background theory

B = {high_price(T)← tell_price(P, T), P ≥ 400}.
that expresses information regarding price perceptions by clients. Then M(B ∪ I) is

{ask_price(bike, 1), tell_price(500, 2), high_price(2), buy(bike, 3)}
in which the information available in the trace has been enlarged by using the background

information.

The process language we consider was proposed in (50) and is a subset of the SCIFF

language (see Section 2.3.1.1).

A process model in our language is a set of integrity constraints.

An IC C is true in an interpretation M(B ∪ I), written M(B ∪ I) |= C, if, for every

substitution θ for which Body is true in M(B ∪ I), there exists a disjunct ∃(ConjPi) or

∀¬(ConjNj) that is true in M(B ∪ I). If M(B ∪ I) |= C we say that the trace I is compliant

with C.

In (50) it is shown that the truth of an IC in an interpretation M(B ∪ I) can be tested by

running the query:

?-Body,¬(ConjP1), . . .¬(ConjPn), ConjN1, . . . , ConjNm

against a Prolog database containing the clauses of B and atoms of I as facts.

If the N conjunctions in the head share some variables, then the following query must be

issued

?-Body,¬(ConjP1), . . .¬(ConjPn),¬(¬(ConjN1)), . . . ,¬(¬(ConjNm))

that ensures that the N conjunctions are tested separately without instantiating the variables.

Let us recall IC 2.5 from Section 2.3.1.1:

a(bob, T), T < 10

→∃(b(alice, T1), T < T1)

∨

∀¬(c(mary, T1), T < T1, T1 < T + 10)

39

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

For IC 2.5, the query is

?-a(bob, T), T < 10,¬(b(alice, T1), T < T1),¬(¬(c(mary, T1), T < T1, T1 < T +

10))

If the query finitely fails, the IC is true in the interpretation. If the query succeeds, the IC is

false in the interpretation. Otherwise nothing can be said. It is the user’s responsibility to write

the background B in such a way that no query generates an infinite loop. For example, if B is

acyclic then a large class of queries will be terminating (68).

A process model H is true in an interpretation M(B ∪ I) if every IC of H is true in it and

we write M(B ∪ I) |= H . We also say that trace I is compliant with H .

3.7 Learning ICs Theories

In order to learn a theory that describes a process, we must search the space of ICs. To this

purpose, we need to define a generality order in such a space.

IC C is more general than IC D if C is true in a superset of the traces where D is true. If

D |= C, then C is more general than D.

Similarly to the case of clauses, (50) defined the notion of θ-subsumption also for ICs.

Definition 9 (Subsumption) An IC D θ-subsumes an IC C, written D ≥ C, iff a substitution
θ exists for the variables in the body of D or in the N conjunctions of D such that

• Body(D)θ ⊆ Body(C) and

• ∀ConjP (D) ∈ HeadSet(D), ∃ConjP (C) ∈ HeadSet(C) : ConjP (C) ⊆ ConjP (D)θ

and

• ∀ConjN(D) ∈ HeadSet(D), ∃ConjN(C) ∈ HeadSet(C) : ConjN(D)θ ⊆ ConjN(C)

For example, IC 2.5 is subsumed by the IC

a(bob, 4)

→∃(b(alice, T1), 4 < T1, T1 < 4 + 10)

∨

∀¬(c(mary, 5), 4 < 5)

(3.3)

with the substitution {T/4, T1/5}.
It was proved in (50) that implication and θ-subsumption for ICs share the same relation as

for clauses.

40

3.7 Learning ICs Theories

Theorem 1 D ≥ C ⇒ D |= C.

Thus, θ-subsumption can be used for defining a notion of generality among ICs, which can be

used in learning algorithms.

In order to define a refinement operator, we must first define the language bias. We use a

language bias that consists of a set of IC templates. Each template specifies

• a set of literals BS allowed in the body,

• a set of disjunctsHS allowed in the head. Each disjunct is represented as a pair (Sign,DS)

where

– Sign is either + or − and specifies where it is a P or an N disjunct,

– DS is the set of literals allowed in the disjunct.

(50) defined a refinement operator from specific to general (upward operator) in the follow-

ing way: given an IC D, the set of upward refinements δ(D) of D is obtained by performing

one of the following operations

• adding a literal from BS to the body;

• removing a literal from a P disjunct in the head;

• adding a literal to an N disjunct in the head;

• adding a disjunct from HS to the head: the disjunct can be

– a formula ∃(d1 ∧ . . . ∧ dk) where DS = {d1, . . . , dk} is the set of literals allowed

by the IC template for D for a P disjunct,

– a formula ∀¬(d) where d is allowed by the IC template for D for a N disjunct.

Here we also define a refinement operator from general to specific (downward operator) be-

cause we will need it to perform theory revision. The operator inverts the operations performed

in the upward operator, i.e., given an IC D, the set of downward refinements ρ(D) of D is

obtained by performing one of the following operations

• removing a literal from the body of D;

• adding a literal to a P disjunct in the head;

41

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

• removing a literal from an N disjunct in the head;

• removing a disjunct from the head when

– it is a P disjunct ∃(d1 ∧ . . . ∧ dk) where {d1, . . . , dk} is the set of literals allowed

by the IC template for D for the P disjunct,

– it is an N disjunct containing a single literal ∀¬(d).

The learning problem we consider is an adaptation to ICs of the learning from interpretation

setting of ILP:

Given

• a space of possible process models H

• a set E+ of positive interpretations;

• a set E− of negative interpretations;

• a background normal logic program B.

Find: a process model H ∈ H such that

• for all T+ ∈ E+, M(B ∪ T+) |= H;

• for all T− ∈ E−, M(B ∪ T−) 6|= H;

If M(B ∪ T) |= C we say that IC C covers the trace T and if M(B ∪ T) 6|= C we say that C

rules out the trace T .

In order to solve the problem, (50) proposes the algorithm DPML (Declarative Process

Model Learner) that is an adaptation of ICL (13).

DPML is obtained from ICL by using the testing procedure and the refinement operator

defined for SCIFF ICs in place of those for logical clauses.

3.8 Incremental Learning of ICs Theories

We propose a variation of DPML able to deal with theory revision that we call Incremental

DPML (IDPML). As in Section 2.2.1, we call H the space of possible theories, B the back-

ground theory, E+ the set of previous positive examples, E− the set of previous negative ones

42

3.9 Experiments

and T the theory (obtained by DPML or expressed by a human expert) we would like to re-

fine to make it consistent with the new examples: Enew− and Enew+. Figure 3.4 shows the

IDPML algorithm.

The initial theory, together with old and new positive examples and old negative ones, is

given as input to RevisePositive whose aim is to revise the theory in order to cover as many

positive examples as possible. The output of RevisePositive is then given as input, together with

all sets of examples, to ReviseNegative, whose revision tries to rule out the negative examples,

and whose output is the overall revised theory.

RevisePositive cycles on new positive examples and finds out which constraints (if any)

of the previous theory are violated for each example. An inner cycle generalizes all such

constraints in order to make the theory cover the ruled out positive example. The generalization

function performs a beam search with p(|C) as the heuristic (see Section 2.2) and δ as the

refinements operator (see Section 3.7). For theory revision, however, the beam is not initialized

with the most specific constraint (i.e. {false← true}) but with the violated constraint.

Since some of the previously ruled out negative examples may be again covered after the

generalization process, ReviseNegative checks at first which negative examples, either old or

new, are not ruled out. Then it selects randomly an IC from the theory and it performs a

specialization cycle until no negative examples are covered. The Specialize function is similar

to the Generalize one with δ replaced with ρ as the refinement operator (see Section 3.7).

It is also possible that some negative examples cannot be ruled out just by specializing

existing constraints, so after ReviseNegative a covering loop (as the one of DPML) has to be

performed on all positive examples and on the negative ones which are still to be ruled out.

3.9 Experiments

In this section we present some experiments that have been performed for investigating the

effectiveness of IDPML. In particular, we want to demonstrate that, given an initial theory

H and a new set of examples Enew, it can be more beneficial to revise H in the light of

Enew than to learn a theory from E ∪ Enew. Another use case consists in the revision of

an (imperfect) theory written down by a user and its comparison with the theory learned from

scratch using the same set of examples.

43

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

function IDPML(T,E+, E−, Enew+, Enew−, B)
H:= RevisePositive(T,E+, E−, Enew+, B)
H:= ReviseNegative(H,E+, E−, Enew+, Enew−, B)
H:=H∪ DPML(E+ ∪ Enew+, RuledOut(Enew−, H), B)
return H

function RevisePositive(T,E+, E−, Enew+, B)
foreach e+ ∈ Enew+

V C:=FindViolatedConstraints(T, e+)
T := T − V C
E+:=E+ ∪ {e+}
foreach vc ∈ V C

c:= Generalize(vc, E+, E−, B)
T := T ∪ {Best(c, vc)}

return T

function Generalize(vc, E+, E−, B)
Beam:={vc}
BestClause:= ∅
while Beam 6= ∅

foreach c ∈ Beam
foreach ref of c

BestClause:= Best(ref, c)
Beam:= Beam ∪ {ref}
if size(Beam) > MaxBeamSize

Beam:= Beam− {Worst(Beam)}
return Beam

function ReviseNegative(T,E+, E−, Enew+, Enew−, B)
Enew−:=TestNegative(T,E−, Enew−)
E+:=E+ ∪ Enew+

H:=∅
while T 6= ∅ ∧ Enew− 6= ∅

pick randomly an IC c from T

T :=T − {c}
nc:= Specialize(c, E+, Enew−, B)
H:=H ∪ {Best(c, nc)}
Enew−:= Enew− −RuledOut(Enew−, Best(c, nc))

return H

Figure 3.4: IDPML algorithm

44

3.9 Experiments

3.9.1 Hotel Management

Let us first consider a process model regarding the management of a hotel and inspired by (69).

We generated randomly a number of traces for this process, we classified them with the model

and then we applied both DPML and IDPML.

The model describes a simple process of renting rooms and services in a hotel. Every

process instance starts with the registration of the client name and her preferred way of payment

(e.g., credit card). Data can also be altered at a later time (e.g., the client may decide to use

another credit card). During her stay, the client can require one or more room and laundry

services. Each service, identified by a code, is followed by the respective registration of the

service costs into the client bill. The cost of each service must be registered only if the service

has been effectively provided to the client and it must be registered only once. The cost related

to the nights spent in the hotel must be billed. It is possible for the total bill to be charged at

several stages during the stay.

This process was modeled by using eight activities and eight constraints. Activities reg-

ister_client_data, check_out and charge are about the check-in/check-out of the client and

expense charging. Activities room_service and laundry_service log which services have been

accessed to by the client, while billings for each service are represented by the corresponding

activities. For each activity, a unique identifier is introduced to correctly charge the clients with

the price for the services they effectively made use of.

Business related aspects of our example are represented as follows:

• (C.1) every process instance starts with activity register_client_data. No limits on the

repetition of this activity are expressed, hence allowing alteration of data;

• (C.2) bill_room_service must be executed after each room_service activity, and bill_room_service

can be executed only if the room_service activity has been executed before;

• (C.3) bill_laundry_service must be executed after each laundry_service activity, and

bill_laundry_service can be executed only if thelaundry_service activity has been ex-

ecuted before;

• (C.4) check_out must be performed in every process instance;

• (C.5) charge must be performed in every process instance;

• (C.6) bill_nights must be performed in every process instance.

45

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

• (C.7) bill_room_service must be executed only one time for each service identifier;

• (C.8) bill_laundry_service must be executed only one time for each service identifier;

The process model is composed of the following ICs:

(IC.1) true

→ ∃(register_client_data(Trcd) ∧ Trcd = 1).

(IC.2) room_service(rs_id(IDrs), T rs)

→ ∃(bill_room_service(rs_id(IDbrs), T brs) ∧

IDrs = IDbrs ∧ Tbrs > Trs).

bill_room_service(rs_id(IDbrs), T brs)

→ ∃(room_service(rs_id(IDrs), T rs) ∧

IDbrs = IDrs ∧ Trs < Tbrs).

(IC.3) laundry_service(la_id(IDls), T ls)

→ ∃(bill_laundry_service(la_id(IDbls), T bls) ∧

IDls = IDbls ∧ Tbls > T ls).

bill_laundry_service(la_id(IDbls), T bls)

→ ∃(laundry_service(la_id(IDls), T ls) ∧

IDbls = IDls ∧ T ls < Tbls).

(IC.4) true

→ ∃(check_out(Tco)).

(IC.5) true

→ ∃(charge(Tch)).

(IC.6) true

→ ∃(bill_nights(Tbn)).

(IC.7) bill_room_service(rs_id(IDbrs1), T brs1)

→ ∀¬(bill_room_service(rs_id(IDbrs2), T brs2) ∧

IDbrs1 = IDbrs2 ∧ Tbrs2 > Tbrs1).

(IC.8) bill_laundry_service(la_id(IDbls1)), T bls1)

→ ∀¬(bill_laundry_service(la_id(IDbls2), T bls2) ∧

IDbls1 = IDbls2 ∧ Tbls2 > Tbls1).

Constraint (C.1) has been mapped to a IC by imposing that the “register_client_data”
activity is expected to happen at time 1 (the first activity in an execution trace).

46

3.9 Experiments

revision full dataset

dataset time accuracy time accuracy

µ σ µ σ

1 4123 0.732539 0.0058 18963 0.702367 0.0068

2 4405 0.757939 0.0223 17348 0.686754 0.0269

3 6918 0.825067 0.0087 13480 0.662302 0.0180

4 3507 0.724764 0.0257 17786 0.679003 0.0248

Table 3.2: Revision compared to learning from full dataset for the hotel scenario

For this process, we randomly generated execution traces and we classified them with the
above model. This was repeated until we obtained four training sets each composed of 2000
positive examples and 2000 negative examples. Each training set was randomly split into two
subsets, one containing 1500 positive and 1500 negative examples, and the other containing
500 positive and 500 negatives examples. The first subset is used for getting an initial theory,
while the second is used for the revision process.

DPML was applied to each training sets with 3000 examples. The theories that were ob-
tained were given as input to IDPML together with one of the 1000 examples training set.
Finally, DPML was applied to each of the complete 4000 examples training sets.

The models obtained by IDPML and by DPML on a complete training set were then applied
to each example of the other three training set in order to measure the accuracy. In this case it
is defined as the number of compliant traces that are correctly classified as compliant plus the
number of non-compliant traces that are correctly classified as non-compliant divided by the
total number of traces.

In table 3.2 we show a comparison of time spent (in seconds) and resulting accuracies from
the theory revision process and from learning based on the full dataset. The µ sub-columns for
accuracy present means of results from tests on the three datasets not used for training, while
in the σ one standard deviations can be found.

As it can be noticed, in this case revising the theory to make it compliant with the new logs
is faster than learning it again from scratch, and the accuracy of the results is higher.

3.9.2 Auction Protocol

Let us now consider an interaction protocol among agents participating in an electronic auction
(70).

The auction is sealed bid: the auctioneer communicates the bidders the opening of the
auction, the bidders answer with bids over the good and then the auctioneer communicates the

47

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

bidders whether they have won or lost the auction.
The protocol is described by the following ICs (71).

bid(B,A,Quote, TBid)

→∃(openauction(A,B, TEnd, TDL, TOpen),

TOpen < TBid, TBid < TEnd)

(3.4)

This IC states that if a bidder sends the auctioneer a bid, then there must have been an ope-
nauction message sent before by the auctioneer and such that the bid has arrived in time (before
TEnd).

openauction(A,B, TEnd, TDL, TOpen),

bid(B,A,Quote, TBid),

TOpen < TBid

→∃(answer(A,B, lose,Quote, TLose),

TLose < TDL, TEnd < TLose)

∨∃(answer(A,B,win,Quote, TWin),

TWin < TDL, TEnd < TWin)

(3.5)

This IC states that if there is an openauction and a valid bid, then the auctioneer must answer
with either win or lose after the end of the bidding time (TEnd) and before the deadline (TDL).

answer(A,B,win,Quote, TWin)

→∀¬(answer(A,B, lose,Quote, TLose), TWin < TLose)
(3.6)

answer(A,B, lose,Quote, TLose)

→∀¬(answer(A,B,win,Quote, TWin), TLose < TWin)
(3.7)

These two ICs state that the auctioneer can not answer both win and lose to the same bidder.
A graphical representation of the protocol is shown in Figure 3.5.
The traces have been generated in the following way: the first message is always openauc-

tion, the following messages are generated randomly between bid and answer. For answer
messages, values win and lose are selected randomly with equal probability. The times are
selected randomly from 2 to 10. Once a trace is generated, it is tested with the above ICs. If
the trace satisfies all the ICs it is added to the set of positive traces, otherwise it is added to the
set of negative traces. This process is repeated until 500 positive and 500 negative traces are
generated for length 3, 4, 5 and 6.

48

3.10 Related work

Figure 3.5: Sealed bid auction protocol.

We then considered 500 randomly selected traces (half positive and half negative). We
applied both DPML and IDPML to this dataset, the latter starting with a version of the model
that was manually modified to simulate an imperfect theory written down by a user.

The results in Table 3.3 confirm those of Table 3.2: revision offers benefits both in time
and accuracy.

3.10 Related work

3.10.1 Semantic Web Services

One of the first works about the ontological representation of knowledge in a logic program-
ming context is F-Logic (72) (implemented in Flora-2 (73)). F-Logic ontologies are similar
to the formalism of frames and provide an attribute-value and taxonomic (with inheritance)
structure for objects and classes. However they lack the feature of class definition based on
restriction on attributes (or properties), which is a peculiar characteristic of DL (and OWL).
Even if the Semantic Web community adopted the DL paradigm for the ontology layer of the
Semantic Web cake, the urge for introducing rules for improving expressivity, for instance to
model Semantic Web Services, partially made F-Logic come back as a suitable candidate, like
in the case of the WSMO (Web Services Modeling Ontology (74)) framework. An extensive
study of how rules and ontologies can be integrated, with a specific focus on Semantic Web,
can be found in (75) where a language, WSML, is proposed to be used as a Web Service Mod-

49

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

revision full dataset

dataset time accuracy time accuracy

µ σ µ σ

1 820 0.962812 0.0043 1373 0.921687 0.0043

2 1222 0.962937 0.0043 1403 0.939625 0.0041

3 806 0.96375 0.0039 1368 0.923312 0.0044

4 698 0.961125 0.0018 1618 0.937375 0.0020

5 743 0.963875 0.0038 1369 0.92350 0.0042

Table 3.3: Revision compared to learning from dataset for the auction scenario

eling Language in WSMO. Kifer et al. in (76) propose a comprehensive solution based on
Flora-2, in which F-logic is used to express ontologies and Transaction Logic is used to model
declaratively how services behave.

On the other hand, work is being done for the foundations of a tight integration of De-
scription Logic and Logic Programming and one of the most important issues is how to deal
with the different assumptions (Closed World for LP, Open World for DL) made by these two
families of languages. In (77) decidability and complexity results are presented for an inte-
gration of DL and Disjunctive Datalog, while in (78) an integration of DL and LP is based on
the Minimal Knowledge and Negation as Failure (MKNF) logic (79). In (80) this proposal is
extended providing a three-valued semantics. In our work, we apply the closed world assump-
tion to ontological predicates, when computing their truth value in a SCIFF derivation; this
simplification has proved acceptable for the applications that we have considered.

3.10.2 Learning and Updating Policies

Process mining is an active research field. Notable works in such a field are (61, 62, 64, 65, 81,
82).

In particular in (81, 82) (partially) declarative specifications (thus closer to our work) are
adopted.

In (82) activities in business process are seen as planning operators with pre-conditions and
post-conditions. In order to explicitly express them, fluents besides activities (i.e., properties
of the world that may change their truth value during the execution of the process) have to
be specified. A plan for achieving the business goal is generated and presented to the user
which has to specify whether each activity of the plan can be executed. In this way the system
collects positive and negative examples of activities executions that are then used in a learning
phase. Our work remains in the traditional domain of BPM in which the pre-conditions and

50

3.10 Related work

post-conditions of activities are left implicit.
In (81) sets of process traces, represented by Petri nets, are described by high level process

runs. Mining then performs a merge of runs regarding the same process and the outcome is
a model which may contain sets of activities that must be executed, but for which no specific
order is required. However, runs are are already very informative of the process model; in our
work, instead, mining starts from traces, which are simply a sequence of events representing
activity executions.

In (83) events used as negative examples are automatically generated in order to partially
take away from the user the burden of having to classify activities. We are interested in the
future to investigate automatic generation of negative traces.

A useful survey about theory revision methods, including a brief description of common
refinement operators and search strategies, can be found in (84). With regard to the taxonomy
proposed there, we deal with proper revision (not restructuring) both under the specializing and
generalizing points of view.

In (85), the authors address structural process changes at run-time, once a process is im-
plemented, in the context of adaptive process-aware information systems. Basically, adaptive
systems are based on loosely specified models able to deal with uncertainty, i.e. able to be
revised to cover unseen positive examples. The implemented process must be able to react to
exceptions, i.e. it must be revised to rule-out unseen negative examples. Both kinds of re-
vision must guarantee that compliant traces with the previous model are still compliant with
the revised one. In (85), the authors consider process models expressed as Petri nets, where
structural adaptation is based on high-level change patterns, previously defined in (86). They
review structural and behavioral correctness criteria needed to ensure the compliance of process
instances to the changed schema. Then, they show how and under which criteria it is possible
to support dynamic changes in the ADEPT2 system, also guaranteeing compliance. Similarly
to them, we address the problem of updating a (declarative and rule-based, in our case) process
model while preserving the compliance of process instances to the changed model. This is
guaranteed, however, not by identifying correctness criteria, but rather by the theory revision
algorithm itself. We think that their approach is promising, and subject for future work, in order
to identify both change patterns to be considered (up to now we consider one generalization
and one refinement operator only) and correctness criteria under which the revision algorithm
might be notably improved.

51

3. COMPUTATIONAL LOGIC TOOLS FOR GREEN IT

52

4

Biomass Plant Placement with
Energy-Effective Supply

4.1 Introduction

Although the end of fossil fuels seems postponed to a midterm future, the search for new energy
sources is recently having a new boost: after decades of warnings from the environmental
experts, citizens and governments start to realize that we cannot continue polluting our planet
indefinitely. Carbon oxides are known to increase the greenhouse effect, widely recognized as
the main responsible for climate change. As former OPEC minister Ahmed Zaki Yamani said,
“The Stone Age did not come to an end because we had a lack of stones, and the oil age will
not come to an end because we have a lack of oil”.

In the search for reducing carbon oxides emissions, biomass-powered power plants are very
promising, because they provide energy with an almost carbon neutral process since biomass
mostly comes from trees and vegetables that during their life converted carbon dioxide to oxy-
gen.

Burning them returns part of the energy they got from sunlight: it can be considered a kind
of renewable type of energy too.

Also, for countries that mainly rely on imported energy, biomass power may mean an
economy less dependant on the price of oil.

For these reasons, energy from biomass is currently receiving substantial governmental
funding. On the other hand, unfortunately, building a biomass plant does not necessarily imply
any improved sustainability, as the plant is inserted into an environment, with complex inter-
relations, including production of fumes, the need for refrigeration, transport of the biomass
from the production sites to the power plant, and so on. Without taking into consideration such

53

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

aspects, the project is quickly doomed to failure.

Even more importantly, there are economic aspects that rule the whole life of the biomass
plant. For example, in Italy energy producers that use renewable sources have the right to sell
energy to the energy provider at a higher price than the market price (87). Since energy selling
price is higher than the market price, the plant manager can afford to buy biomasses at higher
prices than the market price. This helps the development of new renewable power plants, but
on the other hand may lure the manager to produce energy with low-cost fuel, like palm-tree
oil imported from overseas. Unfortunately, the energy needed to transport the fuel overseas is
much higher than the energy actually produced by burning it in the biomass plant. Nevertheless,
it gives good revenue to the plant manager. However, even excluding these extreme situations,
it may actually happen that the transport of the biomass to the plant consumes more energy
than that produced in the plant. Again, the reason is economic: the producers of biomass may
be lured by the high revenues to carry biomass from far-away production sites, or with highly
polluting and/or energy demanding trucks.

One of the issues is the combinatorial nature of the problem. A good location of the biomass
plant is of vital importance for the economic survival of the project, and it includes solving
complex location and transportation problems. Many works in the literature deal with this
aspect (88, 89, 90).

The second issue is the sustainability of the project, and this is affected by more subtle
aspects. In this chapter, we explicitly address the biomass plant location problem with the aim
of maximizing the sustainability, starting from real world data gathered in the Emilia-Romagna
region of Italy.

The rest of the chapter is organized as follows. We first define the problem, and show the
collected data from the Emilia-Romagna region. Then, in Section 4.3, we define a CLP(R) (see
Section 2.4.6) model that optimally locates one or more biomass power plants in a devised area
of the region, optimizing in particular the ecological sustainability of the project. In Section 4.4
we study the complexity of the problem. We show the results obtained from the CLP(R) model
in Section 4.5. We discuss how this contribution relates to already existent work in the area in
Section 4.6.

4.2 Problem description

Biomass power plants may be aimed at obtaining energy from a variety of different fuels: from
garbage, to forest/sawmill residues, to manure (91). In this work, we address the problem of
the optimal location of a biomass plant that uses wood obtained from forests. This does not
mean deforestation, as wood can come from dead trees, branches, tree stumps, etc., as well as

54

4.2 Problem description

Sensitivity theme Wind powered generators Biomass plants Hydroelectric plants

Vulnerable waters yes maybe maybe
Airports no maybe maybe
Archaeology sites maybe maybe maybe
Military regions no no no
Unstable terrain no no no
Rivers no no yes
Natural parks no no yes
Water wells yes no maybe
. . .

Table 4.1: Excerpt from the interference matrix “sensitivity themes vs. power plants” in the
Emilia-Romagna region

from selection cutting, that is the practice of removing mature timber to improve the timber
stand. In sustainable forest management, a selection cutting criterion requires to cut less than
the yearly produced biomass.

Before building a power plant, one should get the required authorisations from the re-
gional bureaus. As stated earlier, this includes an evaluation of the environmental impact of
the power plant. Various locations are not acceptable for a power plant, due to various reasons
that come from geological information, regulations, statistics on pollution, types of crops in
the surrounding fields, etc. Other locations could be acceptable but raise some issues that need
further investigation before the project can be accepted.

To define disallowed areas, and areas requiring further investigations, the environmental
experts of the Emilia-Romagna region reported into a table the possible interferences between
various types of power plants with sensitivity themes, i.e., types of areas that may be sensitive
to such a plant. Table 4.1 is an excerpt of such a table.

For each theme, the required information are gathered into a map, given as a shapefile of
a Geographical Information System (GIS). Shapefiles can include points, line segments, or
polygons representing areas with common characteristics. Through a GIS software, one can
overlap shapefiles as layers of a map. In this way, by overlapping all the maps of themes
incompatible with some power plant type, the map of incompatibility for a given plant type can
be generated: it is the set of areas in which there is at least one layer (theme) that forbids such
plant (see Figure 4.1). From this process a set of feasible locations is identified.

We consider the problem of locating a plant that uses biomass obtained from forests.
Biomass is then transported to the power plant; we suppose that the transport is through roads.

55

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

Figure 4.1: Map of incompatibility for biomass power plants in the Emilia-Romagna region.

The regional agency kindly provided us with the GIS map of roads as well as the shapefile of
forests. The shapefile of roads is a set of line segments: each road segment is a straight line
segment connecting two points, given with longitude and latitude. A road is then a sequence
of segments; the length of each segment is between 6 and 20 metres.

We built a graph containing as nodes all points from the roads’ shapefile. Two nodes are
connected if there is a straight road segment connecting the two.

We assume that the biomass plants will be built in close proximity to some road, and that
biomass is collected near a road, to allow for a convenient transportation of biomass material
from the collection point to the plant. In our model, only the nodes of the obtained graph
are possible biomass plant locations. On the other hand, there is no point in selecting the
actual positioning with a precision of 20 metres, so we use a sampling of the nodes based on
proximity.

In the graph, each node is labelled as red if the node is internal in a polygon incompatible
with biomass plants, it is green if it is a biomass collection point, it is white otherwise. Each arc
is labelled with its length. Thus, candidate positions for the power plants are the white nodes,
biomass is collected at green nodes, and transported to the power plants by following paths in
the graph.

In the following, we propose a CLP(R)model to address the plant location problem.

56

4.3 A CLP(R) Model

4.3 A CLP(R) Model

The CLP(R) model used to address the given problem relies on a problem representation given
as a graph. Starting from the general graph described earlier, we produce a smaller bipartite
graph, that connects possible locations of the biomass power plants to the location of the forests.
Each arc is labelled with the shortest path length between the two nodes; the (shortest path)
distance between two nodes i and j is called dij , and it is a parameter (it is a known constant).

We have an array of unknowns P that represents the possible locations of the plants: the
element pi can be 0 or 1; it is 1 iff we build a power plant in node i. We suppose we want to
build in the devised region a number of plants which belongs to the fixed rangeMinp toMaxp

; we ensure this fact through the constraint

Minp ≤
NP∑
i=1

pi ≤Maxp. (4.1)

We also have NF forest nodes, i.e., nodes from which the owners can collect wood that
can be used to produce energy in the biomass plant. As said earlier, wood can come from
forest residues (such as dead trees, branches, tree stumps, etc.) or from selection cutting. Each
forest node i has a production of wood prodi that cannot be exceeded, because the quantity of
wood removed from a region should not exceed the yearly produced biomass, in order to have
a sustainable process. We have a matrix of unknowns Cij that links power plant nodes with
forest nodes. Element Cij gives the quantity of wood that is provided from forest node i to
plant node j. The constraints include that the total quantity of wood provided by a forest node
i does not exceed its carry capacity:

∀i ∈ {1..NF }
NP∑
j=1

Cij ≤ prodi.

Each power plant has a minimal quantity of wood mindemand it must receive in order to
be operative; otherwise there is no point in installing such a plant

∀j ∈ {1..NP }
NF∑
i=1

Cij ≥ pj ·mindemand.

Symmetrically, there is a maximum quantity of wood a power plant can accept:

∀j ∈ {1..NP },
NF∑
i=1

Cij ≤ pj ·maxdemand.

Note that this constraint also imposes that one cannot provide wood to a plant that is not in-
stalled.

57

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

Finally, we have economic parameters and sustainability parameters.
We assume that owners can collect residual wood from the nearby forests, and will transport

them to one plant (usually the closest one), in exchange for money. Now, if the revenue is
lower than the supply cost, then there will be no deal, so we need to take into account two
important parameters: the unit price paid for the wood, Pricewood, and the unit supply cost.
The supply cost for the forest owner includes a collection cost and a transport cost. We assume
the collection cost is proportional to the quantity of collected wood (although it could depend
on many factors, like slope and extension of the wood). For the transport cost, we consider a
parameter Costtrans, that represents the cost of transporting one unit of wood for a distance of
one unit. So, we have that plant j can receive wood from forest node i only if it is advantageous
under the point of view of profit to collect and transport wood from i to j. The transport cost
is proportional to the quantity and to the distance through constant Costtrans, i.e. the cost to
transport a quantity Cij from node i to node j is

dij · Costtrans · Cij , (4.2)

so the supply cost becomes

Costcollect · Cij + dij · Costtrans · Cij . (4.3)

The revenue for the seller of wood is proportional to the quantity, so if she provides Cij units
of wood, she will get a revenue of

Pricewood · Cij (4.4)

from which she expects some minimum profit

Profitwood · Cij , (4.5)

for example, we can have that Profitwood = 0.2 · Pricewood: it is a constant parameter ex-
plaining that the seller will not sell the biomass if her profit is below 20% the total price of the
biomass. Combining equations (4.3), (4.4) and (4.5) we get that the net revenue is acceptable
iff

Costcollect + dij · Costtrans + Profitwood ≤ Pricewood

is satisfied. If it is not, then we impose that Cij = 0.
From a sustainability viewpoint, the aim is that the whole system generated by the new

plant produces renewable energy (at the net of consumed energy). The system contains the
plant, as well as the forest owners collecting wood and transporting it to the plant, so we must
ensure that the energy spent for the transport and for building the plant does not overpass that
produced by the wood in the plant.

58

4.3 A CLP(R) Model

The wood transport is usually performed by means of some vehicle of the wood provider,
which can be efficient or not. We fix an average efficiency parameter, and call Efuel the energy
provided by the fuel necessary to move one unit of wood for one distance unit. On the other
hand, we have that one unit of wood provides energy Ewood. Also, we have to consider that
building a plant requires itself an energy investment, and such aspect should be taken into ac-
count in the energy balance: we will consider this contribute in a term γ, that will be detailed in
the following. Thus the objective function considering transportation and sustainability issues
is

max(f) =

NP∑
j=1

NF∑
i=1

Cij

(
Ewood − dijEfuel

)
− γ. (4.6)

The energy required to build a new plant depends mainly on its location and its size. The
contribution for the location can be considered as a coefficient αi associated to each node
i ∈ {1..NP } in the graph that is candidate to host a plant. The size of the plant can be given,
e.g., in terms of its input power. In our case, the power the plant gets as input is the energy of
biomass it receives divided by the time the plant is operative:

Pj =

NF∑
i=1

Cij · Ewood
 /T op.

The relation between the size of the plant and the energy required to build it, as reported in the
documents of the European Commission (92), is given by

E = E0 ·
(

P

P0

)s
where E0 is the energy required to build a plant of reference size P0 (in some location with
α = 1). The scale factor s goes usually from 0.5 to 1. Clearly, in the extreme case of s = 1 we
have a linear relation: building two plants of 1MW or one plant of 2MW has exactly the same
energy requirement1; instead, when s < 1 we can exploit economy of scale for the plant. So,
knowing the energy E0 required to build a plant of size P0, the energy required to build a plant
in node j is given by the non-linear relation

Ej = αjE
0

(
Pj

P0

)s
= αjE

0

(∑NF

i=1Cij · Ewood

P0T op

)s
. (4.7)

Equation (4.7) provides the total energy required to build a new plant in node j. Such
energy should be considered in the objective function, as we want the whole system to produce
energy; however, the other terms in Equation (4.6) represent the produced energy and the cost

1Provided that the locations are comparable, i.e., they have the same coefficient α.

59

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

of transport per year, so to add up the two terms we need to amortize the total energy Ej

during the lifespan of the plant. We simply divide Ej for the average number of years a plant
is productive, T life

j , and obtain as new objective function:

max(f) =
NP∑
j=1

NF∑
i=1

Cij(E
wood − dijEfuel)− pj

αjE
0

T life
j

(∑NF

i=1Cij · Ewood

P0T op

)s (4.8)

Such objective function is nonlinear and, since the exponent s is at most 1, the term in
Equation (4.7) is concave (whenever s < 1).

In order to fit the nonlinear function in the CLP(R) model, we approximate it with a piece-
wise linear function.

Given a (possibly nonlinear) function y = g(x), we sample the curve g in k points x1, . . . , xk;
the piecewise linear approximation y′ = g′(x) ' g(x) is defined as

x =
∑k

i=1 λi · xi
y′ =

∑k
i=1 λi · yi

where λi ∈ [0..1] are new continuous variables subject to the constraints

∑k
i=1 λi = 1

At most two of the λi can be nonzero
The two nonzero λi must be adjacent

Clearly the last two conditions are not linear; they can be stated in a CLP(R) model introducing
new integer 0-1 variables, but there exists a more efficient option. In some CLP(R) solvers,
one can declare (λ1, . . . , λk) as a Special Order Set of type 2 (SOS2) (93), and the solver will
exploit this information for efficient branching heuristics.

It should be noticed that, for the sake of sustainability, the problem cannot be just formu-
lated under the point of view of economics, as the market prices of biomass and fuel needed
for transportation do not reflect the respective energy potential. This is caused by a number of
reasons, the most relevant of which is that institutions such as the European Union or the re-
gional government issue incentives for the use of the former (e.g. trying to push entrepreneurs
towards renewable energy). For this reason it is possible that the economic net revenue for the
plant is positive even if the whole system, including the transport chain and all the rest which
is needed in order to make the plant work, actually consumes energy at the net.

60

4.4 Complexity

4.4 Complexity

We show that the problem addressed in this chapter is NP-hard, even in the case in which there
are no restrictions on the plants’ capacity1.

Theorem 2 The uncapacitated biomass plant location problem is NP-hard.

We prove NP-hardness by reduction from the Facility Location Problem.

A Facility Location Problem is defined as the 4-tuple 〈D,F, f, d〉, where

• D is a set of clients

• F is a set of potential facility locations

• d is a function d : D × F → R+ representing the distance between clients and possible
facility locations

• f is a function f : F → R+ representing the cost of opening a new facility

The objective is to find the set S ⊆ F that minimizes∑
i∈S

fi +
∑
j∈D

(mini∈Sdij) (4.9)

Given an instance of the facility location, we build the following biomass plant location
problem:

• the set of forest nodes is equal to the set of clients D

• the possible positions of the biomass plant are the potential facility locations

• the energy required to build a plant is independent of the size of the plant (s = 0)

• the cost of opening a new biomass plant coincides with function f
(
fi =

αjE
0

T life
j

)
• the distance between forest and plant nodes coincides with the distance function d

• the number of plants is not constrained (Minp=0 and Maxp = |F |)

• all forest nodes produce a unit of biomass (∀i ∈ {1..NF }, prodi = 1)

• Costcollect = 0, Costtrans = 0, Pricewood is any number greater than zero

1Thanks to Alberto Caprara for his suggestions on the proof of NP-hardness.

61

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

• Ewood is a sufficiently high number (Ewood > Efuel ·maxi=1..NF ,j=1..NP (dij))

• the biomass plant does not have (constraining) minimum and maximum capacity (mindemand =

0, maxdemand =
∑NF

i=1 prodi)

Now, we decompose the objective function (4.8) into the terms:

max(f) =
NP∑
j=1

fj · pj +
NF∑
i=1

NP∑
j=1

CijE
wood −

NF∑
i=1

NP∑
j=1

CijdijE
fuel

The first term is the same as in Equation (4.9). From the definition of Ewood, we have that
the coefficient (Ewood − dijE

fuel) in the objective function (4.8) is always positive. Since
there are no limits on the capacity of a plant, all the available biomass can be collected, so in
an optimal solution of the biomass plant placement problem the second term is the constant∑NF

i=1

∑NP

j=1CijE
wood =

∑NF

i=1 prodi. From this observation descends immediately that the
optimal solution of the biomass plant placement problem provides an optimal solution of the
Facility Location Problem, if every forest node provides biomass only to one plant.

Let us suppose that, in the optimal solution of the biomass plant placement problem, one
forest node i provides biomass to two plants, let us call them j1 and j2. In this case, the two
plants must be at the same distance from node i (dij1 = dij2), because otherwise all the biomass
could be carried to the closest facility (as we do not have capacity constraints), providing a
better value of the objective function (which contradicts the fact that such solution is optimal).
Since the two plants are at the same distance, we can move all the available biomass to one of
them, say j1, without changing the value of the objective function. We can apply this method
to all forest nodes that serve more than one plant and obtain an optimal solution of the Facility
Location Problem.

4.5 Experimental results

We experimented our CLP(R) model on two subregions of the Emilia-Romagna region, delim-
ited by rectangles in Figure 4.2.

In Figures 4.3 and 4.4 the detailed views are shown of, respectively, the western and east-
ern areas, with the available roads (the main roads are thicker), the forest areas (solid filled
surfaces) and areas where biomass plant location is impossible (hatched).

The two areas were selected with different characteristics, in order to study our approach
in different scenarios. The western area has large availability of forests, and it is wider than the
eastern area; this area could support the presence of many power plants, which can make the
problem difficult to solve computationally. The eastern area is more restricted, and it contains

62

4.5 Experimental results

Figure 4.2: The areas used in our tests

less forest nodes, so in this case transport issues are particularly relevant, as biomass may have
to be collected from many dispersed forests.

We ran a series of experiments on those areas.

In Figures 4.3 and 4.4 results are shown of optimal placement without considering energy
cost of plant construction. The squares are the optimal placements of plants found by the
model and the different sizes show the associated biomass demand and energy production. In
Figure 4.4 the spot on one of the forest areas shows, for example, one of the biomass supply
points associated to the linked plant in the optimal provisioning plan, while the cross shows
the placement of one plant as prescribed by the solution obtained choosing as the objective
function the maximization of profit rather than the energy balance.

In both areas the goal was to place a number of plants not greater than 5 and whose pro-
duction had to be more than 0.2 MW but less than 1 MW (thus adopting the point of view of
distributed power generation).

The considered values for energy parameters are Ewood = 15000MJ/tonne for biomass
andEfuel = 7MJ/km for fuel (we are considering fuel consumption being 0.1 lt/km for a load
of one tonne). The market price for biomass has beed set to Pricewood = 30euros/tonne,
and collection cost to Costcollect = 25euros/tonne. We assume the biomass seller accepts
as a minimum profit 15% of Pricewood (Profitwood = 4.5euros) for selling biomass and
Costtrans = 0.2euros/km. All these parameters are of course affected by some variability:

63

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

Figure 4.3: Detail of the western area. Squares mark optimal placements of plants without consid-
ering plant construction energy investment. Different sizes show the associated biomass demand
and energy production.

different kinds of wood have differentEwood, fuel consumption andEfuel depend on the means
of transport (small vans, big trucks, tractors, etc.), the collection cost depends on the charac-
teristics of the collection area, and the price of biomass and the expected profit follow market
dynamics. All the values of the parameters were estimated by the environmental experts of the
regional agency, based on their experience in the environmental impact evaluation and, when-
ever possible, on officially available data. For parameters with high variability they suggested
to take the average value.

The western area is mapped on approximately 300 nodes, while the eastern counts approx-
imately 100. Results were obtained in 10 minutes in the former case and 5 seconds in the latter
one, using a 2 GHz Core 2 Duo processor.

The total net energy produced by the plants in the two optimal configurations is respectively
88500 GJ and and 16800 GJ for the western and eastern areas, while the total energy necessary
for the transportation of the biomass to the power plant is, respectively 96133 MJ and 4707
MJ. In both cases, the net produced energy is positive, which shows that the optimal placement
reached its objective. On the other hand, when choosing to maximize the profit in the eastern
area, while the produced energy is the same, the energy necessary for the transportation of
the biomass rises to 16793 MJ so while the energy balance keeps being positive, it is less
favourable.

In Figures 4.5 and 4.6 results of placement are shown considering also the energy invest-
ment for plant construction. The environmental experts of the regional agency suggested that,
in order to build a reference plant of P0 = 0.5MW the required energy is E0 = 45TJ ; the

64

4.5 Experimental results

Figure 4.4: Detail of the eastern area. Squares mark optimal placements of plants without consid-
ering plant construction energy investment. Different sizes show the associated biomass demand
and energy production. Forest area spot linked to plant shows one of the biomass supply points
in the optimal provisioning plan. The cross shows the placement of one plant when the goal is
maximizing profit.

65

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

Figure 4.5: Detail of the western area. Squares mark optimal placements of plants without consid-
ering plant construction energy investment. Different sizes show the associated biomass demand
and energy production.

exponent in Equation 4.7 has value s = 0.8, and the average lifetime of a plant is T life = 25

years. The total net energy produced by the plants in the two optimal configurations is respec-
tively 78995 GJ and and 14858 GJ for the western and eastern areas.

It is interesting to study the total net energy produced by the whole system varying the
number of biomass power plants. In Figure 4.7, we show the results for the eastern area. After
a sharp rise of the curve, due to the fact that only one plant cannot use all the available biomass,
the curve decreases slowly, with an optimum number of plants equal to 2. This effect shows
that there are opportunities given by economies of scale: the configuration with two plants
(including a bigger one) is more rewarding than building 5 small ones. It is worth noting that
with a coarser model, that does not consider the non-linearities in Equation (4.7), such effect
would not appear.

However, it is worth noting that the production of energy, and, as a consequence, the sus-
tainability of the defined choice, depends on the value of the parameters. As said earlier, we
took average values provided by the experts for the transport cost Costtrans, the energy gen-
erated by the fuel Efuel , as well as the price and energy for biomass (respectively, Pricewood

and Ewood); however, we know that the price of fuel has high variability, that depends on the
market, the rising demand of developing countries, the taxation level, etc. The energy of fuel
is more stable, but still it depends on the type of fuel available in the devised area, and in the
Emilia-Romagna region there are at least four types of widely distributed fuels (petrol, diesel
fuel, methane, and propane). We wanted to assess the sustainability of the power plant and its
provisioning system, and find out if, for some combinations of the parameters, the sustainabil-

66

4.5 Experimental results

Figure 4.6: Detail of the eastern area. Squares mark optimal placements of plants considering
plant construction energy investment. Different sizes show the associated biomass demand and
energy production.

1 2 3 4 5

11800

12300

12800

13300

13800

14300

14800

eastern area

number of plants

n
e
t
e
n
e
rg

y

Figure 4.7: Net energy (GJ) produced in the eastern area varying the number of installed power
plants.

67

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

ity of the system drops.

In Figure 4.8, we show the variation of the net energy production varying the other param-
eters, computed in the eastern area. It emerges that the important parameters are actually the
ratios between the parameters. The biomass / fuel cost ratio expresses the relation between the
biomass price the plant manager pays for one load of biomass (Pricewood), and the transport
cost for one unit of length (Costtrans). The biomass / fuel energy ratio expresses the relation
between the energy potential contained in one load of biomass (Ewood) and the energy used to
transport the biomass for one unit of length (Efuel).

In the abscissa of the graph of Figure 4.8, we have the ratio Pricewood/Costtrans. Higher
prices for biomass allow forest owners to collect biomass not only from the very close woods
but also from some more distant ones, thus influencing in a positive way the objective function
at the beginning. In fact, Figure 4.8 shows that the net produced energy initially increases as
the ratio Pricewood/Costtrans grows. However, at some point a saturation occurs, that can
be due to various factors: for instance the limit on the total power production may be reached
(maximum number of plants times the maximum energy produced by each plant).

On the z axis the ratio between energies Ewood/Efuel is plotted; we have fixed the en-
ergy produced by biomass Ewood and varied the Efuel energy necessary to transport a unit of
biomass for a unit of distance. In this way, we can take into account both different types of
fuel, and different types of transport media (e.g., small or big trucks) with varying efficiency
(e.g., with old or new engine types). As expected, reducing the energy required for transporta-
tion increases the net produced energy up to a saturation and, vice-versa, the increase in the
amount of energy used to transport one load of biomass causes a decrease in the maximum net
energy that can be produced. It is worth noting that there is a threshold in which the system,
as a whole, starts consuming energy, instead of producing it. Note, however, that sometimes
even if the net produced energy is negative, the net revenue for the various actors (the plant
management and the forest owners) is not zero: the system consumes energy but still produces
money. This is the worst possible situation from a sustainability viewpoint: the biomass plant
pollutes the local region with fumes and, at the same time, it consumes energy.

But there is also an even worse risk, much more subtle: if the environmental assessment of
the plant (and, most importantly, of the whole system) is done after building the plant, workers
will become frustrated, and stakeholders will think that investing in the green economy is futile.

It is of utmost importance to identify these possible situations as early as possible, before
the plants are built, and local authorities should intervene before the required authorisations are
given.

68

4.6 Related work

Figure 4.8: Net energy (GJ) as a function of (dimensionless) ratios of biomass and transportation
related parameters. On x axis, ratio of cost of a biomass load and cost to move the load for one
length unit. On z axis, ratio of energy of a biomass load and energy to move the load for one length
unit. (*) indicates the parameter context of previous experiments.

4.6 Related work

The problem of biomass power plant location is widely investigated in the literature with the
aim of defining optimal positioning with respect to economic aspects.

Bruglieri and Liberti (89) study the problem of running and planning a biomass-based
production process. The aim is to optimize a process in which various plants process material,
and exchange the products. For example, there can be a fermentation/distillation plant taking
as input cane or beetroot and providing as output some type of alcohol, that can be input for
another plant. In the optimization of running of the biomass-based process, the authors suppose
a fixed amount of various output commodities is required, and minimize the operation costs
(i.e., the cost of supplying plants with input commodities, transportation costs and processing
costs). The authors also consider the planning of the production process, that includes deciding
where and what type of processing plants one should install in various available locations. Our
aim is more on the sustainability aspects rather than on the economic ones. Our model includes
the energy required for building the power plant, that is approximated with a piecewise linear
function of the plant capacity.

Reche-López et al. (90) consider the problem of placing a biomass power plant. They
compare various metaheuristics (Simulated Annealing, Tabu Search, Genetic Algorithms and
Particle Swarm Optimization) to find a near-optimal positioning of the biomass plant. They
consider only economic factors to decide the biomass plant placement, i.e., their objective is
to find the placement that gives maximum revenue. Another incomplete iterative GIS-based
approach for the identification of candidate power plants is described in (94). It identifies

69

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

possible restrictions to the biomass power plant location and iteratively identifies potential
locations along with the cultivated areas needed for the biomass collection. In this chapter, we
adopted a complete approach, that provides a provably optimal solution, while Reche-López et
al. compare metaheuristics, that may provide sub-optimal solutions.

Other approaches (95, 96) make use of a spread-sheet model to support decisions in the
coppice harvesting, storage and transport and to model the costs related to the growing short
rotation coppices in UK (coppicing is a method of woodland management which takes advan-
tage of the fact that some trees reshoot from the stump or roots if cut down). These approaches
converged in (97) in a comprehensive decision support system based on spread-sheet model for
the bio-energy assessment.

An approach making use of a sophisticated MILP model is described in (88). Similarly
to our approach a Geographic Information System integrated with an Integer Linear Program-
ming model is used. Differently from our approach, the one presented in (88) relies on an
objective function that estimates the economic costs-benefit balance related to the power plant;
the benefit derives from the sale of the produced energy, while the costs include the cost of plant
installation/maintenance, the transportation cost, the biomass harvesting cost, and the energy
distribution cost. Clearly, energy efficiency is not considered while it is an essential aspect in
sustainable biomass power plants. Related to the latter, also (98) makes use of a Mixed Integer
Linear Programming model for the definition of an economic energy supply structure based
on biomass. The model has been tested in the state of Brandeburg, Germany in (99). None of
these works consider the (non-linear) function that relates the size of the plant with the energy
required to build it, while we approximate it with a piecewise linear function.

Simulation and optimization are compared by De Mol et al. (100) on the biomass logistic-
related problems. The aim is to define the location of the biomass plant along with biomass
pre-treatment sites. The optimization model is divided into three components each associated
to a type of biomass that are then combined in a knapsack model. The objective function
is again the minimization of costs of biomass flow (variable costs) and those related to pre-
treatment (fixed costs). Again, energy efficiency is not considered, nor the non-linear relation
defining the energy required for building the plant is taken into account.

As explained earlier in this chapter, it may be the case that the revenue is positive even
if the system is not sustainable, and it actually consumes energy instead of producing it; for
this reason, we adopted a sustainability viewpoint, that optimizes the net produced energy. We
agree that economic factors should not be overlooked, and we explicitly considered the budget
of the forest owners.

Another important contribution with respect to related literature concerns the wider aim of
the overall decision support system. It is the first time, to our knowledge, that an effort is done

70

4.6 Related work

to collect in a unique decision support system all aspects of the strategic environmental assess-
ment along with the corresponding optimization problems. Among these problems biomass
location is an important cornerstone.

The formulation of our problem is related to the Facility Location Problem, for which there
exists a wide literature on the basic models and algorithms (101, 102, 103, 104, 105), as well
as surveys (106, 107, 108, 109, 110) and books (111, 112, 113, 114).

One of the differences in our model with respect to the classical facility location problem
stands in the fact that not all clients must be served. Charikar et al. (115) study various ex-
tensions of the facility location in which a small number of clients can be denied service, in
order to obtain a reduction of the total cost. In particular, when there is a small number of out-
liers, the cost reduction can be significant. The authors propose various extensions, that can be
grouped into two main categories. The robust facility location has a fixed parameter p that rep-
resents the number of clients that must be serviced; the classical facility location problem can
be obtained by setting p equal to the number n of clients. The facility location with penalties
associates each client j with a penalty pj : for each client that does not receive the service, the
objective function gets the corresponding penalty. Again, the classical facility location problem
can be obtained by setting all penalties to∞. The authors propose polynomial approximation
algorithms for these cases.

Brimberg and ReVelle (116) address the problem as a biobjective problem: the first objec-
tive is minimizing the costs, while the second is minimizing the unsatisfied demand. They find
the efficient frontier with the weighting method, i.e., they optimize a weighted sum of the two
objectives, and then vary the weights to find all the frontier.

In our formulation, if a forest node j does not provide biomass to any plant, the objec-
tive function implicitly incurs in a penalty corresponding to its production capabilities prodj ·
Ewood, so our problem could be cast as a facility location with penalties (if the opening cost of
each plant was independent of the plant size and there were no upper/lower limits on the plant
size).

Holmberg and Lin (117) consider a variant of the facility location problem in which the
cost of a facility depends on the size of the plant through a staircase function; they also propose
heuristics based on Lagrangian relaxation. Wollenweber (118) proposes a number of further
extensions to such model and proposes a heuristic approach. Instead of the staircase, we used
a continuous piecewise linear approximation of the energetic cost of opening a biomass plant;
moreover, our model does not require all clients to be served.

71

4. BIOMASS PLANT PLACEMENT WITH ENERGY-EFFECTIVE SUPPLY

72

5

Aqueduct Valve Placement for
Minimal Service Disruption

5.1 Introduction

Water is one of the fundamental human needs and, even if it is too often taken for granted in
Western societies, it arguably is one of mankind’s most precious and endangered resources.
Using the words of the United Nations Water For Life commission, “Beyond meeting basic
human needs, water supply and sanitation services, as well as water as a resource, are critical
to sustainable development”(119).The same source highlights the critical position of urban
settlements in this scenario, in particular among fast-growing, low-income populations: “the
exploding urban population growth creates unprecedented challenges, among which provision
for water and sanitation have been the most pressing and painfully felt when lacking. Two main
challenges related to water are affecting the sustainability of human urban settlements: the lack
of access to safe water and sanitation, and increasing water-related disasters such as floods
and droughts. These problems have enormous consequences on human health and well-being,
safety, the environment, economic growth and development”.

The dedicated report prepared by the Center for Strategic and International Studies of San-
dia National Laboratories (120) suggests that “robust capacity building is essential. Results
achieved around the world by existing technical aid and infrastructure development programs
can be vastly improved with greater efforts to support regional capacity building. These efforts
should be aimed at regional education, political and economic innovation and technical expan-
sion sufficient for long-term operation and maintenance by local, indigenous institutions. They
must also include both technical and institutional capacity-building”. Robustness is not just
related to the quality of building materials, but is a general measure of the system aptness to

73

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

b b

b b

b

b

0
1 2 3

456

5l/s

3l/s

8l/s

15l/s

3l/s

7l/s

6l/s

v1,2

v1,6
v2,3 v3,2

v5,4v5,6

Figure 5.1: A schematic water distribution system with valves

limit undesired behaviour when something goes wrong.

An aqueduct is a complex system that includes a main component to transport water and a
water distribution component, that brings the water to the users. The water distribution network
can be thought of as a labelled graph, in which pipes are represented as undirected edges. In the
network, there is at least one special node that is the source of the water (node 0 in Figure 5.1);
users are then connected to the edges of the water distribution network. Each user has a demand
(in litres per seconds) that is quantified by the hydraulic engineer through the available data.
In particular, such a demand is frequently expressed as a daily average value. Each edge of the
graph is labelled with the total demand of the users linked to it. For example, in Figure 5.1, the
edge connecting nodes 2 and 5 (let us name it e2,5) has a demand of 15l/s (that may be due,
e.g., to five clients each requesting 3l/s on average).

When designing a water distribution network, one of the steps is designing the isolation
system: in case a pipe has to be repaired (e.g., because of a break), a part of the network has
to be disconnected from the rest of the network, in order to allow workers to fix the broken
pipe. The isolation system consists of a set of isolation valves, that are placed in the pipes of
the network. Once closed, the isolation valve blocks the flow of water through the valve itself.
In common practice, a valve is usually placed in a pipe near one of the two endpoints; this
means that in each pipe at most two valves can be placed. If in some pipe there are two valves,
this means that this single pipe can be isolated by closing both the valves. In the example
of Figure 5.1, the edge e2,3 connecting nodes 2 and 3 has two valves, so in case this pipe is
damaged, valves v2,3 and v3,2 will be closed, isolating only e2,3.

However, placing two valves in each pipe is often not a viable option, because each valve
has a cost; the cost is not only due to the manufacturing and physical placing of the valve, but
also to the fact that the pipe is more fragile and deteriorates more quickly near valves. In case
there are not two valves in each pipe (as it is usually the case in real distribution networks),
the isolation of a pipe implies the closure of more than two valves and thus the isolation of
more than one pipe. In this case, more users other than those connected to the broken pipe will

74

5.1 Introduction

remain without service during pipe substitution. Suppose that the pipe e3,4 connecting nodes 3
and 4 is damaged. In order to de-water it, workers have to close valves v3,2 and v5,4; as a result
edge e5,4 will be de-watered as well, and the clients that take water from it will have no service
as well. Valves partition the network in the so-called sectors, that are, intuitively, those parts
of the distribution network enclosed by some set of valves: edges e3,4 and e4,5 are in the same
sector, so they cannot be de-watered independently one from the other.

The usual measure of the disruption in the service is the undelivered demand, i.e., the
demand (in litres per second) that is not fulfilled during the repair operations; in the case there
is need to de-water edge e3,4, the disruption is the demand of the edges e3,4 and e4,5, i.e.,
7 + 6 = 13l/s. However, notice that the undelivered demand does not always coincide with
the sector the damaged pipe belongs to. For example, pipe e2,5 belongs to the sector consisting
of the edges e1,2 and e2,5, that is surrounded by valves v1,2, v2,3, v5,4, and v5,6; however by
closing these four valves, we will de-water a larger part of the network: edges e2,3, e3,4, and
e4,5 will be de-watered even though they are not in the same sector of the broken pipe. This
effect is called unintended isolation (121).

The design of the isolation system consists of placing in the distribution network a given
number of valves such that, in case of damage, the disruption is “minimal”. Of course, the
level of disruption depends on which pipe has to be fixed. In Figure 5.1 we have four sectors:
if e2,3 is damaged, the undelivered demand during repair is 3l/s, if one of {e3,4, e4,5} is broken,
the undelivered demand is 13l/s, if the broken pipe is e1,6 or e5,6 the undelivered demand is
3 + 8 = 11l/s, while for sector {e1,2, e2,5} the undelivered demand is 36l/s, corresponding
to the demand of {e1,2, e2,5, e2,3, e3,4, e4,5}. A usual measure (122) is to take the worst case,
and assign to the placement shown in Figure 5.1 (characterised by 6 valves) the effect of the
maximal possible disruption: 36l/s.

In (122) authors address the design of an isolation valve system as a two-objective problem:
one objective is minimizing the number of valves in the isolation system, and the other is the
minimization of the (maximum) undelivered demand. They adopt a genetic algorithm that is
able to provide near-Pareto-optimal solutions, and apply it to the Apulian distribution network.
The genetic algorithm provides good solutions in a very short time, but it is incomplete, so
it does not provide, in general, Pareto-optimal solutions, but only solutions that are hopefully
near to the Pareto front. The real optimal Pareto front remains unknown.

We believe that a complete search algorithm could provide better solutions, although at the
cost of a higher computation time. Since the problem should be solved during the design of
the valve system, there is no need to have a solution in real-time, and an algorithm providing
a provably Pareto-optimal solution may be preferable with respect to incomplete algorithms,
even with higher computation times.

75

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

In this chapter, we address the same two-objective problem studied by (122) as a se-
quence of single-objective ones; this is always possible when one of the objectives is inte-
ger (123, 124, 125). Given the number of valves, we model the design of the isolation valve
system as a two-player game, and solve it with a minimax approach (126). As the game has
an exponential number of moves, we reduce the search space by pruning redundant branches
of the search tree, implementing the minimax algorithm in Constraint Logic Programming on
Finite Domains (CLP(FD)) (see Section 2.4.6), in particular we used ECLiPSe (127). Our al-
gorithm is complete, so it is able to find the optimal solutions and prove optimality; we show
improvements on the best solutions known in the literature, up to 10% of the objective function
value.

The rest of the chapter is organized as follows. In the next section, we give a formal
description of the problem, then we propose the minimax interpretation in Section 5.3. We give
a CLP(FD) model in Section 5.4, then we detail some implementation issues in Section 5.5 and
we report experimental results in Section 5.6. We discuss related work in Section 5.7.

5.2 Problem description

A water distribution network is modelled as a weighted undirected graph G ≡ (N,E), where
N = {1, . . . , n} is a set of nodes and E = {eij} is a set of edges. Each edge eij has an
associated weight w(eij) called demand.

In the network, there are some nodes identified by the set Σ that are called sources.

Valves can be positioned near one of the ends of a pipe; we will refer to valve on edge eij
near to node i as vij , while vji is a valve on the same edge, but close to node j.

Given a number Nv of valves to be positioned in the network, the objective is to position
the valves in the network such that:

1. it is possible to isolate any pipe in the network. Formally, given an edge eij , it is possible
to identify a set of valves C to be closed such that there is no path from any source node
s ∈ Σ to the edge eij that does not contain a valve v ∈ C. Since the set C of valves to
be closed depends on the damaged pipe eij , we will also write C(eij). Note that there is
only one reasonable set C(eij) of valves to be closed given a broken edge eij : intuitively
only the valves directly reachable from eij will be closed. For example, in Figure 5.1 if
the broken edge is e3,4 then C(e3,4) = {v3,2, v5,4} and it does not make sense to close
farther valves, such as v2,3, because in order to reach v2,3 from e3,4 we have to overpass
other valves (v3,2).

2. the objective is to minimize the maximum undelivered demand (UD). Formally, letD(C)

76

5.3 Game model

be the set of edges that do not receive water when the valves in C are closed, i.e., those
edges for which there is no path from any source node to the edge:

D(C) = {eij ∈ E|∀s ∈ Σ, 6 ∃Path(s, eij)}

. The objective function to be minimized is

UD = maxeij∈E
∑

ekl∈D(C(eij))

w(ekl).

5.3 Game model

The problem can be considered as a two-player game, consisting of the following three moves:

• the first player decides a placement of Nv valves in the network;

• the second player selects one pipe to be damaged;

• the first player closes a set of valves that de-waters the damaged pipe.

The cost for the first player (and reward for the second) is the undelivered demand: the total
demand (in litres per seconds) of all users that remain without service when the broken pipe is
de-watered.

Given this formalization, the well-known minimax algorithm is applicable (126).
As we said in Section 5.2, choosing the last move is very easy, as there is only one rea-

sonable solution: close all valves that are reachable from the broken pipe, without overpassing
other valves. An implementation of this algorithm is given by (121).

Clearly the first step of the first player is the most sensitive, because it can generate a wide
number of alternatives. In a network with Ne edges and with Nv valves, the search space is(
2Ne

Nv

)
, since each edge can host up to two valves. However, some of the moves are not very

interesting, for three main reasons that will be explained in detail in the next section. First, some
solutions are clearly non-optimal. Second, some are symmetric, and provide valve placements
that, although different, represent equivalent solutions. Third, after some solution is known,
there is no point in looking for worse solutions: as soon as the current search branch cannot
lead to solutions better than the incumbent, we can stop the search, backtrack, and continue
from a more promising branch.

Each of these three cases provides a possible pruning of the search space, that can expo-
nentially speed-up the computation with respect to a naive approach. The first two cases can
be thought of as constraints, while the third can be though of as a bound: all of them can be
simply cast in Constraint Logic Programming on Finite Domains (CLP(FD)).

77

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

5.4 Constraint Logic Programming model

We can now show how to model in CLP(FD) the valve placement problem. We first provide a
simple minimax algorithm, then improve it with the three types of pruning hinted at earlier.

5.4.1 A minimax implementation in CLP(FD)

We associate a Boolean variable to each possible position of a valve (so we have two Boolean
variables for each edge in the graph); if the variable takes value 1, then the given end of the
edge hosts a valve, otherwise, if the variable takes value 0, there is no valve in such location.
In the following, the list of these variables is called V alves.

The two-player game can be implemented as follows:

solve(Valves,Nv):-

impose_constraints(Valves,Nv),

minimize(
(

assign_valves(Valves),

maximize(
(

break_pipe(Broken),

close_valves(Valves,Broken,ClosedValves),

undelivered_demand(Valves,ClosedValves,UD)

), UD, MaxUD

)

),

MaxUD,MinMaxUD

).

The minimize/3 and maximize/3 meta-predicates are predefined in most CLP(FD) lan-
guages; declaratively, minimize(G,F,V) provides, amongst the solutions of goal G (bind-
ings to the variables in G that make true the goal G), the solution that provides the minimum
value for variable F (128, 129); such minimal value is bound to variable V . In other words,
the result of minimize(G,F, V) is equivalent to the Prolog goal

findall(F,G,List),minlist(List, V)

where minlist finds the minimum value V in the List.

Operationally, it has a better performance, since it does not need to find all the solutions
of G, collect them in a List, and find the minimum, but it implements a form of branch-and-
bound. Operationally, minimize calls goal G and, if it succeeds providing some binding

78

5.4 Constraint Logic Programming model

F/F ∗, it imposes a new unbacktrackable constraint F < F ∗; then it continues the search. The
unbacktrackable constraint is considered in the constraint store of all the nodes of the search
tree, and prunes every node that cannot possibly provide a lower value than F ∗. When the goal
G fails, the optimal value is the last value obtained as F ∗ (130), if it exists. maximize is
treated symmetrically.

Predicate impose_constraints posts all the constraints of the model to the constraint
solver. It contains the constraint stating that there are Nv valves in the distribution network;
other constraints will be described in Section 5.4.2.

assign_valves starts the search on the V alves variables.

After finding a possible positioning of the valves that satisfies all constraints, a maximisa-
tion phase tries the moves of the opponent player: it searches (predicate break_pipe) the
pipe that, if damaged, can be fixed only giving a maximum disruption of the service. When the
opponent has chosen a pipe to break, we can compute the valves that should be closed to allow
for substitution of the Broken pipe; finally, we compute the undelivered demand.

Thus, the internal maximize finds, amongst the moves of the opponent player (break_pipe),
the move that gives the maximum undelivered demand; such value is bound to variableMaxUD.
The first player, instead, chooses the placement of the valves (assign_valves) with the aim
of minimizing the value MaxUD.

5.4.2 Reducing the number of moves

The number of moves of the first player is huge even for small networks and number of valves.
However, as hinted at earlier, some configurations can be avoided, as shown in the next para-
graphs.

5.4.2.1 Redundant valves and symmetries

Consider the network in Figure 5.2. Even without knowing the demand on the various pipes,
we can tell that some of the valves are redundant, just by looking at the topology of the network.

Valve v1,2 cannot be used to identify a sector: the pipe immediately on the left of the valve
belongs to the same sector as the pipe immediately on the right. In fact, there is a closed path
going from one side of the valve to opposite side: starting from node 1, we can go to node 3,
then 4, then 2, and we reach the opposite side of the same valve without having met any other
valve. The same holds for valve v3,5: there exists the path (3, 4, 6, 5) that connects one end of
the valve to the other end.

In general, we can say that in any closed path of the network, there cannot be exactly one
valve. No valves means that the whole path will be contained in a sector, which is sensible.Two

79

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

b

b

b

b

b b

1 2

3 4

5 6

v1,2

b

v6,7 7

b
8v2,8

v3,5

Figure 5.2: A network with redundant valves

valves or more can mean that the path is divided into two or more sectors.So, for each closed
path, one could impose a constraint saying that the number of valves in such path cannot be
equal to 1.

Indeed, the number of paths is exponential in the size of the network, however we can
choose to impose such constraint only for a limited number of closed paths. We decided to
impose one such constraint for each (boundary of a) face, that is a concept of planar graphs.
When drawing the graph on a plane, each of the regions surrounded by edges of the graph is
called a face. The number of faces of a planar graph is always polynomial, as proven by Euler.

Notice that, when a node is connected to exactly two edges, we have a symmetry. For
example, consider node 8 in Figure 5.2: in one assignment, we could have a valve v8,2, while
another assignment could be identical but with a valve in v8,7. These two solutions are symmet-
ric, because the fact that node 8 is in the same sector as edge e2,8 or as e7,8 is irrelevant, since
nodes do not have a contribution to the objective function. So, we can impose the symmetry
breaking constraint v8,7 = 0. This simple observation can provide a notable speedup in the
search, because real networks often have this situation.

5.4.2.2 Bounding

Consider a node in the search tree that selects the move for the first player (predicate assign_valves/1):
in a generic node, some of the vij variables will be assigned value 1 (meaning that some valves
have already been placed), some variables will have value 0 (meaning that in such position
there is no valve), and some will still be unassigned.

Consider the example in Figure 5.3: circles represent positions in which there is no valve,
while strokes are variables still unassigned. Even though we do not have a complete placement,
we can already say that there is a sector containing at least edges e7,8, and e6,7. The opponent
player will have the option of damaging, e.g., pipe e7,8, causing an undelivered demand that

80

5.5 Implementation details

b

b

b

b

b b

1 2

3 4

5 6

v4,2

v6,4

v6,5

b

v6,7 7

b
8v8,2

v4,6v3,5

Figure 5.3: A partial assignment: circles mean absence of valve, strokes are variables not assigned
yet

is no less than w(e7,8) + w(e6,7). So if the cost of such sector is worse than the current best
solution found by the first player (i.e., w(e7,8) + w(e6,7) > UDbest), there is no point in
continuing the search on the current branch. Note that this bound considers only the cost of the
sector, without including unintended isolation.

We can also perform a reasoning similar to reduced costs pruning (131, 132). Suppose that
w(e7,8) +w(e6,7) < UDbest but adding w(e2,8) is enough to overpass the current best UDbest

(i.e., w(e2,8) + w(e7,8) + w(e6,7) > UDbest): this means that we cannot afford to include
edge e2,8 in the same sector, and the only possibility to get a solution better than UDbest is to
separate the two sectors, placing a valve in v8,2. Thus, we can impose v8,2 = 1.

5.5 Implementation details

5.5.1 Incremental bound computation

The bound described in Section 5.4.2.2 is very powerful, and reduces significantly the number
of explored nodes. However, it can be rather expensive in terms of computing time, if imple-
mented naively. In fact, it implies computing the cost of the sector one edge belongs to, which
means identifying the sector, possibly visiting a significant part of the graph. So computing it
again and again during search can make it very time consuming.

Instead of restarting from scratch the identification of the sectors and computing their cost
at each node of the search tree, we compute them incrementally.

We associate to each node i of the graph a variable Si that represents the sector the node
belongs to, and the lower bound LBi on the cost of the sector Si.

A constraint is associated with each edge of the graph ei,j , and relates the two variables vi,j

81

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

b b
i j

vi,j vj,i

Si Sj

w(ei,j)

Figure 5.4: Example of propagation of the lower bound when joining sectors

and vj,i with the two sectors Si and Sj , and with their lower bounds LBi and LBj :

lower_bound(vij , vji, Si, Sj , LBi, LBj). (5.1)

Declaratively, constraint (5.1) states that, given the value of variables vi,j and vj,i, the
undelivered demand cannot be lower than (the maximum of) the two bounds LBi and LBj .

Operationally, the constraint (5.1) is awakened when one of the variables vi,j or vj,i be-
comes ground.

Initially no valve is placed, and each node is (tentatively) a sector by itself with associated
lower bound zero (since no demand is associated to nodes).

If variable vi,j takes value 0, this means that there will be no valve in such position, so the
sector Si will have to include edge ei,j , and we increment the value of the lower bound LBi by
w(ei,j) (see Figure 5.4).

If both variables vi,j and vj,i have value 0, this means that the two sectors Si and Sj should
be joined: we unify the corresponding variables Si = Sj , and increment the value of the lower
bounds: we compute the cost of the joined sector as LBi + LBj + w(ei,j).

Moreover, as explained in Section 5.4.2.2, if vi,j = 0 and vj,i is not ground yet, but LBi +

LBj +w(ei,j) is greater than the current best solution, then joining the two sectors would give
a solution worse than the current best, so we can impose a valve near node j, i.e., vj,i = 1.

5.5.2 Dealing with unintended isolation

As mentioned in Section 5.4.2.2, the bound computed by constraint (5.1) does not take into
account unintended isolation. However, when evaluating the total damage associated to the
breaking of a certain pipe (which results in the isolation of a certain sector) it is necessary
to consider also this aspect. Predicate undelivered_demand/3 finds the correspondent
actual value of the objective function used in maximize/3.

Its algorithm is based on the following principle. Isolating a sector is equivalent to re-
moving, from the graph describing the network, the part of the graph which belongs to said

82

5.6 Experimental results

Figure 5.5: Comparison between the approximate Pareto front computed by Giustolisi-Savić and
the optimal Pareto front obtained in CLP(FD)

sector. It is then subsequently possible to determine the connected components of the ob-
tained subgraph (computational complexity is linear in the size of the subgraph (133)). The
graph_algorithms library (134) of ECLiPSe Prolog provides efficient implementations
of predicates for such operations on graphs.

Selecting the connected component which includes the source node and summing up the
demands on the pipes contained in it gives the deliverable demand. The total undeliverable de-
mand can thus be obtained subtracting the deliverable demand from the total network demand.

5.6 Experimental results

We compare our results with those reported by (135), and we apply our CLP(FD) algorithm
on the Apulian water distribution network reported in that paper. Both the software and the
instance are available on the web (136). The network has 23 nodes and 33 edges. In (135)
authors adopt a multi-objective genetic algorithm, that minimizes both the number of valves
and the undelivered demand. The aim is to find the so-called Pareto frontier (125); in this
problem, a solution belongs to the frontier if there is no way to reduce the undelivered demand
without increasing the number of valves (and, vice-versa, it is impossible to reduce the number
of valves without increasing the undelivered demand). The genetic algorithm, however, is not
able to prove that a solution is indeed Pareto-optimal, and provides an approximation of the

83

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

Pareto frontier, i.e., a set of points that are hopefully near to the real Pareto frontier. Moreover,
(135) use a simplifying assumption: “in order to reduce greatly the search space of the opti-
mizer, the constraint of a maximum of one valve for each pipe was tested”. In the paper, they
report the best found solutions obtained with a number of valves ranging from 5 to 13.

We computed the true Pareto-optimal frontier by varying the number of valves from 5 to 13
valves, and computing for each value the best placement. The comparison of the near-Pareto-
optimal frontier and the true Pareto-optimal frontier obtained with our CLP(FD) program is
shown in Figure 5.5. It is worth noting that authors of (135) do not provide a solution with
6 valves, possibly because their algorithm was not able to find a solution with undelivered
demand lower than that obtained with 5 valves. We proved, instead, that such a solution exists
and adding a valve reduces the damage. Excluding this case, when the number of valves is low
(up to 8 valves) their algorithm found the real optimum, probably due to the fact that the search
space is still not very wide, so the genetic algorithm is able to explore a wider percentage of
the search space. When the number of valves increases, their algorithm gets farther from the
real optimum, with a gap of about 10% with 10 and 13 valves. Note also that we were able to
find a solution with 12 valves that gives the same undelivered demand that (135) compute with
13 valves: in this sense, we were able to save one valve (out of 13) maintaining the same cost
for undelivered demand.

The computation time is reported in Figures 5.6 (linear scale) and 5.7 (log scale). All ex-
periments were done on a computer featuring an Intel Core 2 Duo T7250 2GHz processor with
4GB of RAM (note, however, that the current implementation does not use parallelism, and
uses only one core). We show the performance of the basic algorithm, and of the improved
versions that include the reduction of redundant valves (Section 5.4.2.1) and the bound (Sec-
tion 5.4.2.2) varying the number of valves. From the graph in linear scale (Figure 5.6) we can
see that each of the improvements has a significant impact in terms of reduction of the com-
putation time. When the number of valves is low, the elimination of redundant valves (i.e.,
imposing that in a face there cannot be exactly one valve, Section 5.4.2.1) has a very strong
effect, while the bound has almost no effect. On the other hand, when the number of valves
increases, the bound seems to have a higher impact. Combining the two, we get a further
improvement, with a reduction of the computation time of more than two orders of magnitude.

Figure 5.7 shows that the computing time grows less than exponentially with respect to
the number of valves. This can be explained by the fact that the search space does not grow
exponentially, but it varies as the binomial coefficient.

ECLiPSe has two implementations of the branch-and-bound predicate for minimization
(130). One, called min_max, restarts the search after a new solution is found; this means that
the first part of the search tree is explored every time a new solution is found; on the other

84

5.6 Experimental results

Figure 5.6: Computation time of the algorithms including different optimizations

hand, restarting the search allows ECLiPSe to add the unbacktrackable constraint from the root
node of the search tree, and propagate effectively on all the nodes of the tree. The second,
called minimize, avoids the restarts and continues the search, taking the risk that the newly
added unbacktrackable constraint will not be able to propagate immediately, but only after
some changes to the domains of the cost variable has happened. In our application, we found
that min_max was about one order of magnitude slower than minimize.

Indeed the computation time is much higher than the one reported in (135) where the whole
(near) Pareto frontier is obtained in just 10 minutes on an older computer. However, our al-
gorithm is able to find the true optimum and prove its optimality, which is well-known to be
often more difficult than finding the optimum itself, so in a fair comparison the time required
for proving optimality should not be taken into account. In Figure 5.8 we show the anytime
behaviour of our algorithm, i.e., we plot the solution quality with respect to the computing time
in a typical instance. Indeed, our algorithm takes about 50 minutes to compute just one point
of the Pareto frontier. However, looking closer at the graph one notices that our algorithm gets
to a reasonable quality in a few seconds, it takes 27 minutes to get to the same quality obtained
by the genetic algorithm, then it is able to improve on it and takes 37 minutes (total) to find the
real optimal solution.

(135) also show the graph of the (near) Pareto-optimal frontier with a higher number of
valves, but they do not report the solutions, so we cannot make a comparison. We tested our
algorithm with the same number of valves (up to 24); we could not prove optimality, but we
were able to find reasonable solutions within a few minutes.

85

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

Figure 5.7: Computation time of the algorithms including different optimizations, log scale

Figure 5.8: Anytime behaviour of the CLP(FD) algorithm: solution quality with respect to the
computation time. Number of valves Nv = 13

86

5.7 Related work

5.7 Related work

In the literature of hydraulic engineering, two main problems related to the isolation valves
in a pipe network have been faced, that is a) the identification of the segments and undesired
disconnections that occur after a set of isolation valves has been closed and b) the (near) optimal
location of the set of isolation valves.

As far as the first topic concerns, in the literature there are a number of studies regarding
segment identification and the undesired disconnections that occur following the closure of
a set of isolation valves. In particular, the methods proposed in (121) and (137) are based
on a dual representation of the network, with segments treated as nodes and valves as links.
The methods proposed in (138) and (122) use topological incidence matrices to identify the
segments.

As far as the second topic concerns, in (122), a method is presented for the near-optimal
placement of isolation valves based on a multi-objective genetic algorithm. Given that the
placement of isolation valves is the result of a compromise between the need to reduce the
costs tied to purchasing and installing the valves and the simultaneous need to assure high
system reliability in the event of routine or non-routine maintenance, authors of (122) use the
number of valves to be installed–as a surrogate for cost– and the maximum demand shortfall
(the demand shortfall represents the unsupplied water demand after isolating a segment) in the
different (disconnected) segments of the network as the objective functions to be minimised.
Authors of (138) instead propose a different couple of objective functions, that is total cost of
the set of valves, the cost of each valve being calculated as a function of the pipe diameter,
and the weighted average unsupplied demand associated with the segments. Also in (138)
the optimization is solved through a multi-objective genetic algorithm. All of these works
use incomplete algorithms, that cannot ensure that the found solution is the real optimum; to
the best of our knowledge, our proposal is the first complete algorithm to address the valve
placement problem.

The valve placement problem has some similarities with the graph partitioning problem, in
which the goal is to partition a graph into (almost) equal-size parts by removing the minimal
number of edges or (in the weighted edges case) such that the total weight of the edges which
connect different parts is minimized. In general, graph partitioning is NP-hard (139). Most
works in the literature deal with heuristics or approximation algorithms.

One of the first works in the area is (140): authors propose a greedy algorithm which
outputs a graph bisection. Starting from an initial solution (which can be suggested by some
criterion or also be found randomly), each step of the algorithm evaluates the improvement in
the objective function that would be obtained moving a vertex from one partition to the other

87

5. AQUEDUCT VALVE PLACEMENT FOR MINIMAL SERVICE DISRUPTION

and takes the best choice. Iteration goes on until convergence to a local optimum is reached.
The bisection can be applied recursively to partition further. In (141) the algorithm is improved
so that the asymptotic behaviour of the algorithm is linear rather than quadratic.

A different approach is based on the spectral analysis of the graph. A graph can be repre-
sented by its incidence matrix: a square matrix N ×N (if N is the number of vertices) whose
(i, j) element is 1 if there is an edge from vertex i to vertex j and 0 otherwise. Its representa-
tion as a Laplacian matrix is obtained as the (matricial) difference between the diagonal matrix
which has in position (i, i) the degree of the node i, and the incidence matrix. The set of the
eigenvalues of the Laplacian is the graph spectrum ((142) gives an extended account on the
subject). Since it was shown (143) that the second smallest eigenvalue of the Laplacian as-
sociated to a graph contains information about its connectivity, various partitioning heuristics
were proposed relying on the eigenvectors (144, 145). In comparison with other heuristics,
spectral methods provide good quality partitions at an increased computational cost (necessary
to compute the matrix eigenvalues).

Various kinds of heuristics can be used in multilevel schemes, which reduce the size of the
graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to
construct a partition for the original graph. In (146) spectral methods are employed to partition
the smaller graph, and use a variant of the Kernighan-Lin algorithm to periodically refine the
partitions. In (147) a coarsening heuristic is adopted, for which the size of the partition of the
coarse graph is within a small factor of the size of the final partition.

The special case of planar graphs (i.e. graphs which can be drawn without intersecting
edges) is of particular interest for our application since it is often the case for water supply
networks. Finding the optimal solution is NP-hard also for the planar case, however the planar
separator theorem (148) states that a bisection in which the biggest set contains at most two
thirds of the vertices and whose separator contains O(

√
n) vertices can be found in linear time.

Other related problems are the multicut problems (149), in which the aim is to find the
minimal set of edges (or nodes) such that given pairs of nodes are no longer connected. In
our case, instead, the aim is to disconnect a possibly small part of the network while keeping
connected all the rest.

The algorithms for graph partitioning or solving multicut problems are clearly not directly
applicable to the valve placement problem, also because of the issue of unintended isolation
mentioned in Section 5.1. However, it would be interesting to hybridise our algorithm with
some of the techniques available for such problems; we plan to study the feasibility of such
approaches in future work.

88

6

Workload-Balanced and
Loyalty-Enhanced Home Health Care

6.1 Introduction

The aim of Computational Sustainability is balancing environmental, economic, and societal
needs for sustainable development. One of the most important societal needs is health care,
which is at the same time one of the most (under an economic but also environmental point of
view) expensive to achieve.

The relevant cuts in government spending, affecting health and welfare budgets, which
have occurred in most countries all over Europe and North America in the last years, have
spurred research on how to improve efficiency and minimize the costs of the services provided
in those fields. One of current trends to achieve costs reduction and maintain service quality
of health services is to close peripheral hospitals, reduce patients hospitalization, and concen-
trate the service at few, big structures, able to provide specialized treatments and high quality
consultancy.

At the same time, though, patients who do not need to be treated in a hospital must be
provided health care directly at their homes. The aim is to gain all the advantages coming
from keeping the patient in a friendly environment while saving on hospitalization expenses.
Indeed, high quality home health care following hospital dismissal has proved essential in
reducing hospital readmissions, if able to cope with preventable complications.

The challenge is to deliver the service in a cost and resource effective manner, while achiev-
ing high medical treatments quality standards (i.e. comparable to those achievable in a hospi-
tal). Decentralization introduces elements of complexity in the rostering of personnel assigned
to home health care. The area of intervention is no more local and common but scattered on a

89

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

Service Time

First visit 1 hour
Enema 30 min
General check 15 min
Tracheotomy check and tube change 15 min
Central venous catheter 30 min
Electrocardiogram 30 min
Emogasanalysis 15 min
Mouth cleaning 5 min

Table 6.1: Excerpt of the services with average service time

territory which can also be rather extended. There is a need for accurate logistics taking into
account the well being both of patients (who need constancy in the assigned nurses) and nurses
(who need balanced and reasonable workloads) while keeping under control expenses in terms
of money (to pay for fuel and occasional long hours of nurses) and resources (fuel consumption,
pollution) in order to avoid disadvantages to overcome the (potential) advantages.

In this chapter we describe an application concerning home health care in the city of Fer-
rara, Italy, and how it can be addressed with Constraint Programming.

In the rest of this Section we describe in detail the problem and the specific requirements we
need to face. In Section 6.2 we present a CP model which captures them. The search strategies
devised to complement it are described in Section 6.3 and extensively tested in Section 6.4.
Section 6.5 contains a discussion about related work.

6.1.1 The home health care service in Ferrara

At present, the home health care (HHC) service in the city of Ferrara, Italy, is managed by the
local agency of the National Health Service (NHS), namely AUSL 109. All patients who are
not self sufficient and in need of medical treatment are eligible. Requests are characterized by
a patient identifier (name and address), a medical treatment, and the specific day of the week
when the treatment must be delivered (each patient can have more than one request per week).

Service is provided by a set of qualified nurses. Every day, each nurse who is on duty starts
her job from the hospital, visits the patients in her list delivering the required treatments and
traveling by car from one patient’s home to the next eventually returning to the hospital.

A treatment lasts from 5 to 60 minutes, depending on its specific characteristics; Table 6.1
shows an excerpt of the set of treatments with average service times. Moreover, a single patient

90

6.1 Introduction

may need several different treatments in the same day. Such requests are usually carried out as
a whole by a single nurse and thus handled as a single request. Therefore, requests duration is
quite heterogeneous over the whole set of requests.

While Ferrara is a medium-size town (about 150,000), the area administered by AUSL 109
is rather large and its population aging. Although most of the population is concentrated in
town, a number of elderly people live in the countryside and they are those more likely to
be enrolled in the service. Therefore, the service is characterized at the same time by a high
variance of duration and a significant geographical dispersion of the requests.

Scheduling such a service poses several challenges; a good solution should achieve:

• from the NHS point of view, the minimization of the travel time over the service time;
i.e. the travel time during which a nurse is on duty but is not delivering any service.

• from the nurses point of view, the equidistribution of the workload, which can not be
guaranteed by simply equally subdividing patients, due to heterogeneous requests.

• from the patient point of view, a good degree of loyalty, i.e., the number of different
nurses who are in charge of a single patient should be minimal.

6.1.2 The problem data

Resources At present, a total of 15 nurses is involved. Every working day (Monday to Fri-
day), 12 nurses are on duty, out of which 9 operate in the morning and 3 in the afternoon.

Working rules A duty should last up to 7.12 hours on a working day. This limit is not strictly
enforced, provided that the threshold of 36 hours per week is not exceeded over a planning
horizon of 4 weeks.

Demand As a representative sample of the set of requests, we consider the month of February
2010, with a total of 3323 requests, subdivided among 458 patients. Several patients are located
either in town or in its suburbs, though quite a few live in some neighboring towns in a 20km
radius.

6.1.3 Aim of the project

Optimizing the health home care scheduling is essential to make the service cost-effective and
to avoid the so called burn out phenomenon, i.e. nurses who get tired and act in an unfriendly
manner to patients or even leave the job. We start by examining the current solution approach,
as it is manually carried out in AUSL 109.

91

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

Figure 6.1: The 9 zones in which the area is divided, dots show where patients are located

At present, nurses organize their duties themselves. In order to simplify the subdivision of
the patients to the nurses, the territory pertaining AUSL 109 has been partitioned statically into
9 zones (shown in Figure 6.1) considering several factors, such as the distribution of the popu-
lation, its age and historical data. Each nurse on duty on Monday morning receives in charge
most of the patients belonging to one such area. Then the nurse tries to fit her patients requests
for the whole week into her working shifts of the week, while complying with the maximum
weekly workload allowed. The assignment of request to daily shifts follows a sort of greedy
criterion, trying to stuff as many requests as possible within each shift. Such decisions are
not driven by any optimization criteria, and the routing is not necessarily optimal within the
day, leaving apart what could be gained in terms of traveled distance if requests would be ex-
changed between nurses. If a nurse can not fulfill all the requests of her patients, those that are
not accomplished are forwarded to the chief nurse, who is in charge of the service coordination,
and get reassigned to the other colleagues. Due to the greedy procedure followed, the nurse
weekly schedules have very different workloads and balancing this load over the months leads
to a detriment in loyalty. Nurses complain about such disparities, and have difficulties adapting
their schedule to new incoming patients, new treatments, or to any other change. Moreover, if
the workload balance could be improved by optimizing the routing component, nurses could
be available at the hospital for others tasks, thus reducing the overall costs. In addition, an

92

6.2 Modeling the problem in CP

improved routing plan would impact on the direct expenses related to gas and car usage, which
contribute to the overall cost.

Decisions that have to be taken to build a solution are the following: partitioning the re-
quests to a set of duties, and for each duty determining the sequence of services to be carried
out optimizing the traveling times.

6.2 Modeling the problem in CP

Constraint (Logic) Programming on Finite Domains, with its declarative features and flexible
expressivity, has the right characteristics to represent a good approach to the HHC problem.
It offers the possibility, much needed in this domain, to smoothly add and relax constraints in
order to follow change in the requirements. Moreover it allows one to easily model the required
optimization criteria which can be difficult to formalize under other paradigms. Although the
strength of CP lies more in the feasibility aspects of our problem, while it might be penalized
by the optimal routing side of it, CP is a very effective framework for the integration of com-
ponents based on different approaches, as it will be described more in detail in the following.

The input of our model consists of:

• a set Sserv of services, of size Ns ; for each service s we know the patient pats, the day
days and the duration durs

• a matrix of distances D; the element di,j is the travel time from patient i to patient j (if
i and j are both greater than 0), or from/to the hospital (if i = 0 or j = 0)

• Snurse = {1, . . . , Nn} is the set of available nurses

• Nd is the number of days considered in the scheduling

• MinutesPerDay is the amount of minutes available per day for each nurse (including
service time and travel time)

• MinutesPerWeek is the amount of minutes available in one week. We assume

MinutesPerWeek = MinutesPerDay ·Nd

even if, as explained in Section 6.1, it can also be in a different, more relaxed, way.

A solution is an assignment of a nurse to each service, respecting the constraints both on
the day and on the week workloads. The quality of the solution depends on how balanced

93

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

the week workloads of the nurses are and on how many different nurses take care of the same
patient during the week.

So, to each service swe associate a decision variable Nurses that can take a value between
1 and the number of available nurses Nn.

It can be useful to represent the nurses variables also in their Boolean channeling version,
using constraint reification. We have a matrix SN of size Ns ×Nn such that

∀s ∈ Sserv,∀n ∈ Snurse, SN s,n = 1 ⇐⇒ Nurses = n.

We want to compute the workload of each nurse n in each day d: DayWLn,d. Each day
workload is the sum of the total service time and the travel time

DayWLn,d = T svcn,d + T trvn,d (∀n ∈ Snurse,∀d ∈ 1 . . . Nd)

and the week workload WeekWL is simply the sum of the respective day workloads

WeekWLn =
∑Nd

d=1DayWLn,d (∀n ∈ Snurse).

The service time is the total time of the durations of the services given by nurse n in day d;

T svcn,d =
∑

s∈Sserv ,days=d
durs · SN s,n.

The travel time T trvn,d of nurse n in day d is computed by a constraint traveltime, whose
meaning will be explained in Section 6.2.2.

There are various ways to achieve balanced week workloads for the nurses (150). We chose
to minimize the maximum week workload, obtained as

MaxWeekWL = maxn∈Snurse(WeekWLn)

One way to obtain maximum loyalty is to minimize the number of nurses that visit a same
patient. Let ServicePatp be the set of services of patient p. The information if a patient p is
visited during the week by nurse n is given by:

PNp,n =
∨
s∈ServicePatp SN s,n ∀p ∈ Spatient,∀n ∈ Snurse

(where we identify truth values true and false with 1 and 0, respectively); then

LoyaltyPenalty =
∑

p∈Spatient,n∈Snurse

PNp,n

The objective is a weighted sum of the two components

min(α1 ·MaxWeekWL+ α2 · LoyaltyPenalty), (6.1)

where α1 and α2 are positive real numbers that can be chosen by the user in order to reflect the
current priorities adopted in the AUSL. Of course, such values can be tuned later on in order to
achieve the best results.

94

6.2 Modeling the problem in CP

6.2.1 Using more Global Constraints

The model can be modified in order to exploit some more global constraints (see also Section
2.4.3) if they are available in the chosen constraint programming system.

With respect to service time, one can notice similarities with classic problems studied in
AI, such as bin packing and the (multi)knapsack problems (151, 152), in which a set of Nitems

items with size sizei have to be placed in a set Nk of containers (the bin/knapsack) without
exceeding their capacities.

The global constraint multiknapsack (also known as binpacking) (153) is suited to solve
such problems; a multiknapsack problem can be defined with the constraint

multiknapsack(a, size, load)

where

• a ≡ {ai} is a set of decision variables ai with domain ai :: 1..Nknapsacks(∀i ∈ 1..Nitems),
with the intended meaning that ai = j iff item i is assigned to knapsack j;

• size ≡ {sizei} is the array containing the size of each item

• load ≡ {loadi} is a set of constrained variables that represent the actual load of each
knapsack, i.e. the sum of the sizes of the items assigned to that knapsack. In order to
solve a multi-knapsack problem, the loadi domains are constrained to take values up to
the capacity of the knapsacks: loadi ≤ capacityi.

In the HHC problem, we can consider each service s as an item of size durs which has to
be placed in one of the bins/knapsacks whose load is T svcn,d with d = days.

We can thus bind the Nurse decision variables with the whole T svcvector: writing

multiknapsack(Nurse, dur, T svc),

we enforce1 (∀n ∈ Snurse, ∀d ∈ {1..Nd}):

T svcn,d =
∑

s∈Sserv ,d=days

[Nurses = n]× durs.

With respect to loyalty, one way to optimize it is minimizing the number of nurses that visit
each patient. For each patient p ∈ Spatient we would like to link the array of decision variables
Nursep with the number of different values in it. One of the most important global constraints,

1Square brackets in the formula are Iverson brackets (154): let P be a statement, [P] evaluates to 1 if P is true
and to 0 otherwise.

95

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

alldifferent (155, 156), enforces that all the variables of the array passed as argument to it are
given a different value. The global constraint NV alue (157, 158, 159) can be thought of as a
soft version of alldifferent, and it counts the number of different values in a vector of variables.
Counting the different values in the set of decision variables associated to a certain patient p
we obtain the number of different nurses who take care of that patient:

NV alue(Nursep, PNp) (∀p ∈ Spatient)

and we can compute the overall loyalty violations summing up the single contributions:

LoyaltyPenalty =
∑

p∈Spatient

PNp.

6.2.2 Addressing the Routing

In order to satisfy the constraint on the maximum day workload, one should compute both the
service time and the travel time of a nurse’s daily shift. On the other hand, computing the travel
time of a nurse implies computing the optimal route that connects all the patients assigned to
her on that day, which is a (hard) optimization problem in its own, known as the Traveling
Salesman Problem (TSP) (160).

We decided to embed a TSP solver inside a (user-defined) constraint traveltime, so that it
can perform constraint propagation during search of the main problem (i.e., the HHC). Notice
that in a given node of the search tree, some of the patients will be assigned to a nurse, while
others will still be unassigned; the constraint traveltime should compute the bounds of the
travel time, namely the minimal travel time of the nurse (assuming that she will be assigned a
minimal number of patients, amongst those in her domain), and the maximum one (assuming
that she will be assigned all the possible patients in her domain).

In order to compute the travel time T trvn,d of a nurse n in day d, we need to provide to such
constraint: (1) the patients associated to the services (with their locations), (2) the matrix of
distances D, (3) and the services to be provided by nurse n in day d. More precisely, it will be
the sub-set

Sserv(n,d) , {s ∈ Sserv|Nurses = n, days = d}.

In other words, the actual parameters are:

T trvn,d = traveltime(pats, D, Sserv(n,d)).

Operationally, the traveltime constraint awakes every time one of the Nurse variables is
instantiated. We know which service s was instantiated, therefore the corresponding nurse n
and day d. The constraint computes the TSP corresponding to the patients that must be visited

96

6.3 Search Strategies

by nurse n in day d. This provides a valid lower bound to the actual travel time, and can be
used in a branch-and-bound search. When all the Nurse variables are ground, the cost of the
TSP becomes the real travel time, and we are able to fix the value of T trv to the TSP cost.

As far as TSP solvers are concerned, it is possible to choose between implementing one,
e.g. in Constraint Programming (161, 162), and using an off-the-shelf solution.

We found that implementing a solver in pure CP slowed down significantly the search (as
also witnessed in the literature (163)).

The state of the art in the area is probably Concorde (164), which relies on linear program-
ming with the addition of specific TSP-targeted features. However it is not easily customizable
and it is oriented to large instances, while the number of patients visited by a nurse in a single
day in our case is rather limited.

We adopted a solver based on Lagrangian Metaheuristics (165) which performs very well
on small TSPs and proved to be suitable for integration in our system.

6.3 Search Strategies

In CP search strategy design is responsible for the shape of the search tree and the way to
explore it. We devised and applied several search strategies to our problem with the aim of
incorporating knowledge of the problem and its structure to rapidly drive the search towards
(good) solutions.

A first, general purpose one (GS – Generic Search) performs a depth first search selecting
the variable to assign, at each node, according to the First Fail heuristic (i.e. the variable with
the smallest domain is chosen) (166). The value to assign is selected randomly among the ones
in the domain.

Since our problem is characterized by a huge search tree which is difficult to fully explore
in a reasonable time, we adopted restarts (167): we want to avoid that (wrong) decisions taken
near the root drive the search into a bad area without being reconsidered (thus inducing the
well-known heavy-tail behavior (168)). This Generic Search with Restarts (GSR) is based on
the optimal timeout sequence (169), as in (170).

We also modified the variable selection heuristics; instead of selecting the variable with
the smallest domain within the services of the whole week, we try to compute the assignments
of the single days, i.e., we first assign all the services of the first day, then the second day,
etc. Within each day, we select first the variable with the smallest domain. This strategy was
applied without restarts, Generic Search by Day (GSD), and with restarts: Generic Search by
Day with Restarts (GSDR).

We devised a search heuristic which is more tailored to the problem structure (LGS).

97

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

The variable selection criterion selects first variables related to services with bigger durations,
which is a sensible choice when dealing with multiknapsack problems. Let the selected
variable be associated to service s of patient pats, the value selection heuristic tries to assign a
nurse who is already visiting pats in the attempt to keep the LoyaltyPenalty low. If more than
one nurse was already assigned to that patient previously, the one with the lowest WeekWL is
selected, in the attempt to keep workloads balanced.

This heuristic can also be adopted in the context of a Large Neighborhood Search (LGS+LNS),
which is a technique that hybridizes Constraint Programming and Local Search (171) by restor-
ing the domains of some variables after finding a solution and reoptimizing the restricted prob-
lem with a limit on the number of failures. With very few changes, it allows to adapt a CP
model into a hybridized procedure that scales very well with the problem size, explores a
neighborhood large enough to avoid the need for a metaheuristic, and requires minimal param-
eter tuning: a basic relaxation procedure, such as relaxing a randomly chosen subset of the
variables, as we chose to do, usually works well in practice.

6.4 Experiments and Results

As expressed by the model described in Section 6.2, in our problem we have two optimization
criteria: balancing the week workloads and obtaining the best possible loyalty. It is possible to
optimize according to only one of them by imposing that either α1 or α2 in Equation 6.1 is 0.

Optimization according to one criterion, e.g. the maximum week workload, will yield a
certain value for the other one (i.e., in this case, the loyalty penalization). It is subsequently
possible to repeat the optimization on the week workload, but this time imposing that the value
for the loyalty penalization has to be inferior than the one found previously. Iterating this
process until no feasible solution is found one finds the Pareto-optimal front of solutions. In
Figure 6.2 it is shown such a front obtained by iteratively running search LGS+LNS, explained
in Section 6.3, with a 10 minutes timeout on one weekly instance.

Information from Pareto fronts can be useful in order to tune the values of parameters α1

and α2. Our evaluations lead us to adopt α1 = α2: in Figure 6.2, for instance, this choice leads
to the point of coordinates (225, 1724) which offers a good balancing of the two criteria.

6.4.1 ECLiPSe implementation

One version of the program was implemented in the open-source CLP software system ECLiPSe

6.0 (127).Tests reported in Table 6.2 have been performed on a computer with an Intel i5 pro-
cessor 2.40 GHz and 4GB of memory. Four weekly instances have been used to test the pro-
posed model using five of the search strategies in Section 6.3.

98

6.4 Experiments and Results

205 210 215 220 225 230 235 240 245

1690

1700

1710

1720

1730

1740

1750

loyalty penalization

m
a

x
w

e
e

k
w

o
r k

lo
a

d
 (

m
in

u
te

s)

Figure 6.2: Pareto front of solutions of one weekly instance obtained using the LGS+LNS search

99

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

Table 6.2 shows the best results obtained for the five search strategies running them for
a maximum of 10 minutes. The randomized algorithms (the GSXX strategies) were run 20
times each. For each week, we show the Objective and the corresponding MaxWeekWL

and LoyaltyPenalty. The results are compared to the solution hand-made (HMS) by the
nurses based on the geographical subdivision of the area into 9 zones as explained in Section
6.1.1. We can see that the model was very effective, as all the search strategies were able to
improve the hand-made solution and that the LGS strategy outperforms all the general purpose
search strategies, Moreover, LGS was able to improve on the hand-made solution both in terms
of equidistribution of the workload and in terms of loyalty, thus improving both the working
conditions of the nurses and the service quality for the patients.

First Week Second Week Third Week Fourth Week
Objective=WL+LP Objective=WL+LP Objective=WL+LP Objective=WL+LP

GS 2203 1918 + 285 2371 2064 + 307 2331 2033 + 298 2387 2063 + 324

GSR 2125 1841 + 284 2347 2040 + 307 2270 1963 + 307 2345 2022 + 323

GSD 2185 1905 + 280 2351 2052 + 299 2255 1963 + 292 2389 2071 + 318

GSDR 2097 1811 + 286 2345 2033 + 312 2263 1958 + 305 2342 2011 + 331

LGS 1982 1782 + 200 2277 2042 + 235 2181 1954 + 227 2290 2034 + 256

HMS 2356 2124 + 232 2405 2153 + 252 2395 2141 + 254 2433 2146 + 287

Table 6.2: Comparison of search strategies and hand-made solution (ECLiPSe).

Since some of the search strategies use randomization, we also show box plots representing
the data obtained on the various repetitions (Figures 6.3, 6.4, 6.5, 6.6). The plots reveal that
restarts are the most important factor in the general purpose strategies. The strategies not using
restarts in some cases were not able to find any solution in the allotted time, and often were
unable to improve the hand-made solution. However, a search strategy tailored for the problem
is able to provide a great improvement on the general purpose ones.

6.4.2 Comet implementation

Another implementation is based on the Comet (172) Constraint Programming system. Comet
offers the implementation of the multiknapsack and NV alue Global Constraints thus allow-
ing the alternative model implementation explained in Section 6.2.1. Moreover since it is a
system strongly oriented towards Constraint Based Local Search and affine hybrid methods, it
is straightforward to implement a search strategy encompassing a Large Neighborhood Search
as mentioned in Section 6.3.

100

6.4 Experiments and Results

Figure 6.3: Results of the runs on the first week (ECLiPSe).

Figure 6.4: Results of the runs on the second week (ECLiPSe).

101

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

Figure 6.5: Results of the runs on the third week (ECLiPSe).

Figure 6.6: Results of the runs on the fourth week (ECLiPSe).

102

6.5 Related work

First Week Second Week Third Week Fourth Week
OF=WL+LP (after) OF=WL+LP (after) OF=WL+LP (after) OF=WL+LP (after)

GSR 21761896+280 (531) 2303 2000 + 303 (466) 2260 1960 + 300 (511) 2317 1992 + 325 (339)

LGS 2001 1789 + 212 (101) 2262 2030 + 232 (5) 2181 1954 + 227 (4) 2336 2080 + 256 (5)

LGS+LNS 1949 1724 + 225 (588) 2189 1959 + 230 (590) 2095 1872 + 223 (573) 2213 1946 + 267 (558)

HMS 2356 2124 + 232 2405 2153 + 252 2395 2141 + 254 2433 2146 + 287

Table 6.3: Comparison of search strategies and hand-made solution (Comet)

Tests were performed on a netbook with an Intel Atom Processor N450 1.66 GHz and 1
GB of RAM on four weekly real instances with a 10 minutes timeout.

In Table 6.3, we report results on one of the generic search strategies (GSR), LGS, LGS+LNS
and HMS.

For each column we report the value of the objective function (OF) with its components
of max weekly workload (WL) in minutes and loyalty (LP), moreover in brackets is included
the time (in seconds) after which the solution was actually found. It can be noticed that our
application always finds a better solution than the hand made one and that our search heuristic
is able to find very quickly a good solution, which, with LNS, is improved further.

6.5 Related work

Bertels and Fahle (173) address the HHC with a hybrid approach, combining CP, local search
and LP. The instances addressed by Bertels and Fahle (173) consider rather tight time windows,
in fact “Due to time window constraints, in the HHC only few permutations correspond to
feasible orderings. In our approach we enumerate those orderings by a CP approach, and we
use an LP to find optimal start times with respect to the objective.” Also Steeg and Schröder
(174) solve a problem in Home Health Care with a strong focus on satisfiability, due to the
impact of constraints such as time windows and nurse specific skills. The instance in Ferrara
does not have such constraints, so the only criterion for assigning the order of patients in a
nurse’s schedule is minimizing the route. However, this does not mean that the problem is
underconstrained or easier to solve. On the contrary, the search space is wider (as it is not
pruned by simple constraints like time window or nurse skills), and enumerating the feasible
orders is not a viable approach. The number of feasible solutions, on the other hand, does not
necessarily increase: in a real-world instance new nurses are hired only when necessary, so the
actual workload of the nurses is very close to their maximum working hours. This means that if

103

6. WORKLOAD-BALANCED AND LOYALTY-ENHANCED HOME HEALTH CARE

the routes are not very close to the optimum, the daily-workload constraint becomes infeasible:
one has to find the optimum of the TSP just to find a feasible solution to the HHC problem or
to assess infeasibility.

Home Care is a problem related to Home Health Care, although the latter is more focused
on medical services while the former provides also social services to patients. For this reason,
Home Care instances are almost always characterized by tight constraints on time windows.
Laps Care (175) is a system for Home Care using an iterative method: an initial solution uses
a single route for each service, then routes are joined until no further improvement is possible.

The HHC has some similarities with the Capacitated Vehicle Routing Problem (CVRP)
which has been tackled by many solution methods, including branch and cut (176), meta-
heuristics (177), and hyperheuristics (178). However, there are some important differences
with CVRP that make all the efficient method developed for the classic CVRP not applicable
in our case. In fact, our problem is more similar to a time constrained VRP for which the
classical CVRP methods are not so efficiently adapted. Moreover, while we try to minimize
the total traveled distance, as in the VRP, on the other hand we have to balance the workload
and this component of the objective function is difficult to address by OR methods. Finally
the loyalty is the component of the objective function that makes our problem very peculiar. It
is worth noticing that the two criteria are often in contrast: any solution assigning to a single
nurse all the services of the same patient would minimize the loyalty, but this would go to the
detriment of workload balancing.

The popularity of hybridization of CP and Local Search (179, 180) is witnessed by the
existence of solvers tailored for this hybridization (172). Rousseau et al. (181) propose a
large neighborhood search in which CP explores a neighborhood with three operators. Kilby
et al. (182) consider vehicle routing problems with side constraints, and compare classical OR
approaches with CP models. Various works consider how to solve the TSP, or its variant with
Time Windows in CP or with hybrid algorithms (163, 183, 184).

To address load balancing problems, constraints such as deviation (185) and spread
(186) can be used in some cases. These constraints aim at minimizing the variance or the mean
absolute deviation, and obtain very good balancing. On the other hand, they are not applicable
in our case, because they require the total load to be fixed, while in our case it depends on a
routing part, so it is not constant. Also, one way to reduce the variance of a set is to increase
its minimum value, which in our case could amount to worsen the assignment of the least busy
nurse (e.g., by giving her distant patients), without reducing the workload for the other nurses.

104

7

Conclusions

In this thesis we studied various problems related to Computational Sustainability addressed
by means of Logic and Constraint Programming.

We dealt with some of the main aspects of sustainability. Energy is a key issue under several
points of view: its efficient use, its renewability, its (environmentally friendly) production.
Tightly related to this aspect is the matter of greenhouse gas emissions, whose volume in the
atmosphere needs to be contained in order to avoid (disruptive) climate changes. Water, which
is a vital need, must be managed carefully in order to meet increasing consumption boosted by
industrial demand and an ever growing world population: it is necessary in the first place to
drastically cut its waste. In general, decision makers, and governmental agencies in particular,
face the responsibility to make the right technological and social choices and allocate resources
sensibly in order to keep current standards of living reasonably high without burdening future
generations. This also means encouraging various relevant service providers to efforts in order
to make the most of the resources they are assigned.

The European Commission ‘Horizon 2020’ framework programme for research and inno-
vation (187) reflects this awareness. In the ‘Better Society’ track, among the proposed chal-
lenges there are:

• ‘Health, demographic change and wellbeing;’ with relation to this subject we described
in Chapter 6 an application for scheduling in home health care.

• ‘Secure, clean and efficient energy;’ Chapter 4 relates to this issue addressing the biomass
plant placement problem.

• ‘Climate action, resource efficiency and raw materials’; Chapter 4 is relevant also with
respect to climate action. In Chapter 3 we mentioned how ‘cloud computing’ can enable
savings in terms of greenhouse gas emissions and electricity consumption and we de-

105

7. CONCLUSIONS

scribed our contributions aimed at supporting this scenario. In Chapter 5 we dealt with
the efficient distribution of water by optimal design of aqueduct isolation systems.

The problems we addressed were proposed by experts of the respective domains. Indeed,
one of the challenges of applying computational techniques to such diverse areas is bridging
the respective perspectives. However it is necessary in order to gain a correct detailed under-
standing of the matters at hand and of their subtleties. Moreover, having the opportunity to test
our approaches on real data allowed us to direct our design efforts toward a practical working
perspective.

We showed how Computational Logic and Constraint Programming can effectively con-
tribute to the solution of such problems. Their declarative, powerful expressivity is apt to
model complex domain knowledge and problem requirements in an elegant and concise way,
at the same time allowing one to efficiently tune the implementation.

In the following, we summarize the main contributions contained in each chapter.

7.1 Computational Logic tools for Green IT

The rapidly increasing need for electricity of IT infrastructures calls for innovation in hardware
and software architectures enabling deployment in the most efficient way. The ‘cloud comput-
ing’ paradigm offers, among its various advantages, benefits in terms of reduction of energy
consumption and greenhouse gas emission of data centers (1, 47).

Such a scenario is promising but also implies increased complexity whose burden needs to
be taken over by intelligent tools in order to fully unleash the vision’s potential. We proposed
contributions supporting this perspective based on Computational Logics.

We tackled the issue of automated service composition (5), proposing an integration of
the SCIFF abductive framework for service contracting with Description Logics reasoning and
knowledge representation. In this way we brought together the best features of both areas and
the result is a framework which can effectively express complex policies and efficiently query
rich knowledge bases.

We also dealt with the dual issue of learning and updating service policies from records of
actual interactions. We extended the DPML system (50), which is able to infer a process model
expressed by a set of logical integrity constraints starting from logs containing positive and
negative traces. The resulting IDPML system (3) is able to revise theories when new evidence
is available. This allows one to deal with the case in which the process changes over time
and new traces are periodically collected. Experimental evaluation showed that, when new
evidence becomes available, revising the current theory is faster than learning a new one from
scratch, and the accuracy is higher too.

106

7.2 Biomass Plant Placement with Energy-Effective Supply

7.2 Biomass Plant Placement with Energy-Effective Supply

Under the point of view of sustainable energy production, we focused on wooden biomass. It is
a very promising source of energy under the point of view of renewability and carbon neutrality
and for this reason governments and other public institutions tend to incentivate its use, e.g. by
means of tax benefits.

However, plants need to be built, biomass has to be collected and transported. All these
tasks imply energy consumption, usually coming from traditional fossil fuel. If economic in-
centives are not aimed correctly, they could propel a paradoxical situation in which the biomass
plant and its context, taken as a whole, is lucrative despite its energetic balance being negative.
When deciding about incentives, therefore, one of the most important aspects to assess, is the
plant placement and its intended supply chain.

We devised, implemented and tested on real instances, in cooperation with the environ-
mental agency of Emilia-Romagna region, an optimization tool which addresses this problem
(6). In order to make accurate decisions it considers a wide range of data, including informa-
tion about impact of power plant construction in different zones, location of green areas and
transportation networks.

In the literature this problem is usually addressed under the point of view of profit maxi-
mization (88, 90). Our CLP(R) model still takes into account economic factors (fundamental
in order to assess the feasibility of the business plan), but its emphasis is on the maximization
of the net energy considering the whole system (i.e. including, besides the functioning plant,
its construction and the collection and transportation of biomass).

7.3 Aqueduct Valve Placement for Minimal Service Disruption

The need to preserve water resources requires improvements in the robustness of aqueducts.
This property is not just related to the construction materials, but it depends on the overall de-
sign. A robust acqueduct has as less fragile components as possible, is reasonably maintainable
and is apt to contain service disruption and water losses when damages occur.

One of the fundamental choices under this point of view is related to the placement of
valves. When a pipe needs to be repaired, it has to be disconnected from the rest of the network.
This effect is achieved by closing a suitable subset of the installed valves. Valves are expensive
and require high maintenance efforts, so it makes sense to keep their number low. It therefore
becomes crucial to place them in a way which maximizes their contribution.

We addressed this problem by means of CLP(FD) (7) in cooperation with hydraulic engi-
neers who suggested, in accordance with common practices and the literature, to aim for the

107

7. CONCLUSIONS

minimization of the maximum undeliverable demand.
We tested our algorithm on real instances and compared it with results in the literature.

Our approach is complete (finds the global optimum) and was able to improve some of the
existing solutions. It is worth noticing that even if its computation time can become high when
the number of valves approaches the number of pipes in the network, it can still be considered
acceptable since it is meant to run during the slow-paced design phase of the aqueduct.

7.4 Workload-Balanced and Loyalty-Enhanced Home Health Care

In the overall balance of environmental, societal and economic needs in which sustainability is
rooted, a special place is occupied by health care, in particular in its modern, flexible (and thus
more complex) forms. One of these variations is home health care: patients who need regular
treatments, but do not require the specific facilities of a hospital, can stay at their homes where
they are visited by nurses when needed. This solution is beneficial both for the National Health
Service, because keeping patients in hospitals is expensive, and for the patients, who can stay
in a familiar environment.

However organizing shifts for the nurses in such a scenario becomes way more compli-
cated. A solution based on a rough partitioning of the served area in zones assigned to different
nurses, as it is often done in practice, can easily lead to unbalanced workloads, which are a
cause of stress and also strain on interpersonal relationships on the workplace. Moreover, the
need to ease the most burdened workloads usually results in patients who are visited, during
the same week, by two or more different nurses, which is usually perceived as unpleasant.

We addressed the home health care problem in Ferrara in cooperation with the local Na-
tional Health Service agency. We devised CP models and search heuristics aimed at finding
schedules and routing plans such that nurses’ workloads are balanced and stay within certain
bounds and patients are not visited by too many different nurses. The results achieved in tests
on some past instances, proved to be significantly better than the ones obtained by hand by the
nurses.

As a by-product, we also reduced workloads in terms of travel time: a better assignment of
the patients to the nurses means that they avoid to travel for overly long distances and that their
vehicles consume less fuel and reduce their polluting impact.

In the obtained solutions, nurses save approximately 3 hours per week of travel time, which
means a significant saving of person-hours and of money, that can be devoted to provide an even
better service or to serve a higher number of patients. In particular in a situation of economic
crisis and cuts to the social welfare, this can be a relevant improvement.

108

References

[1] PAUL DICKINSON ET AL. Cloud Computing – The IT Solution for the 21st Century.
Technical report, Carbon Disclosure Project, 2011. vii, 25, 26, 106

[2] CARLA P. GOMES. Challenges for Constraint Reasoning and Optimization in Com-
putational Sustainability. In Gent (188), pages 2–4. 1

[3] MASSIMILIANO CATTAFI, EVELINA LAMMA, FABRIZIO RIGUZZI, AND SERGIO

STORARI. Incremental Declarative Process Mining. In EDWARD SZCZERBICKI AND

NGOC THANH NGUYEN, editors, Smart Information and Knowledge Management, 260
of Studies in Computational Intelligence, pages 103–127. Springer, 2010. 2, 106

[4] MARCO ALBERTI, MASSIMILIANO CATTAFI, FEDERICO CHESANI, MARCO GA-
VANELLI, EVELINA LAMMA, MARCO MONTALI, PAOLA MELLO, AND PAOLO TOR-
RONI. Integrating Abductive Logic Programming and Description Logics in a Dy-
namic Contracting Architecture. In ICWS, pages 254–261. IEEE, 2009. 2

[5] MARCO ALBERTI, MASSIMILIANO CATTAFI, FEDERICO CHESANI, MARCO GA-
VANELLI, EVELINA LAMMA, PAOLA MELLO, MARCO MONTALI, AND PAOLO TOR-
RONI. A Computational Logic Application Framework for Service Discovery and
Contracting. Int. J. Web Service Res., 8(3):1–25, 2011. 2, 106

[6] MASSIMILIANO CATTAFI, MARCO GAVANELLI, MICHELA MILANO, AND PAOLO

CAGNOLI. Sustainable biomass power plant location in the Italian Emilia-Romagna
region. ACM TIST, 2(4):33, 2011. 2, 107

[7] MASSIMILIANO CATTAFI, MARCO GAVANELLI, MADDALENA NONATO, STEFANO

ALVISI, AND MARCO FRANCHINI. Optimal placement of valves in a water distri-
bution network with CLP(FD). TPLP, 11(4-5):731–747, 2011. 3, 107

[8] K. L. CLARK. Negation as Failure. In Logic and Databases. Plenum Press, 1978. 7

109

REFERENCES

[9] MICHAEL GELFOND AND VLADIMIR LIFSCHITZ. The Stable Model Semantics for
Logic Programming. In Proceedings of the Fifth International Conference and Sympo-
sium on Logic Programming, pages 1070–1080, 1988. 7

[10] A. VAN GELDER, K. A. ROSS, AND J. S. SCHLIPF. The Well-founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991. 7

[11] L. DE RAEDT AND L. DEHASPE. Clausal Discovery. Machine Learning, 26(2-3):99–
146, 1997. 7

[12] S. MUGGLETON AND L. DE RAEDT. Inductive Logic Programming: Theory and
Methods. Journal of Logic Programming, 19/20:629–679, 1994. 7, 36

[13] L. DE RAEDT AND W. VAN LAER. Inductive constraint logic. In Proceedings of
the 6th Conference on Algorithmic Learning Theory, 997 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1995. 9, 36, 42

[14] ICL Manual. Available at: http://www.cs.kuleuven.be/∼ml/ACE/Doc/ACEuser.pdf. 11

[15] HILDE ADÉ, BART MALFAIT, AND LUC DE RAEDT. RUTH: an ILP Theory Revi-
sion System. In ZBIGNIEW W. RAS AND MARIA ZEMANKOVA, editors, Methodolo-
gies for Intelligent Systems, 8th International Symposium, ISMIS ’94, Charlotte, North
Carolina, USA, October 16-19, 1994, Proceedings, 869 of Lecture Notes in Computer
Science, pages 336–345. Springer, 1994. 13

[16] BRADLEY L. RICHARDS AND RAYMOND J. MOONEY. Automated Refinement of
First-Order Horn-Clause Domain Theories. Machine Learning, 19(2):95–131, 1995.
13

[17] FLORIANA ESPOSITO, GIOVANNI SEMERARO, NICOLA FANIZZI, AND STEFANO

FERILLI. Multistrategy Theory Revision: Induction and Abduction in INTHELEX.
Machine Learning, 38(1-2):133–156, 2000. 13, 36

[18] A. C. KAKAS, R. A. KOWALSKI, AND F. TONI. Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719–770, 1993. 13, 15

[19] M. ALBERTI, F. CHESANI, M. GAVANELLI, E. LAMMA, P. MELLO, AND P.TORRONI.
Verifiable agent interaction in abductive logic programming: The SCIFF frame-
work. ACM Trans. Comput. Log., 9(4), 2008. 13, 36

[20] T. H. FUNG AND R. A. KOWALSKI. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, November 1997. 13

110

REFERENCES

[21] KRZYSZTOF R. APT AND ROLAND N. BOL. Logic Programming and Negation: A
Survey. Journal of Logic Programming, 19/20:9–71, 1994. 15

[22] MICHELE LOMBARDI AND MICHELA MILANO. Constraint Based Scheduling to
Deal with Uncertain Durations and Self-Timed Execution. In DAVID COHEN, editor,
CP, 6308 of Lecture Notes in Computer Science, pages 383–397. Springer, 2010. 19

[23] JEAN-NOËL MONETTE, YVES DEVILLE, AND PASCAL VAN HENTENRYCK. Just-
In-Time Scheduling with Constraint Programming. In ALFONSO GEREVINI,
ADELE E. HOWE, AMEDEO CESTA, AND IOANNIS REFANIDIS, editors, ICAPS.
AAAI, 2009. 19

[24] AGOSTINO DOVIER, ANDREA FORMISANO, AND ENRICO PONTELLI. An Investi-
gation of Multi-Agent Planning in CLP. Fundam. Inform., 105(1-2):79–103, 2010.
19

[25] HELMUT SIMONIS. A Hybrid Constraint Model for the Routing and Wavelength
Assignment Problem. In Gent (188), pages 104–118. 19

[26] HADRIEN CAMBAZARD, EMMANUEL HEBRARD, BARRY O’SULLIVAN, AND

ALEXANDRE PAPADOPOULOS. Local search and constraint programming for the
post enrolment-based course timetabling problem. Annals of Operations Research,
194:111–135, 2012. 10.1007/s10479-010-0737-7. 19

[27] EVELINA LAMMA, PAOLA MELLO, MICHELA MILANO, RITA CUCCHIARA, MARCO

GAVANELLI, AND MASSIMO PICCARDI. Constraint Propagation and Value Acqui-
sition: Why we should do it Interactively. In THOMAS DEAN, editor, IJCAI, pages
468–477. Morgan Kaufmann, 1999. 19

[28] ALESSANDRO DAL PALÙ, AGOSTINO DOVIER, FEDERICO FOGOLARI, AND ENRICO

PONTELLI. Exploring Protein Fragment Assembly Using CLP. In TOBY WALSH,
editor, IJCAI, pages 2590–2595. IJCAI/AAAI, 2011. 19

[29] EDWARD P.K. TSANG. Foundation of Constraint Satisfaction. Academic Press, 1993.
19

[30] ALAN K. MACKWORTH. Consistency in Networks of Relations. Artificial Intelli-
gence, 8:99–118, 1977. 20

[31] UGO MONTANARI. Networks of Constraints: Fundamental Properties and Appli-
cations to Picture Processing. Information Sciences, 7:95–132, 1974. 21

111

http://citeseer.nj.nec.com/apt94logic.html
http://citeseer.nj.nec.com/apt94logic.html
http://dx.doi.org/10.1007/s10479-010-0737-7
http://dx.doi.org/10.1007/s10479-010-0737-7

REFERENCES

[32] EUGENE C. FREUDER. Synthesizing Constraint Expressions. Communication of the
ACM, 21(11):958–966, 1978. 21

[33] EUGENE C. FREUDER. A Sufficient Condition for Backtrack Free Search. Commu-
nication of the ACM, 29(1):24–32, 1982. 21

[34] FAHIEM BACCHUS AND PETER VAN BEEK. On the Conversion between Non-Binary
and Binary Constraint Satisfaction Problems. In National Conference on Artifical
Intelligence (AAAI-98), pages 310–318, Madison, Wisconsin, USA, July 26-30 1998.
AAAI Press / The MIT Press. 21

[35] SOLOMON W. GOLOMB AND LEONARD D. BAUMERT. Backtrack Programming.
Journal of the ACM, 12(4):516–524, 1965. 21

[36] ROBERT M. HARALICK AND GORDON L. ELLIOTT. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence, 14(3):263–313, October
1980. 21

[37] E.L. LAWLER AND D.E. WOOD. Branch-and-Bound Methods: a Survey. Opera-
tions Research, 14(4):699–719, 1966. 22

[38] J. JAFFAR AND M.J. MAHER. Constraint Logic Programming: a Survey. Journal of
Logic Programming, 19-20:503–582, 1994. 23

[39] ROBERT KOWALSKI. Logic for Problem Solving. North-Holland, New York, Amster-
dam, Oxford, 1979. 23

[40] JOXAN JAFFAR AND JEAN-LOUIS LASSEZ. Constraint Logic Programming. In Con-
ference Record 14th Annual ACM Symposium on Principles of Programming Languages,
pages 111–119, Munich, Germany, January 21–23 1987. ACM SIGACT/SIGPLAN. 24

[41] JOXAN JAFFAR, SPIRO MICHAYLOV, PETER J. STUCKEY, AND ROLAND H.C. YAP.
The CLP(R) Language and System. ACM Transaction on Programming Language
and Systems, 14(3):339–395, 1992. 24

[42] J. JAFFAR, M.J. MAHER, K. MARRIOTT, AND P.J. STUCKEY. The semantics of
constraint logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998. 24

[43] ABDERRAHAMANE AGGOUN, DAVID CHAN, PIERRE DUFRESNE, EAMON FALVEY,
HUGH GRANT, WARWICK HARVEY, ALEXANDER HEROLD, GEOFFREY MACART-
NEY, MICHA MEIER, DAVID MILLER, SHYAM MUDAMBI, STEFANO NOVELLO,

112

REFERENCES

BRUNO PEREZ, EMMANUEL VAN ROSSUM, JOACHIM SCHIMPF, KISH SHEN, PERIK-
LIS ANDREAS TSAHAGEAS, AND DOMINIQUE HENRY DE VILLENEUVE. ECLiPSe

User Manual, Release 5.2. IC-Parc, Imperial College, London, UK, 2001. 24

[44] SICStus Prolog user manual, Release 3.11.0, October 2003. http://www.sics.
se/isl/sicstus/. 24, 34

[45] MEHMET DINCBAS, PASCAL VAN HENTENRYCK, HELMUT SIMONIS, ABDERRAH-
MANE AGGOUN, THOMAS GRAF, AND FRANÇOISE BERTHIER. The Constraint
Logic Programming Language CHIP. In Proceedings of the International Confer-
ence on Fifth Generation Computer System, pages 693–702, Tokyo, Japan, November
28–December 2 1988. OHMSHA Ltd. Tokyo and Springer-Verlag. 24

[46] KISH SHEN AND JOACHIM SCHIMPF. Eplex: Harnessing Mathematical Program-
ming Solvers for Constraint Logic Programming. In PETER VAN BEEK, edi-
tor, Principles and Practice of Constraint Programming - CP 2005, 3709 of Lec-
ture Notes in Computer Science, pages 622–636. Springer Berlin / Heidelberg, 2005.
10.1007/1156475146. 24

[47] PIKE RESEARCH. Cloud Computing Energy Efficiency. Technical report, 2010. 26,
106

[48] W3C. Web Services Description Language (WSDL) 1.1. http://www.w3.org/
TR/wsdl, March 2001. 26

[49] MARCO ALBERTI, FEDERICO CHESANI, MARCO GAVANELLI, EVELINA LAMMA,
PAOLA MELLO, MARCO MONTALI, AND PAOLO TORRONI. Web service contract-
ing: specification and reasoning with SCIFF. In ENRICO FRANCONI, MICHAEL

KIFER, AND WOLFGANG MAY, editors, ESWC, 4519 of LNAI, 2007. 27, 28, 30

[50] E. LAMMA, P. MELLO, F. RIGUZZI, AND S. STORARI. Applying Inductive Logic
Programming to Process Mining. In Inductive Logic Programming, 17th International
Conference, number 4894 in Lecture Notes in Artificial Intelligence, pages 132–146,
Heidelberg, Germany, 2008. Springer. 27, 35, 36, 38, 39, 40, 41, 42, 106

[51] W3C Recommendation: OWL, Web Ontology Language. http://www.w3.

org/TR/owl-guide/, 2004. 30

[52] CARSTEN LUTZ. Description Logic Resources. dl.kr.org, 2008. 30

113

http://www.sics.se/isl/sicstus/
http://www.sics.se/isl/sicstus/
http://dx.doi.org/10.1007/1156475146
http://dx.doi.org/10.1007/1156475146
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://dx.doi.org/10.1007/978-3-540-78469-2_16
http://dx.doi.org/10.1007/978-3-540-78469-2_16
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
dl.kr.org

REFERENCES

[53] NATALYA FRIDMAN NOY, MICHAEL SINTEK, STEFAN DECKER, MONICA CRUBÉZY,
RAY W. FERGERSON, AND MARK A. MUSEN. Creating Semantic Web Contents
with Protégé-2000. IEEE Int. Systems, 16(2):60–71, 2001. 31

[54] U. HUSTADT, B. MOTIK, AND U. SATTLER. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In D. DUBOIS, C. WELTY, AND M.-A. WILLIAMS,
editors, KR2004. 33

[55] DENNY VRANDEČIĆ, PETER HAASE, PASCAL HITZLER, YORK SURE, AND RUDI

STUDER. DLP-An introduction. Tech.Rep., Univ. Karlsruhe, 2006. 33

[56] BIJAN PARSIA AND EVREN SIRIN. Pellet: An OWL DL Reasoner. In FRANK VAN

HARMELEN, editor, ISWC 2004, 2004. 33

[57] M. DUMAS, M. REICHERT, AND M. SHAN, editors. Business Process Management,
6th International Conference, BPM 2008, 5240 of LNCS. Springer, 2008. 35

[58] W. M. P. VAN DER AALST, B. F. VAN DONGEN, J. HERBST, L. MARUSTER,
G. SCHIMM, AND A. J. M. M. WEIJTERS. Workflow mining: A survey of issues
and approaches. Data Knowl. Eng., 47(2):237–267, 2003. 35, 37, 38

[59] M. ALBERTI, M. GAVANELLI, E. LAMMA, P. MELLO, AND P. TORRONI. An Ab-
ductive Interpretation for Open Societies. In A. CAPPELLI AND F. TURINI, editors,
Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence
(AI*IA 2003), 2829 of LNAI. Springer Verlag, 2003. 36

[60] D. GEORGAKOPOULOS, M. F. HORNICK, AND A. P. SHETH. An Overview of Work-
flow Management: From Process Modeling to Workflow Automation Infrastruc-
ture. Distributed and Parallel Databases, 3(2):119–153, 1995. 37

[61] R. AGRAWAL, D. GUNOPULOS, AND F. LEYMANN. Mining Process Models from
Workflow Logs. In Proceedings of the 6th International Conference on Extending
Database Technology, EDBT’98, 1377 of LNCS, pages 469–483. Springer, 1998. 37,
38, 50

[62] G. GRECO, A. GUZZO, L. PONTIERI, AND D. SACCÀ. Discovering Expressive Pro-
cess Models by Clustering Log Traces. IEEE Trans. Knowl. Data Eng., 18(8):1010–
1027, 2006. 37, 38, 50

[63] M. PESIC AND W. M. P. VAN DER AALST. A Declarative Approach for Flexible
Business Processes Management. In 2006 International Business Process Manage-
ment Workshops, 4103 of LNCS, pages 169–180. Springer, 2006. 38

114

REFERENCES

[64] WIL M. P. VAN DER AALST, TON WEIJTERS, AND LAURA MARUSTER. Workflow
Mining: Discovering Process Models from Event Logs. IEEE Trans. Knowl. Data
Eng., 16(9):1128–1142, 2004. 38, 50

[65] B. F. VAN DONGEN AND W. M. P. VAN DER AALST. Multi-phase Process Mining:
Building Instance Graphs. In 23rd International Conference on Conceptual Modeling,
3288 of LNCS, pages 362–376. Springer, 2004. 38, 50

[66] E. LAMMA, P. MELLO, M. MONTALI, F. RIGUZZI, AND S. STORARI. Inducing
Declarative Logic-Based Models from Labeled Traces. In Proceedings of the 5th
International Conference on Business Process Management, number 4714 in Lecture
Notes in Computer Science, pages 344–359, Heidelberg, Germany, 2007. Springer. 38

[67] FEDERICO CHESANI, EVELINA LAMMA, PAOLA MELLO, MARCO MONTALI, FAB-
RIZIO RIGUZZI, AND SERGIO STORARI. Exploiting Inductive Logic Programming
Techniques for Declarative Process Mining. LNCS Transactions on Petri Nets and
Other Models of Concurrency, ToPNoC II, 5460:278–295, 2009. 38

[68] KRZYSZTOF R. APT AND MARC BEZEM. Acyclic Programs. New Generation Com-
put., 9(3/4):335–364, 1991. 40

[69] M. PESIC, H. SCHONENBERG, AND W. M. P. VAN DER AALST. DECLARE: Full
Support for Loosely-Structured Processes. In 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), pages 287–300. IEEE Com-
puter Society, 2007. 45

[70] A. CHAVEZ AND P. MAES. Kasbah: An agent marketplace for buying and selling
goods. In Proceedings of the First International Conference on the Practical Application
of Intelligent Agents and Multi-Agent Technology (PAAM-96), pages 75–90, London,
April 1996. 47

[71] SOCS Protocol Repository. Available at: http://edu59.deis.unibo.it:8079/SOCSProt
ocolsRepository/jsp/index.jsp. 48

[72] MICHAEL KIFER, GEORG LAUSEN, AND JAMES WU. Logical Foundations of Object
Oriented and Frame Based Languages. Journal of the Association for Computing
Machinery, 42(4):741–843, May 1995. 49

[73] FLORA-2: An Object-Oriented Knowledge Base Language. http://flora.

sourceforge.net/. 49

115

http://flora.sourceforge.net/
http://flora.sourceforge.net/

REFERENCES

[74] D. ROMAN, U. KELLER, H. LAUSEN, J. DE BRUIJN, R. LARA, M.STOLLBERG,
A.POLLERES, C.FEIER, C.BUSSLER, AND D. FENSEL. Web Service Modeling On-
tology. Appl. Ontology, 1(1), 2005. 49

[75] J. DE BRUIJN. Semantic Web Language Layering with Ontologies, Rules, and Meta-
Modeling. PhD thesis, Faculty of Mathematics, Computer Science and Physics of the
University of Innsbruck, 2008. 49

[76] MICHAEL KIFER, RUBEN LARA, AXEL POLLERES, CHANG ZHAO, UWE KELLER,
HOLGER LAUSEN, AND DIETER FENSEL. A Logical Framework for Web Service
Discovery. In D. MARTIN, R. LARA, AND T. YAMAGUCHI, editors, SWS, 119 of
CEUR Workshop Proc., 2004. 50

[77] RICCARDO ROSATI. DL+log: Tight Integration of Description Logics and Disjunc-
tive Datalog. In PATRICK DOHERTY, JOHN MYLOPOULOS, AND CHRISTOPHER A.
WELTY, editors, Proceedings, Tenth International Conference on Principles of Knowl-
edge Representation and Reasoning, Lake District of the United Kingdom, June 2-5,
2006, pages 68–78. AAAI Press, 2006. 50

[78] BORIS MOTIK AND RICCARDO ROSATI. A Faithful Integration of Description Log-
ics with Logic Programming. In MANUELA M. VELOSO, editor, IJCAI 2007, Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6-12, 2007, pages 477–482, 2007. 50

[79] VLADIMIR LIFSCHITZ. Nonmonotonic Databases and Epistemic Queries. In JOHN

MYLOPOULOS AND RAYMOND REITER, editors, Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI), pages 381–386, Sidney, Australia,
august 1991. Morgan Kaufmann. 50

[80] MATTHIAS KNORR, JOSÉ JÚLIO ALFERES, AND PASCAL HITZLER. Towards
Tractable Local Closed World Reasoning for the Semantic Web. In JOSÉ NEVES,
MANUEL FILIPE SANTOS, AND JOSÉ MACHADO, editors, Progress in Artificial In-
telligence, 13th Portuguese Conference on Aritficial Intelligence, EPIA 2007, Work-
shops: GAIW, AIASTS, ALEA, AMITA, BAOSW, BI, CMBSB, IROBOT, MASTA, STCS,
and TEMA, Guimarães, Portugal, December 3-7, 2007, Proceedings, 4874 of Lecture
Notes in Computer Science, pages 3–14. Springer, 2007. 50

[81] J. DESEL AND T. ERWIN. Hybrid specifications: looking at workflows from a run-
time perspective. Int. J. Computer System Science & Engineering, 15(5):291 – 302,
2000. 50, 51

116

REFERENCES

[82] H. M. FERREIRA AND D. R. FERREIRA. An Integrated Life Cycle for Work-
flow Management Based on Learning and Planning. Int. J. Cooperative Inf. Syst.,
15(4):485–505, 2006. 50

[83] S. GOEDERTIER. Declarative techniques for modeling and mining business processes.
PhD thesis, Katholieke Universiteit Leuven, Faculteit Economie en Bedrijfswetenschap-
pen, 2008. 51

[84] STEFAN WROBEL. First Order Theory Refinement. In LUC DE RAEDT, editor,
Advances in Inductive Logic Programming, pages 14 – 33. IOS Press, Amsterdam, 1996.
51

[85] MANFRED REICHERT, STEFANIE RINDERLE-MA, AND PETER DADAM. Flexibility
in Process-Aware Information Systems. T. Petri Nets and Other Models of Concur-
rency, 2:115–135, 2009. 51

[86] BELA MUTSCHLER, MANFRED REICHERT, AND STEFANIE RINDERLE. Analyzing
the Dynamic Cost Factors of Process-Aware Information Systems: A Model-Based
Approach. In CAiSE, pages 589–603, 2007. 51

[87] Delibera 6 del Comitato Interministeriale Prezzi, 29 aprile 1992 (Deliberation 6 of
the inter-ministry committee for prices, 29th of april 1992), 1992. 54

[88] D. FREPPAZ, R. MINCIARDI, M. ROBBA, M. ROVATTI, R. SACILE, AND A TARA-
MASSO. Optimizing Forest biomass exploitation for energy supply at regional level.
Biomass and Bioenergy, 26:15–24, 2003. 54, 70, 107

[89] MAURIZIO BRUGLIERI AND LEO LIBERTI. Optimal running and planning of a
biomass-based energy production process. Energy Policy, 36(7):2430–2438, July
2008. 54, 69

[90] P. RECHE-LÓPEZ, N. RUIZ-REYES, S. GARCÍA GALÁN, AND F. JURADO. Compar-
ison of metaheuristic techniques to determine optimal placement of biomass power
plants. Energy Conversion and Management, 50(8):2020 – 2028, 2009. 54, 69, 107

[91] ISABEL THOMAS. The Pros and Cons of Biomass Power. Rosen publishing, New York,
2008. 54

[92] EUROPEAN COMMISSION. Integrated Pollution Prevention and Control Refer-
ence Document on Economics and Cross-Media Effects, July 2006. Available at
http://eippcb.jrc.es/reference/ecm.html. 59

117

http://ideas.repec.org/a/eee/enepol/v36y2008i7p2430-2438.html
http://ideas.repec.org/a/eee/enepol/v36y2008i7p2430-2438.html
http://www.sciencedirect.com/science/article/B6V2P-4W6N2N7-1/2/cdd7eb166f6bae13a9c590ac9ba2f9a9
http://www.sciencedirect.com/science/article/B6V2P-4W6N2N7-1/2/cdd7eb166f6bae13a9c590ac9ba2f9a9
http://www.sciencedirect.com/science/article/B6V2P-4W6N2N7-1/2/cdd7eb166f6bae13a9c590ac9ba2f9a9

REFERENCES

[93] E.M.L. BEALE AND J.A. TOMLIN. Special Facilities in a General Mathematical
Programming System for Nonconvex Problems Using Ordered Sets of Variables. In
J. LAWRENCE, editor, Proceedings of the 5th International Conference on Operations
Research, pages 447–454. Tavistock Publications, 1970. 60

[94] D. VOIVONTAS, D. ASSIMACOPOULOS, AND E.G. KOUKIOS. Assessment of
biomass potential for power production: a GIS based method. Biomass and Bioen-
ergy, 43:101–112, 2001. 69

[95] C.P. MITCHELL. New cultural treatments and yield optimisation. Biomass and
Bioenergy, 9:11–34, 1995. 70

[96] C.P. MITCHELL, A.V. BRIDGWATER, D.J. STEVENS, A.J. TOFT, AND M.P. WAT-
TERS. Technoeconomic assessment of biomass to energy. Biomass and Bioenergy,
9:205–226, 1995. 70

[97] C.P. MITCHELL. Development of decision support system for bioenergy applica-
tions. Biomass and Bioenergy, 18:265–278, 2000. 70

[98] J. NAGEL. Determination of an economic energy supply structure based on biomass
using a mixed-integer linear optimisation model. Ecological Engineering, 16:91–
102, 2000. 70

[99] J. NAGEL. Biomass in energy supply, especially in the state of Brandeburg, Ger-
many. Ecological Engineering, 16:103–110, 2000. 70

[100] R.M. DE MOL, M.A.H JOGEMS, P. VAN BEEK, AND J.K. GIGLER. Simulation
and OPtimization of the logistic of biomass fuel collection. Journal of Agricoltural
Science, 45:219–228, 1997. 70

[101] ALFRED A. KUEHN AND MICHAEL J. HAMBURGER. A Heuristic Program for Lo-
cating Warehouses. Management Science, 9(4):643–666, 1963. 71

[102] M. L. BALINSKI. Integer Programming: Methods, Uses, Computations. Manage-
ment Science, 12(3):253–313, 1965. 71

[103] BASHEER M. KHUMAWALA. % bf An Efficient Branch and Bound Algorithm for the
Warehouse Location Problem. Management Science, 18(12):B–718–731, 1972. 71

[104] DONALD ERLENKOTTER. A Dual-Based Procedure for Uncapacitated Facility Lo-
cation. Operations Research, 26(6):992–1009, November-December 1978. 71

118

http://mansci.journal.informs.org/cgi/content/abstract/9/4/643
http://mansci.journal.informs.org/cgi/content/abstract/9/4/643
http://mansci.journal.informs.org/cgi/content/abstract/12/3/253
http://mansci.journal.informs.org/cgi/content/abstract/18/12/B-718
http://mansci.journal.informs.org/cgi/content/abstract/18/12/B-718
http://or.journal.informs.org/cgi/content/abstract/26/6/992
http://or.journal.informs.org/cgi/content/abstract/26/6/992

REFERENCES

[105] A.M. GEOFFRION AND R. MCBRIDE. Lagrangean Relaxation Applied to Capaci-
tated Facility Location Problems. AIIE Transactions, 10(1):40–47, March 1978. 71

[106] C. H. AIKENS. Facility location models for distribution planning. European Journal
of Operational Research, 22(3):263 – 279, 1985. 71

[107] MARGARET L. BRANDEAU AND SAMUEL S. CHIU. An overview of representative
problems in location research. Management Science, 35(6):645–674, 1989. 71

[108] CHARLES S. REVELLE AND GILBERT LAPORTE. The Plant Location Problem: New
Models and Research Prospects. Operations Research, 44(6):864–874, 1996. 71

[109] S.H. OWEN AND M.S. DASKIN. Strategic facility location: a review. European
Journal of Operational Research, 111(3):423–447, 1998. 71

[110] ANDREAS KLOSE AND ANDREAS DREXL. Facility location models for distribution
system design. European Journal of Operational Research, 162(1):4–29, 2005. 71

[111] M.S. DASKIN. Network and discrete location - models, algorithms and applications.
Wiley, New York, 1995. 71

[112] DILEEP R. SULE. Logistics of facility location and allocation. CRC Press, January
2001. 71

[113] ZVI DREZNER AND HORST W. HAMACHER, editors. Facility location: applications
and theory. Springer, Berlin, 2002. 71

[114] REZA ZANJIRANI FARAHANI AND MASOUD HEKMATFAR, editors. Facility Location:
Concepts, Models, Algorithms and Case Studies. Springer, Berlin, 2009. 71

[115] MOSES CHARIKAR, SAMIR KHULLER, DAVID M. MOUNT, AND GIRI

NARASIMHAN. Algorithms for facility location problems with outliers. In
S. RAO KOSARAJU, editor, SODA ’01: Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 642–651, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics. 71

[116] JACK BRIMBERG AND CHARLES REVELLE. A bi-objective plant location problem:
cost vs. demand served. Location Science, 6:121–135, 1998. 71

[117] KAJ HOLMBERG AND JONAS LING. A Lagrangean heuristic for the facility location
problem with staircase costs. European Journal of Operational Research, 97(1):63–
74, February 1997. 71

119

http://www.sciencedirect.com/science/article/B6VCT-48NBM4F-3BN/2/3ecf1d834cb9b420f511d4cfa8146eec
http://www.jstor.org/stable/171578
http://www.jstor.org/stable/171578
http://ideas.repec.org/a/eee/ejores/v97y1997i1p63-74.html
http://ideas.repec.org/a/eee/ejores/v97y1997i1p63-74.html

REFERENCES

[118] JENS WOLLENWEBER. A multi-stage facility location problem with staircase costs
and splitting of commodities: model, heuristic approach and application. OR Spec-
trum, 30(4):655–673, October 2008. 71

[119] WORLD WATER ASSESSMENT PROGRAMME (UNITED NATIONS). Water for people,
water for life: a joint report by the twenty-three UN agencies concerned with freshwater.
The United Nations world water development report. UNESCO Pub., 2003. 73

[120] CENTER FOR STRATEGIC AND INTERNATIONAL STUDIES. Addressing Our Global
Water Future. Technical report, Sandia National Laboratories, 2005. 73

[121] HWANDON JUN AND G. V. LOGANATHAN. Valve-Controlled Segments in Wa-
ter Distribution Systems. Journal of Water Resources Planning and Management,
133(2):145–155, March/April 2007. 75, 77, 87

[122] ORAZIO GIUSTOLISI AND DRAGAN A. SAVIĆ. Identification of Segments and Op-
timal Isolation Valve System Design in Water Distribution Networks. Urban Water
Journal, 7(1):1–15, 2010. 75, 76, 87

[123] LUC N. VAN WASSENHOVE AND LUDO F. GELDERS. Solving a bicriterion schedul-
ing problem. European Journal of Operational Research, 4(1):42–48, 1980. 76

[124] CARMEN GERVET, YVES CASEAU, AND DENIS MONTAUT. On Refining Ill-Defined
Constraint Problems: A Case Study in Iterative Prototyping. In PACLP-99, pages
255–275, London, 1999. 76

[125] MARCO GAVANELLI. An Algorithm for Multi-Criteria Optimization in CSPs. In
FRANK VAN HARMELEN, editor, ECAI 2002. Proceedings of the 15th European Con-
ference on Artificial Intelligence, pages 136–140, Lyon, France, July 21-26 2002. IOS
Press. 76, 83

[126] STUART J. RUSSELL AND PETER NORVIG. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2 edition, 2003. 76, 77

[127] KRZYSZTOF R. APT AND MARK WALLACE. Constraint Logic Programming using
ECLiPSe. Cambridge University Press, 2006. 76, 98

[128] K. MARRIOTT AND P.J. STUCKEY. Semantics of Constraint Logic Programs with
Optimization. In H. AÏT-KACI, M. HANUS, AND J.J. MORENO-NAVARRO, editors,
ICLP Workshop: Integration of Declarative Paradigms, pages 23–35, 1994. 78

120

http://books.google.it/books?id=_CGeiiNE-K4C
http://books.google.it/books?id=_CGeiiNE-K4C
http://www.iospress.nl/html/9781586032579.php

REFERENCES

[129] F. FAGES. From Constraint Minimization to Goal Optimization in CLP Languages.
In E. FREUDER, editor, CP’96, 1118 of LNCS, 1996. 78

[130] S. PRESTWICH. Three Implementations of Branch-and-Bound in CLP. In Proceed-
ings of Fourth Compulog-Net Workshop on Parallelism and Implementation Technolo-
gies, Bonn, September 1996. 79, 84

[131] FILIPPO FOCACCI, ANDREA LODI, AND MICHELA MILANO. Cost-Based Domain
Filtering. In JOXAN JAFFAR, editor, CP, 1713 of Lecture Notes in Computer Science,
pages 189–203. Springer, 1999. 81

[132] FILIPPO FOCACCI, ANDREA LODI, AND MICHELA MILANO. A Hybrid Exact Algo-
rithm for the TSPTW. INFORMS Journal on Computing, 14(4):403–417, fall 2002.
81

[133] JOHN HOPCROFT AND ROBERT TARJAN. Algorithm 447: efficient algorithms for
graph manipulation. Communications of the ACM, 16:372–378, June 1973. 83

[134] ECLIPSE DOCUMENTATION. graph_algorithms library. 83

[135] ORAZIO GIUSTOLISI AND DRAGAN A. SAVIĆ. Optimal design of isolation valve
system for water distribution networks. In J.E. VAN ZYL, A.A. ILEMOBADE, AND

H.E. JACOBS, editors, Proceedings of the 10th Annual Water Distribution Systems Anal-
ysis Conference WDSA2008, 2008. 83, 84, 85

[136] MASSIMILIANO CATTAFI AND MARCO GAVANELLI. A
CLP(FD) program for the Optimal Placement of Valves in
a Water Distribution Network. Source code available at
http://www.ing.unife.it/docenti/MarcoGavanelli/software/vp/,
April 2011. 83

[137] J.-J. KAO AND P.-H. LI. A segment-based optimization model for water pipeline
replacement. J. Am. Water Works Assoc., 99(7):83–95, 2007. 87

[138] E. CREACO, M. FRANCHINI, AND S. ALVISI. Optimal placement of isolation valves
in water distribution systems based on valve cost and weighted average demand
shortfall. Journal of Water Resources Planning and Management, 24(15):4317–4338,
2010. 87

[139] MICHAEL R. GAREY AND DAVID S. JOHNSON. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.
87

121

http://doi.acm.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272

REFERENCES

[140] BRIAN KERNIGAN AND SHEN LIN. An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 49:291–307, 1970. 87

[141] C. M. FIDUCCIA AND R. M. MATTHEYSES. A linear-time heuristic for improving
network partitions. In Proceedings of the 19th Design Automation Conference, DAC
’82, pages 175–181, Piscataway, NJ, USA, 1982. IEEE Press. 88

[142] FAN R. K. CHUNG. Spectral Graph Theory. 1994. 88

[143] M. FIEDLER. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298–305, 1973. 88

[144] BRUCE HENDRICKSON AND ROBERT LELAND. An improved spectral graph par-
titioning algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing, 16:452–469, March 1995. 88

[145] A. SPIELMAN AND S.-H. TENG. Spectral Partitioning Works: Planar graphs and
finite element meshes. Technical Report. University of Berkeley, 1996. 88

[146] BRUCE HENDRICKSON AND ROBERT LELAND. A multilevel algorithm for parti-
tioning graphs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’95, New York, NY, USA, 1995. ACM. 88

[147] GEORGE KARYPIS AND VIPIN KUMAR. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM J. Sci. Comput., 20:359–392, December
1998. 88

[148] RICHARD J. LIPTON AND ROBERT ENDRE TARJAN. A Separator Theorem for Pla-
nar Graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979. 88

[149] REINHARD PICHLER, STEFAN RÜMMELE, AND STEFAN WOLTRAN. Multicut Al-
gorithms via Tree Decompositions. In TIZIANA CALAMONERI AND JOSEP DÍAZ,
editors, Algorithms and Complexity, 7th International Conference, CIAC 2010, 6078 of
Lecture Notes in Computer Science, pages 167–179. Springer, 2010. 88

[150] H. SIMONIS. Models for Global Constraint Applications. Constraints, 12:63–92,
2007. 94

[151] RICHARD E. KORF. An Improved Algorithm for Optimal Bin Packing. In GEORG

GOTTLOB AND TOBY WALSH, editors, IJCAI, pages 1252–1258. Morgan Kaufmann,
2003. 95

122

http://portal.acm.org/citation.cfm?id=800263.809204
http://portal.acm.org/citation.cfm?id=800263.809204
http://portal.acm.org/citation.cfm?id=203046.203060
http://portal.acm.org/citation.cfm?id=203046.203060
http://doi.acm.org/10.1145/224170.224228
http://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://portal.acm.org/citation.cfm?id=1232658.1232663

REFERENCES

[152] ALEX S. FUKUNAGA AND RICHARD E. KORF. Bin completion algorithms for multi-
container packing, knapsack, and covering problems. J. Artif. Int. Res., 28:393–429,
March 2007. 95

[153] PAUL SHAW. A Constraint for Bin Packing. In MARK WALLACE, editor, CP, 3258
of Lecture Notes in Computer Science, pages 648–662. Springer, 2004. 95

[154] DONALD E. KNUTH. Two notes on notation. Am. Math. Monthly, 99:403–422, May
1992. 95

[155] JEAN-CHARLES RÉGIN. A Filtering Algorithm for Constraints of Difference in
CSPs. In BARBARA HAYES-ROTH AND RICHARD E. KORF, editors, AAAI, pages
362–367. AAAI Press / The MIT Press, 1994. 96

[156] WILLEM JAN VAN HOEVE. The alldifferent Constraint: A Survey. CoRR,
cs.PL/0105015, 2001. 96

[157] CHRISTIAN BESSIÈRE, EMMANUEL HEBRARD, BRAHIM HNICH, ZEYNEP KIZIL-
TAN, AND TOBY WALSH. Filtering Algorithms for the NValueConstraint. Con-
straints, 11(4):271–293, 2006. 96

[158] EMMANUEL HEBRARD, DÁNIEL MARX, BARRY O’SULLIVAN, AND IGOR RAZGON.
Soft Constraints of Difference and Equality. J. Artif. Intell. Res. (JAIR), 41:97–130,
2011. 96

[159] WILLEM JAN VAN HOEVE. A Hyper-Arc Consistency Algorithm for the Soft Alld-
ifferent Constraint. CoRR, cs.PL/0407043, 2004. 96

[160] D.L. APPLEGATE. The traveling salesman problem: a computational study. Princeton
series in applied mathematics. Princeton University Press, 2006. 96

[161] N. BELDICEANU AND E. CONTEJEAN. Introducing global constraints in CHIP.
Mathematical and Computer Modelling, 20(12):97 – 123, 1994. 97

[162] LATIFE GENÇ KAYA AND J. N. HOOKER. A filter for the circuit constraint. In Pro-
ceedings of the 12th international conference on Principles and Practice of Constraint
Programming, CP’06, pages 706–710, Berlin, Heidelberg, 2006. Springer-Verlag. 97

[163] Y. CASEAU AND F. LABURTHE. Solving small TSPs with constraints. In ICLP, 1997.
97, 104

123

http://dl.acm.org/citation.cfm?id=1622591.1622602
http://dl.acm.org/citation.cfm?id=1622591.1622602
http://dl.acm.org/citation.cfm?id=151008.151009
http://books.google.it/books?id=nmF4rVNJMVsC
http://www.sciencedirect.com/science/article/pii/0895717794901279
http://dx.doi.org/10.1007/11889205_55

REFERENCES

[164] DAVID APPLEGATE, ROBERT E. BIXBY, VASEK CHVÁTAL, AND WILLIAM J. COOK.
Cutting planes and the traveling salesman problem (abstract only). In DAVID B.
SHMOYS, editor, SODA, page 429. ACM/SIAM, 2000. 97

[165] DANIEL GUIMARANS, ROSA HERRERO, DANIEL RIERA, ANGEL A. JUAN, AND

JUAN JOSÉ RAMOS. Combining probabilistic algorithms, Constraint Programming
and Lagrangian Relaxation to solve the Vehicle Routing Problem. Ann. Math. Artif.
Intell., 62(3-4):299–315, 2011. 97

[166] ROBERT M. HARALICK AND GORDON L. ELLIOTT. Increasing Tree Search Effi-
ciency for Constraint Satisfaction Problems. Artif. Intell., 14(3):263–313, 1980. 97

[167] H. KAUTZ, E. HORVITZ, Y. RUAN, C. GOMES, AND B. SELMAN. Dynamic Restart
Policies. In AAAI/IAAI, 2002. 97

[168] TUDOR HULUBEI AND BARRY O’SULLIVAN. The Impact of Search Heuristics on
Heavy-Tailed Behaviour. Constraints, 11(2-3):159–178, 2006. 97

[169] M. LUBY, A. SINCLAIR, AND D. ZUCKERMAN. Optimal Speedup of Las Vegas
Algorithms. Inf. Process. Lett., 1993. 97

[170] C. SINZ AND M. ISER. Problem-Sensitive Restart Heuristics for the DPLL Proce-
dure. In O. KULLMANN, editor, SAT, 5584 of LNCS. Springer, 2009. 97

[171] P. SHAW. Using Constraint Programming and Local Search Methods to solve Ve-
hicle Routing Problems. In CP98, LNCS. Springer-Verlag, 1998. 98

[172] P. VAN HENTENRYCK AND L. MICHEL. Constraint-based local search. MIT Press,
2005. 100, 104

[173] S. BERTELS AND T. FAHLE. A hybrid setup for a hybrid scenario: combining
heuristics for the home health care problem. Computers & OR, 33(10), 2006. 103

[174] JÖRG STEEG AND MICHAEL SCHRÖDER. A Hybrid Approach to Solve the Periodic
Home Health Care Problem. In JÖRG KALCSICS AND STEFAN NICKEL, editors,
Operations Research Proceedings 2007, 2007 of Operations Research Proceedings,
pages 297–302. Springer Berlin Heidelberg, 2008. 103

[175] P. EVEBORN, M. RÖNNQVIST, H. EINARSDÓTTIR, M. EKLUND, K. LIDÉN, AND

M. ALMROTH. Operations Research Improves quality and efficiency in Home Care.
Interfaces, 2009. 104

124

REFERENCES

[176] ROBERTO BALDACCI, PAOLO TOTH, AND DANIELE VIGO. Exact algorithms for
routing problems under vehicle capacity constraints. Annals of OR, 175, 2010. 104

[177] DAVID PISINGER AND STEFAN ROPKEA. A general heuristic for vehicle routing
problems. Computers & Operations Research, 34(8), 2007. 104

[178] PABLO GARRIDO, CARLOS CASTRO, AND ERIC MONFROY. Towards a Flexible and
Adaptable Hyperheuristic Approach for VRPs. In HAMID R. ARABNIA, DAVID

DE LA FUENTE, AND JOSÉ ANGEL OLIVAS, editors, IC-AI. CSREA Press, 2009. 104

[179] ERIC MONFROY, FRÉDÉRIC SAUBION, AND TONY LAMBERT. On Hybridization
of Local Search and Constraint Propagation. In BART DEMOEN AND VLADIMIR

LIFSCHITZ, editors, ICLP, 2004. 104

[180] M. WALLACE. Hybrid Algorithms in Constraint Programming. In F. AZEVEDO,
P. BARAHONA, F. FAGES, AND F. ROSSI, editors, CSCLP, 4651 of LNCS, 2006. 104

[181] L.-M. ROUSSEAU, M. GENDREAU, AND G. PESANT. Using Constraint-Based oper-
ators to solve the Vehicle Routing Problem with Time Windows. J. of Heuristics, 8,
2002. 104

[182] P. KILBY, P. PROSSER, AND P. SHAW. A Comparison of Traditional and Constraint-
based Heuristic Methods on VRPs with Side Constraints. Constraints, 2000. 104

[183] G. PESANT, M. GENDREAU, J-Y. POTVIN, AND J-M. ROUSSEAU. An exact Con-
straint Logic Programming algorithm for the TSP with Time Windows. Transp.
Sci., 1998. 104

[184] F. FOCACCI, A. LODI, AND M. MILANO. A hybrid exact algorithm for the TSPTW.
INFORMS Journal on Computing, 14(4):403–417, 2002. 104

[185] PIERRE SCHAUS, YVES DEVILLE, PIERRE DUPONT, AND JEAN-CHARLES RÉGIN.
The Deviation Constraint. In PASCAL VAN HENTENRYCK AND LAURENCE A.
WOLSEY, editors, CPAIOR, 4510 of Lecture Notes in Computer Science, pages 260–
274. Springer, 2007. 104

[186] GILLES PESANT AND JEAN-CHARLES RÉGIN. SPREAD: A Balancing Constraint
Based on Statistics. In PETER VAN BEEK, editor, CP, 3709 of Lecture Notes in Com-
puter Science, pages 460–474. Springer, 2005. 104

[187] EUROPEAN COMMISSION. Horizon 2020, the framework programme for research
and innovation. http://ec.europa.eu/research/horizon2020/. 105

125

REFERENCES

[188] IAN P. GENT, editor. Principles and Practice of Constraint Programming - CP 2009,
15th International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009, Pro-
ceedings, 5732 of Lecture Notes in Computer Science. Springer, 2009. 109, 111

126

	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Logic Programming
	2.2 Inductive Logic Programming
	2.2.1 Incremental Inductive Logic Programming

	2.3 Abductive Logic Programming and the SCIFF system
	2.3.1 Syntax of the SCIFF language
	2.3.1.1 Syntax with explicit quantifiers

	2.4 Constraint Satisfaction Problems
	2.4.1 Definition
	2.4.2 Algorithms
	2.4.3 Consistency Techniques
	2.4.4 Systematic Search Algorithms
	2.4.4.1 Backtracking
	2.4.4.2 Forward Checking

	2.4.5 Constraint Optimization Problems
	2.4.5.1 Definition
	2.4.5.2 Algorithms

	2.4.6 Constraint Logic Programming

	3 Computational Logic tools for Green IT
	3.1 Introduction
	3.1.1 Semantic Web Services

	3.2 Contracting with SCIFF
	3.2.1 A contracting scenario

	3.3 Representing domain knowledge with ontologies
	3.4 Handling semantic knowledge with SCIFF
	3.4.1 Interfacing SCIFF and ontological reasoners
	3.4.2 Experimental evaluation

	3.5 Learning and Updating Policies
	3.5.1 Business Process Management

	3.6 Representing Process Traces and Models with Logic
	3.7 Learning ICs Theories
	3.8 Incremental Learning of ICs Theories
	3.9 Experiments
	3.9.1 Hotel Management
	3.9.2 Auction Protocol

	3.10 Related work
	3.10.1 Semantic Web Services
	3.10.2 Learning and Updating Policies

	4 Biomass Plant Placement with Energy-Effective Supply
	4.1 Introduction
	4.2 Problem description
	4.3 A CLP(R) Model
	4.4 Complexity
	4.5 Experimental results
	4.6 Related work

	5 Aqueduct Valve Placement for Minimal Service Disruption
	5.1 Introduction
	5.2 Problem description
	5.3 Game model
	5.4 Constraint Logic Programming model
	5.4.1 A minimax implementation in CLP(FD)
	5.4.2 Reducing the number of moves
	5.4.2.1 Redundant valves and symmetries
	5.4.2.2 Bounding

	5.5 Implementation details
	5.5.1 Incremental bound computation
	5.5.2 Dealing with unintended isolation

	5.6 Experimental results
	5.7 Related work

	6 Workload-Balanced and Loyalty-Enhanced Home Health Care
	6.1 Introduction
	6.1.1 The home health care service in Ferrara
	6.1.2 The problem data
	6.1.3 Aim of the project

	6.2 Modeling the problem in CP
	6.2.1 Using more Global Constraints
	6.2.2 Addressing the Routing

	6.3 Search Strategies
	6.4 Experiments and Results
	6.4.1 ECLiPSe implementation
	6.4.2 Comet implementation

	6.5 Related work

	7 Conclusions
	7.1 Computational Logic tools for Green IT
	7.2 Biomass Plant Placement with Energy-Effective Supply
	7.3 Aqueduct Valve Placement for Minimal Service Disruption
	7.4 Workload-Balanced and Loyalty-Enhanced Home Health Care

	References

