151 research outputs found

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    A survey of the mathematics of cryptology

    Get PDF
    Herein I cover the basics of cryptology and the mathematical techniques used in the field. Aside from an overview of cryptology the text provides an in-depth look at block cipher algorithms and the techniques of cryptanalysis applied to block ciphers. The text also includes details of knapsack cryptosystems and pseudo-random number generators

    Techniques améliorées pour la cryptanalyse des primitives symétriques

    Get PDF
    This thesis proposes improvements which can be applied to several techniques for the cryptanalysis of symmetric primitives. Special attention is given to linear cryptanalysis, for which a technique based on the fast Walsh transform was already known (Collard et al., ICISIC 2007). We introduce a generalised version of this attack, which allows us to apply it on key recovery attacks over multiple rounds, as well as to reduce the complexity of the problem using information extracted, for example, from the key schedule. We also propose a general technique for speeding key recovery attacks up which is based on the representation of Sboxes as binary decision trees. Finally, we showcase the construction of a linear approximation of the full version of the Gimli permutation using mixed-integer linear programming (MILP) optimisation.Dans cette thĂšse, on propose des amĂ©liorations qui peuvent ĂȘtre appliquĂ©es Ă  plusieurs techniques de cryptanalyse de primitives symĂ©triques. On dĂ©die une attention spĂ©ciale Ă  la cryptanalyse linĂ©aire, pour laquelle une technique basĂ©e sur la transformĂ©e de Walsh rapide Ă©tait dĂ©jĂ  connue (Collard et al., ICISC 2007). On introduit une version gĂ©nĂ©ralisĂ©e de cette attaque, qui permet de l'appliquer pour la rĂ©cupĂ©ration de clĂ© considerant plusieurs tours, ainsi que le rĂ©duction de la complexitĂ© du problĂšme en utilisant par example des informations provĂ©nantes du key-schedule. On propose aussi une technique gĂ©nĂ©rale pour accĂ©lĂ©rer les attaques par rĂ©cupĂ©ration de clĂ© qui est basĂ©e sur la reprĂ©sentation des boĂźtes S en tant que arbres binaires. Finalement, on montre comment on a obtenu une approximation linĂ©aire sur la version complĂšte de la permutation Gimli en utilisant l'optimisation par mixed-integer linear programming (MILP)

    Proceedings of AUTOMATA 2010: 16th International workshop on cellular automata and discrete complex systems

    Get PDF
    International audienceThese local proceedings hold the papers of two catgeories: (a) Short, non-reviewed papers (b) Full paper

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    Profiling side-channel attacks on cryptographic algorithms

    Get PDF
    Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency

    17th SC@RUG 2020 proceedings 2019-2020

    Get PDF

    Teaching informatics to novices: big ideas and the necessity of optimal guidance

    Get PDF
    This thesis reports on the two main areas of our research: introductory programming as the traditional way of accessing informatics and cultural teaching informatics through unconventional pathways. The research on introductory programming aims to overcome challenges in traditional programming education, thus increasing participation in informatics. Improving access to informatics enables individuals to pursue more and better professional opportunities and contribute to informatics advancements. We aimed to balance active, student-centered activities and provide optimal support to novices at their level. Inspired by Productive Failure and exploring the concept of notional machine, our work focused on developing Necessity Learning Design, a design to help novices tackle new programming concepts. Using this design, we implemented a learning sequence to introduce arrays and evaluated it in a real high-school context. The subsequent chapters discuss our experiences teaching CS1 in a remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary school teachers to develop a learning module for teaching iteration using a visual programming environment. The research on teaching informatics principles through unconventional pathways, such as cryptography, aims to introduce informatics to a broader audience, particularly younger individuals that are less technical and professional-oriented. It emphasizes the importance of understanding informatics's cultural and scientific aspects to focus on the informatics societal value and its principles for active citizenship. After reflecting on computational thinking and inspired by the big ideas of science and informatics, we describe our hands-on approach to teaching cryptography in high school, which leverages its key scientific elements to emphasize its social aspects. Additionally, we present an activity for teaching public-key cryptography using graphs to explore fundamental concepts and methods in informatics and mathematics and their interdisciplinarity. In broadening the understanding of informatics, these research initiatives also aim to foster motivation and prime for more professional learning of informatics
    • 

    corecore