
Virtual Light Fields for Global Illumination in
Computer Graphics

Jesper Mortensen

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

January 25, 2011

2

To Charlotte, Vita & Nova

Abstract

This thesis presents novel techniques for the generation and real-time rendering of globally illuminated

environments with surfaces described by arbitrary materials. Real-time rendering of globally illuminated

virtual environments has for a long time been an elusive goal. Many techniques have been developed

which can compute still images with full global illumination and this is still an area of active flourishing

research. Other techniques have only dealt with certain aspects of global illumination in order to speed

up computation and thus rendering. These include radiosity, ray-tracing and hybrid methods. Radiosity

due to its view independent nature can easily be rendered in real-time after pre-computing and storing

the energy equilibrium. Ray-tracing however is view-dependent and requires substantial computational

resources in order to run in real-time.

Attempts at providing full global illumination at interactive rates include caching methods, fast ren-

dering from photon maps, light fields, brute force ray-tracing and GPU accelerated methods. Currently,

these methods either only apply to special cases, are incomplete exhibiting poor image quality and/or

scale badly such that only modest scenes can be rendered in real-time with current hardware.

The techniques developed in this thesis extend upon earlier research and provide a novel, compre-

hensive framework for storing global illumination in a data structure - the Virtual Light Field - that is

suitable for real-time rendering. The techniques trade off rapid rendering for memory usage and pre-

compute time. The main weaknesses of the VLF method are targeted in this thesis. It is the expensive

pre-compute stage with best-case O(N2) performance, where N is the number of faces, which make the

light propagation unpractical for all but simple scenes. This is analysed and greatly superior alternatives

are presented and evaluated in terms of efficiency and error. Several orders of magnitude improvement

in computational efficiency is achieved over the original VLF method.

A novel propagation algorithm running entirely on the Graphics Processing Unit (GPU) is pre-

sented. It is incremental in that it can resolve visibility along a set of parallel rays in O(N) time and can

produce a virtual light field for a moderately complex scene (tens of thousands of faces), with complex il-

lumination stored in millions of elements, in minutes and for simple scenes in seconds. It is approximate

but gracefully converges to a correct solution; a linear increase in resolution results in a linear increase in

computation time. Finally a GPU rendering technique is presented which can render from Virtual Light

Fields at real-time frame rates in high resolution VR presentation devices such as the CAVETM.

4 Abstract

Acknowledgements

Thanks to my supervisor Professor Mel Slater, secondary supervisor Professor Anthony Steed and fellow

VLF’ers: Pankaj Khanna and Insu Yu. EPSRC made this thesis possible by funding the research projects;

”The Virtual Light Field” (GR/R13685/01), and ”Presence in a Virtual Light Field” (EP/C511824/1).

Thanks to the XVR team; Franco Tecchia and Giuseppe Marino for the support and prompt bug

fixes while integrating the methods developed in this thesis into eXtremeVR. Also, thanks to Bernhard

Spanlang who supplied the avatars and animation subsystem. Thanks to David Swapp manager of the

CAVE TMsetup at University College London for helping with getting the tracking data right and other

helpful tips and tricks.

Also, thanks to the people in the VECG group at University College London and particularly those

in research lab 6.22 - you know who you are. Thanks to Mette Ramsgaard Thomsen for involving me in

a number of likely and unlikely projects and Chris Parker for joining in this effort.

The following people were very helpful reading and commenting on the drafts of this thesis; An-

thony Steed, Charlotte Thrane, Pip Bull, Joel Jordan, João Oliveira and Bernhard Spanlang.

Thanks to the external examiner Erik Reinhard and internal examiner Jan Kautz for spending a long

day talking about light fields.

Finally, I thank my family Charlotte, Vita and Nova for their patience, unwavering support and

encouragement.

6 Acknowledgements

Contents

1 Introduction 15

1.1 The Computer Graphics Pipeline . 16

1.1.1 Modelling . 16

1.1.2 Animation . 18

1.1.3 Rendering . 18

1.1.4 Image Reproduction . 18

1.2 Scope and Objectives . 19

1.3 Contributions . 19

1.4 Organisation of this Thesis . 20

2 The Global Illumination Problem 23

2.1 A Short History of Light . 23

2.2 Geometry . 25

2.2.1 Free Space Simplification . 26

2.2.2 Solid Angles & Directions . 27

2.2.3 Visibility & Ray Casting . 29

2.3 Radiometry . 31

2.3.1 Terms and Units . 32

2.3.2 Principles of Radiative Transfer . 33

2.3.3 Properties of Radiative Transfer . 34

2.3.4 Throughput T . 34

2.3.5 Flux Φ . 35

2.3.6 Irradiance E . 35

2.3.7 Radiance L . 35

2.3.8 The Bidirectional Reflectance Distribution Function 38

2.4 Mathematical Framework for Global Illumination . 40

2.4.1 The Radiance Equation . 40

2.4.2 The Potential Equation . 44

2.4.3 Solutions to the Global Illumination Problem 47

2.5 Summary . 52

8 Contents

3 Global Illumination Methods 55

3.1 A Taxonomy for Global Illumination Algorithms . 55

3.2 Gathering Methods . 56

3.2.1 Gathering Radiosity Methods . 56

3.2.2 Ray Tracing and Path Tracing . 57

3.2.3 Caching Methods for Global Illumination . 59

3.2.4 Light Fields . 62

3.2.5 Summary . 63

3.3 Shooting Methods . 64

3.3.1 Shooting Radiosity . 64

3.3.2 Non-diffuse Shooting Radiosity . 65

3.3.3 Particle Tracing . 65

3.3.4 Local and Global Lines . 66

3.3.5 Summary . 68

3.4 Combined Methods . 68

3.4.1 Bi-directional Path Tracing . 68

3.4.2 Hybrid and Multi-Pass Methods . 68

3.4.3 Summary . 71

3.5 Global Illumination on the GPU . 71

3.5.1 GPU Radiosity Methods . 72

3.5.2 GPU Particle Tracing Methods . 72

3.5.3 GPU Hybrid Methods . 73

3.5.4 Summary . 76

3.6 Discussion . 76

4 A Virtual Light Field Approach to Global Illumination 79

4.1 Overview . 79

4.1.1 Overview of the Data Structure . 79

4.1.2 Overview of the Light Transport Algorithm . 81

4.2 Data Structure . 83

4.2.1 Uniformity of Representation . 84

4.2.2 Directional Subdivision . 84

4.2.3 Spatial Subdivision – Parallel Subfield Representation 86

4.2.4 PSF Sampling . 89

4.2.5 Data Structures for Radiance Transport . 90

4.3 Propagation . 91

4.3.1 Low-level Finite Element Propagation . 92

4.3.2 PSF Propagation . 101

4.3.3 VLF Propagation . 106

Contents 9

4.4 Rendering . 107

4.4.1 Direct VLF Rendering . 107

4.4.2 Irradiance Maps . 108

4.4.3 Specular Reconstruction . 108

4.4.4 Final Gather . 108

4.5 Summary . 108

5 Virtual Light Fields on the GPU 111

5.1 Introduction . 111

5.2 The GPU Architecture . 111

5.3 Propagation on the GPU . 114

5.3.1 GPU Data Structure . 114

5.3.2 Incremental Radiance Transport . 115

5.4 Rendering from the VLF on the GPU . 116

5.5 Summary . 118

6 Results 121

6.1 Sorting Performance . 121

6.2 Propagation Performance . 123

6.3 Analysis of Quality and Correctness . 125

6.3.1 Caustic Example . 129

6.4 Other BRDFs . 129

6.5 Comprehensive Results . 134

6.6 Immersive Virtual Reality Applications . 136

6.6.1 Rendering the VLF in the CAVETM . 136

6.6.2 Dynamics Integration . 137

6.6.3 The XVR framework . 140

6.7 Summary . 141

7 Conclusion 145

7.1 Contributions . 145

7.2 Directions of Future Work . 146

Appendices 147

A Symbols 149

A.1 Geometric Symbols . 149

A.2 Radiometric Symbols . 150

A.3 VLF Notation . 151

A.4 Global Illumination Feature Table . 152

A.5 Heckbert Light Transport Notation . 154

10 Contents

Bibliography 154

List of Figures

1.1 Polyhedral representations shown for a variety of scenes. 17

2.1 Points, normals and differential areas. 26

2.2 Hemisphere geometry. 27

2.3 Differential solid angle. 28

2.4 Differential solid angle and differential surface area. 28

2.5 Visibility and ray casting in E2 space. 29

2.6 Exchange pairs along global lines. 31

2.7 Phase space flux as flow over a differential surface dA. 34

2.8 Exitant and incident radiance. 35

2.9 Radiance invariance geometry. 36

2.10 Sensors and radiance invariance. 37

2.11 Geometry of the BRDF. 38

2.12 Hemispherical geometry of the rendering equation. 40

2.13 Rendering equation; exitant and incident hemisphere integration. 41

2.14 Rendering equation; exitant and incident surface integration. 42

2.15 Shooting radiance from an emitter. 43

2.16 Radiance distributions after 0-3 reflections. 44

2.17 Potential for a pixel set and a patch set. 45

2.18 Indirect contribution to the flux of S. 46

2.19 Shooting potential for a set. 48

2.20 Exitant transport operator T and incident transport operator Q. 50

4.1 Surface based hemisphere data structure. 80

4.2 VLF data structure using parallel subfields. 80

4.3 Incremental approach for radiance transfer with pre-computed sorting. 82

4.4 Face to PSF sampling. 82

4.5 Hemisphere subdivision. 85

4.6 Hemisphere subdivision area variation. 86

4.7 Subdivision of the hemisphere level 0 to 4. 86

4.8 Coordinate systems. 87

12 List of Figures

4.9 Comparison of VLF data structure to traditional surface based hemisphere data structure. 88

4.10 Tile lists formed by projecting faces to PSF. 90

4.11 Irradiance map projection. 95

4.12 Non-diffuse transfer and scattering. 100

4.13 Incremental approach for radiance transfer with pre-computed sorting. 105

4.14 Angular spread of fixed directions. 107

5.1 Microsoft Direct3D10 GPU rendering pipeline. 113

5.2 GPU radiance data structure. 114

5.3 Diffuse and tile atlases. 115

5.4 Rendering passes. 117

6.1 Maze scene used for scaling experiments. 121

6.2 Vis-Sort scaling. 123

6.3 Propagation scaling. 124

6.4 Tile resolution effect on propagation memory and time. 124

6.5 Specular quality. 126

6.6 Diffuse quality. 127

6.7 Diffuse quality (detail). 128

6.8 Comparison to PBRT using the Cornell box scene. 129

6.9 Caustic example. 130

6.10 Glossy reflection Cornell box (hi-res). 131

6.11 Glossy reflection Cornell box (lo-res). 132

6.12 Glossy reflection Atenea (hi-res). 132

6.13 Glossy propagation breakdown of glossy Cornell box and glossy Atenea scene. 133

6.14 Scenes used for comprehensive results. 135

6.15 Comparison of OpenGL and VLF-GPU. 138

6.16 Lighting a character with an SH light probe. 139

6.17 Comparison with other methods. 142

7.1 Presence experiment. 146

List of Tables

2.1 Photometric terms and units. 32

2.2 Radiometric terms and units. 32

6.1 Performance of the VLF-GPU method. 134

A.1 Global Illumination Feature Table . 153

14 List of Tables

Chapter 1

Introduction

Computer graphics is a broad field of disciplines ranging from data visualisation, cartoons, complex

phenomena such as crowds, particles, traffic, human motion through to studies and measurements of

how light reflects off surfaces. However in order to put the work presented in this thesis in context,

focus will be restricted to the subfield of rendering. One of the main endeavours of modern computer

graphics is to generate images from abstract 3-dimensional representations of virtual scenes stored on

a computer. Since the 1960’s, when William Fetter coined the term, this domain has revolutionised

the world of entertainment, architecture, archaeology, industrial prototyping, design, virtual reality and

many other domains. These very different domains where computer graphics is applied for rendering

have very different requirements, but currently research can be crudely divided into two main strands,

the synthesis of which have been elusive; photorealism and real-time. This thesis provides a method that

shows how both can be achieved.

Photorealism in computer graphics attempts to render images that look real. This term is rather

ambiguous and incorporates many facets including modelling, texturing, illumination and image repro-

duction. One of the most important issues is how the illumination of objects is modelled; after all images

that we see are formed by light reflected into our eyes. This issue is also the main topic of this thesis.

There are many approximations of the interplay of light between the objects of a scene, local illumina-

tion captures only the first order effects of illumination namely light falling directly onto objects from

other emissive objects (light sources). However, illumination is more complex and global illumination

captures also important second order effects such as soft shadows, indirect illumination, colour bleed-

ing, and caustics with a varying degree of approximation. The equations governing transport of light in

3-dimensional environments are known and they can be solved numerically albeit at a high cost in terms

of storage and / or processing. Since the 1980’s much research has gone into developing physically

plausible techniques that are also computationally tractable. Still images of complex environments with

full global illumination can take from minutes to hours to produce.

Real-time computer graphics on the other hand is concerned with generating images with a strict

budget on the time it takes to render a frame. The goal is to be able to render scenes quickly enough

that the observer does not realise that the images are a sequence of discrete images. In order to achieve

this, frame-rates (how many images are rendered per second) need to be 20-30 frames per second. There

16 Chapter 1. Introduction

are two main types of real-time computer graphics; dynamic walkthrough and static walkthrough. In

dynamic walkthroughs all objects of the scene can undergo animation independently of other objects

and the vantage point of the observer can be moved interactively. Typical examples of this occurs in

computer games, interactive virtual reality and special effects. In a static walkthrough the objects in

the scene are fixed relative to one another but the vantage point can be moved, this is often used in

architecture and design applications. A lot of research and investment has gone into this problem and

the most successful technique to date is the hardware implementation of the rasterisation pipeline. The

technique transforms polygonal objects into the viewing coordinates system, clips them and projects

them onto the screen, (typically) solving the hidden surface problem with a z-buffer [FDFH90]. The

illumination in this framework is typically restricted to first order effects such as local illumination

applying the Phong [Pho75] or similar local illumination model. Effects such as shadows, reflections

and indirect illumination are typically realised by applying ad-hoc techniques and texture mapping.

From this it is obvious how different the constraints are between real-time and photorealism. There

exists a clear trade-off between photorealism and real-time rendering and to date very few techniques

have attempted to provide full global illumination with a real-time constraint.

1.1 The Computer Graphics Pipeline
In order to put the work in this thesis into context the process of generating an image will be described.

The computer graphics pipeline can be separated into four distinct steps; modelling, animation, rendering

and image reproduction.

1.1.1 Modelling

The modelling step of the computer graphics pipeline is concerned with supplying the input to the ren-

dering step. An unambiguous specification must be given of all aspects of the virtual 3-dimensional

environment; the objects it is composed of, the material properties of the surfaces present in the scene

and a subset of objects acting as emitters. This excludes participating media such as smoke, fog, water

and other volumetric media which is outside the scope of this work.

The geometrical specification of objects in a 3-dimensional environment falls into two categories;

solid representations and boundary representations. Solid representations include abstract primitives

such as spheres and cones which subdivide space into two halves; inside (the solid) and outside. This

subdivision is typically described by an equation. These simple shapes can be combined in hierarchies

with computational solid geometry (CSG) or instanced recursively or procedurally to create more inter-

esting objects or groups of objects. The boundary representation on the other hand describes only the

surfaces that delimit objects. This is typically achieved through parametric descriptions of the surface

(Bézier and NURBS surfaces [FDFH90]) or discretised boundary representation such as polyhedra. A

polyhedron is a collection of planar primitives (faces) that together describe a surface. A face is formed

by a set of vertices that are connected by straight lines. A face has a front and a back and the front is

defined by the side that when viewed straight on imposes a counter-clockwise ordering of the vertices.

Faces are planar. They can be either convex or concave, but a concave face can be represented by a set

1.1. The Computer Graphics Pipeline 17

of convex faces.

Polyhedra can similarly be open or closed fully delimiting a volume of space. See Figure 1.1 for

renderings of some polyhedra. Today, by far the most popular representation is the boundary repre-

sentation. The games industry, special effects industry, the virtual reality and CAD community almost

exclusively rely on NURBS, subdivision surfaces and polyhedra to describe their geometry. One of the

main reasons for this is the implementation in hardware of the rasterisation pipeline which requires poly-

hedral geometry and also the fact that almost all non-polyhedral representations can be subdivided into

polyhedra.

Figure 1.1: Polyhedral representations shown for a variety of scenes.

In order to correctly illuminate an object, its material properties need to be defined. The material

properties determine the way light interacts with the surface. There exists a vast amount of research into

this area which is one of the most important parts of the global illumination problem. The most general

expression of the reflectance of a surface is the bidirectional surface scattering distribution function

(BSSRDF) [JMLH01] which is an 11 dimensional (or 9 dimensional if points are restricted to surfaces)

function relating outgoing radiance at a point x0 in a given direction ω0 to the incident irradiance at some

other point xi from a given direction ωi at a given wavelength λ . This function is overly complex for most

rendering purposes [Dut96] and some simplifications are usually introduced to limit the dimensionality

of this function. Assuming wavelength independence and disregarding an exact model of subsurface

scattering leads us to the simpler bidirectional reflectance distribution function (BRDF) which assumes

that light entering at a point leaves at the same point. If we also assume that the material is homogeneous

for surface elements we arrive at a 4-dimensional function which is more appropriate for our purposes.

A number of BRDFs have been proposed that can roughly be classified into empirical, theoretical and

measured BRDFs [War92].

A number of the surfaces of the environment need to be emitters, they act as a starting point for

illuminating the scene. Self-emitted flux is generated by various physical processes such as heat and

chemical reactions and is the source of the initial energy introduced into the environment. In the rasteri-

sation pipeline it is typical to only allow point emitters due to the fact that they are very simple to sample.

On the other hand they are an abstract concept not found in nature, and they preclude phenomena such

as soft shadows. Most global illumination algorithms assume area light sources and assigning flux to a

number of the existing surfaces is a general and elegant way of defining initial emitters; at first they are

18 Chapter 1. Introduction

the only emitters, after they have distributed their energy into the environment surfaces that received flux

then in turn become secondary emitters and so on. Similarly to the BRDF emitters can be defined with

a high dimensionality if they are anisotropic and non-homogeneous over the surface.

The last necessary part of the input is the camera model. Its main objective is to define the vantage

point of the viewer with respect to the environment. The most typical camera models are the pinhole

camera model and the thin lens camera model. The thin lens model allows for such effects as depth of

field whereas the entire scene is in perfect focus in the pinhole camera model [CPC84]. In this work the

pinhole camera model will be used exclusively for simplicity.

1.1.2 Animation

The animation step alters the relationship between the components defined in the modelling step. Various

types of animation can be envisaged including camera movement, rigid body animation, deformations

and unstructured motion. Clearly, a global illumination solution for a specific configuration of an en-

vironment becomes partly invalid after animation that alters the relative position of components of that

environment and the solution must be recomputed to adapt to the new configuration of objects.

In this thesis interactive walkthrough of globally lit environments is the main objective; thus it is

assumed that the environment is static and only the camera pose undergoes animation. However, the

implications of supporting dynamic scenes will be discussed in the appropriate sections.

1.1.3 Rendering

The rendering step visualises the virtual model of the scene. A number of different rendering techniques

exist from wireframe renderings through non-photorealistic rendering to full global illumination solu-

tions which explore all possible light paths. A classification can be made depending on whether the

algorithm is image-based or object-based. Image-based algorithms (also known as pixel driven) com-

pute the illumination relative to a specific camera position whereas object space (also known as finite

element) methods compute the illumination in object space and then in a separate pass render an im-

age given a camera vantage point. The advantage (and disadvantage at the same time) of pure pixel

driven algorithms is that they recompute the illumination for every viewpoint which allows for dynamic

environments in a straightforward manner. However, for larger scenes with complex lighting they are

typically too computationally intensive to achieve real-time frame rates. On the other hand finite ele-

ment methods can typically render images from a given vantage point quickly but moving objects in the

scene would require that the illumination solution is (partially) recomputed. Also they often require large

data structures in order to store the solution. However with the explosive growth of memory capacities

of typical workstations, currently several gigabytes, many techniques hitherto intractable are becoming

possible. The work presented in this thesis works in object space and uses a large data structure to store

a pre-computed global illumination solution for fast rendering.

1.1.4 Image Reproduction

The output of the rendering step is a collection of radiance values captured on the image plane of the

camera model. This raises some fundamental questions about what we are attempting to achieve. Ac-

1.2. Scope and Objectives 19

cording to Hall and Greenberg [HG83]:

Our goal in realistic image synthesis is to generate an image that evokes from the visual

system a response indistinguishable from that evoked by the actual environment.

As Peter Shirley correctly points out [Shi90a] this would require an interface directly connecting the

computer to the visual cortex of the viewer, a subject of current research [Dob00]. Also the camera

model used does not model the eye and the output devices do not have the fidelity and dynamic range of

the human visual response system, although research into HDR displays is underway [War08]. The way

this problem is circumvented is usually by redefining the problem to the more reachable one; to generate

an image of the virtual scene which is indistinguishable from a photograph of that scene. In this work

this will be modified slightly to a more appropriate one; to create a matrix of radiation [i.e. colour]

values, that is displayed on an output device in an appropriate way [Dut96].

1.2 Scope and Objectives
In this thesis methods for allowing real-time walkthroughs of fully globally illuminated static scenes

are investigated. The methods should be applicable to Virtual Reality (VR) systems driving immersive

projection systems such as the CAVETM [CNSD+92].

The techniques require a pre-processing stage where light transport is computed and stored in a

large data structure. They therefore belong to the class of finite element or object space solutions. In

this work closed non self-intersecting polyhedra formed by planar convex faces will be used exclusively.

The BRDFs used will be restricted to some commonly used theoretical BRDFs namely the lambertian

and specular BRDFs or a mixture of the two and the glossy modified Phong BRDF. Transparent surfaces

will not be supported. This, however, is not a limitation of the technique and could easily be accommo-

dated. Only area light sources are supported. Scenes with small or point light source would require an

initial gathering pass [SKSMT00]. Only isotropic homogeneous emitters are used for simplicity. Again

this is not a limitation of the techniques described. Radiance is shot from the light sources outwards

and a radiance field is assembled covering the entire scene. In order to produce global illumination

solutions efficiently, a number of techniques for light transport from the light sources are investigated.

This includes continuous clipping methods, point sampling methods, rasterisation with the z-buffer and

incremental methods as well as hardware based techniques exploiting existing programmable graphics

hardware.

A number of techniques for real-time rendering from this field of radiance are evaluated and dis-

cussed in terms of efficiency and error.

1.3 Contributions
The overall contribution of this thesis can be summarised as a method for storing and the produc-

tion of a solution to the global illumination problem that allows real-time walkthrough on worksta-

tions [SMKY04] and with extensions to make it practical in terms of pre-compute time for moderately

complex scenes. The work will focus on fast propagation and fast walkthrough. More specifically the

contributions are:

20 Chapter 1. Introduction

• Realising an implementation of an abstract method known as the Virtual Light Field [SMKY04]

as part of a project1.

• Providing a literature survey of other work done in the field of real-time global illumination.

• Addition of a low-level radiance transport operator based on point sampling. An adaptive point-

sampling algorithm is presented improving propagation speed threefold without loss of precision.

• Addition of a high-level incremental radiance transport operator that yields linear scaling of prop-

agation time in the number of scene polygons [MKS07]. An order of magnitude improvement in

propagation speed is presented for a number of scenes.

• Mapping the newly developed point-sampling based propagation algorithm to programmable

graphics hardware [MKS07] leveraging the power of recent GPUs gaining two additional orders

of magnitude improvement in speed. The algorithm runs entirely on the GPU.

• Mapping the rendering algorithm to programmable graphics hardware [MKYS07] leveraging the

power of recent GPUs to attain real-time rendering of large frame sizes at high frame rates. The

algorithm runs entirely on the GPU.

• Integrating the VLF-GPU method into a fully featured immersive virtual reality sys-

tem [MYK+08] supporting dynamic objects and presenting a case study using the system for

presence research [YMKS10].

1.4 Organisation of this Thesis
The remaining chapters in this thesis are organised as follows:

• Chapter 2 begins with a short overview of the history of light transport in physics. Then the basic

concepts of light transport, the terms and units that will be used and equations that mathematically

describe light transport are introduced.

• Chapter 3 presents a taxonomy for global illumination algorithms. Other work in the field with

particular focus on global illumination algorithms that allow real-time walkthroughs is surveyed.

• Chapter 4 presents the Virtual Light Field method (VLF) [SMKY04]. It comprises of a data

structure particularly suited to the task of fast rendering of scenes with complex illumination and

an algorithm to fill in this data structure with physically plausible global illumination using forward

propagation from light sources in a pre-compute stage.

• Chapter 5 presents new transport techniques operating on the data structure presented in Chapter 4

which attempt to alleviate the main weakness of the algorithm; pre-computation time. Specifically

a technique running entirely on the GPU [MKS07, MKYS07] is presented.

1EPSRC research project ”The Virtual Light Field” (GR/R13685/01).

1.4. Organisation of this Thesis 21

• Chapter 6 presents results for the VLF-GPU method. The transport techniques developed in Chap-

ter 5 are evaluated in terms of efficiency and error.

• Chapter 7 outlines an integration of the VLF-GPU method into the eXtremeVR immersive VR sys-

tem [MYK+08]. Then a case study using the system for presence research is described [YMKS10].

Lastly, final conclusions are drawn and ideas for future directions of research are presented.

22 Chapter 1. Introduction

Chapter 2

The Global Illumination Problem

In this chapter, the global illumination problem is formulated in a physically correct way. First a short

recap of the history of the theory of light in physics is presented. Then the problem that the thesis deals

with is delimited and suitable limitations are clearly outlined and discussed. The mathematical notation

adopted is largely borrowed from Philip Dutré’s Global Illumination Compendium [Dut96, Dut03] for

consistency. See Appendix A for tables of symbols used in the notation.

Finally, in the background sections earlier work in this field is surveyed paying special attention to

global illumination algorithms.

2.1 A Short History of Light
Light has been studied from classical times. One of the first recorded studies of this kind is that of

Empedocles in the fifth century BC, who believed that Aphrodite created the human eye from the four

elements and lit a fire in it enabling sight [OR02]. This view was questioned by many including Euclid

in 300 BC and Lucretius in 55 BC since it would enable sight in total darkness.

It was not until 1000 AD that a more advanced model of light was proposed and the beam model

was abandoned. This was due to al-Haytham, who argued that sight is enabled only by light sourced

from outside the eye, his most persuasive example being that of the camera-obscura (or pinhole camera).

He also proposed that light is made up of minute particles travelling in straight lines with a high but finite

velocity. He explained that the phenomenon of refraction1 is caused by light having different velocities

when travelling through different substances. His work was not widely available in Europe until the end

of the 16th century.

It was not until the beginning of the 17th century that Kepler made significant advances in the

field. His work on optics correctly explained the workings of the eye, based on deriving a mathematical

theory of the camera-obscura. He correctly showed that upside-down images are formed on the retina

and explained shortsight and longsight. One of his most important results though was that the intensity

of light observed from a source varies inversely with the square of the distance of the observer from

the source. In Dioptrice of 1611 he described the telephoto lens and described total internal reflection.

1The bending of the normal to the wavefront of a propagating wave upon passing from one medium to another where the

propagation velocity is different. The most common example is the refraction of light on passing from air to a liquid, which causes

submerged objects to appear displaced from their actual positions.

24 Chapter 2. The Global Illumination Problem

Kepler’s argument that images are formed upside-down on retina in the eye was not widely accepted

since the counter-argument that we do not see the world upside down seemed more plausible; it was

finally proved experimentally by Descartes who scraped off the backside of an ox’s eye yielding an

upside-down image. The sine law of refraction of light found by Thomas Harriot in 1601 and Willebrord

Snell in 1621 was not published until Descartes did so in 1637 in his work on optics La Dioptrice.

Diffraction2 of light was named and discovered by Francesco Grimaldi. His work was improved upon

by Isaac Newton who showed that white light is composed of light of different colours by splitting white

light in a prism and recombining it in another. Newton believed that light was composed of particles and

gave experimental evidence supporting this but in the 1670s this was a cause of much controversy.

Robert Hooke, Christiaan Huygens and later Leonhard Euler and Augustin Jean Fresnel both sup-

ported a wave theory of light which correctly explained phenomena such as reflection, refraction, diffrac-

tion of which the latter is the most difficult to explain with the corpuscular theory. The opposing cor-

puscular and wave theories of light hinged on one important property of light; namely whether light

travelled faster in a denser medium proposing the former theory or slower proposing the latter. A defi-

nite proof that the speed of light is finite was given by the astronomer Ole Römer in 1676 who calculated

from observations of Jupiter the speed of light to be 225,000 km per second, remarkably close to the

correct value of 299,792 km per second. But at the time experiments involving the speed of light were

impossible to carry out. In 1801 Thomas Young published his results on experiments on interference

of light and also explained Newton’s results in terms of wave theory. He related the colours of light

to its wavelength and showed how the amount of refraction depends on this value. Using Newton’s

experimental data on diffraction he calculated the wavelengths of different colours. He explained that

the eye contains receptors sensitive to red, green or blue light and thus colour vision. Malus discovered

polarisation of light and published it in 1809, this effect was later theoretically explained by Fresnel’s

transverse wave theory of light. It was not until 1850 that Foucault experimentally showed that the speed

of light slowed in water, thus confirming the wave theory. Around 1862 James Clerk Maxwell unified the

theory and described light as an electromagnetic phenomenon. In his seminal paper Electricity and Mag-

netism [Max54] (1873) he gave the four partial differential equations which fully describe the classical

electromagnetic theory.

But this is not the end of the story. Between 1880 and 1926 two parallel lines of research merged

and gave some startling new insight into the behaviour of light; namely quantum mechanics and the

theory of relativity. Quantum mechanics started with experiments with blackbody3 radiation carried

out by Josef Stefan in 1879 which showed that the total radiation energy per unit time emitted from a

blackbody is proportional to the fourth power of the absolute temperature of the body. In 1896 Wilhelm

Wien discovered that the wavelength at which the maximum energy is radiated becomes shorter as the

2Diffraction is a phenomenon by which wavefronts of propagating waves bend in the neighbourhood of obstacles.
3The blackbody is a hypothetical entity which absorbs all energy, reflects none and emits energy with perfect efficiency. A

blackbody is assumed to satisfy the following ideal conditions; (i) A blackbody absorbs all incident radiation regardless of wave-

length and direction. (ii) For a prescribed temperature and wavelength, no surface can emit more energy than a blackbody. (iii)

Although the radiation emitted by a blackbody is a function of wavelength, it is independent of direction. A blackbody is defined

as a diffuse emitter.

2.2. Geometry 25

temperature of the blackbody is increased. Wien’s distribution law of radiation prompted the Raleigh-

Jeans law of radiation distribution, which states that all possible frequency modes can radiate with equal

probability. Whereas this law was valid for low frequencies it broke down for high frequencies because

an infinitesimally small wavelength would imply infinite radiation, which is of course impossible. In

1900 Max Planck resolved this by realising that radiation energy could only exist in discrete quanta

proportional to the frequency. This would imply that the higher frequency modes were less likely and

thus avoid the problems with high frequencies inherent in the Raleigh-Jeans law. Parallel to this Heinrich

Hertz discovered the photoelectric4 effect in 1887 and in 1900 Philipp Lenard showed that the effect was

caused by electrons being ejected from the metal surface when struck by light. This again gave impetus

to a corpuscular theory of light as Albert Einstein showed that this effect could only be described if light

was in fact composed of discrete particles or energy quanta; thus the photon was born. In a publication

in 1905 Einstein used Planck’s work and described electromagnetic radiation of light in terms of the

quantum hypothesis. That same year he also presented the theory of relativity that said that physical

laws must have the same form in any frame of reference, and as a consequence that the speed of light

remains constant in all frames of reference.

The difficulty in explaining for example the light interference phenomenon with a corpuscular the-

ory of light remained. But in 1924 de Broglie put forward the particle-wave duality theory 5, which

together with Heisenberg’s uncertainty principle 6 of particles of light would come together in what

became known as the Copenhagen interpretation of quantum theory. This was due to Niels Bohr and

his colleagues. The Copenhagen interpretation says that under observation light waves collapse into

particles. One of the best examples of which is Thomas Young’s double slit interference experiment

re-enacted by Bohr by firing single photons towards the slits; the light depart as particles, behave as

waves hence the interference pattern and finally arrives as particles. This clearly has some fascinating

philosophical implications, which are outside the scope of this thesis.

2.2 Geometry
In this section the geometry used as input to the methods described in this thesis is described. As

discussed in Section 1.1.1 techniques developed in this thesis solve the global illumination problem for

three-dimensional environments. These three-dimensional environments O are sets of simple closed

polyhedra P that consist of planar convex polygons7. Each such set of polygons P describe a simple

closed surface (or solid) of finite volume that partitions space into three distinct sets; points outside the

surface P−, points inside the surface P+ and finally points on the surface P0. The combined set of surface

points for the environment is denoted A. We can define an environment O as a set of subsets of Euclidian

4He observed that when that ultraviolet light was shone onto metallic electrodes the voltage required for sparking to take place

was lowered.
5The particle-wave duality theory states that matter has the properties of both particles and waves.
6The uncertainty principle states that there is a limit to the precision with which the position and the momentum a particle of

light can be known.
7The simplest way to enforce this would be to only allow triangles, but in this thesis the framework will also support quadrilat-

erals under the assumption that they are planar and convex.

26 Chapter 2. The Global Illumination Problem

3-space as follows:

O = {P+
0 ,P+

1 , . . . ,P+
n }, where P+

i ⊂ E3

It is further assumed that no two solids intersect or more formally:

(P+
i ∪P0

i)∩ (P+
j ∪P0

j) = /0, where Pi,Pj ∈ O and i 6= j

In practice it is often more appropriate to describe the input as a set of three-dimensional surface

points especially when dealing with environments devoid of participating media. The surface points

are points that belong to one of the surfaces in the environment. The set of all surface points in an

environment is denoted by A and each point x is (parametrically) described by a three dimensional

position and a surface normal at that point nx (see Figure 2.1).

nx

point x

differential area dAx

Figure 2.1: A set of polygons and a point x with its normal nx and a differential area dAx around x.

Since we are restricting polygons to be planar, all surface points belonging to a polygon will share

one single normal (described by the plane equation). This limitation can be lifted and the changes

necessary to do so will be described when the techniques are presented. A differential surface area

around a point x is denoted by dAx.

2.2.1 Free Space Simplification

The techniques described in this thesis deal only with energy transport between surface points (x,y) ∈ A.

This assumption is also known as the free space simplification and it implies that interaction only occurs

at the surfaces of the objects in the scene, which greatly reduces the complexity of the task at hand. This

assumes the absence of any participating media, which would absorb or scatter energy. This means that

absorption and scattering only occur at surface points x ∈ A and self emission only occurs at surfaces.

This is a reasonable assumption for many indoor and architectural scenes where distances are lim-

ited such that atmospheric effects are negligible, however, effects such as smoke or dust particles in the

air are not accounted for. Many large scale outdoor scenes require participating media in order to take

into account mist, fog, atmospheric attenuation and other effects. In this thesis the focus is mainly on

2.2. Geometry 27

architectural and indoor scenes and participating media is outside the scope of this thesis and will not be

considered further.

Refer to [Bli82, KH84, Max86, NMN87] for previous work involving global illumination in the

presence of participating media.

2.2.2 Solid Angles & Directions

In global illumination techniques it is frequently appropriate to work with directions on a sphere sur-

rounding a surface point. This stems from the fact that light transport for a differential surface area is

defined as an integral over the sphere around the surface area8. The sphere around a surface point, say x,

can be partitioned into two sets; the set of directions above the point (H+
x), or, the positive hemisphere,

and the set of directions below the point (H−x); the negative hemisphere.

x

nx

tangent plane at xHx
-

Hx
+

Figure 2.2: The sphere around point x. H+
x denotes the upper hemisphere while H−x is the lower hemi-

sphere with respect to the tangent plane at x.

Above and below is defined with respect to the tangent plane at the surface point. Figure 2.2

illustrates this concept. More formally these sets can be defined as:

Ωx ≡ H+
x ≡ {∀Θx ∈ S2 : Θx ·nx ≥ 0} (2.1)

H−x ≡ {∀Θx ∈ S2 : Θx ·nx ≤ 0}, where S2 is the unit sphere of directions. (2.2)

The reason for this partitioning is that a large class of (opaque) surface materials only interacts with light

in the positive hemisphere of directions (Equation 2.1), in these cases it is wasteful, or even erroneous,

to include the negative hemisphere (Equation 2.2) in the quadrature. Since only opaque materials will

be considered in this thesis (see Section 1.2) an alternative notation for the positive hemisphere has been

introduced for clarity; Ωx (see also Appendix A for a table listing the notation used).

When an integral over the hemisphere (or sphere) is involved (
∫

Ωx
f (x,ω)dω) it is useful to be able

to treat the sphere (or hemisphere) as a linear dimension over which to integrate, which in turn requires

a definition of a differential unit area on the hemisphere to serve as the unit for the variable of integration

dω .

The solid angle is used for this purpose. Mathematically, it is a unitless quantity but for practical

reasons the standard unit steradians (sr) is commonly assigned, the sphere comprises 4π steradians. In

Figure 2.3 the differential solid angle dω around direction Θ is shown. The direction Θ can alternatively
8This will be formally introduced in Section 2.4

28 Chapter 2. The Global Illumination Problem

x

nx

dAx

dωΘ

θ

Θ

φ

a

Figure 2.3: Differential solid angle dω around direction Θ from surface point x.

be described in spherical coordinates by a pair of angles (θ ,ϕ) defined relative to the orthonormal

basis (a,nx,a×nx) originating at x, where × is a vector cross product (subsequently the nature of such

operators will only be stated if it cannot be derived from the context). The solid angle can then be

expressed as dωΘ = sinθdθdϕ .

Another quantity that will be used frequently is differential solid angle dω originating at a surface

point x expressed in terms of a differential surface area dAy around the surface point y along the direction

xy. This relationship is expressed in Equation 2.3 and illustrated in Figure 2.4.

dωΘ = dωxy =
cosθydAy

r2
xy

(2.3)

Equation 2.3 is used heavily in hemisphere integration tasks where the area subtended by a surface upon

the hemisphere over a point needs to be computed.

dAy

ny

x

y

rxy
Θ

θy

dωΘ

Figure 2.4: Geometric relationship between differential solid angle dωΘ and differential surface area

dAy.

It can also be useful to perform hemisphere integration tasks in spherical coordinates instead of

solid angles especially when working with hemisphere parameterisations (see equation 2.4).

∫
Ω

f (Θ)dωΘ =
∫ 2π

0

∫
π/2

0
f (ϕ,θ)sinθdθdϕ (2.4)

2.2. Geometry 29

2.2.3 Visibility & Ray Casting

Visibility determination is an important part of any global illumination algorithm since it determines

which surfaces can exchange energy with each other.

Visibility

Visibility for a pair of points is more formally defined as a function V (x,y) that returns 1 if x and y is

mutually visible, that is, no other surface obscures y as seen from x and 0 if there is an intervening9

surface between x and y, this is expressed in Equation 2.5.

V (x,y) =

1, if x and y are mutually visible;

0, otherwise.
(2.5)

In Figure 2.5 visibility queries are illustrated; point x on object P5 and point y on object P0 are mutually

visible, while point x′ on object P4 and point y′ on object P2 are not since surface points on object P3

obscures y′ from x′.

P4

P1

P0

P2

P3

P5

x

x'

x''

y'

y

Θ

Ψ

t' 0

t'' 0

Figure 2.5: Visibility and ray casting in E2 space.

Ray Casting

It is illuminating to rephrase the visibility concept: two points x and y are mutually visible if the line

segment starting at x in direction xy and terminating at y does not intersect any object in the scene. This

naturally leads to the ray casting problem, which is a more general visibility problem for ray segments

in n-dimensional Euclidian space En [Hav01]. Given a point x and a direction Θ the ray casting func-

tion determines the closest surface point visible from x along Θ. This is more formally expressed in
9Even if the intervening object is (partly) transparent the visibility is still considered blocked as the intervening object may

interfere with the transport between the points due to surface scattering, refraction or another such effect.

30 Chapter 2. The Global Illumination Problem

Equation 2.6.

r(x,Θ) = x+ tinf ·Θ (2.6)

tinf = inf{t > 0 : (x+ t ·Θ) ∈ A} (2.7)

If no point in A is visible to, say, x along Θ the ray casting function is undefined, {t > 0 : (x+ t ·Θ) ∈ A}

in Equation 2.7 returns the empty set and consequently infimum10 is undefined and tinf =∞ [Arv95]. This

may happen for open scenes. It is, however, simple to handle this special case in practice by assuming

some overall background emission or vacuum. In Figure 2.5 ray casting is illustrated; the nearest visible

surface point from x′′ on object P1 along Θ is (x′′+ t ′0 ·Θ) on object P2, and the nearest visible surface

point from x′′ on object P1 along Ψ is (x′′+ t ′′0 ·Ψ) on object P3. One obvious property of the ray casting

function is its reciprocal nature. If y is visible from x along direction Θ then x is visible from y along the

opposite direction −Θ.

let y = r(x,Θ) and x,y ∈ A

⇒ x = r(y,−Θ)

⇒ x = r(r(x,Θ),−Θ)

For a good overview of ray casting algorithms with visibility data structures and their efficiency

see [Hav01]. See [Wal04] for an overview of significant optimisation strategies exploiting hardware.

Exchange Lists

Given a scene O which forms a subset of three dimensional Euclidian space E3 consisting of simple

closed polyhedra P the surfaces of which are described by A, and a ray originating at x, where x lies

outside of any object P pointing in direction Θ with parametric definition y = x+ t ·Θ (see Figure 2.6). If

{t0, t1, . . . , tn} is a list of positive parametric t values representing intersection points with the scene, and

assume the absence of any grazing intersections11, this list must be either empty or its cardinality even;

this follows from the fact that if the ray enters the inside of an object P over a point x ∈ A it must also

exit the object P over a point x′ ∈ A, so every outside-inside transition is followed by an inside-outside

transition.

This partitions the ray into a set of ray segments; R = {(0, t0),(t1, t2), . . . ,(tn,∞)} that describe the

possible energy exchange pairs. Each such ray segment describe an interval in free space over which

radiance can be assumed to be constant as no transitions occur. Every such element excepting the first

and last is a segment over which bi-directional radiance exchange will take place, ie. mutually visible

pairs of surface points along Θ and for every such pair (ti, ti+1) (except elements 0 and ∞ in the first and

last pairs) it follows that n(x+ti·Θ) ·Θ > 0 and n(x+ti+1·Θ) ·Θ < 0; meaning that the ray at ti exits on the

upper hemisphere above the intersection point and the ray at ti+1 enters on the upper hemisphere above

the intersection.

10Infimum or inf is the greatest lower bound.
11A grazing intersection is an intersection through an edge or vertex, these special cases are easily handled by appropriate

sampling in a discrete setting. Or, alternatively, as treating it as a pair of intersections.

2.3. Radiometry 31

t0
t1

t2
t3 t4

t5
t6

t7
t8

t9

x

Θ

Figure 2.6: Exchange pairs in E2 space; pairs {(t1, t2),(t3, t4), . . . ,(t7, t8)} are mutually visible along the

ray originating at x in direction Θ and can exchange energy.

The first (0, t0) and last (tn,∞) segments are special cases where only t0 and tn are points that belong

to the scene thus the radiance travelling over these segments must be handled differently than other

exchange pairs. The solution is to either assume that scenes are properly closed such that no such pairs

can exist or let radiance enter and leave the scene allowing for open scenes. The techniques developed in

this thesis supports both open and closed scenes, and in Chapter 4 and Chapter 5 this is elaborated upon.

2.3 Radiometry
Energy transport will occur in systems of non-uniform energy. This is captured in the laws of thermody-

namics:

• 1st law of thermodynamics: The total energy in a (closed) system is conserved.

• 2nd law of thermodynamics: Heat flows spontaneously from a hot body to a cool one.

Energy can be transported spatially via three means; conduction, convection and radiation. In the con-

duction process energy is exchanged by direct inter-molecular collisions in a medium. When there is an

energy gradient within a medium, equilibrium is reached by transfer of energy from areas of high energy

to areas of low energy. This phenomenon is described by Fourier’s law of heat conduction (due to Joseph

Fourier 1768-1830). This is a microscopic effect of the 1st law of thermodynamics.

In the convection process energy is transferred by movement of the medium itself due to volumetric

expansion and pressure. As the volume of a medium increases its density decreases making it buoyant

causing displacement of the medium itself. This is essentially a macroscopic effect of the 1st law of

thermodynamics.

The radiation process deals with inter-medium energy transfer carried by photons of light in the

infrared and visible part of the electromagnetic spectrum. Radiative energy transfer, in contrast to the

two former modes of energy transfer, does not need an intervening medium.

So which of these conceptual models will best suit our purposes? Global illumination in computer

graphics attempts to visualise environments and model light in a way that accounts for the interplay

of light in complex environments. The environments in question are assumed to be large-scale in time

32 Chapter 2. The Global Illumination Problem

and space relative to the frequencies and wavelengths of light respectively. So our task is to acquire

a model that captures the phenomenological characteristics of light as it appears to the eye. Physical

optics as described by Maxwell’s equations is most appropriate at scales the order of the wavelength

of light where wave optics effects predominate, whereas geometrical optics ignores wave dependent

qualities of light and thus is not sufficient. Radiative transfer deals with light at a macroscopic scale,

yet it incorporates into the simulation theories describing what happens at microscopic scales, e.g. local

scattering, absorption and use of physically based material properties such as BRDF’s [Arv93]. Hence,

radiative transfer is appropriate for our purposes.

2.3.1 Terms and Units

Two sets of terms and units are commonly used to describe radiative exchange; they are lent from the

sciences of radiometry and photometry. Radiometry deals with measurement of optical radiation (wave-

lengths 0.01-1000 micrometres) whereas photometry deals with measurement of light which is elec-

tromagnetic radiation visible by the human eye (wavelengths 360-830 nanometres). The main differ-

ence apart from the spectral range is that radiometry employ objective physically based measurements

whereas photometry employs measurements weighed by the spectral response of the human eye. In

Table 2.1 and Table 2.2 the radiometric and photometric terms and units are shown.

Physical quantity Photometric name Photometric unit

Energy Luminous energy talbot

Flux Luminous power lumen (lm = talbot · s−1)

Angular flux density Luminance nit (lm ·m−2 · sr−1)

Flux density Illuminance lux (lm ·m−2)

Flux density Luminosity lux (lm ·m−2)

Luminous intensity candela (lm · sr−1)

Table 2.1: Photometric terms and units. Where s denotes unit time and sr is unit steradian (solid angle)

Physical quantity Radiometric name Radiometric unit

Energy Radiant energy joule (J = kg ·m2 · s−2)

Flux Radiant power watt (W = J · s−1)

Angular flux density Radiance (W ·m−2 · sr−1)

Flux density Irradiance (W ·m−2)

Flux density Radiosity (W ·m−2)

Radiant intensity (W · sr−1)

Table 2.2: Radiometric terms and units. Where s denotes unit time and sr is unit steradian (solid angle)

Since we are dealing with light transfer, and velocity of light is essentially infinite compared to

the velocity of objects in habitable environments, it is often assumed that (dynamic) equilibrium is

2.3. Radiometry 33

instantaneously reached thus yielding a steady-state distribution. Thus in the following the distinction

between power and energy will be ignored and flux will be the fundamental quantity.

2.3.2 Principles of Radiative Transfer

In the following the principles of radiative transfer will be covered and the fundamental quantities that

will be the focus of the remainder of the thesis will be derived.

Phase Space

For a function or object with n degrees of freedom, the n-dimensional space which is accessible to the

function or object is called its phase space. Phase space is a useful concept for describing the domain in

which light transport takes place. It comes from the field of transport theory12 which studies the motion

of particles in abstract settings [Vea97]. The phase space for general light transport can be described as a

system of N photons, each described by position x, direction ω and wavelength λ , assuming that light is

incoherent in all dimensions. Thus this system is 6N dimensional and a given static system state would

be represented as a point in this space, and the evolution of the system over time would be expressed

by a 1D curve in this space. Under the assumption that photons do not interact the phase space can

be described for single photons as a 6-dimensional state vector. Then a system of N photons can be

described as a set of N points in the 6-dimensional phase space varying with time. This is useful because

it yields a natural way of relating radiometric quantities to the density of photons in sub-regions of the

phase space, of which the most fundamental quantity is the photon number Np which counts the number

of photons in a region of phase space.

In order to illustrate the problem the phase space can be restricted to five dimensions by limiting the

scope to gray or mono-energetic radiative transfer with a constant velocity v by leaving out wavelength

dependence. The resulting domain becomes R3×S2, where R3 is Euclidian three-space and S2 is the

unit sphere of directions. Phase space density is a function defined over phase space and time:

n(r,ω, t)drdω

It relates a photon count to the differential volume dr about point r ∈ R3 in the differential solid angle

dω . Thus the unit for such a quantity is m−3 · sr−1 at a time t. Now in global illumination it is more

practical to consider the rate of flow across a surface [Arv93]. In Figure 2.7 this concept is illustrated.

It shows the flow of photons across the differential surface area dA with directions in the differential

solid angle dω about the surface normal at dA during time dt. With velocity v in time dt the photons are

contained in the volume dAds where ds = v ·dt. The photon count becomes:

n(r,ω)dAdsdω

Instead of focusing on the photon count in the volume it is useful to look at the rate of flow of photons

across dA:

φ(r,ω)≡ vn(r,ω)

12Transport theory is the field that encompasses all macroscopic phenomena resulting from the interaction of infinitesimal

particles with a medium. The macroscopic behaviours of photons, neutrons, and gas molecules are all within its purview. The

central equation of transport theory is known as the Boltzmann equation.

34 Chapter 2. The Global Illumination Problem

dA

dω

ω

ds

Figure 2.7: Phase space flux as flow over a differential surface dA.

The unit then becomes m−2 · sr−1 · s−1. And the count of photons in dAds is:

φ(r,ω)dAdωdt

The quantity φ (phase space flux) is the fundamental quantity of interest.

The abstract quantity of phase space flux can be translated into the radiometric quantity of radiance

by assigning a notion of energy to the photons; the energy of a photon is proportional to its frequency

E = hv, where h is Planck’s constant 6.626 ∗ 10−34, with unit j · s (joule second). The relationship

between phase space flux and radiance then becomes [Arv93]:

L(r,ω) = hvφ(r,ω)

= chvn(r,ω) (2.8)

Where c is the universal speed of a photon in vacuum, and the unit for this quantity is W ·m−2 · sr−1.

2.3.3 Properties of Radiative Transfer

There are a few important properties of energy transport that must be addressed:

• In a static scene flux is in equilibrium - When viewing any (static) scene the distribution of light

will appear constant, although light is flowing throughout the system. Also this equilibrium is very

quickly reached because of the speed of light.

• Light energy is conserved in a closed system - This is stated in the 1st law of thermodynamics.

The latter property is especially useful as it can be used to verify that light transport is done in a correct

manner.

2.3.4 Throughput T

The phase space of a differential surface area yields the following quantities:

d2T = dωdA⊥

T =
∫ ∫

dωdA⊥ (2.9)

2.3. Radiometry 35

2.3.5 Flux Φ

Flux is flow, in our case across a surface boundary (J · s−1 =W):

Φ =
dQ
dt

(2.10)

The principle of energy conservation as defined above applies to this quantity. As noted earlier we will

ignore temporal variation and assume that the system is in equilibrium, thus we need not make Φ a

function of time.

2.3.6 Irradiance E

The following is flux density arriving at a differential surface dA (W ·m−2):

E =
dΦ

dA
(2.11)

E is normally associated with incident radiation, so the term exitance M was introduced to denote radia-

tion leaving a surface. Radiant exitance is also commonly known as radiosity B.

2.3.7 Radiance L

x

y

xy

Lo(x,y)

x

Lo(x,Θ)

Θ

x

y

yx

Li(x,y)

x

Li(x,Θ)

Θ

Figure 2.8: Exitant and incident radiance.

Radiance is the radiant power per unit projected area perpendicular to the ray per unit solid angle

in the direction of the ray (W ·m−2 · sr−1):

L =
dE
dω

=
d2Φ

dωdA⊥
=

d2Φ

dωdAcosθ
(2.12)

Radiance is the fundamental quantity used to characterise the distribution of light in an environment.

Care must be taken when dealing with radiance and directions; incident and exitant radiance are two

distinct entities entirely. The notation in this thesis is as follows (see Appendix A):

• Lo(x,y) - denotes exitant radiance leaving point x in direction xy.

• Lo(x,Θ) - denotes exitant radiance leaving point x in direction Θ.

• Li(x,y) - denotes incident radiance impinging on point x from direction yx.

• Li(x,Θ) - denotes incident radiance impinging on point x from direction Θ.

36 Chapter 2. The Global Illumination Problem

dAx

nxθx

θy

dAy

ny
y

rxy

x

dωxy

dωyx

Figure 2.9: Radiance invariance geometry.

The notation above is illustrated in Figure 2.8. Incidentally, there is more than one way to describe

the same entities, for example Lo(x,y) = Lo(x,xy) and Li(x,y) = Li(x,yx) the reason that these duplicate

notations have been kept is that they simplify the notation in some equations. Radiance has the following

important properties:

• Radiance is invariant along a ray.

• Response of a sensor is proportional to the radiance of surfaces visible to it.

• Radiance is a fundamental quantity. Other quantities describing light are derived from it.

The implications of these properties will now be addressed.

Radiance Invariance

If we apply the free space simplification (eg. there is no energy loss between surfaces see Section 2.2.1),

the energy conservation principle tells us that, given two differential surfaces dAx and dAy and assuming

no other surfaces emit any flux towards dAy, the incident flux arriving at dAy must equal the exitant flux

at dAx sent towards dAy. The geometry of this concept is illustrated in Figure 2.9. This can be used to

show that radiance is invariant along straight paths, that is, the exitant radiance at a point x in direction

xy equals the incident radiance at y arriving from direction xy given that y is the closest visible surface

point as seen from x in direction xy, in other words Lo(x,xy) = Li(y,xy) where y = r(x,xy). This can be

shown using the definition of radiance in terms of flux (Equation 2.12), the notation d2Φx→y means total

2.3. Radiometry 37

flux leaving dAx arriving at dAy, and d2Φy←x is total flux arriving at dAy from dAx:

d2
Φx→y = d2

Φy←x (energy conservation principle)

Lo(x,y)cosθxdAxdωxy = Li(y,x)cosθydAydωyx (Equation 2.12)

Lo(x,y)cosθxdAx
cosθydAy

r2
xy

= Li(y,x)cosθydAy
cosθxdAx

r2
xy

(Equation 2.3)

Lo(x,y)
cosθxdAx cosθydAy

r2
xy

= Li(y,x)
cosθxdAx cosθydAy

r2
xy

Lo(x,y) = Li(y,x) (2.13)

Sensor Response

So, in the absence of participating media, radiance will not attenuate between surfaces and it is inde-

pendent of the surface area and the solid angle. Thus, radiance can be thought of as perceived intensity;

the quantity has been untied from angular and spatial areas. This is of great utility and together with

the ray invariance principle is what makes ray tracing work. This is also why the brightness of a wall is

independent of the distance from which you view it; given that the radiance is constant across the wall

(see Figure 2.10). Sensor response is proportional to:

R =
∫ ∫

LcosθdAdω = L
∫ ∫

cosθdAdω = LT

Now, dA remains constant since it is the differential area on the sensor and dω remains constant because

it is projected onto the unit sphere. Hence, the throughput T (see Section 2.3.4) remains constant and the

sensor response remains constant.

sensoraperature

Figure 2.10: Sensors and radiance invariance.

Derivation of Irradiance from Radiance

The incident power arriving at a differential surface area is an oft-needed quantity. In the following

irradiance is derived from the fundamental quantity radiance. Intuitively, radiance can be thought of as a

function L(x,Θ) that is integrated over the solid angle dωΘ subtended by the differential area x (around

38 Chapter 2. The Global Illumination Problem

direction Θ) and the projected area dAx cosθ yielding the flux leaving that area within that particular

solid angle (see Figure 2.7). Now, if we let dAx and dωΘ tend to zero we have the flux travelling along a

infinitesimally thin ray in direction Θ.

Φ =
∫ ∫

Lo(x,Θ)cosθdωΘdAx (2.14)

The incident flux density (power per unit area) at a differential area around x from direction Θ can be

found in terms of radiance by using Equation 2.12:

E(x,Θ) =
dΦ

dAx
= Li(x,Θ)cosθdωΘ (2.15)

However, the irradiance is the flux per unit area incident on a surface (W ·m−2), so we need to integrate

over the hemisphere over the surface:

E(x) =
∫

Ωx

Li(x,Θ)cosθdωΘ (2.16)

2.3.8 The Bidirectional Reflectance Distribution Function

The bi-directional reflectance distribution function (BRDF) provides a mathematical description of how

radiance scatters when striking surfaces:

fr(x,Θi,Θr) =
dLr(x,Θr)

dEi(x,Θi)
=

dLr(x,Θr)

Li(x,Θi)cosθidωΘi

(2.17)

The BRDF captures the reflective properties of the material of the surface. A large collection of BRDF

models exist for various materials, some of which are analytical and some which are measured [War92].

The BRDF is a 4-dimensional function (given that wavelength dependence is left out) that given an

incoming direction Θi and a reflected direction Θr over a surface point x yields a ratio of the incident

irradiance arriving at x from −Θi through a differential solid angle to the differential radiance reflected

into the reflected direction Θr. This yields a hemisphere of directions above x each emitting a differential

radiance value due to the incident irradiance at x from −Θi. The geometry of this is illustrated in

Figure 2.11.

x

nx
Θr θr

Θi

θi

dLr(x,Θr)

dEi(x,Θi)

Figure 2.11: Geometry of the BRDF.

It is often useful to be able to quantify the total reflected radiance due to the incident differential

irradiance over the hemisphere over a surface point. This can be achieved by integrating Equation 2.17

2.3. Radiometry 39

over the hemisphere; this is also known as the reflectance equation:

dLr(x,Θr) = dEi(x,Θi) fr(x,Θi,Θr)

Lr(x,Θr) =
∫

Ωx

dEi(x,Θ) fr(x,Θ,Θr)

Lr(x,Θr) =
∫

Ωx

Li(x,Θ) fr(x,Θ,Θr)cos(nx,Θ)dωΘ (2.18)

A number of variations on the BRDF exist:

• BTDF: Bi-directional transmittance distribution function is used to model transparent surfaces.

• BSDF: Bi-directional scattering distribution function is a more general mathematical description

of surface scattering. It is a union of two BRDFs and two BTDFs one each for the upper and lower

hemisphere surrounding the surface [Vea97].

• BSSRDF: Bi-directional subsurface scattering distribution function is used to model subsurface

scattering where the point of incident radiance may differ from the point where radiance exits

[JMLH01].

A few properties, pertaining to BRDFs, need to be addressed. Note, that these properties apply to BRDFs

not necessarily BTDFs or BSDFs [Vea97].

Helmholtz Reciprocity

Physical surface reflection is known to be symmetric [NRH+77]. E.g. the reflective properties remain

the same no matter which direction light travels. This means that Θi and Θr can be freely interchanged

in Equation 2.17:

fr(x,Θi,Θr) = fr(x,Θr,Θi) (2.19)

Energy Conservation

In order for the BRDF to be physically plausible it needs to adhere to the energy conservation principle.

More precisely, the total amount of power reflected over all directions can never exceed the total amount

of power incident on the surface. The difference in power is absorbed by the surface and converted into

other forms of energy (typically heat). This can be expressed in the following way [Dut96]. The total

irradiance over the hemisphere E is given by Equation 2.16, the total amount of reflected power is given

by M and depends on the BRDF:

M =
∫

Ωx

dωΘ

∫
Ωx

dωΨ fr(x,Θ,Ψ)Li(x,Θ)cos(nx,Ψ)cos(nx,Θ) (2.20)

So the energy conservation principle says that M
E ≤ 1 or:∫

Ωx
dωΘ

∫
Ωx

dωΨ fr(x,Θ,Ψ)Li(x,Θ)cos(nx,Ψ)cos(nx,Θ)∫
Ωx

dωΘLi(x,Θ)cos(nx,Θ)
≤ 1 (2.21)

Often Equation 2.21 is used to check the validity of a candidate global illumination algorithm. Clearly it

is not sufficient to prove that the algorithm solves the global illumination problem accurately, but if the

energy conservation condition is not met it is a good indication that the transport is not solved correctly.

In this thesis we will use Equation 2.21 as part of the validation.

40 Chapter 2. The Global Illumination Problem

2.4 Mathematical Framework for Global Illumination
The global illumination problem is governed by a pair of adjoint recursive integral equations; the radi-

ance equation and the potential equation. They are both Fredholm equations of the second kind and have

generally no analytical solution so they must be solved numerically [Dut96]. They are closely related

but approach the global illumination problem from different perspectives and thus have very different

interpretations. The following sections are devoted to these equations.

2.4.1 The Radiance Equation

The radiance equation is a slightly different form of the rendering equation introduced by Kajiya in

his seminal paper [Kaj86]. The radiance equation expresses the equilibrium of flux over points and

directions as the sum of emitted radiance and reflected radiance incident over the hemisphere. There

are two forms of the radiance equation, one form is defined in terms of radiance incident or exitant over

the hemisphere of directions and the other form is defined in terms of visible surface points, each of

these can in turn be described in terms of exitant or incident radiance yielding four forms of the radiance

equation.

x

nx

Θ

Θ

Θ

Θ Θ

Θ

Θ

Θ

Θo

Lo(x,Θo)

Le(x,Θo)

L i
(x
,-Θ
)

L i(x
,-Θ
)

L i(x
,-Θ
)

Li(x,-
Θ)Li(x,-Θ)

Li (x,-Θ)

L
i (x,-Θ)

L
i (x,-Θ

)

Figure 2.12: Geometry of the rendering equation; hemisphere integration.

Hemisphere Integration

The radiance equation is essentially the reflectance Equation 2.18 combined with self-emitted radiance.

The radiance equation can be written as follows:

Lo(x,Θo) = Le(x,Θo)+Lr(x,Θo)

= Le(x,Θo)+
∫

Ωx

Li(x,−Θ) fr(x,Θ,Θo)cos(nx,Θ)dωΘ (2.22)

Equation 2.22 expresses the outgoing radiance of a point x in direction Θo in terms of self-emitted

radiance Le(x,Θo) and the amount of incident radiance over the hemisphere Ωx over x that is reflected

into Θo. This is illustrated in Figure 2.12.

2.4. Mathematical Framework for Global Illumination 41

Equation 2.22 includes a mixture of incident and exitant quantities of radiance. It is more convenient

to either express the radiance equation in terms of exitant or incident radiance solely. Fortunately, due

to the radiance invariance principle (Equation 2.13) this is straightforward. The following equations

express the radiance equation in terms of exitant and incident hemispherical radiance respectively:

Lo(x,Θo) = Le(x,Θo)+
∫

Ωx

Lo(y,−Θ) fr(x,Θ,Θo)cos(nx,Θ)dωΘ, where y = r(x,Θ) (2.23)

Li(x,Θi) = Li
e(x,Θi)+

∫
Ωy

Li(y,−Θ) fr(y,Θ,Θi)cos(ny,Θ)dωΘ, where y = r(x,−Θi) (2.24)

Equations 2.23 and 2.24 are illustrated in Figure 2.13.

x

nxΘ

Θ

Θ

Θo

Lo(x,Θo)

Le(x,Θo)
Lo(y,-Θ)

Lo(y,-Θ) Lo(y,-Θ)

y=r(x,Θ)ny

y=r(x,Θ)

ny

y=r(x,Θ) ny
y=r(x,-Θi)

ny
Θ

Θ

Θ

Θi

nx

x

Li(x,Θi)

iLe(x,Θi)
Li(y,-Θ)

Li(y,-Θ)
Li(y,-Θ)

Figure 2.13: Geometry of the rendering equation; exitant and incident hemisphere integration respec-

tively.

Surface Integration

Depending on the application it can be more appropriate to integrate over visible surface points in the

scene rather than the hemisphere of directions. This transformation changes the integration domain from

the hemisphere of directions to visible surface points exploiting the visibility functions described in

Section 2.2.3. Equation 2.22 is rewritten replacing dωΘ by dAz where z is the closest visible point from

x in direction Θ = xz using Equation 2.3. This transformation yields the following equation:

Lo(x,y) = Le(x,y)+Lr(x,y)

= Le(x,y)+
∫

Ax

Li(x,z) fr(x,Θ,xy)cos(nx,Θ)
cos(nz,−Θ)

r2
xz

dAz, where z = r(x,Θ)

By using the visibility function (Equation 2.5) we can avoid the dependence of the integration domain

on x and arrive at the more general expression, which integrates over the entire surface area A:

Lo(x,y) = Le(x,y)+
∫

A
Li(x,z) fr(x,Θ,xy)cos(nx,Θ)

cos(nz,−Θ)

r2
xz

V (x,z)dAz

= Le(x,y)+
∫

A
Li(x,z) fr(x,Θ,xy)G(x,z)dAz (2.25)

where G(x,z) =
cos(nx,Θ)cos(nz,−Θ)V (x,z)

r2
xz

In Equation 2.25 the geometric function G(x,z), which quantifies to what extent x and z are able to

exchange energy, is introduced for clarity.

42 Chapter 2. The Global Illumination Problem

As was the case for integration over the hemisphere Equation 2.25 includes a mixture of incident

and exitant quantities of radiance. The following equations express the radiance equation in terms of

exitant and incident radiance respectively:

Lo(x,y) = Le(x,y)+
∫

A
Lo(z,x) fr(x,xz,xy)G(x,z)dAz (2.26)

Li(x,y) = Li
e(x,y)+

∫
A

Li(y,z) fr(y,yz,yx)G(y,z)dAz (2.27)

Equations 2.26 and 2.27 are illustrated in Figure 2.14.

y

x

z

z

z

z

z

Le(x,y)
ny

Li(y,z)

Li(y,z)

Li(y,z)
Li(y,z)

Li(y,z)

Li(x,y)

i

x

y

z

z

z

z

z

Le(x,y)

nx

Lo(x,y)

Lo(z,x)

Lo(z,x)

Lo(z,x)

Lo(z,x)

Lo(z,x)

Figure 2.14: Geometry of the rendering equation; exitant and incident surface integration respectively.

Linear Transport Operator Form of the Radiance Equation

The recursive radiance equation can be expressed more elegantly by introducing an integral operator.

The integral transport operator links the emitted and reflected parts of the radiance equation by trans-

forming one distribution of radiance into another distribution that expresses the initial distribution after

one reflection. The integral transport operator is T and it introduces a new function T L that is applied to

Equation 2.23:

Lo(x,Θo) = Le(x,Θo)+T L(x,Θo)

T L(x,Θo) =
∫

Ωx

Lo(y,−Θ) fr(x,Θ,Θo)cos(nx,Θ)dωΘ, where y = r(x,Θ) (2.28)

Again the integral can be shifted from the directional domain to surface points by exploiting the geomet-

ric function (see Equation 2.25):

Lo(x,y) = Le(x,y)+T L(x,y)

T L(x,y) =
∫

A
Lo(z,x) fr(x,xz,xy)G(x,z)dAz (2.29)

Equations 2.28 and 2.29 serve as powerful and intuitive tools for describing transport algorithms. They

are often used as a shorthand by assuming that they can evaluate (x,Θ) or (x,y) pairs defined in the

domain A×Ω. In this shorthand the radiance equation is simply L = Le + T L and T L describes the

component of L that is due to reflection only. Then radiance emitted by emitters is given by Le and T Le

gives the total reflected radiance which had its origin in the emitters but reflected once (see Figure 2.15(a),

2.4. Mathematical Framework for Global Illumination 43

(a) Le (b) Shoot L

(c) Reflect→ T Le (for clarity only bold hemispheres are shot fur-

ther)

(d) Shoot L

(e) Reflect→ T T Le

Figure 2.15: Shooting radiance from an emitter. For clarity not all paths in T Le are shot.

44 Chapter 2. The Global Illumination Problem

Figure 2.15(b) and Figure 2.15(c)), T T Le is the emitted radiance reflected twice (see Figure 2.15(d) and

Figure 2.15(e)) and T nLe is radiance reflected n times describing radiance due to paths of length n+ 1

back to an emitter. The operator can also be expanded out in a power series L = Le + T Le + T 2Le +

T 3Le + ... describing radiance due to paths of any length back to an emitter.

This concept is illustrated further in Figure 2.16 that shows a Cornell box where various radiance

distributions due to zero, one, two or three reflections are shown. The bottom row shows operator

expansion to a power series. In Figure 2.16(e) only emitted radiance Le is shown, in Figure 2.16(f)

radiance reflected once is added causing the box and objects to be directly illuminated, in Figure 2.16(g)

radiance reflected twice is added causing effects such as colour bleeding and finally in Figure 2.16(h)

radiance reflected thrice is added the effect of which is very subtle. The upper row of images shows

the radiance for paths of length one to four respectively, but the radiance is not summed up; only the

contribution due to the particular reflection is shown. In Figure 2.16(a) the initial radiance distribution

Le is shown, Figure 2.16(b) shows the distribution reflected once. In Figure 2.16(c) and Figure 2.16(d)

the distributions due to a second and third reflection is shown. Because the albedo of surfaces is normally

less than 1, the radiance for longer paths is substantially weaker due to absorption, the images have been

scaled for viewing purposes.

(a) Le (b) T Le (c) T T Le (d) T T T Le

(e) Le (f) Le +T Le (g) Le +T Le +T T Le (h) Le + T Le + T T Le +

T T T Le

Figure 2.16: Radiance distributions after 0-3 reflections. Image c and d are scaled by 5x and 15x respec-

tively.

2.4.2 The Potential Equation

The potential equation was first introduced to the computer graphics community by Smits [SAS92].

In his paper which exploits the duality of the rendering equation and its adjoint in order to improve the

effectiveness of a radiosity algorithm the term importance is used to denote the quantity distributed by the

adjoint transport equation. Later Pattanaik [Pat93b] used the duality to develop a taxonomy classifying

2.4. Mathematical Framework for Global Illumination 45

global illumination algorithms and used the term potential rather than importance. In the following the

naming convention introduced by Pattanaik will be used in order to avoid confusion with importance

sampling used in Monte Carlo methods.

Given a set S = AS×ΩS ⊂ A×Ω the potential equation expresses the potential influence of any

(x,Θ)∈ A×Ω on the illumination of S. More precisely, the potential W (x,Θ) is the flux radiated through

the set S as a result of a unit of radiance emitted through a differential volume around point x and direction

Θ:

W (x,Θ) =
d2Φ(S)

d2Φ(x,Θ)

=
d2Φ(S)

Lo(x,Θ)cos(nx,Θ)dωΘdAx
(2.30)

Potential is a dimensionless quantity. Due to the linearity of reflected radiance it is independent of the

magnitude of source radiance, so is merely a function of geometry and material properties. The emitted

radiance for (x,Θ) can influence the flux of S in two ways; directly or through one or more surface

reflections.

eye

pixel

set S

We(x,Θ)

(a) Exitant pixel potential

We(x,Θ)i

(b) Incident patch potential

Figure 2.17: Potential for a pixel set and a patch set.

If (x,Θ)∈ S then it is clear that the emitted radiance directly contributes to the flux of S; in this case

the potential W (x,Θ) = 1. This requires the existence of a function that can determine whether a given

point and direction belongs to the set, such function can be expressed as follows:

g(x,Θ) =

1, if (x,Θ) ∈ S

0, if (x,Θ) /∈ S
(2.31)

Now, the direct contribution can be formally expressed using W (x,Θ) = g(x,Θ). Analogously to the

radiance equation this contribution to the potential will be referred to as self-emitted exitant potential

We(x,Θ) or self-emitted incident potential W i
e(x,Θ). In Figure 2.17 self-emitted potential for two well

46 Chapter 2. The Global Illumination Problem

known sets is illustrated. The set in Figure 2.17(a) represents one pixel on the image plane of a pinhole

camera and the exitant potential for the set emanates from the solid angle of the pixel frustum, this set

is typically used with ray tracing and path tracing algorithms. The set in Figure 2.17(b) represents a

finite element, the set comprises the area of the patch and the entire hemisphere above it and the incident

potential is shown, this set is for example used with radiosity algorithms.

The radiance can indirectly contribute towards the flux of S through one or more surface reflections.

Surface reflections are governed by the BRDF of the surface (see Section 2.3.8) and a quantity of radiance

Lo(x,Θo) incident on a surface point y = r(x,Θo) results in an outgoing reflected differential radiance

value dLo(y,Θ) in each direction Θ. See Figure 2.18 for an illustration of this geometry.

y=r(x,Θo)

ny

Θo
dωΘo

dωΘo

Θ

dLo(y,Θ)

Lo(x,Θo)

nx

x

dAx

dAy

Figure 2.18: Indirect contribution to the flux of S.

Each of these differential radiances can contribute to d2Φ(S) and we need to integrate over the

hemisphere Ωy in order to arrive at an expression for the potential for (x,Θo) in terms of the potentials

over the hemisphere Ωy. Clearly this expression is recursive since any number of reflections can occur

before reaching the set S. The expression for the indirect component of the potential is:

W (x,Θo) =
∫

Ωy

W (y,Θ) fr(y,−Θo,Θ)cos(ny,Θ)dωΘ, where y = r(x,Θo) (2.32)

The full expression for the potential adds together the direct (Equation 2.30) and indirect (Equation 2.32)

contributions since it is quite possible due to the recursive nature of radiance that the potential value

can have both a direct contribution and an indirect contribution that undergoes several reflections. The

following expression gives the full potential equation:

W (x,Θo) =We(x,Θo)+
∫

Ωy

W (y,Θ) fr(y,−Θo,Θ)cos(ny,Θ)dωΘ, where y = r(x,Θo) (2.33)

The potential given in Equation 2.33 is clearly very similar to the radiance equation given in Equa-

tion 2.12, although each transport a different quantity they are mathematically identical. Potential as a

transport quantity is also invariant along straight lines as is the case for radiance.

Wo(x,Θ) =Wi(y,Θ), where y = r(x,Θ)

2.4. Mathematical Framework for Global Illumination 47

This allows us to give the potential equation in different forms: one based on purely incident potential

and another purely in terms of exitant potential. This is analogous to the radiance equations given in

Equation 2.23 and Equation 2.24. The counterparts for potential are given here for completeness:

Wo(x,Θo) =We(x,Θo)+
∫

Ωx

Wo(y,−Θ) fr(x,Θ,Θo)cos(nx,Θ)dωΘ, where y = r(x,Θ) (2.34)

Wi(x,Θi) =W i
e(x,Θi)+

∫
Ωy

Wi(y,−Θ) fr(y,Θ,Θi)cos(ny,Θ)dωΘ, where y = r(x,−Θi) (2.35)

Akin to the discussion on the radiance equation, the potential equation can also be expressed in terms of

surface points rather than the hemisphere of directions:

Wo(x,y) =We(x,y)+
∫

A
Wo(z,x) fr(x,xz,xy)G(x,z)dAz (2.36)

Wi(x,y) =W i
e(x,y)+

∫
A

Wi(y,z) fr(y,yz,yx)G(y,z)dAz (2.37)

Linear Transport Operator Form of the Potential Equation

As was the case for the radiance equation the potential equation can be elegantly expressed as a linear

series in terms of the integral transport operator Q:

Wi(x,Θi) =W i
e(x,Θi)+QWi(x,Θi)

QWi(x,Θi) =
∫

Ωy

Wi(y,−Θ) fr(y,Θ,Θi)cos(ny,Θ)dωΘ, where y = r(x,−Θi) (2.38)

Again the integral can be shifted from the directional domain to surface points by exploiting the geomet-

ric function:

Wi(x,y) =W i
e(x,y)+QWi(x,y)

QWi(x,y) =
∫

A
Wi(y,z) fr(y,yz,yx)G(y,z)dAz (2.39)

W i
e is the self-emitted incident potential and serves as a starting point for a potential distribution defining

the subset of A×Ω that is currently the region of interest. QW i
e is the incident potential for visible surface

points y = r(x,−Θi) from x that has undergone one surface reflection at x. This provides a shorthand for

describing distributions of incident potential, QnW i
e expresses the distribution of potential n reflections

away from the initial incident distribution, and the power series Wi = W i
e +QW i

e +Q2W i
e +Q3W i

e + . . .

describes the potential as the sum of potential for paths of any length. Figure 2.19 illustrates this concept

for up to two reflections.

2.4.3 Solutions to the Global Illumination Problem

The radiance equation and the potential equation are both Fredholm equations of the second kind. Typi-

cally, this kind of recursive integral equation has no analytical solution and has to be solved numerically.

In order to solve either of these equations in any one of its forms, hemispherical or surface integration,

exitant or incident, would require finding radiance values or potential values for all surface points and

all directions relative to those points (x,Θ) ∈ A×Ω. Due to the recursive nature of the equations, each

such point in the 5-dimensional space is (potentially) dependent on all other points making this problem

48 Chapter 2. The Global Illumination Problem

(a) W i
e (b) Reflect back

(c) Shoot→ QW i
e (d) Reflect back (for clarity only bold hemispheres are shot fur-

ther)

(e) Shoot→ QQW i
e (f) Reflect back

Figure 2.19: Shooting potential for a set. For clarity not all reflected paths in QW i
e are shot.

2.4. Mathematical Framework for Global Illumination 49

difficult to solve for the entire domain. Taking this route is intractable in practice due to its computational

complexity.

However, by assuming that radiance changes slowly for some collections of points and directions

the problem can be made viable by splitting the domain into a finite number of sets S = AS×ΩS ⊂ A×Ω

of points and directions for which an average radiance value is computed. This is achieved by computing

the flux leaving the set Φ(S) and dividing it by the total surface area and total solid angle (throughput)

of the set in question:

Lavg(S) =
Φ(S)
T (S)

(2.40)

The global illumination problem then reduces to computing the average radiance for the finite selection

of sets chosen to represent the problem. The number of such sets and their relative size depends on

the geometry of the environment, the material attributes and the desired accuracy of the solution. For

example irradiance and radiance cache algorithms compute fluxes with a sparse sampling of A×Ω under

the assumption that for diffuse and glossy surfaces values can be predicted by interpolating between the

average values represented by the chosen sets [WH92, KGPB05].

Computing Flux Sets with the Radiance Equation

More formally, S = AS×ΩS ⊂ A×Ω is the set of points and directions for which an average radiance

value is desired. The radiance equation expresses the outgoing radiance for a point in A×Ω, hence, the

radiant flux can be computed by integrating radiance over the points and directions in set S in question.

The flux leaving the set S can then be expressed as a double integral over points and directions belonging

to the set by exploiting the set dependency function (see Equation 2.31):

Φ(S) =
∫

A

∫
Ωx

Lo(x,Θ)g(x,Θ)cos(nx,Θ)dAxdωΘ

=
∫

A

∫
Ωx

Lo(x,Θ)W i
e(x,Θ)cos(nx,Θ)dAxdωΘ (2.41)

Intuitively, this method starts from S and works its way backwards towards emitting points for which the

emitted radiance is non-zero by evaluating the radiance equation.

Computing Flux Sets with the Potential Equation

Similarly, the flux leaving a set S can also be evaluated by applying the potential equation. Recall that

the potential equation provides a measure of the influence of an emitting point (x,Θ) on the flux of a set.

Conveniently, all self-emitting points in the environment are known; that is, all points for which Le 6= 0.

These initial radiance values account for the illumination of the entire environment in question. So, in

order to compute the flux for a set S only the potential of emitting points needs to be evaluated. The flux

in terms of the potential equation can be expressed as follows:

Φ(S) =
∫

A

∫
Ωx

Wi(x,Θ)Le(x,Θ)cos(nx,Θ)dAxdωΘ (2.42)

Intuitively, this works opposite to Equation 2.41 in that it starts from emitting points and works its way

towards points and directions in the set S for which the potential is non-zero by evaluating the potential

equation.

50 Chapter 2. The Global Illumination Problem

Unified Solutions to the Global Illumination Problem

In order to more clearly see the symmetry hinted at in the previous two subsections the linear trans-

port operator form of the radiance equation and the potential equation must be revisited. Earlier, two

operators T and Q were introduced. The transport operator T can transform an exitant distribution to an-

other exitant distribution whereas the operator Q transforms an incident distribution to another incident

distribution by reflection. Figure 2.20 illustrates both operators.

TFo

Fo

(a) Operator T

Fi

QFi

(b) Operator Q

Figure 2.20: Exitant transport operator T and incident transport operator Q.

In Section 2.4.1 the operator T was used to linearise the radiance equation in its exitant form Lo =

Le + T Lo, and in section Section 2.4.2 the operator Q was used to linearise the potential equation in

its incident form Wi = W i
e + QWi. However, since the radiance equation and potential equation are

mathematically identical other combinations are possible. The remaining two combinations are transport

of radiance in its incident form Li = Li
e+T Li and transport of potential in its exitant form Wo =We+QWo.

This provides a set of four distinct possibilities for transport in three-dimensional environments.

The symmetry between radiance and potential distributions is striking. In [Pat93a] Pattanaik argued

that the operators T and Q are in fact adjoint with respect to the following inner product13:

〈F1,F2〉=
∫

A

∫
Ωx

F1(x,Θ)F2(x,Θ)cos(nx,Θ)dAxdωΘ (2.43)

This inner product is designed to be able to capture all possible variations for integrating radiance

over a set S; it is essentially the ”skeleton” of Equation 2.41 and Equation 2.42. It contains the two

functions F1 and F2, which can be suitably replaced by a combination of radiance and potential equa-

tions. Mathematically the adjointness of T and Q with respect to the inner product above requires that

〈T F1,F2〉= 〈F1,QF2〉 is satisfied for all F1 and F2. The adjoint of T is denoted T ∗, so Q = T ∗.

In order to ”design” an expression for the flux of a set, a number of choices exist: Firstly, radiance

can be exitant and potential incident or radiance can be incident and potential exitant. Secondly, radiance

can be the transport quantity combined with an initial known potential distribution or potential can be

the transport quantity combined with an initial also known radiance distribution. This yields exactly four

mathematically equivalent formulations for the global illumination problem:

13A proof of this can be found in [Dut96].

2.4. Mathematical Framework for Global Illumination 51

Radiance transport Potential transport

Exitant transport Φ(S) = 〈Lo,W i
e〉 Φ(S) = 〈Li

e,Wo〉

Lo = Le +T Lo Wo =We +TWo

Incident transport Φ(S) = 〈Li,We〉 Φ(S) = 〈Le,Wi〉

Li = Li
e +T ∗Li Wi =W i

e +T ∗Wi

In order to arrive at a solution for the flux of a set starting from an inner product the unknown

function is substituted with its transport equation for either radiance or potential. An example of this is

shown in Equation 2.44 where exitant radiance is propagated against a known initial potential distribution

defining the set for which the flux is required.

Φ(s) = 〈Lo,W i
e〉

= 〈Le +T Lo,W i
e〉

= 〈Le,W i
e〉+ 〈T Lo,W i

e〉

= 〈Le,W i
e〉+ 〈T Le,W i

e〉+ 〈T T Lo,W i
e〉

= 〈Le,W i
e〉+ 〈T Le,W i

e〉+ 〈T T Le,W i
e〉+ 〈T T T Lo,W i

e〉 (2.44)

The first substitution produces two terms one of which contains only known terms 〈Le,W i
e〉 and one

that must be expanded further 〈T Lo,W i
e〉 because it contains the unknown function T Lo. Any term of the

expanded inner product can contribute to the flux of the set provided that there are (x,Θ) pairs with a non-

zero value for both the radiance and potential distributions. Physically, the first term in Equation 2.44

is the contribution due to self-emittance of the set this is only non-zero for emitters in the environment.

The second term contributes to the flux by way of direct lighting. This is radiance arriving directly from

emitters and is reflected once into (x,Θ) pairs that belong to the set thereby contributing to the flux

leaving the set. Finally, the third contribution is radiance from emitters reflected once and then reflected

into (x,Θ) pairs belonging to the set; one well known effect from this type of illumination is colour

bleeding.

Due to the fact that the operators are adjoint T can be shifted to T ∗ in the inner product at any stage.

This leads to many possible solutions which are mathematically equivalent. They are best illustrated as

a binary tree of possible series of the inner product starting at 〈Le,W i
e〉:

Φ(S) = 〈Le,W i
e〉+

〈Le,T ∗W i
e〉

〈T Le,W i
e〉

+

〈Le,T ∗T ∗W i
e〉

〈T Le,T ∗W i
e〉

〈T T Le,W i
e〉

+

〈Le,T ∗T ∗T ∗W i
e〉

〈T Le,T ∗T ∗W i
e〉

〈T T Le,T ∗W i
e〉

〈T T T Le,W i
e〉

+ . . . (2.45)

This tree illustrates how the propagation can be shifted from radiance to potential or the other way

around at any stage in expanding the inner product. The example illustrated in Equation 2.44 can be

found in Equation 2.45 by following the lower branch from 〈Le,W i
e〉 to 〈T T T Le,W i

e〉 and beyond. The

upper branch describe transport of potential and internal branches use a combination of both radiance

and potential transport by exploiting the adjointness of the transport with respect to the inner product.

52 Chapter 2. The Global Illumination Problem

Some of the solutions to computing flux for a set are more intuitive than others. Although mathe-

matically equivalent it is easier to work with exitant radiance than incident radiance in a transport setting

for the simple reason that emitters do not have self-emittance Li
e. Incident self-emitted radiance is only

defined (have a non-zero value) on points directly visible from emitters, which is rather awkward con-

ceptually. However, when working with exitant radiance Le is defined over the surface of the emitter

itself. Similarly, exitant potential only have non-zero values at points visible from the set not the set

itself. Thus, it is much more convenient to phrase solutions in terms of exitant radiance and incident

potential. In the following, solutions to the global illumination problem will generally be phrased in this

way. This leaves two main solutions; one based on transport of exitant radiance using the operator T and

the other based on transport of incident potential using the operator T ∗.

Finally, algorithms can be conveniently categorised by the way they expand the inner product.

Equation 2.45 nicely illustrates this by considering the lower branch, the upper branch and all the inner

branches separately.

The lower branch of the tree reaches a solution using transport steps for radiance given an initial po-

tential distribution defining the set. This amounts to finding paths of increasing length from the set back

to the emitters that carry non-zero radiance, intuitively this can be thought of as a gathering algorithm

since it gathers radiance values for the set.

On the other hand the upper branch of the tree reaches a solution using transport steps for potential

given an initial distribution of self-emitted radiance. This amounts to finding paths of increasing length

from emitting surface points to the set. Intuitively this can be thought of as a shooting algorithm since it

shoots radiance outwards from the emitting surfaces along paths of non-zero potential towards the set.

The remaining internal branches use a combination of transport steps for both radiance and potential

and can thus be thought of as bi-directional or hybrid methods.

2.5 Summary
In this chapter the principles of radiative transfer were outlined. The focus was restricted to three-

dimensional environments consisting of closed polyhedra made up of flat convex polygons devoid of

participating media.

In this context the radiance and potential equations were outlined. The radiance equation starts at

a given set and gathers radiance from emitters via paths from the set back to emitters. The potential

equation on the other hand shoots radiance outwards from emitting surfaces along paths of non-zero

potential toward the set. Both transport equations are recursive integral equations and are known as

Fredholm equations of the second kind. Typically, this kind of recursive integral equation have no

analytical solution and have to be solved numerically.

From those equations four ways of computing flux for an arbitrary set S were derived in terms of an

inner product of linear transport operators and an initial distribution of potential and emitted radiance.

Of those, transport of exitant radiance with an initial incident potential distribution and transport of

incident potential with an initial distribution of exitant emitted radiance were emphasised since they are

intuitively simpler to visualise. These were further shown to be mathematically equivalent since incident

2.5. Summary 53

and exitant transport with respect to the inner product of radiance and potential are adjoint.

Finally, the methods were categorised as shooting, gathering or bi-directional based on their be-

haviour in terms of transport.

54 Chapter 2. The Global Illumination Problem

Chapter 3

Global Illumination Methods

Over the last five decades a vast amount of research has been carried out in the field of global illumination

ranging from Appel’s hidden line drawings [App67] to light field rendering [GGSC96, LH96], and more

recently methods for dynamic environments running at interactive rates [DSDD07, RGKS08, ML09].

Any thesis in this field would be incomplete without a summary of past work, but clearly any such

summary will be imperfect due to the amount of work that deserves mention. In the following sections

only the most relevant work is discussed and summarised.

A taxonomy for global illumination algorithms is developed and past work is summarised in this

context. Emphasis is placed on techniques that offer real-time walkthrough and work well with indoor

architectural scenes typical in VR scenarios and exhibiting complex light paths. This is followed by a

separate section that discusses the field of global illumination on graphics processing units (GPUs), since

the work presented in Chapter 5 relies on concepts from this field.

3.1 A Taxonomy for Global Illumination Algorithms
There are many properties of global illumination algorithms that could be emphasised and used as a basis

for a taxonomy. A classification could be based on whether the method is pixel based or finite element

based, whether it is stochastic or deterministic, whether it solves the global illumination problem fully or

only partly, or whether it is real-time or used for high-quality rendering. Most algorithms, however, fall

into more than one of these categories. In this chapter a more fundamental property of the algorithms are

used to provide the initial classification; namely whether the algorithm uses gathering or shooting light

transport or a combination of the two.

This division was formalised in Section 2.4, which illustrated that all global illumination algorithms

can be described by an inner product of a potential distribution and a radiance distribution. An initial

known potential distribution defines the set of points and directions for which a measure of flux is re-

quired. At the other ‘end’ an initial known distribution of radiance defines emitted flux at surfaces. The

goal is to compute the quantity of flux that reaches the set through any number of reflections; integrating

all possible paths between the set and the emitting surfaces. The distinction is then based on which of

these initial distributions transport steps are applied to.

A gathering algorithm applies transport steps to emitted radiance given an initial known potential

56 Chapter 3. Global Illumination Methods

distribution that describes the set for which the flux is required; this process can be thought of as finding

paths of non-zero radiance from the set towards the emitters. Essentially gathering radiance from the

environment surrounding the set.

Conversely, a shooting algorithm applies transport steps to potential given an initial known radiance

distribution that describes the flux at the emitting surfaces; this can be thought of as finding paths of non-

zero potential from the emitter towards the set. Essentially shooting radiance outwards towards the set.

There is a third group of algorithms - known as hybrid, multi-pass or combined methods - which

use a combination of transport steps for radiance and transport steps for potential. These methods seek

to combine the strengths of both approaches while avoiding the weaknesses.

The exposition will show that from an algorithmic standpoint certain modes of light transport, that

are difficult to handle with the gathering approach, are more easily handled by the shooting approach.

Conversely, there are certain parts of a global illumination technique that greatly benefits from using a

gathering approach. The following will clarify the origins of the VLF [SMKY04] approach; its data

structures, global illumination simulation technique and rendering methods. It will become apparent that

the VLF approach spans all three categories of this classification in its attempt to provide a solution to

globally illuminated walkthroughs of architectural scenes.

In the following the Heckbert light transport notation [Hec90] is used to describe the types of

transport supported by the techniques. See Appendix A.5 for a description of the notation.

3.2 Gathering Methods
In the following gathering global illumination methods are summarised.

3.2.1 Gathering Radiosity Methods

Radiosity was among the first algorithms to produce globally illuminated renderings. The technique was

inspired by research in thermal engineering in the 1950s and was introduced to the graphics community

in the mid 1980s [GTGB84, NN85].

It is based on the assumption that diffuse illumination changes slowly across a surface such that

it is possible to subdivide each surface into a (relatively small) set of patches for which the flux can be

assumed constant, but yet still approximates the illumination across the surface well. An amount of initial

flux stored in (some) of these patches is transported to other patches visible to them. Relative visibility is

captured by the form-factor between a pair of patches; this is a geometric quantity that gives the fraction

of total outgoing flux from one patch reaching another patch. Due to the directional independence of

reflected radiance from a diffuse surface, the surface reflectance function fr can be moved outside the

radiance integral Equation 2.22, greatly simplifying the resulting equation by allowing interactions over

large solid angles to be performed in a single step.

In an environment comprising N patches, the method explicitly creates a global system of N linear

equations to describe energy equilibrium between the patches in the environment. The equilibrium

radiosity values are obtained by solving this system of equations.

The radiosity algorithm stores a single radiosity value for each patch because of the directional

3.2. Gathering Methods 57

independence of radiance from a diffuse surface; thus it only accounts for diffuse interactions L(D)∗E.

However, it supports area light sources intrinsically and exhibits important effects such as soft shad-

ows and colour bleeding. The method is interesting not only historically but also because it is the first

method to allow interactive walkthrough of a globally lit environment. This is due to the fact that diffuse

reflections are view-independent making it possible to pre-compute a set of textures capturing the diffuse

interreflections for use during interactive walkthrough.

In [GTGB84] only unoccluded environments were supported, in [NN85] support for approximate

occlusions was added based on vertex visibility, but the complexity of the method restricted its use to

simple environments. Gathering radiosity was made practical for more complex scenes by introducing

the hemi-cube that allows fast computation of form factors that take into account occlusion [CG85].

In that paper it was also noted that for a static environment it is possible to change lighting conditions

and re-use the form-factor matrix to compute a new radiosity solution quickly. However, the method

requires computation on the order of O(N2) in the number of patches because all form-factors are com-

puted before the matrix solution is started. This also means storing on the order of O(N2) form-factors,

which given the memory capacities at the time quickly became overwhelming for even relatively simple

environments. The form-factor computations by far dominate the computational cost of the method.

Further work on radiosity is largely restricted to progressive or shooting radiosity algorithms, which

are described in Section 3.3.1.

3.2.2 Ray Tracing and Path Tracing

Ray tracing was the first algorithm to produce images with global illumination effects. Also, it is one

of the few algorithms that accounts for the complete set of light paths; L(S|D|G)∗E. This section sum-

marises early and more recent research in ray based global illumination.

Ray Casting and Direct Lighting

In [App68] Appel presented a novel algorithm capable of generating views of solids with appropriate

shadows due to a number of point emitters in an attempt to add chiaroscuro1 to computer generated

images. The most important finding was, that the intensity of a visible point in a novel view of a three-

dimensional scene - lit by arbitrarily placed point emitters - could be computed by integrating the visi-

bility from the point to these emitters with respect to the geometry of the environment. This solves the

direct lighting problem and accounts for L(D|G)E light paths. The method was greatly hampered by

hardware limitations, especially that of display devices.

Recursive Ray Tracing

In Turner Whitted’s seminal paper [Whi80] ray casting was extended to include reflections and refrac-

tions in addition to shadows by introducing a shading model that uses global information to calculate

intensities. The fundamental idea was to trace rays from the eye of the observer through a pixel on the

image plane of a camera model into the environment, in order to sample the intensity of light reaching

the eye from that pixel. A tree of such rays is recursively constructed by tracing a ray into the scene
1An artistic technique developed during the Renaissance, referring to the use of exaggerated light contrasts in order to create

the illusion of volume. (source: Wikipedia, http://en.wikipedia.org/wiki/Chiaroscuro)

58 Chapter 3. Global Illumination Methods

and calculating the nearest intersection with a surface, where a shader is executed spawning new rays

towards other surfaces and emitters. Finally, the tree is traversed bottom-up and a radiance value is pro-

duced for the pixel. The method only supports specular surfaces and point emitters because they can

be easily evaluated by a single ray; thus the method accounts for L(D|G)?(S)∗E light paths. However,

the method produces important effects such as (sharp) reflections, (sharp) refraction and (hard) shadows.

Also a deterministic adaptive anti-aliasing approach is applied providing sub-pixel accuracy. Diffuse

interreflections are replaced by a single global ambient term. The method is elegant, supports polygonal,

parametric, instanced and procedural geometry as well as constructive solid geometry [Rot82] and is

easily implemented. As was the case for radiosity, the visibility computations by far dominate the com-

putational cost; they can account for as much as 95% depending on the environment. The computational

cost of the technique generally restricts it to off-line use.

Distribution Ray Tracing

Some of the fundamental weaknesses of the method were solved in [CPC84] by stochastically sampling

integrals over time, pixel area, lens area and reflectance. An important aspect is that the sampling does

not introduce extra rays beyond those used for spatial oversampling required by the Nyquist-Shannon

sampling theorem (addressed specifically in [Coo86]). Since the integrals are nested, rays that are

spawned at each step lead to a combinatorial explosion that will quickly overwhelm the computational

resources available. The ray tracing approach is seen as a point sampling method subject to aliasing

that, however, can be filtered by distributing rays over the dimension defined by the integral at hand. It

is shown that the apparent aliasing in many of the earlier ray based methods is a consequence of using

regularly spaced samples, and that frequencies above the Nyquist limit, if sampled non-uniformly, are

subject to noise that is much more visually acceptable than aliasing artifacts. Sampling in time produces

motion blur, sampling the lens produces depth of field, sampling the solid angle subtended by an area

light source produces soft shadows and sampling the reflectance function produces gloss and translu-

cency. Still the method is not suitable for environments with diffuse surfaces. The method assumes

that the reflectance functions can be importance sampled and the most significant contributions can be

sampled with only a few samples. With a diffuse BRDF, all directions contribute equally2 to the integral

and very many samples are required to avoid noise. The method accounts for L(D)?(S|G)∗E light paths.

Also, coherence between rays is not exploited; the algorithm starts from scratch for each pixel. The

algorithm is not real-time and is mainly used for high-quality rendering.

Path Tracing

The distribution ray tracing algorithm naturally led to the study of Monte Carlo methods for solving

the global illumination problem, which dominated research in the field in the 1990s. In [Kaj86] Kajiya

introduced path tracing, which differs from distribution ray tracing in some significant ways. Instead of

using a ray tree the method estimates the radiance of a pixel with a number of paths. The motivation for

this is that first generation rays and light rays contribute most to the pixel integral in terms of variance.

2Cosine weighted sampling can be used to sample the area near the equator less densely, since it is less likely to contribute

much to the integral.

3.2. Gathering Methods 59

Conventional ray tracing spends the vast bulk of computation on a widening ray tree that increasingly

contribute less to the variance of the image; later generations of rays are overrepresented. By employing

ray paths instead each generation has the same number of rays. The importance of sampling densely in

interesting parts of the domain and sparsely in parts where the integrand is nearly constant was also noted,

and a number of criteria for selecting such samples were presented (although not used to compute the

results). The method accounts for all possible light interactions L(S|D|G)∗E, although it has difficulties

handling caustics adequately. In [AK90] Arvo and Kirk introduced russian roulette to truncate paths in

an unbiased manner. Shirley [Shi90b] proposed to send a single shadow ray to a random point chosen

from all the light source surfaces, rather than a random point on each. The fundamental problem with

Monte Carlo integration is that the variance of an estimate approximated by N samples is proportional to

1/N, thus the standard deviation is proportional to 1/
√

N, which means that in order to halve the error

N must be quadrupled. Often traditional path tracing requires on the order of hundreds or thousands of

samples per pixel to compute a noise free image requiring hours to render a frame.

Fast Ray Tracing for Global Illumination

Recently ray tracing performance has been improved by several orders of magnitude [Wal04, RSH05,

FCM09]. Parker et. al. [PMS+99] introduced a Whitted-style ray tracer running interactively on a high-

end parallel architecture with soft shadows and an improved method for representing the ambient term.

However, the additions of soft shadows and diffuse lighting is achieved in an ad-hoc manner and is not

physically based, also only a limited number of dynamic objects were supported. [RSH00, WBS03]

introduce systems running on large clusters supporting scenes with many dynamic objects requiring

updates to acceleration structures, however the lighting models used were simplistic. In [WKB+02]

many global illumination effects such as soft shadows, colour bleeding and caustics were supported at a

couple of frames per second on a cluster with up to 24 CPUs. However, due to the low number of samples

per pixel (20-30) higher order illumination effects were ignored and direct caustics were simulated with

only 500-1500 photons per light source. In [WDB+06] frame rates were improved and support for BTFs

and HDR environment lighting was added, still the low ray budget for each pixel preclude representing

high order global illumination. Nevertheless, the results are impressive considering that many global

illumination effects are accounted for and computed nearly from scratch for each frame.

3.2.3 Caching Methods for Global Illumination

One of the main limitations of ray based methods for global illumination is that they often recompute the

radiance integral from scratch for each image sample. No use is made of the possible coherence between

nearby samples. The section covers techniques that address this issue.

(Ir)radiance caching

One of the first systems using a caching approach to speed up a Monte Carlo technique was devised by

Ward et. al. [WRC88]. The method separates the illumination computation at a surface intersection

into a direct component, specular reflection and an indirect component. The first two are solved in the

traditional way (see [Kaj86]). The fact that indirect illumination is slowly changing is exploited and

60 Chapter 3. Global Illumination Methods

because diffuse illumination is expensive to compute it is sparsely sampled. The indirect component is

either reconstructed from existing samples nearby, or, if no such samples are available, a new sample

is computed and stored in an octree for later reuse. Irradiance gradients [WH92] are used to assign

a weight to a sample based on the inverse of the estimated error of that sample. The error estimate is

proportional to distance and angle between the normals. Only samples with an error less than a user-

specified threshold is used to reconstruct a sample. However, the system only accelerates computation

of irradiance on perfectly diffuse surfaces, low-frequency glossy surfaces for example are not supported

leaving the Monte Carlo technique to sample these at a high computational cost. With some complex

geometries the error heuristic is not appropriate and artifacts may result. Also, searching the octree for

appropriate candidate samples can be expensive.

The technique has been extended [KGPB05] to add support for low-frequency glossy BRDFs by

storing view-dependent information using (hemi)spherical harmonics. Greger et. al. [GSHG98] have

proposed a similar method that pre-compute and store a volumetric approximation to the irradiance

function, that can be used for semi-dynamic environments. However, the method would require a very

dense volume to support accurate irradiance at surfaces.

Ray caching

Since path and ray based global illumination methods may require hundreds of samples per pixel, thus

requiring millions of rays per frame, interaction is often not possible. However, decoupling the rendering

from the radiance sampling process can facilitate interactive rates. Consequently, the sampling and

display processes run asynchronously requiring an intermediate caching method for storing the global

illumination samples and making them available to the display process. An image is then formed by

reprojecting and/or interpolating available cached samples. These methods are useful when the cost of

computing new samples is sufficiently higher than the cost of the caching and interpolation step.

A system based on this approach is Ward. et. al.’s ”Holodeck Ray Cache” [Lar98]. Global illu-

mination samples computed with the Radiance software [War94] are stored together with their ray in a

large data structure stored on disk and cached in memory. Coherent rays are stored together as beams for

efficient access. When forming an image the display process requests beams that pass near the eye point

within the view frustum, these are partly read from the data structure and re-computed by ray tracing

processes. Any re-computed beams are stored in the data structure for later reuse. The image is formed

by reprojecting appropriate rays to get correct image positions for the samples and using a quadtree rep-

resentation to fill the screen. The method suffers from disturbing artifacts near silhouette edges caused

by occlusion errors due to rays not passing exactly through the viewpoint but near it. The approach,

however, supports full global illumination with arbitrary BRDFs since the illumination is stored in a

view-dependent data structure. The method was extended in [WS99] where OpenGL rendering of the

original geometry was used to improve the appearance of silhouette edges and local dynamic objects was

supported by deriving local lighting from the Holodeck environment as in [WAL+97]. An interesting

observation is that the Holodeck is essentially lazily building a 4D light field.

Simmons and Séquin’s ”Tapestry” [SS00] is an extension to the Holodeck; it constructs an im-

3.2. Gathering Methods 61

age using mesh reconstruction building a 2D Delaunay triangulation from projected samples which is

touched up during viewpoint motion. This method also lacks sharp edges at discontinuities but because

of the 3D mesh representation samples have a longer cache life.

Render cache

Walter et. al.’s ”Render cache” [WDP99] is very similar to the Holodeck approach. It projects cached

samples to the image plane and uses depth culling rejecting samples significantly different than the

average of a small local neighbourhood. A 3x3 weighted filter is used to fill in pixels to which no

samples were projected. In order to guide the sampling process to compute samples that yield maximum

benefit, a priority image is generated using a heuristic that assigns a high priority to old samples, pixels

that have no samples associated and pixels on dynamic objects. Error diffusion dithering is used to select

samples to compute from the priority image providing both a good spatial distribution and concentration

of samples in high priority regions. Rigid body transformations applied to objects can also be applied

to samples lying on them in the projection step to improve tracking of such samples. The cache used

is relatively small and samples are replaced in a fast approximate LRU fashion. This approach can

achieve interactive frame rates with ray tracing for modest image resolutions, but suffers from artifacts

especially during motion. It is also sensitive to noise in computed samples (i.e. when using Monte Carlo

techniques) causing samples to be discarded prematurely. The technique was extended in [WDG02]

adding improved filtering capable of filling larger holes, predictive sampling, improved memory access

coherence based on tiling, an improved sample eviction scheme removing stale samples faster and SIMD

optimisations.

Bala et. al.’s ”Edge and Point Images” [BWG03] is an extension to the Render cache that addresses

the problem that complex illumination can not be interpolated across discontinuities without causing

blurring. The method computes sparse samples with the Render cache and interactively detects image

plane discontinuities such as silhouettes and shadow edges. Pixels are reconstructed by interpolating

nearby samples that are not separated by a discontinuity edge.

Shading cache

A similar approach is Tole et. al.’s ”Shading cache” [TPWG02]. Instead of caching samples in image

space it is an object space approach that caches global illumination samples at the vertices of a hierar-

chical subdivision mesh which can be rendered with graphics hardware. Using a priority map the mesh

is lazily refined by selecting locations in the image plane that either requires more accuracy or have stale

samples. Subdivided patches no longer in view are deleted to reduce the mesh complexity and maintain

interactivity. Dynamic objects are given high priority in order to resolve shading errors due to motion.

This method avoids the edge artifacts plaguing the Holodeck and Render cache but is still subject to

potentially disturbing artifacts due to stale samples. Also because object motion is instantaneous using

graphics hardware the latency of the shading can cause effects such as shadows not being able ”to keep

up”.

A similar object space approach [SHSS00] uses a set of ”corrective textures” to update global

illumination effects on objects rendered with graphics hardware. Textures are projected onto composite

62 Chapter 3. Global Illumination Methods

non-convex objects using point projection from the current viewpoint, this, however, causes artifacts

when the depth range of objects is large. The projection during viewpoint motion is also subject to

texture flow.

3.2.4 Light Fields

An alternative representation of a global illumination solution is to capture and store the 5D plenoptic

function [MB95] for an environment. The function represents flow of light (radiance L) at any point

in space (x,y,z) in any direction (θ ,φ) for any given time t and any given wavelength λ . We assume

time independence since we are working with static scenes, and also assume wavelength independence.

In order to sample this function L(x,y,z,θ ,φ) a discretisation of (x,y,z,θ ,φ) must be chosen and the

radiance computed for each sample in the discrete representation. Novel views can be generated from

a light field by resampling a 2D slice from the 5D data structure. Rendering time is independent of

the scene geometry and illumination complexity and interactive walkthroughs of a static scene can be

achieved.

The first techniques using this approach was Gortler et. al.’s ”Lumigraph” [GGSC96] and Levoy

and Hanrahan’s ”Light Field” [LH96]. They both assume a single bounded object so that the plenoptic

function can be reduced to 4D. The parameterisation is a box bounding the object consisting of six light

slabs. A light slab consists of a pair of 2D planes (u,v) and (s, t), each oriented line between the planes

(u,v,s, t) stores a single radiance value L(u,v,s, t). The methods can build such a representation from

both synthetic objects and real objects by capturing images and sampling the 4D data structure from

them. Rendering from the representation can achieve interactive rates. The data structure can be large

(gigabytes) but compression rates of 200:1 are possible. The main limitation of these techniques is the

restriction to a single bounded object. Also, the methods show noticeable artifacts when the camera

crosses the boundary between two light slabs due to non-uniformity of the line density.

Ihm et. al. [IPL97] used a different parameterisation for a 4D light field based on a positional

sphere parameterised by (θp,φp) enclosing the object. Each point (θp,φp) is the origin of a directional

sphere parameterised by (θd ,φd), yielding a global line density based on (θp,φp,θd ,φd). Rendering is

performed in object space by rendering the triangles of the polyhedron that discretised the positional

sphere. The vertices are assigned a radiance value resampled from the directional sphere and graphics

hardware performs interpolation. The spherical light field is compressed using wavelets.

Surface light fields were introduced by Miller [MRP98] and extended by Azuma [Azu99] and Wood

[WAA+00]. The surface light field uses a 4D parameterisation, where the first two parameters (u,v)

describe a point on the surface of the object and the last two (s, t) define the orientation relative to the

tangent coordinate frame at the point, essentially defining a direction leaving the surface point. Radiance

is sampled for a discretisation of this parameterisation from real or synthetic objects and rendering can

be done at interactive rates. The methods are still limited to single objects and the rendering complexity

is no longer independent of the geometric complexity of the object.

3.2. Gathering Methods 63

Uniform Light Field Parameterisations

Camahort et. al. [CLF98] introduced two additional parameterisations; the two-sphere parameterisa-

tion (2SP) and the direction-point parameterisation (DPP) and generalised existing parameterisations

evaluating them in terms of features and rendering artifacts [CF99, Cam01]. The DPP parameterisation

indexes the light field first by direction (θ ,φ) then by position (u,v) on a plane orthogonal to the direc-

tion. DPP-based models expect the light-field data to be stored and accessed in that order. Discretisation

uses a (nearly) uniform tessellation of the sphere, then for each direction a uniform grid is imposed on

an orthogonal plane. It was noted [Cam01] that the disparity artifacts suffered by the light slab (2PP)

parameterisation is caused by the non-uniformity of the line density and is intrinsic. As the angle β

between the line connecting the two planes and the plane normal increases, the line density decreases

with cos2 β , because the planes are uniformly subdivided. The problem is that the parameterisation is not

statistically uniform in its continuous form, and thus cannot be discretised simply by sampling the pa-

rameters uniformly. This can only be fixed by using a non-uniform subdivision of the planes that account

for the cos2 β directional discrepancy. Such non-uniform representations are unwieldy and impractical

to implement.

The continuous DPP parameterisation on the other hand is provably statistically uniform [Cam01]

and a uniform discretisation can be obtained by uniformly sampling in (θ ,φ) and (u,v). Further, a 5D

parameterisation can be obtained by sampling along the lines originating on the orthogonal plane. If

the free-space simplification is assumed the sampling can be limited to surface points only without loss

of generality. In spirit this is similar to the layered light field [LR98], which stores view-dependent

information in a collection of layered depth images [SGwHS98] corresponding to directions uniformly

distributed on the unit sphere. In this thesis a similar 4.5D DPP parameterisation have been chosen to

form the basis for the main data structure introduced in Chapter 4.

3.2.5 Summary

Of the methods discussed in this section only light fields and path tracing account for all possible light

paths. The caching methods mostly use path tracing as their underlying ‘engine’ and can be seen as

optimisations to the method.

The light field methods are attractive because they can produce images in constant time, but they

only apply to single objects and thus can not be applied to the type of environments targeted in this thesis.

However, in Chapter 4 the idea of using a view-independent data structure will be utilised and extended

upon so as to support scenes with many objects. Path tracing is attractive due to its per screen pixel

O(logN) complexity but on the other hand it converges slowly; the convergence rate with N samples

is O(1/
√

N). It works best with mostly specular scenes with small emitters and even when a caching

scheme is used it will struggle to maintain interactive rates in an indoor mostly diffuse scene with large

area emitters and complex light paths. Small secondary emitters are also difficult to handle with eye

based approaches [WRC88]. Also, it is difficult to guarantee a certain frame rate since the computation

time is tied to the visible geometric and illumination complexity and this can vary greatly between

frames.

64 Chapter 3. Global Illumination Methods

3.3 Shooting Methods

In the following Section shooting global illumination methods are summarised. This will cover progres-

sive radiosity methods and Monte Carlo based techniques, which have traditionally been applied to solve

the integrals in popular shooting algorithms such as Photon Mapping. Global line methods, which are

related to the methods developed in this thesis, are also described here.

3.3.1 Shooting Radiosity

In [CCWG88] Cohen et. al. introduced the first shooting radiosity technique. The algorithm exploits the

fact that patches which radiate the most energy will typically have the greatest effect on the illumination

of the environment. Reordering the algorithm to shoot energy from one patch updating all the others and

displaying the result of this update immediately, will provide an approximate solution much earlier than

previous methods. It was noted how this approximates the way light propagates through an environment

starting at the emitters. This also eliminates the need for pre-computing all the n2 form-factors and

storing them before the radiosity process can begin. The form-factors are computed on-the-fly with the

hemi-cube [CG85] as needed. In the early stages of the solution an ambient term based on the current

estimate of radiosities and the reflectivity of the environment is added to account for unshot radiosity.

The algorithm produces a ‘useful’ estimate in time linear to the number of patches. Wallace et. al.

[WEH89] used ray tracing for vertex form-factor calculation to avoid aliasing inherent in the hemi-cube

approach. Chen [Che90] extended the method to support dynamic changes to the scene by incrementally

updating the radiosity values after a scene change.

Hierarchical radiosity [HSA91] reduces the number of needed interactions to O(N) by observing

that form-factors between patches far apart can be computed at a coarse level of detail with error similar

to computing it at a finer level of detail. The reason is that the magnitude of the form-factor is propor-

tional to 1/r2 (r=distance), so the mutual effect of well separated groups can be approximated with a

single interaction. The method starts with few large patches and subdivides them into a hierarchical rep-

resentation where links are formed at appropriate levels of detail when the error to the form-factor falls

below a preset threshold. Occlusion is exploited to prune out unnecessary refinement. During radiosity

propagation a push-pull technique is applied to ensure that levels in the hierarchy that are not directly

affected by the update remain consistent. This was extended upon in [SAG94] which added clustering

allowing grouping of small patches into larger ones and thus creating links at a lower level of detail than

the initial set of patches.

Monte Carlo techniques can be applied to solve the radiosity problem. A solution to a Neumann

series expansion can be estimated directly by stochastically sampling paths from emitters. This assumes

a particle model of light and random walks are formed carrying quanta of light – or photons – reflecting

off surfaces until they are probabilistically absorbed. With this technique form-factors are not computed

explicitly and the radiosity is estimated by the density of photon hits. More formally the random walk

is a sequence of states given a starting state and a transition probability function T (s→ s′). From a

current state the next state is chosen by sampling T . The random walk will have a finite number of steps

3.3. Shooting Methods 65

if
∫

T (s→ s′)ds′ < 13 and convergence is assured. Shirley [Shi91] gave an algorithm approximating

radiosity with O(N) paths for an environment with N zones. Keller [Kel96] used deterministic Quasi-

Monte Carlo techniques based on low discrepancy sequences yielding superior performance compared

to random sampling. In [BNN+98] Monte Carlo and hierarchical radiosity was combined. A weakness

of these early Monte Carlo methods for radiosity is that they depend on an external technique (such as

discontinuity meshing [HW91]) for adaptively refining the mesh in areas of high-frequency gradients.

Also, they are not easily adapted to support non-diffuse illumination effects. Furthermore, due to the

direct visualisation of the photon density results are visibly noisy, unless very many samples are used.

3.3.2 Non-diffuse Shooting Radiosity

Immel et. al. proposed extending a radiosity system with view-independent information for non-diffuse

surfaces [ICG86]. Non-diffuse patches store directional radiance information in a ”global cube”, which

is also used to solve for visibility. The ”global cube” is essentially a full cube surrounding a vertex

aligned to the global coordinate system allowing for fast lookup of reciprocal cells along a ray connect-

ing two vertices. A progressive solution is employed shooting radiance outwards from emitters initially,

then from secondary emitters and so on until convergence. Rendering of non-diffuse surfaces applies

interpolated view-dependent vertex intensities extracted from the ”global cube” from which pixel inten-

sities are bilinearly interpolated. The method unfortunately requires meshing and inherits all the aliasing

problems inherent in using the hemi-cube for visibility. Also, surfaces with mirror reflectance alias when

rendered directly from vertex intensities unless they are very densely subdivided. Further, using a depth

buffer approach solving for visibility from each surface results in O(N2) complexity.

Historically, the parallel to Kajiya’s paper [Kaj86] published at the same time is interesting; where

Kajiya extends ray tracing with diffuse reflection, Immel et. al. extends radiosity with non-diffuse

reflection.

3.3.3 Particle Tracing

Inspired by the Monte Carlo approaches to solving the radiosity problem, the technique was soon found

to be applicable to solving the full global illumination problem supporting not only diffuse interreflec-

tions. However, very few techniques exist which are purely shooting methods due to the noise incurred

by directly visualising photons. Dutré et. al. [DLW93] presented a particle tracing algorithm using

Monte Carlo techniques to form random walks from the emitters to the pixels on a view plane. At each

surface intersection of the random walk rays were traced through the pixels on the image plane; repre-

senting direct illumination, indirect illumination reflected once, twice and so on. In order to limit noise

object-space gaussian filtering was added smearing incident power over the surface of the object. Al-

though this technique samples all possible paths from emitter to receiver, high-frequency effects such

as specular reflections and sharp shadows are difficult to reproduce and the technique is view dependent

and inappropriate for interactive walkthrough.

In Section 3.4.2 techniques are presented that also shoot particles from the emitters but use a sep-

3Global illumination problems are normally subcritical but some assumptions may violate this e.g. a closed environment

consisting of perfect mirrors, in such cases external termination criteria are used [AK90, PM92].

66 Chapter 3. Global Illumination Methods

arate pass to reconstruct illumination through the pixels on the image plane. This is based on the ob-

servation that the eye-scene interactions are more appropriately sampled from the eye since the set of

rays potentially contributing to a pixel (We) is known in advance. This avoids shooting rays towards the

eye for which We = 0 and thus will not contribute towards the illumination of the pixel. Also, with such

methods it is possible to store flux densities for reuse during interactive walkthrough.

3.3.4 Local and Global Lines

Monte Carlo techniques can be characterised based on the line density they use for sampling ray space.

Traditionally, local line densities have been used which sample a (hemi)sphere aligned to a coordinate

system formed by the normal and surface tangents at a point on a surface. A cosine distribution is

normally used for such sampling taking into account that rays near the equator contribute proportionally

less. An alternative to this is a global line density that is independent of any surface orientation. A

pre-defined set of global lines is used for all surfaces in the environment regardless of orientation. It

can be shown [CS98] that if a uniform density of global lines is used a cosine distributed line density is

imposed on each surface. The benefit is that energy transfer can be performed bidirectionally for each

pair of mutually visible intersection points along a global line as given by the exchange list for a line

(see Section 2.2.3). Note also that data structures for such uniform line densities exist as described in

Section 3.2.4.

In Buckalew and Fussel’s ”Illumination Networks” [BF89] a global line density was used to find

a set of bidirectional links between surfaces in a pre-processing step. Then light was emitted from

the light sources and propagated outwards on the global links arriving at surfaces where the light is

accumulated in in-buffers. The light available in the in-buffers is passed through a reflectance function

and accumulated in out-buffers before it is propagated outwards again in a recursive manner. When

no light is available in the in-buffers, images can be rendered directly by sampling and interpolating

radiance available in the out-buffers corresponding to rays emanating from the eye. The pre-process

exploits coherence by using an incremental calculation of ray-object intersections by projecting each

object to a plane orthogonal to a given slope and applying a scan-conversion algorithm. Clearly, this

only works for planar objects. Also, the global line density used is non-uniform and weights have to

be used to correct for this during light distribution, but the density remains biased possibly causing

undersampling in certain areas. Moreover, too few details about the data structure are given to be able to

judge whether it is appropriate for compression.

Global line densities were used in [Sbe93, Pel95] to compute form-factors with a Monte Carlo

approach. This was based on interpreting the form-factor as the probability that a line exiting one patch

lands on another. Integral geometry was used to show that given a global uniform line density the form-

factor Fi j is given by ri j
ri

, where ri is the number of lines intersecting i and ri j is the number of lines

intersecting both i and j. Intuitively, much work is wasted if lines are cast from each patch outwards in

order to compute form-factors for a single patch to all others since only the nearest intersection is used

and all others discarded. Rather, all intersections along a global line can be sorted and used to form pairs

of visible patches along the line, which can in turn be used to derive the form-factors. It was shown that

3.3. Shooting Methods 67

an order of magnitude improvement in efficiency over the hemi-cube could be achieved.

Neumann introduced the ”Transillumination Radiosity Method” [Neu95], which was the first solu-

tion to global illumination using a uniform global line density. The method selects a number of random

points on the unit sphere that are the direction vectors for the global lines. It was, however, noted that

obtaining directions from subdivision of some (semi)regular polyhedron would result in lower variance.

Orthogonal to each global direction a gridded plane covering the entire scene is stored. Scene patches

are orthogonally projected to this ”transillumination plane” and the patch identifier and depth is stored

at the grid points in depth sorted order. This effectively forms an exchange list for each grid point along

the global direction, which can be used for pairwise bi-directional energy transport. The uniform global

density of lines implicitly accounts for the cosine term in energy transport. Coherence is exploited on

the transillumination plane when projecting the patches by using a rasterisation-like algorithm making

the method efficient. The method was only realised for the perfectly diffuse case, but it was noted that

it could be extended to the non-diffuse case. The method works well in scenes with large self-emitting

patches or sky illumination. It was extended in [SKTNB97] using a continuous inner integral for surface

interactions along the transillumination direction and a discrete outer directional integral evaluated using

quasi-Monte Carlo techniques.

In [SPP95] a random uniform global line density is used for radiosity. Some interesting observations

were made about global line methods, namely, that under certain constraints4 the number of objects in

the scene can be increased without having to increase the number of global lines. Also, the relative

efficiency over local methods is proportional to the average number of intersections a global line makes

with the scene. Finally, the efficiency is dependent on having large area sources – a possible solution was

proposed using a non-global technique to ”kick-start” the global method by converting surfaces visible

to sources into secondary emitters [CMS98]. The approach is progressive, the work is divided into a

number of subproblems which are solved separately, then merged making possible a parallel solution

where many workstations share the work. In [CS98] various global line densities are compared in terms

of error.

Szirmay-Kalos [SK98] extended the transillumination method to the non-diffuse case. A similar

bundling of parallel rays was used but the method progressively formed parallel random walks from

emitters to the eye. A direction is selected quasi-randomly and irradiance for all surfaces is computed in

this direction for all the parallel rays. This irradiance is then reflected into a new direction and solved for

all parallel rays in this direction, repeated a few times and finally reflected into the eye. A number of such

random walks are averaged on the image plane accounting for all possible light paths. Many methods are

discussed for efficiently solving the radiance transport along a single direction. These include both con-

tinuous and discrete methods and methods requiring initial sorting. Pre-sorting in the transillumination

direction and using a modified scan-conversion algorithm yields O(NlogN) computational complexity.

However, the method does not store intermediate results and would need to recompute the random walks

when the camera moves, making the method unsuitable for interactive walkthrough.

4Some fixed minimum area for a surface is assumed.

68 Chapter 3. Global Illumination Methods

In [SKP98] a technique similar to depth-peeling is accelerated using z-buffer hardware for solving

transport in a single direction. In [SKSMT00] the method was extended to support point and small

light sources by adding a pre-processing step using the hemi-cube approach to shoot out radiance from

the light source. Also, it was noted that finite-element methods, which can differentiate first and other

bounces, can treat the direct illumination separately and use a first shot approach that converts non-

emitting surfaces into large secondary emitters using a gather approach.

3.3.5 Summary

Shooting methods can be very competitive in certain environments. Early shooting radiosity methods

inspired very efficient Monte Carlo random walk solutions to form-factor computation and radiosity.

Efficiency can be improved by using global line densities that exploit all intersections along a line.

Further efficiency can be gained by using a global line density with bundles of parallel rays by exploiting

coherence between nearby parallel rays. Global line densities with bundles of parallel rays closely match

the data structures (DPP) described in Section 3.2.4 and in Chapter 4 this will be exploited. In Chapter 5

efficient solutions to solving radiance transport in a transillumination direction will be developed making

use of graphics hardware. This allows for very effective ways of computing light transport for many rays

simultaneously and combined with an appropriate data structure full global illumination can be pre-

computed and stored allowing interactive walkthrough by rendering from this data structure.

3.4 Combined Methods

This section summarises methods that combine transport of potential and radiance.

3.4.1 Bi-directional Path Tracing

Bi-directional path tracing was developed independently by Lafortune and Willems [LW93, LW94a], and

Veach and Guibas [VG94, VG95, VG97]. The basic idea is to assign equal importance to paths starting

at the eye and paths starting at emitters. Monte Carlo random walks are performed simultaneously from

the eye and a selected light and are merged. Lafortune and Willems join each intersection point on the

eye path with each intersection point on the light path, whereas Veach and Guibas produce a single path

by concatenating an eye path and a light path. The ”Metropolis” approach [VG97] mutates existing

paths reusing significant parts thereof thus gaining efficiency. It also concentrates computational effort

on paths with great importance to the final image without introducing bias. These methods are mainly

used for high quality rendering in scenes with particularly difficult light paths. However, with rendering

times of hours they are not applicable to interactive walkthrough.

3.4.2 Hybrid and Multi-Pass Methods

A number of methods have tried to combine the strengths of gathering with the strengths of shooting

simultaneously avoiding their weaknesses. One group of methods attempt to combine radiosity and ray

tracing, whereas others discard radiosity altogether and combine a light tracing pass with an eye tracing

pass using the information from the light tracing pass to render images.

3.4. Combined Methods 69

A Synthesis of Radiosity and Ray Tracing

Wallace et. al. [WCG87] proposed a two-pass solution to the rendering equation. Light interreflections

affecting diffuse surfaces are solved independently by a modified radiosity technique in a pre-pass5.

The radiosity approach is extended to account for mirror reflections from planar surfaces by calculating

extended form-factors for specular to diffuse transfers. Extended form-factors via planar perfect mirrors

can be computed using the traditional z-buffer algorithm by rendering the environment, reflected about

the mirror plane, onto the ”back” of the mirror plane. The mirror acts as a window into a ”virtual

world” which is a reflected version of the environment. In the viewing stage specular reflections seen

directly by the eye are solved recursively using a reflection frustum. The diffuse component is calculated

by interpolation from the vertex intensities determined in the pre-pass. The algorithm, however, is not

appropriate for scenes with more than a few mirrors as the ”virtual world” can become very complex

after several recursive reflections. Also, it requires meshing for the radiosity pre-pass. Sillion and Puech

[SP89] lifted the restriction to planar mirrors by computing the extended form factors using ray tracing.

Shao et. al. [SPL88] extend upon Immel’s approach [ICG86] (see Section 3.3.2) using a similar

approach also storing a view-independent radiance distribution for non-diffuse surfaces. The computa-

tional complexity is reduced by iteratively estimating delta form-factors for non-diffuse surfaces from

an increasingly accurate radiance distribution using a radiosity solution as a starting point. Also, a final

ray tracing pass is used for image generation, this however, is relatively fast since no shadow rays are

needed and only specular geometry needs to be ray traced. It effectively reconstructs geometry seen via

one or more specular reflections, which is inadequately represented by a discrete representation when

the reflectance is highly specular ρs ≈ 1. The method requires computing all form-factors and storing

them on disk before the iteration scheme can commence making it impractical for complex scenes.

So far the methods rely on using the traditional hemi-cube along with z-buffering to resolve form-

factors. This is computationally expensive on the order O(N2) and is possible for only simple scenes.

Furthermore, appropriate meshing of the scene in order to capture high gradient illumination adequately

can be difficult. Shirley [Shi90b] uses a light tracing pass to account for LS+D paths stored on diffuse

surfaces in textures and ray traced progressive radiosity with mirror reflections for (L|D)S∗D paths,

adding a final pass removing all direct lighting LD and direct specular lighting LS+D from the maps.

Images are generated using distribution ray tracing for calculating direct lighting and using the radiosity

and caustics maps for the indirect lighting. Chen at. al. [CRMT91] extended the technique using Monte

Carlo path tracing for eye passes reducing artifacts due to the radiosity meshing. However, the approach

requires hundreds of rays per pixel to avoid noise and is very computationally expensive. Heckbert

[Hec90] introduced an alternative technique similar to Shirley’s using adaptive radiosity textures or rexes

to avoid the tesselation required by the radiosity step and decouple illumination from geometry. The

adaptive nature of the textures allows for adequate sampling of high gradient illumination. However,

when nodes are split light rays are shot for each child node discarding the information in the parent node

wasting computational resources.

5An in-depth discussion about the implementation and theory behind this pre-pass is presented in [RT90].

70 Chapter 3. Global Illumination Methods

Sillion et. al. [SAWG91] added arbitrary BRDFs to a two-pass approach that uses a ray traced

progressive radiosity approach with surfaces storing directional intensity information using spherical

harmonics. Directional diffuse transfers are sampled at receiving vertices requiring adaptive meshing of

the scene. A final ray tracing pass evaluates ES∗(D|G) paths looking up the directional distribution when

a directional or diffuse surface is struck by the eye ray.

Photon Mapping

Although some of the multi-pass techniques using radiosity were quite powerful producing full

L(S|G|D)∗E global illumination, the tesselation required by the radiosity pass introduces artifacts and

limits the kind of objects that can be used with the technique. Arvo [Arv86] proposed using illumination

maps generated by a light tracing pass to assist a ray tracer in a second pass thus decoupling illumination

from the geometry. But this approach was limited to point light sources and simple reflectance distribu-

tions, also caustics are only formed on ideal diffuse surfaces. In [PM92] it was shown that Monte Carlo

particle tracing can adequately simulate even perfectly diffuse reflections if the number of particles is

high enough. Photon paths in non-participating mediums can be evaluated using ray tracing with russian

roulette termination to shorten paths and avoid bias. The benefit is that Monte Carlo techniques can

easily be used with analytical surfaces, complex surface reflectances and complex light sources. Texture

maps were used for accumulating photon weights on diffuse surfaces and a final ray tracing pass was

used to generate images using the textures. Only ideal specular or perfectly diffuse surfaces were sup-

ported in the eye pass though. Jensen and Christensen [JC95] extended this technique using irradiance

maps and high resolution caustic maps for diffuse surfaces and photon maps for complex objects where

texture maps are inappropriate. The photon map is a kd-tree storing all photon interactions within the

environment, photons which are part of a caustic are flagged. When estimating flux at a surface point

a sphere positioned at the point is extended until it contains n photons, a disc is used as an estimate

of the area holding those photons. Simple rejection rules are used to avoid using the wrong photons.

During rendering Monte Carlo path tracing is used in conjunction with the photon and irradiance maps.

The direct illumination is determined by sampling the light sources, caustics are visualised directly from

the caustics maps, secondary diffuse reflections are fetched directly from the irradiance maps and non-

diffuse reflections are treated using standard Monte Carlo path tracing. However, the path tracing step

causes long rendering times and the method is inappropriate for interactive walkthrough. The method

was extended in [Jen96] where a high resolution photon map is used to store caustics and a lower res-

olution global photon map estimates the general flux within the scene. Shadow photons are used to

accelerate the visualisation pass by using them to limit the number of shadow rays necessary to com-

pute the direct illumination. The indirect illumination is computed using the global photon map and the

BRDF to generate optimised sampling directions used with irradiance gradients [WH92]. Specular and

glossy reflections are computed with Monte Carlo path tracing. Although this approach greatly improves

rendering times they are still too high for interactive walkthrough.

3.5. Global Illumination on the GPU 71

Density Estimation

Density estimation schemes [SWH+95, WHSG97] are similar to photon mapping schemes in that they

share the particle tracing pass. Density estimation, however, use the particle distribution to build a

display mesh that capture global illumination effects on diffuse surfaces. The display mesh thus adapts

to high gradients in the illumination such as shadow boundaries and can be displayed at interactive

rates. However, expensive rendering techniques must be used to capture non-diffuse appearance during

visualisation.

In [GDW00] hierarchical radiosity is combined with particle tracing to compute a view-independent

solution displayed using density estimation techniques. The hierarchical nature of the light transport

step increases efficiency, non-diffuse effects are still elusive and the technique resorts to the Render

Cache [WDP99] (see Section 3.2.3) for interactive walkthrough.

3.4.3 Summary

Many hybrid and multi-pass techniques successfully exploit the orthogonal advantages of using shooting

and gathering. The most successful techniques achieve full global illumination L(S|D|G)∗E. Shooting

is generally used in a pre-pass and gathering is used during visualisation to collect illumination incident

on the eye trough the pixels making up the image. The shooting pass can be estimated by using radiosity

extended to include non-diffuse effects, but such techniques are limited by the need to tesselate the

environment into patches. Other techniques use particle tracing and storage decoupled from the geometry

such as irradiance maps and photon maps. However, most techniques reconstruct at least some of the

illumination paths during visualisation due to the fact that representing highly specular illumination in a

resolution adequate for direct visualisation is very difficult.

In Chapter 4 the irradiance map will be used and reconstruction during visualisation will be ex-

ploited to improve the appearance of specular objects during rendering from the VLF.

3.5 Global Illumination on the GPU
Over the last decade a number of global illumination algorithms have been mapped to the GPU and more

recently methods have been developed specifically for the GPU. Historically, however, GPU acceleration

can be traced back further. Cohen et. al. [CGIB86] sped up a radiosity algorithm using the GPU to cal-

culate form-factors by rasterising a hemi-cube. Also, Keller [Kel97] used the GPU to simulate radiosity

by computing a number of indirect lights using a quasi-random walk and rendering them with shadow-

mapping accumulating the results. In a similar vein Stürzlinger and Bastos [SB97] used the GPU to splat

a photon mapping solution to screen-space enabling also non-diffuse BRDFs. Despite these early efforts

the field was only established as a separate GI niche in the mid 00’s when the typical GPU matured to

the point where it was programmable, had full IEEE compliance for data types such as floating point

numbers and integers and where stable cross platform development tools and languages were available.

At this point it became tractable to implement more ”exotic” general purpose (GP-GPU) algorithms

that were not just exploiting the high performance when rasterising or lighting with the fixed-function

pipeline. See Chapter 5 for a more detailed examination of the GPU architecture and capabilities.

72 Chapter 3. Global Illumination Methods

3.5.1 GPU Radiosity Methods

Keller’s instant radiosity [Kel97] method is a GPU friendly method for computing radiosity. It is based

on performing quasi-random walks from the light sources and depositing virtual point lights (VPLs) in

the scene. Lighting the scene with shadow mapped VPLs provides a fast radiosity solution. It maps

directly to GPUs since the bulk of the work is rendering shadow maps and performing per-pixel lighting

computations for the VPLs. This is also the main problem of the algorithm. Rendering hundreds of

shadow maps in a frame is not currently viable. Adding non-diffuse BRDFs requires using many more

VPLs.

This method was optimised in [LSK+07] by using frame coherence, updating only a small number

of VPLs per frame and reusing the majority from the previous frame. This results in real-time frame rates

for single bounce radiosity. However, the scene needs to be re-meshed since parabolic shadow maps are

used.

Nichols et. al. [NW09] suggest a hierarchical image space variant of instant radiosity with reflective

shadow maps, which clusters coherent pixels in image space. This allows using more samples in areas

with high frequency lighting. The approach is single bounce without indirect visibility.

In [CHH03] radiosity was computed by explicitly solving the N2 form-factor matrix with Jacobi

iteration. It is noted that in terms of matrix operations the GPU overtakes the CPU when using more

than 2000 elements. However, they were limited by a maximum texture resolution of 2048x2048 and

assume unoccluded environments. Although this is an interesting experiment, such an approach will not

scale well and requires N2 memory.

Progressive refinement radiosity was realised on the GPU by Coombe et. al. in [CHL04]. It uses

the fragment processing power to compute visibility by rendering the scene in false colour to a parabolic

map from the point of view of the current shooter texel. During this pass an occlusion query is also issued

for each face limiting the number of possible receivers. Subsequently, each face in the scene that passed

the occlusion test is rendered orthographically and a fragment program back-projects each fragment into

the shooter item buffer. If the face id matches, energy is received using a differential area-to-area form

factor between the shooter and the texel. Shooter selection is performed by rendering each face into a

1x1 frame buffer using residual energy as depth. Due to the nature of the form factor computation, texel

sizes must be small near adjoining surfaces to avoid artifacts. The approach requires fine tessellation

of the scene since the parabolic projection distorts geometry. The approach is essentially O(N2) in the

number of texels and thus assumes that equilibrium can be achieved using relatively few shots. If the

scene contains many large emitters this method will perform poorly.

3.5.2 GPU Particle Tracing Methods

In [SB97] the results of a particle tracing phase (photon mapping) is used to render globally illuminated

scenes quickly. The particle tracing is performed in a pre-processing phase and for each surface hit a

triangle, which encloses the non-zero parts of a kernel support function, is formed in the plane of the

struck surface and stored. During rendering the contributions of photons is splatted to visible surfaces

in the framebuffer by rendering the stored particle triangles applying the BRDF with respect to the

3.5. Global Illumination on the GPU 73

viewing direction and textured with a map containing the discretised kernel function. This is optimised

only taking into account particles with more than one bounce and rendering the direct lighting with

shadow mapping and phong illumination. The approach cannot handle area light sources and introduces

significant overdraw in the framebuffer limiting the efficiency of the approach.

A variation on the above technique was suggested by McGuire and Luebke in [ML09]. The ap-

proach renders the first particle bounce with an approach similar to shadow mapping in light space and

traces the surviving particles further through the scene using CPU ray tracing. The final photons are

rendered into screen space via splatting. An icosahedron is used to tightly bound the 3D filter kernel and

invokes all visible pixels that lie within it. Each such pixel gets a contribution weighted by the surface

BRDF and filter kernel. The method is real-time for one point light but speed will degrade linearly with

the number of lights in the scene. It cannot handle area lights and requires the use of shadow maps for

direct lighting. The photon tracing requires eight CPUs to run at real-time rates (for a single light) and

the method requires transferring a significant amount of data to and from the GPU. The amount of this

data is proportional to the number of lights.

At the other end of the spectrum Hachisuka et. al. [HOJ08] propose a progressive photon mapping

approach that can produce renderings with any desired accuracy. It captures complex illumination in-

cluding caustics and reflections of caustics. The method progressively computes photon tracing passes

increasing the accuracy of the result without having to store the full photon map before rendering. Al-

though, the approach can produce high quality results for scenes with complex lighting, rendering times

for 640x480 images are on the order of many hours, and, due to the nature of the algorithm the camera

is static.

3.5.3 GPU Hybrid Methods

In [DS05] Dachsbacher and Stamminger introduced the Reflective Shadow Map (RSM). The RSM can

provide real-time single bounce radiosity by computing an extended shadow map that, in addition to the

standard depth map, includes extra attributes such as world space coordinates, normal and flux. Since the

RSM is rendered from the point of view of the light source all single bounce indirect illumination caused

by this light source must originate from surfaces visible in the RSM. Using the attributes stored in the

RSM indirect illumination can be computed by considering the pixels in the RSM as secondary emitters.

In order to make this interactive a fixed number of indirect pixel lights are used. First the gathering

pixel is projected into the RSM. Then pixel lights are selected using a fixed sampling pattern with a

density that is inversely proportional to the distance to the projected points under the assumption that the

distance in the RSM is a reasonable approximation to the distance in world space. Furthermore, for the

indirect illumination a low resolution image of the camera view is computed and during rendering the

illumination is either interpolated based on pixel normal and position or recomputed in full if no suitable

samples are available.

The benefits of this approach are its simplicity and that it allows fully dynamic environments. Also,

it is simple to integrate into an existing framework based on rasterisation such as a game engine. On

the other hand it is a coarse approximation as it only applies one bounce of radiosity with no visibility,

74 Chapter 3. Global Illumination Methods

which would lead to severe light bleeding in typical scenes. The approach uses a coarse screen-space

resolution (32x32) that could cause light bleeding in scenes with significant variation in lighting. Also, it

does not work for area light sources unless these are approximated by multiple lights, which would make

the approach non-interactive. The complexity is linear in the number of point lights and screen lighting

resolution. The results at low resolution with a single spot light are 5-27 frames per second. Maintaining

an interactive frame-rate with more than a single light would be intractable. Finally, the light bleeding is

alleviated by applying ambient occlusion [Bun05] during rendering but the cost of this is not accounted

for in the results presented in the paper.

In [DS06] the gathering step is replaced by a splatting step requiring fewer indirect pixel lights and

allowing for glossy materials. However, the approach would not be interactive with more than a handful

of lights. In [NW09] the overdraw caused by the splatting is reduced by using multi-resolution splat

buffers in screen-space and hierarchically subdividing these splats in areas with discontinuities.

A variation on hierarchical radiosity using implicit visibility was presented in [DSDD07]. Explicit

visibility queries were avoided by using an iterative process that emits antiradiance from the negative

hemisphere on surfaces. This allows an unoccluded global transport operation followed by a number of

local iterations using negative radiance to cancel out extraneous light. The approach achieves single digit

frame rates and uses traditional shadow mapping for direct lighting computations ruling out area lights.

The approach is also hampered by the need for highly tesselated surfaces in order to support indirect

shadows. Furthermore, the hierarchy takes >9-13 seconds to build for all but trivial scenes. Thus it is

not rebuilt during dynamic changes to geometry so tesselation and links must be created in support of a

worst-case scenario or a priori knowledge of the dynamic changes is required. Finally, the efficiency is

proportional to the depth complexity of the scene, which they set at 3-4. For more complex scenes this

will not be sufficient and may cause artifacts.

In a similar vein Dong et. al. [DKTS07] propose a global illumination method that uses a hierarchy

to determine visibility implicitly. A predefined number of links over the hemisphere above a vertex are

hierarchically constructed by always keeping the shortest link in a directional bin when a new candidate

link is available. This avoids explicit evaluation of visibility. It does however require an initial hierarchi-

cal clustering of the triangles of the scene elements such that the link creation stage has a starting point.

For dynamic scenes it is assumed that this initial per object hierarchy is unchanged, essentially limiting

the animation to rigid body animation and/or slight deformative animation. Due to the data structure it is

suitable for low-frequency BRDFs only. The method requires fine uniformly tesselated scenes to prevent

artifacts. For modest scenes with a single bounce they achieve 4-10 fps.

In [RGK+08] Ritschel et. al. presented a global illumination method for dynamic scenes based

on Instant Radiosity [Kel97]. Virtual point lights are used with low resolution parabolic shadow maps

(ISMs) for indirect illumination. This is based on the assumption that accurate visibility is not required

for indirect lighting. The ISMs are created by splatting a coarse point based representation of the scene

into a depth buffer and filling in any remaining holes. Since the implementations build on VPLs it

supports only point or spot lights. A Cornell box scene with a single spotlight can be rendered at 5.5 fps

3.5. Global Illumination on the GPU 75

with 3 bounces and 14 fps with a single bounce.

A variation on this scheme was proposed in [RGKM07]. This uses coherent shadow maps (CSMs)

for the objects in the scene. A number of orthographically projected depth maps outside the hull of

each object are precomputed, heavily compressed and stored. A monte carlo renderer then uses this

information to perform visibility queries against the objects. This allows high quality direct illumination

with rigid body animation, arbitrary BRDFs and light sources but no indirect lighting. Precompute times

range from seconds to over half an hour depending on resolution.

In [RGKS08] this was combined with coherent surface shadow maps (CSSMs) and used to answer

general visibility queries in a global illumination renderer based on hierarchical radiosity [HSA91] and

lightcuts [WFA+05]. In order to resolve visibility queries from surface points on the objects and not just

from outside its hull, cube depth maps were swept across the object surfaces in a precompute process.

As with CSMs these can be compressed and stored. When used in combination they can answer general

point to point visibility queries effectively. This method achieves single digit frame rates for global

illumination with two bounces. Although the method could in theory be used for direct lighting also the

reported results were using direct lighting from spotlights with traditional shadow maps.

The many-light problem is a generalisation of the VPL approach introduced by Keller [Kel97].

Rendering from thousands of indirect lights yields realistic indirect lighting from area light sources

and supports arbitrary BRDFs. However, brute-force rendering from many lights is prohibitively ex-

pensive, mainly because of visibility computations. Walter et. al. addresses this with the lightcuts

method [WFA+05], which clusters lights together and builds a binary light tree. For rendering, cuts

in this tree are adaptively selected based on an error metric and each cluster is treated collectively as

a single (larger) point light. This gives a sublinear complexity in the number of lights and reduces the

number of visibility queries needed, and allows rendering of globally lit images in a few minutes of com-

putation. In [CPWAP08] interactive frame rates are achieved (2-4 fps) by assuming a static scene and

precomputing visibility cuts (13-40 minutes). The light tree is also improved by introducing a visibility

term in the metric. In [HPB07], Hašan et. al. reformulate this into a matrix problem where the rows

are sample points and the columns are point lights. The method computes entire rows and columns in

this matrix using GPU shadow mapping. Realistic images can be computed in a few seconds by intelli-

gently selecting and computing a small set of rows and columns of the matrix. Wang et. al. [WWZ+09]

compute a clustering for both the input lights and the output shading points. Input lights are computed

with photon mapping and illumination cuts are computed from the resulting kd-tree. During final ren-

dering pixels are interpolated from the shading clusters using irradiance caching [WRC88]. The light

transport is computed with two indirect bounces using ambient and perfectly specular materials only.

However, in the final bounce the radiance fields are approximated with a 4-th order SH representation

(16 coefficients) [RH01] such that low-frequency glossy BRDFs can be approximated in the final bounce.

Interactive walkthrough is possible at a few (1.5 - 4.2) frames per second.

76 Chapter 3. Global Illumination Methods

3.5.4 Summary

The majority of the GPU approaches attempt to solve the global illumination problem in some form or

other for dynamic scenes at interactive rates (< 15 frames per second). This is, however, inappropriate

for VR applications that require stable real-time frame rates [BH95]. The reflective shadow map (RSM)

techniques are single bounce with no visibility and support only point light sources. Also, they, along

with VPL based approaches and particle tracing methods, use traditional shadow mapping techniques

for direct lighting, which can lead to poor performance in scenes with multiple lights. Thus, only a few

of these approaches truly support area lights including [CHL04]. Even this approach is quite sensitive to

the number and cumulative area of light sources.

3.6 Discussion
In the context of immersive VR applications there is definitely a need for a solution, which can render full

global illumination at stable real-time frame rates on high resolution displays. Immersive VR displays

are upwards of 1024x1024 pixels rendered in stereo. At 30 frames per second this yields ∼60MPixels

per second (MPix/sec) or in terms of a ray tracing solution ∼60MRays per second (MRays/sec) just in

order to form an image on the screen let alone illuminate it.

Although radiosity scenes can be displayed at real-time frame rates after reaching equilib-

rium [GTGB84, NN85, CG85, CCWG88, HSA91, CHL04] the aim is to support the full spectrum of

global illumination including specular effects which are difficult to achieve with a radiosity based algo-

rithm for even moderately complex scenes. Attempts at adding specular effects to a radiosity method do

not scale well and are only appropriate for simple scenes [WCG87, ICG86, SPL88].

To our knowledge, the fastest ray tracing method to date is AEPSA [FCM09] reporting

∼21MRays/sec for a scene with 10k faces. This is for bundles of coherent rays shot from a pin

hole camera. The efficiency for incoherent rays such as secondary rays for illumination or shadow

rays are bound to be significantly lower than this. Wald [WKB+02] notes that in order to simulate

global illumination effects at least 20 rays are needed per pixel. Using ray tracing will require many

CPU cores to even just render the primary rays in the VR use-case above. Adding shadow rays to this

and rays for secondary illumination will be impractical even when using (ir)radiance caching meth-

ods [WRC88, WH92, KGPB05]. A similar argument applies to distribution ray tracing [CPC84] and

path tracing [Kaj86, AK90, Shi90b].

The ray cache [Lar98, WS99, SS00], render cache [WDP99, WDG02, BWG03] and shading

cache [TPWG02, SHSS00] methods can provide global illumination at interactive rates but suffer from

variable frame rates and disagreeable artifacts especially near silhouettes and shadow boundaries due to

re-projection errors or stale samples. Immersive VR applications using stereo imaging need stable frame

rates and a stable image in order to not induce discomfort in a participant.

At the other end of the spectrum are precompute methods. These aim to compute and store a

global illumination solution in an appropriate data structure. Photon mapping [JC95, Jen96] stores a

large number of photons in a kd-tree and use these to compute indirect illumination. The method is

3.6. Discussion 77

typically used with ray tracing and final gathering since the photon map is not appropriate for directly

rendering shadow boundaries for example. The method is not real-time and is mainly used for high

quality renderings. More recently photon mapping has been reformulated as a rasterisation method

using splatting to illuminate surfaces [SB97, WS03, KBW06, ML09] achieving near real-time frame

rates. These methods, however, typically do not support area light sources and need shadow mapping

or ray traced shadows in order to resolve direct illumination. Additionally, the method performs much

screen-space overdraw especially for dense photon maps, which could render the method fill-rate limited.

Light fields comprise another class of methods that precompute and store a global illumination

solution. Traditional light fields could only represent a single object [GGSC96, LH96, IPL97, MRP98,

Azu99, WAA+00], but for some parameterisations such as DPP [CLF98, CF99, Cam01] multiple objects

can easily be supported without loss of generality by adding depth layers in the representation. The VLF

method presented in this thesis makes use of a variation on this data structure.

Recently, many interactive GPU based solutions have been offered. These methods are gener-

ally interactive (<15 frames per second) [DSDD07, DKTS07, RGK+08, RGKS08], a number of them

only provide a coarse approximation of global illumination [DS05, DS06, NW09] ignoring visibility for

indirect light, and most do not support area light sources and resort to shadow maps for direct illumi-

nation [DS05, DS06, DSDD07, RGK+08, NW09]. These issues make the approaches inapplicable to

real-time VR scenarios.

Table A.4 in Appendix A.4 lists the features of a selection of algorithms presented in this Chapter.

Of these only a handful can provide global illumination at stable frame rates above 30 frames per second.

Those that do cannot simulate non-diffuse transport or have severe limitations such as supporting only a

single bounce or the lack of visibility in the bounces.

The VLF can fill this void. It can render full global illumination with arbitrary BRDFs and area

lights only adding small constant time to a traditional rasterisation solution, essentially getting constant

time illumination. Also, it plugs in well with existing frameworks not requiring special CPU-GPU

synchronisation or run-time updates of complicated data structures. Although the geometry must be

static it can easily relight dynamic geometry such as avatars [MYK+08]. Propagation is fast; linear time

in the number of input faces, and gracefully converges towards physically correct solutions. Additionally,

it handles direct lighting for the static geometry only requiring shadowing for dynamic geometry if such

is desired [MYK+08].

78 Chapter 3. Global Illumination Methods

Chapter 4

A Virtual Light Field Approach to Global

Illumination

This chapter describes an algorithm that provides real-time walkthrough of globally illuminated static

virtual scenes consisting of convex polyhedra in non-participating media with a mixture of diffuse, glossy

and specular surfaces. The algorithm decouples illumination from geometry and can render a frame in

nearly constant time. The algorithm makes use of a light field data structure that records radiance values

on all surface points in all directions. The light field data structure is discrete and uniformly samples the

5D radiance function L(θ ,φ ,x,y,z) on surfaces only. In an iterative pre-processing step the algorithm

propagates light outwards from emitters accounting for all possible L(S|G|D)∗ paths. The resulting

virtual light field (VLF) can be used as a basis for many rendering algorithms. Radiance values can be

directly resampled and rendered, geometry can be used to guide rendering when using low sampling

densities or the light field can be used for incident illumination in a final gather type algorithm.

The VLF was initially introduced in [SMKY04] but the algorithm was greatly limited by the com-

putational complexity involved in the pre-processing step. Propagating even simple scenes would take

days or weeks and scaling was quadratic. Secondly, real-time rendering could only be achieved for

low resolution images. In this Chapter the first issue is dealt with. The propagation algorithm will be

reformulated and various alternatives will be presented reducing propagation time by several orders of

magnitude and scaling to linear complexity. The data structure used is similar to that used in [SMKY04]

but all other elements of the system are novel.

4.1 Overview
This Chapter starts with a conceptual overview of the data structure and the proposed light transport

algorithm in order to make it easier to digest the following Chapters. The overview is followed by an

in-depth presentation of the separate elements of the technique.

4.1.1 Overview of the Data Structure

In order to support precomputed global illumination a data structure for storing radiance emitted from

the surfaces in the scene is required. Since radiance is defined as radiant power per unit area and

per unit solid angle (see Equation 2.12) the data structure becomes a 5-dimensional representation of

80 Chapter 4. A Virtual Light Field Approach to Global Illumination

the function L(θ ,φ ,x,y,z). In order to work with this in a computer the function is discretised into a

collection of finite elements that can be indexed by spatial position (x,y,z) and direction (θ ,φ). In this

work participating media such as smoke will be ignored so that the spatial sampling can be restricted to

the surfaces of the objects in the scene.

The traditional way of representing such data structures is to subdivide the surface area into patches

and then store a hemisphere of directions for each patch. The hemisphere is aligned to the tangent plane

of the patch. Radiance can then be indexed by selecting a patch and looking up the desired direction in

the hemisphere. This is illustrated in Figure 4.1.

Figure 4.1: Surface based hemisphere data structure. A surface patch is highlighted in orange.

A different way of storing the same information is to use a global line distribution. There are many

types of these but the central idea is that all surfaces in the scene share a global set of lines where each

line intersects the entire scene. If the distribution is sufficiently dense and uniformly distributed the net

effect will be similar to a distribution of surface hemispheres. One such distribution is based on the

direction-and-point parameterisation (DPP) [CLF98]. The DPP distribution samples the domain using a

collection of parallel subfields (PSF). A parallel subfield is a collection of parallel lines that intersect the

entire scene. The collection of PSFs is chosen such that the directional domain is sampled uniformly. It

can be useful to think of the lines in a PSF as originating from some ”virtual” plane that is orthogonal to

the direction of the lines. The lines in a given PSF are uniformly distributed across this ”virtual” plane.

This is illustrated in Figure 4.2.

(a) PSF0 (b) PSF1 (c) PSF2 (d) Union of many PSFs (e) PSF samples

Figure 4.2: VLF data structure using parallel subfields. (a)-(c) show example PSFs and (d) illustrates the

union of 8 PSFs. (e) shows PSF samples intersecting a small surface area on the object.

Given this global line distribution a data structure for storing radiance can be easily devised. Given

4.1. Overview 81

an object store outgoing radiance on all the lines that intersect the object. If the scene is composed of

convex polygons then the intersection of a polygon and a PSF will form an orthogonal 2D ”image” or

”layer” of radiance values; one value for each line intersecting the polygon. Thus each polygon stores

such a layer on each PSF. Indexing into this data structure is in a sense opposite to the surface hemisphere

approach. First a direction is selected, then a surface position can be indexed by selecting a sample in the

layer of the object or polygon in question. One important optimisation must be noted. For diffuse objects

it is clearly wasteful to store outgoing radiance as layers in each PSF as it will clearly be the same in all

directions, so for diffuse objects radiance is only stored once in a texture map. When querying a diffuse

face for its radiance along a line in a PSF, the point is reprojected into the texture map and a radiance

value is returned.

The benefit of using this data structure is that the inherent coherence in the sampling of (θ ,φ ,x,y,z)

is exposed. Neighbouring lines in the PSFs are likely to intersect a similar set of objects and the objects

share a global set of lines so multiple surface intersections along the lines can be reused.

Furthermore, if the polygons are assumed to be non-intersecting they can be sorted by depth along

a given PSF. If the layers for the polygons are generated and stored using this ordering (in each PSF), a

unique ordering of radiance samples along each line from near to far (or vica versa) is guaranteed. This

makes it simple and fast to determine mutually visible samples by simply traversing the samples linearly

requiring no separate visibility queries.

4.1.2 Overview of the Light Transport Algorithm

Propagation using the VLF is described next. Radiance is shot outwards from each sample in the 5-

dimensional data structure. PSFs are handled in turn exchanging radiance between mutually visible

pairs of samples. In order to make the technique feasible mutual visibility between pairs of samples

must be resolved efficiently.

The depth sorted set of PSFs described in the preceding Section represents all the visibility needed

to perform global illumination transport in linear time since each sample only needs to be visited once

and the sample visible to it is just the next one in the list. This way it is possible to maintain an ”overall”

image or radiance interface (RI) of the radiance transported so far. This image can then be projected

onto receivers. A fraction of the radiance received from the RI is accumulated in the diffuse texture

map of the receiver and a fraction is reflected into other PSFs depending on the BRDF assigned to the

receiver. This reflection maps the radiance layer for the receiver into the radiance layer of a another PSF.

Transport is done twice for each PSF once in each direction. Each face only needs to be projected once

into the RI and the RI is projected once into the face when transporting in the opposite direction yielding

O(n) complexity, where n is the number of faces. This is illustrated in Figure 4.3. Here face r (yellow)

is only projected once into RI1, and later (not shown) the RI is projected into face r when transporting

from left to right.

A sample in a PSF is represented by a square pixel the area of which depends on the spatial res-

olution of the PSF plane. Thus when transport is computed with these pixels a given face may only

partially cover the pixel. In order to compute the correct contribution a face will make to such a pixel the

82 Chapter 4. A Virtual Light Field Approach to Global Illumination

PSFn

Transport direction

r

s

t

u

v

w

x

y

Lr RI1

RI1 Ls

RI2 Lu

RI3 Lw

RI4 Ly

Lt RI2

Lv RI3

Lx RI4

RI1 RI0RI2RI3RI4

Figure 4.3: Incremental approach for radiance transfer with pre-computed sorting. Transfer takes place

from right to left. Faces are incrementally rendered into a radiance interface. For clarity the radiance

interface is shown multiple times. RIn+1 is the same interface as RIn with additional faces rendered onto

it.

(0,0)

(3,3)

Figure 4.4: Irradiance map projection to a 4×4 PSF grid.

4.2. Data Structure 83

fraction of overlap between the pixel and the face must be computed. This is particularly an issue when

transporting from a diffuse surface into a PSF, since the pixels will be unaligned with the PSF pixels

when projected from the texture map on the face. This is illustrated in Figure 4.4.

In summary, the aim is to present a fast incremental technique that is realised using transport op-

erations that map well to graphics hardware such that the foundation is laid for Chapter 5 where the

technique is presented in terms of rendering operations. In particular the following items will presented

in this Chapter:

• In Section 4.2 the data structure is described in detail. The properties of the DPP parameterisation

and its benefits will be discussed. An approach for tiling the radiance layers in order to save

memory is presented.

• In Section 4.3 the propagation stage is described. This is arranged using a bottom-up approach.

The stages are as follows:

– Section 4.3.1 describes the low-level finite element interactions. A technique using point

sampling that map well to graphics hardware will be presented.

– Section 4.3.2 describes the PSF propagation algorithm for exchanging radiance among faces

along a PSF. Various options involving unsorted and sorted face sequences will be described.

An incremental approach will be presented that is capable of performing the transport in

linear time.

– Section 4.3.3 describes the high level VLF transport operation. The use of ”virtual” jittered

PSFs in order to reduce artifacts is described.

• In Section 4.4 methods for rendering from the VLF data structure are presented.

4.2 Data Structure
The data structure used for the VLF was inspired by Levoy and Hanrahan’s light field [LH96] and Gortler

et. al.’s lumigraph [GGSC96]. However, the light slab approach used in their work only supports a single

object and is nonuniform causing biases and disparity problems resulting in rendering artifacts. The light

field representation employed in this thesis is constructed by choosing a regular point subdivision over

a hemisphere, to give a set of directions, and then corresponding to each direction there is a rectangular

grid of parallel rays covering the scene. Each object is orthographically projected in each direction

onto the grid of rays and represented by the rays intersecting it, storing information such as radiance,

object identifier and depth with the ray intersection. Projecting multiple objects forms conceptual layers

in the grid of rays. This data structure is similar to Lischinski’s layered light field [LR98] that uses

layered depth images [SGwHS98] uniformly distributed over the sphere. Camahort et. al. [CLF98] also

presented a similar data structure; the direction and point parameterisation (DPP) and used it for light

fields with occlusion.

84 Chapter 4. A Virtual Light Field Approach to Global Illumination

4.2.1 Uniformity of Representation

The goal of a light field representation is to capture the 5D radiance function L(θ ,φ ,x,y,z). In a uniform

light field a uniform line density is induced by a uniform random sampling of the individual line param-

eters (θ ,φ ,x,y,z). Such a light field model, including the DPP, is statistically invariant under rotations

and translations. This property, statistical uniformity, is very important as it allows the user to freely

navigate a model without experiencing aliasing due to changes in resolution. This property is broken

in the light slab parameterisation where sampling density varies across the slab, which is the cause of

view-dependent aliasing when rendering from it. Statistical uniformity also provides the added benefit

that the model exhibits guaranteed constant error bounds in all dimensions [Cam01].

In [Cam01] Camahort presented a theoretical foundation for light field uniformity. A continuous

light field parameterisation is said to be statistically uniform when it has the following property:

Statistical uniformity – For any set of uniformly distributed light-field parameters, the

set of oriented lines represented by those parameters is uniformly distributed over the

space of all oriented lines.

In order to represent the light field on a computer it typically needs to be discretised and for a discrete

light field representation the parameters defining it are sampled separately. In a finite context, a set of

oriented lines is called a pencil of lines and its measure is the number of lines contained in the set. In

the discrete domain a light field representation is said to be uniformly sampled when it has the following

property:

Sampling uniformity – A uniform sampling of the parameters of the light field induces

a uniform sampling of the set of oriented lines in the light field support.

These properties can be related; given a statistically uniform parameterisation, a uniformly sampled dis-

crete light field representation can be obtained by uniformly sampling each of the continuous parameters

individually. The light slab representation is not statistically uniform so even though the parameters are

sampled uniformly the set of lines in the light field support is not uniform. In this thesis a statistically

uniform light field parameterisation has been chosen to avoid issues with view-dependent biases. The

parameters are sampled uniformly across their domains and this ensures that the light field samples are

uniformly distributed in their five-dimensional domain.

4.2.2 Directional Subdivision

In order to facilitate the construction of a uniformly sampled light field representation, a uniform sam-

pling of the sphere bounding the scene represented by the light field must be obtained. This requirement

produces a uniform sampling of the set of oriented lines on the sphere. But in principle only a hemisphere

is needed if storage and transport are solved bi-directionally. Given any oriented line its ”opposite” line

will lie on the opposite hemisphere, so by sampling only the upper hemisphere and letting these samples

represent a line in each direction a complete sphere of oriented directions will be available.

A uniform sampling of the directional domain represented by (θ ,φ) where θ ∈ [0,2π] and φ ∈

[0, π

2] is then sought. This is normally obtained by subdividing the sphere into l spherical polygons or

triangles and letting either the centre or vertices represent the single directional sample ωi = (θi,φi),

4.2. Data Structure 85

i ∈ [0,1, . . . , l− 1]. The single directional sample in fact represents the pencil of lines passing through

the spherical triangle. An ideal subdivision would produce l spherical triangles with identical shape and

area 4π

l or 2π

l for the hemisphere case. Actual tessellations are often based on platonic solids [Fek90,

GMN94, SS95], but since the most complex platonic solid, the icosahedron, has only 20 faces, they

are normally recursively subdivided, each subdivision increasing the number of samples fourfold. The

subdivision splits a spherical triangle into four smaller triangles and projects their vertices onto the sphere

(see Figure 4.5), this has the unfortunate side effect that the centre triangle becomes larger relative to the

remaining triangles.

Figure 4.5: Subdivision of the positive quadrant of the hemisphere, edges are split medially and projected

onto the sphere creating four sub-triangles.

This problem can only be dealt with by introducing correction factors, that correct light transport

and lookup from the light field representation by accounting for the relative variation in area. A weight

αi = Ai
l

4π
is assigned to each sample ωi with actual area Ai accounting for its variation from the ”ideal”

area such that Σ
l−1
i=0

Ai
αi

= 4π . This variation is large, on the order 65% difference between the largest and

smallest spherical triangle. This of course affects the uniformity of the representation since the measure

of the pencils represented by the samples ωi differ, but in practice this bias does not introduce noticeable

artifacts when appropriately accounted for in the rendering and propagation stage. Figure 4.6 shows how

the error is distributed over the hemisphere.

The spherical subdivision scheme used in this thesis is based on subdivision of the octahedron. This

platonic solid can be represented by a single octant since the remaining are symmetric and can be refer-

enced by an appropriate rotation into the positive octant and using an offset based on the source octant.

It is essential to choose a parameterisation over the hemisphere that does not require searching in order

to find closest directions – since such directional lookup is a critical operation during both propagation

and rendering. Slater [Sla02] gave an algorithm for efficient constant time lookup of directions on the

hemisphere in order to find the closest stored direction, this is suitable for the VLF since this operation

is performed frequently.

In summary, the sphere is represented by l directions (ω0,ω1, . . . ,ωl−1), where ωi = (θi,φi), each

is associated with a solid angle correction factor (α0,α1, . . . ,αl−1). The directions are restricted to

the upper hemisphere of a recursive subdivision of the octahedron and each direction is assumed bi-

86 Chapter 4. A Virtual Light Field Approach to Global Illumination

0-7%
8-14%

15-21%
22-28%
29-35%
36-42%
43-49%
50-56%
57-63%
64-70%

Area error:

Figure 4.6: Temperature plot of distribution of area error on the positive quadrant of the hemisphere

subdivided to level 6 with roughly 8K directions.

directional such that the whole sphere is implicitly represented. This obviously requires that care is

taken to avoid representing directions along the equator twice, this is easily achieved by restricting

the azimuthal spherical coordinate θ to [0,π) when representing directions lying on the equator. Any

equatorial directional accesses to directions (θ ,φ) where φ ≈ 0 and θ ≥ π are rotated into the represented

range by using θ −π as azimuth. The orders of directions supported due to the nature of the recursive

subdivision are multiples of four. Figure 4.7 illustrates such a hemisphere subdivision.

Figure 4.7: Subdivision of the positive quadrant of the hemisphere with 0 to 4 subdivision levels (only

positive quadrant shown for clarity).

4.2.3 Spatial Subdivision – Parallel Subfield Representation

Given a nearly uniform sampling of (θ ,φ) a uniform sampling scheme for the remaining parameters

(x,y,z) is required. A volumetric approach is the most intuitive candidate uniformly sampling x, y and

z separately forming a uniform voxelation of the space occupied by the scene. However, such a method

would use excessive amounts of storage, much of which would be wasted when assuming the absence

of participating media and a scene composed of polyhedra. In such a setting it would be far less costly

to only store intersection points with scene geometry as these are the only places where light transfer is

interrupted and changes state due to absorption or scattering.

For simplicity assume that a transformation MWC→V LF is initially applied to the scene that centres

it at the origin and scales it such that it resides within the unit sphere; this coordinate frame is dubbed

the VLF coordinate system. In practice this transformation is stored along with its inverse M−1
WC→V LF =

MV LF→WC and applied as needed. Given a directional sample ωi = (θi,φi) an orthonormal basis formed

4.2. Data Structure 87

by the triple of vectors (−→ui ,
−→vi ,
−→ni) exists where −→ni is a vector aligned with ωi:

−→ni = (cosθi sinφi,sinθi sinφi,cosφi)

−→ui =
−→ni ×−→e
‖−→ni ×−→e ‖

, where −→e 6=−→ni

−→vi =
−→ni ×−→ui

A numerically stable method for computing −→e in the equation above can be found in [HM99]. The

plane formed by −→ui and −→vi is by definition orthogonal to the vector formed by (θi,φi) and since the

scene has a finite extent, a finite range can be imposed upon (u,v) in the plane −→ui ×−→vi based on the

projection of the bounding sphere surrounding the scene. Since the scene resides within the unit sphere

due to the aforementioned transformation the range for (u,v) is [−1,−1]× [1,1]. Each such (u,v) forms

a bi-directional line parallel to −→n and the collection of such parallel lines in a given direction is dubbed

a parallel subfield (PSF). Clearly, a unique parallel subfield exists for each directional sample ωi with its

own local coordinate system defined by (−→ui ,
−→vi ,
−→ni). Each PSFi stores a transformation MV LF→PSFi along

with its inverse M−1
V LF→PSFi

= MPSFi→V LF that aligns PSFi with the canonical PSF where −→ui = (1,0,0),
−→vi = (0,0,1) and −→ni = (0,1,0) such that (−→ui ,

−→vi ,
−→ni) is aligned with (X ,Z,Y). Thus, the canonical PSF

coordinate system is a left-handed one whereas the world coordinate system is right-handed. However,

given this convention points on the PSF plane may be indexed by (u,v) and depth as n. Mapping points

from the scene into a given canonical PSF (and back) is simple given these matrices:

PWC ∗MWC→V LF ∗MV LF→PSFi = PPSFi

PWC = PPSFi ∗MPSFi→V LF ∗MV LF→WC

When a point (x,y,z) has been transformed to the canonical PSF (u,v,n) its position on the PSF plane

can be found by simply dropping n. Aggregate matrices MWC→PSFi and MPSFi→WC are also stored with

each PSF, because it is often useful to be able to map a point in WC directly into/from a given PSFi.

Figure 4.8 illustrates the various coordinate frames used.

(a) WC (b) VLF (c) PSF (d) canonical PSF

Figure 4.8: Coordinate systems.

Figure 4.8(a) shows a simple Cornell box [GTGB84] residing in the world coordinate system, XYZ

axes are shown in red, green and blue respectively. Figure 4.8(b) shows the VLF coordinate system where

the scene is embedded within the unit sphere of directions centred at the origin (a level 2 subdivision with

88 Chapter 4. A Virtual Light Field Approach to Global Illumination

33 directions is used). Figure 4.8(c) shows the PSF coordinate system for a given direction on the sphere,

the PSF plane is yellow and the orthonormal basis vectors (−→u ,−→v ,−→n) are shown in cyan, magenta and

yellow respectively. In practice the origin of the PSF coordinate frame coincides with the origin of the

unit sphere bounding the scene, but for clarity the PSF plane and basis is shifted to lie tangentially to

the sphere in the illustration. Also, the lengths of basis vectors are exaggerated for clarity. Figure 4.8(d)

shows the PSF from Figure 4.8(c) rotated into its canonical representation.

The data structure differs from traditional surface based data structures in that it samples direc-

tional space first. This causes all samples in a single direction to be represented coherently in memory.

Figure 4.9 illustrates the difference between the VLF approach and a traditional local lines hemispheres-

on-surface approach. Although the approaches differ fundamentally in how they sample the space of

lines over a surface, they offer a similar line distribution (given similar line densities). Figure 4.9(j)

illustrates VLF samples striking a finite surface area. However, the memory access pattern for such

an operation would be extremely scattered and ineffective. The VLF data structure is designed to be

effective when many samples in the same direction are accessed sequentially.

(a) PSF0 (b) PSF1 (c) PSF2 (d) PSF3

(e) PSF4 (f) PSF5 (g) PSF6 (h) PSF7

(i) Union of PSFs (j) PSF cell samples (k) Hemisphere representation (l) Surface cell samples

Figure 4.9: Comparison of VLF data structure to traditional surface based hemisphere data structure.

4.2. Data Structure 89

The notation PSFωi or PSFi where 0 ≤ i < l denotes the PSF in direction ωi = (θi,φi), and, in a

continuous context, PSFω denotes the PSF in direction ω . In the following the notations PSFωi , PSFi

and PSFω will be used interchangeably depending on context.

4.2.4 PSF Sampling

In the transillumination method [Neu95] the PSF plane is uniformly subdivided and patches are projected

to this grid. The patch identifier with depth is stored in depth sorted order at grid points that fall inside

the projection of the patch. Such an approach is efficient in terms of storage since only intersections

within projected patches are stored, however coherence between adjacent projected samples is lost and

each exchange list at a grid point is sorted separately and radiance exchange is performed for each list.

At the other extreme an image with the resolution of the uniform grid storing the depths of projected

samples could be maintained for each polygon. This would maintain coherence of samples belonging to

the same polygon allowing radiance exchange to be performed for many projected points in parallel, but

would waste much storage since small polygons would use only a fraction of the image. Other methods

are possible such as quad-trees and edge-tables, but these typically require searching when accessing

them and are not efficient when used with graphics hardware.

Tiling

In order to arrive at a suitable compromise between memory consumption and exploitation of coherence

a tiled approach to storage has been employed [SMKY04]. The PSF plane is discretised into a regular

grid of N×N samples indexed by (i, j), where i, j ∈ (0,1, . . . ,N−1). This sample space is subdivided

into tiles of resolution m×m, where 1≤m≤N and n = N
m is integral. The regular grid of tiles is indexed

by (s, t), where s, t ∈ (0,1, . . . ,n−1). Each such tile (s, t) is a fully represented map of samples indexed

by (u,v), where u,v ∈ (0,1, . . . ,m−1).

Consider the projection P′ of polygon P into PSFi. P′ will have a tile (s, t) if at least one of the

lines in the tile intersects the polygon. This means that the PSF for each (s, t) maintains a list of tiles

for projected polygons (partially) overlapping the tile. Figure 4.10 illustrates this concept. The tile

(s, t) = (1,1) contains three overlapping polygons, whereas the tiles (s, t) = (0,1) and (s, t) = (2,0) are

empty. Consider the tile (s, t) = (1,0) for the light green polygon; this partially overlaps five out of nine

samples, potentially wasting 44% on samples falling outside the polygon in that tile map. On the other

hand the tile (s, t) = (2,1) for the orange polygon partially covers all samples of its tile.

The benefit of this is that less memory is wasted since only occupied tiles are stored and at the same

time coherence for lines intersecting the same polygon is maintained in bundles of m×m global lines.

The tradeoff can be controlled by adjusting m. If m = N then an entire image the size of the PSF is

stored for each polygon fully exploiting coherence, on the other hand if m = 1 each tile will hold a single

sample and memory consumption is minimised.

Looking up a given global line with this data structure uses the following five parameters;

(ω,s, t,u,v). When accessing information relating to the surfaces of polygons, the polygon identifier

is also supplied in order to locate the corresponding tile; (ω,s, t,u,v, p). The tile can also be accessed

using (ω,s, t, p) and the individual samples can be accessed by varying (u,v) over the tile. Finally, a

90 Chapter 4. A Virtual Light Field Approach to Global Illumination

(0,0)

(0,0)

(s,t)=(1,2)

(s,t)=(1,1)

(s,t)=(1,0)

(2,2)

(2,2)

s

t

v

u

Figure 4.10: Examples of tile lists for four faces projected to a PSF where n = 3 and m = 3. Bold lines

mark the tile boundaries.

”global” lookup, where i, j ∈ (0,1, . . . ,N− 1) , can be converted to a tiled lookup using the following

shorthand; (ω, i, j, p) = (ω,b i
mc,b

j
mc, i−m ∗ b i

mc, j−m ∗ b j
mc, p) or conversely a tiled lookup can be

converted to a global lookup; (ω,s, t,u,v, p) = (ω,s ∗m+ u, t ∗m+ v, p), where i, j ∈ (0,1, . . . ,N− 1),

s, t ∈ (0,1, . . . , N
m −1) and u,v ∈ (0,1, . . . ,m−1).

As described in Section 2.2.3 any ray r(x,Θ) defined parametrically by y= x+t ·Θ, t ≥ 0 originating

from outside the subset of euclidian three-space occupied by objects will form a list with even cardinality

of t-intersections, which describe ray-object interactions. If this list is sorted any pair of intersections

(ti, ti+1), where i is even, forms a valid exchange pair. Thus, interactions will always occur between front-

facing polygons, one of which is oriented in direction Θ and one which is oriented in direction−Θ. This

means that the tiles for a polygon in any PSFi correspond to the front-facing side of the polygon and

that those can be oriented in direction ωi or −ωi. Consequently lookups into a tile (ω,s, t,u,v, p) are

only defined when
−−−→
n(Pp) ·−→vω > 0, where

−−−→
n(Pp) is the outward normal of P and −→vω is the unit vector in

direction ω . Support for transparent objects could be added by storing tiles in both directions.

4.2.5 Data Structures for Radiance Transport

Given a scene and parameters choosing the number of directions, tiling resolution and tile-map resolution

(l,n,m) the data structure can be built in a pre-process that cycles through each PSF allocating tiles for

each polygon in the scene. Each tile will contain a number of layers storing information required for

light propagation such as radiance and visibility information.

Radiance Maps

The VLF stores view-independent radiance. L(ω,s, t,u,v, p) is the radiance for the line (ω,s, t,u,v)

from surface Pp in direction ω . This information is stored as a sequence of tiles L(ω,s, t, p) covering the

projection of Pp into the PSF in direction ω . Each tile stores radiance in two 2D radiance arrays indexed

4.3. Propagation 91

by (u,v) that are referred to as radiance maps. The total radiance map LT (ω,s, t, p) refers to total or

accumulated radiance, and the unshot radiance map LU (ω,s, t, p) refers to unshot in-scattered radiance

that will be transported in the next iteration.

Visibility Maps

An optional visibility map providing information about where Pp is located within a tile can also be stored

with a tile. It defines a boolean function V (ω,s, t, p) for each (u,v) inside the tile. V (ω,s, t,u,v, p) = 1

when polygon Pp is rasterised to cell (u,v) within tile (s, t) for PSFω .

The visibility function could also be represented with a real value per sample defining the contin-

uous overlap of P with a given cell (u,v), however this would require much more memory and com-

putation. Using a boolean value requires a single bit per sample and can be efficiently rasterised with

graphics hardware. In order to improve the accuracy while retaining the ability to rasterise the maps

efficiently a supersampled version V SS of the visibility map V with resolution sm× sm can be stored in

the tile, such that s2 samples are used to represent the visibility for any (u,v). A continuous value can be

extracted from this by summing over the visibility samples representing a given (u,v):

V (ω,s, t,u,v, p) =
1
s2

u′<s

∑
u′=0

v′<s

∑
v′=0

V SS(ω,s, t,(su)+u′,(sv)+ v′, p)

In some of the propagation techniques presented in this thesis it is more efficient to compute V on the fly

than using one stored in the tiles. It will be duly noted when this is the case.

Irradiance Maps

Whereas the radiance maps LT and LU clearly represent directional flux, each (partially) diffuse surface

P has in addition two associated 2D irradiance arrays referred to as irradiance maps. DU stores unshot

irradiance and DT stores total or accumulated irradiance. These maps are independent of directions since

diffuse flux is view-independent and are stored in local texture coordinates of the polygon. D(u,v, p) is

the irradiance for any ray originating at (u,v) on polygon Pp. Any ray (ω,s, t,u,v) that passes through a

texel of the irradiance map collects a radiance value LD
U ((ω,s, t,u,v), p), corresponding to the amount of

accumulated radiance to be distributed diffusely from the area of the corresponding texel; the radiance is

a fraction of the unshot irradiance stored in DU .

This is a special case optimisation that saves memory when the environment is composed of mainly

diffuse geometry. In theory it is not needed and could be replaced by an initial resampling of emitting

faces onto the global line discretisation.

Each polygon P stores a transformation matrix MWC→P along with its inverse M−1
WC→P = MP→WC,

which allows transformations to and from its local coordinate system where the irradiance maps reside.

4.3 Propagation
In this section the radiance propagation stage will be described in detail. The goal is to transport radiance

amongst polygons and store the results in the radiance maps and irradiance maps available in the data

structure. As discussed the organisation of the data structure is such that direction is considered first in

order that interactions across polygons in a single direction are handled collectively. The propagation

92 Chapter 4. A Virtual Light Field Approach to Global Illumination

stage follows this arrangement by exhaustively performing transport amongst polygons in a single direc-

tion before moving on to the next. After the propagation stage has completed each finite element in the

data structure should hold an average radiance (or irradiance) value that is a good approximation to the

radiance leaving that finite element.

This Section is arranged using a bottom-up approach discussing individual low-level finite element

interactions, PSF propagation and, finally, the high level VLF propagation. The stages are laid out in this

way:

• In Section 4.3.1 the low-level finite element interactions are described. These are the interac-

tions between the diffuse and non-diffuse finite elements that make up the data structure. Various

sampling schemes are discussed and an effective point sampling based technique is presented.

• In Section 4.3.2 the PSF propagation technique is described. This involves transport between the

faces in the scene along a PSF and reflections between PSFs. Different techniques for resolving

visibility are described and an effective incremental technique is presented.

• In Section 4.3.3 the VLF propagation method is described. This drives the overall algorithm

by issuing PSF propagation once per PSF for a number of iterations until equilibrium is reached.

Additionally, a technique for propagating ”virtual” PSFs in order to eliminate artifacts is described

in this section.

4.3.1 Low-level Finite Element Propagation

There are two types of finite elements in the VLF data structure. The pixels in irradiance maps DT and

DU , stored in the local coordinate system of each polygon, and, pixels in radiance maps LT and LU stored

along directions represented in the VLF. The fundamental unit is the radiance sample, the irradiance map

concept is added to save storage for mainly diffuse environments as discussed above. This is in contrast

to the global line radiosity work of Sbert [SPNP96]. Sbert employs a similar data structure (DPP) to the

one used in this thesis, but in that method, however, the irradiance sample is the fundamental unit and the

data structure is ultimately used to obtain a global line sampling with good coherency that can accelerate

radiosity. Diffuse maps only correctly describe perfectly lambertian emitters/reflectors and these are

rarely found in a natural scene; most materials have some non-diffuse reflection. However, many virtual

environments today have mainly diffuse surfaces and using irradiance maps for such scenes offers large

savings in storage, making it a useful addition. The propagation stage, however, will centre around

the directional radiance sample and avoid simplifications that assume perfectly diffuse behaviour and

the presence of the irradiance maps, such that the algorithm is suitable for environments with complex

BRDFs.

Each polygon in the scene projects onto each PSF and intersects a number of samples on the PSF

grid. The front-facing side of the polygon will send radiance along this set of samples and this outgoing

radiance will be recorded with the polygon and deposited on and reflected off other polygons visible to

it. (Partly) diffuse faces interact with the radiance samples via their associated irradiance maps whereas

(partly) non-diffuse faces interact directly with the radiance samples through their associated radiance

4.3. Propagation 93

maps. Although the data structure has a different organisation a PSF can be thought of as a collection of

beams each containing a list of radiance samples. When sorted along the PSF this forms an exchange list

as described in Section 2.2.3. There is one sample for each surface interaction, which is characterised by

an intersection between a polygon and the beam. Consider splitting a single beam in two with a plane

orthogonal to the PSF direction ω forming a square cell, i.e. the cross section of the plane with the beam.

For simplicity assume a closed scene and a splitting position inside the scene. Given any (x,y) on the

surface of this cell there is a pair of mutually visible surfaces between which transport takes place. The

radiance for the cell in direction ω is:

Lcell(ω) =
1

Acell

∫
p∈cell

Lp(ω)dAp (4.1)

The radiance for the cell is calculated by integrating over the area of the cell using a visibility function

r(p,−ω) (see Section 2.2.3) to determine which polygons contribute to the radiance of the cell. Alterna-

tively, the same result could be achieved by summing up radiance values weighted by visible area. This

would divide the cell into a discrete finite set of continuous territories belonging to the (visible) polygons

interacting with the beam:

Lcell(ω) =
1

Acell
∑

t∈cell
Lt(ω)At (4.2)

Of course the subdivision into territories can be arbitrarily complex; there is no guarantee that a single

polygon projects to a single territory. Imagine for example viewing a wall behind a meshed fence.

The first equation naturally suggests a point sampling approach when solved numerically, whereas

the second can be solved by calculating the territories employing a continuous clipping algorithm. The

latter approach is used in [SMKY04], this thesis, however, introduces a method based on point sampling,

which is dramatically more efficient and maps naturally to graphics hardware.

Due to the aforementioned data structure the possible finite element interactions within our domain

can be listed as follows:

• Diffuse element interactions

◦ Irradiance-radiance cell interactions

◦ Radiance-irradiance cell interactions

◦ Irradiance-irradiance cell interactions

• Non-diffuse element interactions

◦ Intra-PSF radiance-radiance cell interactions

◦ Inter-PSF radiance-radiance cell interactions (reflection)

Diffuse Finite Element Resampling

The following sections will deal with the issue of transporting radiance to and from the irradiance maps.

The two major issues in this context are visibility computations and choice of sampling strategy. A

number of alternatives will be described and their benefits and drawbacks are discussed.

94 Chapter 4. A Virtual Light Field Approach to Global Illumination

Continuous Transport

Given a set of faces, a method of performing transport between them in a given direction would be

to construct a global visibility map [SKTNB97, SK98] that subdivides the PSF plane into a number

of territories each of which describe a list of faces that project to that territory. This requires that all

intersections between all projected edges of all faces are computed in order to build the planar graph from

which the territories can be derived. Alternatively, the visibility map can be constructed incrementally

by visiting faces ordered by depth along the PSF direction [SKTNB97]. In order to update a receiver

surface, the graph of sender surfaces lying in the positive half space with respect to the receiver is clipped

against the shape formed by the projection of the receiver onto the PSF plane. This will produce a set

of sender territories that are visible and overlap the receiver. Transport between the territories and the

receiver surface can then be resolved.

However, this is a face centric approach to the transport problem and would still require an ad-

ditional step to resample and update the radiance maps stored for non-diffuse faces. The immediate

solution to this would be to perceive each radiance sample as a square cell that is (already) projected

to the PSF and clip each of these against the full graph for receivers (as described above) and just the

sender polygon for a sender radiance cell. Of course this would be exceedingly expensive for anything

but trivial scenes. Even geometrically trivial scenes could have diffuse texture maps assigned to them

causing the clipping to be performed for each texel in the texture map. Furthermore, clipping maps

poorly to graphics hardware due to the fact that quite a few conditionals are required.

Semi-Continuous Transport

An alternative approach used in [SMKY04] employs a two-pass semi-continuous approach that avoids

the need for examining all other faces for potential overlap by using a discrete supersampled visibility

map to guide the clipping step. The approach uses continuous clipping between cell pairs identified by

a separate discrete visibility pass. It solves the irradiance-radiance, radiance-irradiance and irradiance-

irradiance resampling problems as the algorithm is reversible and ”associative”, i.e. irradiance-irradiance

resampling can be solved by performing an irradiance-radiance followed by a radiance-irradiance resam-

pling stage.

The resampling stage that transports radiance between the irradiance map and the radiance map

uses a continuous clipping technique to determine the area of the overlap between a projected irradiance

map cell and an axis aligned radiance map cell. Figure 4.11 illustrates a radiance map projected to a PSF

grid. In Figure 4.11(b) the continuous contributions made to cell (2,2) are shown, in this example eight

different irradiance map cells contribute towards the radiance of the cell and the middle irradiance map

cell (yellow) provide the largest contribution.

Recall that the irradiance map is local to the face coordinate system and is subject to an affine

transformation comprising translation, uniform scaling and rotations to bring it into the PSF coordinate

system. After applying an orthographic projection to the transformed irradiance map a grid of paral-

lelograms is formed. The resolution of the irradiance maps are set such that a many-to-one mapping

4.3. Propagation 95

(0,0)

(3,3)

(a) Projected irradiance map (b) Contributions to cell (2,2)

Figure 4.11: Irradiance map projection to a 4×4 PSF grid. Continuous contributions made to cell (2,2)

are highlighted.

between an irradiance map and a radiance map is guaranteed for all represented directions in order to

avoid undersampling artifacts in the radiance samples. During initialisation of the VLF the PSF in the

direction most closely matching the face normal, which will receive the largest projection of that face, is

used to guide the selection of a resolution ensuring that the mapping criterion will be upheld.

Thus the bulk of the work involved is determining the area of overlap between a radiance cell (quad)

and an irradiance cell (parallelogram). The clipping kernel responsible for clipping a parallelogram

against a quad is based on the Liang-Barsky polygon clipping algorithm [LB83]. It has been optimised

by exploiting the fact that the source and destination shapes are known to be convex.

For a sender polygon updating its outgoing radiance map tiles, visibility is not required and the

algorithm simply loops over each irradiance sample, projects it to PSF space and adds area-weighted

contributions to any radiance cells the parallelogram intersects. The base parallelogram for the irradi-

ance sample at the origin is computed and the remaining parallelograms can be obtained by adding an

appropriate offset to the base parallelogram; this reduces the number of expensive projections involving

matrix multiplications.

Dealing with a receiver irradiance map is more complex since it can receive radiance from any

number of surfaces depending on their mutual positions, orientations and occlusion. In order to simplify

the process the stage is broken down into two passes; one pass computes visibility from the receiving

polygon and updates a temporary radiance map in PSF space. A second pass performs resampling

between this temporary radiance map and the irradiance map. This latter pass is identical to the operation

for handling a sender polygon just reversed.

Visibility is computed discretely in PSF space using false colour rendering with z-buffering using

rasterisation hardware. Given a PSFω and a receiver polygon r that projects to r′ = r ∗MWC→PSFω
in

PSF space an orthographic camera is placed at (0,0,r′z) and points in direction −ω 1. Additionally,

a clipping plane is set using the plane equation for r′ such that no polygon fragments behind r′ are

rendered. Clipping planes parallel to the PSF direction ω can also be enabled for each edge of the

receiver polygon such that only fragments overlapping r′ in the PSF plane are considered. Finally, all

1For simplicity it is assumed that transport is performed along the PSF direction ω , in practice transport in the opposite direction

is handled in a subsequent pass and is performed along −ω and thus the camera direction is clearly ω .

96 Chapter 4. A Virtual Light Field Approach to Global Illumination

polygons are rendered coloured with their polygon index with z-buffering and back face culling enabled,

producing a discrete visibility map in PSF space where the colour of each pixel encodes a visible polygon

index. The resolution of the viewport can be set such that there are one or more pixels for each PSF cell

enabling supersampling for more accurate visibility. This is essentially employing the visibility function

r(p,−ω) (see Section 2.2.3) once or more for each radiance cell that intersects the receiver where p is

the midpoint of the radiance cell. Supersampling subdivides the receiver PSF cell regularly, creating

U×V smaller PSF cells where U and V define the supersampling resolution. Each of these smaller cells

become a target for clipping, and the resultant radiance is the average over all these samples. When a

sender surface identifier has been identified for a PSF cell (or sub cell), the corresponding irradiance

map is projected to PSF space traversed and each irradiance cell parallelogram is clipped against the

radiance cell quad. An area weighted contribution is then added to the temporary radiance map. Each

radiance cell (or subcell) only considers the irradiance cells of the polygon identified by the visibility

map, making the clipping function local and thus constant time; O(1) 2. Of course this algorithm will

perform many unnecessary clipping operations for projected irradiance cells that will clearly produce a

null area; this can be avoided by projecting the vertices of the radiance cell quad onto the irradiance map

and only traversing those irradiance cells which fall within the axis aligned bounding box formed by the

vertices.

This transport technique forms the basis for the VLF algorithm presented in [SMKY04]. However,

the algorithm is painfully inefficient and takes hours to days for even relatively simple scenes containing

< 1K faces. There are a number of reasons for this.

Since the clipping kernel lives within the innermost loop of the algorithm it is executed very fre-

quently. It is relatively expensive requiring floating point operations and branching. It also requires a per

face projection step to PSF space involving multiple 4x4 matrix operations. Mainly due to the branching

it maps poorly to streaming architectures such as Cell processors [JB07] or GPUs.

Secondly, the discrete visibility may require high supersampling rates to arrive at the correct radi-

ance values when many small polygons project to a single radiance cell. This is mainly due to the fact

that the visibility computed at the centre of the cell may not be representative for the area of the cell

and since clipping is performed only against candidates indicated by the visibility, significant error can

be introduced by either ignoring contributing candidates or ignoring occlusion of indicated candidates.

Each extra (super)sample requires independent execution of the clipping kernel. Furthermore, since

the discrete visibility is computed using graphics hardware the pixel data must be fetched from GPU

memory to system memory requiring a system bus transfer 3. These are notoriously expensive since the

system bus is about an order of magnitude slower than the internal bus on the GPU even with PCIEx-

press [PCI02]. The original VLF implementation [SMKY04] fetched a full PSF image of visibility for

each receiver polygon, an obvious optimisation is to only fetch the portion of the pixel map which covers

the receiver face since this will in many cases be a fraction of the full map. However, this only gave

2In fact the clipping function is linear in the number of irradiance cells that is clipped, but this can be assumed to be a constant.
3This is not true of all architectures. I.e. games consoles such as the Playstation3 [KBLD08] and Xbox360 [SP07] employ a

unified memory architecture allowing the ”CPU” to access pixel data directly.

4.3. Propagation 97

moderate improvements since there is a high per fetch operation overhead. It turns out that in practice,

the pixel fetching rate is proportional to the number of pixels in the batch.

Also, the irradiance↔radiance transfers have no notion of level of detail. Transfer accuracy is not

dependent on the projected area of the polygon in question since every irradiance cell will be projected

and clipped independently. This is in contrast to the data structure, which naturally enforces a cosine

distribution upon the radiance samples allotted to a polygon. So a transfer to a PSF that is nearly parallel

to the polygon will require clipping of each irradiance cell regardless of the fact that they project to a

very small number of radiance cells and the fact that they contribute relatively little to the end result.

Essentially, the contributions made are averaged after projection and clipping in radiance space rather

than averaging in polygon (irradiance) space and projecting far fewer and larger areas. It would be

desirable to be able to treat groups of irradiance cells in unison for such transfers.

Finally, since visibility is O(N) and must be executed once for each polygon the overall complexity

of the algorithm is O(N2), where N is the number of polygons. This works well for scenes containing

few polygons but scales poorly to more complex environments.

To summarise, the problem is two-fold. Practically, the algorithm is difficult (if not impossible)

to implement efficiently on current hardware. Theoretically, the complexity of the algorithm - O(N2)

- is such that even if an efficient implementation presented itself, the benefits of any such low-level

optimisations would be outweighed by the overall complexity characteristics when increasing the number

of faces.

Discrete Transport – Point Sampling

An important contribution of this thesis is applying point sampling to the VLF transport problem forming

the core of the approach presented in [MKS07]. A discrete point sampling basis resolves many of the

issues that makes the previous approach [SMKY04] so inefficient; in particular it does away with any

clipping. Moreover, it makes the algorithm map well to streaming architectures such as the GPU, which

will be discussed further in Chapter 5. The technique proposed here solves the irradiance-radiance,

radiance-irradiance and irradiance-irradiance resampling problems by introducing a grid↔grid resam-

pling scheme that can transport to and from PSF space.

The problem is to solve Equation 4.1. A straightforward solution to a resampling scheme without

continuous clipping is to replace the clipping operator with an operator that estimates the area of overlap

by point sampling. In order to determine this area draw a large number of point samples across the

receiver quad (radiance cell) and count how many of them fall inside the source parallelogram (projected

irradiance cell), the overlap area is then Asrc∩rcv = Arcv
Nhits
Ntotal

. A black-box replacement like this, however

simple, retains many of the problems with the clipping approach. Rather than estimating areas, the goal

is to sample the source signal appropriately. Provided that enough samples are used and that they are

unbiased the answer will be a good approximation to the true signal. The minimum number of samples

necessary is determined by the upper limit of the frequencies of the source. The Nyquist limit is one

cycle every two texels, so we need to sample the source with at least 2×2 samples per source texel. In

98 Chapter 4. A Virtual Light Field Approach to Global Illumination

order to determine the number of samples necessary a source parallelogram is simply projected to PSF

space and the area is computed. Given this value A′src and the area of the receiver radiance cell Arcv it is

straightforward to set up a sampling grid with c× Adst
A′src

samples, where c is a sampling quality parameter

(set c = 4 to observe the Nyquist limit).

In many cases the above fixed sampling approach will use a high number of samples. As discussed

in the previous section, a face nearly parallel to the PSF direction will project all irradiance cells to very

few radiance cells. In such cases the technique will use up to four samples per irradiance cell and then

average the result to arrive at the final radiance value. This may cause hundreds or, in extreme cases,

even thousands of samples to be used for a single radiance cell. This can clearly be improved upon

without sacrificing accuracy by observing some contextual features. The point sampling captures two

separate features of the signal:

• Radiance integral - average exitant radiance of contributing irradiance cells.

• Area integral - visible area of the irradiance cells overlapping the radiance cell.

The first, a surface integral, samples the irradiance cells of the source polygon4. The contents of the

irradiance map can be considered relatively low-frequency since it has been diffusely reflected at least

once5. The latter integral is simply the overlapping area between the projected polygon and the radiance

cell and is only dependent upon the shape of the source.

In fact the number of samples needed to observe the Nyquist limit quoted above only applies for a

high-frequency source, e.g. a black and white checkerboard. In case of uniform irradiance where only

the area integral is needed, the sampling can be independent of the resolution of the irradiance cells and

can be performed with much fewer samples. In practice a number of samples in between these poles

will be necessary given the relatively low-frequency nature of the signal. Furthermore, it is trivial to

use stochastic sampling in this setting either using jittered sample positions or drawing samples from a

distribution with blue noise properties [Coo86]. This was successfully applied to distributed ray tracing

in [CPC84] and the theory underlying stochastic point sampling is discussed in more detail in [Coo86].

It effectively allows undersampling the signal and converting structured aliasing to noise, which is much

less objectionable to the human visual system.

Finally, it is possible to use an adaptive sampling scheme that bases the sampling density on the

projected area of the source, observing the same cosine distribution for the transport as is used for the

data structure itself. The idea is that rather than sampling the irradiance cells individually, especially

for the case when many project to the same radiance cell and will be averaged, they can be considered

collectively in groups, essentially pre-integrating the radiance values. A different texture representation

is needed in order to achieve this. Basically, a lookup function that can produce a texture value given an

4The naming convention for the irradiance map may be slightly confusing. Unshot irradiance is converted to exitant radiance

by applying the surface albedo prior to use, so in fact, for senders, it contains radiance. Receivers use a different temporary copy

to collect radiance into, which then contains irradiance at the end of the iteration.
5There is one case where this is not true. That case is textured emitters, which can be arbitrarily high-frequency, e.g. a

black/white checkerboard. These can, however, be treated as a special case and sampled with more samples if necessary.

4.3. Propagation 99

ideal (projected) texel size is needed. An image pyramid [Wil83] serves this purpose well, as it contains

a set of progressively downsampled texture layers. Texels in the levels correspond to increasingly larger

areas when descending into the pyramid, such that a sample for the desired texel size can easily be

retrieved by sampling the appropriate level in the pyramid. This allows the sampling density to be based

on the area integral only as the radiance integral is pre-integrated.

The idea of using adaptive sampling densities for the diffuse transport extends further than this. In

the case of very complex scenes with finely tesselated models it would be desirable to be able to transport

radiance for groups of faces rather than each one individually. As a thought experiment consider that

each texel (in the above scenario) was in fact an individual polygon with a single (ir)radiance value

assigned. In such context the adaptive solution would be futile unless the principle is extended to groups

of polygons as well as texels. A hierarchical organisation of the model would be needed for this to

be effective [HSA91]. In this setting the clustering algorithm would need to produce clusters that are

roughly planar and thus minimise self-occlusion in most directions. The algorithm given in [GWH01]

has parameters that can be adjusted to minimise various features of the clusters, including planarity and

shape, and would be appropriate to this work. Since the techniques in this thesis can in principle support

any BRDF, the clustering could with advantage attempt to cluster faces based on the BRDF, such that

clusters that are mainly diffuse and are likely to be low-frequency can be sampled more sparsely than

highly specular high-frequency clusters. These techniques have not been attempted in this thesis and

remain one avenue for future work.

The above technique solves the resampling problem and ignores mutual occlusion. In order to

compute incident radiance upon a receiver radiance cell visibility is required. This is essentially employ-

ing the visibility function r(p,−ω) (see Section 2.2.3) for each selected sample point. Any visibility

method is applicable. The point sampling technique is particularly appropriate since it can easily take

advantage of stochastic sample distribution. Also it integrates nicely with irradiance resampling since

the same samples can be used to sample the (ir)radiance, area coverage and occlusion rather than, as in

the previous method, solving for visibility with a different set of samples in a separate pass.

This chapter represents a core contribution of this thesis. An alternative point sampling scheme

has been introduced that resolves many of the issues with the clipping approach. Namely, the relative

inefficiency of the clipping technique and the problems with controlling the sample density used. In

particular an optional hierarchical scheme can be used to significantly reduce the number of samples used

when the source is low-frequency or it projects to a small area on the receiver. The approach is single-

pass and can use the same samples for visibility and resampling. Furthermore, stochastic sampling is

possible trading noise for structured aliasing when violating the Nyquist limit by undersampling. And

finally the inner loop of technique is particularly simple and parallelisable making it appropriate for

streaming architectures such as GPUs.

Non-diffuse Finite Element Interactions

The following will deal with the two remaining types of transfer:

• intra-PSF radiance-radiance cell interactions

100 Chapter 4. A Virtual Light Field Approach to Global Illumination

• inter-PSF radiance-radiance cell interactions (reflection)

These interactions are fundamental to the approach and are tightly bound to the data structure. As de-

scribed earlier the cells of the data structure carry radiance. This is stored in two sets; unshot outgoing

radiance LU (ω,u,v, p)6 and total outgoing radiance LT (ω,u,v, p). Outgoing unshot radiance is the in-

scattered radiance from the previous iteration. When using irradiance maps the in-scattered radiance

is only due to non-diffuse reflection and in order to arrive at the radiance from polygon p travelling in

direction ω within cell (u,v), an appropriate fraction of the irradiance is added to the unshot radiance

using the aforementioned resampling scheme. There is a simple 1-1 mapping between the unshot radi-

ance map and the total radiance map and a simple addition of the images is sufficient to update the total

outgoing radiance with the unshot radiance of the previous iteration.

For a receiver face the situation is slightly more involved. Each receiver cell can see a number of

faces that intersect the beam formed by the cell, occlusion amongst them require visibility to be solved.

When a map of incoming radiances has been formed, it is scattered off the receiver face and added to

unshot outgoing radiance maps in other PSFs for that face. Based on the BRDF of the surface a fraction

of the incoming radiance is deposited in the irradiance map for the face. The remaining radiance is added

to n other PSFs. A reflection of incoming radiance Lc(θi,s, t,a) from face a in the PSF direction θi into

the unshot radiance map Lu(θo,s, t,b) is illustrated in Figure 4.12.

θo θi

RI
face a

face b

 Lc

 Lu

Figure 4.12: Non-diffuse transfer and scattering. Tiles for face a are shown only in the direction of the

current PSF, tiles for face b are shown for the current PSF and for the PSF in the reflected direction.

6In the following the radiance map indexing will interchangeably be omitting the tile indexing for simplicity.

4.3. Propagation 101

In theory all PSFs will receive a fraction of the radiance based on the incident direction and the

outgoing direction and the BRDF of the surface, but many of those will be zero or very small. For

example for an opaque surface all reflections below the hemisphere are zero and can be ignored. Also,

specular surfaces have a sharp peak in the BRDF for a narrow band of directions and is nearly zero

elsewhere. So in practice n can normally be set significantly lower than the number of PSFs k such that

n� k. In a setting with diffuse and purely specular surfaces (and a mixture thereof) n can be fixed at

one.

4.3.2 PSF Propagation

The costliest operation by far is solving for visibility when transporting radiance. Each receiver face

must compute its visibility to all other faces. Without any extra information such operations must visit

each and every other polygon and check whether it is visible. Typically, the number of visible faces,

say m, is much smaller than the total number of faces N. This is especially true for the representation

in this work since direction is represented explicitly. The visibility of a beam formed by a radiance cell

is proportional to the depth complexity of the scene when we assume that the cell area is infinitesimal

compared to the overall scale of the scene, since in this case the beam can be compared to a ray. A main

contribution of this thesis is how visibility is computed. By taking into account properties of the data

structure and introducing some pre-processing, visibility can be computed in (fast) linear time O(N) for

a PSF. Additionally, the proposed method also maps well to a GPU architecture.

For the purpose of discussing the complexity of visibility computation some notation is needed. N

is the number of faces in the scene, T is the total number of unique texels on the surface of the faces.

Clearly T ≥ N. For scenes with high illumination complexity T � N. It is assumed that given a global

line and a face the intersected texel can be looked up in time O(1). For a given PSF visibility must be

solved for each texel in order to compute the light transport.

Unsorted Face Sequence

The two most popular methods for resolving visibility on the fly is rasterisation with the z-buffer [Cat78]

and ray tracing [Whi80, Hav01]. In order to solve for visibility for a face along a given PSF all other

faces are rendered into a z-buffer aligned to the texture on the face. This essentially solves visibility

for all texels on the given face in a single pass. Thus, the complexity of rasterisation with the z-buffer

is O(N× T). On the other hand the complexity of ray tracing with a kd-tree is O(T logN) since it is

assumed that the complexity of ray tracing a subtree is N
k , where N is the complexity of the parent and

k ≥ 2. Thus, descending into the tree will, if the tree is balanced, at least halve the number of faces in

each step. Because of this it seems obvious that ray tracing should be superior to rasterisation with the

z-buffer.

However, fill rates of current hardware are so efficient that in many cases the per pixel cost in the

complexity for rasterisation can be ignored such that O(N×T) ∼ O(N2). This is particularly true for

scenes with low to medium complexity, which are targeted in this thesis. In ray tracing traversal of the

spatial subdivision structure, which is executed per pixel, is relatively expensive and is only worthwhile

when it can cull a significant number of faces. So in practice there is a point where the two scaling curves

102 Chapter 4. A Virtual Light Field Approach to Global Illumination

cross and this point is dependent on the relative scale of T and N and also on the hardware platform used.

The original VLF method introduced in [SMKY04] was targeted at low complexity scenes with

high complexity illumination stored in view-dependent textures. In this scenario rasterisation worked

well and the per PSF complexity of O(N2) was workable when N was on the order of tens. However,

propagating scenes with hundreds or thousands of faces would cause excessive running times. Since the

aim of this thesis is to target scenes at higher complexities, tens of thousands faces, ray tracing would be

the superior choice for solving visibility due to superior scaling characteristics of O(T logN).

Sorted Face Sequence

Due to the organisation of the VLF data structure it is possible to do even better than O(T logN). The

visibility used during transport can be thought of as 2D images of face indices (and possibly depth)

under an orthographic projection as seen from a receiver face. The projection of a face p onto a PSFω

intersects a number of cells for which visibility must be calculated. As discussed earlier each such cell

corresponds to an infinite global line l = (ω,s, t,u,v) and the aim is to find the index, say q, of the nearest

face intersected by the ray originating at the intersection of l with p, say xp = xs,t,u,v,p, and travelling in

direction ω7. Assuming p is facing in direction−ω the resulting index can be found using the ray casting

function q = r(xp,−ω)8 (see Section 2.2.3).

As noted in the previous section ray tracing or rasterisation with z-buffering can be used to obtain

this 2D mapping. However, these two methods compute the surface intersections from scratch for each

receiver and global line since there is no inherent ordering of the face sequence with respect to ω . Now,

if we assume that the input faces are sorted by depth along ω an incremental algorithm is possible. Thus,

partial results can be reused by traversing the faces in depth order updating a shared global set of surface

intersections.

During the pre-process the polygons Pp, p ∈ (0,1, . . . ,k−1) are rasterised into each PSF allocating

tiles and their associated data structures. However, this step produces lists of tiles ordered by their poly-

gon identifier. Given a tile list (ω,s, t) = ((ω,s, t,0),(ω,s, t,1), . . . ,(ω,s, t,k−1)), the tile positions are

not related to their relative depth along ω . Sorting each tile-list separately is suitable if the propagation

step is tile centric. However, if operations cross tile boundaries the ordering information contained in

several tile-lists must be merged. Alternatively a separate list of polygon identifiers sorted by depth can

be maintained for each PSF. The latter was chosen since certain transport steps are performed at a coarser

granularity than the tile level.

Intuitively, the aim is to produce a list of polygon identifiers for a given PSFωi that guarantees a

depth order for the polygons projected to the canonical PSF coordinate system. This is essentially an

orthographic projection along the direction ωi; P⊥ωi
p , p ∈ (0,1, . . . ,k− 1) is the set of polygons pro-

jected into PSFωi . Let ≺ be a binary relation defined on the set P′ = P⊥ωi . If P′p ≺ P′q then there is an

overlap between P′p and P′q in which P′p (partially) obscures P′q. Thus, the aim is to compute an order

(P′0,P
′
1, . . . ,P

′
k−1) upon the elements in P′ such that P′p ≺ P′q implies p < q. Of course such an order may

7Or −ω depending on the orientation of p with respect to PSFω .
8For simplicity of notation it is assumed that the ray casting function returns a face index rather than a surface point.

4.3. Propagation 103

not exist if there is a cycle of overlapping polygons or if a pair of polygons intersect. For simplicity it

is assumed that this is not the case for the scenes used in this thesis in order to avoid polygon splitting,

which is a relatively trivial problem [NNS72].

This problem is analogous to the hidden surface problem [NNS72, SSS74, dBOS92] as well

as depth sorting algorithms for volume rendering applications [Wil92, SBM94, WMS98, CKM+99].

Newell’s method is O(N2) in the worst case since the z-overlap test may have to be performed for ev-

ery pair of polygons. For scenes with a (nearly) constant frequency of z-overlap it is O(N logN) in the

average case due to the initial rough sorting step by maximum depth.

A possible improvement in the VLF context would be to exploit the fact that the PSF plane is

tiled. By applying the sorting algorithm to the individual tile lists followed by a step that merges them

into a single ordering could possibly provide a faster algorithm, since for natural scenes the density of

objects in each tile is low compared to the total number of objects. A quad-tree like traversal for merging

the tiles could be employed. Clearly, the sorting algorithm would need to be super-linear to gain any

advantage in efficiency. This is similar in concept to the multi-tiled sort of convex polyhedra given by

Williams et. al. [WMS98]. They use the sorting algorithm devised by Stein et. al. [SBM94] as a starting

point. An extension to this would be to also subdivide the tiles in depth forming a 3D uniform grid and

then sort each volume separately followed by an extended merging operation. Furthermore, the partially

sorted 3D uniform grid could be used directly in a tile centric propagation algorithm using the z-buffer,

depth-peeling or ray tracing approach to resolve visibility internally in a cell exploiting the low density

of objects in each cell.

So far no use has been made of coherence between sorting orders along similar directions. Given

similar directions the sorting order of faces is bound to be very similar so devising a fast algorithm that

can ”fix” a nearly correct sorting order would be beneficial. Upon sorting along one PSF it is trivial

to select the closest neighbouring PSF for an initial sorting and it is very likely that such pair of PSFs

would have a very similar polygon ordering requiring relatively few operations to repair the sorted order.

This is exactly what Govindaraju’s Vis-sort algorithm exploits [GHLM05]. The GPU is utilised in this

approach to implement the comparison operation P′p ≺ P′q. The method can depth sort a nearly sorted

sequence in linear time. A nearly sorted sequence is defined in terms of its measure of disorder, which is

the minimal number of elements that need to be removed in order for the rest of the sequence to remain

sorted. A sequence with n elements is nearly sorted if its measure of disorder is k� n. The complexity

of the approach has an upper bound of O((4k+2)N), which is linear in N if k is constant. The technique

does not inherently handle cycles but can detect them and it could easily be extended to deal with them

appropriately using a splitting technique.

The sorting algorithm employed for the implementation in this thesis is similar to Newell et. al.’s

[NNS72] list priority approach with a BSP splitting and merging step. This was chosen for its simplicity.

In order to improve sorting speed, Govidaraju’s superior O(N) algorithm should be implemented and

integrated. In the results section (see Section 6.1) a prototype implementation of this technique will be

applied to the data sets used in this thesis and the results reported. A fully optimised integration with the

104 Chapter 4. A Virtual Light Field Approach to Global Illumination

VLF framework will be left as future work.

Using the depth sorted set of faces it is trivial to reconstruct an exchange list (see Section 2.2.3)

for a given global line. Each face is visited in turn and the face indices (and possibly the intersection

point) are written into a linked list. Assuming that the scene is closed and composed of non-intersecting

closed polyhedra without cycles, this linked list will contain pairs of unoccluded surface intersections

between which energy exchange can occur. These mutually visible pairs can then be visited in order and

bi-directional energy transport can be computed. This is done once for each global line l. This algorithm

is clearly O(2× T) = O(T) for a PSF since each texel is visited exactly twice. The crucial point of

the algorithm is that it can reuse intersections along the global line rather than recomputing them from

scratch for each receiver.

In practice it is inefficient to compute energy exchange along each global line individually. A

single PSF can comprise more than 1 million global lines at high resolutions or high supersampling

ratios. Crucially, no use is made of the coherence across surfaces. There are many operations that can

be efficiently computed for a bundle of coherent global lines such as BRDF scattering calculations and

mapping to/from diffuse maps. As discussed above the VLF data structure itself is organised coherently

by tiling the PSFs (see Section 4.2.4). A tile is essentially a coherent bundle of global lines that intersect

the same geometry. In order to handle the radiance transport coherently a means of storing intermediate

results is needed since the operation is conceptually breadth first. A per tile approach could be taken

utilising an intermediate tile for storing radiance. However, a simpler approach is to store an entire PSF

image containing the intermediate radiance results. The resolution of this image is the supersampled

PSF resolution. This radiance interface (RI) is initially black, or alternatively filled with an environment

colour9, each sender, i.e. a face oriented along the current direction of transport is rendered into the

RI coloured by its unshot outgoing radiance in this direction. This incrementally updates the exchange

list for the set of global rays intersected by the sender face. A receiver face, i.e. a face oriented in the

opposite direction, can simply collect the radiance directly from the RI without calculating any visibility.

This is because each pixel in the RI (≡global line) stores the outgoing radiance of the closest face, i.e. the

face most recently rendered into the RI. This process clearly needs to be done twice once back to front

and then front to back, so that the faces reverse roles from receiver to sender and visa versa. Figure 4.13

illustrates this concept.

Initially the RI (RI0) is empty. Then face r updates the RI (RI1) with emitted radiance. Face s

receives radiance from (RI1) and face t updates the RI (RI2) partly overwriting the radiance written by

r. Face u then receives radiance from (RI2) which is radiance partly coming from face r and face t.

This process is repeated until all faces have been visited. Then the process is repeated in the opposite

direction.

The algorithm just described requires a depth sorted set of input faces. As discussed above, k PSFs

can be sorted with a complexity of O((k−1)×N +N logN), where k is the number of directions used.

This makes the overall complexity of the sorting step for a PSF nearly O(N) when many directions

9This makes applications of skylighting or environment mapping trivial with the VLF.

4.3. Propagation 105

PSFn

Transport direction

r

s

t

u

v

w

x

y

Lr RI1

RI1 Ls

RI2 Lu

RI3 Lw

RI4 Ly

Lt RI2

Lv RI3

Lx RI4

RI1 RI0RI2RI3RI4

Figure 4.13: Incremental approach for radiance transfer with pre-computed sorting. Transfer takes place

from right to left.

are used, since the O(N logN) term can be amortised over the directions. Consider propagation over I

iterations, k directions, N faces and T texels (T � N). T represents the illumination complexity of the

environment, that is, the elements for which visibility must be calculated. Each element is visited twice,

once for receiving energy and once for sending accumulated energy. The overall theoretical complexity

of propagation is then:

ORI
PSF =O(2×T +

(k−1)×N +N logN
k

)< O(T +N +
N logN

k
)

ORI
V LF =O(I× k×ORI

PSF) (4.3)

Comparatively a ray tracing based approach is:

ORT
PSF =O(2×T logN) = O(T logN)

ORT
V LF =O(I× k×ORT

PSF) (4.4)

Of course if T ∼ N, in cases where there is one or very few finite elements per face, ray tracing

becomes more effective. This is obvious as the proposed approach would determine the global order and

thus visibility and then perform a single transport operation per face. In such a case it would be more

efficient to compute the visibility on the fly using ray tracing. However, for cases with moderate scene

complexity and high illumination complexity this approach becomes quite efficient, even when purely

CPU based, since the finite elements can share the visibility information amongst them. Moreover, in

order to compute the light transport without excessive error, texels must be integrated with a number of

samples (� 1). In the proposed approach the visibility complexity is independent of the supersampling

106 Chapter 4. A Virtual Light Field Approach to Global Illumination

rate, whereas for ray tracing it is not, thus, each extra supersample would need to independently compute

visibility.

The approach maps well to graphics hardware and comes into its own on a streaming platform, since

the T transport operations can be computed with just N face rendering operations. Each such operation

uses the GPU architecture to handle the finite elements across the face in parallel. If it is assumed that a

rendering operation is constant time the complexity becomes O(2×NGPU +N + N logN
k) for a PSF.

4.3.3 VLF Propagation

In order to achieve equilibrium, radiance is transported until the solution converges. The PSF transport

operator is applied for each direction k in the PSF set. Then shot/unshot maps are swapped and a new

iteration can commence. For typical scenes, even closed ones, only a few iterations are sufficient as the

contribution quickly diminishes due to the repeated application of the BRDF.

As discussed above, each PSF in the set represents a pencil of directions. This solid angle is ex-

plicitly represented by the triangle subdivision of the sphere bounding the scenes. Thus, in order to get

the correct result the solid angle needs to be integrated so that the radiance stored in the PSF direction is

the correct average over the solid angle subtended. In the data structure a single direction is chosen as

”representative” for the PSF. This is the midpoint of the solid angle of the PSF. The reason for choosing

the midpoint is that in this direction the projection of the geometry is maximized. However, this does not

mean that transport can only be applied in this direction, only that the resultant radiance maps are using

this direction for projection. When transporting radiance, a number of samples spread across the solid

angle are used and the results are accumulated into the ”representative” direction and weighted appropri-

ately. In the implementation used to generate results for this thesis random sampling and a box filter is

used. It would be trivial to replace the sampling with a technique that produces a distribution with blue

noise properties (see for example [Bri07]) for faster convergence. As discussed earlier the solid angle

subtended by a PSF may vary so the number of samples used for a PSF is proportional to its solid angle

in order to ensure uniform sampling over the sphere.

The VLF does not handle very small light sources well. In fact large light sources, which are

notoriously hard to sample for gathering approaches like path tracing are handled easily with the VLF.

The reason for this is that the VLF is a shooting approach and thus the angular spread of directions

increases with distance and the overlap on a receiver is proportional with the size of the emitter. Figure

4.14 illustrates this effect. The worst imaginable case is a point emitter which will generate a bright point

for each direction that intersects a receiver.

Path tracing samples the light sources separately because they are known to contribute significantly

to the image. The ideal case (in a gathering approach) is a point emitter that can be adequately sampled

with a single ray. The worst case, however, is when the entire scene is an emitter in which case impor-

tance sampling the emitters will not work well. A case in point is in scenes with large textured lights.

This problem is also pronounced with mostly diffuse scenes where the secondary rays need to sample

the diffuse hemisphere in order to estimate the irradiance. A host of complex approaches, like irradiance

caching, have been developed to try to remedy this issue in gathering approaches. For the VLF method,

4.4. Rendering 107

Figure 4.14: Angular spread of fixed directions.

increasing the number of samples used for a PSF can improve the results. It is not necessary to do this

for all iterations: typically the first iteration that shoots light from the emitters will cause the largest

variance on the receivers and thus needs more samples. After the first iteration emitters will be ”black”

and the entire scene will act as an emitter so fewer samples can typically be used. For pathological cases,

involving point emitters, it would be more sensible to produce the direct lighting via a different approach

like ray casting or even rasterisation with shadow-mapping, which performs well in such cases. Such a

step has the effect of turning the geometry of the scene into a big emitter for the second iteration and

beyond. This is left as an avenue for future research, in this thesis this problem will be circumvented by

avoiding very small emitters and using enough directional supersamples.

4.4 Rendering
To generate novel views from the VLF the directionally dependent radiance stored in the non-diffuse

radiance tiles is resampled. As described earlier, the data structure can be formalised as LT (ω,s, t,u,v, p).

This effectively references a radiance value in direction ω , from a point on p described by the intersection

of the canonical ray (s, t,u,v) with p. Due to the discrete representation a PSF matching exactly the

direction ω is rarely available. The three PSFs (ωi,ω j,ωk) at the vertices of the spherical triangle in

which ω falls are used with barycentric weights (αi,α j,αk) for an interpolated value:

LT (ω,s, t,u,v, p) = αi ∗LT (ωi,s, t,u,v, p)

+α j ∗LT (ω j,s, t,u,v, p)

+αk ∗LT (ωk,s, t,u,v, p) (4.5)

When retrieving a radiance value from a radiance map bilinear interpolation is used. This yields a 12 tap

filter.

4.4.1 Direct VLF Rendering

Pin-hole and lens based camera models can use Equation 4.5 to retrieve incoming radiance values. Vis-

ibility must be determined for each pixel in order to reference the correct radiance map. This can be

108 Chapter 4. A Virtual Light Field Approach to Global Illumination

achieved with either ray casting or by rasterising an image with z-buffering in false colour using the

index of the face, such that each pixel contains the index of the nearest face. This pixel map can then

be retrieved from the GPU and used for generating the image on the CPU. This final image can then be

presented to the user. Unfortunately, retrieving an image from the GPU is a relatively slow operation

even on current hardware.

4.4.2 Irradiance Maps

If irradiance maps are available these can be pre-rendered using hardware texture mapping. A second

pass can then fill in the non-diffuse visible pixels using the method above. This is appropriate for

moderately sized scenes since rasterisation is typically more efficient than ray tracing for all but very

complex scenes. The scenes targeted in this thesis fall in this category. For many viewpoints, depending

on the scene, only a fraction of the pixels need to be shaded with the VLF potentially reducing the

amount of data that needs to be transferred across the bus to the GPU.

4.4.3 Specular Reconstruction

For VLFs with perfectly specular surfaces such as mirrors, the limited directional resolution will often

lead to artifacts, unless, of course, the field-of-view (FOV) of the camera used is very narrow and the

image is of a relatively low resolution. But in VR scenarios this is rarely the case, as many immersive

projection technologies, such as the CAVETM, will need a quite large FOV and high image resolutions.

In order to support perfectly specular surfaces these can be reconstructed using ray tracing. When an eye

ray strikes a non-diffuse surface the ray is reflected and is traced in this manner until it strikes a diffuse

surface or some maximum number of reflections has been reached at which point the VLF is looked up

in the reverse direction of the incident ray.

For flat specular surfaces this can even be achieved with rasterisation using stencil reflection map-

ping [Kil02], although this is typically only practical for scenes with very few mirrors, since each mirror

requires a separate rasterisation pass of the entire scene. Also, stencil reflection mapping has problems

with mutually visible mirrors.

4.4.4 Final Gather

Generalising the above approach for all surfaces, not just perfectly specular ones, yields an approach

comparable to the final gather approaches developed mainly for photon mapping algorithms [Jen95,

JC95]. Presumably, a low resolution VLF would be sufficient for such use making this a quite attractive

approach for high quality applications. This is left as a direction for future research.

4.5 Summary
In this chapter several important contributions have been made to the VLF propagation step. At the

element level the visibility and computation steps have been integrated and transport involving diffuse

surfaces has been made adaptive. The computationally intensive continuous clipping approach has been

replaced with a significantly faster point sampling approach yielding indistinguishable quality. At the

PSF level a novel incremental approach utilising a radiance interface (RI) has been introduced improv-

4.5. Summary 109

ing complexity from O(N2) to nearly O(N). The complexity has been compared to an ideal ray tracing

algorithm working on the same data structure, and it has been shown that the incremental RI approach is

superior to the ray tracing approach for scenes with moderate geometric complexity and high illumina-

tion complexity.

The contributions as a whole will in general improve the complexity by several orders of magnitude

compared to the VLF approach taken in [SMKY04]. This makes it possible to use the VLF in a VR

context operating on scenes with tens of thousands faces and millions of globally illuminated finite

elements in minutes rather than days.

Furthermore, the approach developed is suitable for implementation on a GPU architecture, paving

the way for an even more efficient approach.

110 Chapter 4. A Virtual Light Field Approach to Global Illumination

Chapter 5

Virtual Light Fields on the GPU

5.1 Introduction
In the preceding chapter a new method for VLF propagation was introduced, which uses point sampling

and incremental visibility computations. The efficiency was shown to be in some cases superior to ray

tracing, but the method was carefully designed with parallelism and a streaming architecture in mind and

comes into its own on a streaming platform such as a programmable Graphics Processing Unit (GPU)

architecture.

In this chapter a novel propagation algorithm running entirely on the GPU is presented. Addi-

tionally, a method for rendering globally lit images directly from the GPU data structure is introduced.

This can render novel views from a VLF without CPU involvement at real-time frame rates and high

resolutions.

An introduction to the GPU architecture is given in the next section. In Section 5.3 the GPU

propagation approach is explained. In Section 5.4 GPU rendering from the propagated data structure is

described. Finally a summary is given in Section 5.5.

5.2 The GPU Architecture
The Graphics Processing Unit (GPU) has become an integral component of today’s mainstream com-

puting systems. Over the last decade it has evolved from an optional add-on for accelerating selected

3D games to a powerful fully programmable streaming engine for solving computationally demanding

problems. It has been successfully applied to a diverse set of complex problems achieving order of mag-

nitude improvements over highly optimized CPU implementations [JDO08]. The GPU is designed for

problems with large computational requirements that can be mapped to an algorithm with substantial

parallelism where latency is not crucial. The GPU is primarily designed for rendering algorithms, which

allows for latencies proportional to those of the human visual system operating on a millisecond scale.

Consequently, the architecture is based on a deep feed-forward graphics pipeline where thousands of

primitives are being processed in the pipeline at any one time greatly improving throughput.

The GPU pipeline is divided into stages, each taking a large number of input elements and the out-

put of each successive stage becomes input to the next stage. Individual tasks map to the stages of the

GPU architecture. This results in two kinds of parallelism: Task parallelism is exposed since multiple

112 Chapter 5. Virtual Light Fields on the GPU

stages can be computed at the same time. Data parallelism is exposed since many elements inside a

given stage can be computed in parallel. Historically, this has informed the design of the architecture.

The architecture divides resources (i.e. die area 1) among stages and the hardware for a stage can be cus-

tomised to best exploit the parallelism of the particular task mapped to that stage. The weakness of this

approach is that the performance depends on the slowest stage in the pipeline and the fixed architecture

prevents dynamic load-balancing. Modern GPUs have addressed this problem by introducing the unified

shader architecture. This pipeline design has a pool of general purpose programmable compute units

that can be dynamically assigned to the stages of the pipeline making dynamic load-balancing possible.

Recent GPUs feature a large number of fine grained unified parallel stream processors internally (e.g.

AMD Radeon HD 2900XT features 320 [JDO08]). The end result is a unit with massive computational

capability and memory bandwidth (e.g. Nvidia 8800 GTX sports in excess of 330 Gflops and a memory

bandwidth of 80+ GB/s [JDO08]).

The graphics pipeline takes as input a stream of geometric world space primitives described by

their vertices and some attributes. The primitives are projected to screen space, rasterised and shaded to

finally end up on screen as a collection of pixels. This abstraction exposed by the main graphics APIs

OpenGL and Direct3D has with few exceptions 2 remained unchanged. However, suitable stages have

evolved from fixed-function to fully programmable ones 3. Figure 5.1 outlines the Microsoft Direct3D10

pipeline [Bly06].

In the following the pipeline stages are summarised in greater detail:

• Input Assembler (IA): Collects vertices with attributes from input streams and converts to a

canonical floating-point format. Can also perform instancing by replicating a block of vertices a

number of times.

• Vertex Shader (VS): Fully programmable stage that can transform vertex data. Input and output

is a single vertex. Commonly used to transform vertices from object space to clip space.

• Geometry Shader (GS): Fully programmable stage that can generate additional geometry. Reads

the vertices of input primitives and generates the vertices of zero or more output primitives. Com-

monly used for subdivision surfaces.

• Stream Output (SO): Optional stage that can output data from the GS stage to stream buffers.

These can act as input for the IA stage allowing high performance multi-pass geometry processing

without the need for CPU involvement.

• Rasterisation Stage (RS): Fixed function stage handling clipping, culling, perspective divide,

viewport transform, primitive set-up, scissoring, depth offset, and fragment (pixel with attributes)

generation. Reads the vertices and attributes of a single input primitive, interpolates them, and

produces a series of output fragments.
1Area on the chip surface.
2The most notable exception is the addition of a geometry shader (GS) stage.
3The rasterisation stage is an exception, this remains a fixed-function stage since it can be implemented very effectively in

hardware.

5.2. The GPU Architecture 113

Input Assembler
(IA)

Pixel Shader
(PS)

Output Merger
(OM)

Clip + Project +
Setup + Early Z +

Rasterize (RS)

Vertex Shader
(VS)

Geometry
Shader (GS)

Memory

Index
Buffer

Depth/
Stencil

Stream
Output
(SO)

4x32b

4x32b

32b

16x4x32b

32b+8b

4x32b or
16x4x32b

Vertex
Buffer

Vertex
Buffer

Texture

8

128

Texture

Stream
Buffer

Texture

Render
Target

4 or 1

128

8

Sampler
16

Sampler

Sampler

16

16x4x32b

32x4x32b

 8x4x32b +
32b + 8b

Ids

 Clip/Cull +
RT Array

Constant

Constant

Constant

4x32b

Facing

128

1 in,1 out

1 in, 1 out

1 in, 0-many out

1 in, 0-many out

1 in, 0-1 out

1 in, 1 out

Figure 5.1: Microsoft Direct3D10 GPU rendering pipeline.

• Pixel Shader (PS): Fully programmable stage that reads a single input fragment and produces a

single shaded output fragment (optionally with depth).

• Output Merger (OM): Performs stencil, depth testing, and blending on the fragments. Writes

these to one or more render targets (colour buffers).

This organisation has proven to be quite efficient. Individual vertices and fragments can be computed

in parallel and the stages are independent. While some fragments are being shaded and output, other

primitives can be projected and rasterised. This yields a fully saturated pipeline as long as input is being

continuously streamed. In the recent past changes to the configuration of the pipeline, state changes,

such as changing VS or PS programs often caused the pipeline to stall while being flushed resulting in

poor throughput. This has been addressed in recent generations of hardware and APIs [Bly06] making it

easier to maintain full saturation.

Porting algorithms to run on the GPU was until recently a daunting task due to language, instruction

set and data type limitations as well as significant variation in the capabilities of the GPUs. Also, until re-

cently a graphics pipeline abstraction had been imposed on developers making it difficult to map general

purpose algorithms to the GPU (GPGPU) elegantly. For example, memory on a GPU was restricted to

reside in a 2D texture accessed via a texture lookup. Moreover, the APIs used terminology like vertices,

textures, fragments and blending etc. However, high level GPU languages have matured, instruction sets

are now complete, and there is support for general purpose data types such as integers and floating point

114 Chapter 5. Virtual Light Fields on the GPU

values throughout the pipeline. Also, software environments that expose a higher level abstraction of

the GPU as a streaming processor are now available making it easier to develop non-graphics GPGPU

algorithms in an elegant and maintainable manner (see [JDO08] for details). However, in this thesis the

graphics abstraction is suitable for the problem at hand so this area of research will be disregarded and

the algorithms will be described in terms of a graphics pipeline.

The VLF algorithm certainly satisfies the aforementioned characteristics of algorithms that map

well to the GPU: large computational requirements, substantial parallelism, and favouring throughput

over latency.

5.3 Propagation on the GPU
This chapter recasts the propagation algorithm in terms of rendering operations. The algorithm is realised

on programmable graphics hardware using rasterisation to compute visibility incrementally and texture

mapping using render-to-texture functionality to perform the radiance transfer.

5.3.1 GPU Data Structure

In order to perform the propagation on the GPU the radiance data must be available locally on the GPU.

Reading and writing to the GPU is still prohibitively expensive: memory access between main memory

and GPU memory is still an order of magnitude slower than local memory access on the GPU (even with

PCI-Express), and streaming algorithms requiring data from the CPU will in general stall and waste the

potential power of the unit.

face a

face b

PSFi

PSFj

GPU TEXTURE

0

15

Figure 5.2: GPU data structure for non-diffuse faces is sparsely tiled and linearly stored in a large texture.

Here two non-diffuse faces are projected to PSFi and PSFj and the tiles needed are shown.

There are two types of data that must be available to the GPU: textures containing radiance caused

by diffuse illumination over a polygonal patch, and tiles that contain radiance generated by non-diffuse

illumination (see Section 4.2.5). A diffuse surface has a single texture map assigned to it since its emitted

radiance is independent of outgoing direction. On the other hand non-diffuse surfaces have radiance

maps representing unique outgoing radiance for each direction in the set of global directions with one

5.3. Propagation on the GPU 115

texture map for each PSF direction. In order to save memory these maps are tiled, as described earlier,

and only tiles overlapping the face (projected to the PSF plane) are stored (see Figure 5.2).

The number of non-diffuse tiles for a scene can be high, for example the scene shown in Fig-

ure 6.14(a), which includes specular surfaces has ∼15k tiles and this is a relatively simple scene. It

would be inefficient to store these tiles as separate textures since binding a texture to a framebuffer for

render-to-texture operations has an associated overhead. The solution is to store many tiles packed in

large textures on the GPU. For similar efficiency reasons diffuse textures are also stored in texture atlases.

The atlassing for a Cornell box scene is illustrated in Figure 5.3.

In addition to the tiled texture map, an auxiliary data structure is needed that can locate a tile in a

texture for a given PSF and face. Figure 5.2 illustrates this; two faces have tiles stored in two PSFs which

are linearly stored in a single texture. For example face b has four tiles associated with PSFj, these are

stored at the linear positions 8-11 (assuming position 0 is the upper left hand corner and indexing order

is left to right, top to bottom).

During propagation temporary storage is needed for unshot (ir)radiance. Tiles and diffuse tex-

tures store three copies of each texture; the current map storing the outgoing (ir)radiance in the current

iteration, the next map storing the received (ir)radiance in the current iteration (to be shot out in the

next iteration) and, finally, the total map containing the accumulated (ir)radiance over all iterations.

In practice two copies would be sufficient but during development it is simpler to work with a purely

breadth-first approach. During rendering, only the latter set is needed and the current and next maps may

be discarded.

(a) Scene (b) Diffuse texture atlas (c) Radiance tile atlas

Figure 5.3: Diffuse and tile atlases.

5.3.2 Incremental Radiance Transport

In Section 4.3.2 an incremental approach for solving the necessary visibility was introduced. This re-

quires a sorted sequence of faces in the direction of the PSF, say Sω
1...N , which can be made available

using one of the methods outlined in Section 4.3.2.

In order to map this algorithm to the GPU the transport operations have been recast in terms of

rasterisation operations. Algorithm 5.1 illustrates the overall transport step for a single PSF4 (see also

Figure 4.13).

4For clarity the algorithm has been simplified to support only mixtures of specular and diffuse BRDFs.

116 Chapter 5. Virtual Light Fields on the GPU

Algorithm 5.1 Incremental GPU transport operator for a PSF in direction ω

Require: Sω
1...N ← list of scene faces sorted by depth along direction ω

1: for all i such that 1≤ i≤ 2 do {do two passes, one in each direction}

2: for all i and f such that f = Sω
i do {for each face f in the sorted sequence}

3: if~n f ·ω > 0 then {is f facing along ω?}

4: D f
U V RI {render irradiance to RI}

5: if f is specular then

6: L f
U (ω,s, t, f)V RI {render unshot radiance to RI}

7: end if

8: else

9: RI ∗w(PSFω)V D f
U ′ {render RI to irradiance texture}

10: if f is specular then

11: RI ∗brd f (ω,φ)V L f
U ′(φ ,s, t, f) {render RI to reflected PSFφ}

12: end if

13: end if

14: end for

15: ω ← ω {invert PSF direction for second pass}

16: Sω ← Sω {invert sorted sequence}

17: end for

Radiance transport

Although such a scheme would be possible to implement on the GPU [Nov05], a much more efficient

approach is to use the built-in hardware texture mapping. Current hardware supports floating point

textures, and with mip-mapping and anisotropic filtering this is viable as long as enough samples are

taken when performing the texture mapping operation. Two such texture mapping operations will be

necessary in this context: one that maps a face onto the RI and one that maps the RI onto a face. By

ensuring that the RI is supersampled, aliasing can be avoided.

Non-diffuse Scattering

In order to perform the non-diffuse scattering (see Section 4.3.1) a backwards mapping operation is

performed. The corners of each tile in the reflected direction are transformed into the PSF of the current

transport direction via the plane of the reflecting face. These serve as texture coordinates into the RI and

the scattering is performed by a texture mapping operation weighted by the barycentric weight and the

BRDF of the reflector.

5.4 Rendering from the VLF on the GPU
When the VLF propagation step has converged, the GPU can render novel views from the data structure

by interpolating between samples stored in the diffuse textures and non-diffuse view-dependent radiance

tiles. Diffuse surfaces can be rendered directly using texturing with the diffuse textures available in the

5.4. Rendering from the VLF on the GPU 117

irradiance texture atlases. The GPU performs interpolation efficiently in this case. Flat specular faces

can be rendered with ray-tracing by recursively following a view ray reflected in the specular face until it

strikes a diffuse face where the visible radiance can be collected. A similar idea, often used in real-time

VR applications, is to use the stencil buffer to render a reflected view of the scene as seen through the

specular face and then paste this onto the face with texturing [Kil02]. These methods are only efficient

if few specular surfaces are present in the scene and do not apply to, for example, glossy BRDFs.

(a) Non-diffuse stencil (b) Pass 1: PSF ids (c) Pass 2: PSF weights

(d) Pass 3: Face ids (e) Pass 4: Hit pos (f) Pass 5: Non-diffuse shading

Figure 5.4: Rendering passes.

A more general method is to resample images from the directionally dependent radiance stored

in the non-diffuse radiance tiles. As described in Section 4.2.5, the data structure can be formalised

as LT (ω,s, t,u,v, p). This effectively references a radiance value in direction ω , from a point on p

described by the intersection of the canonical ray (s, t,u,v) with p. Due to the discrete representation a

PSF matching exactly the direction ω is rarely available. The three PSFs (ωi,ω j,ωk) at the vertices of

the spherical triangle in which ω falls are used with barycentric weights (αi,α j,αk) for an interpolated

value:

LT (ω,s, t,u,v, p) = αi ∗LT (ωi,s, t,u,v, p)

+α j ∗LT (ω j,s, t,u,v, p)

+αk ∗LT (ωk,s, t,u,v, p) (5.1)

In order to compute the values necessary to index into Equation 5.1, four off-screen passes are

rendered (see Figure 5.4). A fifth and final pass performs the final shading producing the globally

lit image. In order to identify non-diffuse pixels in the image plane an optional stencil image can be

produced by rendering the non-diffuse polygons to an off-screen target (see Figure 5.4(a)). This can

118 Chapter 5. Virtual Light Fields on the GPU

serve to limit the computation performed in each subsequent pass to only non-diffuse pixels.

In pass 1 the camera is placed at the centre of the unit sphere and the spherical triangles are rendered

in false colour to a texture. This produces the indices of the three nearest PSFs (ωi,ω j,ωk) for each pixel

(see Figure 5.4(b)). This is repeated in pass 2, this time setting vertex colours for each spherical triangle

to (1,0,0), (0,1,0) and (0,0,1). The GPU interpolates this over each triangle, resulting in a texture

with three barycentric weights for each pixel (see Figure 5.4(c)). Pass 3 serves to determine p, this time

rendering the scene geometry in false colour, yielding a texture with a face identifier for each visible non-

diffuse pixel (see Figure 5.4(d)). Pass 4 renders the scene geometry again where each vertex is coloured

with its world coordinate position, interpolation across the geometry produces a texture with the world

coordinate position of the intersection of the viewing ray for that pixel with the face p (see Figure 5.4(e)).

Note that ray casting could easily replace these last two passes. A fifth and final pass renders the final

radiances to the image. For each pixel this is achieved by mapping the hit position to each of the three

PSFs by applying the respective MWC→PSF matrix (see Section 4.2.3) to the hit position, producing an

(x,y,z) value in canonical PSF coordinates where (x,z) trivially maps to a tile/cell pair (s, t,u,v). The

tiled data structure is then looked up and a radiance value for each PSF is weighted by its corresponding

barycentric weight and written to the image. This is illustrated in Figure 5.4(f).

Performance is dependent on the time taken to resolve visibility (pass 3), the remaining passes

and radiance retrieval is small constant time per pixel. Either ray tracing or rasterisation can be used

to resolve the visibility, here we use the latter. One of the main points of the VLF approach is that

global illumination values can be retrieved directly from the data structure, no further shadow rays or

sampling is necessary. This results in stable, predictable frame-rates, which is of great utility in VR

applications [BH95].

5.5 Summary
The aim of this work has been to significantly improve propagation performance for moderately complex

scenes in the VLF context. The incremental algorithm (see Section 4.3.2) scales linearly O(N) in the

number of input polygons. This translates to several orders of magnitude improvement (>2000x) in

performance over previous work [SMKY04] for scenes with <200 faces. More complex scenes would

be intractable with the original method due to the O(N2) complexity.

This chapter presented an algorithm that runs entirely on the GPU requiring the CPU only to do mi-

nor bookkeeping tasks. The method supports textures that are fully integrated in the propagation stage,

replacing the constant Kd term with one that varies across a surface as defined in a high dynamic range

(HDR) texture. Textured emitters are similarly supported, see Figure 6.14(b). Also, emitters are not

distinguished from other surfaces. Any surface can have emission; propagation and rendering time is

invariant to the number and cumulative area of emissive surfaces, which is a desirable property achieved

by few global illumination methods. Skylight rendering is also supported without any additional perfor-

mance penalty.

Rendering from a converged VLF can be done in real-time with very stable frame rates, making

this a practical solution for virtual reality applications, where the frame-rate must be real-time and con-

5.5. Summary 119

stant. Even temporary drops in frame-rate can cause the subject to lose orientation, and maybe cause

motion sickness [BH95]. Lack of stable frame-rates is a weakness of many caching algorithms where

a sudden change in viewpoint can produce a view that is not fully represented in the cache, causing a

temporary drop in fidelity or frame-rate. Similarly, dynamic techniques such as ray tracing for global

illumination can also exhibit variable frame-rates when the viewpoint changes from a complex region to

a less complex region in terms of illumination.

120 Chapter 5. Virtual Light Fields on the GPU

Chapter 6

Results

In this chapter results are presented for the VLF-GPU method.

The implementation was written in Cg [MGAK03] and OpenGL on a GeForce 8 series GPU. Recent

OpenGL 2.0 extensions were heavily used, such as floating point textures and framebuffer objects for

simple render-to-texture functionality. In order to avoid severe penalties for texture state changes, a

texture atlas was employed for textures. Further, costly state changes such as setting projection and

viewing matrices were avoided by storing matrices for the global set of directions on the GPU and

setting them there in a vertex shader; thus exploiting the high internal bandwidth of the GPU rather than

sending the matrices from the CPU to the GPU across the (much slower) PCI-Express bus. Currently,

diffuse, specular, mixed diffuse/specular and glossy (modified Phong) surfaces are currently supported.

6.1 Sorting Performance
As discussed earlier, the sorting implementation integrated in the VLF framework is based on the Newell

sorting with BSP subdivisions, splitting the PSF into volumes that are sorted separately and then hier-

archically merged (see Section 4.3.2). This has a complexity of O(N logN) in the number of faces.

While this works well for scenes with predominantly small uniformly distributed faces, scaling is not

necessarily guaranteed for large scenes with arbitrary distributions.

(a) Original Maze scene. (b) Maze scene tesselated to 10K faces.

Figure 6.1: The Maze scene was tesselated to varying densities for the Vis-Sort scaling experiment. This

shows the original scene and a version tesselated to 10K faces.

The current implementation uses a fixed subdivision scheme that subdivides two levels along the

122 Chapter 6. Results

PSF and an additional split along the width and height respectively, yielding 16 BSP volumes. Split

planes are placed at the geometric median of the volume. For scenes of the scale used in this thesis

further splits did not significantly improve sorting time. Sorting the Atenea scene in Table 6.1 with

9.4K faces took 126 seconds 1 with no subdivisions and 19 seconds using BSP splits yielding a 6.76x

improvement, which is significantly lower than the ideal 16x improvement. This is due to non-uniform

distribution and the time taken to merge the lists.

This can, however, be improved upon. As discussed in Section 4.3.2 the Vis-Sort algo-

rithm [GLM04] can sort a nearly sorted sequence in O(N) time. The method achieves this by using

GPU occlusion queries to determine correctly sorted subsequences and permuting out of sequence faces

until the sequence is sorted correctly. Sorting an already sorted sequence will cause exactly 2n queries

to be issued. The assumption is that the number of out-of-sequence faces k is low k� n, such that the

number of queries necessary is ∼ 2n. The number of queries issued when sorting directly determines

the running time of the algorithm. The number of queries that can be issued per second depends on

the fill-rate of the GPU, to some extent the graphics API used but, mostly, on how the implementation

schedules the occlusion queries. It is imperative that the application schedules the queries in batches and

works asynchronously with the GPU. Issuing an occlusion query and immediately requesting the result

- the so called stop-and-wait method - will cause the GPU to stall and perform poorly. It is, however,

very simple to implement. For comparison the method implemented in [GLM04] can issue on the order

1274K occlusion queries per second 2 on an nVidia Geforce FX6800 Ultra GPU. Scaling this number to

the fill-rate of the nVidia Geforce 8800 GTS GPU [Rom10] it will be able to issue ∼ 2070K occlusion

queries per second with the implementation of Vis-Sort given in [GLM04].

By using the sorted sequence from a neighbouring already sorted PSF this can be exploited in the

VLF context. In order to demonstrate the suitability of this approach a simple stop-and-wait prototype

implementation was added in order to illustrate the scaling characteristics achievable. To this end the

number of occlusion queries required to sort increasingly complex scenes were recorded and listed in

Figure 6.2.

In order to illustrate the scaling a reproduction of the Maze scene used in [DSDD07] was tesselated

to between 1K and 65K triangles (see Figure 6.1). Additionally, a variety of other scenes were plotted

also. Each scene was sorted along 513 PSFs. When sorting PSFn the closest PSFm where m< n was used,

this is straightforward to find given the hemispherical subdivision used for the VLF (see Section 4.2).

For PSF0 the (arbitrary) order of the faces given in the scene file was used.

As can be seen in Figure 6.2 scaling is linear in the number of faces. All scenes are clustered near the

linear scaling trend exemplified by the Maze scene. The stop-and-wait implementation used was able to

perform ∼ 30K occlusion queries per second due to GPU stalls. This translates to ∼ 359 seconds to sort

the Atenea scene for example. However, extrapolating to the achievable occlusion query performance

of the appropriately batched and optimised implementation given in [GLM04] paints a different picture.

1This is per thread as the implementation divides the work among 4 threads.
2A scene with 91K faces is sorted at 7 frames per second. Since at least 2n occlusion queries are required to sort a sequence

91K ∗2∗7 = 1274K occlusion queries can be issued per second.

6.2. Propagation Performance 123

20

30

40

50

60

70

80

O
c

c
lu

s
io

n
 Q

u
e

ri
e

s
 (

m
il

li
o

n
s
)

Vis-Sort Scaling

Maze

Atenea

Classroom

Grotto

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

O
c

c
lu

s
io

n
 Q

u
e

ri
e

s
 (

m
il

li
o

n
s
)

Face Count (thousands)

Vis-Sort Scaling

Maze

Atenea

Classroom

Grotto

Figure 6.2: Vis-Sort scaling shows number of occlusion queries issued for a selection of scenes when

sorting along 513 PSFs. Vis-Sort is O(Q) where Q is the number of queries issued. Actual performance

depends on the fill-rate of the GPU. The Maze scene (see Figure 6.1) was tesselated with increasing

density illustrating the linear scaling. Notice how the other scenes cluster near this trend.

The query performance is roughly 69x faster 3, which is not unlikely given that each occlusion query

in the stop-and-wait implementation will incur a GPU stall. Using this multiplier the Atenea scene, for

example, could be sorted in ∼ 5.2 seconds. Furthermore, this also guarantees that scaling is linear and

will take advantage of the improvements in fill-rate of future GPUs. For example, the top of the range

nVidia GeForce GTX 295 has a fill-rate in excess of 32 Gpix per second, which comparatively would

be able to sort the Atenea scene in 1.7 seconds and the most complex Maze scene (65K faces) in 10.2

seconds.

6.2 Propagation Performance
In order to illustrate the scaling characteristics of the incremental propagation algorithm, the collection

of tesselated Maze scenes are used again. One version is purely diffuse and another version has a mixture

of diffuse and specular surfaces. For the specular scaling each progressively more complex version of the

Maze scene had a proportion of specular/diffuse faces with the most complex version having 1024 such

faces. Diffuse element resolution varied between 37K and 4M and specular elements varied between

46K and 8.6M.

As expected, the incremental propagation algorithm exhibits linear scaling (see Figure 6.3). Note

that the Atenea scene in particular overshoots the graph slightly. This is due to that scene having a

larger proportion of the surface area taken up by specular faces. The slight upward bend in the diffuse

scaling graph is due to the diffuse resolution of the most complex instance of the Maze scene requiring

three 2048x2048 diffuse atlases rather than two. This causes more frequent render target changes and

therefore affects the performance slightly.

Figure 6.4 shows the effect of using tiling on the propagation time and memory consumption. A

fixed radiance map resolution of 64x64 was used and this was split into tiles at different resolutions. At

one end of the spectrum a 1x1 tiling resolution was used with a 64x64 per tile resolution. This results in a

3Using the query performance estimate of 2070K queries per second calculated above.

124 Chapter 6. Results

4

6

8

10

12

14

M
in

u
te

s
 (

3
 i
te

ra
ti

o
n

s
)

Propagation Scaling

Maze diffuse

Maze specular

Atenea

Classroom

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70

M
in

u
te

s
 (

3
 i
te

ra
ti

o
n

s
)

Face Count (thousands)

Propagation Scaling

Maze diffuse

Maze specular

Atenea

Classroom

Grotto

Figure 6.3: Propagation scaling shows how the incremental algorithm scales with the number of input

faces. The Maze scene (see Figure 6.1) was tesselated with increasing density illustrating the linear

scaling. A purely diffuse version and a version with a mixture of specular and diffuse faces were used.

Notice how the other scenes cluster near this linear trend. The radiance interface had 512x512 resolution

and 513 PSFs were employed.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
se

d
 c

o
st

/t
im

e

Effect of Tile Resolution on Propagation

Memory cost

Propagation time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

rm
a

li
se

d
 c

o
st

/t
im

e

Tile resolution

Effect of Tile Resolution on Propagation

Memory cost

Propagation time

Figure 6.4: This graph shows how tiling resolution affects the propagation time and memory. The

Cornell box scene (see Figure 6.14(a)) was propagated with a fixed radiance map resolution of 64x64

and varying tile resolutions between 1x1 and 16x16. 513 PSFs were employed. Propagation time ranged

between 1.2 secs. and 3.02 secs. Memory consumption ranged between 217MB and 10MB.

6.3. Analysis of Quality and Correctness 125

full 64x64 radiance map for each face wasting many texels, but improving the propagation performance

since only a single rendering operation is necessary for transport. At the other end of the spectrum

a 16x16 tiling resolution was used with a 4x4 per tile resolution. This greatly reduces the memory

footprint since only tiles which overlap the face are stored. However, propagation is a 2.5x slower

because each face now requires multiple rendering operations for transport since each tile is handled

separately and some coherence is lost. At some point further tiling saves little additional memory but

adds to the propagation time. A good tiling resolution for this example is 4x4.

6.3 Analysis of Quality and Correctness
In order to gauge the quality of non-diffuse reflections, a matrix of images are shown in Figure 6.5.

The directional resolution is increased from top to bottom and the radiance map resolution is increased

from left to right. The scene is a Cornell box where the front of a tall box is using a perfectly specular

material. The mirror reflection of the smaller box is clearly visible in the left part of the box. As

expected there will be a certain amount of ghosting in a specular reflection when using few directions

since the resulting image is a linear interpolation of three orthographically projected radiance maps. The

amount of ghosting is inversely proportional to the number of directions and is most clearly discernible

in Figure 6.5(d). On the other hand low radiance map resolutions result in blurring of the reflection

(left part of the image matrix). There is a clear trade-off between memory use and visual quality of the

reflection, but it is obvious that glossy reflections would be possible with relatively low resolution and

few directions. Also, if the radiance maps are used for indirect illumination of surfaces with diffuse

or low-frequency BRDFs, such as caustic reflections onto diffuse materials, relatively low resolutions

would suffice. See Figure 6.14(a) for a comparable image rendered with stencil reflections.

The memory used during propagation assumes three copies of the (ir)radiance maps. In fact, two

copies will suffice, but the implementation uses three for ease of debugging such that the propagation

is done breadth-first. Also, the memory could be reduced by using Greg Ward’s RGBE format. These

savings would reduce the propagation footprint of the scene in Figure 6.5(p) to 453MB.

In Figure 6.6 the diffuse quality is evaluated. Again, the directional resolution is increased from top

to bottom and the irradiance map resolution is increased from left to right. Diffuse map density is given

in texels per world unit and for the scene in question the lowest resolution irradiance map for the floor

of the box is 16x16 and the highest resolution one is 1024x1024. During propagation, the irradiance

map will typically be filtered with a low-pass filter when they are swapped in preparation for the next

light transport iteration. The width of this filter will usually depend on the diffuse map resolutions and

directional resolution but in these images the filter width is fixed and relatively narrow 4. As expected,

when using few directions and high resolution irradiance maps, transport artifacts will be visible due to

under-sampling. This is most clearly visible in Figure 6.6(d). However, along the diagonal of the image

matrix the right balance of directions and irradiance map texels have been struck and the maps are quite

smooth, yet especially at the higher resolutions subtle radiosity characteristics are visible. In order to

better gauge this the floor irradiance maps for the images in the diagonal are shown in Figure 6.7.
4For the images a 5x5 Gaussian filter was used with a sigma of 2.

126 Chapter 6. Results

(a) l=129, r=322 (b) l=129, r=642 (c) l=129, r=1282 (d) l=129, r=2562

(e) l=513, r=322 (f) l=513, r=642 (g) l=513, r=1282 (h) l=513, r=2562

(i) l=2049, r=322 (j) l=2049, r=642 (k) l=2049, r=1282 (l) l=2049, r=2562

(m) l=8193, r=322 (n) l=8193, r=642 (o) l=8193, r=1282 (p) l=8193, r=2562

Figure 6.5: Cornell box with specular material; note the reflection of the small box in the tall box. Images

(a)-(p) show specular quality when varying the number of directions l and the radiance map resolution

r propagated over 5 iterations. Extra jittered directions were added up to 8K to ensure comparable

diffuse quality. The scene had 102K diffuse elements and between 128K-56.5M non-diffuse elements.

Propagation times ranged between 5.4-26 seconds per iteration. Memory usage during propagation

ranged between 4.9MB-1019MB. Memory usage for rendering ranged between 690KB-170MB. See

Figure 6.14(a) for a reference image rendered with stencil reflections.

6.3. Analysis of Quality and Correctness 127

(a) l=129, d=16 (b) l=129, d=64 (c) l=129, d=256 (d) l=129, d=1024

(e) l=513, d=16 (f) l=513, d=64 (g) l=513, d=256 (h) l=513, d=1024

(i) l=2049, d=16 (j) l=2049, d=64 (k) l=2049, d=256 (l) l=2049, d=1024

(m) l=8193, d=16 (n) l=8193, d=64 (o) l=8193, d=256 (p) l=8193, d=1024

Figure 6.6: Cornell box with diffuse material. Images (a)-(p) show diffuse quality when varying the

number of directions l and the diffuse irradiance map resolution d per unit propagated over 5 iterations.

The dimensions of the box is one unit such that for example (p) has a floor resolution of 1024x1024. The

scene had between 2.2K-6.5M diffuse elements. Propagation times ranged between 0.14-30 seconds

per iteration. Memory usage during propagation ranged between 39KB-117MB. Memory usage for

rendering ranged between 6.6KB-19.5MB.

128 Chapter 6. Results

(a) Floor: l=129, d=16x16 (b) Floor: l=513, d=64x64

(c) Floor: l=2049, d=256x256 (d) Floor: l=8193, d=1024x1024

Figure 6.7: Cornell box with diffuse material. Images (a)-(d) show diffuse quality of the floor irradiance

map when varying the number of directions l and the diffuse irradiance map resolution d per unit prop-

agated over 5 iterations. The images correspond to the diagonal in the image matrix given in Figure 6.6.

6.4. Other BRDFs 129

In order to objectively assess the correctness of the solution, the results were verified by comparing

images computed with PBRT [PH04] a path-tracing system used widely in the field of global illumina-

tion. The path tracer used importance sampling and 1024 paths per pixel. The images (see Figure 6.8)

were subtracted and the MSE was around 1e−3 (0.001). The peak errors were around 1e−2 and con-

centrated in areas where the low object-space resolution of the ir/radiance was inadequate to efficiently

represent high frequency illumination in image space. In particular the shadow at the base of the tall

specular box appears blurred with the VLF method. Also, the caustic on the right-hand side of the ceil-

ing is less defined than with PBRT. However, the noise apparent in the path traced image even with 1024

rays per pixel is absent from the image computed with VLF-GPU.

The images took 104 minutes to render with PBRT and 4 seconds with VLF-GPU (including prop-

agation).

(a) Rendered with VLF-GPU. (b) Rendered with PBRT.

Figure 6.8: Comparison of VLF-GPU and path tracing for a specular Cornell box scene.

6.3.1 Caustic Example

In Figure 6.9 caustic light transport effects are illustrated. The scene is taken from [SJ00] and is part of

a suite of test scenes intended for verifying global illumination algorithms. An overview of the scene is

shown in Figure 6.9(a). Below the plane is an emitter reflecting light off the vertical diffuse reflector to

the left. This diffusely reflected light is deposited on the diffuse floor and reflected off the specular box

creating the caustic ”wings” across the floor. Some quite complex light paths are required in this scene.

For example looking at the box viewing the reflection of the caustic on the floor represents an ESDSDL

light path.

6.4 Other BRDFs

In order to demonstrate that the VLF-GPU method can accommodate BRDFs other than specular and

diffuse (and mixtures thereof) a prototype glossy reflection kernel using the modified Phong reflectance

model [LW94b] has been implemented. The modified Phong BRDF can be written as the sum of a

130 Chapter 6. Results

(a) Scene overview (VLF-GPU). (b) Propagated with VLF-GPU, 50 secs. (c) Smits and Jensen [SJ00].

Figure 6.9: Comparison of VLF-GPU and the Smits and Jensen caustic test scene described in [SJ00].

The scene was computed using 8196 jittered directions over 3 iterations. The data structure comprised

2049 PSFs with a 128x128 radiance map resolution and an 8x8 tile resolution consuming 224MB mem-

ory. The scene has 169984 diffuse elements and 5619456 directional elements.

diffuse part and a specular part:

fr(x,Θi,Θo) = kd
1
π
+ ks

n+2
2π

cosns
α (6.1)

where:

• α = the angle between the perfect specular reflective direction and the outgoing direction.

• kd =the diffuse reflectivity, i.e. the fraction of incoming energy that is reflected diffusely.

• ks =the specular reflectivity, i.e. the fraction of the perpendicularly incoming energy that is re-

flected specularly.

• ns =the specular exponent. Higher values for ns result in sharper specular reflections.

In the VLF context the diffuse contribution modulated by kd is accumulated in the irradiance maps

and the non-diffuse contribution modulated by ks is stored in the directional radiance maps. During

propagation the reflection kernel is invoked when a non-diffuse receiver is encountered. At this point

the radiance interface (RI) is filled with incoming radiance from the direction that is currently being

propagated. This radiance must be scattered in directions over the hemisphere above the receiver face

weighted by the BRDF assigned to the face. Given a face f and a PSFi in direction ωi every PSFj in

direction ω j is visited and a reflection from the RI to the radiance map for face f in PSFj is performed

weighted by ks cosns α , where α is computed using the normal of f and the directions ωi and ω j. If

α < ε (a user defined small value) the reflection is ignored in order to avoid insignificant or negative

cosine values.

Figure 6.10 shows a Cornell box with a glossy floor using a high directional resolution (2049 PSFs

= 4098 directions). The specular exponent ns is set to values ranging from 20 to 160. With a value of

ns = 20 the floor has a diffuse appearance with a reflective component that blurs quickly with increasing

distance between the reflector and the object being reflected. With increasing ns the reflection becomes

6.4. Other BRDFs 131

(a) ns = 20, 293 secs. (b) ns = 40, 159 secs.

(c) ns = 80, 87 secs. (d) ns = 160, 49 secs.

Figure 6.10: Cornell box with glossy material reflecting from 2049 directions. Images (a)-(d) uses a

glossy material on the floor varying the specular exponent ns between 20-160. The diffuse reflectivity

kd = 0.4, specular reflectivity ks = 0.6. The scene was propagated over 3 iterations using 2049 PSFs

with a 128x128 radiance map resolution and an 8x8 tile resolution.

132 Chapter 6. Results

(a) ns = 20, 101 secs. (b) ns = 40, 54 secs.

(c) ns = 80, 37 secs. (d) ns = 160, 28 secs.

Figure 6.11: Cornell box with glossy material reflecting from 513 directions. Images (a)-(d) uses a

glossy material on the floor varying the specular exponent ns between 20-160. The diffuse reflectivity

kd = 0.4, specular reflectivity ks = 0.6. The scene was propagated over 3 iterations using 2049 PSFs

with a 128x128 radiance map resolution and an 8x8 tile resolution.

(a) Diffuse, 419 secs. (b) Glossy ns = 20, 708 secs. (c) Specular/diffuse, 430 secs.

Figure 6.12: Atenea scene (9410 faces) with diffuse (a), glossy (b) and specular/diffuse (c) floor material.

Image (b) uses a glossy material with specular exponent ns = 20 reflecting from 2049 directions. The

diffuse reflectivity kd = 0.4, specular reflectivity ks = 0.6. The scene was propagated over 3 iterations

using 2049 PSFs with a 128x128 radiance map resolution and an 8x8 tile resolution.

6.4. Other BRDFs 133

sharper. The propagation time varied between 49 seconds to 293 seconds. For comparison the propaga-

tion time using a mixed specular/diffuse floor was 15 seconds. Figure 6.11 shows a similar Cornell box

with the same VLF resolution but performing reflections for only a quarter of the available directions.

The propagation time of this experiment varied between 28-101 seconds. The images exhibit some band-

ing due to the fixed nature of the directions. This could to some extent be converted to noise by using

jittered random directions. The result would, however, be more than sufficient when used merely for

transport in a renderer using final gathering.

263 281

419

11

26

1

200

300

400

500

600

700

800

S
e

co
n

d
s

Propagation Breakdown

Other

PSF Transport

Reflection

263 281

419

11

26

1

0

100

200

300

400

500

600

700

800

Atenea Glossy Cornellbox Glossy

S
e

co
n

d
s

Propagation Breakdown

Other

PSF Transport

Reflection

Figure 6.13: Breakdown of propagation time for the glossy Cornell box and the glossy Atenea scene

(ns = 20); Figure 6.12(b) and Figure 6.10(a). The blue bar represents time spent on glossy reflection

kernel, the red bar is time spent on transport between faces along PSFs, and the green bar is time spent

on other propagation tasks.

Scattering with a BRDF is an altogether local operation involving only the reflector and its di-

rectional radiance maps stored in the PSFs. The performance of propagation involving arbitrary BRDFs

depend only on the number of PSFs and the nature of the BRDF. A BRDF with a very sharp lobe requires

fewer reflections than a BRDF with a very wide lobe since the former has fewer directions contributing

a significant amount and can be sampled more aggressively. The worst case is a perfectly diffuse BRDF

but that is handled in the VLF by accumulating the irradiance and moving the BRDF evaluation ρ

π
outside

the integral. Since the performance is tied only to the VLF resolution and BRDF and not to the number

of faces the linear nature of the propagation stage is unaffected. The overhead of BRDF reflection will

be a constant that diminishes when the geometric complexity is increased. Figure 6.12 shows a more

complex scene with ∼9K faces propagated with the same resolution and parameters as those of Fig-

ure 6.10. Propagation times for pure diffuse, glossy and mixed specular/diffuse are shown. Figure 6.13

134 Chapter 6. Results

shows a breakdown of the propagation times for the Cornell box (Figure 6.10(a)) and the Atenea scene

(Figure 6.12(b)) with a glossy floor with ns = 20. This clearly illustrates that the BRDF reflection is a

constant that is independent of geometric complexity.

The prototype implementation samples the BRDF uniformly without any importance sampling. The

number of reflections performed could, for many BRDFs, be reduced significantly by employing impor-

tance sampling techniques. Another observation is that low-frequency BRDFs are the most expensive to

precompute but they can also be represented with fewer PSFs whereas high-frequency BRDFs require

many PSFs but are cheaper to precompute. This duality could be exploited by a system that could adjust

the number of PSFs used for storage and reflections based on the BRDFs used.

6.5 Comprehensive Results
Performance of the algorithm was tested on four scenes: two consist of only diffuse surfaces (Figure

6.14(b) and Figure 6.14(c)) and the remaining two of diffuse and specular surfaces (Figure 6.14(a) and

Figure 6.14(d)). All figures use 512 bi-directional global directions, and Figure 6.14(a) uses PSFs con-

structed at a resolution of 64x64 cells (8x8 tiles, 8x8 cells per tile), whereas Figure 6.14(d) uses 256x256

cells (16x16 tiles, 16x16 cells per tile). The mirror wall in Figure 6.14(d) is partly diffuse and specular,

containing a slightly bluish diffuse element. The ratio of directions to spatial resolution is a function

of the distance between mutually visible polygons and can be computed automatically. We set these

parameters manually.

Diff. Spec. Sort Prop. Total Memory Memory Rend.
Scene Faces

elems. elems. (sec) (sec) (sec) (prop.) (rend.) (1024×768)

Cornell 19 35K 931K 0.031 3.9 4.1 23.2MB 2.9MB 122fps

Grotto 318 817K 0 0.549 16.7 17.2 19.6MB 2.5MB 124fps

Class. 3,024 906K 0 11.149 52.5 63.7 21.7MB 2.7MB 121fps

Atenea 9,410 2,435K 7,630K 18.656 133.1 153.2 241.5MB 30.2MB 121fps

Table 6.1: Performance of the VLF-GPU method. This table shows the propagation and rendering per-

formance for a number of scenes. The number of polygons along with the finite element resolution are

listed. The Total column lists the total propagation time including sorting and GPU initialisation. The

memory used during propagation and rendering is listed. The memory for rendering is less since tempo-

rary radiance maps have been discarded and (ir)radiance atlases have been tonemapped and compressed

to 24bit RGB.

Propagation timing results from the scenes are presented in Table 6.1. They are all based on three

propagation iterations. Timings were obtained on an Intel Core 2 Quad (QX6700) 2.66GHz processor

with a GeForce 8800 GTX with 768MB graphics memory and 4GB of host memory. Initial sorting was

6.5. Comprehensive Results 135

(a) Cornell box scene. (b) Grotto scene.

(c) Classroom scene. (d) Atenea scene.

Figure 6.14: Our system can propagate light through scenes with arbitrary BRDFs and millions of ir/ra-

diance elements in seconds 6.14(a) to minutes 6.14(d) and render them at frame-rates exceeding 120fps

at 1024×768 screen resolution.

136 Chapter 6. Results

performed on the CPU in four threads using a 2-level BSP subdivision along the depth of the PSF and

a single level across the width and height. For the Cornell box scene the sorting was faster on a single

core without BSP subdivision due to the scene’s low number of polygons.

A 64-bit floating-point RGBA format was used for storing ir/radiance. Memory consumption is

given for the propagation stage as well as the rendering stage. After propagation all current and next

ir/radiance maps were discarded accounting for two-thirds of the memory and the total ir/radiance maps

were tonemapped and stored as 24bit RGB for display. For offline storage the maps can be further com-

pressed using standard image compression methods. Storage during propagation can be roughly halved

using 4 byte shared exponent format (similar to Greg Ward’s RGBE format), which was introduced as a

native pixel-format with the GeForce 8 series.

6.6 Immersive Virtual Reality Applications
In order to use a rendering technique in an immersive virtual reality (VR) device using stereo to display

3D content, the frame update rate needs to be stable and at least 30 frames per second in order not

to cause discomfort in the participant [BH95]. Larger immersive VR devices work by consecutively

rendering the view as seen from the left and right eye to the same screen. Only the appropriate view is

presented to each eye by filtering out every other frame, using either shutter glasses or twin projectors

coupled with polarised filters. Since the rendering is interleaved in this way it is not always practical

to render each image on a different workstation5, which means that the effective update rate of the

rendering technique could be at least 60 frames per second in such scenarios. Besides rendering, a VR

system also needs to handle other tasks related to the operating system, networking, synchronisation,

tracking and scene graph management. The VLF-GPU can add global illumination to a rendering system

with little overhead making this a practical technique for integrating into a complete VR system. This

chapter discusses the integration of VLF-GPU into eXtremeVR (XVR) [CTB+05], which is a stand-

alone integrated development environment for rapid development of complex VR applications.

6.6.1 Rendering the VLF in the CAVETM

When the VLF propagation step has converged, the GPU can render novel views from the data structure

by interpolating between samples stored in the diffuse textures and non-diffuse view-dependent radiance

tiles (see Section 5.4 for details). Diffuse surfaces are rendered directly using texturing with the diffuse

textures available in the irradiance texture atlases. The GPU performs interpolation efficiently in this

case.

Depending on the resolutions used for the VLF the specular surfaces may be too coarse for direct

display, this is often true in the case of perfect mirrors. In order to improve the fidelity of specularly

reflecting surfaces they could be rendered with ray-tracing by recursively following a view ray reflected

in the specular face until it strikes a diffuse face where the visible radiance can be collected and displayed.

This, however, can be expensive and could reduce the frame rate significantly. A similar idea, often used

in real-time VR applications, is to use the stencil buffer to render a reflected view of the scene as seen

5For example when using passive stereo on commodity GPUs without hardware syncronisation.

6.6. Immersive Virtual Reality Applications 137

through the specular face and then paste this onto the face with texturing [Kil02]. The latter technique is

used in the current XVR integration for flat mirrors.

The use of global illumination in a VR scenario dramatically improves the visual appearance of the

scene. Current VR research routinely use only local illumination rendering (see Figure 6.15(b) 6). This

causes flat looking images since indirect lighting is approximated with a single ambient term. Also, such

images lack the soft shadows caused by area light sources and indirect lighting, which are important

in anchoring objects in a scene [SUC95]. An example of this can be seen in Figure 6.15(a) where

soft contact shadows are firmly anchoring the rocking chair, the table, and, the potted plant in their

environment.

6.6.2 Dynamics Integration

Integrating dynamic elements in a global illumination solution is a difficult task. The computation re-

sources needed to solve the rendering equation numerically at real-time frame rates are currently not

readily available. Popular approaches attempting this are ray tracing [WDB+06] and hierarchical finite

element approaches [DSDD07]. At the time of writing these cannot deliver the frame-rates and resolu-

tion needed for virtual reality applications. Making some simplifying assumptions can, however, make

the problem tractable. If we separate the scene geometry into dynamic and static elements we can pre-

compute the global illumination for the static elements using the VLF and focus on the dynamic elements

at run-time.

Dynamic elements undergoing only rigid body animation can be easily integrated using Pre-

computed Radiance Transfer [SKS02] where the VLF can provide the input radiance. This approach

does not apply to elements such as virtual characters (avatars) using skinned animation, which are a

crucial element of many VR applications. The mesh of an avatar is typically made up of thousands of tri-

angles, essentially undergoing unstructured motion, making it virtually impossible to accelerate through

a pre-compute approach. However, breaking up the problem and attacking the modes of transport that

contribute most to the image, real-time frame rates can be achieved with support for significant global

illumination effects.

We can separate the problem into three main modes of transport contributing to the image and focus

on solving these: 1) field radiance scattered off the avatar towards the eye, 2) soft shadows cast by the

avatar and 3) specular reflections of the avatar. This does not solve for diffuse reflections of the avatar,

and thus colour bleeding caused by the avatar will not be accounted for. However, the magnitude of

illumination that has undergone multiple diffuse reflections is generally low and will add little to the

image.

In order to solve 1) we need to be able to rapidly provide the irradiance at an arbitrary spatial

position, a shader program can then use this to calculate the surface shading at points on the mesh.

In order to provide irradiance calculations at real-time frame rates we introduce another pre-computed

data structure derived from the VLF. The bounding volume of the scene is subdivided into a set of

6The ambient term supplied for the rendering was painstakingly estimated by adjusting the OpenGL lighting parameters and

comparing the image to the VLF rendering.

138 Chapter 6. Results

(a) Rendered with VLF-GPU.

(b) Rendered with OpenGL.

Figure 6.15: Comparison of OpenGL and VLF-GPU. The lighting parameters of OpenGL were adjusted

to best match the ambient lighting of the VLF-GPU counterpart. Note the realistic appearance due to

global illumination effects, in contrast to standard OpenGL rendering, which is commonplace in VR

research.

6.6. Immersive Virtual Reality Applications 139

Figure 6.16: Lighting a character with a spherical harmonics light probe. For illustrative purposes the

light probe is superimposed on the torso of the character.

voxels. A voxel stores irradiance retrieved from the VLF projected to a spherical harmonic (SH), and

due to the properties of spherical harmonics they can be calculated at arbitrary positions by trilinear

interpolation of the eight nearest voxels. See Figure 6.16 for an example of such a light probe and its

application to a dynamic character. Such irradiance volume was suggested by Ramamoorti [RH01] and

also Greger [GSHG98] albeit in a different form.

To solve 2) direct soft shadows cast by the avatar onto static geometry or other dynamic geometry

are needed. Physically correct soft shadows are notoriously difficult to calculate. However, perceptually

correct soft shadows can be rendered in real-time using the graphics processing unit (GPU). Percent

Closer Soft Shadows [Ura05] samples a standard shadow map stochastically to provide approximate

umbra and penumbra regions of a shadow due to an area light source. In order to combine this with the

physically correct soft shadows (cast by static elements) already present in the scene, the visibility of

shadow mapped light sources are also stored as texture maps in the VLF. This information is trivially

available during the VLF pre-compute.

Finally, to solve 3) specular reflections of the avatar are required. Reflections (and caustics) are

already appropriately accounted for in the VLF for the static parts of the scene, but this obviously does

not include the dynamic elements. Also, as discussed earlier, depending on the resolution of the VLF

and the BRDF of the surface they may benefit from reconstruction using the scene geometry. This can

easily be achieved in real-time using a reflection rendering pass, rendering the visible scene onto a re-

flective surface [Kil02]. This can be extended to curved surfaces using traditional environment mapping

techniques. In order to include the dynamic elements in the reflection they can merely be rendered into

the reflection texture map along with the static scene. Occlusion is automatically handled by the depth

buffer. This affords dynamic objects after a single reflective bounce, since after one reflection the VLF is

used to render any subsequent non-diffuse reflections, in which the dynamic objects are not included. In

order to include dynamic objects with more bounces a ray tracing approach would be more suitable. This

would trace reflective rays until a diffuse surface (or dynamic object) was struck or a specified maximum

140 Chapter 6. Results

number of bounces was reached at which point the VLF would be looked up.

The effect of these techniques used in conjunction is quite striking. The dynamic elements merge

well with the surrounding scene featuring impinging colour bleeding, caustics and casting soft shadows

as well as being visible in reflective surfaces (see Figure 6.15(a)). Also, the soft shadows provide a

subtle but important anchoring effect as discussed earlier. Often when using standard local illumination

without shadows the dynamic elements can be hard to place relative to one another and objects on a

surface may appear to be floating. This is not the case using these techniques. Reflections, shadows and

colour bleeding are all cues that help place the dynamic elements in their environment.

6.6.3 The XVR framework

We chose XVR as our implementation framework since in addition to real-time graphics rendering,

it includes the ability to handle many collateral aspects of VR programming such as sound, haptics

and interaction. To allow for CAVETMapplications development, XVR has a dedicated module called

Network Renderer [MVT+07]. This module allows for cluster-based rendering of XVR applications. By

using a cluster of workstations, the rendering load is distributed among several machines. In particular,

we let each PC of the cluster manage the rendering of a different screen of the CAVETMsystem.

The Network Renderer is totally transparent to the original XVR application: each of the OpenGL

calls performed by the master application is intercepted by the module that catches all the information

about the calls, and stores them into an internal memory buffer. Each time that it is necessary, the

Network Driver sends the content of the buffer to a set of remote executables, named graphic slaves,

which run on the machines composing the cluster. Each of the slaves then executes the OpenGL calls

received from the master. The VLF-GPU rendering technique integrates naively in this system, since the

VLF rendering can be expressed entirely by OpenGL calls and execution of GLSL shader programs (see

Section 5.4), which are supported by the network renderer. This is in contrast to many other approaches

that require additional information to be computed on the rendering nodes, which cannot be expressed as

OpenGL calls. An example of this is ray tracing based approaches. In fact VLF-GPU integrates easily

in either a rasterisation or ray tracing based system.

The immersive capabilities provided by a CAVETMsystem include three main factors: stereo graph-

ics rendering, head tracking, and the fact that the participant is surrounded by the visual display. All

these factors must be considered in order to make the visualisation system work properly and in a con-

sistent way. In particular it is necessary to calculate the proper perspective projection matrix for each

of the screens, according to the position and the orientation of participant’s viewpoint and head direc-

tion. Performing all these operations is a task independent of the specific application running, and it

can be exactly defined given the specifications of the particular CAVETMin use. For these reasons the

XVR Network Renderer relieves the application programmer from being concerned with these issues.

The programmer only needs to render monoscopic images, and XVR takes care of properly rendering in

stereo and onto the CAVETMscreens. In our CAVETMsetup four rendering clients drive the front, left,

right and floor projections respectively.

6.7. Summary 141

6.7 Summary

If we, in a hypothetical scenario, were to consider each sample transported in the propagation step as

requiring one ray intersection computation for visibility, we would in effect achieve ∼33M ray intersec-

tions per second on average for the four scenes in Table 6.1 (between ∼14MRays/sec for the Cornell

box scene and ∼74MRays/sec for the Grotto scene). This is partly due to the fact that we exploit co-

herence by ”tracing” bundles of parallel rays and partly because the incremental approach eliminates the

need for traversing a data structure to resolve visibility. To our knowledge, the fastest CPU ray tracing

method to date is AEPSA [FCM09] reporting 21MRays/sec for a scene with 10k faces, for shaded non-

textured coherent primary rays. Our memory bandwidth is much higher than that of AEPSA since each

ray intersection requires HDR texture lookups of radiance values; this yields a memory bandwidth of

>3.56GB/sec for the Grotto scene.

Comparably, GPU ray tracing implementations have not proven effective [FS05, CHH02,

PBMH02], reporting less than ∼1MRay/sec (extrapolated to current hardware). However, with the

recent development of more general purpose GPUs, ray tracing on that platform is being revisited.

Nvidia has recently developed the ray tracing API OptiX. The performance of OptiX was analysed

in [LE10]. They report between 17.3Mrays/sec and 53Mrays/sec running on an Nvidia Quadro FX 5800

GPU. This GPU has 2.7x the processing power of the Nvidia GeForce 8800 GPU (933.12GFLOPs vs.

346GFLOPs), 2x higher fill rate and 1.6x higher memory bandwidth.

Our visibility performance is comparable (or better) to that of AEPSA and OptiX. We stress, how-

ever, that the method here does not easily apply to general ray tracing, the numbers are given in order to

put the visibility performance of the incremental approach in context.

In Figure 6.17(a) - Figure 6.17(d) the VLF-GPU method is compared to the original VLF method

presented in [SMKY04]. Figure 6.17(a) and Figure 6.17(b) shows a small office scene composed of 141

faces. Both methods use 2049 PSFs with a 128x128 radiance map resolution and an 8x8 tile resolution.

The VLF-GPU method has comparable image quality with less structured aliasing on the floor and

propagates 2125x faster. The rendering speeds quoted in [SMKY04] for a 256x256 image were 1.1fps

when rendering directly from the radiance maps and 20fps when reconstructing the reflective surfaces

with ray tracing (shown). The VLF-GPU method renders a similar view at 83fps directly from the

radiance maps and at 1946fps using stencil reflections at 1024x768 screen resolution. The hardware used

in [SMKY04] was an 1.7Ghz Xeon CPU for propagation and two 2.8Ghz Xeon CPUs for rendering. The

hardware used to propagate the scene and render the images for the VLF-GPU method was an Nvidia

GeForce 8800GTS GPU with 640MB video memory. The CPU was a 3.3Ghz Intel Q6600 Quad Core

CPU of which only a single core was used.

Figure 6.17(c) and Figure 6.17(d) shows the caustic test scene also shown in Figure 6.9. Again both

methods use 2049 PSFs with a 128x128 radiance map resolution and an 8x8 tile resolution. The VLF-

GPU method additionally uses 8192 jittered directions. The image quality is comparable although it

proved difficult to set exactly the same viewpoint and tone mapping parameters. The VLF-GPU method

propagates the scene 2414x faster. Rendering times for the original VLF methods was 27fps for ray

142 Chapter 6. Results

(a) Propagated with VLF-GPU, 61 secs. (b) Propagated with VLF [SMKY04], 36 hrs.

(c) Propagated with VLF-GPU, 50 secs. (d) Propagated with VLF [SMKY04], 33.53 hrs.

(e) Propagated with VLF-GPU, 17.2 secs. (f) Grotto-Lo scene [CHL04], 64.78 secs.

Figure 6.17: Images (a) - (d) compares the VLF-GPU and the original VLF method described

in [SMKY04]. Images (e) and (f) compares the VLF-GPU method to the GPU radiosity method de-

scribed in [CHL04].

6.7. Summary 143

tracing also with a 256x256 screen resolution. The VLF-GPU method renders such view at 89fps directly

from the radiance maps and 3316fps using stencil reflections with a 1024x768 screen resolution.

Figure 6.17(e) is a slightly modified recreation of the Grotto scene used in [CHL04]. The method

presented by Coombe et. al. is based on progressive radiosity on graphics hardware. Since it is a pre-

compute method that can render global illumination at high sustainable frame rates on high resolution

displays it is a suitable method for comparison. The propagation time quoted in [CHL04] are 64.78

seconds for a version using 260K diffuse elements (shown in Figure 6.17(f)) and 86.81 seconds for a

version with 1M elements i.e. 11.7K elements per second. For comparison the scene used with VLF-

GPU had 817K diffuse elements i.e. 47.5K elements per second7. The hardware used in [CHL04] was

an Nvidia GeForce FX 5900 GPU with a P4 1.8Ghz host system. Since the Nvidia GeForce 8800GTS

GPU has 3.2x higher fill rate than the Nvidia GeForce FX 5900 GPU and a 2.3x higher memory band-

width our performance is comparable to that of [CHL04] (extrapolating to current hardware). But, the

VLF-GPU method has fewer artifacts and supports non-diffuse BRDFs. The current implementation

supports specular, glossy, diffuse and mixed specular/diffuse, thus accounting for L(S|G|D)∗E paths,

whereas [CHL04] is diffuse only.

Overall, propagation time shows > 3 orders of magnitude improvement (i.e. >2000x) over earlier

VLF propagation results [SMKY04] for simple scenes with <200 faces. More complex scenes are

intractable with the previous approach due to its O(N2) complexity. This significant improvement is due

equally to the improved propagation scheme, incremental transfer and GPU implementation.

Rendering can easily be done in real-time at high resolutions. The frame-rates given in Table 6.1

are for 1024×768 frames. Frame-rates are stable regardless of the viewpoint due to the fact that the

multiple rendering passes are performed for all pixels in the frame. Clearly, this could be optimised by

only performing the view-dependent rendering on non-diffuse pixels. This would, however, make the

frame-rate variable with a worst case performance of that given in Table 6.1 when the viewpoint is such

that only non-diffuse pixels are viewed.

7The parameters used for the VLF-GPU method are quoted in Section 6.5.

144 Chapter 6. Results

Chapter 7

Conclusion

A novel approach to the problem of global illumination on the GPU has been introduced in this thesis.

The VLF-GPU method can produce 5D light fields for virtual scenes in linear time in the number of

faces and render them, requiring only a small constant time overhead on top of a standard renderer. The

goal has been to achieve real-time walkthrough for scenes with full global illumination. The scope of

the problem was mainly to allow the use of global illumination in immersive VR scenarios that hitherto

has typically been restricted to local illumination rendering techniques.

7.1 Contributions
An incremental approach for propagating light through the scene has been introduced. This has O(N)

complexity in the number of input faces. This allows simple to moderate scenes in terms of geometric

complexity with high illumination complexity - millions of elements - to be solved in seconds to minutes

on the GPU [MKS07]. This is an improvement over earlier results [SMKY04] of nearly three orders

of magnitude and exhibits linear rather than quadratic scaling. Propagation time is decoupled from the

number and cumulative area of emitters. This distinguishes this approach from many recent methods that

does not support area emitters and, often, will only work with few point emitters. The approach includes

direct lighting so there is no need to compute direct lighting separately at run-time.

A novel GPU approach for rendering from Virtual Light Fields has been introduced [MKS07]. This

can render scenes of arbitrary illumination complexity in real-time; > 160 frames per second. It adds

a small constant to the time taken to rasterise the scene with a traditional local illumination approach.

Thus, the approach can guarantee a stable frame rate which is critical for some applications [BH95].

Furthermore, the VLF-GPU technique has been integrated into a fully fledged VR system. Dynamic

soft shadows and relighting for dynamic elements are supported and work well with the technique,

ensuring that dynamic elements blend well with the improved rendering. The system was used for a

presence experiment aimed at determining the effect of global illumination on the sense of presence. The

scenario featured global illumination with area lights, specular reflections, dynamic globally illuminated

avatars and dynamic soft shadows. The XVR/VLF-GPU system was able to render the environment at

sustained frame rates at 30 frames per second in stereo (effectively 60fps). This frame rate was not a

limitation of the VLF-GPU rendering system but rather of the VR system as a whole, which requires strict

146 Chapter 7. Conclusion

(a) Scene used for experiment. (b) Subject in CaveTM

Figure 7.1: Scene used in the CAVETMpresence experiment [YMKS10].

frame synchronisation to avoid tearing artifacts to appear where the CAVE walls meet. See Figure 7.1

for an overview of the scene used in the experiment. Preliminary results of this experiment are reported

in [YMKS10].

One of the main drawbacks is that the approach does not work well with very small or point emitters.

In order to do so a pre-pass must be included that lights up surfaces directly visible to the lights; this

has been discussed in [SK98, SKSMT00]. Another issue is the rather large memory requirement needed

to store directional radiance for non-diffuse surfaces. Compression could solve this issue given that

there is very high coherence between the outgoing radiance of adjacent PSFs. Also, although it was

shown that the Vis-Sort algorithm is linear time, the constant is rather high due to the stop-and-wait

GPU implementation. This could be solved by implementing the optimised approach in [GLM04].

7.2 Directions of Future Work
Future work - in addition to addressing the drawbacks discussed above - includes implementing appli-

cation support for a wider range of BRDFs, which is inherently supported by the method. Also, inspired

by the work in [RGK+08] experimenting with using approximate visibility for jittered PSFs would be

an interesting avenue of research. One could for example re-cycle visibility from nearby PSFs without

re-sorting them. In addition, lowering the precision used for the propagation of later bounces might be

possible since the illumination of bounced light is likely to be lower frequency. In the limit, the light

transport could be performed for indirect lighting only and the direct lighting could be computed at run-

time, potentially making it possible to lower the VLF precision enough to allow for some interactivity.

This would, however, remove support for area lights and make the run-time complexity dependent on

the number of lights in the scene, which is an undesirable property. Given that the PSFs contain similar

data, compression may work very well and could allow larger scenes. Currently, there is a two-level

hierarchy for storing (ir)rradiance; the directional radiance maps and the (directionless) irradiance maps.

An option could be to introduce a directional hierarchy and represent radiance at an appropriate level in

the hierarchy based on its BRDF. The current directional subdivision already exposes such a hierarchy.

In summary a novel physically based global illumination approach for the GPU has been presented.

7.2. Directions of Future Work 147

It can pre-compute general L{S|G|D}∗E solutions in O(N) time and render from this in O(1) time on

top of rasterisation or ray casting from the eye. This research has made real-time global illumination

possible in VR applications. The approach has been integrated into a complete VR system and has been

used to conduct VR research in the CAVETMwith globally lit virtual environments. This is believed to

be the first successful complete VR system rendering fully globally lit environments in the CAVETMat

real-time frame rates. It will allow significantly more realistic environments to be used with immersive

VR and will thus improve current applications and open up new avenues of research in VR.

148 Chapter 7. Conclusion

Appendix A

Symbols

A.1 Geometric Symbols

Symbol Description

A combined set of surface points

x surface point

nx normal at surface point x

dAx differential surface area at point x

Θ,−Θ,Ψ,−Ψ direction vectors

Ωx hemisphere above x {∀Θ : Θ ∈Ωx ⇐⇒ Θ ·nx ≥ 0}

dωΘ differential solid angle around direction Θ

θ ,ϕ angles

rxy distance between surface points x and y

xy direction from x to y

V (x,y) visibility function; V (x,y) =

1, if x and y are mutually visible;

0, otherwise

r(x,Θ) ray casting function; r(x,Θ) is the nearest visible point to x in direction Θ

150 Appendix A. Symbols

A.2 Radiometric Symbols

Symbol Description

Q radiant energy [(J)oule]

Φ radiant flux [(W)att]

E irradiance [W ·m−2]

M,B radiant exitance, radiosity [W ·m−2]

I radiant intensity [W · sr−1]

L radiance [W ·m−2 · sr−1]

Le(x,Θ) self emitted radiance leaving x in direction Θ

Le(x,y) self emitted radiance leaving x in direction xy

Li
e(x,Θ) incident emitted radiance arriving at x from direction Θ

Li
e(x,y) incident emitted radiance arriving at x from direction yx

Lo(x,Θ) exitant radiance leaving x in direction Θ

Lo(x,y) exitant radiance leaving x in direction xy

Li(x,Θ) incident radiance arriving at x from direction Θ

Li(x,y) incident radiance arriving at x from direction yx

W potential

We(x,Θ) self emitted potential leaving x in direction Θ

We(x,y) self emitted potential leaving x in direction xy

W i
e(x,Θ) incident emitted potential arriving at x from direction Θ

W i
e(x,y) incident emitted potential arriving at x from direction yx

Wo(x,Θ) exitant potential leaving x in direction Θ

Wo(x,y) exitant potential leaving x in direction xy

Wi(x,Θ) incident potential arriving at x from direction Θ

Wi(x,y) incident potential arriving at x from direction yx

fr(x,Θi,Θr) bidirectional reflectance distribution function (BRDF) at surface point x

with incident direction Θi and reflected direction Θr

ρ hemispherical reflectance

A.3. VLF Notation 151

A.3 VLF Notation

Symbol Description

V LF virtual light field

PSFω parallel subfield in direction ω

LT total or accumulated radiance

LU unshot radiance to be distributed in the next iteration

L(ω,s, t,P) outgoing radiance map for tile (s, t) in direction ω for surface P

L(ω,s, t,u,v,P) outgoing radiance of cell (u,v) in tile (s, t) in direction ω for surface P

V (ω,s, t,u,v,P) binary visibility of cell (u,v) in tile (s, t) in direction ω for surface P,

V (ω,s, t,u,v,P) = 1 if P is rasterised to this cell in PSFω

X(ω,s, t,u,v,P) exchange buffer of cell (u,v) in tile (s, t) in direction ω for surface P,

X(ω,s, t,u,v,P) is the index of the closest visible surface along the ray in

direction ω originating at (s, t,u,v)

DT total or accumulated irradiance

DU unshot irradiance

DR reflected irradiance to be distributed in the next iteration

D(P) irradiance map for surface P

D(u,v,P) irradiance of cell (u,v) for surface P

LD(ω,s, t,u,v,P) irradiance for ray (ω,s, t,u,v) from surface P

152 Appendix A. Symbols

A.4 Global Illumination Feature Table
In Table A.4 a selection of global illumination algorithms described in Chapter 2 are listed by feature.

The categories are as follows:

• Reference: Paper reference.

• Keyword: Keyword to identify paper.

• Dynamic viewpoint: Whether dynamically moving viewpoints are supported.

• Dynamic lights: Whether dynamically moving lights are supported.

• Dynamic geometry: Whether dynamically moving geometry is supported.

• Dynamic materials: Whether dynamically changing materials are supported.

• Specular transport: Whether perfect specular transport is supported.

• Glossy transport: Whether glossy transport is supported.

• Diffuse transport: Whether diffuse transport is supported.

• Bounces: Number of indirect bounces supported.

• Area lights: Whether the algorithm supports area lights.

• Direct lighting: Specifies whether the algorithm includes direct lighting computations. Some

algorithms require that direct lighting is compute separately using graphics hardware.

• Illumination Frame rate: Time taken to render and illuminate a frame. This is given in either a

number denoting the number of frames per second or specified as (s)econds, (m)inutes, (h)ours or

(d)ays.

• Pre-processing: Time taken to precompute data necessary structures. This is given as (s)econds,

(m)inutes, (h)ours, (d)ays or (-) if no pre-processing is needed.

• Memory usage: Memory needed for precomputation or rendering, specified as megabytes (mb) or

gigabytes (gb).

• Notes: Any miscellaneous information.

A.4. Global Illumination Feature Table 153

Ref
ere

nce

Key
wor

d

Dyn
am

ic v
iew

poi
nt

Dyn
am

ic li
ght

s Dyn
am

ic g
eom

etry Dyn
am

ic m
ate

rial
s

Spe
cula

r tr
ans

por
t

Glo
ssy

tran
spo

rt Diff
use

 tra
nsp

ort Bou
nce

s
Are

a lig
hts

Dire
ct li

ght
ing Illum

inat
ion

 Fra
me

 rat
e

Pre
‐pro

ces
sing

Me
mo

ry u
sag

e

Not
es

Th
es
is

VL
F‐
G
PU

.

An
y

10
0+

s‐
m

m
b‐
gb

Dy
na
m
ic
 o
bj
ec
t r
el
ig
ht
in
g
su
pp

or
te
d.

[S
M
KY
04

]
VL
F.

An

y

20

h‐
d

m
b‐
gb

25
6x
25

6
sc
re
en

 re
so
lu
tio

n.

[C
HL

04
]

G
PU

 ra
di
os
ity

.

An
y

10
0+

s‐
m

‐
Re

qu
ire

s t
es
se
la
tio

n.

[S
B9

7]
In
te
ra
ct
iv
e
gl
os
sy
.

An

y

s

n/
a

n/
a

Pr
ec
om

pu
te
s p

ho
to
n
m
ap
.

[M
L0
9]

IS
PM

.

An
y

26
‐

‐
Re

qu
ire

s e
ig
ht
 C
PU

 c
or
es
. L
in
ea
r i
n

lig
ht
s.

[H
O
J0
8]

Pr
og
re
ss
iv
e
PM

.

An
y

h‐
d

‐
‐

Fi
na
l g
lo
ss
y
re
fle

ct
io
n
po

ss
ib
le
.

[K
el
97

]
In
st
an
t r
ad
io
sit
y.

An

y

s

‐
‐

U
se
s s
ha
do

w
 m

ap
s f
or
 v
isi
bi
lit
y.

[L
SK

+ 0
7]

In
cr
. i
ns
ta
nt
 ra

d.

1

65

‐
‐

U
se
s P

CF
 so

ft
 sh

ad
ow

s f
or
 d
ire

ct
 li
gh
in
g.

[R
G
K+
08

]
IS
M
.

An

y

17

‐
‐

5
fp
s f
or
 m

or
e
th
an

 o
ne

 b
ou

nc
e.

[R
G
KS
08

]
CS
SM

.

An
y

10
‐

‐
Fi
na
l g
lo
ss
y
re
fle

ct
io
n
po

ss
ib
le
.

[D
S0
5]

RS
M
.

1

28
‐

‐
N
o
vi
sib

ili
ty
 fo

r b
ou

nc
e.

[D
S0
6]

RS
M
 sp

la
tt
in
g.

1

85
‐

‐
N
o
vi
sib

ili
ty
 fo

r b
ou

nc
e.

[N
W
09

]
M
ul
ti‐
re
s R

SM
.

1

68
‐

‐
N
o
vi
sib

ili
ty
 fo

r b
ou

nc
e.

[W
FA

+ 0
5]

Li
gh
tC
ut
s.

An

y

m

‐
‐

Fi
na
l g
lo
ss
y
re
fle

ct
io
n
po

ss
ib
le
.

[C
PW

AP
08

]
N
on

‐li
ne

ar
 c
ut
s.

1

4
m
‐h

m
b

Fi
na
l g
lo
ss
y
re
fle

ct
io
n
po

ss
ib
le
.

[H
PB

07
]

M
at
rix

 sa
m
pl
in
g.

An

y

s

s
‐

Te
m
po

ra
l f
lic
ke
rin

g.

[D
SD

D0
7]

An
ti‐
ra
di
an
ce
.

An

y

15

‐
m
b

7
fp
s f
or
 re

as
on

ab
ly
 si
ze
d
sc
en

e.

[D
KT
S0
7]

Im
pl
ic
it
vi
sib

ili
ty
.

An

y

8

‐
‐

At
 m

os
t t
w
o
bo

un
ce
s w

er
e
sh
ow

n
in
 re

su
lts
.

[W
KB

+ 0
2]

Fa
st
 ra

y
tr
ac
in
g.

An

y

<5

‐
‐

Re
qu

ire
s c

lu
st
er
s.
 L
ow

 q
ua
lit
y
du

rin
g
dy
na
m
ic
s.

[W
DB

+ 0
6]

Fa
st
 ra

y
tr
ac
in
g.

An

y

<1
0

‐
‐

Re
qu

ire
s c

lu
st
er
s.
 L
ow

 q
ua
lit
y
du

rin
g
dy
na
m
ic
s.

[K
G
PB

05
]

Ra
di
an
ce
 c
ac
hi
ng
.

1

s‐
m

‐
m
b

Sp
ee
d
de

pe
nd

s o
n
ca
ch
e
co
m
pl
et
en

es
s.

[W
S9
9]

Ho
lo
de

ck
 c
ac
he

.

An
y

s
h

m
b‐
gb

Dy
na
m
ic
 o
bj
ec
t r
el
ig
ht
in
g
su
pp

or
te
d.

[S
S0
0]

Ta
pe

st
ry
 c
ac
he

.

An
y

<7
s‐
m

n/
a

Po
or
 q
ua
lit
y
du

e
to
 sp

ar
se
 sa

m
pl
in
g.

[B
W
G
03

]
Ed
g/
pn

t i
m
ag
es
.

An

y

<6

m
n/
a

O
ne

 b
ou

nc
e
gl
os
sy
 sh

ow
n.

[T
PW

G
02

]
Sh
ad
in
g
ca
ch
e.

An

y

2

s
n/
a

Re
qu

ire
s c

lu
st
er
s.
 L
ow

 q
ua
lit
y
du

rin
g
dy
na
m
ic
s.

Ta
bl

e
A

.1
:G

lo
ba

lI
llu

m
in

at
io

n
Fe

at
ur

e
Ta

bl
e

154 Appendix A. Symbols

A.5 Heckbert Light Transport Notation

Symbol Description

L light

E eye

D diffuse reflection event

S specular reflection event

G glossy reflection event

(x)+ one or more x events

(x)∗ zero or more x events

(x)? zero or one x event

(x|y) either x or y event

Bibliography

[AK90] James Arvo and David Kirk. Particle transport and image synthesis. In SIGGRAPH ’90:

Proceedings of the 17th annual conference on Computer graphics and interactive tech-

niques, volume 24, pages 53–66, 1990.

[App67] Arthur Appel. The notion of quantitative invisibility and the machine rendering of solids.

In Proceedings of the 1967 22nd national conference, pages 387–393, New York, NY,

USA, 1967. ACM Press.

[App68] Arthur Appel. Some techniques for shading machine renderings of solids. AFIPS 1968

Spring Joint Computer Conference, 32:37–45, 1968.

[Arv86] James Arvo. Backward ray tracing. Developments in Ray Tracing, ACM SIGGRAPH

course notes, 12:259–263, August 1986.

[Arv93] James Arvo. Transfer equations in global illumination. In ACM SIGGRAPH 1993 Course

Notes - Global Illumination, volume 42, 1993.

[Arv95] James Arvo. The role of functional analysis in global illumination. In Rendering Tech-

niques ’95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 115–

126, 1995.

[Azu99] Daniel Azuma. Interactive rendering of surface light fields. Technical report, University

of Washington, University of Washington, May 1999.

[BF89] Chris Buchalew and Donald Fussell. Illumination networks: fast realistic rendering with

general reflectance functions. In SIGGRAPH ’89: Proceedings of the 16th annual con-

ference on Computer graphics and interactive techniques, pages 89–98, New York, NY,

USA, 1989. ACM Press.

[BH95] Woodrow Barfield and Claudia Hendrix. The effect of update rate on the sense of presence

within virtual environments. Virtual Reality, 1(1):3–15, June 1995.

[Bli82] James F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces. In

SIGGRAPH ’82: Proceedings of the 9th annual conference on Computer graphics and

interactive techniques, pages 21–29, New York, NY, USA, 1982. ACM Press.

156 Bibliography

[Bly06] David Blythe. The direct3d 10 system. ACM Trans. Graph., 25(3):724–734, 2006.

[BNN+98] Philippe Bekaert, László Neumann, Attila Neumann, Mateu Sbert, and Yves D. Willems.

Hierarchical monte carlo radiosity. In Rendering Techniques ’98 (Proceedings of the 9th

Eurographics Rendering Workshop), June 1998.

[Bri07] Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. In SIGGRAPH ’07:

ACM SIGGRAPH 2007 sketches, page 22, New York, NY, USA, 2007. ACM.

[Bun05] Michael Bunnell. GPU Gems 2: Programming Techniques for High-Performance Graph-

ics and General-Purpose Computation, chapter Dynamic Ambient Occlusion and Indirect

Lighting, pages 223–234. Addison Wesley, 2005.

[BWG03] Kavita Bala, Bruce Walter, and Donald P. Greenberg. Combining edges and points for

interactive high-quality rendering. ACM Transactions on Graphics, 22(3):631–640, 2003.

[Cam01] Emilio Camahort. 4D Light-Field Modeling and Rendering. PhD thesis, The University of

Texas at Austin, May 2001.

[Cat78] Edwin Catmull. A hidden-surface algorithm with anti-aliasing. In SIGGRAPH ’78: Pro-

ceedings of the 5th annual conference on Computer graphics and interactive techniques,

pages 6–11, 1978.

[CCWG88] Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P. Greenberg. A

progressive refinement approach to fast radiosity image generation. In SIGGRAPH ’88:

Proceedings of the 15th annual conference on Computer graphics and interactive tech-

niques, pages 75–84, New York, NY, USA, 1988. ACM Press.

[CF99] Emilio Camahort and Donald Fussell. A geometric study of light field representations.

Technical Report TR9935, Department of Computer Sciences, The University of Texas at

Austin, 1999.

[CG85] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A radiosity solution for

complex environments. In SIGGRAPH ’85: Proceedings of the 12th annual conference on

Computer graphics and interactive techniques, volume 19, pages 31–40, New York, NY,

USA, August 1985. ACM Press.

[CGIB86] Michael Cohen, Donald P. Greenberg, Dave S. Immel, and Philip J. Brock. An efficient ra-

diosity approach for realistic image synthesis. IEEE Computer Graphics and Applications,

6:3, 1986.

[Che90] Shenchang Eric Chen. Incremental radiosity: An extension of progressive radiosity to an

interactive image synthesis system. In SIGGRAPH ’90: Proceedings of the 17th annual

conference on Computer graphics and interactive techniques, volume 24, pages 135–144,

New York, NY, USA, August 1990. ACM Press.

Bibliography 157

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In HWWS ’02: Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages

37–46, 2002.

[CHH03] Nathan A. Carr, Jesse D. Hall, and John C. Hart. GPU algorithms for radiosity and subsur-

face scattering. In HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, pages 51–59, 2003.

[CHL04] Greg Coombe, Mark J. Harris, and Anselmo Lastra. Radiosity on graphics hardware. In

GI ’04: Proceedings of the 2004 conference on Graphics interface, pages 161–168, 2004.

[CKM+99] Joao Comba, James T. Klosowski, Nelson Max, Joseph S.B. Mitchell, Cludio T. Silva, and

Peter L. Williams. Fast polyhedral cell sorting for interactive rendering of unstructured

grids. Computer Graphics Forum, 18(3):369–376, September 1999.

[CLF98] Emilio Camahort, Apostolos Lerios, and Donald Fussell. Uniformly sampled light fields.

In Rendering Techniques ’98 (Proceedings of Eurographics Rendering Workshop ’98),

pages 117–130, 1998.

[CMS98] Francesc Castro, Roel Martı́nez, and Mateu Sbert. Quasi-monte carlo and extended first-

shot improvement to the multi-path method. In Laszlo Szirmay-Kalos, editor, Proceedings

of the Spring Conference on Computer Graphics ’98, pages 91–102, Budimerce, Slovakia,

1998. Comenius University.

[CNSD+92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon, and John C.

Hart. The cave: audio visual experience automatic virtual environment. Commun. ACM,

35(6):64–72, 1992.

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions on Graph-

ics, 5(1):51–72, January 1986.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In SIG-

GRAPH ’84: Proceedings of the 11th annual conference on Computer graphics and in-

teractive techniques, volume 18, pages 137–145, New York, NY, USA, July 1984. ACM

Press.

[CPWAP08] Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund, and Fabio Pellacini. Fast, realis-

tic lighting and material design using nonlinear cut approximation. ACM Trans. Graph.,

27:128:1–128:10, December 2008.

[CRMT91] Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller, and Douglass Turner. A pro-

gressive multi-pass method for global illumination. In SIGGRAPH ’91: Proceedings of

the 18th annual conference on Computer graphics and interactive techniques, volume 25,

pages 165–174, New York, NY, USA, July 1991. ACM Press.

158 Bibliography

[CS98] Francesc Castro and Mateu Sbert. Application of quasi-monte carlo sampling to the multi-

path method for radiosity. In Proceedings of the Third International Conference on Monte

Carlo and quasi Monte Carlo methods in scientific computing, pages 163–176, Berlin,

1998. Springer.

[CTB+05] Marcello Carrozzino, Franco Tecchia, Sandro Bacinelli, Carlo Cappelletti, and Massimo

Bergamasco. Lowering the development time of multimodal interactive application: the

real-life experience of the xvr project. In ACE ’05: Proceedings of the 2005 ACM SIGCHI

International Conference on Advances in computer entertainment technology, pages 270–

273, 2005.

[dBOS92] Mark de Berg, Mark Overmars, and Otfried Schwarzkopf. Computing and verifying depth

orders. In SCG ’92: Proceedings of the eighth annual symposium on Computational ge-

ometry, pages 138–145, New York, NY, USA, 1992. ACM Press.

[DKTS07] Zhao Dong, Jan Kautz, Christian Theobalt, and Hans-Peter Seidel. Interactive global illu-

mination using implicit visibility. In PG ’07: Proceedings of the 15th Pacific Conference

on Computer Graphics and Applications, pages 77–86, Washington, DC, USA, 2007. IEEE

Computer Society.

[DLW93] Philip Dutré, Eric P.F. Lafortune, and Yves D. Willems. Monte carlo light tracing with

direct computation of pixel intensities. In Proceedings of Compugraphics ’93, pages 128–

137, 1993.

[Dob00] William H. Dobelle. Artificial vision for the blind by connecting a television camera to

the visual cortex. ASAIO journal (American Society for Artificial Internal Organs : 1992),

46(1):3–9, Jan–Feb 2000.

[DS05] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps. In I3D ’05: Pro-

ceedings of the 2005 symposium on Interactive 3D graphics and games, pages 203–231,

New York, NY, USA, 2005. ACM.

[DS06] Carsten Dachsbacher and Marc Stamminger. Splatting indirect illumination. In I3D ’06:

Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 93–100,

New York, NY, USA, 2006. ACM.

[DSDD07] Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo Durand. Im-

plicit visibility and antiradiance for interactive global illumination. ACM Trans. Graph.,

26(3):61, 2007.

[Dut96] Philip Dutré. Mathematical Frameworks and Monte Carlo Algorithms for Global Illu-

mination in Computer Graphics. PhD thesis, Katholieke Universiteit Leuven, September

1996.

Bibliography 159

[Dut03] Philip Dutré. Global Illumination Compendium. Katholieke Universiteit Leuven, 2003.

[FCM09] C. Fowler, S. Collins, and M. Manzke. Accelerated entry point search algorithm for real

time ray tracing. In ACM Spring Conference on Computer Graphics, 2009.

[FDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer

Graphics: Principles and Practice. Addison-Wesley, 2 edition, 1990.

[Fek90] György Fekete. Rendering and managing spherical data with sphere quadtrees. In VIS ’90:

Proceedings of the 1st conference on Visualization ’90, pages 176–186, Los Alamitos, CA,

USA, 1990. IEEE Computer Society Press.

[FS05] Tim Foley and Jeremy Sugerman. KD-tree acceleration structures for a GPU raytracer.

In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, pages 15–22, 2005.

[GDW00] Xavier Granier, George Drettakis, and Bruce Walter. Fast global illumination including

specular effects. In B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000

(Proceedings of the Eleventh Eurographics Workshop on Rendering), pages 47 – 59. Euro-

graphics, Springer Wien, 2000.

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lu-

migraph. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 43–54, 1996.

[GHLM05] Naga K. Govindaraju, Michael Henson, Ming Lin, and Dinesh Manocha. Interactive vis-

ibility ordering and transparency computations among geometric primitives in complex

environments. In Proceedings of ACM Symposium on Interactive 3D Graphics and Games

2005, 2005.

[GLM04] Naga K. Govindaraju, Ming Lin, and Dinesh Manocha. Vis-sort: Fast visibility ordering

of 3-d geometric primitives. Technical report, University of North Carolina at Chapel Hill,

2004.

[GMN94] Jay S. Gondek, Gary W. Meyer, and Jonathan G. Newman. Wavelength dependent re-

flectance functions. In SIGGRAPH ’94: Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, pages 213–220, New York, NY, USA,

1994. ACM Press.

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The irradiance

volume. IEEE Computer Graphics & Applications, 18(2):32–43, March 1998.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Mod-

eling the interaction of light between diffuse surfaces. In SIGGRAPH ’84: Proceedings

of the 11th annual conference on Computer graphics and interactive techniques, pages

213–222, New York, NY, USA, 1984. ACM Press.

160 Bibliography

[GWH01] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face clustering on

polygonal surfaces. In I3D ’01: Proceedings of the 2001 symposium on Interactive 3D

graphics, pages 49–58, New York, NY, USA, 2001. ACM.

[Hav01] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Technical Uni-

versity in Prague, Prague, April 2001.

[Hec90] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. In SIGGRAPH

’90: Proceedings of the 17th annual conference on Computer graphics and interactive

techniques, pages 145–154, New York, NY, USA, 1990. ACM Press.

[HG83] Roy Hall and Donald P. Greenberg. A testbed for realistic image synthesis. IEEE Computer

Graphics & Applications, 3(8):10–20, November 1983.

[HM99] John F. Hughes and Tomas Möller. Building an orthonormal basis from a unit vector.

Journal of Graphics Tools, 4(4):33–35, 1999.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon mapping.

ACM Trans. Graph., 27:130:1–130:8, December 2008.

[HPB07] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column sampling for the many-

light problem. ACM Trans. Graph., 26, July 2007.

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity al-

gorithm. In SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer

graphics and interactive techniques, pages 197–206, New York, NY, USA, 1991. ACM

Press.

[HW91] Paul S. Heckbert and James M. Winget. Finite element methods for global illumination.

Technical report, University of California, Computer Science Division, July 1991.

[ICG86] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for

non-diffuse environments. In SIGGRAPH ’86: Proceedings of the 13th annual conference

on Computer graphics and interactive techniques, pages 133–142, New York, NY, USA,

1986. ACM Press.

[IPL97] I. Ihm, S. Park, and R. K. Lee. Rendering of spherical light fields. In Proceedings of

the 5th Pacific Conference on Computer Graphics and Applications, pages 59–68, Seoul,

South Korea, October 1997. IEEE Computer Society.

[JB07] C. R. Johns and D. A. Brokenshire. Introduction to the cell broadband engine architecture.

IBM Journal of Research and Development, 51(5):503–519, 2007.

[JC95] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirectional monte

carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–224, 1995.

Bibliography 161

[JDO08] David Luebke Simon Green John E. Stone James C. Phillips John D. Owens, Mike Hous-

ton. Gpu computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[Jen95] Henrik Wann Jensen. Importance driven path tracing using the photon map. In Rendering

Techniques ’95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages

326–335, New York, NY, 1995. Springer-Verlag.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Rendering Techniques

’96 (Proceedings of the 7th Eurographics Workshop on Rendering), pages 21–30, London,

UK, 1996. Springer-Verlag.

[JMLH01] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A practical

model for subsurface light transport. In SIGGRAPH ’01: Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 511–518, New York,

NY, USA, August 2001. ACM Press.

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH ’86: Proceedings of the 13th

annual conference on Computer graphics and interactive techniques, pages 143–150, New

York, NY, USA, 1986. ACM Press.

[KBLD08] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra. The playstation 3 for

high-performance scientific computing. Computing in Science and Engg., 10(3):84–87,

2008.

[KBW06] Jens Krüger, Kai Bürger, and Rüdiger Westermann. Interactive screen-space accurate pho-

ton tracing on GPUs. In Rendering Techniques (Eurographics Symposium on Rendering -

EGSR), pages 319–329, June 2006.

[Kel96] Alexander Keller. Quasi-Monte Carlo Radiosity. In Rendering Techniques ’96 (Proceed-

ings of the 7th Eurographics Workshop on Rendering), pages 101–110, New York, NY,

1996. Springer-Verlag/Wien.

[Kel97] Alexander Keller. Instant radiosity. In SIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 49–56, New York, NY,

USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[KGPB05] Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance

caching for efficient global illumination computation. IEEE Transactions on Visualization

and Computer Graphics, 11(5):550–561, 2005.

[KH84] James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In SIGGRAPH

’84: Proceedings of the 11th annual conference on Computer graphics and interactive

techniques, pages 165–174, New York, NY, USA, 1984. ACM Press.

162 Bibliography

[Kil02] Mark J. Kilgard. Improving shadows and reflections via the stencil buffer. White paper,

Nvidia Corporation, 2002.

[Lar98] Greg Ward Larson. The holodeck: A parallel ray-caching rendering system. In Proceedings

of Eurographics Workshop on Parallel Graphics and Visualization, 1998.

[LB83] You-Dong Liang and Brian A. Barsky. An analysis and algorithm for polygon clipping.

Commun. ACM, 26(11):868–877, 1983.

[LE10] H. Ludvigsen and A. C. Elster. Real-time ray tracing using nvidia optix. In Eurographics

2010 short papers, 2010.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH ’96: Proceedings

of the 23rd annual conference on Computer graphics and interactive techniques, pages

31–42, 1996.

[LR98] Dani Lischinski and Ari Rappoport. Image-based rendering for non-diffuse synthetic

scenes. In Rendering Techniques ’98 (Proceedings of the 9th Eurographics Rendering

Workshop), pages 301–314, Vienna, Austria, June 1998.

[LSK+07] Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and Timo Aila. Incre-

mental instant radiosity for real-time indirect illumination. In Proceedings of Eurographics

Symposium on Rendering 2007, pages 277–286. Eurographics Association, 2007.

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Proceedings of

Third International Conference on Computational Graphics and Visualization Techniques

(Compugraphics ’93), pages 145–153, Alvor, Portugal, 1993.

[LW94a] E.P. Lafortune and Y.D. Willems. A theoretical framework for physically based rendering.

Computer Graphics Forum, Special Issue on Rendering, 13(2):97–107, June 1994.

[LW94b] Eric P.F. Lafortune and Yves D. Willems. Using the modified phong brdf for physically

based rendering. Technical report, Katholieke Universiteit Leuven, Department of Com-

puter Science, K.U.Leuven, 1994.

[Max54] James Clerk Maxwell. A Treatise on Electricity and Magnetism, volume 1. Dover Publi-

cations, 3 edition, 1954.

[Max86] Nelson L. Max. Atmospheric illumination and shadows. In SIGGRAPH ’86: Proceedings

of the 13th annual conference on Computer graphics and interactive techniques, pages

117–124, New York, NY, USA, 1986. ACM Press.

[MB95] Leonard McMillan and Gary Bishop. Plenoptic modeling: an image-based rendering sys-

tem. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graph-

ics and interactive techniques, pages 39–46, New York, NY, USA, 1995. ACM Press.

Bibliography 163

[MGAK03] William R. Mark, R.Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A system

for programming graphics hardware in a c-like language. ACM Transactions on Graphics,

22(3):896–907, 2003.

[MKS07] Jesper Mortensen, Pankaj Khanna, and Mel Slater. Light field propagation and rendering

on the gpu. In AFRIGRAPH ’07: Proceedings of the 5th international conference on

Computer graphics, virtual reality, visualisation and interaction in Africa, pages 15–23,

New York, NY, USA, 2007. ACM.

[MKYS07] Jesper Mortensen, Pankaj Khanna, Insu Yu, and Mel Slater. Real-time global illumination

in the cave. In VRST ’07: Proceedings of the 2007 ACM symposium on Virtual reality

software and technology, pages 145–148, New York, NY, USA, 2007. ACM.

[ML09] Morgan McGuire and David Luebke. Hardware-accelerated global illumination by image

space photon mapping. In HPG ’09: Proceedings of the Conference on High Performance

Graphics 2009, pages 77–89, New York, NY, USA, 2009. ACM.

[MRP98] Gavin Miller, Steven M. Rubin, and Dulce Ponceleon. Lazy decompression of surface light

fields for precomputed global illumination. In G. Drettakis and N. Max, editors, Rendering

Techniques ’98 (Proceedings of the 9th Eurographics Rendering Workshop), pages 281–

292, July 1998.

[MVT+07] Giuseppe Marino, Davide Vercelli, Franco Tecchia, Paolo Simone Gasparello, and Mas-

simo Bergamasco. Description and performance analysis of a distributed rendering archi-

tecture for virtual environments. In ICAT 2007: Proceedings of the 17th Annual ICAT

Conference on Artificial Reality and Telexistence, 2007.

[MYK+08] Jesper Mortensen, Insu Yu, Pankaj Khanna, Franco Tecchia, Bernhard Spanlang, Giuseppe

Marino, and Mel Slater. Real-time global illumination for vr applications. IEEE Computer

Graphics and Applications, 28(6):56–64, 2008.

[Neu95] László Neumann. Monte carlo radiosity. Computing, 55(2):23–42, March 1995.

[NMN87] Tomoyuki Nishita, Yasuhiro Miyawaki, and Eihachiro Nakamae. A shading model for

atmospheric scattering considering luminous intensity distribution of light sources. In

SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and

interactive techniques, pages 303–310, New York, NY, USA, 1987. ACM Press.

[NN85] Tomoyuki Nishita and Eihachiro Nakamae. Continuous tone representation of three-

dimensional objects taking account of shadows and interreflection. In SIGGRAPH ’85:

Proceedings of the 12th annual conference on Computer graphics and interactive tech-

niques, volume 19, pages 23–30, New York, NY, USA, July 1985. ACM Press.

[NNS72] M.E. Newell, R.G. Newell, and T.L. Sancha. A solution to the hidden surface problem. In

ACM’72: Proceedings of the ACM annual conference, pages 443–450, 1972.

164 Bibliography

[Nov05] Justin Novosad. GPU Gems 2, chapter 27 - Advanced High-Quality Filtering, pages 417–

435. Addison Wesley, 2005.

[NRH+77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometric

considerations and nomenclature for reflectance. Monograph 161, National Bureau of

Standards (US), October 1977.

[NW09] Greg Nichols and Chris Wyman. Multiresolution splatting for indirect illumination. In I3D

’09: Proceedings of the 2009 symposium on Interactive 3D graphics and games, pages 83–

90, New York, NY, USA, 2009. ACM.

[OR02] J J O’Connor and E F Robertson. Light through the ages: Ancient greece to maxwell,

August 2002.

[Pat93a] Sumanta N. Pattanaik. Computational Methods for Global Illumination and Visualisa-

tion of Complex 3D Environments. PhD thesis, NCST Birla Institute of Technology and

Science, Pilami, India, 1993.

[Pat93b] Sumanta N. Pattanaik. The mathematical framework of adjoint equations for illumination

computation. In ICCG ’93: Proceedings of the IFIP TC5/WG5.2/WG5.10 CSI Interna-

tional Conference on Computer Graphics, pages 123–138. North-Holland, 1993.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on pro-

grammable graphics hardware. ACM Transactions on Graphics, 21(3):703–712, July 2002.

[PCI02] PCI-SIG. PCI Express Base Specification, Revision 1.0, July 2002. www.pcisig.org.

[Pel95] M. Pellegrini. Monte carlo approximation of form factors with error bounded a priori.

In SCG ’95: Proceedings of the eleventh annual symposium on Computational geometry,

pages 287–296, New York, NY, USA, 1995. ACM Press.

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering : From Theory to Imple-

mentation. Morgan Kaufmann, 2004.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Communications of the

ACM, 18(6):311–317, 1975.

[PM92] S. N. Pattanaik and S. P. Mudur. Computation of global illumination by monte carlo simu-

lation of the particle model of light. In Rendering Techniques 92 (Proceedings of the Third

Eurographics Workshop on Rendering), 1992.

[PMS+99] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian Smits, and Charles

Hansen. Interactive ray tracing. In Proceedings of the ACM Symposium on Interactive 3D

Graphics 1999, pages 119–126, April 1999.

Bibliography 165

[RGK+08] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imper-

fect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.,

27(5):1–8, 2008.

[RGKM07] Tobias Ritschel, T. Grotsch, Jan Kautz, and S. Muller. Interactive illumination with coher-

ent shadow maps. In Proc. Eurographics Symposium on Rendering, 2007.

[RGKS08] Tobias Ritschel, Thorsten Grosch, Jan Kautz, and Hans-Peter Seidel. Interactive global

illumination based on coherent surface shadow maps. In GI ’08: Proceedings of graphics

interface 2008, pages 185–192, Toronto, Ont., Canada, Canada, 2008. Canadian Informa-

tion Processing Society.

[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environ-

ment maps. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 497–500, 2001.

[Rom10] Vitkovskiy Roman. Comparison of nvidia graphics processing units. Wikipedia, April

2010.

[Rot82] Scott D. Roth. Ray Casting for Modeling Solids. Computer Graphics and Image Process-

ing, 18(2):109–144, February 1982.

[RSH00] Erik Reinhard, Brian Smits, and Chuck Hansen. Dynamic acceleration structures for in-

teractive ray tracing. In Rendering Techniques 2000 (Proceedings of the Eleventh Euro-

graphics Workshop on Rendering), pages 299–306, June 2000.

[RSH05] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing algorithm.

ACM Transactions on Graphics, 24(3):1176–1185, 2005.

[RT90] Holly E. Rushmeier and Kenneth E. Torrance. Extending the radiosity method to include

specularly reflecting and translucent materials. ACM Trans. Graph., 9(1):1–27, 1990.

[SAG94] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for radiosity in

complex environments. In SIGGRAPH ’94: Proceedings of the 21st annual conference

on Computer graphics and interactive techniques, pages 435–442, New York, NY, USA,

1994. ACM Press.

[SAS92] Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-driven radiosity

algorithm. In SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer

graphics and interactive techniques, pages 273–282, New York, NY, USA, 1992. ACM

Press.

[SAWG91] François X. Sillion, James R. Arvo, Stephen H. Westin, and Donald P. Greenberg. A global

illumination solution for general reflectance distributions. In SIGGRAPH ’91: Proceedings

of the 18th annual conference on Computer graphics and interactive techniques, pages

187–196, New York, NY, USA, 1991. ACM Press.

166 Bibliography

[SB97] Wolfgang Stürzlinger and Rui Bastos. Interactive rendering of globally illuminated glossy

scenes. In Proceedings of the Eurographics Workshop on Rendering Techniques ’97, pages

93–102, London, UK, 1997. Springer-Verlag.

[Sbe93] Mateu Sbert. An integral geometry based method for fast form-factor computation. Com-

puter Graphics Forum, 12(3):409–420, 1993.

[SBM94] Clifford M. Stein, Barry G. Becker, and Nelson L. Max. Sorting and hardware assisted

rendering for volume visualization. In VVS ’94: Proceedings of the 1994 symposium on

Volume visualization, pages 83–89, October 1994.

[SGwHS98] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski. Layered depth images.

In SIGGRAPH ’98: Proceedings of the 25th annual conference on Computer graphics and

interactive techniques, pages 231–242, 1998.

[Shi90a] Peter S. Shirley. Physically Based Lighting Calculations for Computer Graphics. PhD

thesis, University of Illinois at Urbana-Champaign, December 1990.

[Shi90b] Peter S. Shirley. A ray tracing method for illumination calculation in diffuse-specular

scenes. In Proceedings on Graphics interface ’90, pages 205–212, Toronto, Ont., Canada,

Canada, 1990. Canadian Information Processing Society.

[Shi91] Peter Shirley. Time Complexity of Monte Carlo Radiosity. In Werner Purgathofer, editor,

Eurographics ’91, pages 459–465, Amsterdam, North-Holland, 1991. Elsevier Science

Publishers.

[SHSS00] Marc Stamminger, Joerg Haber, Hartmut Schirmacher, and Hans-Peter Seidel. Walk-

throughs with corrective texturing. In B. Peroche and H. Rushmeier, editors, Render-

ing Techniques 2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering),

pages 377–388, New York, NY, 2000. Springer Wien.

[SJ00] Brian Smits and Henrik Wann Jensen. Global illumination test scenes. Technical report,

University of Utah, Computer Science Department, University of Utah, 2000.

[SK98] László Szirmay-Kalos. Global ray-bundle tracing. Technical Report TR-186-2-98-18,

Institute of Computer Graphics and Algorithms, Vienna University of Technology, 1998.

[SKP98] László Szirmay-Kalos and Werner Purgathofer. Global ray-bundle tracing with hardware

acceleration. In Rendering Techniques ’98 (Proceedings of the 9th Eurographics Rendering

Workshop), pages 247–258, June 1998.

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for real-time

rendering in dynamic, low-frequency lighting environments. In SIGGRAPH ’02: Proceed-

ings of the 29th annual conference on Computer graphics and interactive techniques, pages

527–536, New York, NY, USA, 2002. ACM.

Bibliography 167

[SKSMT00] László Szirmay-Kalos, Mateu Sbert, Roel Martinez, and Robert F. Tobler. Incoming first-

shot for non-diffuse global illumination. In Spring Conference on Computer Graphics,

Budmerice, Hungary, 2000.

[SKTNB97] László Szirmay-Kalos, Foris Tibor, Laszlo Neumann, and Csebfalvi Balazs. An analysis of

quasi-monte carlo integration applied to the transillumination radiosity method. Computer

Graphics Forum, 16(3):271–281, 1997.

[Sla02] Mel Slater. Constant time queries on uniformly distributed points on a hemisphere. Journal

of Graphics Tools, 7(1):33–44, 2002.

[SMKY04] Mel Slater, Jesper Mortensen, Pankaj Khanna, and Insu Yu. A virtual light field approach

to global illumination. In Proceedings of Computer Graphics International (CGI 2004),

pages 102–109. IEEE Computer Society Press, June 16-19 2004.

[SP89] François X. Sillion and Claude Puech. A general two-pass method integrating specular

and diffuse reflection. In SIGGRAPH ’89: Proceedings of the 16th annual conference on

Computer graphics and interactive techniques, volume 23, pages 335–344, New York, NY,

USA, July 1989. ACM Press.

[SP07] Kelvin Sung and Michael Panitz. Developing applications on the xbox 360 console. J.

Comput. Small Coll., 23(2):71–72, 2007.

[SPL88] Min-Zhi Shao, Qun-Sheng Peng, and You-Dong Liang. A new radiosity approach by

procedural refinements for realistic image synthesis. In SIGGRAPH ’88: Proceedings of

the 15th annual conference on Computer graphics and interactive techniques, volume 22,

pages 93–101, August 1988.

[SPNP96] Mateu Sbert, Xavier Pueyo, László Neumann, and Werner Purgathofer. Global multipath

monte carlo algorithms for radiosity. The Visual Computer, 12(2):47–61, February 1996.

[SPP95] Mateu Sbert, Fredric Pérez, and Xavier Pueyo. Global monte-carlo: A progressive solu-

tion. In Rendering Techniques ’95 (Proceedings of the Sixth Eurographics Workshop on

Rendering), pages 231–239, 1995.

[SS95] Peter Schröder and Wim Sweldens. Spherical wavelets: efficiently representing functions

on the sphere. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Com-

puter graphics and interactive techniques, pages 161–172, New York, NY, USA, 1995.

ACM Press.

[SS00] Maryann Simmons and Carlo H. Séquin. Tapestry: A dynamic mesh-based display repre-

sentation for interactive rendering. In Rendering Techniques 2000 (Proceedings of the

Eleventh Eurographics Workshop on Rendering), pages 329–340, London, UK, 2000.

Springer-Verlag.

168 Bibliography

[SSS74] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A characterization of

ten hidden-surface algorithms. ACM Computing Surveys, 6(1):1–55, March 1974.

[SUC95] Mel Slater, Martin Usoh, and Yiorgos Chrysanthou. The influence of dynamic shadows on

presence in immersive virtual environments. In Computer Science, editor, Virtual Environ-

ments 95, pages 8–21. Springer, 1995.

[SWH+95] Peter Shirley, Bretton Wade, Philip Hubbard, David Zareski, Bruce Walter, and Donald P.

Greenberg. Global illumination via density estimation. In Rendering Techniques ’95 (Pro-

ceedings of the Sixth Eurographics Workshop on Rendering), June 1995.

[TPWG02] Parag Tole, Fabio Pellacini, Bruce Walter, and Donald P. Greenberg. Interactive global

illumination in dynamic scenes. In SIGGRAPH ’02: Proceedings of the 29th annual con-

ference on Computer graphics and interactive techniques, pages 537–546, New York, NY,

USA, 2002. ACM Press.

[Ura05] Yury Uralsky. GPU Gems 2, chapter 17 - Efficient Soft-Edged Shadows Using Pixel Shader

Branching, pages 269–282. Addison Wesley, 2005.

[Vea97] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,

Stanford University, 1997.

[VG94] Eric Veach and Leonidas J. Guibas. Bidirectional estimators for light transport. In Pro-

ceedings of the 5th Eurographics Workshop on Rendering, pages 147–162, 1994.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte

carlo rendering. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Com-

puter graphics and interactive techniques, pages 419–428, New York, NY, USA, August

1995. ACM Press.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In SIGGRAPH ’97: Pro-

ceedings of the 24th annual conference on Computer graphics and interactive techniques,

pages 65–76, New York, NY, USA, August 1997. ACM Press/Addison-Wesley Publishing

Co.

[WAA+00] Daniel Wood, Daniel Azuma, Wyvern Aldinger, Brian Curless, Tom Duchamp, David

Salesin, and Werner Stuetzle. Surface light fields for 3d photography. In SIGGRAPH

’00: Proceedings of the 27th annual conference on Computer graphics and interactive

techniques, pages 287–296, New York, NY, USA, August 2000. ACM Press/Addison-

Wesley Publishing Co.

[WAL+97] Bruce Walter, Gün Alppay, Eric Lafortune, Sebastian Fernandez, and Donald P. Greenberg.

Fitting virtual lights for non-diffuse walkthroughs. In SIGGRAPH ’97: Proceedings of the

24th annual conference on Computer graphics and interactive techniques, pages 45–48,

New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

Bibliography 169

[Wal04] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Saar-

land University, 2004.

[War92] Gregory J. Ward. Measuring and modeling anisotropic reflection. In SIGGRAPH ’92: Pro-

ceedings of the 19th annual conference on Computer graphics and interactive techniques,

volume 26, pages 265–272, New York, NY, USA, August 1992. ACM Press.

[War94] Gregory J. Ward. The radiance lighting simulation and rendering system. In SIGGRAPH

’94: Proceedings of the 21st annual conference on Computer graphics and interactive

techniques, pages 459–472, New York, NY, USA, July 1994. ACM Press.

[War08] Greg Ward. The hopeful future of high dynamic range imaging: invited paper. In SIG-

GRAPH ’08: ACM SIGGRAPH 2008 classes, pages 1–3, New York, NY, USA, 2008.

ACM.

[WBS03] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed interactive ray tracing

of dynamic scenes. In Proceedings of the IEEE Symposium on Parallel and Large-Data

Visualization and Graphics (PVG), pages 77–86, 2003.

[WCG87] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A two-pass solution to

the rendering equation: A synthesis of ray tracing and radiosity methods. In SIGGRAPH

’87: Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, pages 311–320, New York, NY, USA, 1987. ACM Press.

[WDB+06] Ingo Wald, Andreas Dietrich, Carsten Benthin, Alexander Efremov, Tim Dahmen, Jo-

hannes Günther, Vlastimil Havran, Hans-Peter Seidel, and Philipp Slusallek. A ray trac-

ing based framework for high-quality virtual reality in industrial design applications. In

Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pages 177–185,

September 2006.

[WDG02] Bruce Walter, George Drettakis, and Donald P. Greenberg. Enhancing and optimizing

the render cache. In Rendering Techniques 2002 (Proceedings of the 13th Eurograph-

ics workshop on Rendering), pages 37–42, Aire-la-Ville, Switzerland, Switzerland, 2002.

Eurographics Association.

[WDP99] Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using the render

cache. In Rendering techniques ’99 (Proceedings of the 10th Eurographics Workshop on

Rendering), volume 10, pages 235–246, Jun 1999.

[WEH89] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing algorithm for progressive

radiosity. In SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer

graphics and interactive techniques, volume 23, pages 315–324, New York, NY, USA,

1989. ACM Press.

170 Bibliography

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and

Donald P. Greenberg. Lightcuts: a scalable approach to illumination. ACM Trans. Graph.,

24(3):1098–1107, 2005.

[WH92] Gregory J. Ward and Paul S. Heckbert. Irradiance gradients. In Rendering Techniques 92

(Proceedings of the Third Eurographics Workshop on Rendering), pages 85–98, Bristol,

UK, May 1992.

[Whi80] Turner Whitted. An improved illumination model for shaded display. Communications of

the ACM, 23(6):343–349, 1980.

[WHSG97] Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald P. Greenberg. Global illumina-

tion using local linear density estimation. ACM Transactions on Graphics, 16(3):217–259,

1997.

[Wil83] Lance Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph., 17(3):1–11, 1983.

[Wil92] Peter L. Williams. Visibility-ordering meshed polyhedra. ACM Transactions on Graphics,

11(2):103–126, 1992.

[WKB+02] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and Philipp Slusallek. In-

teractive global illumination using fast ray tracing. In Rendering Techniques 2002 (Pro-

ceedings of the 13th Eurographics workshop on Rendering), 2002.

[WMS98] Peter L. Williams, Nelson L. Max, and Clifford M. Stein. A high accuracy volume ren-

derer for unstructured data. IEEE Transactions on Visualization and Computer Graphics,

4(1):37–54, March 1998.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution for

diffuse interreflection. In SIGGRAPH ’88: Proceedings of the 15th annual conference on

Computer graphics and interactive techniques, volume 22, pages 85–92, New York, NY,

USA, August 1988. ACM Press.

[WS99] Gregory Ward and Maryann Simmons. The holodeck ray cache: an interactive rendering

system for global illumination in nondiffuse environments. ACM Transactions on Graph-

ics, 18(4):361–368, 1999.

[WS03] Michael Wand and Wolfgang Straßer. Real-time caustics. In Computer Graphics Forum,

volume 22(3), pages 611–620, 2003.

[WWZ+09] Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao. An efficient gpu-based ap-

proach for interactive global illumination. In ACM SIGGRAPH 2009 papers, SIGGRAPH

’09, pages 91:1–91:8, New York, NY, USA, 2009. ACM.

Bibliography 171

[YMKS10] Insu Yu, Jesper Mortensen, Pankaj Khanna, and Mel Slater. A note on the influence of

realistic rendering on presence in immersive virtual environments. University College

London, June 2010.

	Introduction
	The Computer Graphics Pipeline
	Modelling
	Animation
	Rendering
	Image Reproduction

	Scope and Objectives
	Contributions
	Organisation of this Thesis

	The Global Illumination Problem
	A Short History of Light
	Geometry
	Free Space Simplification
	Solid Angles & Directions
	Visibility & Ray Casting

	Radiometry
	Terms and Units
	Principles of Radiative Transfer
	Properties of Radiative Transfer
	Throughput T
	Flux Phi
	Irradiance E
	Radiance L
	The Bidirectional Reflectance Distribution Function

	Mathematical Framework for Global Illumination
	The Radiance Equation
	The Potential Equation
	Solutions to the Global Illumination Problem

	Summary

	Global Illumination Methods
	A Taxonomy for Global Illumination Algorithms
	Gathering Methods
	Gathering Radiosity Methods
	Ray Tracing and Path Tracing
	Caching Methods for Global Illumination
	Light Fields
	Summary

	Shooting Methods
	Shooting Radiosity
	Non-diffuse Shooting Radiosity
	Particle Tracing
	Local and Global Lines
	Summary

	Combined Methods
	Bi-directional Path Tracing
	Hybrid and Multi-Pass Methods
	Summary

	Global Illumination on the GPU
	GPU Radiosity Methods
	GPU Particle Tracing Methods
	GPU Hybrid Methods
	Summary

	Discussion

	A Virtual Light Field Approach to Global Illumination
	Overview
	Overview of the Data Structure
	Overview of the Light Transport Algorithm

	Data Structure
	Uniformity of Representation
	Directional Subdivision
	Spatial Subdivision – Parallel Subfield Representation
	PSF Sampling
	Data Structures for Radiance Transport

	Propagation
	Low-level Finite Element Propagation
	PSF Propagation
	VLF Propagation

	Rendering
	Direct VLF Rendering
	Irradiance Maps
	Specular Reconstruction
	Final Gather

	Summary

	Virtual Light Fields on the GPU
	Introduction
	The GPU Architecture
	Propagation on the GPU
	GPU Data Structure
	Incremental Radiance Transport

	Rendering from the VLF on the GPU
	Summary

	Results
	Sorting Performance
	Propagation Performance
	Analysis of Quality and Correctness
	Caustic Example

	Other BRDFs
	Comprehensive Results
	Immersive Virtual Reality Applications
	Rendering the VLF in the CAVE™
	Dynamics Integration
	The XVR framework

	Summary

	Conclusion
	Contributions
	Directions of Future Work

	Appendices
	Symbols
	Geometric Symbols
	Radiometric Symbols
	VLF Notation
	Global Illumination Feature Table
	Heckbert Light Transport Notation

	Bibliography

