2,510 research outputs found

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Get PDF
    Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing

    Remote Heart Rate Monitoring in Smart Environments from Videos with Self-supervised Pre-training

    Full text link
    Recent advances in deep learning have made it increasingly feasible to estimate heart rate remotely in smart environments by analyzing videos. However, a notable limitation of deep learning methods is their heavy reliance on extensive sets of labeled data for effective training. To address this issue, self-supervised learning has emerged as a promising avenue. Building on this, we introduce a solution that utilizes self-supervised contrastive learning for the estimation of remote photoplethysmography (PPG) and heart rate monitoring, thereby reducing the dependence on labeled data and enhancing performance. We propose the use of 3 spatial and 3 temporal augmentations for training an encoder through a contrastive framework, followed by utilizing the late-intermediate embeddings of the encoder for remote PPG and heart rate estimation. Our experiments on two publicly available datasets showcase the improvement of our proposed approach over several related works as well as supervised learning baselines, as our results approach the state-of-the-art. We also perform thorough experiments to showcase the effects of using different design choices such as the video representation learning method, the augmentations used in the pre-training stage, and others. We also demonstrate the robustness of our proposed method over the supervised learning approaches on reduced amounts of labeled data.Comment: Accepted in IEEE Internet of Things Journal 202

    Edge Computing based Human-Robot Cognitive Fusion: A Medical Case Study in the Autism Spectrum Disorder Therapy

    Full text link
    In recent years, edge computing has served as a paradigm that enables many future technologies like AI, Robotics, IoT, and high-speed wireless sensor networks (like 5G) by connecting cloud computing facilities and services to the end users. Especially in medical and healthcare applications, it provides remote patient monitoring and increases voluminous multimedia. From the robotics angle, robot-assisted therapy (RAT) is an active-assistive robotic technology in rehabilitation robotics, attracting many researchers to study and benefit people with disability like autism spectrum disorder (ASD) children. However, the main challenge of RAT is that the model capable of detecting the affective states of ASD people exists and can recall individual preferences. Moreover, involving expert diagnosis and recommendations to guide robots in updating the therapy approach to adapt to different statuses and scenarios is a crucial part of the ASD therapy process. This paper proposes the architecture of edge cognitive computing by combining human experts and assisted robots collaborating in the same framework to help ASD patients with long-term support. By integrating the real-time computing and analysis of a new cognitive robotic model for ASD therapy, the proposed architecture can achieve a seamless remote diagnosis, round-the-clock symptom monitoring, emergency warning, therapy alteration, and advanced assistance.Comment: This paper was accepted by the 38th AAAI 2024 workshop: "Cooperative Multi-Agent Systems Decision-Making and Learning: From Individual Needs to Swarm Intelligence

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Modelling of Internet of Things (IoT) for Healthcare

    Get PDF
    Purpose: Information technology benefits the world, and it’s required for health care system, such as electronic medical records (EMR). We have proposed systematic model to study hoe IoT with 5g network has potential to benefit various healthcare services. For example, telemedicine may have some usage restrictions in rural areas and physicians may find it difficult to provide continuous monitoring to patients from such area. There are higher chances that the calls or video conferences getting significantly affected by poor networks and signals as well as non-compatible devices and patient may not get the treatment on time. 5G networking with IoT devices are believed to be the game changer for communication technology. The IoT model assists in attaining information by measuring its benefits through criteria which include 5G and IoT features along with a healthcare service requirement. Purpose of this paper is to present a model using Internet of Things (IoT) and 5G technology which will help to understand improved efficiency and efficacy of healthcare services. Our main research methodologies are literature review and modeling. The obtained results can be used for information technology applications in healthcare for various healthcare services and assist in increasing health quality in the healthcare industry.Method: Created a model to set the standard for incorporating 5G IoT devices health related technology and services. Reviewed through several models that serve as potential model to involve key factors that are unique certain healthcare services. We picked one model that can be easily incorporated in the system and can be revised to fit within the requirements using 5G IoT devices. Gathering of related literature served as a foundation in understanding the benefits of 5G IoT in the healthcare systems and parameters were pooled from it to revise the IoT model. Results: Incorporating 5G IoT features into a chosen model gave an overview of various determinants that can help understanding how IoT can influence any healthcare service and improve the quality of health. There are no rules and restrictions for use and utilization of this technology for health management yet in developing stage however, healthcare systems can rely on the 5G IoT devices for quality betterment. Conclusion: IoT with 5G has potential to improve healthcare management. The 5G world with an IoT will allow us to enter an era where real-time health services will become the part of the daily routine rather than the exception. However, further research needs to be done about its usage within any kind of specific health technology. Future research directions can utilize our model for other lesser known healthcare services

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality

    Towards a heterogeneous mist, fog, and cloud based framework for the Internet of Healthcare Things

    Get PDF
    Rapid developments in the fields of information and communication technology and microelectronics allowed seamless interconnection among various devices letting them to communicate with each other. This technological integration opened up new possibilities in many disciplines including healthcare and well-being. With the aim of reducing healthcare costs and providing improved and reliable services, several healthcare frameworks based on Internet of Healthcare Things (IoHT) have been developed. However, due to the critical and heterogeneous nature of healthcare data, maintaining high quality of service (QoS) -in terms of faster responsiveness and data-specific complex analytics -has always been the main challenge in designing such systems. Addressing these issues, this paper proposes a five-layered heterogeneous mist, fog, and cloud based IoHT framework capable of efficiently handling and routing (near-)real-time as well as offline/batch mode data. Also, by employing software defined networking and link adaptation based load balancing, the framework ensures optimal resource allocation and efficient resource utilization. The results, obtained by simulating the framework, indicate that the designed network via its various components can achieve high QoS, with reduced end-to-end latency and packet drop rate, which is essential for developing next generation e-healthcare systems
    • …
    corecore