11,174 research outputs found

    A Neural Network Model of Spatio-Temporal Pattern Recognition, Recall and Timing

    Full text link
    This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.National Science Foundation (IRI-9024877

    Isoperimetric Partitioning: A New Algorithm for Graph Partitioning

    Full text link
    Temporal structure is skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefronatal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables such as time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over- shoot the amounts needed for precise acts. Each context of action may require a different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive patterns of analog signals. From some parts of the cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine design to serve the lowest and highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between leveels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.National Institute of Mental Health (R01 DC02582

    Adaptive Neural Models of Queuing and Timing in Fluent Action

    Full text link
    Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.National Institute of Mental Health (R01 DC02852

    Sequential Memory with ART: A Self-Organizing Network Capable of Learning Sequences of Patterns

    Full text link
    A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used

    Detecting multineuronal temporal patterns in parallel spike trains

    Get PDF
    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept

    A VLSI-oriented and power-efficient approach for dynamic texture recognition applied to smoke detection

    Get PDF
    The recognition of dynamic textures is fundamental in processing image sequences as they are very common in natural scenes. The computation of the optic flow is the most popular method to detect, segment and analyse dynamic textures. For weak dynamic textures, this method is specially adequate. However, for strong dynamic textures, it implies heavy computational load and therefore an important energy consumption. In this paper, we propose a novel approach intented to be implemented by very low-power integrated vision devices. It is based on a simple and flexible computation at the focal plane implemented by power-efficient hardware. The first stages of the processing are dedicated to remove redundant spatial information in order to obtain a simplified representation of the original scene. This simplified representation can be used by subsequent digital processing stages to finally decide about the presence and evolution of a certain dynamic texture in the scene. As an application of the proposed approach, we present the preliminary results of smoke detection for the development of a forest fire detection system based on a wireless vision sensor network.Junta de Andalucía (CICE) 2006-TIC-235

    VIOLA - A multi-purpose and web-based visualization tool for neuronal-network simulation output

    Full text link
    Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.Comment: 38 pages, 10 figures, 3 table

    Neural Models of Temporally Organized Behaviors: Handwriting Production and Working Memory

    Full text link
    Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309
    corecore