597 research outputs found

    Parallel hierarchical global illumination

    Get PDF
    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, we have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations

    Generating Light Estimation for Mixed-reality Devices through Collaborative Visual Sensing

    Get PDF
    abstract: Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment. To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.Dissertation/ThesisMasters Thesis Computer Science 201

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Analyse de l'espace des chemins pour la composition des ombres et lumières

    Get PDF
    La réalisation des films d'animation 3D s'appuie de nos jours sur les techniques de rendu physiquement réaliste, qui simulent la propagation de la lumière dans chaque scène. Dans ce contexte, les graphistes 3D doivent jouer avec les effets de lumière pour accompagner la mise en scène, dérouler la narration du film, et transmettre son contenu émotionnel aux spectateurs. Cependant, les équations qui modélisent le comportement de la lumière laissent peu de place à l'expression artistique. De plus, l'édition de l'éclairage par essai-erreur est ralentie par les longs temps de rendu associés aux méthodes physiquement réalistes, ce qui rend fastidieux le travail des graphistes. Pour pallier ce problème, les studios d'animation ont souvent recours à la composition, où les graphistes retravaillent l'image en associant plusieurs calques issus du processus de rendu. Ces calques peuvent contenir des informations géométriques sur la scène, ou bien isoler un effet lumineux intéressant. L'avantage de la composition est de permettre une interaction en temps réel, basée sur les méthodes classiques d'édition en espace image. Notre contribution principale est la définition d'un nouveau type de calque pour la composition, le calque d'ombre. Un calque d'ombre contient la quantité d'énergie perdue dans la scène à cause du blocage des rayons lumineux par un objet choisi. Comparée aux outils existants, notre approche présente plusieurs avantages pour l'édition. D'abord, sa signification physique est simple à concevoir : lorsque l'on ajoute le calque d'ombre et l'image originale, toute ombre due à l'objet choisi disparaît. En comparaison, un masque d'ombre classique représente la fraction de rayons bloqués en chaque pixel, une information en valeurs de gris qui ne peut servir que d'approximation pour guider la composition. Ensuite, le calque d'ombre est compatible avec l'éclairage global : il enregistre l'énergie perdue depuis les sources secondaires, réfléchies au moins une fois dans la scène, là où les méthodes actuelles ne considèrent que les sources primaires. Enfin, nous démontrons l'existence d'une surestimation de l'éclairage dans trois logiciels de rendu différents lorsque le graphiste désactive les ombres pour un objet ; notre définition corrige ce défaut. Nous présentons un prototype d'implémentation des calques d'ombres à partir de quelques modifications du Path Tracing, l'algorithme de choix en production. Il exporte l'image originale et un nombre arbitraire de calques d'ombres liés à différents objets en une passe de rendu, requérant un temps supplémentaire de l'ordre de 15% dans des scènes à géométrie complexe et contenant plusieurs milieux participants. Des paramètres optionnels sont aussi proposés au graphiste pour affiner le rendu des calques d'ombres.The production of 3D animated motion picture now relies on physically realistic rendering techniques, that simulate light propagation within each scene. In this context, 3D artists must leverage lighting effects to support staging, deploy the film's narrative, and convey its emotional content to viewers. However, the equations that model the behavior of light leave little room for artistic expression. In addition, editing illumination by trial-and-error is tedious due to the long render times that physically realistic rendering requires. To remedy these problems, most animation studios resort to compositing, where artists rework a frame by associating multiple layers exported during rendering. These layers can contain geometric information on the scene, or isolate a particular lighting effect. The advantage of compositing is that interactions take place in real time, and are based on conventional image space operations. Our main contribution is the definition of a new type of layer for compositing, the shadow layer. A shadow layer contains the amount of energy lost in the scene due to the occlusion of light rays by a given object. Compared to existing tools, our approach presents several advantages for artistic editing. First, its physical meaning is straightforward: when a shadow layer is added to the original image, any shadow created by the chosen object disappears. In comparison, a traditional shadow matte represents the ratio of occluded rays at a pixel, a grayscale information that can only serve as an approximation to guide compositing operations. Second, shadow layers are compatible with global illumination: they pick up energy lost from secondary light sources that are scattered at least once in the scene, whereas the current methods only consider primary sources. Finally, we prove the existence of an overestimation of illumination in three different renderers when an artist disables the shadow of an object; our definition fixes this shortcoming. We present a prototype implementation for shadow layers obtained from a few modifications of path tracing, the main rendering algorithm in production. It exports the original image and any number of shadow layers associated with different objects in a single rendering pass, with an additional 15% time in scenes containing complex geometry and multiple participating media. Optional parameters are also proposed to the artist to fine-tune the rendering of shadow layers

    Radiation techniques for urban thermal simulation with the Finite Element Method

    Get PDF
    Modern societies are increasingly organized in cities. In the present times, more than half of the world’s population lives in urban settlements. In this context, architectural and building scale works have the need of extending their scope to the urban environment. One of the main challenges of these times is understanting all the thermal exchanges that happen in the city. The radiative part appears as the less developed one; its characterization and interaction with built structures has gained attention for building physics, architecture and environmental engineering. Providing a linkage between these areas, the emerging field of urban physics has become important for tackling studies of such nature. Urban thermal studies are intrinsically linked to multidisciplinary work approaches. Performing full-scale measurements is hard, and prototype models are difficult to develop. Therefore, computational simulations are essential in order to understand how the city behaves and to evaluate projected modifications. The methodological and algorithmic improvement of simulation is one of the mainlines of work for computational physics and many areas of computer science. The field of computer graphics has addressed the adaptation of rendering algorithms to daylighting using physically-based radiation models on architectural scenes. The Finite Element Method (FEM) has been widely used for thermal analysis. The maturity achieved by FEM software allows for treating very large models with a high geometrical detail and complexity. However, computing radiation exchanges in this context implies a hard computational challenge, and forces to push the limits of existing physical models. Computer graphics techniques can be adapted to FEM to estimate solar loads. In the thermal radiation range, the memory requirements for storing the interaction between the elements grows because all the urban surfaces become radiation sources. In this thesis, a FEM-based methodology for urban thermal analysis is presented. A set of radiation techniques (both for solar and thermal radiation) are developed and integrated into the FEM software Cast3m. Radiosity and ray tracing are used as the main algorithms for radiation computations. Several studies are performed for different city scenes. The FEM simulation results are com-pared with measured temperature results obtained by means of urban thermography. Post-processing techniques are used to obtain rendered thermograms, showing that the proposed methodology pro-duces accurate results for the cases analyzed. Moreover, its good computational performance allows for performing this kind of study using regular desktop PCs.Las sociedades modernas están cada vez más organizadas en ciudades. Más de la mitad de la población mundial vive en asentamientos urbanos en la actualidad. En este contexto, los trabajos a escala arquitectónica y de edificio deben extender su alcance al ambiente urbano. Uno de los mayores desafíos de estos tiempos consiste en entender todos los intercambios térmicos que suceden en la ciudad. La parte radiativa es la menos desarrollada; su caracterización y su interacción con edificaciones ha ganado la atención de la física de edificios, la arquitectura y la ingeniería ambiental. Como herramienta de conexión entre estas áreas, la física urbana es un área que resulta importante para atacar estudios de tal naturaleza. Los estudios térmicos urbanos están intrinsecamente asociados a trabajos multidisciplinarios. Llevar a cabo mediciones a escala real resulta difícil, y el desarrollo de prototipos de menor escala es complejo. Por lo tanto, la simulación computacional es esencial para entender el comportamiento de la ciudad y para evaluar modificaciones proyectadas. La mejora metodológica y algorítmica de las simulaciones es una de las mayores líneas de trabajo para la física computacional y muchas áreas de las ciencias de la computación. El área de la computación gráfica ha abordado la adaptación de algoritmos de rendering para cómputo de iluminación natural, utilizando modelos de radiación basados en la física y aplicándolos sobre escenas arquitectónicas. El Método de Elementos Finitos (MEF) ha sido ampliamente utilizado para análisis térmico. La madurez alcanzada por soluciones de software MEF permite tratar grandes modelos con un alto nivel de detalle y complejidad geométrica. Sin embargo, el cómputo del intercambio radiativo en este contexto implica un desafío computacional, y obliga a empujar los límites de las descripciones físicas conocidas. Algunas técnicas de computación gráfica pueden ser adaptadas a MEF para estimar las cargas solares. En el espectro de radiación térmica, los requisitos de memoria necesarios para almacenar la interacción entre los elementos crecen debido a que todas las superficies urbanas se transforman en fuentes emisoras de radiación. En esta tesis se presenta una metodología basada en MEF para el análisis térmico de escenas urbanas. Un conjunto de técnicas de radiación (para radiación solar y térmica) son desarrolladas e integradas en el software MEF Cast3m. Los algoritmos de radiosidad y ray tracing son utilizados para el cómputo radiativo. Se presentan varios estudios que utilizan diferentes modelos de ciudades. Los resultados obtenidos mediante MEF son comparados con temperaturas medidas por medio de termografías urbanas. Se utilizan técnicas de post-procesamiento para renderizar imágenes térmicas, que permiten concluir que la metodología propuesta produce resultados precisos para los casos analizados. Asimismo, su buen desempeño computacional posibilita realizar este tipo de estudios en computadoras personales

    A Final Reconstruction Approach for a Unified Global Illumination Algorithm

    Get PDF
    International audienceIn the past twenty years, many algorithms have been proposed to compute global illumination in synthetic scenes. Typically, such approaches can deal with specific lighting configurations, but often have difficulties with others. In this article, we present a final reconstruction step for a novel unified approach to global illumination, that automatically detects different types of light transfer and uses the appropriate method in a closely-integrated manner. With our approach, we can deal with difficult lighting configurations such as indirect nondiffuse illumination. The first step of this algorithm consists in a view-independent solution based on hierarchical radiosity with clustering, integrated with particle tracing. This first pass results in solutions containing directional effects such as caustics, which can be interactively rendered. The second step consists of a view-dependent final reconstruction that uses all existing information to compute higher quality, ray-traced images

    Modelling and Visualisation of the Optical Properties of Cloth

    Get PDF
    Cloth and garment visualisations are widely used in fashion and interior design, entertaining, automotive and nautical industry and are indispensable elements of visual communication. Modern appearance models attempt to offer a complete solution for the visualisation of complex cloth properties. In the review part of the chapter, advanced methods that enable visualisation at micron resolution, methods used in three-dimensional (3D) visualisation workflow and methods used for research purposes are presented. Within the review, those methods offering a comprehensive approach and experiments on explicit clothes attributes that present specific optical phenomenon are analysed. The review of appearance models includes surface and image-based models, volumetric and explicit models. Each group is presented with the representative authors’ research group and the application and limitations of the methods. In the final part of the chapter, the visualisation of cloth specularity and porosity with an uneven surface is studied. The study and visualisation was performed using image data obtained with photography. The acquisition of structure information on a large scale namely enables the recording of structure irregularities that are very common on historical textiles, laces and also on artistic and experimental pieces of cloth. The contribution ends with the presentation of cloth visualised with the use of specular and alpha maps, which is the result of the image processing workflow

    Virtual light fields for global illumination in computer graphics

    Get PDF
    This thesis presents novel techniques for the generation and real-time rendering of globally illuminated environments with surfaces described by arbitrary materials. Real-time rendering of globally illuminated virtual environments has for a long time been an elusive goal. Many techniques have been developed which can compute still images with full global illumination and this is still an area of active flourishing research. Other techniques have only dealt with certain aspects of global illumination in order to speed up computation and thus rendering. These include radiosity, ray-tracing and hybrid methods. Radiosity due to its view independent nature can easily be rendered in real-time after pre-computing and storing the energy equilibrium. Ray-tracing however is view-dependent and requires substantial computational resources in order to run in real-time. Attempts at providing full global illumination at interactive rates include caching methods, fast rendering from photon maps, light fields, brute force ray-tracing and GPU accelerated methods. Currently, these methods either only apply to special cases, are incomplete exhibiting poor image quality and/or scale badly such that only modest scenes can be rendered in real-time with current hardware. The techniques developed in this thesis extend upon earlier research and provide a novel, comprehensive framework for storing global illumination in a data structure - the Virtual Light Field - that is suitable for real-time rendering. The techniques trade off rapid rendering for memory usage and precompute time. The main weaknesses of the VLF method are targeted in this thesis. It is the expensive pre-compute stage with best-case O(N^2) performance, where N is the number of faces, which make the light propagation unpractical for all but simple scenes. This is analysed and greatly superior alternatives are presented and evaluated in terms of efficiency and error. Several orders of magnitude improvement in computational efficiency is achieved over the original VLF method. A novel propagation algorithm running entirely on the Graphics Processing Unit (GPU) is presented. It is incremental in that it can resolve visibility along a set of parallel rays in O(N) time and can produce a virtual light field for a moderately complex scene (tens of thousands of faces), with complex illumination stored in millions of elements, in minutes and for simple scenes in seconds. It is approximate but gracefully converges to a correct solution; a linear increase in resolution results in a linear increase in computation time. Finally a GPU rendering technique is presented which can render from Virtual Light Fields at real-time frame rates in high resolution VR presentation devices such as the CAVETM

    Primal-dual coding to probe light transport

    Get PDF
    We present primal-dual coding, a photography technique that enables direct fine-grain control over which light paths contribute to a photo. We achieve this by projecting a sequence of patterns onto the scene while the sensor is exposed to light. At the same time, a second sequence of patterns, derived from the first and applied in lockstep, modulates the light received at individual sensor pixels. We show that photography in this regime is equivalent to a matrix probing operation in which the elements of the scene's transport matrix are individually re-scaled and then mapped to the photo. This makes it possible to directly acquire photos in which specific light transport paths have been blocked, attenuated or enhanced. We show captured photos for several scenes with challenging light transport effects, including specular inter-reflections, caustics, diffuse inter-reflections and volumetric scattering. A key feature of primal-dual coding is that it operates almost exclusively in the optical domain: our results consist of directly-acquired, unprocessed RAW photos or differences between them.Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Massachusetts Institute of Technology. Media Laboratory (Consortium Members
    corecore