
Alma Mater Studiorum · Università di Bologna

Dottorato di Ricerca in
COMPUTER SCIENCE AND ENGINEERING

Ciclo XXXV

Settore Concorsuale: 01/B1 INFORMATICA

Settore Scientifico Disciplinare: INF/01 INFORMATICA

TEACHING INFORMATICS
TO NOVICES: BIG IDEAS AND

THE NECESSITY OF OPTIMAL GUIDANCE

Presentata da:
MARCO SBARAGLIA

Coordinatore Dottorato:
Chiar.ma Prof.ssa
ILARIA BARTOLINI

Supervisore:
Chiar.mo Prof.

SIMONE MARTINI

Esame finale anno 2023

Contents

Contents i

Abstract vi

Introduction 1
Thesis maps . 5

I Literature Review – Introductory programming 9

1 Role and Issue of Programming in Informatics 13
1.1 The early days of informatics and the programming issue 13

1.1.1 Is it really (still) difficult to learn programming? 14
1.2 Research in the 20th century: programmers by birth 16
1.3 New millennium research: two populations 16

1.3.1 Is there such a thing as the programming gene? 17
1.4 The LEM hypothesis: learning to program is easy/difficult 17

1.4.1 LEM, Cognitive Load and Dual Process Theory 18

2 Teaching To Make People Learn To Program 21
2.1 Lack of agreement . 21
2.2 Abundance of programming languages and tech 22

2.2.1 A two-speed evolution . 23
2.3 What really means learning to program? . 24

2.3.1 The three dimensions of learning to program 24
2.3.2 The SOLO taxonomy . 25
2.3.3 (Faulty) Mental models in learning to program 27
2.3.4 Notional machines as mental models of execution 28
2.3.5 Schemas in learning to program . 29
2.3.6 Abstraction in informatics and programming languages 31

2.4 Active learning . 33
2.5 Major learning paradigms . 35

2.5.1 Behaviorism . 36
2.5.2 Cognitivism . 37

i

ii CONTENTS

2.5.3 Constructivism . 38

2.6 Influential active methodologies with scaffolding 44

2.6.1 The introductory programming context 45

2.6.2 Problem-based learning . 47

2.6.3 Activities and difficulties that prepare for instruction 48

2.6.4 UMC approaches . 52

2.7 Languages for teaching programming . 54

2.8 Emergency remote teaching of CS1 . 57

2.9 Participatory design with teachers . 58

II Literature Review – Part 2 61

3 Informatics for All 65

3.1 Informatics and Computational Thinking . 66

3.1.1 Why computational thinking belongs in informatics 67

3.1.2 Computational thinking and coding 68

4 Big Ideas 71

4.1 Big ideas of science . 71

4.1.1 Context and motivation . 72

4.1.2 Benefits of big ideas . 73

4.1.3 How to distil big ideas . 73

4.1.4 Progression to teach big ideas . 74

4.2 Big ideas of informatics . 75

4.2.1 Features . 76

4.2.2 Benefits . 76

4.2.3 A collaborative process . 77

5 Teaching Informatics Concepts 79

5.1 Approaches . 81

5.1.1 Discovery Learning . 81

5.1.2 Unplugged approach . 83

5.1.3 Task-specific programming languages 85

6 Cryptography 89

6.1 Importance of cryptography today . 89

6.2 Cryptography education . 89

6.2.1 International frameworks . 89

6.2.2 Cryptography education in IEdR conferences 90

6.2.3 Hands-on and inquiry-based activities 91

6.2.4 Visualization tools and high-level programming 91

6.2.5 Unplugged activities . 92

CONTENTS iii

7 Interdisciplinarity and Non-Informatics Methodologies 93

7.1 The context of the IDENTITIES project . 93

7.2 The necessity of interdisciplinarity . 94

7.3 Defining interdisciplinarity . 94

7.3.1 The boundaries perspective . 95

7.3.2 Learning through boundary crossing 96

7.4 Interdisciplinarity in education . 97

7.4.1 Interidiscipinarity and disciplines . 97

7.5 Theory of Didactical Situations and Didactical Engineering 98

7.5.1 Theory of Didactical Situations . 98

7.5.2 Didactical Engineering . 99

7.5.3 TDS, DE and participatory design 102

III Original Contributions – Introductory Programming 105

8 Necessity of a Progression of Notional Machines 109

8.1 Context and motivation . 109

8.2 Problem statement . 110

8.3 Research Goals . 111

8.4 Research methods . 112

8.5 Early contributions . 112

8.6 Conclusions . 113

9 Necessity Learning Design 115

9.1 Introduction and motivations . 115

9.1.1 Outline . 117

9.1.2 Summary of relevant literature . 117

9.2 Necessity Learning Design . 119

9.2.1 Necessity mechanism . 119

9.2.2 Necessity Learning Design for introductory programming 120

9.3 A use of NLD in the CS1 abstraction rollercoaster 127

9.3.1 Abstraction movements in introductory programming 127

9.3.2 Abstraction ups and downs: different and difficult 129

9.3.3 A possibile CS1 learning path . 131

9.3.4 Examples of NLD use in abstraction movements 135

9.4 Conclusions . 148

9.4.1 Limitations . 151

9.4.2 Accidents on the road . 151

9.4.3 Future works . 152

iv CONTENTS

10 Necessity School Experimentation 155

10.1 Experimentation design . 156

10.1.1 Non-interference principle . 156

10.1.2 Preliminary design . 156

10.1.3 Concrete design . 161

10.2 Implementation . 169

10.2.1 Keeping arrays secret . 169

10.2.2 Exercises to approach the necessity sequence 170

10.2.3 P!S phase: unsuccessful problem solving 170

10.2.4 Instruction phase . 171

10.2.5 PS phase: second problem solving 172

10.2.6 Correction and alignment, consolidation, and later steps 173

10.2.7 Administering questionnaires to the students 173

10.2.8 On our role as external observers . 174

10.3 Preliminary observations and results . 174

10.3.1 The teacher must keep the secret . 174

10.3.2 Students’ frustration . 175

10.3.3 A boost to motivation . 177

10.3.4 Difficulties in solving the exercise in the second PS phase 177

10.3.5 Positive students’ feelings and opinions 178

10.3.6 Future works: the fourth phase . 179

11 The Online Course Was Great: I Would Attend It F2F 181

11.1 Introduction . 181

11.2 Context . 183

11.2.1 Technologies and Methodologies . 183

11.2.2 Teachers-researchers . 185

11.3 Methods . 185

11.3.1 Data collection . 185

11.3.2 Participants . 186

11.3.3 Data analysis: inductive categorization with a grounded approach . . 186

11.4 Findings . 188

11.4.1 Individual assistance and live tutoring 188

11.4.2 Live-built materials, LMS and auto-grading 189

11.4.3 Time management in labs . 190

11.4.4 Sharing the screen . 190

11.4.5 Presence paradox . 191

11.5 Discussion . 192

11.5.1 Online CS1 and the search for optimal guidance 192

11.5.2 Validity and Limitations . 193

11.6 Conclusions and Future Works . 193

CONTENTS v

12 Castle and Stairs to Learn Iteration: UMC Co-design 195
12.1 Introduction . 195
12.2 General context . 197

12.2.1 Project research goals . 197
12.2.2 Overall approach . 197
12.2.3 Project preliminary findings . 198

12.3 The learning module . 198
12.3.1 Prerequisites and learning objectives 199
12.3.2 Classrooms activities . 199
12.3.3 Developed materials . 201

12.4 Co-designing with teachers . 203
12.4.1 Phases of the participatory process 203
12.4.2 How the process affected the outcome 204
12.4.3 Possible improvements . 207

12.5 Conclusion . 208

IV Original Contributions – Informatics for All 211

13 SIGCSE Special Project on Cryptography 215
13.1 Background . 216
13.2 Research activities . 216
13.3 Project outputs . 216
13.4 Outcomes, ongoing and future research . 217

13.4.1 Cryptography big ideas . 217
13.4.2 Cryptography course implementations 217

13.5 Publications and Dissemination . 218

14 Crypto in Grade 10: Big Ideas with Snap! and Unplugged 219
14.1 Introduction . 220
14.2 The course . 221

14.2.1 Context: Mathematical Lyceum . 221
14.2.2 Two iterations: online and in person 222
14.2.3 A progression driven by the limitations of the previous cryptosystems . 222
14.2.4 Cryptography principles and ideas through meaningful cryptosystems . 223
14.2.5 Contents . 226
14.2.6 Tools, activities and methodologies 228

14.3 Data collection and analysis . 233
14.3.1 Learning assessment . 233
14.3.2 Student satisfaction and perceptions 234

14.4 Results and observations . 239
14.4.1 Methodologies used and two iterations’ results 239
14.4.2 Learning programming . 242
14.4.3 Suggestions for adoption and adaption 243

vi ABSTRACT

15 A Didactical Situation on Interdisciplinary Crypto 245
15.1 Introduction . 245
15.2 Preliminary analysis . 247

15.2.1 Institutional analysis . 247
15.2.2 Epistemological and Didactical analysis 248

15.3 A public-key cryptosystem using perfect dominating sets on graphs 250
15.4 Conception . 252

15.4.1 Research purposes . 252
15.4.2 The didactical situation . 254

15.5 A priori analysis . 255
15.5.1 A priori analysis elements . 255
15.5.2 Didactical variables . 260
15.5.3 Learning potential . 261

15.6 Realization, observation and data collection 262
15.7 A posteriori analysis . 263
15.8 Discussion . 266

15.8.1 Future work . 267
15.8.2 Conclusions . 267

V Conclusions, Appendix and Bibliography 269

16 Conclusions and Future Works 271
16.1 Introductory programming . 271
16.2 Informatics for all . 272

A Material of Necessity School Experimentation 275
A.1 Instructional material . 275
A.2 Learning Assessment . 279
A.3 Programming exercises in C++ . 283

A.3.1 Approach exercises . 283
A.3.2 PS-I exercise . 287
A.3.3 Consolidation exercises . 290

A.4 Student Questionnaires . 294
A.4.1 Pre-experimentation Questionnaire (common) 294
A.4.2 Post-experimentation Questionnaires 301

B Material of the Didactical Situation on Interdisciplinary Crypto 311
B.1 Researcher Observation Grid . 311

Bibliography 315

Acknowledgments 357

Abstract

This thesis reports on the two main areas of our research: introductory programming
as the traditional way of accessing informatics and cultural teaching informatics through
unconventional pathways.

The research on introductory programming aims to overcome challenges in traditional
programming education, thus increasing participation in informatics. Improving access to
informatics enables individuals to pursue more and better professional opportunities and
contribute to informatics advancements. We aimed to balance active, student-centered
activities and provide optimal support to novices at their level. Inspired by Productive Failure
and exploring the concept of notional machine, our work focused on developing Necessity
Learning Design, a design to help novices tackle new programming concepts. Using this
design, we implemented a learning sequence to introduce arrays and evaluated it in a real
high-school context. The subsequent chapters discuss our experiences teaching CS1 in a
remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary
school teachers to develop a learning module for teaching iteration using a visual programming
environment.

The research on teaching informatics principles through unconventional pathways, such
as cryptography, aims to introduce informatics to a broader audience, particularly younger
individuals that are less technical and professional-oriented. It emphasizes the importance of
understanding informatics’s cultural and scientific aspects to focus on the informatics societal
value and its principles for active citizenship. After reflecting on computational thinking and
inspired by the big ideas of science and informatics, we describe our hands-on approach to
teaching cryptography in high school, which leverages its key scientific elements to emphasize
its social aspects. Additionally, we present an activity for teaching public-key cryptography
using graphs to explore fundamental concepts and methods in informatics and mathematics
and their interdisciplinarity. In broadening the understanding of informatics, these research
initiatives also aim to foster motivation and prime for more professional learning of informatics.

vii

viii ABSTRACT

Introduction

This thesis reports the results of my research as a doctoral student within the University
of Bologna group on informatics education. I brought years of experience as a specialized
high school informatics teacher, and this small yet strong group has allowed me to grow
scientifically as a researcher in informatics education, professionally as an educator, and as a
person.

The informatics CS1 for math majors was one of the first opportunities to research
introductory programming, the outcomes of which are mainly related to using information
technology to mitigate the limitations of remote-only education that the COVID pandemic
imposed. In that course, which we teach every year, the intuition behind Necessity Learning
Design, our original learning design, came to life. Our sensibilities as educators led us to
believe that we could create educational conditions for students to feel the necessity of the
programming concept planned immediately afterward in the course. Such a necessity could
have sustained students’ motivation and better prepared them for learning.

The scientific context in which we have developed this idea is a “balanced” constructivism.
Our intention (supported by scientific, practical, and also ethical reasons) to propose student-
centered experiences that are as autonomous as possible must be balanced against the need
for students to develop essential learnings without being exposed, as novices still lacking the
tools to be truly autonomous, to “uncontrolled” failures.

Within this context, notional machines, educational devices to support learning program-
ming, were a “thinking device” for us, a research tool whose flexibility (and independence
from implementation constraints) enabled us to imagine the necessity mechanism in practice.
Such a mechanism could provide the driving force that sustained an ideal progression of
notional machines that could gradually become more and more complete and correspond to
the actual models of computation to be taught.

The necessity mechanism is at the heart of (and gives the name to) the learning design
we developed to support novice students when a new programming concept is introduced.
However, this mechanism, despite being particularly suited to support motivation and under-
standing of essential learning in programming, is actually of more general application. Indeed,
the progression of cryptosystems we developed to teach cryptography principles in Italian high
schools to young students unfamiliar with informatics and programming is nothing more than
a progression of notional machines of such cryptosystems. They are educational abstractions
built ad hoc to expose specific concepts and hide technical aspects that are too difficult or
irrelevant at that point in the learning path. This progression is always sustained by the

1

2 INTRODUCTION

necessity of solving a specific limit of a particular cryptosystem (e.g., Caesar’s vulnerability to
frequency-based attacks) to push students into wanting to know and understand the next
cryptosystem. In this course, too, we tried to balance open, independent activities with the
appropriate level of scaffolding that would allow students to enter their zone of proximal
development as much as possible throughout the learning path (being continually adapted
along the way).

On the other hand, the cryptography course shows the second heart of our research
work during my doctoral path, that of cultural teaching of informatics, which is broader
and more ecumenical than the traditional programming path. Indeed, learning introductory
programming, the more traditional access to our scientific field, is far too specialized and
technical for most people (even when declined for novices). Data tell us that about half of
the programming students encounter serious learning problems, often resulting in dropout
and hostility to informatics. Moreover, most students may never be in a situation to take
a programming course since informatics is not yet a compulsory school subject in most
educational systems around the world. On the other hand, a basic understanding of (some of)
the fundamental principles of informatics from a cultural and citizenship perspective (thus not
immediately paying the price for its more challenging technical and scientific components) may
enable many more people to understand the informatics value (per se and interdisciplinary)
and ways and to focus on the impacts of informatics on today’s society and everyone’s lives.
The cultural perspective of informatics is essential today for exercising informed and active
citizenship in our digital society. Besides, earlier exposure to core informatics principles
improves the chances of success of subsequent, more traditional introductory programming
courses.

This different and complementary perspective of teaching informatics to novices also
allowed us to clarify our view on computational thinking, which we intend as a set of ways of
thinking and skills that can only be acquired through the study of informatics.

Our research in this area has been greatly influenced by the framework of big ideas (of
science and especially informatics education), which is an essential navigation system for
orientation in the scientific sea of a discipline. Indeed, big ideas enable educators to trace a
path in this vast sea and to pay attention (from a learning perspective) to the right signals
from students as they navigate. Big ideas also help students place the (necessarily) specific
learnings in the coherent perspective of a journey of personal development that should be
first and foremost cultural but also scientific.

To summarize in one last note, a defining element of our research is the search for
mediation. Mediation through the lens of big ideas to make the vast scientific and technical
knowledge of our discipline accessible to a broader audience, proposing culturally relevant
learnings without, however, diluting them too much or sacrificing the necessary scientific rigor.
Also, mediate between the demands of learning informatics (which often requires converging
on necessary, technical, and highly interrelated learnings) and the perspective of novices,
whose motivation needs to be supported with student-centered activities and learnings to
be built independently. This mediation can be achieved by providing a level of support that
enables them not to get lost and to understand the significance of the various learnings in
the bigger picture.

INTRODUCTION 3

Thesis outline

The thesis is structured in four parts; the first two are literature reviews that frame our work,
and the third and fourth report the original contributions of our research.

Part I discusses the difficulty of learning how to program and the issue of participation
in informatics. It reports what it entails to know how to program and what are the main
educational trends to mitigate the difficulty of learning introductory programming. It then
motivates the search for optimal guidance, balancing the benefits of active and constructivist
methodologies with the necessary support that novices need. Finally, it reviews some active
methodologies where this optimal guidance can be sought.

Part II focuses on access to informatics through unconventional pathways that are less
technical and more suitable for a broad population. It clarifies the meaning of computation
thinking and how it relates to informatics. The central focus is the big ideas of informatics,
which can help educators and students recognize the field’s culturally and scientifically relevant
elements. It then discusses cryptography as a topic relevant in today’s society, valuable for
exposing informatics principles and ways to a broad audience, and the interdisciplinary nature
of informatics. Finally, this chapter discusses interdisciplinarity in STEM education.

Part III, ideally framed in the first literature review, presents our original research on
introductory programming, exploring active constructivist-inspired approaches. It describes our
learning design for introductory programming and reports on the design and implementation
of experimentation of such learning design in a high-school setting. It also reports on teaching
programming in emergency remote situations and co-designing a learning module for teaching
iteration to students with primary school teachers.

Part IV, ideally framed in the second literature review, presents original research on
teaching informatics principles through unconventional pathways, such as cryptography,
always using a balanced constructivism approach and the big ideas reference system. The
goal is to enable a broader audience to understand the importance of informatics and its
interdisciplinary implications while increasing motivation to learn more about it. It reports on
our course to teach cryptography big ideas and the teacher training we developed to expose
informatics value and reflect on interdisciplinarity between math and informatics.

Overall research goals

Introductory programming. Convinced of the LEM hypothesis, also based on our experi-
ences teaching programming, we wanted to mitigate the negative effects of the learning edge
momentum on novice students facing introductory programming. In particular, we wondered
what a learning model that could support novice students in learning how to program. Then,
becoming more concrete, we tried to answer what kind of learning design could support
introducing a new elementary programming concept. More generally, in developing learning
paths and materials for concrete educational contexts (e.g., CS1 for math majors, teaching
iteration in Italian primary schools), we pursued an “optimally-guided” constructivist approach
to facilitate learning programming. Adopting both qualitative and quantitative perspectives,
we sought to investigate the effects of our choices on students’ learning and perceptions.

4 INTRODUCTION

Despite not being definitive and still evolving, the answers to these questions also influence
the research initiatives of the other core of my research, which is teaching informatics as a
necessary cultural and citizenship perspective.

Informatics for all. The more general (and still most open-ended) research question that
spawned the other research initiatives is inspired by the big ideas of CS education. Specifically,
we are still investigating the big ideas of cryptography and, most importantly, how it is
possible to use a “big ideas approach” to help young students without informatics knowledge
understand the transformative impact of cryptography (and informatics) on our society. From
this, derive the following. What kind of “optimally-guided” constructivist learning activities
and pathways (see the paragraph before) can be designed to effectively teach those minimal
and essential scientific principles that substantiate those ideas and thus promote their effective
understanding? More generally, how can teaching informatics concepts from a cultural and
citizenship perspective (through less traditional paths than programming, e.g., cryptography
education) help non-informatics students understand the value and impact of informatics in
our society? How can it affect their predisposition to learn more about informatics?

In trying to answer these questions, especially the educational mindset of always consid-
ering a framework of big ideas has also influenced the research initiatives on introductory
programming.

Main results

• A theoretical model proposal for teaching introductory programming. The model is
inspired by a spiral approach to learning programming and is based on a progression of
notional machines driven by a “Productive Failure-like” mechanism to stimulate the
necessity of the next notional machine in the progression.

• Necessity Learning Design, our original learning design for supporting novices when
introducing a new programming concept. Inspired by Productive Failure and aiming at
balancing problem-based learning with support, it involves autonomous problem solving
before instruction to stimulate the students’ necessity for the next programming concept.
We also provide an ideal CS1 progression in which we put four detailed ready-to-use
“necessity sequences”.

• The design and implementation of an high school experimentation of the use of Necessity
Learning Design to support the introduction of arrays. The design is partly general
(thus reusable) and partly specific to the experiment’s unique context. The design
includes the experimentation material (programming exercises, teaching materials,
learning assessments, and student experience questionnaires). The implementation
produced quantitative (e.g., learning assessment grades) and qualitative (e.g., students’
open-ended answers, a researchers’ journal) data for analysis.

• A CS1 course for math majors redesigned to be taught online during the COVID
pandemic. The course design includes a clearly defined learning path, all course

THESIS MAPS 5

materials, and choices (didactic and technological) made so that the benefits of an
in-person experience are not lost.

• A learning module to teach iteration in Italian primary schools using a visual programming
environment. The module – the result of a co-design process with primary school
teachers – seeks to balance openness and guidance by adopting a Use-Modify-Create
methodology.

• An introductory course to teach the “big ideas” of cryptography to non-informatics
high school students. Students experience cryptographic systems in practice, their
characteristics, potential attacks, and the limitations that lead to the necessity for
overcoming them. The course includes task-specific programming environments for
students to experiment with the cryptosystems and an unplugged activity to teach the
Diffie-Hellman protocol. The course was taught three times and produced many data,
some of which, analyzed quantitatively and qualitatively, produced significative results.

• A Didactical Situation to introduce public-key cryptography in mathematics and infor-
matics to pre-service STEM teachers. The activity is based on an unplugged activity
using graphs and was designed using the Theory of Didactical Situations. Participants
need to recognize and apply concepts from mathematics and informatics to develop
problem-solving strategies. The activity was implemented and evaluated positively
through qualitative analysis.

Thesis maps

Two graphic representations follow in the next two pages to provide a bird-eye view of the
thesis. The first concerns the general motivations and goals of our research. The second is
about our original contributions, their foundations, and connections.

8 THESIS MAPS

Part I

Literature Review – Introductory
programming

9

11

Introduction to part I

The common thread running through this first part of the literature review is the search for
the optimal guidance to teach introductory programming effectively, balancing the benefits
of active and constructivist methodologies with the necessary support that novices need,
particularly when they face a path that is both introductory (thus rich in essential and
interrelated knowledge) and technical (thus requiring great precision), such as that of
introductory programming. The ultimate goal is to mitigate the problems suffered by the
traditional access to informatics through programming and therefore increase participation
for broader and more substantial citizenship (given the apical informatics role in our society),
but also the scientific advancements that informatics needs and enable more people to seize
its countless professional opportunities. Indeed, access to informatics through introductory
programming is the primary access to prepare students for entry into the professional and
academic worlds, directly in informatics or in fields where informatics is an indispensable
strategic perspective.

12

Chapter 1

The Role (and Issue) of
Programming in Informatics

The first informatics1 courses - most often called CS1 in higher education - are, for the most
part, introductory programming courses, which therefore constitute the typical access to this
science.

The defining characteristic of the computer is its programmability and program-
ming is the essence of computing/informatics. Indeed, computing is much more
than programming, but programming – the process of expressing one’s ideas and
understanding of the concepts and processes of a domain in a form that allows
for execution on a computing device without human interpretation – is essential
to computing. [Caspersen, 2018, p. 109]

By learning the basics of programming, in fact, one is also introduced to fundamental concepts
of informatics itself, such as algorithm, language, automaton, and gains first-hand experience
of methods (e.g., modelling and simulation, analysis and evaluation) and mental processes
(e.g., abstraction, problem decomposition and modularization) characteristic of this science
and typical repertoire of informaticians (for a more detailed overview, see Lodi and Martini
[2021], and Lodi [2020a]).

1.1 The early days of informatics and the programming issue

Ever since the early days of informatics, when computers and automatic processing began to
spread in the business sector between the 1950s and 1960s, it was realized that programming
- initially thought of as a mere manual activity and secondary to computer development - was,
in fact, a crucially important, complex and difficult task for many.

1In this thesis, we use ‘informatics’ as a synonym used in Europe for ‘computer science’ (CS) or ‘computing’;
we believe its use is etymologically more accurate since informatics contains the root of the words information
and automatic.

13

14 CHAPTER 1. ROLE AND ISSUE OF PROGRAMMING IN INFORMATICS

Skilled programmers developed a reputation for creativity and ingenuity, and
programming was considered by many to be a uniquely intellectual activity, a
black art that relied on individual ability and idiosyncratic style. [. . .] By the
early 1960s, the “problem of programming” had eclipsed all other aspects of
commercial computer development. [Ensmenger, 2010, p. 29]

From the beginning, informatics suffered from a shortage of programmers, and this was,
first of all, a problem for commercial developments [Gibbs, 1994], but also - as informatics
entered the academy and awareness of its scientific status was established - a problem for
its scientific advancement (manca REF). The shortage of informaticians has never been
resolved [Gibbs, 1994]. As an example, in 2024, there will be about 4.5 million jobs with
high salaries in informatics and related fields in the United States alone [U.S. Bureau of
Labor Statistics, 2015], but not enough people to occupy them. This shortage is most
severe among women and minorities in general. Difficult access to informatics has, in fact,
more severe consequences than the lack of informaticians in the labour market and leads to
two complementary problems today. A participation problem particularly burdens women,
racial/ethnic minorities and persons with learning differences/disabilities (for a comprehensive
review of sources, see [Denner and Campe, 2018, sect. 14.1]). Informatics is indispensable for
acting on reality and pursuing goals in every activity and discipline, scientific and humanistic.
Anyone who is excluded from it, not by choice, misses out on many professional opportunities
and personal advancement. If the fragile and underrepresented groups are the most excluded,
they miss out on opportunities for socio-economic empowerment, and their marginalization
worsens2. Not only that, but difficult access to informatics today also leads to an even
broader and more critical problem of citizenship. Concepts such as algorithm, language,
and automaton provide descriptions of reality that are complementary to those of the other
sciences. Grasping these concepts and the basic mechanism of informatics is essential today to
act as responsible and conscious citizens, fully engage in civic and social life and express their
potential while respecting their inclinations.3 As for the participation issue, the citizenship
problem further aggravates the disadvantaged position of fragile and underrepresented groups.

1.1.1 Is it really (still) difficult to learn programming?

In 2003, Robins et al. [2003] published a thorough review of the research on introductory
programming so far. The first paragraph is a glimpse into the main findings of their work.

Learning to program is hard [. . .] Novice programmers suffer from a wide range of
difficulties and deficits. Programming courses are generally regarded as difficult,
and often have the highest dropout rates. [Robins et al., 2003, p. 137]

After almost 20 years, is the situation changed? To this day, is it still difficult for many to
learn to program? First and foremost, the problem of access to informatics persists, which

2Please, refer to Lewis et al. [2019b] and Denner and Campe [2018] for a comprehensive discussion on the
participation problem, the opportunities and strategies to deal with it.

3Digital competence is one of the eight broad citizenship competence areas listed in 2018/C 189/01
European council recommendation for lifelong learning.

1.1. THE EARLY DAYS OF INFORMATICS AND THE PROGRAMMING ISSUE 15

means that introductory programming is yet too high a barrier. The shortage of informaticians
in the labour market, with hundreds of thousands of positions open [see, e.g., Grover and
Pea, 2013; Google LLC. & Gallup Inc., 2016] and set to rise in the near future given the
ever-increasing relevance in all areas of data science and artificial intelligence. Moreover,
introductory informatics courses (most often ’CS1’) have always been considered difficult, and
there have been constant reports of high levels of failure and dropout [see, e.g., Newman et al.,
1970; Garcia, 1987; Allan and Kolesar, 1997; Sheard and Hagan, 1998; Guzdial and Soloway,
2002; Beaubouef and Mason, 2005; Kinnunen and Malmi, 2006; Howles, 2009; Guzdial, 2010;
Corney et al., 2010; Mendes et al., 2012; Watson and Li, 2014]. Furthermore, students often
report high levels of anxiety and frustration [see, e.g., Morgan et al., 2018]; continuing to
fail is linked to frustration and reduced self-efficacy [see, e.g., Burleson and Picard, 2004;
Eckerdal et al., 2006], which can result in demotivation and dropout [see, e.g., Bosch and
D’Mello, 2013; D’Mello and Graesser, 2012]. That these negative indicators were high was
mostly anecdotal knowledge until 2007, when a study attempted to quantify the problem
involving 63 international institutions, reporting a failure level of about one-third [Bennedsen
and Caspersen, 2007]. A subsequent study involving 51 institutions internationally, which was
methodologically more rigorous, confirmed this result, registering a failure rate of 33% [Watson
and Li, 2014]. Another study - while inviting caution due to the limitations of the sample -
suggests that this negative figure (33%) is worse than the average 18% for all other courses
(“across all degree-level courses” in New Zealand) and consequently also for introductory
courses in the other sciences [Luxton-Reilly, 2016]. The authors of the influential 2007
research, given the persistent relevance of the topic, replicated the same investigation 12
years later and noted a slight improvement in the failure rate (28% in 2019 vs. 33% in
2007) but emphasized that the problems of introductory informatics still remain numerous
and mostly open, requiring a continuous and increasingly focused research effort [Bennedsen
and Caspersen, 2019]. We omit in this discussion the role that national and international
institutions have (and should have) in promoting the introduction of informatics as a discipline
in the lower levels of education, both because this is a broad and complex subject itself (with
political and social implications), and because the situation all around the world is too highly
diversified. We firmly believe that informatics is a science (see, Lodi and Martini [2021],
Denning [2013], and [Tedre, 2018, sect. 2.4]) and therefore has full right to be one of the basic
disciplines from the earliest levels of any school system (see, e.g., Lodi and Martini [2021],
Tedre [2018], Guzdial [2015], and Code.org, CSTA, & ECEP Alliance [2022]). However,
a reform of the curricula in this sense is far from complete [The Committee on European
Computing Education (CECE), 2017; Code.org, CSTA, & ECEP Alliance, 2020]. The aim of
such reform would not only be to train future professionals (i.e., increase participation) but
also and above all, to enable citizenship for everyone, given the relevance of informatics in
today’s society and world. Above all, we are aware of how an increasing presence of informatics
in all school orders will foster the quality (and quantity) of informatics (introductory and
non) education research.

16 CHAPTER 1. ROLE AND ISSUE OF PROGRAMMING IN INFORMATICS

1.2 Research in the 20th century: programmers by birth

Initially (the early 1960s) for commercial and military development (i.e., finding and training
programmers to serve companies and armies), and then in the following decades (’70s-’90s)
also for scientific investigation (which constituted the first steps of informatics education
research), attempts were made to determine and measure what characteristics of people
made them more or less suitable for programming. The belief, widely accepted back then,
that good programmers are born, not made, supported this kind of research [Dauw, 1967;
Webster, 1996]. Aptitude tests have been developed for decades, one of the earliest and
most significant of which is the IBM Programmer Aptitude Test (PAT), released in its
first version in 1955. Despite the widespread use in the corporate sector of tools such as
this, which have become increasingly sophisticated, the results provided have never proved
particularly effective in predicting people’s aptitude for programming, nor have they been able
to mitigate the lack of programmers. The research in the new millennium, also starting from
analysing what was produced in the preceding decades, has revealed such inconclusiveness.
Looking back at one of his previous works [Robins, 2010], Robins summarizes: “No reliable
predictor of programming ability was found, however, and even large-scale analysis of multiple
factors results in only limited predictive power” [Robins, 2019, sect. 12.2.1]. The difficulty in
identifying such predictive factors has further reinforced the belief that good programmers
are born. This belief held back the development of research in informatics education while
helping consolidate and spread the stereotypes that programmers are male and antisocial,
artsy geniuses with rare and unfathomable qualities [Ensmenger, 2010].

1.3 New millennium research: two populations

Despite these stereotypes and beliefs, such as ’programmers are born’ and ’programming is
more difficult than other activities’, research has become increasingly rigorous in the new
millennium, showing a more complex and faceted reality. In particular, it emerged not only
that programming was difficult for a significant portion of people but also, specularly, that
around one-fifth of students find learning to program easy [Guzdial, 2007]. These “two
populations: those who can, and those who cannot” [Dehnadi and Bornat, 2006], have
been observed in numerous programming courses worldwide over a long period of time,
and they emerged independently of geographical and social factors [Kölling, 2010]. This
paradoxical situation, whereby higher than usual rates of failure and great success occur
(and consequently a lower number of students with an average performance), has stimulated
the interest of researchers who have started to refer to a ’bimodal’ distribution of grades.
Numerous studies of informatics education research (’IEdR’ from now on) between 2008
and 2018 found polarized learning outcomes in CS1 courses [Bornat et al., 2008; Corney
et al., 2010; Robins, 2010; Yadin, 2013; Elarde, 2016; Guzdial, 2010; Utting et al., 2013], a
situation that - in retrospect - also emerged in a 1990 Cognitive Psychology paper [Hudak
and Anderson, 1990]. Despite having contributed to the use of the term ’bimodal’ [Robins,
2010] and having provided further evidence in support of bimodal distributions in introductory
programming courses [Robins, 2018], Robins reflects on the use of this term. In particular, he

1.4. THE LEM HYPOTHESIS: LEARNING TO PROGRAM IS EASY/DIFFICULT 17

points out how it has overly influenced research, which has focused heavily on developing
tests and statistical tools that could confirm a bimodal distribution. This trend has been
at the expense of a more valuable investigation of the more general and, at the same time,
situation-specific reasons for any polarized learning outcomes [Robins, 2019, sect. 12.2.2.3].

1.3.1 Is there such a thing as the programming gene?

So what is the reason why introductory programming courses have bimodal results all over
the world and in most conditions (institutional, social, and so on)? Are there really people
who are suited to programming and people who are not suited at all? In other words, is there
such a thing as a “geek gene” for programming [Lister et al., 2010] whose existence would
confirm the beliefs and stereotypes we have been mentioning? Everything seems to indicate
not, even after a careful review (also informed by the awareness of bimodal results) of previous
literature that had looked for cognitive, attitudinal or demographic factors showing a person’s
ability to learn programming. The most promising correlations among those investigated
were those with mathematical abilities and IQ and with some relevant affective factors (e.g.,
motivation, positive attitudes to learning, high self-efficacy or effort). However, none was able
to explain the polarized learning outcomes of introductory programming courses. In general,
“these factors are moderate predictors of success in many domains, and thus are not likely to
account for any particular properties or pattern of outcomes in programming” [Robins, 2019,
sect. 12.3.7], establishing the substantial failure of 40 years of research to find the “geek
gene”.

1.4 The LEM hypothesis: learning to program is easy/difficult

Robins [2010]’s influential research does not merely point out that it is not people who are
more or less suited to programming but proposes a change of perspective: it is programming
that is a particularly difficult activity (more on this in the next 1.4.1). What is more, Robins
proposes a hypothesis that seems to be able to explain not only the difficulties of learning
to program but also the bimodal nature of the results in introductory programming courses.
The LEM (Learning Edge Momentum) hypothesis holds that there is a moment in learning
that, depending on the conditions, can either facilitate or hinder it.

I suggest that LEM arises as a consequence of the interaction of two factors: the
widely accepted principle that we learn at the edges of what we know; and the
new claim that the concepts involved in a programming language are unusually
tightly integrated. In short, successfully acquiring one concept makes learning
other closely linked concepts easier, while failing makes further learning harder.
This interaction between the way that people learn and the nature of the CS1
subject material creates an inherent structural bias which drives CS1 students
towards extreme outcomes. [Robins, 2010, p. 40]

According to this hypothesis, learning to program would also be particularly challenging
because, unlike most other introductory learning, the knowledge and skills required would

18 CHAPTER 1. ROLE AND ISSUE OF PROGRAMMING IN INFORMATICS

be numerous and interconnected. The fact that there is a lack of shared agreement among
educators and in research as to the order in which the introductory programming – and even
which concepts should be taught (see, e.g., Bruce [2004] and, more generally, ACM/IEEE-CS
[2013]; more on this topic in 2.1) – concepts should be taught would be further evidence of the
structural interdependence of the knowledge involved [Robins, 2019, sect. 12.3.7]. Therefore,
the so-called ’LEM effect’ would explain why the bimodal results are so widely observed.
Students who fail to understand even very few of the first topics, given the interconnectedness
mentioned above, would not be in a position to catch up by simply learning the subsequent
ones [see also Meyer and Land, 2006]. In other words, these students experience a negative
moment, bound to become more and more intense as the course progresses, and indeed get
overwhelmed by the course. Conversely, students who succeed from the outset in learning the
proposed topics would benefit from a positive moment favouring subsequent learnings, hence
riding the wave of the course with relative ease. Either way, such a moment is self-reinforcing.
Several studies have confirmed the predictions of the LEM hypothesis for the outcomes of
introductory programming courses, particularly highlighting how crucial the first three weeks
are [Porter and Zingaro, 2014; Porter et al., 2014; Hoda and Andreae, 2014; McCane et al.,
2017]. The importance of the initial moments in learning programming will be one of the
elements underlying our Necessity Learning Design (see 9).

1.4.1 LEM, Cognitive Load and Dual Process Theory

The concept of ’cognitive load’ comes from cognitive science. Cognitive load theory describes
and studies the effort that a task requires to the working memory [Paas et al., 2003; Plass
et al., 2010; Sweller, 1988; 1994]. This theory defines three kinds of cognitive load: intrinsic
(i.e., the effort related to the specific task or concept to be learned), extraneous (i.e., the effort
to process the task or concept information and the way it is presented) and germane (i.e.,
the effort to learn the actual task or concept). The concept and theory of cognitive load will
recur several times throughout this work. For now, it is worth noting that one of the factors
that most influence intrinsic load is the interactivity of the elements involved, that is, how
much the task requires to consider interactive elements that must be maintained in working
memory all at once. Based on this, it becomes clear how programming imposes a high intrinsic
load since it requires considering and orchestrating numerous interacting elements [Robins,
2019, sect. 12.3.5]. This is further evidence that programming is a complex activity. Robins
[2022] explores Dual Process Theory (DPT), an influential theoretical framework in cognitive
psychology4, as a context for informatics education topics to define them more richly and
precisely. “DPT postulates the existence of two qualitatively different kinds of cognitive
systems, a fast, intuitive ’System 1’ and a slow, reflective ’System 2’. System 1 is associated
with cognitive factors such as crystallized intelligence, long-term memory and associative
learning; System 2 with fluid intelligence, working memory, and rule learning.” [Robins, 2022]
The continuous interaction between these two systems is embodied in the Dual Process Cycle
(DPC), a learning model that shows S1 and S2 interactive and interdependent nature. While

4Dual Process Theory originates in the distinction between associative and true reasoning made by William
James in 1890; it gained popularity recently for the book ’Thinking, Fast and Slow’ by Kahneman [2011].

1.4. THE LEM HYPOTHESIS: LEARNING TO PROGRAM IS EASY/DIFFICULT 19

it is vastly accepted that “knowledge builds on knowledge” [Hunt, 2001], the self-reinforcing
LEM effect might more broadly concern the entire Dual Process Cycle in the context of
DPT: “Knowledge builds on knowledge is true, but passive, a version of this observation
which emphasizes its active implications, is that learning builds on learning” [Robins, 2022,
p. 15]. Whereas the original LEM theory is formulated in terms of passive knowledge S1,
active factors, based on S2, also come into play in programming. Developing a program or
building the mental model of a running program requires considering many highly interactive
elements, resulting in a high cognitive load that can easily overload the working memory. An
analogy with learning natural languages may further clarify: “whereas learning the vocabulary
of a foreign language is a low element interactivity task, learning the grammatical properties
is likely to be a high element interactivity task because the elements interact and because
learning them as individual elements may make no sense” [Sweller et al., 1998, p. 260].
Shortly, the highly interconnected programming concepts require consistent success in S1
learning and also high demand for S2 processing. The framing of LEM theory in the context
of DPT (also considering the high cognitive load of programming), on the one hand, more
rigorously supports the presence of the LEM effect in learning to program. On the other
hand, even better highlights how programming is a complex activity that requires considerable
cognitive effort.

20 CHAPTER 1. ROLE AND ISSUE OF PROGRAMMING IN INFORMATICS

Chapter 2

Teaching To Make People Learn To
Program

From what has been said in the previous section, teaching introductory programming emerges
as a particularly tough challenge that we are still losing despite the growth of IEdR [Lunn et al.,
2021] and, most notably, the growth of introductory programming research growing [Luxton-
Reilly et al., 2018]1. Even though more recent studies suggest that the situation is not as
bad as previously thought by reporting less than alarming dropout rates [see, e.g., Watson
and Li, 2014; Bennedsen and Caspersen, 2019], the concerning issue of access to informatics
remains (as discussed in the previous section). Therefore, focusing more on the challenge
of introductory programming could be crucial to improve the status quo since “the nature
and characteristics of a ’grand challenge’ require articulation” [Mcgettrick et al., 2005,
sect. 1.2]2. We will briefly discuss just some of the main dimensions of the challenge of
teaching introductory programming to be able to navigate approaches and methodologies
proposed by research more consciously. These methodologies (or pedagogical practices)
are numerous (see Luxton-Reilly et al. [2018], Caspersen [2018] and Robins [2019] for the
latest comprehensive reviews on introductory programming), despite the fact that informatics
education is a more recent and less mature field of research compared to educational research
of the other well-established disciplines. In fact, despite the many proposals and experiences
out there, there is not a shared and clear consensus in IEdR as to which methodologies are
generally effective for teaching programming. And still, introductory programming courses do
not register good enough results [Watson and Li, 2014; Bennedsen and Caspersen, 2019].

2.1 Lack of agreement

One aspect of the challenge of teaching programming is the lack of agreement on the best
ways to teach it to novices. There is also no agreement on what concepts should be taught

1Please, note that the ITiCSE working group that conducted the research emphasizes that this does not
simply mean more relevant and high-quality publications.

2For the interested reader, Mcgettrick et al. [2005] indeed do so very thoughtfully in section 2.4 of their
work on the grand challenges of informatics education.

21

22 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

in introductory courses, in what order they should be introduced and even when it is best to
start teaching to program. The chapter on informatics introductory courses from the Joint
Task Force on Computing Curricula (the most authoritative scientific source on informatics
curricula expression of both ACM and IEEE) describes this situation at its very beginning.

Computer science, unlike many technical disciplines, does not have a well-described
list of topics that appear in virtually all introductory courses. In considering the
changing landscape of introductory courses, we look at the evolution of such
courses from CC2001 to CS2013 [. . .] we believe that advances in the field have
led to an even more diverse set of approaches in introductory courses than the
models set out in CC2001. Moreover, the approaches employed in introductory
courses are in a greater state of flux. [ACM/IEEE-CS, 2013, ch. 5]

One of the main reasons for this uncertain scenario is that informatics is an ever-changing
field, so rapidly evolving.

Due to rapid growth and changes in our field, computer science standards cannot
be static. These standards must be reviewed and updated on a regular basis,
and not considered complete and finalized. CSTA3 is committed to an inclusive,
iterative process that allows multiple drafts and revisions of the CSTA K–12 CS
Standards. [CSTA, 2016, p. 8]

However, it is not that there is a lack of scientific awareness on the subject of curricula.
For example, Barendsen and Schulte [2018] devote an entire chapter of the ’Computer
Science Education’ book [Sentance et al., 2018] to provide background and tools to critically
review curriculum documents and practices, discussing theories and examples, and even
instructors’ factors influencing curricula implementations. The other main reason for this lack
of agreement is the strong interconnectedness we already mentioned in previous sections,
especially in 1.4. Bruce [2004] tried to summarize a discussion that happened in 2004 between
SIGCSE members on how to teach introductory programming courses using Java. Despite the
specific programming technology, a general picture emerges that shows there is no right path
in introductory courses, partly because of the tightly related and interdependent programming
concepts.

2.2 Abundance of programming languages and tech

Another aspect of the challenge of teaching programming is the vast plethora of programming
languages and technologies (i.e., the combination of a programming language with a developing
environment) that educators can use to this day. Programming languages can be categorized
by language paradigm, using categories such as, e.g., functional, logic, procedural and object-
oriented. These categories are not necessarily disjointed since a particular language can
fit more than one. Languages can also be categorized by their syntactic appearance, i.e.,

3CSTA is the international (although quite US-centric) ’Computer Science Teacher Association’; see
www.csteachers.org.

www.csteachers.org

2.2. ABUNDANCE OF PROGRAMMING LANGUAGES AND TECH 23

text-based (lexical) or block-based (graphical). Such an abundance of choices may confuse
less experienced educators. It often happens in Italian schools, for example, that teachers
uncritically rely on the choices made by the textbook, which is likely to be the result of a
choice over which they had no say. From the perspective of programming education research,
there is a lot of production specific to a particular language or technology. This contributes
to a rich but disorganized landscape of theories and methodologies within which it is difficult
to find one’s way around, especially for those educators who are not also researchers. In this
work, as far as possible, we will avoid referring to specific languages and technologies so that
what we present will hopefully be valid in all introductory programming contexts. However,
this will not always be possible. We will occasionally need to refer to concrete contexts,
particularly when describing the implementation of specific teaching sequences, discussing
concrete examples presented to students, or describing the design of an experiment.

2.2.1 A two-speed evolution

Despite a significant evolution from the 1950s to the present of programming languages
and technologies (which has produced, at least for the most widely used languages, various
specific learning tools and methods), Robins et al. [2003] observe that programming teaching
practices had not evolved as much. Witness to this is that most introductory programming
textbooks focus mainly on the language of choice, organizing a learning path based on
knowledge of its constructs and uses. Similarly, Kölling [2003] finds that the 39 programming
books analyzed (among the best sellers) often leave the development process implicit, and
all are structured around the language constructs. de Raadt et al. [2005], comparing 40
introductory programming books, register a tendency to provide much detail on constructs at
the expense of the big picture. Lin and Wu [2007] review 32 Thai informatics books and
finds that the programming content was inadequately treated.

Typically, the book section on a language construct (e.g., the conditional construct)
presents a problem and illustrates a program that solves that problem, discussing the program
elements. The program thus appears to have been developed in a single stroke, from problem
to working solution. This approach illuminates to learners that programming is straightforward
(thus contributing to their frustration when they fail). The development process (i.e., starting
with an incomplete solution, proceeding by trial and error, extending, restructuring and
refining to arrive at a solution) is omitted. While the solution (the final program) is explained
in detail, the solution development process is almost completely neglected in introductory
programming textbooks and courses [Caspersen and Kölling, 2009].

As far back as the ’70, Gries [1974] notes that in no other field is expected that teaching
the use of tools and then showing a finished creation made with those tools is sufficient to
learn how to replicate that creation without any explanation of the realization process.

Learning to program requires much more than being instructed in detail on the syntax and
semantics of language constructs. “Students also need knowledge about the programming
process, i.e. how to develop programs, and they need to extend that knowledge into
programming skills.”4 [Caspersen, 2018, sect. 9.2]. In the early 2000s, Mcgettrick et al. [2005]

4In the next section, we will describe programming skills more formally to understand better one of the

24 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

point out that teaching and learning to program remains one of the great challenges of IEdR.

[M]ajor concerns exist among the academic community internationally that when
we set out to teach programming skills to students, we are less successful than
we need to be and ought to be [. . .]. The particular concern is that, after more
than forty [now fifty] years of teaching an essential aspect of our discipline to
would-be professionals, we cannot do so reliably. Indeed, there are perceptions
that the situation has become worse with time. [Mcgettrick et al., 2005,
sect. 2.4]

And still today, Caspersen writes: “[i]n a time where computing/informatics education is
becoming general education for all and students don’t choose to learn programming out
of personal interest, the challenge not only persists, but is reinforced” [Caspersen, 2018,
sect. 9.2].

These influential voices, from Gries’s early warnings in 1974 to Caspersen recognizing that
the challenge of introductory programming is even greater today, clearly picture a two-speed
evolution. The teaching practice of introductory programming is failing to evolve significantly
despite the research effort, while programming languages and technologies are running and
informatics are in short supply.

2.3 What really means learning to program?

To fully understand the challenge of teaching introductory programming, it is essential to
define what learning to program means. As discussed in the previous section, knowing how to
program cannot coincide with knowing, albeit completely, the constructs of a programming
language. Programming is a tool for automating problem solving and, more generally,
accomplishing tasks. Knowing how to program means having developed various types of
knowledge and requires the ability to reason and operate simultaneously. According to Falkner
and Sheard [2019]:

The act of learning programming involves concurrently developing skill and
knowledge in several related areas: planning, design, programming language
structure, and also an understanding of how programs are to be executed. Students
must learn both how to craft programs to achieve a fixed output as well as
comprehending what an existing program will do. [Falkner and Sheard, 2019,
sect. 15.4.4]

2.3.1 The three dimensions of learning to program

One of the most influential and widely used frameworks for analysing programming knowledge,
proposed in 1997 and still widely used today, is the conceptual framework by McGill and Volet
[1997]. It is based on the fact recognized by cognitive science that programming requires

fundamental aspects of the challenge of teaching programming, that is, what knowledge and skills we aim to
teach.

2.3. WHAT REALLY MEANS LEARNING TO PROGRAM? 25

different types of knowledge [Bayman and Mayer, 1988], which according to McGill and
Volet’s framework, are syntactic, conceptual and strategic knowledge. Syntactic knowledge
refers to knowledge of the syntax of a programming language and its constructs, in short,
the language’s “grammar rules”. Conceptual knowledge refers to the functioning of the
programming language and its constructs. It concerns the dynamics of programs, i.e.,
knowledge of how constructs function and how this functioning determines code execution.
Strategic knowledge refers to the ability to use syntactic and conceptual knowledge to solve
new problems and, in general, to pursue desired goals. While textbooks and programming
courses often focus primarily on and are organized around syntactic knowledge (see the
previous section), being able to program requires certainly syntactic but also conceptual and
strategic knowledge.

Interestingly, according to the KSC taxonomy – formally defined by the work of Winterton
et al. [2006] and widely accepted in education5 – which distinguishes knowledge, skills and
competencies, we can venture a mapping of McGill and Volet’s three knowledge onto KSC.
That is, syntactic knowledge remains knowledge, but conceptual knowledge can be more
accurately described as conceptual skills and strategic knowledge as strategic competencies.

Morevoer, in his Block Model – an educational model of program comprehension –
Schulte [2008] also identifies three dimensions in program comprehension, which are rather
self-explanatory: text surface, code execution (i.e., data flow and control flow) and program
purpose. His model is a double-entry table consisting of these three dimensions and four
levels (relating to the code structure, from a single instruction to the entire program). Schulte
uses the concept of ’dimensions of understanding’ as an alternative to ’types of knowledge’.
However, the three dimensions of the Block Model are very much akin to McGill and Volet
[1997] three dimensions of knowledge.

Several studies [see, e.g., McCracken et al., 2001; Whalley et al., 2006] show that
syntactic knowledge/skills (dimension of code execution) and especially strategic knowl-
edge/competences (dimension of program purpose) are the most difficult for novices to
develop.

2.3.2 The SOLO taxonomy

The Structure of the Observed Learning Outcome (SOLO) taxonomy is a framework designed
to evaluate and categorize the quality and complexity of learning outcomes. It provides
a hierarchical structure that allows educators to assess learners’ depth of understanding
and skills. Biggs and Collis [1982] introduce the SOLO taxonomy as an alternative to
traditional assessment methods. They categorize learning outcomes into five levels, ranging
from prestructural to extended abstract, each representing a progression in understanding
and complexity to assess the depth of understanding.

1. Prestructural. At this level, learners have minimal or no understanding of the concept or
skill being assessed. They may provide incorrect or irrelevant responses and demonstrate

5The KSC taxonomy is the result of an extensive research initiative commissioned by the EU, and one
of the reasons for its wide dissemination is that it became an integral part of the European Qualifications
Framework for Lifelong Learning (2008 Recommendation of the European Parliament and Council).

26 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

a lack of grasp on the foundational knowledge required.

2. Unistructural. Learners exhibit a basic understanding of isolated elements or aspects of
the concept or skill. They can identify or describe individual components or procedures
but struggle to make connections or apply their knowledge in a meaningful way.

3. Multistructural. Learners demonstrate a more developed understanding by recognizing
and incorporating multiple elements or aspects of the concept or skill. They can apply
different techniques or strategies independently but still view them as separate entities,
without fully integrating them.

4. Relational. At this level, learners can connect and integrate various elements or aspects
of the concept or skill, demonstrating a deeper understanding. They can analyze the
relationships between different programming concepts, recognize patterns, and apply
their knowledge in more complex contexts.

5. Extended Abstract. Learners have a comprehensive and flexible understanding of the
concept or skill, allowing them to generalize and apply their knowledge in novel or
unfamiliar situations. They can think critically, create innovative solutions, and evaluate
the broader implications of their programming choices.

This taxonomy is found to be effective in evaluating the quality of learning outcomes
beyond surface-level performance. In general, the taxonomy provides a more nuanced
assessment by focusing not only on the correctness or quantity of responses but also on the
underlying understanding and reasoning behind them.

When applied to learning to program, the SOLO taxonomy becomes a valuable tool
for assessing the development of programming skills and understanding among learners. It
allows educators to evaluate the quality of learners’ program design, algorithmic thinking,
and problem-solving. It provides for classifying learners’ programming solutions into different
levels based on the depth of understanding and complexity demonstrated in their programs.
This taxonomy enables educators to track learners’ progression from basic understanding
to more advanced levels of programming proficiency. Ginat and Menashe [2015] focus on
assessing novices’ algorithmic design skills using the SOLO taxonomy. They adapt the
taxonomy to evaluate the complexity and quality of students’ algorithmic solutions. The
study demonstrates the usefulness of the taxonomy in capturing the different stages of
algorithmic design skills among novices and provides insights for enhancing the assessment of
programming assignments. Izu et al. [2016] investigate the program design skills of novice
programmers using the SOLO taxonomy. They use the taxonomy to assess and categorize
the complexity and quality of students’ program design solutions. The study highlights the
effectiveness of the SOLO taxonomy in evaluating program design skills and demonstrates
the progression of novice programmers from lower to higher levels of code design proficiency.

The SOLO taxonomy also supports the design of assessments and tasks that target
specific programming skills and facets. By identifying different dimensions of programming
skills, such as problem decomposition, pattern recognition, or debugging, the SOLO taxonomy
helps create a comprehensive assessment framework that captures the various aspects of

2.3. WHAT REALLY MEANS LEARNING TO PROGRAM? 27

programming competence. Castro and Fisler [2017] extend the application of the SOLO
taxonomy by designing a multi-faceted version to track program design skills throughout an
entire course. They identify various facets of program design skills and developed assessment
tasks targeting each facet. This multi-faceted SOLO taxonomy enables instructors to assess
specific strengths and weaknesses in students’ program design skills, informing targeted
interventions and instructional adjustments.

Overall, these studies support the value of the SOLO taxonomy as an assessment framework
in programming education. The taxonomy facilitates a comprehensive evaluation of learning
outcomes, allowing educators to identify areas for improvement, tailor instruction, and promote
deeper understanding and proficiency in algorithmic and code design skills.

2.3.3 (Faulty) Mental models in learning to program

The concept of a ’mental model’ has long been used in IEdR and comes from cognitive
sciences, where it is extensively used [Gentner, 2002; 1983; Johnson-Laird, 1983]. Mental
models are internal models of the functioning of something, an iconic description of specific
aspects of objects or systems. Mental models can be used to understand an observed behavior
and make predictions about the evolution of that behavior.

For example, Smith and Webb [1995] argue that the difficulties novices experience in
learning to program are often related to inadequate mental models of computer they are
trying to program. Also Perkins and Simmons [1988] suggest that without a correct mental
model of the computer, programming learning is fragile.

In his influential paper, Pea [1986] explores the concept of “conceptual bugs” in novice
programming. These errors arise from faulty mental models that programmers develop when
learning to program. Pea argues that these conceptual bugs can be language-independent,
meaning they are not specific to any particular programming language or system. To emphasize
the criticality of faulty mental models, Pea also notes that these errors are often difficult to
detect and correct, as they can arise from deep-seated cognitive biases and misconceptions.

Pea identifies several sources of conceptual bugs. One common source is the tendency
for programmers to rely on analogies to familiar systems or concepts when developing mental
models of programming languages or systems. For example, a programmer might conceive a
programming language as a natural language and rely on familiar grammatical structures to
guide program design. However, this can lead to errors when the analogy breaks down, such
as when the programmer encounters a programming construct that does not align with their
mental model of the language. Another way mental models can contribute to conceptual
bugs is by using mental shortcuts or heuristics that are not always appropriate for the task at
hand. For example, a programmer might use a mental shortcut to assume that a particular
piece of code will behave in a certain way without fully understanding the underlying logic or
implications. This can lead to errors when the shortcut fails to account for essential nuances
or edge cases. Finally, as a common source of conceptual bugs, Pea identifies the tendency
to overgeneralize from a limited set of examples.

Overall, Pea [1986] highlights the importance of developing accurate and detailed mental
models when learning to program. The connections between mental models and program-
ming suggest that developing accurate and detailed mental models is critical for effective

28 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

programming. By understanding the potential sources of conceptual bugs and how mental
models can contribute to planning and organizing code, learners (and educators, too) can
develop more effective strategies for debugging and problem-solving in programming contexts.

The literature on misconceptions shows (for a comprehensive review of programming
misconceptions, see Lewis et al. [2019a] and Sorva [2018]), that novices are not able to
construct correct mental models of the execution simply by writing programs.

2.3.4 Notional machines as mental models of execution

As already cited, “[s]tudents must learn both how to craft programs to achieve a fixed output
as well as comprehending what an existing program will do” [Falkner and Sheard, 2019,
sect. 15.4.4]. To this end, Du Boulay [1986] came up with the concept of ’notional machine’
that refers to “the general properties of the machine that one is learning to control”, which are
determined by the semantics of the programming language in use. In other words, a notional
machine is an abstract, idealized representation that describes the behavior (i.e., the runtime
execution) of a programming language (or part of it), independent of the characteristics of
the physical machine. Shortly, a notional machine is human-friendly model of computation.
The notional machine has the educational purpose of supporting the understanding of how a
(piece of a) program is executed, so it is not necessarily consistent with the abstract machine
of the programming language either (more on this, later on this section). Understanding the
notional machine of a (part of a) programming language means possessing the conceptual
knowledge [McGill and Volet, 1997] or getting the dimension code execution [Schulte, 2008].

As it is easy to understand, a notional machine can also be seen as a mental model that
educators want learners to build. As the literature on misconceptions shows (see 2.3.3),
teaching programming without making the notional machine explicit can lead learners to build
incomplete or conflicting mental models, based on conjectures and affected by misconceptions.
For instance, novices often see a program only as a series of consecutive instructions,
failing to understand how those same instructions control the computer from which they
are executed [Du Boulay, 1986]. Furthermore, novices often assume human reasoning in
computers [Ragonis and Ben-Ari, 2005]. Sorva [2013], in an influential literature review on
notional machines, collects the many misconceptions derived from incorrect models, even on
topics that most programmers consider apparent.

The notional machine concept has substantially impacted IEdR, particularly in introductory
programming research [see Sorva, 2013; Robins, 2019]. Various methodologies have been
developed to use notional machines to abstract program execution. Their common goal is
to make evident elements of execution that could favour comprehension (e.g., instruction
sequencing, memory usage) and omit details that are inessential to a valid mental model of
language semantics. Notional machines obviously differ by programming language. However,
most of all, the educational context, learning objectives and learners’ characteristics influence
the level of detail of a notional machine [Sorva, 2013]. In particular, educators should
“acknowledge the notional machine as an explicit learning objective and address it in teaching”,
and teaching “may benefit from using multiple notional machines at different levels of
abstraction” [Sorva, 2013]. Educators indeed use a diverse repertoire of notional machines to
draw students’ attention to different aspects of programming (e.g., from “variables as boxes”

2.3. WHAT REALLY MEANS LEARNING TO PROGRAM? 29

to “table with IDs” when introducing references) and sequences of notional machines, that
expand when new concepts are introduced6 [Fincher et al., 2020]. In fact, at different stages
of learning, educators may show different notional machines whose features are chosen to
facilitate learning rather than to be faithful to the abstract machine of the chosen language.
However, the more advanced the learning path, the target notional machine may get closer to
the abstract language machine. Positive accounts of the use of notional machines in teaching
introductory programming are present in IEdR literature. For example, students who did
tracing through a specific notional machine from the course’s beginning performed better
than those who only did code-writing activities [Nelson et al., 2017]. diSessa and Abelson
[1986], presenting their Boxer system for novice programmers, which shows the computational
objects of a program in boxes that change as the execution goes (e.g., to clarify the scoping
mechanism), already emphasize that learning a notional machine is a necessary challenge.

In any case, to this day, IEdR literature lacks research evidence on which notional machines.
Even worse, despite extensive attention in the literature, notional machines are not present
in informatics curricula or textbooks. According to Krishnamurthi and Fisler [2019], few
papers propose or test teaching proposals explicitly presenting notional machines alongside
programming constructs. The many visualization and debugging tools do not explicitly explain
the same execution models they implement [Hundhausen et al., 2002; Kölling et al., 2015;
Naps et al., 2002; Sorva, 2012]. The situation is not much better among teachers. Surveying
almost 500 CS1 teachers on various programming topics, Bennedsen and Caspersen [2006]
reported that less than 30% of respondents explicitly addressed a notional machine in their
courses. Even if concepts like the execution model and program dynamic were rated important
by the teachers, the notional machine was not. However, research argues that explicitly
teaching notional machines early in the programming learning path can be very helpful. From
a cognitive perspective, in fact, building a new mental model (i.e., the notional machine
of program execution) is much easier than updating a pre-existing (incorrect) one [Gupta
et al., 2010; Schumacher and Czerwinski, 1992; Slotta and Chi, 2006]. Activities that require
learners to engage with content are more effective in building sound mental models than
passive activities, such as merely using visualization tools [Freeman et al., 2014; Kessel and
Wickens, 1982; Savery and Duffy, 1995]. Therefore, the underestimation and underuse of
notional machines emerge as a challenge in the great challenge of teaching programming.

2.3.5 Schemas in learning to program

Rist explores the topic of schema creation, application, and evaluation in the context of
programming education. Schemas are mental structures that help individuals organize and
represent knowledge; schemas aid problem-solving and program design in the context of
programming. He emphasizes the significance of schemas in programming learning and
problem-solving, which are mental structures that help organize and represent knowledge.

6This movement along different notional machines is akin to the movement across levels of hierarchies
of abstract machines [Gabbrielli and Martini, 2010, ch. 1], where a system is designed in terms of layers of
abstraction to help manage the system complexity. This view applies to programming languages, but also
networks, operating systems, and so forth.

30 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

Rist [1989] investigates schema creation in programming and its impact on cognitive
processes, Rist – who reviews the early literature on empirical studies of expert and novice
programming strategies in his article [e.g., Guindon et al., 1987; Visser, 1987] – discusses
how programmers form schemas by identifying patterns and regularities in programming
tasks, emphasizing the role of experience, practice, and exposure to different tasks in schema
development. The paper distinguishes between surface-level schemas, specific to programming
languages or domains, and deep-level schemas, which capture broader programming concepts
and strategies. Rist recognizes three pairs of antithetical program implementation strategies:
top-down vs. bottom-up, forward vs. backward, and breadth-first vs. depth-first. In particular,
we consider only the first pair. A top-down design strategy initiates with a high-level abstract
problem and breaks it down into subproblems. These subproblems are further decomposed
until reaching the lowest level, where program code is written to solve them. Conversely,
bottom-up design starts with lower-level abstractions, creating pieces of the solution that serve
as a foundation for solving higher-level problems. These pieces are then joined hierarchically
to fulfill the overall program’s purpose. Novice programmers often struggle when writing a
program, lacking a clear overall plan or organization: they cannot consistently employ top-
down strategies due to their limited possession of abstract plan schemas necessary for matching
problems with solutions and decomposing them into connected pieces. This observation aligns
with previous research findings indicating that novices possess predominantly programming
knowledge representations at a low level, whereas experts have representations spanning
abstract and concrete levels. He also discusses how novices in programming encounter
language-independent “conceptual bugs” due to the absence or misalignment of schemas
(see 2.3.3). By recognizing these issues, educators can better design instructional strategies
to facilitate schema creation and improve programming skills.

Rist [1991] compares novice and intermediate student programmers’ knowledge creation
and retrieval processes. He investigates how these two groups create and retrieve knowledge
during the program design process. The intermediate students typically adopt a top-down
design approach, while the behavior of novice programmers is more complex and challenging
to capture. The top-down design depends on the programmer’s expertise and the complexity
of the problem being solved. In this study, the top-down design emerges as based on refining
a known solution or schema that is retrieved and expanded at increasing levels of detail. If
the programmer is proficient in all required schemas, the design will exhibit a consistent
top-down and forward expansion pattern at all levels. Conversely, when a schema cannot
be retrieved and must be created, the top-down design breaks down and is replaced by
a bottom-up design. In cases where the programmer is a complete novice, all required
plans must be created, and the program design exhibits a consistent pattern of bottom-up
and backward solution development. The paper highlights the importance of knowledge
creation and retrieval processes in program design. It emphasizes the need for instructional
interventions that facilitate the development of effective problem-solving strategies and the
retrieval of relevant knowledge to enhance learners’ program design capabilities.

Rist [2005] delves into learning to program and the role of schema creation, application,
and evaluation. The author highlights the importance of schema creation in programming
education, as it enables learners to develop effective problem-solving strategies and program-

2.3. WHAT REALLY MEANS LEARNING TO PROGRAM? 31

ming techniques. The research explores various methods for teaching programming, such
as worked examples and problem-solving exercises, which aid in schema application and
consolidation. The paper also addresses the evaluation of programming learning and proposes
different assessment approaches to measure students’ schema acquisition.

Overall, Rist provides valuable insights into the role of schemas in programming education.
He highlights the importance of considering cognitive factors, knowledge organization, and
instructional design principles to support effective program design and problem-solving skills.
By understanding the process of schema creation, educators can develop targeted interventions
and instructional approaches to promote successful programming learning outcomes.

Rist’s schema theory on top-down vs. bottom-up

Adelson and Soloway [1985] found that expert programmers employ a top-down strategy
when working on familiar problem domains. They mentally simulate solutions at each lower
level of abstraction. However, experts switch to a bottom-up strategy in unfamiliar domains,
using simpler local models and combining them to form complete solutions.

Expanding on this work, Rist [Rist, 1989; 1991; 2005] developed a theory on how
programmers use and create plan schemas during programming. When facing familiar
problems with suitable plan schemas, top-down strategies are employed. Programmers revert
to bottom-up strategies for unfamiliar or challenging problems to develop new solutions.
Programmers alternate between these strategies based on the familiarity of the parts of the
problem. Rist’s theory suggests that experts possess more plan schemas, allowing them to
rely more on top-down strategies. Novices, on the other hand, primarily use bottom-up
strategies due to a lack of schemas. The longitudinal study of Rist [1989] revealed that
novices transition from bottom-up to top-down strategies as they gain experience. The
theory also explains findings indicating that experts analyze problems and plan, while novices
focus on concrete code and local changes. Expertise growth is marked by the ability to use
top-down strategies due to familiarity with problem types and solutions.

2.3.6 Abstraction in informatics and programming languages

Before proceeding, it is needed to clarify the concept of abstraction in informatics. Since it is
a very complex and multi-faceted concept, we do not aim to cover all about it, just see its
multiple dimension and put the focus on the one that’s relevant to our work.

Informatics makes frequent reference to abstract entities and to activities identified as
abstractions. The literature on informatics epistemology [Colburn and Shute, 2007; Turner,
2021] and on programming languages [Gabbrielli and Martini, 2010], identifies information
hiding as the main abstraction objective – layers of abstraction are built in such a way that
layer n uses the functionalities of layer n − 1 to provide functionalities to the layer n + 1
via an interface which also hides the information needed to implement them. This helps
manage the system complexity and allows for the independence and replaceability of a layer
without influencing the others. This view applies to programming languages (e.g., from a
high-level language like Java to its bytecode implementation, to assembly, to the hardware
machine), networks (e.g., the ISO/OSI stack), operating systems, and so forth. According

32 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

to this view, a given programming language can be seen as a (specific) abstraction of the
underlying physical machine.

It is important to observe that (raw) expressivity has little to do with abstraction. Machine
languages and high-level languages have the same expressivity, being all Turing-complete, yet
we assign to them different abstraction levels, based on the (intentional) hiding of information
that happens when we move from a machine language to a high-level one (e.g., specific
representations of numbers as bit sequences are hidden, or “abstracted away,” when passing
from machine to high level).

We should note, though, that it is possible to identify different levels of abstraction
inside a single programming language. Each programming language provides abstraction
mechanisms, which are “the principal instruments available to the designer and programmer
for describing in an accurate, but also simple and suggestive, way the complexity of the
problems to be solved” [Gabbrielli and Martini, 2010, p. 165]. A foreach loop on a sequence
is an abstraction from the for loop (of that same language), which would use explicit indexes
on that sequence: the foreach hides those very indexes. In its turn, a for loop is an
abstraction from a while loop because the for loop hides the explicit initialisation and
increment of the index variable. In this paper, abstraction is therefore always connected to
specific linguistic mechanisms.

Finally, observe that under this perspective:

• More expressive does not mean more abstract. We have already observed that expres-
sivity and abstraction are in general orthogonal concepts. We remark here that even
when expressivity is genuinely expanded, there are cases where there is no increase in
abstraction. If we introduce first the sequence control structure, and then the selection
control structure with the conditional command (if-else), we increase the expressive
power of the language, but we do not have abstraction, because no information hiding
occurs.

• More abstract does not always mean more general. In a C-like for construct we
may specify almost arbitrary termination conditions and “increment” commands, and
there is no constraint on the possibility of modifying the control variable in the body
of the loop. Such a construct may be seen as the generalization of Pascal-like for

and while. However, it is not more abstract of them, because no information hiding
occurs. Conversely, a foreach construct is more abstract and less general of its while
“translation”.

We can distinguish between two general classes of abstraction mechanisms in programming
languages: control and data abstraction.

Control abstraction mechanisms “provides the programmer the ability to hide procedural
data” [Gabbrielli and Martini, 2010, p. 165]. Simple control abstraction comes into play early
in a programming language learning path, for example, when dealing with structure control
mechanisms like expressions, assignment, conditionals commands or iterative commands.
Modern languages provide advanced mechanisms like procedures and exception handling
constructs. For example, when dividing a program into subprograms (using functions or
procedures), a programmer realizes a functional abstraction, separating what the clients of

2.4. ACTIVE LEARNING 33

such subprogram need to know to use it (e.g., name, parameters, return type) and what they
do not need to know (the body, i.e., the implementation of the function, which could be
changed – for example, for efficiency reasons – without the client knowing it) [Gabbrielli and
Martini, 2010].

Data abstraction mechanisms “allow the definition and use of sophisticated data types
without referring to how such types will be implemented” [Gabbrielli and Martini, 2010,
p. 165]. Programming languages allow a variety of data abstraction mechanisms, hiding data
representation details. These mechanisms range from simple ones, like the use of names to
refer to memory locations, to the predefined language data types (collection of homogeneous,
effectively presented values, with a set of operations on them), to more powerful mechanisms
like the possibility to define abstract data types, up to all the data abstraction mechanisms
provided by object-oriented programming.

From an educational perspective, the introduction of a new construct is often a movement
across levels of abstractions. When, after a foreach, we unveil the possibility of an index-
based iteration, we move down the abstractions. When we introduce functions, we provide a
way to move up, and the same happens with the constructs for the definition of new data
types. This movement across abstraction levels is a specific issue adding to the difficulty of
learning. Students have to learn a new linguistic construct (or a new detail which was not
previously introduced), its pragmatics when writing a program, and how this relates to the
abstraction levels. Also choosing the correct construct (or the correct way to use a construct)
is related to the abstraction levels. For example, students are instructed to prefer a for loop
over a while for a sequential and complete scan of a sequence because the abstraction level
of the for loop (the tool) matches the abstraction level of the “scan” (the problem).

Abstraction in program design strategies

Remaining within the domain of informatics education, we have just briefly reported on
planning and program design strategies (2.3.5). These strategies can be analyzed, among
other dimensions, by the direction of the movement of abstraction: downward (top-down
strategies, usually employed by more experienced programmers) or upward (bottom-up
strategies used by novice programmers). This is just another one of the countless facets of
abstraction in informatics.

2.4 Active learning

The article ’Folk Pedagogy: Nobody Doesn’t Like Active Learning’ presents the findings of a
survey of the informatics education community. Sanders et al. [2017] report that almost all
respondents believe that ’active learning’ favours student success in informatics. Is this ’folk
pedagogy’7, then, the answer to the issues with introductory programming seen so far? Is
active learning really “the almost silver bullet” [Hicks et al., 2020] for CS1?

Let us take a step outside informatics education. First, we must define better what ’active
learning’ is in general, and then we will discuss the benefits of using active learning to teach

7J.S. Bruner defines the teacher’s understanding of students’ minds and learning as ’folk pedagogy’.

34 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

STEM (science, technology, engineering, mathematics) disciplines.
In an influential monograph on active learning, Bonwell and Eison [1991] note that,

until then, educational literature had “typically relied upon an intuitive understanding of
the term” [Bonwell and Eison, 1991, p. 18]. They define ’active learning’ as anything that
“involves students in doing things and thinking about the things they are doing” [Bonwell
and Eison, 1991, p. 19]. The combination of doing and thinking is rooted in John Dewey’s
philosophy.

[M]ethods which are permanently successful in formal education [. . .] give the
pupils something to do, not something to learn; and the doing is of such a nature
as to demand thinking, or the intentional noting of connections; learning naturally
results. [Dewey, 1916, p. 154].

Moreover, according to Kolb [1984], the learning cycle includes action and reflection. Schön
[1995] further develops the importance of action and reflection.

The benefits of active learning are well-established in the STEM educational communities.
In an influential review of the literature on active learning, focusing on what is more relevant
to engineering faculty, Prince [2004] finds that all forms of active learning are beneficial,
albeit with varying effects depending on the specific active methodology. In general, greater
student engagement is unquestionable, and the positive effects of an active approach go
far beyond this dimension. He concludes that “[t]eaching cannot be reduced to formulaic
methods”; however, at the same time, he warns that “active learning is not the cure for all
educational problems”.

Adopting a more quantitative approach, Freeman et al. [2014] examine 225 studies that,
in undergraduate STEM courses, compare results (i.e., examination scores and failure rates)
obtained with (various forms of) active learning with those obtained with traditional teaching.
Two findings, in particular, stand out from the largest and most comprehensive (up to 2014)
meta-analysis of active learning in undergraduate STEM education: an average 6 percentage
points improvement in exam scores with active learning and a 1.5 higher probability of
failure with traditional teaching. It also emerges that the improvement is greater in concept
inventories than in exam scores, suggesting deeper understanding when using active learning.
Finally, active learning appears effective regardless of class size (favouring, however, small
classes). This work argues that active learning is an “empirically validated teaching practice”
and suggests that “calls to increase the number of students receiving STEM degrees could
be answered, at least in part, by abandoning traditional lecturing in favor of active learning”.
Such a recommendation could be an inspiration for responding to the problematic access to
informatics discussed above (see 1.1).

Back to informatics education, McConnell [1996] is among the first to report on active
learning strategies for teaching informatics. He discusses only a few specific active learning
techniques (e.g., algorithm tracing and physical activities, such as having the class embody a
protocol) and how, over two academic years, he integrates them into his informatics course
in a US college. Despite the practical nature of his work (which has very few theoretical
references the author does not delve into) and the very limited sample (i.e., only one course
and one class, his own, over just two years), McConnell makes some very bold claims. In
particular:

2.5. MAJOR LEARNING PARADIGMS 35

The reality of today’s higher education in the United States is that students
do not seem to be as interested in learning as they once were. By employing
active learning strategies, students not only learn content, but process as well.
This makes them better students in later courses, and better professionals after
finishing their degree. [McConnell, 1996, sect. 4]

Although not very in-depth and almost anecdotal, this article was published in multiple
venues in 1996 and is widely cited, even today. Its bold statements probably encouraged the
development of numerous active learning teaching strategies specific to informatics and the
spread in the informatics education community of a folk pedagogy superficially supporting
active learning.

As Sanders et al. [2017] show, this folk pedagogy is widespread today; unfortunately, it
remains imprecise and not in-depth enough. In both the informatics education community
and literature, “[a]ctive learning doesn’t refer to learning; instead, it is used as a shorthand
for a collection of teaching techniques” [Sanders et al., 2017, sect. 6].

Moreover, they report that the many techniques associated with active learning vary
widely (e.g., in the type and level of activity required), and only some of them are specific to
informatics. They also find that the respondents and literature rarely define active learning
and rarely refer to any underlying educational theory. As in the educational literature
prior to Bonwell and Eison [1991], informatics education mostly relies on an “intuitive
understanding” of the term. Therefore, it does not a surprise that they identify another
significant flaw. Few (among papers and respondents) talk explicitly about student reflection
(one of the two pillars of active learning; [see Bonwell and Eison, 1991; Kolb, 1984]); even
when they do, arguments are often built on weak foundations.

Speaking of weak foundations, they also write what follows. “There is a striking lack
of learning theories in the papers in the present study. Theory may seem abstract, difficult,
or irrelevant.” [Sanders et al., 2017, sect. 7.5] While constructivism, situated learning and
student-centered learning receive some mention, little research provides a solid theoretical
background. Therefore, the authors advocate more research based on the educational theories
underlying active learning. Indeed, Suppes states: “[a] powerful theory changes our perspective
on what is important and what is superficial” [Suppes, 1974, p. 4], and also: “[o]ne of the
thrusts of theory is to show that what appear on the surface to be simple matters of empirical
investigation, on a deeper view, prove to be complex and subtle” [Suppes, 1974, p. 5].

2.5 Major learning paradigms

Theories of learning describe how people learn. Philosophy, psychology and pedagogy have
generated various theories of learning over the centuries. Theories in education are necessary
beacons for researchers but also for practitioners. Knowing the fundamentals of theories of
learning can help, for example, researchers to develop effective new methodologies, analyze
existing methodologies and identify their flaws and developments, and educators to choose
and correctly apply a methodology, modulating it for their particular context.

We have used the word ‘theory’; let us introduce ‘paradigm’. Although the use of
these terms (i.e., theory and paradigm) is not univocal and can vary considerably across

36 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

scientific fields and authors, in the context of this work, we define ’learning paradigm’
according to Leonard [2002]. Paradigms are “supersets” of theories; in particular, a paradigm
categorizes learning theories into schools of thought based on their most dominant traits.
Leonard classifies learning theories into four main paradigms: behaviorism, cognitivism,
constructivism and humanism. Others (e.g., Baker et al. [2019]) also add transformative
among the paradigms. Another significant distinction often found is between instructivism
and constructivism.

It does not serve this work to detail and analyze all the paradigms, theories and distinctions
(see Leonard [2002] for a compendium of learning theories organized by paradigms). However,
a selective exploration of learning paradigms is necessary to illustrate the theoretical under-
pinnings of our vision for tackling introductory programming (and introductory informatics in
general) and can help the reader understand the motivations behind our research. In the next
subsections, we briefly explore behaviorism, cognitivism and constructivism.

2.5.1 Behaviorism

Behaviorism derives from behavioral psychology. This psychology is based exclusively on
individuals’ observable behaviors, ignoring internal mental states altogether, considered
unknowable as they are derived from introspection, hence subjective and impossible to
verify. Its pillar is classical conditioning, which is based particularly on the concepts of
stimulus-response (from Ivan Pavlov’s research with dogs) and operant conditioning (from
B. F. Skinner’s studies on positive and negative reinforcement). Behavioral psychology was
predominant in the first half of the 20th century (before scientific attention was paid to the
processes of the mind and phenomena of the psyche) and greatly influenced the way we think
about learning.

Behaviorism as a learning paradigm went further the related psychology: it was dominant
in education for much of the last century. Its influence remains even in today’s education
systems, despite being considered outdated philosophically and effectiveness-wise.

According to this paradigm, learning is guided and shaped through the “process of
conditioning by [. . .] sequences of stimuli, responses, feedback, and reinforcement” [Falkner
and Sheard, 2019, sect. 15.2], aiming to change the frequency, form, or both, of observable
learner behaviors. Desired behaviors become habits or dispositions when they are systematically
reinforced over time. Attention, memory and, in general, internal mental states and processes
are not taken into account. Learners are viewed as blank slates whose behavior must be
shaped. Baker et al. [2019] identify the key principles of behaviorism as a learning paradigm.

• Purpose of education is to shape desirable behaviour

• Learning is change in form or frequency of observable behaviour

• Emphasis is on producing observable and measurable outcomes

• Learners are blank slates who passively receive information

• Instruction is repetitive; teachers shape behaviour through reinforcement

Philosophically speaking, behaviorism assumes an objective view of knowledge. There is
one ontological reality whose structure can be (studied,) taught and learned.

2.5. MAJOR LEARNING PARADIGMS 37

Behaviorism is the paradigm underlying instructivist teaching, which is still widely used
today. Instructivist teaching focuses on the transmission of knowledge, thus paying attention
especially “on the structure and presentation of the learning material rather than the learners
who act as recipients of the instruction” [Falkner and Sheard, 2019, sect. 15.2].

Programmed instruction and mastery learning are two of the most influential learning
theories of behaviorism.

• In programmed instruction, developed by Skinner, knowledge is divided into small units;
in this way, it is possible to give learners frequent and individualized reinforcements.

• Mastery learning expands on the previous one. The overall learning objectives are
allotted into small learning units of increasing difficulty. Learners proceed at their own
pace and have to develop mastery of the fundamental objectives in each unit.

As said, behaviorism still significantly influences today’s school system and educators.
For example, Martinez et al. [2001] analyzed the reflections of 50 experienced teachers and
found that “the majority of these teachers shares traditional metaphors depicting teaching
and learning as transmission of knowledge”. Also, gamification (in learning but not only),
although it may seem modern and cool, is based on the behaviorist idea of reinforcement [Rice,
2012].

Why is it outdated?

Although its influence is still significant, behaviorism is considered outdated for two main
reasons.

First, it does not take into account the internal mental states and processes of learners.
Cognitive psychology has made tremendous strides since the middle of the last century, and
today not considering the cognitive processes involved in learning is inconceivable.

Second, as mentioned above, behaviorism regards learners as blank slates to be filled.
The learner’s personal characteristics are not considered, and this lack has two dimensions.
From a cognitive point of view, we now know that learning is strongly influenced by previous
knowledge and experiences, mental models and strategies of each individual. Then, the
noncognitive factors (i.e., motivations, attitudes, and dispositions) are widely considered
decisive, along with the emotional-affective aspects.

2.5.2 Cognitivism

In the 1950s, cognitivism arose as a major learning paradigm, mainly to overcome behaviorism,
which could not adequately explain all types of learning (e.g., problem solving). The purpose
was to explore the mind (in contrast to behaviorism, which considers it a “black box”) and
investigate what happens between stimulus and response.

Cognitivism focuses on what learners know and how they acquire knowledge. It observes
external behaviors (like behaviorism) but does so to investigate the learner’s internal mental
states and processes. Internal information processing in humans is compared to computer

38 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

information processing, regarding “the brain as a processor of information and thought as a
form of computation” [Robins et al., 2019, sect. 9.5.3].

According to cognitivism, learning is about remembering and applying information. More
specifically, the desired outcome is the perception, processing, storage and retrieval (memory),
and application (transfer) of information. Learners are active participants, and educators
focus on how learners structure, organize, and sequence information to facilitate their learning.
Indeed, learning is not merely the result of external stimuli but arises from cognitive processes.
Learning is achieved “through a variety of learning strategies that depend on the type of learning
outcomes desired, reflecting associated cognitive processes [. . . , including] memorization,
drill and practice, deduction, and induction” [Falkner and Sheard, 2019, sect. 15.2].

Baker et al. [2019] identify the key principles of cognitivism as a learning paradigm.

• Purpose of education is for learners to remember and apply information

• Learning is a change in symbolic mental constructions (or schema)

• Emphasis is on structuring, organizing, and sequencing information in the
mind

• Learners are information processors

• Teachers facilitate optimal processing

From the philosophical perspective, cognitivism spans between an objectivist epistemology
and a more constructivist one. While considering the internal cognitive processes involved in
learning, an objectivist epistemology maintains the instructive idea of knowledge transmitted
from the outside. Instead, according to a constructivist epistemology, everyone constructs
their own knowledge building on their previous knowledge, experiences and social interactions
(more on constructivism in 2.5.3).

Within the cognitivist learning paradigm, many theories and concepts were developed that
are still relevant and used today, for example, the multi-store memory model, cognitive load
(see 1.4.1), mental schemas and models (e.g., notional machines in informatics education;
see 2.3.4), prior conceptions and misconceptions. Generally, cognitivist learning theories focus
on (re)organizing knowledge to facilitate its learning, for example, by chunking, reducing
cognitive load, and using learning taxonomies (e.g., Bloom’s taxonomy).

2.5.3 Constructivism

Constructivism is a learning paradigm that emerges in the second half of the last century to
challenge the instructive idea of knowledge transmitted by educators and received by learners;
such an idea is present in behaviorism and some kinds of cognitivism. Highly influential in
the origin of constructivism was the swiss psychologist and pedagogist Jean Piaget.

[. . . T]he use of active methods [. . .] give broad scope to the spontaneous research
of the child or adolescent and require that every new truth to be learned be
rediscovered or at least reconstructed by the student, and not simply imparted to
him. [Piaget, 1973, p. 15]

2.5. MAJOR LEARNING PARADIGMS 39

One of the philosophical foundations of constructivism is relativism. Objective reality does
not exist, nor is it knowable; therefore, there is no “true” knowledge to be transmitted or
taught. Instead, everyone constructs their own personal knowledge both individually and
within groups and contexts. Indeed, constructivism is learner-centred and advocates active
methods of learning.

Nowadays, this paradigm is very popular in education, manifesting itself in many forms
and degrees of radicalism. However, Sorva [2012, p. 77] identifies two main ideas that emerge
from most constructivist learning approaches.

• The learning of something new builds on the learner’s existing knowledge
and interest that learners bring into the context.

• Learning is the construction of new understandings through the interaction
of the existing knowledge and new experience.

Of the various forms of constructivism, we can recognize two more specific learning
paradigms within the broader one: cognitive constructivism and social constructivism.

2.5.3.1 Cognitive constructivism

Cognitive constructivism emerges in 1950s. The main contributors to cognitive constructivism
were philosopher and pedagogist John Dewey, psychologist and pedagogist Jean Piaget,
and psychologist Jerome Bruner. Dewey was an early proponent of hands-on learning and
experimental education; Piaget theorized the stages of child development; Bruner laid the
foundation for discovery learning.

Since knowledge is actively constructed, learning is a process of active discovery. Educators
foster this discovery by guiding learners in the process and providing the necessary resources.
In order to effectively structure content and materials, educators must consider learners’ prior
knowledge, cognitive development stage, cultural background, and personal history.

Baker et al. [2019] identify the key principles of cognitive constructivism as a learning
paradigm.

• Purpose of education is to enable learners to create new knowledge

• Learning is the process of constructing meaning

• Emphasis is on active discovery

• Learners actively construct new knowledge, building on what they already
know and past experiences

• Teachers facilitate discovery by providing necessary resources

2.5.3.2 Social constructivism

Lev Vygotsky (widely known for the concept of zones of proximal development, ZPD8) laid
the foundation for social constructivism by theorizing that knowledge is constructed through
social interaction.

8A ZPD is a development level that a learner can potentially reach with guidance and encouragement
from a skilled partner (i.e., an educator or a more competent peer).

40 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

Social constructivism argues that knowledge construction cannot be isolated from the
social environment where such knowledge is created. Learning is situated since it happens
continuously through collaboration between learners and their social context. Whereas
cognitive constructivism focuses on mental representations, social constructivism is more
interested in how knowledge is built through social interaction. It focuses on social activities
(learning through participation and relationships) and communities.

Baker et al. [2019] identify the key principles of social constructivism as a learning
paradigm.

• Purpose of education is for learners to co-create knowledge

• Learning is co-constructing knowledge and norms through social interaction

• The emphasis is on human relationships, learning through participation
(activity) in social contexts (communities)

• Learners are active participants

• Teachers facilitate social interactions and collaborative work

2.5.3.3 Cognitive vs. Social constructivism

The debate between cognitive and social constructivism has revealed two knowledge acquisition
approaches. While cognitive constructivism emphasizes an individual’s active engagement in
the construction of knowledge, social constructivism focuses on the collaborative development
of knowledge through learners’ interactions.

Both approaches have advantages and disadvantages, with cognitive constructivism
providing an essential foundation for individual inquiry and social constructivism offering
a valuable opportunity for learners to discuss, collaborate and share ideas. Ultimately,
both approaches can benefit modern classrooms and create a more diverse, engaging, and
meaningful learning environment.

2.5.3.4 Constructivism in practice

Whether it is more cognitivist-inspired or social-inspired, constructivism is a highly influential
paradigm in education nowadays (although it is not immune to criticism, as we will see in the
following 2.5.3.5).

Prince and Felder [2006, p. 125] summarize the principles for effective constructive
education, noting that proponents of constructivism use variations of these principles.

• Instruction should begin with content and experiences likely to be familiar
to the students, so they can make connections to their existing knowledge
structures. New material should be presented in the context of its intended
real-world applications and its relationship to other areas of knowledge,
rather than being taught abstractly and out of context.

• Material should not be presented in a manner that requires students to alter
their cognitive models abruptly and drastically. In Vygotsky’s terminology,

2.5. MAJOR LEARNING PARADIGMS 41

the students should not be forced outside their “zone of proximal develop-
ment,” the region between what they are capable of doing independently and
what they have the potential to do under adult guidance or in collaboration
with more capable peers Vygotsky [1978]. They should also be directed
to continually revisit critical concepts, improving their cognitive models
with each visit. As Bruner [1961] puts it, instruction should be “spirally
organized.”

• Instruction should require students to fill in gaps and extrapolate material
presented by the instructor. The goal should be to wean the students away
from dependence on instructors as primary sources of required information,
helping them to become self-learners.

• Instruction should involve students working together in small groups. This
attribute—which is considered desirable in all forms of constructivism and
essential in social constructivism—supports the use of collaborative and
cooperative learning.

The traditional teaching method through lectures does not align with the principles of
constructivism. Constructivism, which has strong research support, emphasizes that effective
instruction should involve setting up experiences for students to construct their own knowledge,
adjusting or discarding their previous ideas as needed based on the evidence gained from
these experiences [Prince and Felder, 2006]. In his doctoral thesis, Lodi argues that “[m]ost
of the contemporary learning theories and approaches, making their way into schooling and
certainly driving much of the educational research [. . .], can be included in the constructivist
paradigm” [Lodi, 2020b, p. 41]. He reports some of the most relevant today.

• Active learning

• Cognitive apprenticeship

• Productive Failure

• Problem-based learning

• Community of practice

• Collaborative learning

• Cooperative learning

We will discuss some of them (e.g., Productive Failure) later, as they have been crucial for
developing our research.

For a general review of constructivist theories and approaches from the informatics
education perspective, see Fincher and Robins [2019, chapters 8, 9, 15] and Sorva [2012].

42 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

2.5.3.5 Critics to constructivism and the education debate

One of the criticisms raised against constructivism concerns its knowledge relativism (i.e., no
objective reality hence no “true” knowledge). Philosophy of education debates are beyond the
scope of this thesis and are not relevant to our research, even more so since we assume and
refer to so-called pedagogical constructivism. Matthews [1997, p. 8] describes pedagogical
constructivism as concentrating “solely on pedagogy, and improved classroom practices, and
[. . . calling] ‘constructivist’ [. . .] anything which is pupil-centered, engaging, questioning,
and progressive”. He goes on and state that, to pedagogical constructivism, “the details of
epistemology and cognitive psychology are unimportant, and not worth disputing about”.

The most significant criticism of constructivism, however, claims that it is not efficient
and effective for conveying information and skills and is too time-consuming compared to
more instructivist approaches, such as direct instruction. This criticism is mainly directed at
the purest and most extreme forms of pedagogical constructivism, in which student freedom
is highest, and teacher intervention is reduced to the bare minimum, often gathered under
the definition of minimally-guided constructivism.

There is an ongoing debate in the education community about which approach is more
effective between (minimally-guided) constructivism and direct instruction and, more generally,
instructivist approaches. A fundamental difference in the definition of learning is at the
heart of the debate. On the one hand, those favoring instructivism believe that learning
is a change in the brain resulting from the storage of new information and thus argue
that direct instruction is the most efficient and easy method for learning. On the other
hand, constructivists view learning as a change in knowledge that is only valuable with
corresponding changes in learners’ skills, such as specific problem-solving, and soft skills, such
as collaboration. These changes are more challenging to study in controlled experiments
than specific learning results, leading to another criticism of constructivism. The research
methods employed in constructivism, for example, design-based research, are blamed for poor
scientific rigor. According to Margulieux et al. [2019, sect. 8.2.1], the most accepted answer –
which we agree with – is that “scientific rigor is not worth research [. . .] conducted in sterile
environments (i.e., labs) that are fundamentally different from the authentic environments
(e.g., classrooms) in which the research will be applied”.

Methodological discussions aside (because they are out of the scope of this thesis),
supporters of more instructivist approaches argue that they are more efficient and effective in
developing the necessary knowledge and skills and are less time-consuming. The most signifi-
cant criticisms came from Kirschner, Sweller, and Clark [2006] in the article “Why Minimal
Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist,
Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching”. Based on cognitive
science research, they argue that direct instruction is more effective than minimal guidance
approaches. They bring evidence that expertise is gained through exposure to many examples,
that beginners benefit from much guidance, and that working on complex and authentic
examples is too mentally taxing for novices who are not yet accustomed to processing much
new information at once.

Several studies have offered counterarguments to these criticisms, leading to a productive
discussion found in the book by Tobias and Duffy [2009]. In general, we concur with Taber

2.5. MAJOR LEARNING PARADIGMS 43

[2012] asserting that it is overly simplistic to categorize all constructivist methods as “minimally
guided”. Indeed, some constructivists embrace entirely the philosophy of discovery learning
(see 5.1.1 in part II), which emphasizes minimal guidance and encourages students to
explore and learn independently. However, Taber [2012, p. 39] proposes a “more moderate”
constructivism, in which the guidance adapts to the situation.

[T]he level of teacher guidance (a) is determined for particular learning activities
by considering the learners and the material to be learn; (b) shifts across sequences
of teaching and learning episodes, and includes potential for highly structured
guidance, as well as more exploratory activities.

According to Taber, this approach aligns with the concept of student-centered instruction
but is not the same as minimal guidance. He advocates for varying the level of support
provided, a concept known as scaffolding. This idea comes from Vygotsky and is preeminent
in his production [see, e.g., Vygotsky, 1978], but it has been formalized by Wood, Bruner,
and Ross [1976]. They defined scaffolding as a process that enables a child or novice to
accomplish a task or reach a goal that learners would not be able to achieve independently.
This process is made possible by controlling the elements of the task that are initially beyond
the learners’ ability, allowing them to focus on and complete only the elements within
their competence. Taber acknowledges that if learning is viewed as a cyclical interaction
between personal perspectives and experience, the complete lack of external guidance can
only exacerbate the formation of unique worldviews. He believes society and education should
aim to mitigate this by promoting the development of perspectives that align with general
agreement. Therefore, Taber [2012, p. 57] recommends a form of constructivism centered on
the student but directed by the teacher, which he refers to as “optimally guided instruction”.

The aim of constructivist teaching then is not to provide ‘direct’ instruction, or
‘minimal’ instruction, but optimum levels of instruction. Constructivist pedagogy
therefore involves shifts between periods of teacher presentation and exposition,
and periods when students engage with a range of individual and particularly
group-work, some of which may seem quite open-ended. However, even during
these periods, the teacher’s role in monitoring and supporting is fundamental.

Guzdial, in the context of informatics, also suggests a balance between hands-on projects
and direct instruction. However, this does not mean returning to traditional lecture-based
approaches but instead incorporating active learning techniques.

Students in computing should work on projects. It’s authentic, it’s motivating,
and there are likely a wide range of benefits. But if you want to gain specific skills,
e.g., you want to achieve learning objectives, teach those directly. Don’t just
assign a big project and hope that they learn the right things there. If you want
to see specific improvement in specific areas, teach those. So sure, assign projects
— but in balance. Meet the students’ needs AND give them opportunities to
practice project skills.

And when you teach explicitly: Always, ALWAYS, ALWAYS use active learning
techniques like peer instruction. It’s simply unethical to lecture without active
learning. [Guzdial, 2019b]

44 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

2.5.3.6 Optimal guidance in constructivism

It is worth noting that this debate is not necessarily a zero-sum one, with many researchers
and educators recognizing the value of both approaches. Mixed approaches combine both
constructivism and direct instruction elements and can lead to more effective learning outcomes
by leveraging the strengths of both. Students may engage in self-directed, discovery-based
learning activities and problem-solving tasks while also receiving direct instruction and guidance
from the teacher as a form of scaffolding. This can allow students to actively construct their
own understanding of the material while also ensuring they have a solid understanding of
key concepts and skills. The type of instruction used should be based on the learner’s needs
and what is most appropriate. For instance, when introducing novice programmers to Java,
a more direct approach would be more efficient, but this type of instruction may lead to
shallow learning and loss of motivation. On the other hand, when the learners are already
experienced with Python, a constructivist activity that scaffolds the connection between new
Java knowledge and prior Python knowledge will likely support their motivation (since it
should be active, reflective, and based on previous knowledge) and help them learn Java
more deeply without significantly affecting efficiency. Ultimately, a critical question around
constructivism is still which is the optimal amount of guidance to support learning, and that
should vary depending on the context.

To wrap up, we saw how lecture-based instructivist approaches are still prevalent in
informatics and, more specifically, programming education. At the same time, the problem
with introductory programming and the related difficult access to informatics testify that
direct instruction alone is insufficient. We agree with Taber [2012], Guzdial [2019b], and in
general, with the idea of adopting a constructivist approach but balancing it to offer variable
scaffolding and, thus, constantly adapting it to a particular context and the specific moment
in the learning path. We are aware that for introductory programming, where essential critical
knowledge and technical skills are involved at the same time, the level of scaffolding may
also be high (thus far from minimally-guided approaches). However, we maintain that the
focus must remain on the learners and take into account, first and foremost, the construction
of knowledge rather than cognitive processes (while important and to be considered) to
foster meaningful learning and not undermine motivation. On the other hand, we believe
it is essential to adopt the zone of proximal development perspective as a reference for
finding optimal guidance to provide the proper scaffolding in the context of active activities...
“Always, ALWAYS, ALWAYS use active learning techniques”! [Guzdial, 2019b]

2.6 Influential active methodologies with scaffolding

Optimal guidance is an educational strategy that seeks a balance between direct instruction
and more active, constructivist activities. Direct instruction provides students with the
foundational knowledge they need to understand new concepts and skills. On the other
hand, constructivist activities allow students to apply and deepen their understanding through
hands-on, experiential learning (see 2.5.3.6 and, more generally, 2.5.3).

By guiding the development and use of an active methodology, optimal guidance helps

2.6. INFLUENTIAL ACTIVE METHODOLOGIES WITH SCAFFOLDING 45

ensure that instructional activities are appropriately tailored to the learner’s needs and aligned
with the desired outcomes. Thus educational design may involve incorporating a mix of
direct instruction and constructivist activities, resulting in a continuous scaffolding that can
enable students’ zone of proximal development. Ultimately, optimal guidance aims to create
a learning environment that supports student engagement and motivation while also helping
students build the knowledge and skills they need to succeed.

After a more general introduction that frames optimally guided approaches in the context
of introductory programming education, some approaches and methodologies that balance
active, constructivist activities with various forms of scaffolding follow. We selected them
because we believe they can help students understand programming concepts and build
related strategic knowledge (see 2.3.1).

What definition of active learning

Before proceeding, it is appropriate to specify the definition of active learning this thesis
subscribes to. The following definition synthesizes our interpretation of active learning from
the various definitions and frameworks reported in 2.4. Active learning is an approach to
instruction that engages students in the learning process through activities and discussion in
class, as opposed to passively listening to lectures. Active learning approaches can include
but are not limited to, problem-based learning, case-based learning, inquiry-based learning,
collaborative learning, and peer instruction. Additionally, active learning involves a reflective
phase where students are given the opportunity to reflect on their learning and experiences
and to make connections between their prior knowledge and new information or skills acquired.
This definition emphasizes that active learning involves both an initial active phase, where
students are engaged in activities and discussions, as well as a subsequent reflective phase,
where students are encouraged to reflect on what they have learned and how it relates to
their prior knowledge and experiences. This reflective phase is essential to the active learning
process, as it promotes deeper learning and metacognition.

2.6.1 The introductory programming context

Today, most education research agrees that active methodologies – whereby learners actively
explore and construct knowledge – are helpful for learning [Prince, 2004; Freeman et al., 2014].
On the other hand, educators often have to teach specific introductory or technical concepts
that students are unlikely to learn or even discover through free exploration informatics also
faces this issue since it is a discipline with many technical aspects, especially in introductory
programming [Guzdial, 2017]. As a result, in introductory programming courses, a common
approach remains directly teaching language elements, usually followed by their application
in programming assignments. Direct instruction of technical concepts does not seem ideal
for novice learners: it may bore them, also because they may not grasp the significance
of the presented concepts from their perspective [Caspersen, 2018]. This can result in low
motivation and poor learning outcomes.

As recognized by Robins [2019, p. 356], “the teaching of knowledge structures must
be anchored in, and learning may most effectively emerge from, practical experience and

46 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

examples”. Also, “[t]his highlights again the need for well-designed example tasks and the
practical opportunities for students to engage with them”. Furthermore, Robins recognizes
two essential features of programming tasks.

• Compiler feedback is “immediate, consistent, and (ideally) informative”. We add that
this can allow for impartial and accurate feedback from the artifact one is creating.

• The “reinforcement and motivation derived from creating a working program can be
very powerful”.

In 1.4.1, we presented the cognitive load theory, a general theory describing how much a
task loads a student’s working memory. Often problem-solving tasks can put a high load on
students. Extensive research in informatics education investigates the relationship between
learning to program and cognitive load. Robins [2019] summarizes four principles relevant to
our work.

The worked-out-example effect suggests that extraneous load is reduced by
studying worked examples of problems rather than trying to solve the problems
from scratch, and similarly the completion effect suggests that load is reduced
when the learner starts with partial solutions. Other examples include the
guidance-fading effect, stating that novices need extensive support that can be
reduced over time, and the isolated/interacting elements effect, stating that tasks
with high element interactivity will be learned more successfully if elements are
first introduced in isolation before being combined. [Robins, 2019, p. 344]

Moreover, according to Caspersen [2018, p. 117], “a good example must effectively com-
municate the concept(s) to be taught. There should be no doubt about what exactly is
exemplified. [. . .] Conceptual knowledge is improved by best examples [. . .], where the
best example represents an average, central, or prototypical form of a concept. To minimize
cognitive load, an example should exemplify only one new concept (or very few) at a time.”

In 1.4, we also discussed the Learning Edge Momentum hypothesis. We briefly recall that
it is an explanation (to this day one of the most widely accepted) for the fact that, while
many students fail introductory programming courses, many students perform exceptionally
well. The hypothesis is that given a specific target concept to be learned, the acquisition
of the earlier concepts facilitates (i.e., momentum toward success) the acquisition of the
later concepts. Similarly, failure to acquire the earlier concepts makes learning difficult (i.e.,
momentum toward failure).

Robins [2010] argues that programming is a domain of highly integrated topics with clear
and well-defined edges (like puzzle pieces). That is why the LEM effect is exceptionally strong
in programming, often resulting in bimodal results. Again according to Robins, teachers and
educators must try to establish positive momentum from the very beginning of introductory
programming courses, and the introduction of a concept is a particularly critical stage for
this goal. “[P]articular attention should be paid to the careful introduction of concepts
and the systematic development of the connections between them” because “there is no
point in expecting a student to acquire a new layer of complex concepts if the foundation of
prerequisite concepts does not exist” [Robins, 2019, p. 360].

2.6. INFLUENTIAL ACTIVE METHODOLOGIES WITH SCAFFOLDING 47

2.6.2 Problem-based learning

According to Prince and Felder [2006, p. 128], “[p]roblem-based learning (PBL) begins when
students are confronted with an open-ended, ill-structured, authentic (real-world) problem
and work in teams to identify learning needs and develop a viable solution, with instructors
acting as facilitators rather than primary sources of information”.

Problem-based learning was first introduced in the 1960s at McMaster University. Tra-
ditionally, medical students had to memorize much information that they perceived to be
superfluous to medical practice, but they were very involved when they actually worked with
patients [Barrows, 1996]. Therefore, they successfully experimented with a new methodology
in which students are presented with problems (clinical cases) and have to study autonomously
the material needed to understand and (possibly, but not necessarily) explain them. This
methodology has been used in many other fields like Law, Social sciences, and Engineering9.

According to a recent review [Bawamohiddin and Razali, 2017] on PBL for teaching
programming, the problem is used to initiate and trigger the learning process. Problems
must be ill-structured, real-world situated, complex, open-ended, motivational, unique, and
solvable. Other researchers recognize similar characteristics [see, e.g., Oliveira et al., 2013;
Peng, 2010].

Drawing from medical education, PBL has been often implemented with the so-called
“seven-step method” (adopted by many informatics educators as well). The steps, as
synthesized by Bawamohiddin and Razali [2017, p. 2036], are:

1) terms and concept clarification;

2) problem identification;

3) brainstorming;

4) explanatory model sketching;

5) learning issue formulation;

6) self-learning and

7) information synthesising and testing.

Steps from 1 to 5 and 7 are conducted in small groups, while step 6 is individual study time.
Usually, the process is quite long: for example, steps 1-5 can take from half an hour to several
hours, step 6 (individual study) can take a week or more, and finally the last step can take
other 2 to 10 hours (e.g., according to the proposals of PBL for programming, by Nuutila
et al. [2008] and Bawamohiddin and Razali [2017]). Teachers act as facilitators: they guide
students by motivating them, helping them understand the problem and guiding them in
establishing the relevant learning objectives. On the other hand, they usually do not directly
teach the target concepts.

Implementing problem-based learning can be challenging for instructors as it requires
subject expertise and flexibility. Instructors may have to step out of their comfort zone
as student teams may take unpredictable and unfamiliar directions. PBL also puts more

9For a recent comprehensive handbook, see Moallem et al. [2019].

48 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

responsibility on students for their own learning. Many students may initially have a negative
reaction to PBL, which can be intimidating for unprepared instructors. Therefore, instructors,
should also use scaffolding, providing the optimal amount of guidance (see 2.5.3.6) to students
new to PBL and gradually reducing it as they become more familiar with the method and the
subject [Tan et al., 2003].

PBL has been experimented with in informatics courses, especially for programming.
Reviews of experiences of using PBL show that it proved to be effective for introductory
programming [see, e.g., Bawamohiddin and Razali, 2017; Oliveira et al., 2013; O’Grady, 2012].
In particular, Nuutila et al. [2008] successfully used the seven-step method in introductory
programming courses. They found PBL very useful for replacing (at least partially) lectures.
They respected the original PBL view from medical education: the focus is not on solving the
problem but on autonomously set learning goals to acquire the knowledge needed to understand
and explain “a case”. Hence, they recognize that “some aspects of the programming skills
require supplementary learning methods” like “supervised programming exercises [. . .] to
teach the use of programming tools and effective work practices [. . . and also, at the end
of the course,] a larger programming project” [Nuutila et al., 2008, p. 64]. However, they
acknowledge that, because of the nature of informatics and software development, elements
traditionally more resembling “project-based learning”, like focus on solving open-ended,
multi-answer problems or working on complex, real-world tasks, have been integrated by
researchers in PBL for programming. On the other hand, Kay et al. [2000] warns that calling
the small and well-defined exercises used in conventional courses ‘problems’ (as many authors
tend to do, as well as us) is not enough to claim to use PBL.

Deek et al. [1998, p. 314] discusses the so-called “alternative method” specific for teaching
programming, that is “to introduce the problem in the lecture, engage the students in defining
the statement of the problem, and allow the students to seek possible solutions independent
of the programming language. Once the problem is solved, the language features necessary
to implement the solution are presented. Finally, equipped with both the algorithmic solution,
which the students develop, and the language syntax, the complete solution is translated into
code and is then tested.” This approach (which shows some, but not all, of the characteristics
of PBL) is relevant to us because it shares with our design important features (e.g., a late
direct instruction phase) of PS-I approaches (see the following 2.6.3.2). To it, we add the
motivational aspect supported by the initial failure. Also, we do not explicitly distinguish
between ‘algorithmic design’ and ‘implementation’ since the examples we propose are directly
linked to language features. However, precisely because they are focused – as we will see – on
the necessity of those constructs, we argue that our methodology can be helpful to stimulate
strategic knowledge rather than just syntactic knowledge (see 2.3.1).

2.6.3 Activities and difficulties that prepare for instruction

In educational research, a growing body of literature argues that it is better not to start
learning a concept from direct instruction.

For example, in A Time For Telling, Schwartz and Bransford [1998] describe a method
in which undergraduate students analyse contrasting cases to develop prior knowledge that
primes them to learn from direct instruction. Contrasting cases are presented side-by-side

2.6. INFLUENTIAL ACTIVE METHODOLOGIES WITH SCAFFOLDING 49

and consist of small sets of data, examples, or strategies. They recognize that “[n]oticing
the distinctions between contrasting cases creates a ‘time for telling’; [that is] learners are
prepared to be told the significance of the distinctions they have discovered”. Ultimately, they
show that engaging in “analyzing contrasting cases [representing a target concept] provided
students with the differentiated knowledge structures necessary to understand a subsequent
explanation at a deep level [on that concept]”.

In teaching statistics to advanced students, Schwartz and Martin [2004] provide further
evidence to support their method (i.e., Invention) to prepare students before instruction.
They demonstrated the efficacy of invention activities preceding direct instruction, despite
such activities failing to produce canonical understandings and solutions during the invention
phase.

Furthermore, Bjork and Bjork [2011, p. 57] – discussing the results of several psychology
studies in which they took part between 1975 and 2009, together with what they learned
from their teaching experience (also as teacher-researchers) – affirm the following.

Conditions of learning that make performance improve rapidly often fail to support
long-term retention and transfer, whereas conditions that create challenges and
slow the rate of apparent learning often optimize long-term retention and transfer.

They use the expression desirable difficulties to describe those challenging conditions that
are “desirable because they trigger encoding and retrieval processes that support learning,
comprehension, and remembering”. Among these difficulties, Bjork and Bjork [2011] recognize
the generation effect, that is “the long-term benefit of generating an answer, solution, or
procedure versus being presented that answer, solution, or procedure”.

About learners experiencing difficulties in preparatory activities, various forms of failure in
activities preceding instruction are more and more investigated in educational research as a
drive for better learning outcomes.

For example, VanLehn et al. [2003] conducted a study to help developers of intelligent
tutoring systems understand which tutors’ activities lead to success, confronting problem-
solving episodes where tutoring does and does not result in learning a physics principle. They
found that learning was infrequent when students did not reach an impasse (i.e., “when a
student gets stuck, detects an error, or does an action correctly but expresses uncertainty
about it”) in problem-solving situations despite the tutor explicitly explaining the target
concept. Conversely, “when students reach an impasse, they discover that they need to
learn something, so they may adopt a learning orientation”, making explanations more
effective. Therefore, instructors should encourage impasses and delay instructional structure
(e.g., feedback, questions, or explanations) until learners reach some form of failure and are
consequently unable to proceed.

2.6.3.1 Productive Failure

Kapur and Bielaczyc [2012] leap forward in combining these two significant trends emerging
from research – i.e., preparatory activities before instruction and failure as a drive to better
prepare for learning – and propose the Productive Failure (PF) learning design. In the last ten

50 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

years, Productive Failure has generated a considerable amount of research, much of which
seems to confirm its effectiveness [Kapur, 2016; Sinha and Kapur, 2019].

PF integrates four interdependent mechanisms: “(a) activation and differentiation of prior
knowledge in relation to the targeted concepts, (b) attention to critical conceptual features of
the targeted concepts, (c) explanation and elaboration of these features, and d) organization
and assembly of the critical conceptual features into the targeted concepts” [Kapur and
Bielaczyc, 2012].

PF learning design develops in two phases. The generation and exploration phase –
when students engage in complex problem solving and generate multiple representations and
solution methods (RSMs), followed by the consolidation phase – when teachers organize and
assemble relevant students’ RSMs into canonical RSMs. Three core design principles guide
PF in order to embody the cited four interdependent mechanisms.

1. Create problem-solving contexts that involve working on complex problems
that challenge but do not frustrate, rely on prior mathematical resources,
and admit multiple RSMs (mechanisms a and b);

2. Provide opportunities for explanation and elaboration (mechanisms b and
c); and

3. Provide opportunities to compare and contrast the affordances and con-
straints of failed or sub-optimal RSMs and the assembly of canonical RSMs
(mechanisms b–d).

[Kapur and Bielaczyc, 2012, p. 49]

These core principles translate into many specific principles to guide the implementation
of the two phases. We briefly report only those relevant to our work, all related to the
problem-solving phase. “Designing the activity: ‘sweet-spot’ calibration of complex problems”
involves challenging but not frustrating students. “Complexity of the problems” requires
complex problems’ scenarios allowing multiple RSMs. “Prior mathematical resources of
students” states that the problem complexity also depends on students prior knowledge,
around which problems must then be built.

Productive Failure is often associated with problem-based learning (see 2.6.2). However,
according to Falkner and Sheard [2019], “[w]hile associated in structure with problem-based
learning approaches, productive failure has a specific emphasis on the use of failure as a
pivotal point in the learning process”.

2.6.3.2 PS-I approaches

In a broader perspective, Loibl et al. [2017] made a comprehensive attempt to summarize
the features that define approaches in which preparing activities precede instruction, terming
them PS-I. They consider Productive Failure and Invention as emblematic examples of PS-I
approaches.

PS-I approaches involve an initial problem-solving phase in which learners are asked to
develop solutions to a given problem. Then, the canonical solution and related target concepts
are introduced in the following formal instruction phase. PS-I aims to most effectively combine

2.6. INFLUENTIAL ACTIVE METHODOLOGIES WITH SCAFFOLDING 51

these two core learning activities (i.e., problem solving and formal instruction) while preserving
their strengths and limiting their disadvantages.

PS-I is different from other instructional methods with prior instruction because it demands
learners to engage in problem solving before receiving the target knowledge. At the same time,
the explicit instruction phase sets PS-I apart from other inductive methods – e.g., discovery
learning [Loibl and Rummel, 2013] and PBL (see 2.6.2), where different forms of support
guide learners to discover the target knowledge. In PS-I, by contrast, problem solving is not
designed to acquire the target knowledge since that is what the instruction phase is dedicated
to. The originality of this approach lies not in its constitutive elements, i.e., inductive problem
solving and explicit instruction, but in combining them in a specific order.

In the problem-solving phase, students face a problem that requires applying the knowledge
they have yet to learn. For example, in Glogger-Frey et al. [2015], practice teachers received
learning diaries excerpts and faced the problem of inventing criteria to evaluate the use
of learning strategies in them. The targeted evaluation criteria for learning diaries were
introduced and discussed later during the following instruction phase.

Loibl et al. [2017] recognize two main variants of the problem-solving phase. One is that
of Productive Failure approaches [Kapur and Bielaczyc, 2012; Loibl and Rummel, 2013],
which require presenting data in a rich story that does not highlight the deep features of
the topic and for which the solution cannot be intuitively guessed. The other variant is that
of Invention approaches [Schwartz and Martin, 2004; Glogger-Frey et al., 2015], in which
contrasting cases serve to give students the relevant information.

They also distinguish two main variants in the implementation of the instruction phase.
In Invention-like approaches, the canonical solution is presented without referring back to
student solutions. In contrast, in PF-like approaches, the teacher starts from the students’
solutions and uses them to explain the relevant elements of the canonical solution.

The efficacy of delayed instruction over instruction-first approaches has been shown across
diverse learning domains and student populations by a substantial body of research [Loibl
et al., 2017; Kapur, 2016]. Such efficacy lies particularly in three cognitive mechanisms that
need to be activated in learners during the problem-solving phase: prior knowledge activation,
awareness of their knowledge gaps, and recognition of deep features of the problem [Loibl
et al., 2017].

In the last few years, given the consistent results supporting PS-I, research has investigated
whether it is possible to increase this learning design’s effectiveness further, examining different
PS-I approaches. One of the leading research questions is whether the problem-solving phase
should be scaffolded or not. According to Sinha et al. [2021], problem solving could be designed
to nudge learners towards the canonical solution (i.e., success-driven scaffolding), towards
sub-optimal solutions (i.e., failure-driven scaffolding), or to let learners experience failure
without any form of scaffolding (in the problem-solving phase), resembling a straightforward
Productive Failure design.

52 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

2.6.4 UMC approaches

2.6.4.1 Use-Modify-Create

Lee et al. [2011] proposed Use-Modify-Create (UMC) as a way to engage young learners in
the development of Computational Thinking. It is a three-stage progression in which students
are increasingly engaged in interacting with computational artifacts.

In the first phase, students Use an artifact created by someone else (e.g., play a computer
game or run a simulation). In the second phase, students begin to Modify that artifact (e.g.,
starting from cosmetic changes and moving towards behavioral changes). Iteratively, they
begin to Create their own (computational) artifacts.

Moving through this progression, it is important to maintain a level of challenge
that supports growth while limiting anxiety. As Repenning [. . .] notes, students
can maintain their sense of cognitive flow [. . .] as they progress iteratively through
a series of projects. In this work, students tackle progressively higher design
challenges as their skills and capacities increase. Activities that were once “too
hard” and were anxiety-inducing become possible with appropriate, incrementally
challenging experiences. Conversely, boredom will set in if challenges don’t keep
pace with growing skills. [Lee et al., 2011, p. 35]

The three stages are not rigidly separated: they are fuzzy, with students going back
and forth several times. Lee et al. [2011, p. 36] suggest that moving along the phases
“requires increasing levels of abstract representation and understanding” and gives students
an “increasing ownership of their learning”.

Lee et al. [2014] propose different ways to introduce computational thinking in K-8.
Among those, they mention both the transition from “puzzles to open sandbox” (exemplified
with the Code.org K-5 curriculum, in which students have to solve a series of puzzles before
reaching the open environment where they can create freely) and the use of UMC progression
for computational science investigations (reporting observed transfer from using models in
simulations to building models to solve community problems).

In middle school, Lytle et al. [2019] compare a UMC course with a “create-first” course
on science simulations with block programming. The pupils in the UMC group perceived
the activities to be more accessible and felt a greater sense of ownership of the work. The
teachers in the UMC group gained confidence while delivering the UMC sequence, requiring
less and less support from researchers and even managing to add new tasks. In contrast, the
teachers in the other group felt the need for more scaffolding.

2.6.4.2 PRIMM (Predict-Run-Investigate-Modify-Make)

Stemming from the original UMC proposal, various specializations have been proposed.
PRIMM (Predict, Run, Investigate, Modify, Make) is a informatics-specific model for teaching
text-based programming in middle and high school. Sentance and Waite [2017] present
PRIMM as primarily built on UMC research but also strongly influenced by Vygotsky’s
sociocultural theory of learning (more on this in Sentance et al. [2019b]), as it leverages

2.6. INFLUENTIAL ACTIVE METHODOLOGIES WITH SCAFFOLDING 53

teacher mediation, language, and dialogue to aid understanding. Indeed, PRIMM particularly
emphasizes reading and tracing as fundamental activities before writing. It expands the Use
stage of UMC into Predict, Run, and Investigate, thus increasing scaffolding at the beginning.
Students are asked to read the code and predict how the (part of the) program will work before
executing it (Use). Then they investigate the program structure with program comprehension
tasks at different levels of abstraction, which is in line with the original goal of PRIMM,
i.e., teaching text-based programming to secondary students. Unlike UMC, which is more
CT-inspired and STEM-inspired, PRIMM is indeed informatics-specific. The subsequent, more
open phases are also scaffolded: Modify requests are narrow scope, and Make assignments
have explicit and limited objectives.

A vast 2018 research study (14 teachers and 300 students) shows improved understanding
by PRIMM students and positive feedback from teachers. Sentance et al. [2019a] report that
PRIMM helped structure productive lessons and engaged low-achieving students; authors
argue that PRIMM can be easily adapted to a wide range of abilities and objectives.

2.6.4.3 TIPP&SEE

To shed light on student learning during the Use and Modify stages, Franklin et al. [2020a]
conducted an extensive study on 536 students (age 9-14) on a Scratch-based UMC curriculum,
Scratch Encore, which attempts to balance structure with flexibility and creativity. Students
engaged in UMC activities following the TIPP&SEE algorithm (Title, Instructions, Purpose,
Play, & Sprites, Events, Explore), which provides more scaffolding to the UMC stages. This
approach effectively balanced structure and student agency.

Salac et al. [2020] conducted another study that showed that students who followed
TIPP&SEE performed significantly better on all intermediate and difficult assessment questions.
In addition, the authors define more formally the TIPP&SEE approach as “a metacognitive
learning strategy that further scaffolds student learning” (in the Use and Modify phases, as
well as PRIMM) by trying to balance free exploration with learning, especially to overcome
the play paradox10).

Like PRIMM, it is influenced by Vygotsky’s theories. Specifically, it seeks the ‘Zone of
Proximal Flow’ by providing more scaffolding in the Use andModify stages to benefit struggling
students while trying to create an optimal experience, that is through “learning experiences
that are not too challenging as to overwhelm students, but not too easy as to lead to little
learning”. However, compared to PRIMM (aimed at text-based programming), it is designed
for Scratch, making it an implementation of UMC for young students with no programming
experience. Similarly to PRIMM, TIPP&SEE uses program reading and comprehension
techniques: its structure is explicitly based on the studies on ‘reading comprehension’ in
natural languages (especially on ‘previewing’ and ‘text structure’ constructs). In a later study,
Franklin et al. [2020b] tries to shed light on the conduct of the TIPP&SEE students, showing
different and more effective learning behaviors than the control group.

10The play paradox is summarized effectively by journalist Hulbert [2007], who, in her article ‘The Paradox
of Play’, states that “the crusade to restore the primacy of play runs the risk of eroding the very playfulness
the crusaders are eager to see more of ”.

54 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

In general, both PRIMM and TIPP&SEE methodologies have been tested in different
contexts [e.g., Sentance et al., 2019a; Franklin et al., 2020b], proving to be engaging, effective
even for low-achieving students and appreciated by teachers. Furthermore, using PRIMM
and TIPP&SEE seems to increase confidence in teaching introductory programming for
inexperienced teachers.

2.7 Languages for teaching programming

One form of optimal guidance concerns focusing on the type of programming language
chosen in an introductory programming learning path. Up to this point, every consideration
we made has been independent of the programming language. However, it is logical to
assume that the language used to learn programming is a very impactful variable in learning
outcomes. Indeed, there is a lengthy and still active discussion in informatics education and
its community involving researchers, educators, teachers, and to some extent, legislators
about which language is most appropriate for teaching programming.

It is out of the scope of this thesis to get into this discussion. However, we emphasize that
simple languages with fewer syntactic elements are increasingly emerging as more suitable for
learning programming. For example, Wainer and Xavier [2018] compared the same course in
C and Python and found that Python students had a higher probability of passing the course
and better grades on the exam. Moreover, learning programming with a simple language does
not seem to interfere with learning a more complex language later. For example, Mannila
et al. [2006] found no particular disadvantage in students who had studied Python before
switching to Java. In addition, two studies argue that Python is good preparation for learning
C++ later [Enbody et al., 2009; Enbody and Punch, 2010].

These indications in favor of using Python for teaching programming because of its
lighter syntax confirm that learning syntax is one of the most common and tough challenges
among novices. Denny et al. [2011] discovered, for instance, that even the best students
submit source code with syntax errors half of the time, and fragile students do so at a 73%
rate. Altadmri and Brown [2015] examined 37 million compilations by 250.000 students and
discovered that mismatched brackets, the most frequent syntax error, appeared in almost
800.000 compilations. Stefik and Siebert [2013] demonstrated the difficulties that beginners
encounter in understanding syntax by finding that popular programming languages Java
and Perl are not easier to understand than a random language. It is interesting to note
that students find learning syntax more difficult than teachers [Piteira and Costa, 2013],
which may help explain why many programming classrooms make little effort to explain
syntax explicitly. According to Lister [2016], learning programming concepts, syntax, and
problem-solving simultaneously is likely to raise students’ cognitive load too high. As the
cognitive load increases, the Learning Edge Momentum increases as well (see 1.4). This
situation may result in novice programmers acting like younger students while learning to
write [Hermans, 2020].

Broadening the perspective on learning languages in general (beyond just programming
languages), it was found that learning proper punctuation takes time [Fayol and Lemaire,
1989], and novice students frequently temporarily forget what they already know [Simon, 1973].

2.7. LANGUAGES FOR TEACHING PROGRAMMING 55

Long-term practice can hasten the process of mastering proper punctuation [Leonard, 1930].
Additionally, research demonstrates the value of repetition in language learning. For instance,
a word must be read seven times in order to be retained in long-term memory [Verhallen and
Verhallen, 1994]. Since learning a programming language and learning a natural language
have many similarities (e.g., requiring students to learn both semantics and syntax), Hermans
and Aldewereld [2017] and Portnoff [2018] suggest that programming education could be
improved by using instructional techniques used in natural language teaching.

Building on this kind of assumption, some informatics education research has tried to
define specific languages for learning programming as an ideal scaffolding, that optimal
guidance we have written about and which is the focus of this review. The search for optimal
guidance can be declined (other than the search for specific methodologies that balance
autonomy and support) as the development of programming languages for learning, with
precise characteristics to benefit novice students learning to program. Previous research has
identified three distinct approaches to languages for introductory programming [Brusilovsky
and Others, 1994], and we report them here as described by Hermans [2020].

Mini-languages Mini-languages are languages that are small and especially
designed to support learning to program. A well-known example of a mini-
language is Papert’s LOGO [Papert, 1980]. More modern examples of mini-
languages are Scratch [Resnick et al., 2009] and Karel the Robot [Becker, 2001].
Mini-languages are said to “provide a solid foundation for learning a general
purpose language” [Brusilovsky et al., 1997], but learning a mini-language can
also be a goal in itself, leading to the acquisition of algorithmic thinking.
Sub-languages In the sub-language approach, programming is taught to novices
using only a set of commands from a bigger programming language, which
typically is one that is used in practice such as Pascal or later, Java. Initially
the idea of sub-languages was not to have them successively grow, but to simply
select a subset to teach. Examples are Helium, a subset of Haskell for educational
purposes [Heeren et al., 2003], and MiniJava [Roberts, 2001] and ProfessorJ [Gray
and Flatt, 2003] for Java.
Incremental approach The incremental approach first teaches a small subset
of a programming language where each subset introduces new programming
language constructs. This approach was first implemented for PL/1 by Holt et al.
[1977] and later also applied to Fortran [Balman, 1981] and Pascal [Atwood and
Regener, 1981]. Some other versions of incremental teaching used subsets that
were explicitly not arranged as a hierarchy where “higher level” contained the
“lower level” but instead divided the language into overlapping languages like
chapters in a textbook would [Tomek et al., 1985]. More recently, DrScheme
used a similar approach for Scheme [Felleisen et al., 2004]. [Hermans, 2020,
p. 260]

Building on the incremental language approach and deeply inspired by the spiral approach to
learning programming by Shneiderman [1977], Hermans [2020] developed a gradual language,
Hedi. Shneiderman [1977] proposes the “spiral approach” to learning programming to

56 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

accommodate the cognitive limits of learners. He suggests that programming courses should
begin with a small amount of syntax and simple semantics, then progress to the simplest
forms of the assignment statement and arithmetic expressions step by step. “At each step the
new material should contain syntactic and semantic elements, should be a minimal addition to
previous knowledge, should be related to previous knowledge, should be immediately shown in
relevant, meaningful examples and should be utilized in the student’s next assignment. This
is the spiral approach.” [Shneiderman, 1977, p. 195] Hedi embodies the spiral approach, and
it is based on some of the most effective methods used in natural language education to teach
punctuation to younger students. Similarly to how pupils learn their first written language,
Hedy begins as a small, elementary programming language whose syntax rules gradually evolve
until students are programming Python. In other words, the growth seen in the incremental
approach in Hedi also applies to the syntax, which goes from being very simple to gradually
introducing new elements (brackets, quotes, indentation) and rules. Hedi offers a variety of
levels, each with new commands and a more complex syntax. We hypothesize that, despite
what emerges from the literature and that we, too, agree that an opportunely “simplified”
language helps to support novices in learning programming, it may not be necessary to develop
new languages to achieve this end. Given the existence of languages such as Python, which
are already very abstract and syntactically lightweight (compared to older but still dominant
languages such as C++ and Java), the challenge of finding the right language for learning
– simple enough, expressive and incremental enough – can also be played out on the more
agile terrain of notional machines. In other words, instead of designing and developing a new
language, one can just define an appropriate notional machine (see 2.3.4) starting from an
existing language, textual (e.g., Python) or graphical (e.g., Snap!). Similarly, rather than
developing an incremental language, a progression of notional machines can be defined to
offer novice students the right balance between expressive freedom and support, between
power and simple syntax, along all stages of the introductory programming learning path.
Given the greater simplicity in defining a notional machine, which requires careful analysis and
design but has no implementation costs, the granularity of support could be extremely precise.
Notional machines can change at every learning unit or even at each activity for scaffolding
that is always optimal and adherent to the growing yet building students’ capabilities. Such
incremental support would be more costly to achieve through a programming language,
which would have to be designed and developed in multiple versions (e.g., a progression of
sub-languages), resulting in a multiplication of efforts. Alternatively, the language chosen to
teach programming would have to be incremental by design, making it more complex to design
and develop. On the other hand, moving the challenge of the optimal level of scaffolding
entirely to the notional machine front requires using an existing programming language and
defining notional machines feasible with that specific language and also supported by existing
and usable development environments for learning.

Finally, to show the variety of approaches to programming languages for learning, task-
specific programming languages and teaspoon languages (one of the latest and more specific
forms of task-specific languages proposed by Guzdial [2021]) have recently emerged in
informatics education. Although they enable novices to program, that is, to specify with due
precision the computational processes to be performed by a computational agent, they do

2.8. EMERGENCY REMOTE TEACHING OF CS1 57

not (nor could they) aim to teach students how to program. They are made to be extremely
simple and learned in about 10 minutes. They aim to support non-programming learning tasks
teachers (typically non-informatics) want students to accomplish by leveraging computers
(for automaticity, computational power, and because they can provide meaningful real-world
scenarios). Thus – although their use may convey some general principles about programming
– they are presented and discussed in part II of the literature review (where the focus is indeed
on general principles of informatics and its intedisciplinary aspects), specifically in 5.1.3.

2.8 Emergency remote teaching of CS1

Online learning has grown dramatically and has been extensively studied by educational
researchers. As observed by Rudestam and Schoenholtz-Read [2010, p. 11], institutions
chose modalities of online teaching coherent with “their dominant pedagogical principles
and historical attitudes towards education”. Traditional universities naturally tend towards a
synchronous online approach, while newer distance universities tend towards asynchronous
approaches. Asynchronous formats offer flexible scheduling, thoughtful participation, and
richer and inclusive interchanges [Rudestam and Schoenholtz-Read, 2010]. However, some
profit institutions are accused of using online learning as an excuse to provide low-quality
instruction to many students. By contrast, synchronous approaches offer greater spontaneity
and social interaction [Rudestam and Schoenholtz-Read, 2010]. In either case, students
agree that the instructor is one of the critical elements of the learning experience, which is
confirmed for online courses (see [Rudestam and Schoenholtz-Read, 2010; Bower, 2009]).

Some research found that synchronous approaches provide “learning opportunities to
collaborate [. . . and] better course and program completion rates for students who participate
in synchronous interactions with their teacher and peers rather than relying solely on asyn-
chronous communication” [Bower et al., 2014, p. 15]. Bower et al. [2014, p. 15] recognizes
that synchronous learning allows “remote participants to experience an instructor’s lesson, ask
and answer questions, offer comments in class and generally allow engagement ‘in a similar
manner to on-campus students’ [. . .], providing them with both access to knowledge and
social interaction”11. According to Ihantola et al. [2020], “most studies [outside informatics:
like medicine, physics, engineering] found that video lectures are at least as beneficial for
learning as live lectures [. . .], even though students might prefer live lectures [. . .]”. However,
in their multi-year study on an Algorithms and Data Structures course, they found that
students who preferred to attend face-to-face lectures outperformed in attendance rate and
grades those who favored watching recorded lectures.

Online learning poses challenges for both students and instructors. According to Peachey
[2017], students face a sense of isolation and the need for self-discipline and are required
to develop technological literacy. Instructors who engage in synchronous online teaching
need skills to establish relationships without using paralinguistic features and gestures. Also,
paralinguistic clues are not available for students not sharing their webcams, so instructors
cannot use those clues to check students’ understanding. The webcam is considered a

11Bower refers to blended learning, but talks about the distance students, hence closely matching our
situation.

58 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

fundamental tool to reduce the sense of isolation and develop rapport. Another essential
tool is the chat, which helps check class comprehension by quick polls or short student
answers [Peachey, 2017, p. 146-148]. Moreover, “[s]ocial presence and responses can be
facilitated by a variety of emoticons and voting features providing a mix of communication
and participant management modes” [Bower et al., 2014, p. 19].

Generally, web conferencing use in online education has been positively correlated with
student satisfaction, higher marks, and better learning experience [Bower, 2011], also inside
informatics [Bower, 2009; Coffey, 2010].

While many blog posts Guzdial [2020] have discussed informatics emergency remote
teaching over the past year, giving teaching advice, there is still not much research published
on this specific topic in literature.

On the one hand, informatics educators seem to have been more prepared than other
educators for the online transition, probably because of their familiarity with technology [Crick
et al., 2020; Malmi, 2020]. On the other hand, they expressed concerns regarding online
teaching – both abstract and mathematical concepts in informatics and practical and col-
laborative activities like programming projects, fearing a fallback to more traditional and
transmissive teaching styles [Crick et al., 2020].

Challenges for community colleges during pandemic Tang and Servin [2020] include
difficulty providing essential services (e.g., computers, healthy food, places to concentrate),
need for teachers’ professional development, difficulty adapting hands-on labs and courses
never taught online before, caring for students with special needs, avoiding plagiarism. Authors
claim that some students strongly prefer being face to face because of these limitations.
However, the pandemic has also been an opportunity to update curriculum, methodologies,
and assessments. Our qualitative analysis is in line with these observations.

2.9 Participatory design with teachers

A participatory design approach includes the perspective of users and stakeholders within
the design process of the products they will use [Bjerknes and Bratteteig, 1995]. Derived
from Scandinavian Cooperative Design in the 1960s, this approach was initially developed
in the context of urban planning and applied in other fields such as software development
and product design [Bødker et al., 2000]. This approach has been used for over fifty years in
various fields, such as information technology, human-computer interaction, and workplace
studies.

The participatory design utilizes methods that support mutual learning among participants
to design contextually relevant design solutions cooperatively. The process is usually supported
by a facilitator, who works to make meetings and group interactions easier and more effective.
Facilitators are neutral in terms of content, their focus being the process itself.

Druin [2002] analyzes how users can take part in design processes and defines a framework
with a set of roles: users, testers, informants, and design partners. Users are the primary
audience for an existing technology/artifact; their use of the artifact can be investigated to
improve it. Testers use an artifact that has yet to be released with the aim of developing
it for a larger audience. Informants play an active part throughout the design process and

2.9. PARTICIPATORY DESIGN WITH TEACHERS 59

provide input before, during, and after the product is developed. Partners are acknowledged
as legitimate decision-makers and promoted to a role that equals that of the designers and
researchers.

Participatory design methods such as co-design have also been applied in educational
contexts. Roschelle and Penuel [2006] analyze the key components of co-design, defined
as “a highly-facilitated, team-based process in which teachers, researchers, and developers
work together in defined roles to design an educational innovation, realize the design in one
or more prototypes, and evaluate each prototype’s significance for addressing a concrete
educational need” [Roschelle and Penuel, 2006, p. 606]. For a recent review of participatory
design studies involving teachers, see [Tuhkala, 2021].

In informatics education, participatory methods are not frequently used. Notable recent
exceptions are Coenraad et al. [2022] and Novak and Khan [2022], where co-design is
used with teachers and students to integrate their perspective in their future educational
material/approaches, with a particular focus on the cultural relevance of the curriculum. In
particular, the work by Coenraad et al. [2022] is relevant to our research (see chapter 12),
being about the design of a curriculum that uses the UMC methodology with Scratch.

A final note. 7.5 covers educational theories (i.e., Theory of Didactical Situations) and
methodologies (i.e., Didactical Engineering) we used in our research, which, like participatory
design, do not come from informatics education. Since we exploited them – similarly to
what we did with participatory design – to design learning environments and activities that
could meet teachers’ and students’ needs and expectations, 7.5.3 briefly shows the general
relationships between them and participatory design.

60 CHAPTER 2. TEACHING TO MAKE PEOPLE LEARN TO PROGRAM

Part II

Literature Review – Part 2

61

63

Introduction to part II

The common thread running through this part of the literature review is access to informatics
not through its more traditional programming route but through pathways that are less
professionalizing and technical and more suitable for a broad, potentially younger, population.
Such pathways are especially relevant from a cultural and citizenship perspective. In particular,
the perspective of the big ideas of informatics is central and helpful in guiding educators
and students in recognizing the culturally and scientifically relevant elements of informatics
(beyond its technological dimension). Those who wish to approach it from a scientific and
professional perspective would also benefit from this perspective. Beginning with a reflection
on computational thinking and its relationship with informatics, frameworks, approaches, and
even topics (such as cryptography) helpful in communicating the interdisciplinary value of
informatics to a broad population are presented.

64

Chapter 3

Informatics for All

In the previous part I we explored the most traditionally practiced access to informatics,
through learning introductory programming, appropriate for older or early college students
(indeed, often the literature reviewed is about CS1 courses). On the other hand, this part
aims to review the literature that tackles access to informatics for a broader population,
also starting with younger students. The primarily dimension here is citizenship: informatics
is taught for its cultural value, which is necessary to correctly interpret the world we live
in and act in it. As anticipated in 1.1, the citizenship dimension does not exclude that of
participation, which can come as a consequence.

Indeed, Curzon et al. [2018, sect. 8.1] argue about computing (used as a synonym of
informatics) the following.

Computing does not just develop sophisticated skills such as programming. It
is also a rigorous academic subject akin to physics or history, consisting of
a rich conceptual framework, both around programming and more generally.
Computational thinking is the core skill set that students develop by studying
computing. This too is rich with concepts such as abstraction, decomposition
and generalization. Understanding these concepts is an important part of being
able to do computational thinking. For many aspects of the subject, a solid
understanding of earlier concepts is a prerequisite for understanding later ones
[. . .], especially with respect to programming. [. . .]

The learning of [computing] concepts is therefore a critical part of the subject.

As the expression computational thinking emerges and given its popularity in educational
discourse today, it is worth clarifying it and briefly discussing its relationship to informatics.
This will help to clarify the context of informatics education for younger students in the early
grades and to understand the need to teach the fundamental concepts of informatics from a
cultural and citizenship perspective.

65

66 CHAPTER 3. INFORMATICS FOR ALL

3.1 Informatics and Computational Thinking

Expressions such as computational thinking and coding are becoming increasingly common
in the school world, used by trainers, textbooks, institutional documents, and national laws.
These terms risk generating misconceptions in teachers [Corradini et al., 2017b; 2018] who
have not received rigorous education in the fundamental concepts of informatics, the discipline
in which these expressions are located. However, the expression computational thinking
originates in mathematics education, probably first used by Seymour Papert in 1980 [Papert,
1980]. Papert advocates using programming as an interdisciplinary tool, useful for students
to make abstract concepts concrete and build mental models of what they are learning.
Starting from Piaget’s constructivism, Papert and Harel [1991] theorize a revised version:
constructionism.

Constructionism [. . .] shares constructivism’s connotation of learning as “building
knowledge structures” [. . .]. It then adds the idea that this happens especially
felicitously in a context where the learner is consciously engaged in constructing
a public entity, whether it’s a sand castle on the beach or a theory of the universe.
[Papert and Harel, 1991, ch. 1]

With its potential to simulate worlds, the computer provides each student with different
and meaningful (cognitively and also emotionally) construction materials. Computational
thinking “à la Papert” highlights the high interdisciplinary value of informatics, which
allows the execution of constructed abstractions, that is, the simulation of phenomena and
concepts to be learned. “Programming [is] an interdisciplinary tool for learning (also) other
disciplines” [Lodi and Martini, 2021, p. 884]. Moreover, in Papert’s vision, computational
thinking is always referred to a specific executor (in this, it differs from algorithmic thinking).
Having an external automaton solve a problem, an automaton limited to a narrow set of
instructions, which does not make human inferences, is an excellent exercise for understanding
the problem thoroughly.

On the other hand, in today’s society, permeated with digital devices and applications
and influenced by algorithms governing multiple aspects, it is essential to learn informatics’s
scientific and cultural foundations [Lodi et al., 2017; Lodi and Martini, 2021]. Such learning
is the goal of the movement for computational thinking in school, which originates in the
second half of the 2000s from the highly influential article of Wing [2006]. She defines
computational thinking as computational problem solving, that is, formulating solutions in a
way that is executable by an information processor. We argue that computational thinking “à
la Wing” is precisely “the natural sediment of disciplinary learning of computer science” [Lodi
and Martini, 2021, p. 889], or, in other words, “the conceptual sediment of [its] disciplinary
learning” [Lodi and Martini, 2021, p. 898].

For a more comprehensive review of computational thinking, including its possible def-
initions, an analysis of its nature and elements, its practical implications, and the major
contributions from research, please refer to Curzon et al. [2019].

3.1. INFORMATICS AND COMPUTATIONAL THINKING 67

3.1.1 Why computational thinking belongs in informatics

Chick et al. [2009], discussing signature pedagogies1, assert that “effective teaching results
from core values and principles of our courses and of our disciplines, rather than from generic
views of learning. [. . .] higher-level thinking is inhibited by such generic conceptions and lays
the groundwork for questions about the central values, habits, and ways of thinking within
their disciplines”[Chick et al., 2009, p. 4].

We are aware that disciplinary thinking cannot regard only domain-specific “values and
principles” and must include specific and general aspects. Indeed,

[. . .] domain-specific thinking and domain-general thinking are not dichotomous,
as thinking itself is a complex process involving many different components. [. . .]
Domain-specific thinking is often characterized in terms of its disciplinary content
but also involves more general cognitive components. [. . . For example,] some
aspects of mathematical problem solving are largely discipline specific (e.g., the
knowledge base), some heavily discipline oriented (e.g., strategies and beliefs),
some much like discipline domain-general (e.g., metacognition). [Li et al., 2019,
p. 8]

However, as Lodi [2020a] points out, we keep noticing that educators and policymakers focus
only on the more general aspect of computational thinking.

Voogt et al. [2015, p. 718], analyzing various definitions of computational thinking used
in compulsory education, note a tension between “the ‘core’ qualities of CT versus certain
more ‘peripheral’ qualities”. When it comes to computational thinking, these peripheral
qualities overlap strongly with the so-called “soft skills”. Voogt et al. [2015, p. 719] also
warn that an exaggerated focus on the soft skills of computational thinking at the expense of
its core informatics qualities “runs the risk of diluting the idea of CT, blurring and making it
indistinct from other 21st century skills”.

However, with the growth of the computational thinking movement in education, numerous
unsubstantiated claims about the effects of computational thinking are being spread. Lewis
[2017] reports superficial and optimistic beliefs about computational thinking. For example,
it would automatically transfer to logical thinking, foster perseverance development, help
achieve better results in science and mathematics, and even solve almost any practical problem
in everyday life. While most of these claims are unsupported by research, they “appear in
blog posts, opinion pieces, and other ‘grey literature’” [Duncan, 2019, p. 32]. About this
trend, Denning et al. [2017, p. xiii] remark as follows.

[Computational thinking] is sometimes portrayed as a universal approach to
problem solving. Take a few programming courses, the story in the popular media
goes, and you will be able to solve problems in any field. Would that this were
true! Your ability to solve a problem for someone depends on your understanding
of their context in which the problem exists. For instance, you cannot build
simulations of aircraft in flight without understanding fluid dynamics. You cannot

1A signature pedagogy “engage students in the ways of knowing, the habits of mind, and the values shared
by experts in [a] field” [Gurung et al., 2009, p. xvii].

68 CHAPTER 3. INFORMATICS FOR ALL

program searches through genome databases without understanding the biology
of the genome and the methods of collecting the data. Computational thinking
is powerful, but not universal.

In response to this trend, we believe computational thinking develops within informatics
learning. In particular, its development should be pursued through learning its “core values”
(i.e., the fundamental principles of informatics) rather than by pursuing its “peripheral
qualities” (the very appealing yet generic soft skills). In this, we agree wholeheartedly with
Lodi, who states the following.

[N]on-specialist teachers that most probably never studied informatics in their
schooling or training may tend to stick to some “general versions” of the listed
characteristics (and especially on the peripheral qualities), not necessarily related
to informatics. We believe, by contrast, CT must be understood inside informat-
ics: while many characteristics are (more or less apparently) shared with other
disciplines, we need to focus on their specific “informatical” instantiation. [Lodi,
2020a, p. 10]

3.1.2 Computational thinking and coding

The term coding often refers to a playful introduction to programming activities. Technically,
coding is the act of writing an informatics program and denotes only the more mechanical
phase of writing code. As informaticians, we know that programming is much more than just
coding since it consists of analysis, design, implementation, testing, and debugging. Coding
activities are trendy in schools today. On the other hand, if these activities aim to develop
computational thinking (that is, to solve problems by making use of the fundamental ideas
of informatics), they must necessarily require expressing the solutions in a language that is
understandable and executable by an automaton.

Nowadays, in the lower grades of schools, trainers and textbooks propose activities like
pixel art or coding robots on grids as coding activities. Hands-on activities like these can
be excellent first steps into informatics and toward computational thinking, only if part of a
conscious and scientifically-sound learning path. Teachers should not just make children play,
although the game and fun dimensions are essential. They must highlight the relationship
between such activities and the operation of computers. For example, pixel art2 should not be
(only) a manual, mechanical activity of coloring but an experience of encoding and decoding
information in a precise and systematic way. It should help to understand how computers
represent images, more generally, that computers represent all information by numbers (bits).

On the other hand, it is possible to do problem solving without bothering informatics,
just as it is possible to learn to orient oneself in space without a robot on a grid. Similarly, it
makes no sense to trace all activities that use logical reasoning back to informatics; logic
is a fundamental element of “thinking like an informatician” only when used to make an

2Pixel art is a form of digital art that utilizes graphical software to create images using pixels as the
only constitutive element. It is often proposed as an educational activity for children via simple educational
software, or without computers, as an unplugged activity requiring just paper and colors.

3.1. INFORMATICS AND COMPUTATIONAL THINKING 69

automaton to process information. Educational platforms such as CS Unplugged, Code.org,
and Scratch offer an excellent entry point for teaching informatics concepts as early as
elementary school. Also, as mentioned, computational problem solving can be used to teach
other disciplines effectively.

To summarize, when we talk about computational thinking, we must always consider
two levels. On the one hand, computational thinking is nothing but the cultural sediment of
informatics: we teach informatics principles, and what remains is computational thinking (“à
la Wing”). On the other hand, we must not forget Papert’s dimension. Those informatics
principles cannot be “external” notions; however, they must be transformed into meaningful
building materials in the hands of students so that they concretely realize (and thus understand)
concepts from other disciplines as well.

70 CHAPTER 3. INFORMATICS FOR ALL

Chapter 4

Big Ideas

One way to respond to and capitalize on the challenge of teaching computational thinking is
through the big ideas approach. Research on big ideas in science education has begun to
show how focusing on the scientific core of a discipline (rather than peripheral concepts and
skills) is beneficial for learning.

In the following subsections, we describe what big ideas are, the science education context
in which they emerge, the reasons for and benefits of their formulation, and the general
principles guiding their distillation from an entire body of scientific knowledge. Then we also
introduce the more recent big ideas of informatics by Bell et al. [2018].

4.1 Big ideas of science

In very few words, the big ideas of science are “the key ideas that students should encounter
in their science education to enable them to understand, enjoy and marvel at the natural
world” [Harlen et al., 2015]. There are at least two major frameworks for big ideas in science
education.

The one by Chalmers et al. [2017] sits in the context of STEM education and aims to meet
the interdisciplinary challenges that STEM integration requires. In response to the struggle
to produce in-depth learning (found in the literature), they propose using a framework to
scaffold teachers’ development of integrated STEM curriculum units. The framework is based
on three types of big ideas: “within-discipline big ideas that have application in other STEM
disciplines, cross-discipline big ideas, and encompassing big ideas” [Chalmers et al., 2017].

The other framework arises in science education in response to the widespread perception
among students that science curriculums, usually overcrowded and fragmented, are little
more than a series of unconnected facts with very circumscribed relevance. According to
Harlen et al. [2010], a group of experts in science education, “[p]art of the solution to this
problem was to conceive the goals of science education, not in terms of the knowledge of
a body of facts and theories, but as a progression towards understanding key ideas – ‘big
ideas’ – of relevance to students’ lives”. The result of their work is a first book, ‘Principles
and Big Ideas of Science Education’ [Harlen et al., 2010]. The book immediately receives
much attention, prompting the same authors to a second work to extend the previous one,

71

72 CHAPTER 4. BIG IDEAS

resulting in the publication of their second book on the matter, ‘Working with Big Ideas of
Science Education’ [Harlen et al., 2015].

Our research on big ideas is based mainly on the theoretical and methodological framework
proposed by Harlen and colleagues in their books (particularly the second).

4.1.1 Context and motivation

Harlen et al. [2015, p. 1] introduce the rationale of their work as follows.

To prosper in this modern age of innovation requires the capacity to grasp
the essentials of diverse problems, to recognize meaningful patterns, to retrieve
and apply relevant knowledge. [. . .] Science education [. . .] needs to take
account of changes in the work place that require ability to link science with
engineering, technology and mathematics (STEM), the urgent need for attention
to major global issues such as the adverse impacts of climate change, the positive
and negative influences of student assessment and the growing contribution of
neurosciences to the understanding of learning. All of these add to the reasons for
the development of big ideas to provide a framework for decisions about science
education.

In particular, they identify specific reasons why a framework for developing big ideas of science
is timely.

• Address learners’ perception of science as a fragmented set of facts and theories of
little relevance to them.

• Provide a framework for school activities that support learners in explaining things they
consider relevant.

• Provide a tool for selecting from the massive body of potential curricular content.

• Organize the development of scientific curriculums on progression toward big ideas.

• Concretely support the demand in science education for inquiry-based pedagogy.

• Foster recognition of the connections of STEM disciplines with multiple contexts of
everyday life.

• Support learning systems of connected ideas for understanding the world and our
experiences rather than a series of disconnected knowledge. Indeed, new evidence
from neuroscience shows that connected ideas are more easily and readily used in new
situations.

Harlen et al. [2015] also recognize two additional perspectives in which the framework of
big ideas is relevant, perspectives that pose open challenges in education today.

4.1. BIG IDEAS OF SCIENCE 73

• Student assessment. Traditional tests and exams often present a series of disjointed
questions or problems, encouraging the teaching and learning of disconnected notions.
The impact of this way of assessment holds back the development of an interconnected
system of key knowledge and skills in students. The framework of big ideas can help
move in the right direction, but it must be supported by change on the assessment
front.

• Teacher education. Teachers must consider how individual lessons’ objectives fit into a
larger framework of broader and stronger ideas that can help students make sense of a
wide range of related phenomena and events. This general development direction is
necessary for selecting content and constructing learning pathways. It also clarifies what
teachers need to observe and look for in students’ actions, informs their decisions about
feedback, and helps them adjust formative assessments. This is particularly challenging
for primary school teachers (who teach all disciplines) but also for some secondary
school teachers who teach science subjects without being able to study them in depth.
Often the scientific education teachers received did not allow them to develop big
ideas. Instead, teachers should also have this opportunity to be able to help students
understand the big ideas.

4.1.2 Benefits of big ideas

According to Harlen et al. [2015], there are two main dimensions in which the benefits of big
ideas arise, the individual and the collective.

Big ideas, distilled from science to be powerful and widely applicable, can help grasp
the essential properties of events or phenomena, even without knowing all the details. For
students, understanding the big ideas of science can give them the satisfaction of making
sense of the world (seeing patterns in different situations and connections between them) and
understanding the purpose of scientific research and its impact on our lives. This can revitalize
motivation for learning during and beyond formal education. Moreover, understanding the
world better helps individuals realize their right to citizenship because it helps them make
personal decisions that affect their health, also in relation to the environment, and career
choices.

Making informed individual choices (e.g., regarding health, energy use, and environmental
care) has broader implications than the personal sphere because of the long-term impact of
human activities on the environment and society. By appreciating the importance of science,
it is possible to recognize how the use of scientific knowledge can have both positive and
negative effects. In this sense, science education has a crucial role: fostering an understanding
of the problems that lead to inequality in the world and a willingness to address them by
taking an active role.

4.1.3 How to distil big ideas

Harlen et al. [2015] report that the approach to science education through the development of
big ideas described in the first book ‘Principles and Big Ideas of Science Education’ has been

74 CHAPTER 4. BIG IDEAS

widely accepted and embraced by the educational community. For the second book, they
question the principles and criteria for selecting and distilling big ideas, ultimately confirming
their validity.

Firstly, two dimensions must be considered when deciding whether an idea (a scientific
fact, concept, or theory) is a big idea.

Range – whether to include scientific attitudes and dispositions towards science
and what are variously called skills, practices, competences or capabilities as well
as core scientific ideas.

Size – how broad a compass of phenomena the ideas should explain, recognising
that the larger the idea, the more distant it is from particular phenomena and
the more abstract it therefore appears to be. [Harlen et al., 2015, p. 11]

The size dimension resembles the horizontal applicability of Schwill [1994]1. Discussing how
to develop the fundamental ideas of informatics, he argues that fundamental ideas should
have broad applicability.

In addition, we briefly report the principles that Harlen et al. [2015, p. 14] suggest should
be used to distill big ideas from the “raw” and complex scientific knowledge from which they
originate.

[B]ig ideas should:

• have explanatory power in relation to a large number of objects, events and
phenomena that are encountered by students in their lives during and after
their school years

• provide a basis for understanding issues, such as the use of energy, involved
in making decisions that affect learners’ own and others’ health and wellbeing
and the environment

• lead to enjoyment and satisfaction in being able to answer or find answers
to the kinds of questions that people ask about themselves and the natural
world

• have cultural significance – for instance in affecting views of the human
condition – reflecting achievements in the history of science, inspiration from
the study of nature and the impacts of human activity on the environment.

4.1.4 Progression to teach big ideas

According to Harlen et al. [2015], the best way to teach and learn a big idea is through
a progression. Each progression moves toward its target big idea, always starting with a
“small idea” (the core of the target big idea in a short and easy-to-understand form). It
is a progression of four stages, each with its version of the same big idea, more and more
complete and general.

1We will discuss Schwill’s work later (4.2) as it concerns the fundamental ideas of informatics.

4.2. BIG IDEAS OF INFORMATICS 75

[W]e begin with the small and contextualised ideas that children in the primary
or elementary school, through appropriate activities and with support, will be
able to grasp. These are followed by ideas that lower secondary school students
can develop as their increasing capacity for abstract thinking enables them to see
connection between events or phenomena. As exploration of the natural world
extends in later secondary education, continuation of this creation of patterns
and links enables students to understand relationships and models that can be
used in making sense of a wide range of new and previous experiences. [Harlen
et al., 2015, p. 19]

They adopt a narrative approach to describe the progression of the idea evolving from
small to big. However, what the authors call the small idea (and the same applies to all the
ideas in the progression) could be described as the target big idea at a different abstraction
level, chosen to be suited for students’ knowledge and abilities. From this perspective,
progressions consist of increasing levels of abstraction.

Progressions to be effective must be based on a solid understanding of each idea at each
stage. The stages are designed to be reached at different school levels and according to
students’ age. However, many contextual factors (e.g., the pedagogy used) can influence the
speed of the progression and the potential destination.

Progressions realize the vertical applicability of Schwill [1994]. Considering how to develop
the fundamental ideas of informatics, he argues that fundamental ideas should always make
sense to students at the various levels of their education.

4.2 Big ideas of informatics

In a global landscape where teaching informatics (sometimes under the name of computational
thinking) increasingly enters curriculums even from the early years of schooling, the tendency
found among teachers to focus on the details while losing sight of the bigger picture prompted
Bell et al. [2018] to formulate the big ideas of informatics for pre-tertiary (K-12) education.
This tendency is furthered by the fact that the informatics reference curricula are overflowing
with topics [see, e.g., Brown et al., 2014; Falkner et al., 2014; Bell et al., 2014] and that the
technology side of informatics is running, giving the impression that new content must always
be chased. In this scenario, the tendency to focus on marginal and technological aspects is
exacerbated by the lack of specific preparation of a large proportion of teachers asked to
teach informatics without having studied it (especially in primary school).

Bell and colleagues are not the first to try to distil the big ideas of informatics education [see,
e.g., Schwill, 1994; Denning and Martell, 2015]. However, they are the first to do so for
young learners in pre-tertiary education, with a dissemination intent and narrative approach
that are close to the spirit of the big ideas of science by Harlen et al. [2015], as they explicitly
affirm.

Computer science is full of paradoxes and surprises that provide opportunities
for students to understand, enjoy and marvel at the digital world, and we are
particularly interested in ensuring these are captured so that the ideas are in line

76 CHAPTER 4. BIG IDEAS

with the intention of the “Big ideas of science education”. [Bell et al., 2018,
sect. 1]

4.2.1 Features

The big ideas of informatics by Bell et al. [2018] are not intended as general principles,
disciplinary areas or even curriculum topics but as powerful and general ideas that capture
the essence of informatics. The big ideas are what young students should retain, regardless
of whether they will specialize in informatics or use its core knowledge to exercise their right
to citizenship; the focus is on concepts that are fundamental in informatics, but not obvious
for the layman to recognize.

The big ideas of informatics are formulated so that teachers can use them with students
to connect the various topics in the bigger picture of a long-standing discipline. To do
so, they do not focus on specific technologies so that they can stay the same through
technological advances. The following is an example that Bell himself gives about the big
idea of programming versus its technological aspects, namely programming languages.

Some might argue that students should use a language used in industry, such as
Java or C#, but if we focus on the big ideas in programming, writing programs is
about getting a computational device to follow the steps in an algorithm, and we
know that any algorithm can be programmed using just six key elements: input,
output, storage, sequenced instructions, iteration (loops) and conditionals (if and
case statements). These six elements make a computing system Turing Complete
[. . .] fully capable of computing anything that a conventional computer could
compute [. . .]. If students learn about all six of these elements and how to
combine them to achieve a desired result, then they have been exposed to the
full power of computation [. . .]. [Bell and Duncan, 2018, sect. 10.7]

Indeed, the big ideas of informatics also meet Schwill’s vertical and horizontal applicabil-
ity [Schwill, 1994], which we have already mentioned regarding the big ideas of science. Also
according to Bell et al. [2018], horizontally, a big idea must be stable over time and general
enough to observe its manifestations in multiple phenomena of reality. Vertically, a big idea
must make sense (at different levels of detail/abstraction) to students at various levels and
throughout their careers.

4.2.2 Benefits

Knowing and understanding the major landmarks of informatics can help to see its bigger
picture. In particular, the big ideas aim to inform curriculum design and, more importantly,
to enable (particularly non-specialist) teachers to understand informatics in its fundamentals.

Indeed, without a general perspective, teachers may perceive informatics as an imposition
on their limited classroom time; non-specialist teachers may feel overwhelmed by a series
of extraneous and complicated topics. Focusing on the big ideas and goals of teaching
informatics can prevent it from becoming a disjointed set of topics to be taught.

4.2. BIG IDEAS OF INFORMATICS 77

For example, many primary school students learn a programming language such
as Scratch, but what are the real concepts that we want them to take away from
this? In ten years’ time it is unlikely that they will need to know the colour of
an arithmetic operator or the name of the command for storing a value into a
variable. Likewise, many curricula include converting binary numbers to decimal,
but in practice few people may ever have to do that. Yet there is value in working
with both Scratch programming and binary numbers. Looking for the big picture
[. . .] we need to appreciate the overarching goals to be able to make sense of the
small details that appear in the classroom. [Bell and Duncan, 2018, sect. 10.1]

In addition, teachers can use big ideas to discern core knowledge from skills. “For example,
programming is just one of our ten big ideas, but in many curricula considerable time is spent
on this, partly because it is a skill that can require some time to acquire. Conversely, there
will be other topics around learning to use or configure computers that appear in curricula but
not the big ideas because students need to learn to do these things, even though they aren’t
necessarily a fundamental concept from computer science.” [Bell et al., 2018, sect. 1] Skills,
like programming, are acquired over time, while core knowledge enables students to gain a
broad understanding of informatics that is useful to support learning the proposed topics.

As for curriculum design, the big ideas are intended to help curriculum designers focus on
core knowledge and topics so that teachers can recognize the long-term value of informatics in
such curricula. Referring to stable, non-technology-dependent big ideas helps build curricula
made up of relevant topics that will not soon be obsolete, rather than curricula that must be
updated every time a new technology is developed. Also, a big picture helps to ensure that
curricula are not built of not-so-relevant topics chosen just because their teaching resources
are available in textbooks or online.

4.2.3 A collaborative process

The big ideas of informatics were developed in a collaborative process, pursuing as much
objectivity as possible through inter-subjectivity. The process involved informatics education
experts, curriculum designers, and informatics scientists worldwide.

Bell et al. [2018] developed the first list of candidate big ideas by having in-depth
discussions with several (university and pretertiary) informatics education researchers. Other
early versions were created by showing other fellow researchers the big ideas of science and
asking them what an analogous list for informatics should include. The suggestions received
and their first list were skimmed of repetitions and synthesized into a single list. The list was
shared with teachers reasonably new to the subject to ensure that those big ideas were clear
and meaningful to educators and curriculum designers.

Bell et al. [2018] report that the big ideas they propose result from several iterations
of the process. They also caution against considering the list as definitive and open up to
feedback and input from the entire community of researchers and educators.

78 CHAPTER 4. BIG IDEAS

Chapter 5

Teaching Informatics Concepts

From Lodi’s perspective [Lodi et al., 2017; Lodi, 2020a; Lodi and Martini, 2021], the
popularity of computational thinking and the push for its teaching in primary education
suggest introducing the teaching of fundamental informatics concepts. We know informatics
is difficult to access through programming (see 1). Therefore, it may be appropriate not to
teach programming as a first thing, especially in the early grades, or at least to do so within
a pathway that includes other topics and has cultural rather than specialistic goals.

Informatics fosters the development of other skills and competencies beyond programming.
It is also a challenging academic subject with a rich conceptual framework, similar to physics
or history. The core skill set that students acquire through studying informatics can be called
computational thinking, and it encompasses concepts such as abstraction, decomposition,
and generalization. It is crucial to comprehend them to be able to think computationally.
[Curzon et al., 2018, sect. 8.1].

In the chapter titled Teaching Computing in Primary Schools, Bell and Duncan [2018,
sect. 10.8] warn that we need to keep in mind that the main goal is not to push students
with always new concepts but rather to provide an understanding of the subject and ignite
students’ passion for it. Above all, we need to be aware of why informatics is being included
in a curriculum and keep the focus on the big picture of lasting big ideas, especially when
teaching the details of a topic.

For example, many primary school students learn a programming language such
as Scratch, but what are the real concepts that we want them to take away from
this? In ten years’ time it is unlikely that they will need to know the colour of
an arithmetic operator or the name of the command for storing a value into a
variable. Likewise, many curricula include converting binary numbers to decimal,
but in practice few people may ever have to do that. Yet there is value in working
with both Scratch programming and binary numbers. Looking for the big picture
[. . .] we need to appreciate the overarching goals to be able to make sense of
the small details that appear in the classroom. This will raise ideas such as the
concept of teaching computational thinking, and how the ideas can be made
suitable for this age group. [Bell and Duncan, 2018, sect. 10.2]

79

80 CHAPTER 5. TEACHING INFORMATICS CONCEPTS

In this scenario, big ideas are a framework that helps avoid new subjects at primary school
coming across as seemingly unrelated collections of topics. Such a framework is helpful to be
aware of what the core concepts are that we want students to take away from their learning.
Some informatics big ideas, in a reinterpretation of Bell himself thought for the primary
school, could be:

• programming involves combine a few key elements to create powerful
applications;

• digital systems should be designed with the user in mind, and programs
should be written with the next programmer in mind;

• there are many ways to represent data using two symbols, but the precision
of the representation will be a trade-off between the physical cost of high
accuracy against the human costs of insufficient accuracy, such as low
quality images or a limited range of text characters that can’t express their
language properly;

• computation is an interaction between algorithms and data, and that this
can be made to happen by writing programs.

These are just some (important) examples of the general ideas that students
can get to grips with as they engage in learning based around computational
thinking. At the same time they will be gaining a familiarity with jargon (such as
‘algorithm’ and ‘binary’) by using it in practice. [Bell and Duncan, 2018,
sect. 10.8]

The concepts and topics chosen to pursue these big ideas must be chosen with the broad
perspective and goals of pretertiary, particularly primary education, always in mind.

A key purpose of education is to prepare students for their future, and enable
them to contribute positively to society. The particular programming language
that they learn at six or eight years old is unlikely to be one that they use later in
life (if they program at all in their careers) but the principles that they exercise
by exploring computational thinking will be used later. [Bell and Duncan, 2018,
sect. 10.8]

That of big ideas is a general approach to education, a “guidance system” in which big
ideas can be seen as beacons guiding educators and students (and curriculum designers and
even legislators) to safe destinations in the vast sea of disciplinary knowledge. However, despite
its relevance and benefits, such a guidance system is not enough in daily teaching practice.
Supporting students in understanding knowledge and acquiring skills and competencies
requires deploying specific educational methodologies and strategies.

In the following section, we will review some of the most relevant methodologies for
teaching informatics concepts from this cultural and citizenship perspective that points to
big ideas rather than specialized knowledge.

The subsequent chapters report some of the most relevant educational literature about
two main topics that have been the focuses of our research work, cryptography, and interdis-
ciplinarity between informatics and mathematics (that we pursued through cryptography).

5.1. APPROACHES 81

Indeed, we believe that these topics are emblematic examples of this cultural perspective of
informatics for all. When approached within the premises just described, they are an excellent
way to introduce informatics and ignite students’ general interest in it while bringing valuable
elements for interpreting today’s society.

5.1 Approaches

As seen about introductory programming in the previous part (see 2.4), it is widely accepted
that the more traditional forms of teaching (e.g., direct instruction) are no longer sufficient.
The reasons include the increasingly complex environmental and societal challenges and
the ever-expanding scientific and technological knowledge, particularly in the informatics
domain. As for informatics education, the widespread difficulties of access to informatics
(which pose problems of participation and citizenship, as seen in 1.1), show how our current
teaching approaches are ineffective. Curzon et al. [2018, sect. 8.1] state that experiencing
and understanding concepts like abstraction, decomposition, and generalization is crucial to
learning informatics and developing computational thinking. It is necessary to use appropriate
pedagogical techniques that give students a clear understanding of the various core concepts
of informatics, their relationships, and how they fit into the subject’s larger contexts.

5.1.1 Discovery Learning

Discovery learning is a method where students are given a question, problem, or set of
observations to investigate, and then work independently to find the answers. Through
this process, students “discover” the factual and conceptual knowledge they are seeking.
It is an inquiry-based approach1 where students have a high level of autonomy in their
learning [Bruner, 1961].

This approach is thought to be effective as it allows students to build their own under-
standing of the material rather than simply memorizing information. Discovery learning can
also help prepare students for real-world problem-solving and experimentation. It allows them
to learn how to find and use resources, work collaboratively, and think critically and creatively.
Additionally, discovery learning can help students develop the ability to learn on their own.

Baldwin [1996] argues that using discovery learning to teach informatics concepts can be
effective because informatics is also a hands-on field involving problem solving, experimentation,
and exploration. Since discovery learning can help students develop the ability to learn on
their own, its use could be critical in informatics, where technology is always changing, and
new skills need to be constantly learned.

However, the same author states that discovery learning in informatics education is
rare. He claims that informatics courses can be systematically designed and taught for
discovery learning, producing notable benefits over the conventional lecture-and-lab format.
Discovery learning has been utilized in other disciplines, often in conjunction with group

1Inquiry learning is a general approach in which students are given questions, problems, or observations to in-
vestigate. Through this process, students are encouraged to find answers and solutions independently [Bateman,
1990].

82 CHAPTER 5. TEACHING INFORMATICS CONCEPTS

learning [Davidson, 1990], and has also been applied in elementary and secondary science
education, sometimes under the name “inquiry training” [Joyce et al., 1992]. However,
according to Baldwin [1996], it is not commonly used in informatics education. At the same
time, opportunities for discovery learning exist in many activities used to teach informatics
(e.g., labs and projects), but they are often not fully exploited. Laboratories, especially those
involving scientific experiments, are often seen as opportunities for students to discover and
learn about informatics independently. However, these labs are not typically designed for
discovery learning [Baldwin and Koomen, 1992; Moore, 1993]. Similarly, projects are often
used in informatics education, and whole courses may be based on a single project or related
set of projects. Although projects can be viewed as opportunities for students to discover new
concepts, they are frequently used to reinforce information that was previously introduced
through lectures or textbooks [Etlinger, 1990].

Based on two discovery learning courses, one a junior/senior course on computer graphics
and the other a sophomore/junior introduction to C and UNIX, [Baldwin, 1996] describes
some of those benefits and pitfalls. The traditional lecture-and-lab format assigns students a
passive role in learning. Students attend classes, do assigned exercises and readings (but only
the assigned ones), and take exams. Exams are an incentive for studying, but this “studying”
is primarily memorization, done immediately before exams, and only of material expected to
be on the exam. Students hardly ever identify or solve problems for themselves – they simply
use the ideas in the text or lectures. They do not know what learning resources are available
besides textbooks, and they try to read technical books like novels – they take read to mean
“look at the words” rather than “understand the ideas”. He claims that the worst problem
with conventional instruction is that it does not prepare students for the learning they will
need to do to keep up with their field after school [Baldwin, 1996]. On the other hand,
discovery learning has its own set of pitfalls, such as students not learning the core knowledge,
failure to make progress, students expecting to be told what to learn, and students becoming
too focused on a specific project or discovery. To overcome these issues, instructors can
design projects that require students to learn a common core of knowledge while still allowing
for individual creativity, create mechanisms to keep students continually progressing, remind
students of their role in the course and encourage self-discipline, and balance pure discovery
learning with more traditional lectures or readings [Baldwin, 1996].

About the balance between exploration and creativity on one side and the necessary
learnings, Prince and Felder [2006] state that the purest form of discovery learning, where
teachers provide problems and give feedback on student’s solutions but do not guide their
efforts, is rarely used in higher education. The main reason is that instructors fear they will not
be able to cover enough content if students are required to discover everything independently.
To address this concern, evidence that discovery learning improves learning outcomes without
sacrificing content is needed, yet, again according to Prince and Felder [2006], currently such
evidence does not exist. Therefore, instructors are more likely to use a variation of discovery
learning, also known as “guided discovery”, which involves providing some level of guidance
(the optimal guidance we discussed; see 2.5.3.6) during the learning process [Spencer and
Jordan, 1999]. With this approach, the differences between discovery and problem-based
learning (see 2.6.2 in part I) become less distinct [Prince and Felder, 2006].

5.1. APPROACHES 83

5.1.2 Unplugged approach

Unplugged activities [Bell et al., 2009] to teach informatics have become increasingly popular
in recent years. The unplugged approach is a form of teaching that focuses on teaching
informatics concepts by engaging students in hands-on activities without computers (or
other digital devices) by using physical objects to illustrate and experience abstract concepts.
This approach is often used as an alternative to traditional computer-based instruction and
activities. It engages students in the learning process, aiming to increase their understanding
and retention of the content. According to Lodi [2020b, p. 115], unplugged activities offer:

• a constructivist environment: indeed

– by manipulating real objects or dramatising processes, pupils can observe
what happens, formulate hypotheses, validate them through experi-
ments, i.e. develop a scientific approach to the construction of their
knowledge;

– by working in a group, pupils are encouraged to participate, share ideas,
verbalize and uphold their deductions;

• inexpensive set up: they usually require very basic and inexpensive materials,
so they can be easily proposed in different contexts;

• no technological hurdles: they allow students (and teachers) to have mean-
ingful experiences related to important CS concepts (like algorithms) without
having to wait until they get some technology and programming fluency.

There are a variety of approaches to do this centered around kinaesthetic approaches,
such as role-playing computation, puzzles, art activities, games of all kinds, and magic
tricks(see [Curzon et al., 2018, sect. 8.3] and Curzon and McOwan [2017]), to help develop
computational thinking in its broadest sense. Stories can be used to explain informatics core
concepts, such as decomposition, generalization, and abstraction, and unplugged activities can
be used to illustrate these ideas by having students experience them. It is essential to make the
links to the concepts being demonstrated clear; otherwise, students can be left understanding
the concrete version of the activity but not the informatics concept itself [Curzon et al., 2018,
sect. 8.3].

These activities have been successfully used at all levels [Curzon et al., 2019, sect. 17.3.1],
from primary to master’s levels, as well as when teaching adult teachers, as a way to teach
programming and computing concepts more generally in a constructivist way [Papert and
Harel, 1991]. Indeed, the unplugged approach to teaching requires minimal instructions and
encourages students to construct knowledge for themselves; it then connects students’ work
to the context of informatics and physical computational devices. This approach has also
been used as part of continuous professional development for teachers with positive evaluation
results [Curzon, 2015; Smith et al., 2015; Meagher, 2017].

Generally, when using the unplugged approach, students are given a problem and then
encouraged to explore potential algorithms for themselves. As the size of the problem
increases, students must use more efficient and rigorous strategies. One of the objectives
of using a constructivist approach is to break down stereotypes about what makes a good

84 CHAPTER 5. TEACHING INFORMATICS CONCEPTS

informatician rather than teaching students specific algorithms and techniques. Students can
learn that complex problems can also be solved in these unplugged contexts, and they can
feel empowered when they discover informatics concepts on their own. Indeed, unplugged
activities are also helpful for communicating to students, teachers, and education officials
that there is depth to informatics and computational thinking that goes beyond computers
and stereotypes.

The most popular unplugged activities come from the New Zealand-based CS Unplugged
project2 by Bell et al. [2009]. However, many “unplugged” activities are not necessarily based
on CS Unplugged today; instead, they are developed by a large international community of
educators. In any case, the key elements of all the activities and approaches we are exploring
are that no computer is required – although all concepts come from informatics, that students
are engaged in kinesthetic activities, and that the necessary equipment is readily available.

Tim Bell, the creator of CS Unplugged, has made it clear that his approach is not meant
to replace the opportunity for students to write programs on digital devices but rather to serve
as an adjunct pedagogy to enable learners to become aware of informatics big ideas [Bell et al.,
2009] without the overhead of learning to program first [Curzon et al., 2014]. Indeed today,
in the many classrooms where digital devices are available, the CS Unplugged activities can
be explicitly linked to programming through a “plugging it in” follow-up [Bell and Vahrenhold,
2018].

Finally, it should come as no surprise that Tim Bell, informatics researcher and educator,
is also the one who developed the big ideas of informatics (see 4.2). Indeed, his unplugged
activities are a concrete way to experience and understand core informatics principles rather
than learn specialized (and fragmented) knowledge.

5.1.2.1 Potential benefits and actual implementation

There are numerous potential benefits of using unplugged methodology and activities to teach
informatics concepts since they provide “quick wins” that help build confidence in the topic.
Also, teachers have reported inspiring confidence-building experiences without the overhead
of having to learn to program first [Curzon et al., 2014]. According to CS Unplugged [[n.d.]],
the main potential benefits are those listed below.

• Increased engagement. Unplugged activities can be engaging and hands-on, helping
students to stay focused and motivated.

• Improved problem-solving skills. Unplugged activities help students develop their
problem-solving skills by allowing them to explore and experiment with different ap-
proaches to solving a problem.

• Increased collaboration. Unplugged activities often involve small groups or the en-
tire class working together to solve a problem, which encourages collaboration and
communication.

2https://www.csunplugged.org/

https://www.csunplugged.org/

5.1. APPROACHES 85

• Improved creativity. Unplugged activities allow students to explore and use their
creativity to come up with original solutions to problems.

• Improved conceptual understanding. Unplugged activities can help students develop a
deeper understanding of concepts by letting them interact with the material in a more
physical way.

• Improved computational literacy. Unplugged activities can help students develop their
computational literacy by having them think through algorithmic problems without
relying on technology.

• Increased accessibility. Unplugged activities provide students with the opportunity to
learn informatics without requiring access to a computer.

As said, a key feature of the unplugged approach is using minimal instructions to enable
students to build knowledge independently. After they have done this, it is crucial to connect
their work to the larger context of informatics and what occurs on physical computational
devices. Indeed, that later connection is indispensable. Without it, Feaster et al. [2011] found
that “the program [based on CS Unplugged] had no statistically significant impact on student
attitudes toward computer science or perceived content understanding”. In the same vein,
Taub et al. [2012] report that “the students’ attitudes and intentions regarding CS did not
change in the desired direction”. Compared with more traditional approaches, Thies and
Vahrenhold [2013] found that “it is indeed possible to weave Computer Science Unplugged
activities into lower secondary computer science classes without a negative effect on factual,
procedural, or conceptual knowledge”, and that it could have some benefit in that “the
Computer Science Unplugged materials can prove helpful for ability grouping within a class,
since, on average, more students are enabled to reach a higher operational stage”.

By examining these diverse contexts, we recognize that CS Unplugged performs best
when combined with later “plugged-in” activities. This should not come as a surprise because
getting a program to run correctly is an excellent way for students to demonstrate that
they have grasped the informatics concepts they are working with since the computational
agent (i.e., the computer running the program) will do exactly what the program says to
do. Additionally, this will enable students to experience the results of their instructions in a
tangible environment that gives immediate and ordinary feedback (rather than waiting for
human and potentially vague feedback from the teacher). Summing up, to actually express
the potential benefits above, the unplugged approach must be followed by plugged work,
linking the tangible experience of informatics concepts with their computational manifestation.
That is why the “original” CS Unplugged activities by Bell et al. [2009] are today provided
with their related “plugging-in” follow-up work [Bell and Vahrenhold, 2018]. The current
version of CS Unplugged also provides guidance on scaffolding [Wood et al., 1976] and
Socratic-style questioning to ensure that students explore the ideas and construct their own
knowledge [Wells, 1999].

5.1.3 Task-specific programming languages

Guzdial and Naimipour [2019] proposes task-specific programming languages as a possible

86 CHAPTER 5. TEACHING INFORMATICS CONCEPTS

solution to the fact that few students choose informatics in the U.S. [Guzdial, 2019a], which
is a problem both from a cultural and citizenship perspective and because of the continuing
shortage of informaticians (as discussed in 1.1). The vision behind task-specific programming
languages is that for most people, the best way to access informatics is not the classical
way, i.e., through learning programming (the difficulty of accessing informatics through
programming and related analyses and strategies are discussed in the part I of the literature
review), but rather by engaging more and more students in gaining computational literacy.

Computing education research has supported the hypothesis that context can
make computer science learning more successful. We see a historical argument
for using other STEM subjects as that context [Knuth, 1972; Perlis, 1962]. The
goal for integration is to make a positive feedback loop. Consider physics, as
an example. Learning computer science in the context of physics can lead to
better learning of physics (e.g., as seen in Guzdial [2019a] and Sherin [2001]) and
can also make the computer science more relevant and useful [Guzdial, 2013].
[Guzdial and Naimipour, 2019, p. 1]

As anticipated at the end of 2.7, task-specific programming languages, initially introduced
by Guzdial et al. [1997], have two main goals within this vision. The first is to support the
learning of non-programming tasks that teachers (typically non-informatics) want students
to accomplish by leveraging computers for their automaticity and computational power and
because they can provide meaningful real-world scenarios. This vision embodies one of the
interdisciplinary souls of informatics3, already theorized and discussed by Papert [see, e.g.
Papert, 1980].

Second, they aim to embody computational thinking “à la Papert” (see 3.1). Students
using task-specific programming languages are exposed to the fundamental ideas of informatics
while pursuing other learning goals.

Even before students learn ideas like variables and iteration, there are more
fundamental ideas of computing that students need to understand. These include
the ideas that programs are assembled out of basic elements, and different
orderings of elements can sometimes have the same result, and even that the
program determines the computer’s behavior (there’s no magic). [Yadav and
Berthelsen, 2021, p. 174]

Thus, using task-specific programming languages alone does not allow one to learn how to
program; however, it does allow students to experience in concrete and active contexts (thus
potentially constructivist; see 2.5.3) some of the concepts and ways of thinking of informatics.

Following the initial definition by Guzdial et al. [1997], Task-specific programming lan-
guages are designed to be used for specific tasks and typically have a limited set of features
and capabilities. They are optimized for the task at hand and may lack features that are not
required for that task. They may also have a simplified syntax, making them easier to use for
non-programmers. According to Guzdial [2021], task-specific programming languages:

3Interdisciplinarity, particularly between informatics and mathematics, is discussed extensively in the
remainder of this part II, particularly in 7

5.1. APPROACHES 87

• Support learning tasks that teachers (typically non-CS teachers) want
students to achieve;

• Are programming languages, in that they specify computational processes
for a computational agent to execute; and

• Are learnable in less than 10 minutes, so that they can be learned and
used in a one hour lesson. If the language is never used again, it wasn’t a
significant learning cost and still provided the benefit of a computational
lesson.

In contrast to the classification of languages proposed by Hermans [2020] (and reported
in 2.7), Guzial believes that a language such as LOGO, although it fits within the languages
designed for learning to program, is not a “mini” language at all (nor “toy” according to
a previous version of the same classifications [Gilsing and Hermans, 2021]), since it is a
general purpose and Turing-complete programming language, even though it was conceived
(long ago now) with a simplified syntax for educational purposes. According to Guzdial and
Naimipour [2019], task-specific programming languages, on the other hand, genuinely are
mini-languages. In them, the task is very specific, circumscribed, and generally unrelated
to learning programming. In addition, they argue that task-specific programming languages
are more akin to Papert’s microworlds rather than the full LOGO. For example, the original
LOGO module Turtle Graphics is LOGO’s microworld for plane geometry. If students use
only the constructs of the Turtle module within LOGO, they are indeed using a mini-language
or a task-specific programming language. Just as is the case with task-specific languages, the
goal of microworlds is not to teach programming but to teach something else (i.e., the task
at hand), albeit through the programming of a computational agent.

These are the premises that lead Guzdial and Naimipour [2019] to explore task-specific
programming within precalculus, a U.S. teaching subject chosen because of its possible
applications in multiple domains, thus critical for success in STEM studies [Sadler and
Sonnert, 2018], and because they claim it has the potential to be taught more effectively
through the use of computing. In this case, the task-specific programming language takes
the form of application software for image editing, specifically “[a]n image filter builder for
learning basic matrix arithmetic (addition and subtraction) and matrix multiplication by a
scalar” [Guzdial and Naimipour, 2019, p. 1].

Again according to Guzdial and Naimipour [2019], task-specific programming languages
offer a promising possibility for integrating informatics into other disciplines, which is impossible
with our general-purpose programming languages, even graphical block-based ones. They
suggest that by using task-specific programming languages, students could learn the causal
and repeatable nature of informatics programs. So the authors raise the research question of
how much students could learn about informatics if they used more task-specific programming
languages before they started their first informatics-specific course. In other words, they
invite exploration of how much informatics is really needed to help students learn with and
about informatics rather than just assuming that informatics is taught only through learning
programming with a Turing-complete language.

88 CHAPTER 5. TEACHING INFORMATICS CONCEPTS

5.1.3.1 Teaspoon languages

More recently, Guzial (in Guzdial [2021] and, more lengthy, in Yadav and Berthelsen [2021])
pushes the vision of task-specific programming languages even further beyond STEM disciplines
(naturally akin to informatics) to propose small programming activities in most school courses,
even humanities one. The main characteristics and goals of teaspoon languages do not differ
substantially from those of task-specific programming languages, already described above.
Teaspoon languages aim to be even simpler and more limited and support learning also in
non-STEM domains. Indeed, Guzdial [2021] suggests that the relationship between the two is
“TSP >= Teaspoon”. Actually, the term teaspoon is meant to emphasize the small amount
of computing brought into a non-informatics activity.

The vision for teaspoon languages of Guzdial [2021] and Yadav and Berthelsen [2021]
contrasts with the “Hour of Code”4 system, whose core idea is to increase familiarity and
confidence with programming by exposing students to real informatics every year. On the
other hand, the teaspoon language approach suggests including few and small programming
activities in every social study, language, art, and math class every year. These teaspoon
languages are all distinct and tiny. The objective is for students to feel comfortable with
programming by the time they take an informatics course (typically in high school or university)
by having had much experience with it and having seen a variety of programming languages.

4https://hourofcode.com/

https://hourofcode.com/

Chapter 6

Cryptography

6.1 Importance of cryptography today

Cryptography is essential to many activities and tools in our contemporary digital and
connected society. Instant messaging and social networking, online purchases of goods
and services, online trading, digital identity and e-governance are just some of the current
services and applications that are only possible because of modern cryptography. Various
European frameworks (such as DigComp [European Commission, 2017]) and international
curricula (such as the American education standards [K-12 CS Framework, 2016] and the
English informatics curriculum [UK Department of Education, 2013]) include skills related
to informatics security (i.e., cybersecurity). Some of these skills are more oriented toward
using informatics security for specific purposes (personal or business), while others are about
understanding its foundational principles. In any case, these documents recognize that skills
related to informatics security are essential for students to become active citizens of the
digital society.

Cryptography is one of the pillars of informatics security. Moreover, novice students
recognize cryptography as an appealing context for informatics classes [Lindmeier and Mühling,
2020, p. 3]. Pre-college education is not intended to train professionals but to help students
understand the world we live in so that they can take an active part in it, pursuing their
own goals. Therefore, we believe that students must know and understand the principles of
cryptography and their relevance to the activities and tools of digital society.

6.2 Cryptography education

6.2.1 International frameworks

In 2017, the leading U.S. and international associations of informaticians and informatics
engineers (including ACM, Association for Computing Machinery, and IEEE Computer Society
develop the Cybersecurity Curricula 2017 [Joint Task Force on Cybersecurity Education,
2018], which gathers guidelines for higher-education courses in cybersecurity. The document,
clearly aimed at specialized education, includes cryptography in the first learning unit, deemed

89

90 CHAPTER 6. CRYPTOGRAPHY

necessary to lay the foundation for subsequent learning [Joint Task Force on Cybersecurity
Education, 2018, p. 24].

Among the cryptography content included in the document, we report:

• essential concepts such as, for example, encryption and decryption functions, au-
thentication, symmetric vs. asymmetric key, perfect security (e.g., One-time pad),
computational security, and more;

• mathematical background such as, for example, modular arithmetic, primitive roots
and discrete logarithm, primality test vs. factorization of large integers, and more;

• historical ciphers such as, for example, transposition ciphers, substitution ciphers (e.g.,
Vigenère, ROT-13), Enigma machine, and more;

• symmetric ciphers such as, for example, block ciphers including DES, AES, and more;

• asymmetric ciphers and concepts such as computational complexity, one-way functions,
Diffie-Hellman protocol, RSA’s notion, and more.

Concerning specifically pre-college (also K-12) education, the American Computer Science
Teachers Association (CSTA), and some of the associations mentioned above, include
cybersecurity as an essential topic at all school levels. Specifically, in ‘Level 2,’ the one related
to students between the ages of 11 and 14 (grades 6-8), the 2-NI-06 standard indicates that
students should:

[a]pply multiple methods of encryption to model the secure transmission of
information. [. . .] Encryption can be as simple as letter substitution or as
complicated as modern methods used to secure networks and the Internet.
Students should encode and decode messages using a variety of encryption
methods, and they should understand the different levels of complexity used
to hide or secure information. [Students could use] methods such as Caesar
ciphers [. . .]. They can also model more complicated methods, such as public
key encryption, through unplugged activities [CSTA, 2017, 2-NI-06]

6.2.2 Cryptography education in IEdR conferences

In a review of publications of cybersecurity education in the two largest ACM conferences (i.e.,
ITiCSE and SIGCSE) between 2010 and 2019, Švábenský et al. [2020] find that the research
“predominantly focus[es] on tertiary education in the USA”. Most of the reviewed papers
deal with the broader perspective of cybersecurity. Cryptography is just one of many topics
considered [see, e.g., Sommers, 2010; Turner et al., 2011; Brown et al., 2012; Deshpande
et al., 2019], and it is often seen as a technical and instrumental topic rather than being
treated from the perspective of its founding principles. In addition, very few papers [e.g.,
Buchele, 2013; Hsin, 2005] specifically address cryptography: only 14 of the 71 papers
reviewed include cryptography topics.

Given the importance and novelty of the topic in pre-university education, we decided to
conduct ourselves an extensive review of papers dealing with the teaching of cryptography

6.2. CRYPTOGRAPHY EDUCATION 91

in the school context. We considered both works focusing only on cryptography and works
dealing more extensively with cybersecurity only when cryptography was included in a relevant
way.

In the following sections, we report the most significant trends that emerged from our
review.

6.2.3 Hands-on and inquiry-based activities

The educational proposals we found often include hands-on activities, most times situated in
motivating and realistic contexts; some relevant examples follow.

Simulations of encryption, decryption and attacks on the Caesar and Vigenère ciphers
and the RSA cryptosystem to understand how a secure email exchange works [Gramm
et al., 2012]. Summer camps to teach cybersecurity and computational thinking through
robotics and block-based programming languages, with Caesar and Vigènere encryptions
implemented in robots for secure communications [Lédeczi et al., 2019; Yett et al., 2020]. A
“toy” social networking platform that includes simple activities and tools for implementing
the Caesar cipher with the goal of learning essential cryptography and informatics security
concepts in the process [Zinkus et al., 2019]. Purpose-built interactive web tools that simulate
cryptography systems at a high level and thus enable students to engage in cryptographic
challenges [Schweitzer and Boleng, 2009].

In general, in the context of cryptography and cybersecurity, Konak [2018] argues that
“experiential learning” activities (i.e., either active and participatory, hands-on, or inquiry-
based) can improve students’ self-efficacy and problem-solving skills.

6.2.4 Visualization tools and high-level programming

Various visualization and interactive simulation tools have been developed over time to teach
cryptography algorithms and systems, such as Caesar and Vigenère ciphers, DES, AES, RSA,
and SHA. Usually, these simulations show how ciphers work, their weaknesses, and thus how
they can be attacked [see, e.g., Simms and Chi, 2011; Schweitzer and Brown, 2009; Ma
et al., 2016; Anane and Alshammari, 2020]. Often these simulations are accurate but too
rich in technical details for high school students and, in general, for young learners who are
novices in cryptography. Moreover, interactivity is often limited to entering the message to be
encrypted, proceeding step-by-step, and receiving brief explanations. At most, it is possible
to change a few simulation parameters.

A less technical and more student-oriented approach is that proposed by McAndrew
[2008]. Students can use open-source computer algebra systems to implement classic and
modern cryptography algorithms so that, by programming them at a high level, they can
better understand how they work and how they can be attacked.

The idea of high-level programming also emerges outside the educational context. van der
Linden et al. [2018] suggest using the metaphor of blocks, taken from visual programming
languages, to represent cryptographic functionality. This way, the cognitive load is reduced,
and possible errors are limited; as a result, software developers can implement cryptographic
features in systems more securely and effectively.

92 CHAPTER 6. CRYPTOGRAPHY

6.2.5 Unplugged activities

Some authors propose and implement unplugged activities to teach cryptography to smooth
its learning curve and make it educational and also enjoyable for young students. In these
activities, learners experience encryption and decryption algorithms, protocols and attacks
at a high level, with hands-on activities and without using computers (a description of the
unplugged approach can be found in 5.1.2).

For example, Bell et al. [2003]1 propose simulating a one-way function (a fundamental
concept in public-key cryptography) by searching for a perfect dominating set (PDS)2 on
a graph. Young learners perform elementary arithmetic calculations on the graph nodes to
exchange a secret number.

Konak [2014] proposes some simple unplugged activities to explain classical and modern
cryptosystems with paper, pen, boxes and locks to K-12 students. For example, learners use
paper strips to create variations of Caesar cipher and a paper with four holes cut out as a
grille cipher. Boxes and locks are used “to introduce the concept of key exchange and discuss
the problems of using symmetric algorithms over a public network”.

Fees et al. [2018] make concrete the color metaphor often used to explain the paramount
Diffie-Hellman key agreement by having students mix food colorants to generate a shared
secret key.

Alice and Bob are often regarded as two people with their own private paint
colors (or private keys) with access to a public paint color (public key). The two
exchange paint in such a way that the final result is Alice creating a paint color
that is the same color as Bobs[. . .] The exchange was public, so an eavesdropper,
often known as Eve, has access to much of the information but what she is
missing is the private colors possessed by Alice and Bob. Therefore, Eve cannot
arrive at the same color (decrypt the message)[. . .] [Fees et al., 2018, sect. 4.2]

Greenlaw et al. [2015] adopt an unplugged approach albeit mediated by the use of an
informatics tool, which in this case is not part of the learnings (as, for example, an IDE is
when learning to program) but only a virtual context (as an alternative to a concrete one)
where the activity is happening. In an introductory cybersecurity course, they use the virtual
message board as a teaching tool to demonstrate how a person-in-the-middle attack on a
public key cryptosystem works.

1Tim Bell was one of the first to propose and implement unplugged activities to teach core informatics
concepts.

2A vertex v of an undirected graph dominates vertex u if there is an edge from v to u. The vertex v also
dominates itself. A set of vertices is a perfect dominating set if each vertex of the graph is dominated by
exactly one vertex in the set.

Chapter 7

Interdisciplinarity and
Non-Informatics Methodologies

The importance of introducing informatics into pre-university education has been strongly
advocated over the past decade. As stated on many occasions in this thesis, informatics
should be recognized as a fundamental and independent scientific discipline. It should be
taught to students so they can understand the digital world in which we are immersed, act as
active and informed citizens, and become potential workers in the ever-growing digital job
market.

However, in an increasingly complex and rapidly changing world, many criticize the
traditional compartmentalized teaching of disciplines in schools. More integrated and inter-
disciplinary teaching is advocated, particularly for the core STEM fields (science, technology,
engineering and mathematics).

A review of interdisciplinarity follows, focusing on its impact and use in education and
framed in the context of a European Erasmus+ project in which we participate. Then
we review two methodologies from mathematics education that we used – following an
interdisciplinarity principle – to design an interdisciplinary educational intervention (between
mathematics and informatics) on cryptography.

7.1 The context of the IDENTITIES project

IDENTITIES is an Erasmus+ project started in 2019 and coordinated by the University
of Bologna. Universities from four different countries are partners in the project: the
University of Bologna and Parma (Italy), the University of Barcelona (Spain), the University
of Crete (Greece), and the University of Montpellier (France). The researchers involved are
experts in various fields, from informatics education to linguistics, from physics education to
mathematics education. IDENTITIES focuses not on student education but on in-service and
pre-service teacher education. Interdisciplinarity in the STEM (science, technology, engineering,
mathematics) domain is the core of the project. The project addresses STEM topics (such as
climate change, nanotechnology and coronavirus) and interdisciplinary curricular topics (such
as cryptography, parabola and parabolic motion). IDENTITIES is still ongoing. The project

93

94CHAPTER 7. INTERDISCIPLINARITY AND NON-INFORMATICS METHODOLOGIES

is developing new teaching approaches to interdisciplinarity in science to innovate teacher
education for complex contemporary challenges (e.g., climate change). It is also exploring
some of the STEM topics emerging from these challenges and curricular interdisciplinary
topics (e.g., cryptography) with a twofold purpose. These topics are both contexts for
investigating new forms of knowledge organization for interdisciplinarity and an opportunity
for the interdisciplinary design of classroom activities and novel models of co-teaching.

7.2 The necessity of interdisciplinarity

The importance of interdisciplinary knowledge is a central focus of many educational and
institutional research projects today [OECD, 2019]1. Today’s emergencies (such as the
pandemic and climate change), which we face as a society, increasingly highlight that a mono-
disciplinary approach is no longer adequate, just as traditional monodisciplinary education is
not [Baptista and Klein, 2022; Pharo et al., 2012; Brown et al., 2010; Schmitz et al., 2010].

Although interdisciplinarity is nowadays widely promulgated as a necessary and positive
goal in the academic comunity [Brown, 2020; MacLeod, 2016; Grüne-Yanoff, 2016; Khilji,
2014; Frodeman, 2014; Huutoniemi et al., 2010], disciplines are organized into subjects at
school and university [Ortiz-Revilla et al., 2020]. In other words, disciplines are the key
unit of knowledge and social organization in education [Jacobs, 2014]. Indeed, the current
disciplines define and shape research, other kinds of publications, careers and professional
associations. In this scenario, interdisciplinarity challenges the very structure of school and
academia [Jacobs, 2014]. While the current knowledge organization has been (and still
is) motivated by the need to develop competence in the respective disciplinary fields, it
can create boundaries and barriers [e.g., Russell, 2022; Pharo et al., 2012]. Such barriers
hinder collaboration, awareness of the similarities and differences between disciplines, and the
development of shared languages needed to understand and collaborate.

There is a need for a third way to maintain the advantages of organizing knowledge
and teaching into disciplines while profitably synergizing the different disciplinary view-
points [Baptista and Klein, 2022; Barelli et al., 2022]. According to the ‘Education at a
Glance’ report [OECD, 2019], interdisciplinary knowledge is as important and valuable as
disciplinary knowledge. The IDENTITIES project aims to overcome two forms of banalization
about these two types of knowledge. The first sees interdisciplinarity as a-disciplinarity or
non-disciplinarity as if knowledge and education could be based only on transversal themes.
The second narrows interdisciplinarity to the instrumental use of concepts and methods from
one discipline (e.g., informatics) to solve problems formulated in another (e.g., mathematics).

7.3 Defining interdisciplinarity

Much research has attempted to make a definition of interdisciplinarity. According to Brewer
[1999], “[i]nterdisciplinarity generally refers to the appropriate combination of knowledge

1Education at a Glance is the authoritative and most comprehensive source of information on the state
of education worldwide; it provides data on the education systems of OECD (Organization for Economic
Co-operation and Development) countries and some partner nations.

7.3. DEFINING INTERDISCIPLINARITY 95

from many different specialities – especially as a means to shed new light on an actual
problem” [Brewer, 1999, p. 328].

Choi and Pak [2007], more precisely, make the following proposal, which is now widely
used and accepted.

• Multidisciplinarity draws on knowledge from different disciplines but stays
within the boundaries of those fields.

• Interdisciplinarity analyzes, synthesizes, and harmonizes links between disci-
plines into a coordinated and coherent whole.

• Transdisciplinarity integrates the natural, social and health sciences in a
humanities context, and in doing so transcends each of their traditional
boundaries.

[Choi and Pak, 2007, p. 359]

Klein [2010], too, does not provide a single definition but a taxonomy of interdisciplinarity,
similar to Choi and Pak [2007]. In short, multidisciplinarity (which Klein calls pseudo-
interdisciplinarity) involves encyclopedic and additive juxtaposition and, at best, some form
of coordination. Pseudo-interdisciplinarity lacks intercommunication, and disciplines stay
separate. In contrast, interdisciplinarity is integration, interaction, and connection.

7.3.1 The boundaries perspective

Akkerman and Bakker [2011] give interdisciplinarity a new perspective with the influential
work ‘Boundary crossing and boundary objects’. According to them, boundaries exist and
should be considered in both learning and work.

Whether we speak of learning as the change from novice to expert in a particular
domain or as the development from legitimate peripheral participation to being
a full member of a particular community [. . .], the boundary of the domain or
community is constitutive of what counts as expertise or as central participation.
When we consider learning in terms of identity development, a key question
is the distinction between what is part of me versus what is not (yet) part of
me. Boundaries are becoming more explicit because of increasing specialization;
people, therefore, search for ways to connect and mobilize themselves across
social and cultural practices to avoid fragmentation. [Akkerman and Bakker,
2011, p. 132]

Thus, the (educational and professional) challenge is creating opportunities for collaboration
across boundaries between a variety of different fields.

Based on a body of research investigating the concept and nature of boundary [e.g.,
Suchman, 1993; Engeström et al., 1995], they define it as “sociocultural difference leading to
a discontinuity in action or interaction. Boundaries simultaneously suggest a sameness and
continuity in the sense that within discontinuity two or more sites are relevant to one another
in a particular way.” [Akkerman and Bakker, 2011, p. 133]

96CHAPTER 7. INTERDISCIPLINARITY AND NON-INFORMATICS METHODOLOGIES

Their theory introduces three other concepts built around the boundary one. The first
is that of boundary objects. Boundary objects “enact the boundary by addressing and
articulating meanings and perspectives of various intersecting worlds or that move beyond
the boundary in that they have an unspecified quality of their own” [Akkerman and Bakker,
2011, p. 150]. They have an ambiguous nature, as they belong “to both one world and
another”, and “neither one nor the other world” simultaneously. Thus, boundary objects
have the potential to divide two worlds as much as to connect them.

We contend that it is precisely this ambiguous nature that explains the interest
in boundaries and boundary crossing as phenomena of investigation for education
scholars. Both the enactment of multivoicedness (both–and) and the unspecified
quality (neither–nor) of boundaries create a need for dialogue, in which meanings
have to be negotiated and from which something new may emerge. [Akkerman
and Bakker, 2011, p. 142]

The second concept is boundary people, “marginal strangers who sort of belong and sort
of don’t” [Akkerman and Bakker, 2011, p. 150]. They are those “bridge” people who make
the difficult (yet necessary) experience of alterity in dealing with two or more communities
whose identities are strongly defined and “defended” by their respective members. As
boundary people deal with these communities from the outside and the inside, their identity
is determined by a continuous negotiation of sense and meanings. This negotiation process
allows them to develop new knowledge and a new language, enabling them to talk about and
to all the communities.

The third concept is boundary-crossing learning mechanisms. Boundary crossing is a
process in which demarcation lines between disciplines or practices are uncertain or destabilized
because of increasing similarities or overlaps. Suchman first defines boundary crossing
regarding professionals who “enter into territory in which we are unfamiliar and, to some
significant extent therefore unqualified” [Suchman, 1993, p. 25]. In doing so, they “face the
challenge of negotiating and combining ingredients from different contexts to achieve hybrid
situations” [Engeström et al., 1995, p. 319]. This challenge is complex and achieving its goal
(i.e., making such “hybrid situations” happen) requires those who face the challenge to put
specific boundary-crossing learning mechanisms in place [Akkerman and Bakker, 2011].

7.3.2 Learning through boundary crossing

According to Akkerman and Bakker [2011], such learning mechanisms are four and ide-
ally describe a progression toward the full realization of interdisciplinarity: identification,
coordination, reflection, and transformation.

Identification entails questioning the core identity of each intersecting discipline or
practice; questioning leads to a new understanding of what the different practices are about.
The boundaries between disciplines or practices are encountered and reconstructed without
necessarily overcoming discontinuities. The learning potential resides in a renewed sense-
making of different disciplines or practices and related identities.

Learning at the boundary is a matter of coordination, where boundary objects have the
role of mediating artifacts. Effective means and procedures could allow diverse disciplines or

7.4. INTERDISCIPLINARITY IN EDUCATION 97

practices to cooperate efficiently; a dialogue between the different parts is established only to
maintain the flow. Coordination is very different from identification. Learning potential is
not in reconstructing but in overcoming the boundary: continuity is established, facilitating
future and effortless movements between different disciplines or practices.

Reflection occurs by realizing and making explicit the differences between disciplines or
practices and learning something new about oneself and others. It involves both perspective-
making and perspective-taking, which are dialogical and creative processes and generate
something new. Reflection looks similar to identification, yet it is different in focus. While
identification produces a renewed sense of disciplines or practices and an identity reconstruction,
reflection results in an expanded set of perspectives and, thus, in constructing a new identity
that will inform future practice.

Transformation constitutes a further step. Collaboration and co-development lead to
profound changes in disciplines or practices, potentially creating new, in-between disciplines
or practices. The new boundary disciplines or practices are meaningful in both worlds and are
evolutions of the original ones from which they emerged. Transformation is the most difficult
to achieve. Most of the research aims for this fourth type of dialogical learning mechanism.

7.4 Interdisciplinarity in education

Kapon and Erduran [2021] use the boundaries framework to show three cases in different
education contexts – each exhibiting one or more learning mechanisms at work – in which
boundary crossing promotes interdisciplinary learning.

Schvartzer et al. [2019] discuss student engagement when learning by using disciplinary
knowledge in different interdisciplinary contexts and problems.

Levy et al. [2019] focus on how discipline-based problems can be better understood using
the explanatory potential of interdisciplinarity.

Levrini et al. [2019] emphasized the inherent interdisciplinarity of STEM disciplines and
topics (including cryptography) in discipline-based educational systems from a curriculum
development perspective.

7.4.1 Interidiscipinarity and disciplines

This renewed sensitivity to interdisciplinarity in education highlights its nature as a process
of “integrating, interacting, linking, and focusing” [Klein, 2010] different disciplines, that is,
disciplinary domains and their epistemic cores. On the subject of disciplines, Alvargonzález
describes how interdisciplinarity can change them.

Interdisciplinarity would arise in a near symmetrical way when two or more dis-
ciplines converge in a given field, as they would, for example, in biochemistry,
bioinformatics or geophysics. This convergence can lead to practical and theoret-
ical integration of the disciplines involved, which would be unified. Paradoxically,
these convergences, on many occasions, give rise to newly independent and
sovereign disciplines, at least when they are considered in terms of their academic
institutionalization. [Alvargonzález, 2011, pp. 392,393]

98CHAPTER 7. INTERDISCIPLINARITY AND NON-INFORMATICS METHODOLOGIES

Interactions between disciplines “may range from simple communication of ideas to the
mutual integration of organizing concepts, methodology, procedures, epistemology, terminol-
ogy, data, and organization of research and education in a fairly large field” [Apostel et al.,
1972, p. 25]. Therefore, it is also a matter of the epistemology of disciplines.

IDENTITIES project reflects on the epistemic nature of interdisciplinarity from an ed-
ucational perspective. It aims to answer how to discuss what we mean by discipline non-
stereotypically and how to decode (and possibly deconstruct) the notion of interdisciplinarity.
One of the project’s most ambitious goals is to interpret and articulate the complex inter-
twining between disciplinarity and interdisciplinarity in STEM. The etymology of the word
discipline is based on the Latin verb discere, which means ‘to learn’. Disciplines are a set of
knowledge and skills rooted in the educational need to (re)organize knowledge to teach, learn
and communicate (Alvarogonzález, 2011). The (re)organization must be so that learners,
while constructing their knowledge, can also develop epistemic skills, such as explanation,
sharing, argumentation, problem solving, verification, representation, and modelling [Levrini
et al., 2019].

The scope of the IDENTITIES project goes beyond the analysis of interdisciplinarity
from a theoretical and epistemic perspective. However, the description of the project stops
here, because this is where our active involvement in it stops. Likewise, the review of the
literature on interdisciplinarity also ends here, because that is enough to frame and interpret
our research on interdisciplinarity in cryptography.

7.5 Theory of Didactical Situations and Didactical Engineering

The Theory of Didactical Situations (TDS) is a theoretical framework that focuses on
understanding the learning and teaching process in the classroom. It provides a framework for
analyzing the didactical situation, which includes the teacher, the students, the curriculum,
and the learning environment. TDS aims to identify the obstacles that students face in
learning and provides solutions to overcome them.

Didactical Engineering (DE), on the other hand, is a methodology that uses the principles
of TDS to design teaching sequences and learning environments. DE aims to create optimal
learning situations by designing teaching sequences that are coherent, dynamic, and effective.

The relationship between TDS and DE can be seen as follows: TDS provides the theoretical
foundation for DE, and DE applies the principles of TDS to design teaching sequences and
learning environments. The principles of TDS guide the design process in DE, ensuring
that the teaching sequences effectively overcome the obstacles students face in the learning
process. In other words, DE is a practical application of TDS.

7.5.1 Theory of Didactical Situations

The Theory of Didactical Situations [Brousseau and Balacheff, 1997], first developed in France
by Brousseau between 1970 and 1990, has become prominent in mathematics education in
French-speaking countries. This theory is used as an educational methodology; it can be
employed to design a learning situation (e.g., a task or problem) within the DE framework

7.5. THEORY OF DIDACTICAL SITUATIONS AND DIDACTICAL ENGINEERING 99

(acting as a research methodology to investigate the effectiveness of the whole educational
proposal).

TDS is based on concepts such as didactical situation, learning obstacle, and didactical
contract. According to this theory, the knowledge development process in students includes
several consecutive steps (i.e., different types of situations), for example, action, commu-
nication, validation, and institutionalization. Some of constitutive concepts of TDS are
particularly relevant to our research on interdisciplinarity in cryptography; we briefly describe
them.

• A didactical variable is a variable of the situation’s task or problem that is parameterized
by teachers (or researchers). Its possible values influence the potential (hierarchy of)
strategies students implement to tackle the task or solve the problem. Identifying
instructional variables, foreseeing their effects, and choosing their values according to
learning objectives is crucial to any a priori analysis of a didactical situation.

• In the context of the Theory of Didactical Situations, the milieu is the set of elements
of a situation with which students can interact. In response to students’ actions, the
milieu produces retroactions (i.e., feedback), enabling students to adjust their behavior,
modify their understanding of the task or problem and adapt, ultimately enabling
them to learn. The analysis and organization of a milieu – mainly in terms of possible
students’ actions and retroactions that the milieu allows – is crucial for the design of a
didactical situation and for its a priori analysis.

• Adidacticity in a didactical situation is the potential of the situation and its milieu
to enable students’ learning independently of teacher interventions (as in the case of
learning outside didactical contexts). In TDS, adidacticity in learning is crucial, mainly
because it prevents specific side effects of the didactical contract (i.e., the implicit pact
between students and teachers [Brousseau et al., 2020]).

• To realize the learning potential of a didactical situation, teachers must transfer to
students some responsibility for completing the task or solving the problem. Devolution
enables this transfer of responsibility [Brousseau and Warfield, 2020] and must be
considered when designing a didactical situation. Specularly, after students have
completed the task or solved the problem, institutionalization is the teachers’ action
that allows students to structure what they have learned (by facing the task or problem)
into more formal knowledge.

7.5.2 Didactical Engineering

Didactical Engineering (or Didactic Engineering) is an educational research methodology that
involves designing and analyzing (from an epistemological and an educational perspective)
a didactical situation that is then tested [Artigue, 1994; 2014; Barquero and Bosch, 2015;
Artigue, 2020]. According to Barquero and Bosch [2015], Didactical Engineering “emerged in
the middle of the 1970s with the works of the French researcher Guy Brousseau [Brousseau
and Balacheff, 1997] [. . .] to define the relationships between the theoretical developments

100CHAPTER 7. INTERDISCIPLINARITY AND NON-INFORMATICS METHODOLOGIES

of didactics and the empirical reality of the classrooms”. It has been successfully practiced
for carrying out qualitative research in mathematics education for several decades [Artigue,
2020].

This methodology focuses on the conception, design, organization, realization, observation,
and analysis of classroom implementations. It was developed to address theoretical and
practical aspects of mathematics education that existing methodologies (e.g., questionnaires,
interviews, and test comparisons) – adapted from other scientific fields, such as psychology –
could not capture.

DE aims to build a constructive relationship between practice and research. Educational
systems are indeed considered in their concrete operation, and researchers must always take
into account the conditions and constraints under which teaching and learning processes
occur.

DE has also been practiced outside the mathematics education community (e.g., in
physics education) and has been used to train teachers and experiment with new educational
approaches, methodologies, and designs.

The Didactical Engineering methodology is a process structured into four intertwined
phases.

1. Preliminary analysis. This first phase clarifies the background for the next phase, that is,
for the conception and organization of the didactical situation. It consists of studying
the content (originally, mathematical content) and the conditions of teaching and
learning processes. The analysis is carried out in three different dimensions.

• An institutional analysis of the actual context in which the didactical situation
will take place. Researchers identify and analyze the conditions and constraints of
the specific educational context. Institutional conditions and constraints may be
of different kinds: curricular characteristics, teaching practices, technological re-
sources available, evaluation practices, characteristics of the students and teachers
involved, and more.

• An epistemological analysis of the content. Researchers identify possible epistemo-
logical issues related to the content to be taught. Epistemological analysis helps
researchers take the necessary reflective stance and distance from the educational
context in which they are embedded and thus build a reference.

• A didactical analysis of the content. Researchers survey the existing educational
literature about the teaching and learning of the content to be taught.

According to Artigue [2014], these three dimensions of the preliminary analysis reflect
the systemic perspective underlying DE as a research methodology. Each phase has
its methodological specificities and needs. The epistemological analysis often involves
using historical sources; the institutional analysis also generally includes a historical
dimension. As made clear by Bosch et al. [2005], curricular organizations and choices
result from a long-term historical process; they cannot be understood just by analyzing
current curricula, official documents, and textbooks. Such understanding is needed to
clarify the strength of the constraints faced and how some of these can be moved in

7.5. THEORY OF DIDACTICAL SITUATIONS AND DIDACTICAL ENGINEERING 101

the design. The didactical analysis generally has a substantial cognitive dimension, but
this cognitive dimension is only one part of the global picture. It should also be noted
that, depending on the specific objectives of each research, what is investigated in each
of these dimensions (and its respective importance) can vary substantially.

2. Conception and a priori analysis. This second stage involves modeling the didactical
situation and analyzing its content and organization within an educational theoretical
framework (for example, the Theory of Didactical Situations, discussed in the follow-
ing 7.5.1, or the Anthropological Theory of Didactics [Chevallard and Bosch, 2020]).
The conception of the situation and analysis are closely related, as analysis helps to
revise and adapt the conception in order to achieve the targeted learning objectives.

The conception concerns a series of choices that affect both the content to be taught
and the organization of the didactical situation at different levels. These choices are
made explicit during the a priori analysis, and their relationship with the research
hypothesis and preliminary analysis is made explicit. The conception choices may relate
to the situation task itself, its content, and also the resources offered to students. The a
priori analysis also discusses how these choices influence the possible strategies students
will adopt to deal with the task of the didactical situation; this helps researchers foresee
the possible interactions (both among students and with teachers), relational dynamics,
and cognitive and other obstacles.

The goal of the a priori analysis, however, is not to predict the behavior of individual
students but to create a generic and practical reference of the situation’s learning
potential and possible difficulties. This reference will later be used for comparison with
the actual classroom implementation.

3. Realization, observation, and data collection. During the implementation, researchers
collect data to be used in the next phase, the a posteriori analysis. The data collected
aim to understand students’ interactions with the milieu (that is, the set of elements with
which students may interact; for a more in-depth explanation, see the following 7.5.1).
The data are also helpful for understanding the extent to which choices made in the
conception phase actually help students move from initial, naive strategies to more
elaborate and complex ones that potentially involve learning.

Usually, the data collected are observers’ notes, student productions and records,
and audio or video recordings. Researchers are in the position of observers during
implementation.

It is important to note that implementation often leads to some adjustments being
made to the design during implementation itself, especially when DE concerns a sizeable
didactical situation. In the realization phase, these adjustments must be documented
along with the reasons why they were required and obviously taken into account in the
following phase when the a posteriori analysis is carried out.

4. A posteriori analysis. The a posteriori analysis is concerned with comparing the data
collected during the classroom realization with the a priori analysis. What have been

102CHAPTER 7. INTERDISCIPLINARITY AND NON-INFORMATICS METHODOLOGIES

the convergences and divergences, and what do they reveal? What have been the
unanticipated interactions? How can the contrast between the difficulties of the
didactical situation and the learning potential be interpreted?

Note that there will always be differences between the implementation and the a priori
analysis because the a priori analysis considers a generic and abstract student behavior
that is obviously not present during the actual classroom implementation. Therefore,
the validation of research hypotheses does not require an exact correspondence between
a priori and a posteriori analysis.

However, understanding students’ activity is made possible by the completeness and
depth of the a priori analysis.

In summary, according to the Didactical Engineering methodology, the a priori analysis
is compared with the a posteriori analysis of the classroom realization. The validation
of research hypotheses is internal: it results from the epistemological conformity of the a
posteriori analysis with the a priori analysis. Moreover, the a priori and a posteriori analyses
develop in a circular process, in which each implementation can enrich and refine the a priori
analysis.

It should be emphasized that there is a continuous interaction between the results of the
different phases. The results of the a posteriori analysis may suggest not only the introduction
of changes in the educational process design but also a new characterization of the content
involved (going back to the preliminary analysis). From a broader perspective, the results
obtained and the emerging open problems may also contribute to educational science, leading
to new theoretical or methodological developments. In this sense, DE is not a developmental
practice in which the results of already established research are transformed into educational
proposals. In fact, it is a way to empirically challenge assumptions about the possibilities of
knowledge diffusion and the phenomena that hinder it.

7.5.3 TDS, DE and participatory design

Relationships can be identified across Theory of Didactical Situations, Didactical Engineering,
and participatory design approaches as educational research methodologies, especially when
it comes to designing learning environments and activities that could meet teachers’ and
students’ needs and expectations.

As reported in 2.9, participatory design is a collaborative approach involving users in the
design process to ensure that the final product or solution meets their needs and expectations.
Similarly, DE involves designing teaching sequences and learning environments in collaboration
with teachers and students, considering their needs, expectations, and feedback.

The principles of TDS can inform the design process in both participatory design and
DE by providing a theoretical framework for analyzing and understanding the learning and
teaching process. By applying the principles of TDS to the design process, designers can
ensure that the learning environment and teaching sequences are designed to promote learning
and understanding.

Participatory design can also be used as a research methodology to study the learning
and teaching process in the classroom. This approach involves engaging with teachers and

7.5. THEORY OF DIDACTICAL SITUATIONS AND DIDACTICAL ENGINEERING 103

students as co-researchers, thereby providing insights into the learning experience from the
perspectives of those involved. Similarly, DE can be used as a research methodology to
investigate the effectiveness of teaching sequences and learning environments.

In summary, TDS provides a theoretical foundation for understanding the learning and
teaching process, which can inform the design process in participatory design and DE. DE
involves designing teaching sequences and learning environments in collaboration with teachers
and students. Participatory design involves engaging with users in the design process to
ensure that the final product or solution meets their needs and expectations. Additionally,
participatory design and DE can be used as research methodologies to study the learning and
teaching process in the classroom.

104CHAPTER 7. INTERDISCIPLINARITY AND NON-INFORMATICS METHODOLOGIES

Part III

Original Contributions – Introductory
Programming

105

107

Introduction to part III

In this first original part of the thesis, we present contributions from our research about
introductory programming, a traditional (scientific and technical) mode of access to informatics.
In an ideal scan (ideal since the reader will also be able to grasp intertwined references),
this production is situated within the literature reviewed in part I. In particular, we sought
to realize the vision described in the review, specifically the search for optimal guidance in
active constructivist-inspired approaches (thus far from any orthodoxy of “minimally-guided
constructivism”). In our work, we tried to balance as active and student-centered activities
as possible with a variable amount of guidance. We aimed to provide scaffolding to activate
Vygotsky’s zone of proximal development, and it to be adaptive with respect to content,
learners, and the particular moment in the “CS1-like” learning path.

We present our original learning design proposed to support novice students learning new
programming concepts after reporting on the broader research in which the learning design
was conceived. Next, we report and discuss the design and implementation of experimentation
of our learning design in a real high-school context of learning C++ programming.

The last two chapters recount two more research initiatives, but always in the context of
introductory programming. We report and discuss our experience teaching and researching
the use of information technologies in emergency remote teaching, attempting to mimic an
in-person experience for a highly-participated CS1 course for math undergraduates during the
2020 COVID-19 pandemic.

Finally, we report and discuss a participatory process where we collaborated with primary
school teachers to co-design a learning module using the Use-Modify-Create methodology to
teach iteration to second graders through a visual programming environment.

108

Chapter 8

Necessity of a Progression of
Notional Machines

In this chapter, we report the preliminary results that emerged from an early attempt to
answer the following research question: what theoretical model for teaching programming
can support novice students in learning the fundamental concepts of informatics?

This question is relevant given the problems with teaching and learning introductory
programming (described in 1 and 2) – including, in particular, the difficulty of developing
the strategic knowledge that enables students to grasp also the core informatics concepts of
programming (see 2.3.1) – and their disruptive consequences.

To tackle this challenge, we investigated two ideas. Foremost, the model could be based
on a progression of notional machines, given the potential of such educational devices and
their increasing relevance in programming education (see 2.3.4). A progression of notional
machines might also be a more agile answer to the challenge of finding the optimal level of
guidance by choosing the “right” programming language to learn to program (see 2.7).

Second, progressions could be driven by a mechanism of necessity: transitions from one
notional machine to the next would be designed to make students “feel the necessity” to
learn what is new in it. This latter inspiration comes from the Learning Edge Momentum
hypothesis. According to it, the initial moments in learning are the most critical (see 1.4),
leading us to seek ways (e.g., the mechanism of necessity) to sustain students’ motivation
and understanding in transitions in the learning path of introductory programming.

This work is also presented in the extended abstract “A Necessity-driven Learning Design
for Computer Science” [Sbaraglia, 2021], published in 2021 in ‘Proceedings of the 26th ACM
Conference on Innovation & Technology in Computer Science Education’ (ITiCSE ’21).

8.1 Context and motivation

It is an accepted hypothesis that students without proper scaffolding (see 2) find programming
concepts difficult to grasp, do not understand their programs’ fundamental properties, and
do not know how to control those properties by writing code. To provide that scaffolding,
Du Boulay [1986, p. 57] first introduced the concept of notional machine to refer to

109

110 CHAPTER 8. NECESSITY OF A PROGRESSION OF NOTIONAL MACHINES

“the general properties of the machine that one is learning to control”. Informatics and
programming education research agree on the importance of explicitly teaching notional
machines to foster the learning of programming [Sorva, 2013]. Section 2.3.4 contains more
about notional machines, their characteristics, and their potential.

Also, earlier in 1977, Shneiderman described a “spiral approach” to learning programming
that should begin with essential syntax, accompanied by simple semantics, to adapt to
students’ cognitive limits [Shneiderman, 1977]. The spiral approach idea has inspired different
kinds of programming languages for learning, for example, mini-languages and incremental
languages. Section 2.7 delves deeper programming languages for learning.

Science education research has proved PS-I learning approaches (where problem-solving
activities precede formal instruction) effective [Sinha et al., 2021]. In the problem-solving
phase, failure-driven scaffolding can improve PS-I efficacy further [Sinha et al., 2021]. Besides,
research shows that Productive Failure (that intentionally designs for and uses failure in
preparatory problem-solving) is most effective within a PS-I design and also suggests the
possibility of developing improved variants of it [Sinha and Kapur, 2019]. An extensive review
of PS-I approaches and Productive Failure is reported in 2.6.3.

These three elements (i.e., I. scaffolding through notional machines, II. incremental
approaches to programming, and III. Productive Failure and PS-I approaches) form the
framework within which we seek to answer the research question: what theoretical model for
teaching programming can support novice students in learning the fundamental concepts of
informatics?

8.2 Problem statement

Despite research raising the issue already decades ago [Shneiderman, 1977; Du Boulay, 1986],
novice students still struggle to learn programming.

Notional machines – understood as abstract machines whose role is not in software
architecture design but education architecture design – could aid learning, aiming for an
“education of attention” [Fincher et al., 2020] to relevant and often not immediately visible
aspects of programming education. Many teachers already use notional machines on several
levels (e.g., they teach them explicitly; they use them as a reference in designing activities
and courses) [Fincher et al., 2020] and with various purposes, even along the same learning
path. Nonetheless, there are no established learning designs using notional machines to teach
programming, and much research – theoretical and empirical – has yet to be done [Guzdial
et al., 2020].

Besides, learning to program seems to be facilitated by incremental languages, like
Hedy [Hermans, 2020]. The progression of language subsets (expanding in syntax and
functionalities) suggests (and could be mapped onto) a progression of notional machines.
Developing notional machines’ progressions tailored to the specific needs of a learning context
could be a way to avoid adapting the teaching to a chosen language or developing a specific one.
Indeed, a progression of notional machines might be easier to realize or adapt than developing
or adapting programming languages (for learning; see 2.7) to pursue the optimal level of
guidance (see 2.5.3.6). In any case, we need appropriate environments and representations to

8.3. RESEARCH GOALS 111

use notional machines for teaching and learning effectively.

Students encounter a bigger subset of syntactic rules and functionalities moving from one
notional machine to the next. Sometimes, this transition passage also requires a change in
the level of abstraction. Suppose, as an example, that after introducing a “for-each” iteration
construct over simple sequences (such as strings or tuples), it is time to introduce a classic
for loop on the indexes of those sequences, unveiling the possibility of accessing elements by
index. This transition can be seen as a step downwards the abstraction ladder. The new,
expanded language defines a new, less abstract notional machine. Students will need to
use the new construct to express more sophisticated computations while seeing more detail
of that machine (i.e., the index access to the sequence elements). Changing the level of
abstraction can be difficult for students [Curzon et al., 2019, p. 533]. Therefore, recognizing
this change is critical for teachers and educators and impacts learning.

8.3 Research Goals

We aim to develop a theoretical model for teaching programming to novice learners that could
also support them in learning informatics core concepts. The model could be based on a
progression of notional machines and embodied by a learning design specific to programming
and informatics.

Many informatics educators already use sequences of notional machines [Fincher et al.,
2020]. The model envisioned – inspired by research on spiral approaches to teaching and
learning programming [Shneiderman, 1977], and particularly on incremental languages, such
as Hedy [Hermans, 2020] – relies on carefully designed progressions of notional machines.
The learning trajectory must start from simple and essential notional machines (whose syntax
is simplified and semantics limited to a subset of commands and constructs), following a
progression developed explicitly for the target notional machine. Moreover, progressions
should vary according to the learning context.

When moving from one notional machine to the next in the progression, students will face
a more extended notional machine, which, as mentioned, may also require some abstraction
level drops. To stimulate students’ motivation to use the next notional machine and learn
what is new in it, we suggest using a learning by necessity design (more on this in the following
chapter 9). Such design – inspired by Productive Failure [Kapur and Bielaczyc, 2012] and
PS-I failure-driven approaches [Loibl et al., 2017; Sinha et al., 2021] – must realize the idea
of learning something that is not yet known through the “feeling of necessity” experienced
when dealing with a problem that stimulates such necessity.

Picking up on the previous example, having students struggle for a while on the task of
swapping pairs of adjacent elements in a sequence (e.g., as in the first round of a Bubble sort)
when they only know how to iterate over the entire sequence with a “for-each,” will hopefully
bring out the necessity of accessing more advanced tools for iterating over sequences.

112 CHAPTER 8. NECESSITY OF A PROGRESSION OF NOTIONAL MACHINES

8.4 Research methods

Designing and testing one (or more) progression(s) of notional machines to teach introductory
programming is necessary for developing the theoretical model. The literature on incremental
languages will help define the scope and characteristics of the notional machines of such
progression. It will also help identify the main and most common obstacles in learning to
program to design the learning by necessity transitions accordingly.

We aim to design and implement feasible experimentation, even in the short time of
a Ph.D. program. Therefore, we plan to extrapolate from that first progression a module
for learning a core programming concept (for example, the “indefinite iteration” with the
while loop), starting from students’ knowledge and experience of the previous concept in the
progression (picking up the example, the “definite iteration” with the for loop).

Pandemic situation permitting, we intend to experiment with the module in an actual
school setting. It seems ideal to test it in a specific Italian high school, that is, a technical
(strand) technological (track) institute for informatics (sub-track). Specifically, we plan to
test the module with one class in the high-school third grade (students about 15 years old),
which is the first school year when students start systematically learning to program. We plan
to compare results and student satisfaction with another third-grade class (from the same
school year and possibly with the same teacher), which instead follows a more traditional
approach to learning the “indefinite iteration”.

Moreover, since notional machines are related to the programming language used, the
potential for their visual representations should be factored in when choosing the language.
Snap!1, a block-based graphical programming language for learning, seems to provide an ideal
environment to realize progressive language subsets. Indeed, since it is highly customizable,
it allows new commands and constructs to be created and others to be hidden. That said,
both our learning design and the theoretical model aim to be language-independent.

8.5 Early contributions

We designed prototypes of the first notional machines of a possible progression for learning
introductory programming. These notional machines represent minimal Python and Snap!
subsets made only by carefully selected or customized commands and constructs.

Moreover, in a local high school with a group of 14 years old students, we tested a
series of activities to teach core cryptography systems and concepts (such as Caesar’s cipher,
One-time pad, and Diffie-Hellman protocol; more about this course and its implementation in
chapter 14 of the following part IV). We developed a short progression of notional machines
using Snap! as a language for cryptographic primitives (implemented with ad hoc blocks
that were realized from scratch) and as an environment for teachers to build such notional
machines and students to experience them hands-on. In addition, we designed a series of
“necessity-driven” learning transitions to stimulate students’ motivation to use and learn the
new concepts encountered along the cryptography progression.

1https://snap.berkeley.edu/about

https://snap.berkeley.edu/about

8.6. CONCLUSIONS 113

Furthermore, we have an initial collection of learning by necessity scenarios, some related to
programming, others to cryptography. We plan to develop new ones: the more comprehensive
the collection will be, the easier it will be to find the best transitions to drive any progression
of notional machines.

One final observation: the fact that the first notional machines and progressions realized
relate to both programming and cryptography demonstrates the potential of the envisioned
learning design (and the related theoretical model) for teaching other informatics concepts
other than programming.

8.6 Conclusions

The work described in this chapter was the first research effort to formalize our vision
for learning introductory programming and, more generally, the fundamental concepts of
informatics. This vision grew out of observations made in our experience as informatics
educators and teachers. In particular, recognizing in students a “feeling of necessity” for
concepts, and leveraging it as a possible driver for motivation and learning, an initial review
of the literature, bringing out the elements described in 8.1. Using those “ingredients” made
it possible to better describe our vision and the problem we aimed to be addressed with that
vision. This was the basis that allowed us to formulate a more concrete - though still not
fully focused nor sufficiently detailed - research plan and to describe the first contributions of
our research activity. In general, this part of the work was an essential step in the definition
and development of our learning design, Necessity Learning Design, described thoroughly in
the next chapter.

114 CHAPTER 8. NECESSITY OF A PROGRESSION OF NOTIONAL MACHINES

Chapter 9

Necessity Learning Design

In section 1, we saw how introductory programming courses (often called ‘CS1’) are too
difficult for many novices, making access to informatics a barrier to higher and necessary
participation.

Considering that the LEM hypothesis (which we believe is the most credible explanation
for difficulties in learning introductory programming; see 1.4) holds that the initial moments
are the most critical in learning, we investigate what kind of learning design can support
novice students when introducing a new programming concept.

Inspired by PS-I approaches (Problem solving followed by instruction) and Productive
Failure learning design, we define an original “necessity-driven” learning design for introductory
programming. Students are put in a situation that seems familiar to them; however, this time,
they are missing an essential ingredient (i.e., the target concept) to solve the problem. Then,
struggling to solve it, they experience the necessity of that concept. A direct instruction
phase follows. Finally, students return to the problem with the necessary knowledge to solve
it.

In a typical CS1 learning path, we recognize a challenging “abstraction rollercoaster”.
We provide examples of learning sequences designed with our approach to support students
when the abstraction changes (either upward or downward) within a programming language,
that is, when a new construct (and related syntactical, conceptual, and strategic knowledge)
is introduced. We also discuss the benefits of our learning design in light of informatics
education literature.

This work is also presented in the full article “A Necessity-Driven Ride on the Abstraction
Rollercoaster of CS1 Programming” [Sbaraglia et al., 2021a], published in 2021 in the journal
‘Informatics in Education’ and available for open access.

9.1 Introduction and motivations

Today, most education research agrees that active methodologies – whereby learners actively
explore and construct knowledge – are helpful for learning [Prince, 2004; Freeman et al., 2014].
On the other hand, educators often have to teach specific introductory or technical concepts
that students are unlikely to learn or even discover through free exploration. Informatics also

115

116 CHAPTER 9. NECESSITY LEARNING DESIGN

faces this issue since it is a discipline with many technical aspects, especially in introductory
programming [Guzdial, 2017]. As a result, in introductory programming courses, a common
approach remains directly teaching language elements, usually followed by their application
in programming assignments. This approach is called direct instruction, which indicates the
explicit teaching of content and skills through lectures or demonstrations to students. It is
based on explicit instruction, in contrast to exploratory models such as inquiry-based learning.
However, direct instruction of technical concepts is not ideal for novice learners. Teaching a
concept through a direct instruction approach is likely to bore students – also because they
may not grasp the significance of that concept from their point of view – leading them to
low motivation and poor learning outcomes. More about this is in 2.6.3.

We describe how we tried to tackle these challenges by investigating what kind of learning
design can support novice students when introducing a new programming concept. We
focused specifically on the introduction phase of a concept because the LEM hypothesis –
which seeks to explain the bimodal nature of results in introductory programming courses
such as CS11 (see 1.4) – argues that the initial moments are the most critical in learning.
We answered this question by developing an original learning design specific to introductory
programming. To stimulate students’ motivation and support their understanding, we suggest
fostering “necessity-driven” learning, that is, challenging students with a problem that makes
them “feel the necessity” of something they do not know yet.

To this end, we first investigated what we later called the necessity mechanism. It
is a particular disposition of students to be ready to learn a new concept after being in
an instructional situation that requires it. In our experience as informatics educators and
teachers (both in pre-university and university education), we have observed this phenomenon
numerous times. We initially recognized a similarity to what is described in A Time For
Telling [Schwartz and Bransford, 1998] from mathematics education (see 2.6.3), but without
finding a more specific definition for it that was more aligned with our observations. In
order to try to understand the nature of that learning disposition better and thus answer the
question of what that particular mechanism is – and how to foster it in students, we defined
a general mechanism that we called the “necessity mechanism”.

Our pedagogical inspiration lies in approaches in which problem solving, as a preparatory
activity, precedes instruction (PS-I) since this kind of approach can increase learners’ motivation
and improve understanding [Kapur, 2016; Loibl et al., 2017]. Moreover, we draw on Productive
Failure learning design [Kapur and Bielaczyc, 2012], which shows that failing in the preparatory
problem-solving phase favors students even more in learning from the following instruction
phase.

In addition, we provide and discuss some concrete examples of how our learning design can
be used to support learning to program in CS1, specifically the “bootstrap” of a new concept
(e.g., introducing the indefinite iteration). In order to do this, we propose concrete examples
of “necessity-driven” learning sequences and contextualize them within a CS1 learning path.

Another significant contribution of this research is an in-depth analysis of abstraction
swings (i.e., a rollercoaster) from the learner’s point of view. We tried to answer the

1As mentioned, with CS1, we indicate “a first course in informatics”, in which students usually learn basic
programming skills.

9.1. INTRODUCTION AND MOTIVATIONS 117

question of what impact abstraction has on learning introductory programming and, thus,
how abstraction influences a learning design to introduce programming concepts. Indeed,
already in CS1, we recognize that abstraction – a fundamental idea of informatics2 – heavily
comes into play. Therefore, the examples provided support precisely learning moments in a
CS1 course when abstraction changes. These changes are challenging for novices because
they require more effort and increase cognitive load [Curzon et al., 2019, p. 533]; it should
also be considered that both upward and downward movements can be difficult for students.
Furthermore, because upward and downward movements determine different learning scenarios,
teachers and educators must consider the direction of abstraction movement when developing
teaching activities with our learning design.

9.1.1 Outline

Section 9.2 presents a learning design for teaching introductory programming to novices, which
we call “Necessity Learning Design” (NLD) for introductory programming. Subsection 9.2.1
describes the “necessity mechanism”, which is the core element of our learning design.
Subsection 9.2.2 describes our learning design, features, and phases in detail.

Section 9.3 proposes a concrete example of the application of our learning design in
CS1 by using necessity sequences to support learning when abstraction changes (within
the programming language of choice). Subsection 9.3.1 discusses how the choice of the
learning path (i.e., which contents and their order) determines these movements and their
direction (increase or decrease in abstraction). Subsection 9.3.2 shows how both directions
pose challenges (albeit different) for learners and can lead to different teaching strategies.
Subsection 9.3.3 proposes a CS1 learning path, mainly as an example to show where to
place the necessity sequences we discuss. Subsection 9.3.4 shows four examples of learning
sequences designed with NLD and presents the general structure of the examples as a tool
for designing other necessity sequences.

Finally, section 9.4 reports the outcome of this research work and wraps up its key points.
It also explains the limitations of the necessity mechanism and NLD (9.4.1), describes what
did not go as we expected during the research (9.4.2), and presents its future developments
(9.4.3).

Please note that the literature relevant to this research work focuses on introductory
(or CS1) programming (see 1 and 2), Problem-based learning (2.6.2), Productive Failure
(2.6.3.1), PS-I approaches (2.6.3.2), and abstraction in programming languages (mainly
from the learner perspective; see 2.3.6). For the reader’s convenience, we briefly recap such
literature in the following 9.1.2.

9.1.2 Summary of relevant literature

Our literature review reports on the challenges of teaching introductory programming to
novice students, which is the typical CS1 scenario (see 1 and 2). This is the scenario in which

2For a historical and epistemological review and a discussion on the fundamental elements of an “informatical
way of thinking”, see Lodi and Martini [2021] and Lodi [2020a].

118 CHAPTER 9. NECESSITY LEARNING DESIGN

the problem lies, and that motivates our general research question, that is, what kind of
learning design can support novice students in learning to program?

Also, the literature review highlights the different types of knowledge involved in learning
to program (i.e., syntactic, conceptual, and strategic; see 2.3.1) and how using well-designed
examples can help students learn effectively (2.6.1). It also discusses the role of cognitive load
theory and the Learning Edge Momentum (LEM) hypothesis in understanding how students
learn to program (1.4). Most importantly, the LEM hypothesis suggests that teachers and
educators should pay particular attention in the introduction phase of a new concept (see 1.4
and 2.6.1). This leads to a more refined research question, that is, what kind of learning
design can support novice students when introducing a new programming concept?

Problem-based learning (PBL) is a learning methodology that presents students with
problems for which they must autonomously study the material needed to understand and
solve them; it focuses on learning goals rather than solving the problem itself. Problem-based
learning has been used in many fields of education, including informatics. The literature
review shows that it is effective for teaching programming to novices (see 2.6.2). Elements of
project-based learning have been integrated into PBL for programming due to the nature of
informatics and software development. While sharing with PBL the essential feature of using
an exercise for which students need to acquire more knowledge to motivate learning, our
proposed learning design (described in 9.2) has significant differences (that will be clearer in
the following). For example, our exercises are small and surgically designed around a specific
target concept; there is no teacher scaffolding because failure is at the core of the learning
design; the target concept is taught later with traditional instruction.

As the literature review in section 2.6.3 reports, some science education research suggests
that it is better to prepare students for instruction by engaging them in activities, and
even allowing them to fail, rather than starting with direct instruction. These preparatory
activities can include analyzing contrasting cases, generating answers, and encountering
impasses in problem-solving. These challenges can help students develop the knowledge
structures and deep understanding necessary to learn from direct instruction. The teaching
approaches combining problem-solving and direct formal instruction in this specific order are
called PS-I, which stands for problem solving before instruction (see 2.6.3.2). The literature
review in 2.6.3.1 reports that Productive Failure learning design (PF) is the most popular
among these. PF’s problem solving is a generative exploration phase: students engage in a
complex problem and generate multiple representations and solution methods (RSMs). PF’s
instruction is a consolidation phase: teachers organize and assemble relevant students’ RSMs
into canonical RSMs. Three core principles guide PF learning design: creating problem-solving
contexts that involve working on complex problems, providing opportunities for explanation
and elaboration, and comparing and contrasting failed or sub-optimal RSMs with canonical
RSMs. It fosters the activation of three cognitive mechanisms: prior knowledge activation,
awareness of knowledge gaps, and recognition of deep problem features. As we will discuss
later, our design is inspired by PS-I approaches and especially by Productive Failure (see 9.2.1,
while having its strong peculiarities (9.2.2.1).

9.2. NECESSITY LEARNING DESIGN 119

9.2 Necessity Learning Design

In light of the reviewed literature (a brief recollection in the previous 9.1.2), we propose a
learning design to support novices in learning introductory programming (often CS1), which
we call “Necessity Learning Design” (NLD).

The core element of our design – which sits in the domain of PS-I approaches – is the
necessity mechanism. What we call necessity mechanism is a learning mechanism originally
defined from various sources of inspiration (see 9.2.1) that shapes the learning experience to
support motivation, engagement and better understanding, by putting students in a situation
that can stimulate in them the necessity of the concept that will be introduced afterwards.

In the following subsection, we analyse the necessity mechanism. Then, in subsection
9.2.2, we detail and discuss how we leverage this mechanism in our Necessity Learning Design
for introductory programming.

9.2.1 Necessity mechanism

The necessity mechanism is prompted by assigning students a carefully designed problem;
note that we use the term ‘problem’ accordingly to the PS-I literature, although the problem
could be a simpler task, such as a programming task in our learning design. The problem
is built so that, on the one hand, students feel like they can solve it with the knowledge
they already have. On the other hand, however, necessity problems are constructed to be
unsolvable except with a particular concept not yet taught (to which we refer to as the
target concept, following PF and PS-I literature), making learners experience the need for
it. When learners realize that, “surprisingly”, they cannot solve the problem, it is the time
for telling [Schwartz and Bransford, 1998]. That is when the feeling of strong necessity –
generated by failing to solve the problem (or by struggling to find sub-optimal solutions) –
can be leveraged to introduce the target concept.

For example, after students have learned the two main forms of definite iteration – i.e.,
sequential scanning (foreach loop) and loop with explicit but automatic index handling
(for loop) – and after they have applied them to solve problems, a new problem requiring
indefinite iteration is proposed. This new problem might be to count how many pseudo-
random integers between 1 and 1000 a program generates before getting the number 42
(see necessity example 2). The problem is posed similarly to those faced when learning
definite iteration so as to inspire confidence in students that they can solve it with the loops
they have learned so far. However, since they cannot meet the problem request – at least
not easily nor optimally (e.g., they might use the for loop with a very large number of
repetitions) – students will hopefully feel a necessity (even an abstract one) of a construct
that allows repeating until something occurs, rather than repeating a given number of times.
The desirable difficulty of “having to resolve the interference among the different things
under study [i.e., the interference between what worked for the previous known problems and
what is not enough now] forces learners to notice similarities and differences among them,
resulting in the encoding of higher-order representations, which then foster both retention
and transfer’” [Bjork and Bjork, 2011, p. 61] of the following instruction phase.

In designing necessity problems, we follow some of the PF principles on problem solving

120 CHAPTER 9. NECESSITY LEARNING DESIGN

to “[c]reate problem-solving contexts that involve working on [. . .] problems that challenge
but do not frustrate, [and] rely on prior [. . . students’] resources” [Kapur and Bielaczyc, 2012,
p. 49]. We aim to activate two of the Productive Failure cognitive mechanisms (reported in
subsection 2.6.3.2): prior knowledge activation and attention to the target concept’s critical
features.

Also, in order to achieve the Productive Failure “sweet-spot calibration” of problems,
we design them to be as similar as possible (i.e., using almost the same words, phrasings,
scenarios, and requests) to the previous well-known problems students faced developing
mastery of the previous target concept. Carrying on with the example, the last problem
before the necessity problem (see example 2) might be to count how many times a program
that generates 100 (or any fixed number of) pseudo-random integers between 1 and 1000
produces the number 42.

Most importantly, necessity problems are solved precisely by applying the new target
concept, that is, the smallest possible addition to students’ prior knowledge. As already
recognized by Shneiderman [1977, p. 195], “[a]t each step the new material [. . .] should be a
minimal addition to previous knowledge, should be related to previous knowledge, should be
immediately shown in relevant, meaningful examples and should be utilized in the student’s
next assignment”. In other words – following the PF principle of relying on learners’ resources
– a necessity problem must be finely tuned to students’ prior knowledge so that they can fully
understand its request, identify its significant features, and devise strategies for solving it.
However, none of these strategies will lead to the canonical solution, as it requires applying
the target concept. According to Bjork and Bjork [2011, p. 62] on the generation effect,
problems “can potentiate the effectiveness of subsequent study opportunities even under
conditions that insure learners will be incorrect”.

As can be seen from this description, which (net of the programming example) illustrates a
general mechanism, we believe that the necessity mechanism is exploitable in learning contexts
beyond introductory programming. While we developed our learning design specifically for
introductory programming (as described in the following 9.2.2), the necessity mechanism
on which it is based can be used more generally in science education, as a tool immediately
available to teachers and educators, or as a part of other methodologies.

9.2.2 Necessity Learning Design for introductory programming

In this section, we present and detail the Necessity Learning Design (NLD) that leverages
the more general necessity mechanism to support novice students when introducing a new
programming concept.

9.2.2.1 A necessity sequence: P!S-I-PS

Assuming the logic of PS-I approaches [Loibl et al., 2017], both to sustain motivation and
because novices generally struggle to understand the significance of new concepts when they
are introduced by direct instruction – instead of planning for the use of the target concept “in
the student’s next assignment” (see Shneiderman’s quote 9.2.1) – we create a “meaningful

9.2. NECESSITY LEARNING DESIGN 121

example” (i.e., the necessity problem), in which the target concept is needed immediately
before the instruction phase.

Necessity Learning Design is greatly inspired by unscaffolded PS-I approaches (which
resemble straightforward Productive Failure [Sinha et al., 2021]), drawing on the idea that
problem solving best prepares learners for the instruction phase.

On the other hand, NLD deviates from PF in how it introduces the target concept after
the problem-solving phase, specifically by differing in the purpose and implementation of
the instruction phase. In the instruction phase of Productive Failure, the teacher introduces
the target concept to students (building on their RSMs, which are their representations and
solution methods; see 2.6.3.1) and uses the target concept to build the canonical solution
to the same problem of the previous phase. By contrast, the instruction phase in Necessity
Learning Design only introduces the target concept in general. The target concept is presented
in its essential features, through the easiest examples possible, and most importantly, without
applying it to solve the problem.

After the instruction phase, NLD requires students to return to the problem of the
first phase (whose purpose was for them to experience the necessity of the target concept;
see 9.2.1) that is precisely structured to be solved using the target concept just presented.

Inspired by the PS-I notation adopted by Sinha and Kapur [2019] to formalize the
approaches where problem solving precedes instruction, we describe our learning design as a
P!S-I-PS approach. P!S emphasizes that necessity problems are unsolvable (!S, with the
exclamation mark used as the ‘not’ operator, as is the case in many programming languages)
before the instruction phase. The PS at the end indicates a second problem-solving phase, in
which students return to the same problem after the instruction phase.

P!S phase: unsolvable problem solving The “problem” posed in our P!S phase diverges
from Productive Failure in the “complexity of the problem” design principle. PF designs
problems to be complex and information-rich (providing even unnecessary data) so that it
is natural and inevitable for students to generate multiple RSMs. That is because of the
essential role of students’ RSMs in the “consolidation phase”, in which PF builds direct
instruction on “organizing and assembling the relevant student-generated RSMs into canonical
RSMs’” [Kapur and Bielaczyc, 2012, p. 49]. While also programming tasks admit various
RSMs (always sub-optimal without the target concept, as discussed later in 9.2.2.3), the
Necessity Learning Design does not rely on students’ RSMs to introduce the target concept,
nor does it build the canonical solution together with students in the instruction phase.

Among the reasons for this different sequence is the nature of the “problems” – better
said tasks – that can be proposed to students learning introductory programming. The
solution to a programming task is a program, and a program is an interactive object. The
student who develops a program can immediately check whether or not her solution can
be executed. A non-executable program is a first obvious indication of an error. On the
other hand, if a program is executable, there are often many possibilities for the student to
verify whether it works correctly. In other words, the student’s program is an interactive
solution attempt, which returns information helpful for solving the problem. This unique
characteristic of programming problems constitutes a source of motivation for students to

122 CHAPTER 9. NECESSITY LEARNING DESIGN

experience first-hand the use of the target concept to solve the necessity problem.

Moreover, a specific consideration can be made for introductory programming. Since it
involves introductory and mostly technical knowledge, there is inevitably less room for various
RSMs and debating. On the one hand, confronting and discussing different solution strategies
(before instruction and after the second PS phase) is undoubtedly valuable. However, on
the other hand, the actual learning trigger of our learning design is not the discussion on
students’ RSMs but the feeling of necessity induced by the necessity problem.

While it would be unnatural (because of the introductory and mostly technical knowledge)
to design complex tasks with multiple RSMs to teach introductory programming, we focus on
developing meaningful but minimal problems that are “surgically” precise for the target concept.
Necessity problems for introductory programming are built on students’ prior knowledge but
in such a way as to be solved only with the target concept as if the programming task were
an encrypted message and the target concept the key.

I phase: (general) direct instruction As anticipated, in the instruction phase of Productive
Failure (and, more generally, of PS-I approaches), the teacher illustrates the target concept
and then applies it to solve the problem of the PS phase. In our scenario, presenting the
solution to students would waste a precious learning potential, that is, the feeling of necessity
(generated by the necessity mechanism, see 9.2.1) students have experienced in the P!S
phase.

Our choice is backed by the “optimal tutoring strategy” formulated by VanLehn et al.
[2003] in their study of what actions of human tutors cause learning within intelligent tutoring
systems. Instructors, after students reach an impasse (as it happens in our P!S phase),
“prompt them to find the right step [. . .], and [. . .] provide an explanation only if they have
tried and failed to provide their own” [VanLehn et al., 2003, p. 245]. Thus – if we equate
‘providing an explanation’ with ‘writing a program’ – not revealing the solution already in the
instruction phase to allow students to try autonomously to apply the target concept to the
PS task is an “optimal strategy”.

PS phase: informed problem solving In addition, all the reasoning students do in trying to
solve the problem before knowing the target concept can be valuable not only to understand
the concept’s significance but also to realise how to apply it to solve the problem. Indeed,
applying a concept is a further and more challenging step than simply understanding it. From
the learning perspective, understanding a programming concept corresponds mainly to the
conceptual level, knowing how to apply it to the strategic level (on the different kinds of
knowledge in learning to program, see 2.3.1).

More complex to try to frame the expected learning outcomes at the end of a necessity
sequence within the SOLO taxonomy. We hypothesize that the educational success of a
necessity sequence can lead novices to the multistructural level (3 out of 5). We believe that
reaching the more advanced levels (relational and extended abstract) requires developing
mastery (more in 9.2.2.2). In any case, further theoretical and experimental research efforts
would be needed to test this hypothesis

9.2. NECESSITY LEARNING DESIGN 123

For a summary comparison between Necessity Learning Design and Productive Failure,
see Table 9.1.

9.2.2.2 Learning between Necessity Sequences

Necessity Learning Design only aims to structure some specific moments of an introductory
programming learning path for novices, precisely when a new concept is introduced (more
about such moments in 9.3.1 and 9.3.2). In other words, the sequence (i.e., P!S-I-PS)
of necessity activities is not in itself sufficient for students to fully develop the syntactic,
conceptual, and strategic knowledge (see 2.3.1) of the target concept or to reach. Similarly,
in terms of SOLO taxonomy (2.3.2), the necessity sequence alone does not enable students to
reach the highest levels of knowledge (relational and extended abstract). For this to happen,
it is essential that, after every occurrence of a necessity sequence, students are exposed to
significant examples of the related target concept and other problem-solving situations3 and
have enough time to develop mastery. More generally, teachers and educators should adopt
all the best practices that informatics education research suggests to support students in fully
developing the knowledge and skills needed to learn to program.

Necessity Learning Design’s characteristic of focusing on crucial learning moments (i.e.,
introductions of new concepts) does not undermine its general purpose (i.e., addressing the
challenge of introductory programming) or its usefulness. Indeed, precisely because NLD
immediately stimulates the use of the target concept in a problem-solving context – in which
it is “the right thing to use” – our learning design aims to be an ideal starting point for
developing especially the strategic knowledge (or the highest level of the SOLO taxonomy) of
that concept.

9.2.2.3 Hard vs. Soft Necessity

The necessity of a programming concept (and the related construct) can be considered from
two different perspectives.

From the programming languages perspective, there is only one genuinely hard necessity
– that of the brute-force ability to program a specific function. It shows up only when the
(subset of the) language in use is not Turing complete. If we allow only (true) definite
iteration, then, for example, we cannot write programs that may loop forever for specific
input values. However, modern languages are all Turing complete (at least in their “standard
model” [Martini, 2020] where arbitrary resources are allowed). After all, besides the ability
to memorize data of potentially unbounded size, only selection and indefinite iteration (or
recursion) are needed for Turing completeness.

On the other hand, Turing completeness does not tell the whole story. The brute-force
ability to program any computable function usually involves unnatural coding of data and
processes. Lists, for instance, are not needed for such completeness. We may always encode
a generic list of integers [x0, x1, x2] with a single integer 2x0 ∗ 3x1 ∗ 5x2 (Gödelization) and
implement all list operations through prime factor decomposition. However, this possibility

3Please, recall that the programming tasks students face in this phase are similar to the necessity problem
of the following sequence, see 9.2.1

124 CHAPTER 9. NECESSITY LEARNING DESIGN

Table 9.1: Comparison between Productive Failure (unscaffolded PS-I) and Necessity Learning
Design (P!S-I-PS)

Productive Failure (PF) Necessity Learning Design (NLD)

PS P!S
Problem built on students’ prior knowledge

Problem sweet-spot calibration: challenging but not frustrating

Problem: complex, information-rich and ill
structured (what-if scenarios)

Problem: simple, well structured, very
similar to those the students are already

used to

Problem stimulates multiple RSMs Problem surgically designed to stimulate
the necessity of the target concept

No teacher scaffolding

Students discuss to confront different
RSMs

RSMs are programs, tinkerable objects
(self assessment and trial & error)

Students present their work and compare
(guided by teachers) affordances and

constraints of failed or sub-optimal RSMs
to assemble the canonical RSM

–

I
Teachers introduce the target concept in
the context of the problem and solve it

Teachers introduce the target concept
without referring to the problem (showing
the solution would waste the “necessity

learning potential”)

Students practice on well-structured
problems on the target concept

–

Teachers formally introduce the concept and explain it through simple examples

Students practice on isomorphic problems –

– PS
– Students immediately apply a concept

(strategic knwl) after learning it
(conceptual knwl) in a meaningful and
well-known context (P!S problem)

9.2. NECESSITY LEARNING DESIGN 125

(and others of this kind) is irrelevant for novice students in an introductory programming
learning context.

Therefore, we better consider an educational perspective and identify an “educational”
hardness of necessity, which shows up exactly when the available programming tools express
the new concept (i.e., the target concept) only through unnatural or too complex coding. As
a matter of fact, it is very unlikely for novice students to be able to produce such advanced
– yet unnatural and complex – solutions at the point where they are in the programming
learning path. This educational perspective is bound to the chosen programming language
and the order of topics in the learning pathway.

Therefore, the educationally hard necessity of a target concept appears when students,
drawing only on what has been taught in the course so far – hence without the target concept
– can produce only sub-optimal solutions to a given problem or task. Indeed, most of the
time, using the constructs learned until that moment in its “standard way”4, students will
only be able to produce partial solutions, i.e., solutions that do not solve the problem in all
possible cases. However, recall that – apart from the exceptional cases of a Turing-incomplete
language (subsets) – complete and general solutions (i.e., solutions that work for all cases)
are always technically available, although through more or less fancy hacks. Nevertheless,
as said, it is very unlikely (though not impossible) that a novice student could circumvent
an educationally hard necessity problem. For example, students might “force” a definite
loop construct they know to express an indefinite iteration, e.g., in Python, using a for

loop over a list and increasing the list length in the repetition body5. Solutions such as this
would demonstrate a student’s remarkable mastery of the concepts preceding that moment
of necessity. In these (rare) cases, teachers should make these students realize that such
solutions, though workable and clever, are nonetheless sub-optimal hacks (often inelegant,
inefficient, unnecessarily complicated) and prone to introduce issues as the complexity of
tasks increases. Students who can circumvent a hard necessity problem are also likely to be
receptive to such clarifications.

By contrast, in cases of educationally soft necessity, sub-optimal solutions formulated
without the target concept can, quite easily, solve the problem completely, just relying on
students’ previous standard knowledge. In such cases, it is not unlikely that students will
be able to circumvent a soft necessity problem since they could “blindly” use what they
already know. For example, with reference to the turtle geometry sequence (see example 1),
drawing a polygon of 20 sides can be done by blindly replicating the same code 20 times. In
general, in soft necessity cases, sub-optimal solutions may be fully functional (though often
not general). However, they are always one or more of the following: less compact (e.g.,
because of repeated code) – and therefore less maintainable and more prone to errors, less
modular (e.g., not using functions, not adopting OOP), less clear (e.g., intricate solutions),
and also possibly less efficient (i.e., more computationally costly in time, space or both).

From the educators’ perspective, being aware of whether the necessity is educationally

4The canonical usages of a construct, as taught to students.
5Typically, in most modern languages, constructs designed for definite iteration (e.g., for, foreach) can

be forced to express indefinite iteration, sometimes in more natural ways (e.g., in C), sometimes in unorthodox
and inelegant ways (such as in the Python example just mentioned).

126 CHAPTER 9. NECESSITY LEARNING DESIGN

hard or soft helps design the related necessity problem. If it is educationally soft, the necessity
problem should be structured in such a way as to make it as difficult as possible to circumvent
the problem by blindly using prior knowledge. Conversely, if it is educationally hard, the
necessity problem should require exactly what is (educationally) impossible to do without
the target concept. In summary, the goal is always to stimulate the necessity of the target
concept, without which it must be (almost) impossible (i.e., educationally hard necessity) or
hindered (i.e., educationally soft necessity) to develop a complete solution.

To clarify what was said in a concrete context, we refer to a scenario where the problem
is to input a list of students’ names and randomly choose the first to take the oral exam.

1. If the number of students is known[. . .]

. . . and it is very small.
No necessity is stimulated since it should be fairly simple even for inexperienced
students to use separate variables to input the names, extract a random number,
and use a simple selection (with few elseif branches) to print the corresponding
student.

. . . and it is large.
It is still conceptually easy to solve the problem with unrelated variables and a
(long) selection with many elseif branches. However, the solution code would
be long and repetitive, and errors would likely be made. Hence, even though it is
possible to solve the problem completely, writing such a solution is prone to errors
and could be frustrating. This scenario can stimulate in students a soft necessity
of some kind of collection with index access (like arrays).

2. If the number of students is unknown.
An educationally hard necessity is stimulated. Students can produce an incomplete
solution assuming a large maximum number of students, leading back to the solution
of the previous point. Of course, this solution would be highly sub-optimal. In this
case, we are dealing with an educationally hard necessity (this time, of some kind of
dynamically extendable collection with index access, such as Python lists) because
students have no “standard” way6 to produce a complete solution (i.e., to memorize
an arbitrary, unknown number of students only using simple variables).

In conclusion, the hardness (and the effectiveness) of any necessity sequence is determined
by both the chosen programming language and specific topics order in the learning path. This
explains why the information in each of the presented necessity examples always includes
“What students already know” and, when relevant, a warning about other concepts that
students should not know at that time.

6See higher up in this discussion how it would be possible to simulate a list only using a single integer
variable (Gödelization).

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 127

9.3 A use of NLD in the CS1 abstraction rollercoaster

In section 9.2, we introduced and described Necessity Learning Design. Here we present a
possible application of NLD in some moments that we consider crucial in a CS1 course, which
are those in which the abstraction level changes in relation to the constructs of the chosen
language (see 2.3.6).

From the literature review on abstraction (2.3.6), we briefly recall that abstraction in
informatics and programming languages is used to hide information and manage system
complexity. Even an entire programming language can be seen as an abstraction of the
underlying physical machine. Abstraction can be used to simplify the implementation of a
system without affecting its behavior and applies both to control and data. Control abstraction
involves hiding procedural data to define new control structures in a programming language;
data abstraction involves hiding data structures to define new data types. Whether on control
or data, students must follow a change in abstraction level when learning a new construct
(of the same language), either downward when it is less abstract (usually more powerful and
detailed) or upward when it is more abstract (more concise and evocative).

Simply put, abstraction from the learners’ perspective is a lens through which we analyzed
the introduction of new programming constructs. Ultimately, this lens helps in the design of
necessity sequences.

We begin by discussing these movements of abstraction (9.3.1) and the relevance of
their direction (9.3.2). Then we present a possible learning path for CS1 (9.3.3). Finally,
within this path, we describe four necessity sequences – also detailing their general structure
– that we developed as concrete examples of how to support learners in introducing four core
programming concepts (9.3.4).

9.3.1 Abstraction movements in introductory programming

The history of programming languages, from low level to high level, clearly shows an abstraction
process, with the introduction of more and more abstract constructs (for the notion of type,
see Martini [2016a;b]), or with the creation of more and more abstract languages, sometimes
maintaining low-level functionalities (even when not strictly necessary for expressiveness),
other times sacrificing them for cleanness.

Creating these abstractions in programming languages is a complex process driven by
experiments and semantics. In Visser [2015], we find a discussion about this abstraction
creation process. First, a programming pattern – a “recipe” for solving a re-occurring problem,
which the programmer applies manually in any instance (e.g., calling and returning sequences
in assembly language using the return stack) – is identified. Then, a linguistic abstraction – a
construct providing a “black-box” for that pattern (e.g., functions and the passing mechanism
of their parameters) – is devised and realized. The essential point is that a “good” abstraction,
once created, gets autonomous life because it captures an important concept of software
development.

Professionals have welcomed this movement upward the abstraction ladder – because it
enables them to express more and more complex computations in a simpler, more evocative,

128 CHAPTER 9. NECESSITY LEARNING DESIGN

and more concise way – and resort to lower-level constructs (or languages) only when necessary
(e.g., for efficiency’s sake).

By taking an expert perspective, it could be tempting to always follow the same upward
direction (usually called a bottom-up approach [Caspersen, 2018, p. 113]) and follow an
ascendant abstraction path when teaching programming to students. That is, starting from
lower-level constructs so that, when a higher-level construct (abstracting the former ones) is
introduced, students can fully understand its underlying details. However, as already noted by
Shneiderman [1977, pp. 195,196] – and in line with the studies on cognitive load theory (see
in particular 1.4.1) – students “would be overwhelmed if the general form were presented first,
[while they] can absorb complex forms in a step by step process”, therefore “[n]on-essentials
must be stripped away so as to provide students with a minimum useful subset of the language
which can be expanded gradually”. Indeed, a small subset of abstract constructs (e.g., print,
if, foreach loop) is enough to produce functioning and meaningful early programs (e.g.,
given a sequence of strings representing the XML code of a social network posts, print out
only those mentioning your name), and thus sustain motivation in novice learners [Caspersen,
2018, p. 113]. Furthermore, some studies show that implicit looping is more natural for
novices than explicit looping [Guzdial, 2008], hinting at the possibility of teaching more
abstract constructs before the less abstract ones (i.e., focusing more on “what” than on
“how”, following Statter and Armoni [2020]).

Hence, in some cases, educational purposes can take the abstraction ladder downward
in the opposite direction of the one followed to introduce more abstract constructs in
programming languages. For example, instead of going upward from using the while loop
for definite iterations (i.e., by manually handling an index/counter) to the for loop with
explicit but automatically handled index, up to the foreach loop with implicit (and hidden)
index handling, we can take the opposite route by starting to teach the more abstract loop
(i.e., the foreach loop) and going down from there. Of course, learners in introductory
programming courses will soon face situations in which the most abstract construct is not
sufficient anymore (or it is less elegant, simple, efficient). When this happens, students can
feel the necessity (see 9.2.1) of “opening the black box” to have a less abstract but more
powerful mechanism.

On the other hand, during a typical introductory programming/CS1 course, adding more
constructs often raises the abstraction level. For example, in our proposal, this happens
when introducing a dictionary-like data type (i.e., a mapping between two finite collections of
arbitrary types; example 4). Since it helps solve problems handled before with parallel arrays
(one containing the indexes and one the values), introducing dictionaries can be seen as an
increase (compared to using parallel arrays) in data abstraction.

We observe that the order in which concepts are introduced determines the direction of
the movement of abstraction. In the previous example on loops (i.e., moving down towards
the less abstract while loop), the abstraction movement would be upward if the general form
(i.e., while) were presented before the more abstract one (i.e., foreach).

As mentioned in 2.1, there is no agreement in the literature on the best topic order to follow
in introductory programming/CS1 courses. Consequently, introducing the same concepts in
different courses may correspond to opposite directions in the abstraction movement due to

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 129

different choices on the order of topics. Moreover, we observe that a typical introductory
programming course usually goes up and down the abstraction ladder (even more than once)
along its learning path.

Hence, considering the multiple changes of abstraction level across the typical abstraction
mechanisms of any CS1 programming language, we recognize what we call a rollercoaster of
abstraction.

In 9.3.3, we present a comprehensive CS1 proposal and discuss the abstraction movements
(and their directions) within its learning path; we also discuss the possibility of alternative
paths and, thus, different abstraction movements and directions.

9.3.2 Abstraction ups and downs: different and difficult

As anticipated at the end of 2.3.6, movements between levels of abstraction pose specific
learning challenges.

Moving downward the abstraction ladder is difficult because novices face the challenge of
dealing with more details than before (see 1.4.1 on cognitive load). Indeed, a drop in the
level of abstraction requires students to consider additional information and determines a
less straightforward way to do things; however, it allows for more sophisticated computations.
A metaphor that speaks well of this difficulty is that of the car transmission. It is intuitive
to understand how a person who has learned to drive automatic cars finds it challenging to
drive a manual car because it requires knowing and maneuvering more things.

However, moving upward the abstraction ladder can be, more surprisingly, difficult as well.
A study conducted by Alexandron et al. [2012, p. 157] on live sequence charts

showed that some [students] felt that the high abstraction level does not give
them enough control, though the goals of their program were achieved without
getting into lower level details. [. . . T]his subjective feeling is strongly related to
[. . .] students’ previous programming experience. Since the students were used
to working on lower abstraction levels, it determined their perception of what the
‘right abstraction level’ is. When moving to a higher abstraction level, they could
not control things that they used to control before, and thus felt that they lose
power.

Picking up on the car transmission metaphor, it is quite common for people who are used
to driving manual cars to report difficulties (at least at first) in switching to an automatic
transmission. They usually complain of less control – it is impossible to control the engine
brake in the same way as in a manual car – and disorientation.

Therefore, since riding the abstraction rollercoaster of learning introductory programming
seems challenging both upward and downward, we propose examples of how to use Necessity
Learning Design to support learning at these critical abstraction movements. We think NLD
can support student learning in these critical moments. This is also because of the multiple
roots on which we developed it (recalled in 9.1.2), for example, Productive Failure to best
prepare for instruction and the constructivist idea of “generation effect” that can favor a
positive learning edge momentum and solid and deeper learning.

130 CHAPTER 9. NECESSITY LEARNING DESIGN

Moreover, recognizing the direction of the abstraction movements when introducing a
new construct (and the related concept) helps design its necessity sequence. Indeed, whether
abstraction goes up or down, the nature of the necessity problems changes as scenarios
characterized by different necessities arise.

Reducing the abstraction level causes students difficulties because it requires them to
see and deal with previously hidden details. We observe that in these cases, teachers and
educators must stimulate in students a hard necessity, which is usually more straightforward
to seek when abstraction drops (see 9.2.2.3). This means proposing to students a necessity
problem (educationally) impossible to solve without those additional details.

Differently, increasing abstraction also causes difficulties for students since it usually takes
away details they learned to control. In these cases, it is difficult to find hard necessity
scenarios. Indeed, more abstract tools (i.e., commands and constructs) are intended to
facilitate tasks (compared to using more trivial tools) rather than enable new functionalities
(see 2.3.6). Consequently, when abstraction increases, teacher and educators must stimulate
in students a soft necessity (see 9.2.2.3) to use the more abstract tool. This can be done by
developing programming tasks that make it complicated (i.e., time-consuming, tiring, prone
to errors) to “blindly” use the less abstract tools that students are already familiar with,
effectively creating the opportunity to use the more abstract ones.

As informatics teachers and educators with many years of experience (both in tertiary
and pretertiary education), we found that developing programming tasks to foster learning
when abstraction increases is more challenging than when abstraction drops. Therefore we
provide just one example of Necessity Learning Design used to support a downward movement
(example 2) and three examples of NLD supporting upward movements (examples 1, 3, 4).
All examples are framed into a (proposal of) CS1 learning path, which we describe in the
following 9.3.3.

Abstraction movements in learning programming and program design

As a final reflection, it might be intriguing to investigate possible correspondences between
program design strategies (top-down and bottom-up; 2.3.5) and the ups and downs of
introductory programming (9.3.1). While remaining in the domain of programming education,
the rollercoaster concerns a different, more fundamental aspect of the learning phenomenon.
Educators who want to use NLD need to understand that in learning programming, novices
are required to move up or down in abstraction every time a new construct is introduced. It is
a dimension that does not seem to intersect with that of planning, and the two abstractions
(ups&downs vs. top-down&bottom-up) do not seem to be linked. These are just two of the
many declinations of the concept of abstraction in informatics.

It may be added that a new programming concept is introduced in NLD by an example
(P!S phase). In this sense, we are using a bottom-up approach as far as the planning is
concerned. This bottom-up approach will be consolidated in the NLD later phases (i.e.,
alignment phase and consolidation exercises) by seeing more examples and delving more
into the theory than during the quick introduction of the essentials (I phase). Despite this
interpretation of NLD from the planning perspective, we still do not identify correspondences
between the two abstractions that could be valuable from an educational standpoint.

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 131

9.3.3 A possibile CS1 learning path

In the following, we report the contents of a possible CS1 learning path where we contextualized
the examples provided in subsection 9.3.4.

The course we present here follows a rather classical approach to introductory programming.
It is based on the CS1 for math majors we have successfully experimented with over the last
ten years, both as a traditional in-person course and as a fully online (yet synchronous) one
(for two years because of the COVID pandemic; see 11 and also [Lodi et al., 2021b]).

Differently to an entirely classical progression (as proposed in some textbooks, e.g., Guttag
[2021], Downey [2015]), we propose to begin with a turtle module. We use it as a tool for
a playful and creative introduction to programming, influenced by Papert’s constructionist
approach with Logo turtle geometry [Papert, 1980] (of which the turtle module is a Python
implementation). Indeed, as in renowned courses (e.g., Harvard’s CS507 or Berkeley’s CS108),
this introductory part can be approached with visual languages such as Scratch or Snap!,
which provide turtle primitives and simple repetition constructs such as repeat N.

Our proposal of a CS1 pathway follows, instantiated with Python language but easily
adaptable to any other high-level imperative language. The learning path includes the main
programming concepts and constructs, along with Python language features realizing them,
elementary patterns, notable algorithms, and theoretical aspects. Please note that the target
concepts of the necessity examples provided in 9.3.4 are indicated in bold italics.

continued on next page

Example of CS1 learning path for non-majors

• Importing constants and functions from a module

• Basics of the turtle module

– forward (backward) function

– left (right) function

• for loop to express a simple repeat N with N being a fixed integer value (e.g.,
for i in range(10)) – example 1 target concept

• Built-in data types

– Integers, floats

– Strings and their basic operations (including selection of a character)

• Variables and assignment

• Functions (calling them, passing paramenters, defining custom functions)

• Input and output (input and print functions)

7https://cs50.harvard.edu/college/2021/fall/syllabus/#lectures
8https://cs10.org/su21/5syllabus/

https://cs50.harvard.edu/college/2021/fall/syllabus/#lectures
https://cs10.org/su21/5syllabus/

132 CHAPTER 9. NECESSITY LEARNING DESIGN

continued on next page

• Type conversions (e.g., int(), str())

• random.randint to generate a random integer in an interval

• Boolean type and boolean expressions

• Conditional commands (if, if...else, if...elif...else)

• for loop to iterate over sequence elements (“foreach” loop)

• Elementary pattern: linear scan (for each element of a sequence, do some
operations)

• Tuples (and generalised assignment)

• Slices on sequences ([start:stop:step])

• Elementary pattern: linear scan with a gatherer

• Idea of object and methods

– is vs. ==

– Methods on built-in types (e.g., str, float)

• range and for over a range to express the definite iteration with explicit but
automatically handled index (e.g. for i in range(1,10,2))

• Elementary pattern: linear search

• while loop to express indefinite iteration – example 2 target concept

• Algorithm: Euclidean algorithm to compute GCD

• Pattern/algorithm: binary search

• Computational complexity: linear vs. logarithmic

• matplotlib.pyplot.bar to plot a simple bar chart

• Arrays (or lists) with index access – example 3 target concept

• Lists (mutability, dynamic insertion and deletion of elements, list methods)

• Recursion

• Computational complexity

– resources, computational steps, cost of elementary/non-elementary steps,
big-Os

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 133

– complexity of binary search

– complexity of numeric algorithms

• Sorting algorithms: insertion sort, quicksort, merge sort

– their computational complexity

• Dictionaries – example 4 target concept

• List comprehension and dictionary comprehension

• Generators

• Object-oriented programming (OOP)

– Classes and objects, attributes and methods

– “Magic” methods

– Private attributes, instance attributes

– Subclassing and inheritance

• Binary tree abstract data type (implemented with OOP)

• The Halting Problem

This pathway is just a proposal, and we provided it mostly to place the necessity examples
in a concrete context. Also, the examples we developed using Necessity Learning Design can
fit into other introductory programming learning paths, provided that the prerequisites are
met and the topics students should not know (to stimulate the various necessities of the
examples) have yet to be addressed.

With the same warning about dependencies between topics, it is worth mentioning that
NLD can be used to support the introduction of other concepts. Indeed, the examples
presented here are just a few of the many possible necessity sequences that can be developed.
For example, to introduce object-oriented programming, teachers and educators might use
NLD to stimulate the necessity of a coherent representation of an object instead of relying on
unrelated data structures and functions. This transition corresponds to an upward movement
of (data and control) abstraction, which can be set in a soft necessity scenario.

9.3.3.1 Ups and downs in our and in other paths

From the viewpoint of abstraction movements, our learning path immediately shows ups and
downs. In the beginning, we intuitively introduce the repeat N loop (with N being a fixed
integer known at compile time). The repeat N loop is realised in Python with a for i in

range(N). Leaving initially unexplained what i and range are, we teach a simplified use of
the construct that, in this case, serves only to repeat N times a block of instructions. At this
point, the abstraction goes up a bit because the first “real” Python loop we teach after the

134 CHAPTER 9. NECESSITY LEARNING DESIGN

repeat N loop is the for on sequences (foreach). After that, the abstraction goes down as
we explain what a range is and how to use the for construct to iterate over a range, to
have (in Python, to simulate) a for loop with explicit but automatically handled numeric
index. The goal is to access sequence elements by index (and not just repeat N times a
block of instructions). A hard necessity sequence can be constructed around the need to
use indexes in a non-trivial way, e.g., to access the previous/next element or only specific
parametric positions. Abstraction goes down further when the while loop is introduced to
express indefinite iterations (see example 2).

The rollercoaster described so far is experienced by students not only at the crucial
moment of learning those new constructs/concepts. Indeed, students, in order to solve future
problems, will always have to move between the different abstraction levels encountered to
choose the construct at the most suitable level for the problem at hand. Clarified this, we
observe how abstraction tends to increase or remain constant from this point onwards in the
proposed learning path.

However, since the path in 9.3.3 is only a proposal9, it is easy to imagine other learning
paths with different movements, showing that the rollercoaster is inherent in introductory/CS1
programming.

For example, Python provides a powerful tool for “inline” list construction, list compre-
hension10. This construct is more abstract than the classic elementary pattern that uses
a for loop and an empty list as a gatherer. In addition, it features a syntax inspired by
the mathematical notation of set construction (i.e., note the similarity of {x3 | x ∈ [0..4]}
with [x**3 for x in range(5)]). It has been found that non-programmers intuitively
prefer constructions such as list comprehensions [Pane et al., 2001, p. 258]. It is possible to
introduce this list-building construct first, a choice that makes particular sense, for example,
for math majors, given the similarity of list comprehension with the intensional mathematical
representation of sets. The necessity of learning the for loop – therefore going down in
abstraction – can then be stimulated when creating the list is not the only thing that needs
to be done but when other operations also need to be performed at each iteration.

Generally, an approach that starts from more abstract constructs – thus deviating from
the more established tradition of teaching programming from the basics and abstracting from
there – might be beneficial in domain-specific contexts other than informatics. Suppose
researchers or professionals outside informatics need to learn to program. In that case, the
level of abstraction of the tools they might be interested in is likely the one closest to the
type of data they have and the elaboration they need to do.

According to this perspective, for instance, it would be possible to learn the tree abstract
data type first and only afterwards, when the necessity of modelling more sophisticated (than
trees) data structures, learn how trees can be implemented through lists. Similarly, as with
list comprehension, it is possible to teach a powerful construct such as generators first in

9As already reported in 2.1, there is no “right” order of topics universally accepted by the informatics
education community.

10According to Python documentation, list comprehensions “provide a concise way to create lists. Common
applications are to make new lists where each element is the result of some operations applied to each
member of another sequence or iterable, or to create a subsequence of those elements that satisfy a certain
condition.” https://docs.python.org/3/tutorial/datastructures.html

https://docs.python.org/3/tutorial/datastructures.html

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 135

their most abstract and intensional form provided by Python. Afterwards, it will be possible
to descend the abstraction ladder to teach generators’ explicit construction and the more
sophisticated commands (e.g., yield) when necessary (e.g., when a mathematician needs to
handle a large list of primes without allocating it all in memory).

9.3.4 Examples of NLD use in abstraction movements

The following illustrates four examples of Necessity Learning Design used to introduce core
programming concepts. The proposed examples are designed for Python, but – unless there
are specific limitations – they can also be adapted to introduce the same concepts in other
imperative languages.

The examples presented below are necessity sequences. A necessity sequence is the
succession of three phases: P!S, I and PS. Each sequence, designed according to NLD,
aims to teach a concept that determines a change in the abstraction level in the use of the
programming language.

Each example is presented in a box divided into three parts: necessity scenario, necessity
sequence, and example characteristics.

The necessity scenario provides the following information.

• Title. It evokes the necessity stimulated by the sequence.

• Problem in a nutshell. A concise description of the problem (i.e., programming task)
that aims to stimulate the necessity for the target concept.

• What students already know. It lists the knowledge students should have to deal with
the sequence, expressed at the syntactic, conceptual, and strategic levels (see 2.3.1).

• Target concept. The new minimal addition to students’ previous knowledge we want
them to learn, expressed at the syntactic, conceptual, and strategic levels (see 2.3.1).

After the first dashed line, the second part describes the necessity sequence in detail.

• Before the necessity sequence. It reports an example of a programming task with
which students have become familiar in developing mastery of the previous concept.
This task is the last before the P!S phase and is structurally and linguistically very
similar to the necessity problem of the current sequence (see why in 9.2.1).

• P!S – Problem-solving phase (unsolvable problem).

– Problem. The text (as proposed to students) of the necessity problem (see 9.2.2),
a programming task that requires the target concept in order to be solved. It may
consist of a sequence of tasks.

– Necessity trigger(s). The obstacles students encounter when trying to solve the
problem without the target concept. Not being able to overcome these obstacles
should stimulate in them the feeling of the necessity of the target concept.

136 CHAPTER 9. NECESSITY LEARNING DESIGN

– Necessity. The core mechanism of our learning design describes the feeling of
the necessity of the target concept. That is, what students experience by not
being able to solve the proposed problem.

– Sub-optimal solution(s). The solutions students might develop in trying to solve
the problem without the target concept. A student solution in this phase is usually
incomplete; however, it also may be complete (i.e., a solution that works for all
cases but is still sub-optimal for other reasons; see 9.2.2.3). The solutions reported
do not necessarily have to emerge during the sequence implementation, nor is it
required that all students can formulate them.

• I – Instruction phase. The target concept, and its related knowledge, that the teacher
directly instructs students (but without applying it to solve the necessity problem).

• PS – Second problem-solving phase. It reports the optimal target code students
should be able to develop by engaging again in the necessity problem after being
instructed on the target concept.

After the second dashed line, the third and last part reports some characteristics of the
example and, when present, implementation warnings.

• Characteristics.

– Abstraction mechanism. It indicates whether the sequence is about control
abstraction or data abstraction (see 2.3.6).

– Abstraction movement. It indicates whether the target concept represents an
increase or decrease in the abstraction level (compared to what students can
already do with the tools they know so far).

– Educational hardness. It indicates whether the sequence stimulates an educationally
hard or soft necessity; it depends on whether or not it is possible to develop
complete solutions without the target concept (see 9.2.2.3).

• Warning(s) (optional). It lists, if any, the knowledge that would enable students to
solve the problem easily. It is crucial to be aware of such knowledge: if students have
it, they will not experience the necessity of the target concept.

Each example is followed by a brief final discussion, which reports relevant considerations
on the necessity sequence presented.

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 137

9.3.4.1 The necessity of definite iteration

continued on next page

Necessity example 1

The necessity of definite iteration
(with turtle geometry)

Problem in a nutshell

Drawing a polygon with a given (high) number of sides. Then, changing the program
to modify the side length. Finally, changing the program to modify the number of
sides.

What students already know

• Syntactic level + viable conceptual model

– Importing functions from libraries

– Basics of the turtle module:

∗ forward (backward) function

∗ left (right) function

• What students already know how to do (strategic level)

– Using forward (backward), left (right) functions from turtle module
to draw contiguous segments

Target concept

• repeat N loop, with N being a fixed integer known at compile time
(syntactic + conceptual)

• repeat instructions a fixed, pre-determined number of times (strategic)

Before the necessity sequence

Example of a previous task not needing the target concept Draw a square of side 50.

138 CHAPTER 9. NECESSITY LEARNING DESIGN

continued on next page

P!S – Problem-solving phase (unsolvable problem)

Problem The problem consists of three sequential tasks. The next task is given when
students have finished the current one.

A. Draw a 20-side regular polygon of side 50.

B. Edit the previous program so that it now draws a polygon (still 20-side) with
sides length equal to 45.

C. Edit the previous program so that it now draws a 18-side polygon (with sides
length equal to 45).

Necessity triggers

A. Students need to repeat 20 times a two-instruction block.

forward(50)

left(18)

B. Students need to update 20 times the side length.

forward(45)

left(18)

C. Students need to remove two blocks and update 18 times the angle.

forward(45)

left(20)

Necessity I need a way to repeat a block of code a fixed number of times.

Sub-optimal solution

• (complete) The straightforward solutions with the replicated code are completely
correct, but tiring and likely subject to errors or oversights.

I – Instruction phase

Illustrating how to repeat N times a block of instructions, with N being a fixed integer
value, realised in Python.

for i in range(N):

<block of code >

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 139

PS – Second problem-solving phase

Target code A possibile solution to task C (solutions to taks A and B can now be
easily obtained by modifying this code as well).

from turtle import forward , left

for i in range (18):

forward (45)

left (20)

Characteristics

• Control abstraction

• Upward abstraction movement (compared to replicating the same block of
instructions many times)

• Soft necessity (complete, though sub-optimal, solutions are possible without the
target concept)

Implementation warning

Other concepts that students should not know yet for the mechanism to work:

• Variables and assignments

Example discussion Task A would be sufficient to introduce the necessity of definite
iteration. However, we believe that tasks B and C can reinforce this necessity. Indeed, the
request for multiple changes aims to provoke a little frustration in students so they can feel
the necessity of a repetition construct, especially in a scenario of soft necessity like this
(see 9.2.2.3).

Note that this would not be the case if variables and assignments were already known to
students. In that scenario, tasks B and C are not useful. Therefore, task A should be designed
in such a way as to stimulate the necessity of definite iteration even more (e.g., asking for
more polygons, for polygons with more sides). Otherwise, simply using two variables (i.e.,
one for the side length and one for the number of sides), the updates required by tasks B
and C would be trivial and fast.

140 CHAPTER 9. NECESSITY LEARNING DESIGN

9.3.4.2 The necessity of indefinite iteration

continued on next page

Necessity example 2

The necessity of indefinite iteration

Problem in a nutshell

Counting how many random numbers are generated before getting a certain value.

What students already know

• Syntactic level + viable conceptual model

– Importing functions from libraries

– Variables and assignments

– Boolean expressions

– if statement

– for loop with explicit, automatically handled index (“true” definite iter-
ation; e.g., Python for i in range(1,11), Snap! (and Pascal) for i

:=1 to 10, but not the 3-clause for of C and Java)

– Function to generate a random integer in an interval

• What students already know how to do (strategic level)

– Use a variable as a counter

– Combine definite iteration with selection to iterate over a collection and
perform an action on the basis of a condition

Target concept

• while loop (syntactic + conceptual)

• Repeating until a condition is met (without knowing how many iterations will
take) (strategic)

Before the necessity sequence

Example of a previous task not needing the target concept Count how many times a
program that generates K pseudo-random integers between 1 and 1000 produces the
number 42.

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 141

continued on next page

P!S – Problem-solving phase (unsolvable problem)

Problem Count how many pseudo-random integers between 1 and 1000 a program
generates before getting the number 42.

Necessity trigger Students do not know a-priori how many calls the program needs
to get 42.

Necessity I need a way to repeat “until something happens” without knowing in
advance when (or even if) it will happen.

Sub-optimal solutions

• (incomplete) Using a definite iteration to repeat a very high number of times
(ideally to the MAXINT, if available in the language), hoping that 42 will be
generated before.

• (complete) Using the (often not simple nor elegant) possibility of modern
languages’ for-like loops to realise an indefinite iteration.

I – Instruction phase

Illustrating the concept of indefinite repetition using the construct that repeats a block
of code “while a condition ¡C¿ is True” realised in Python.

while <C>:

<block of code >

PS – Second problem-solving phase

Target code
from random import randint

count = 1

while randint (1 ,1000) != 42

count = count + 1

print(count)

Characteristics

• Control abstraction

• Downward abstraction movement (compared to the for loop with explicit, auto-
matically handled index)

142 CHAPTER 9. NECESSITY LEARNING DESIGN

• Hard necessity (without the target concept, using (true) definite iteration, only
incomplete solutions are possible; complete solutions are possible by using—often
inelegantly hence sub-optimally—for-like loops to realise indefinite iteration)

Example discussion The necessity that this sequence aims to stimulate would also be
satisfied by using the recursive mechanism. Consequently, the same sequence can be used to
introduce recursion.

Another essential clarification concerns a limitation of this necessity sequence. It can only
be used with languages (such as Scratch and Python) in which the for loop realises a “true”
definite iteration11. For obvious reasons, it cannot be used with languages in which the for
construct (such as the 3-clause for of C and Java) can express indefinite iterations and thus
be used instead of the while loop.

An alternative but equally viable scenario to stimulate this necessity is the well-known
Rainfall problem [Soloway, 1986]. The condition on which the program waits is not related
to the extraction of a pseudo-random number but to the user’s input of a termination
value. Only a few prerequisites would change: students need to know how to use basic
input functionalities, and they do not need to know how to import modules or generate
pseudo-random integers.

Another “less straightforward” way to stimulate the necessity of indefinite iteration is
asking to terminate the scan before the end of the sequence (without using break, return,
or auxiliary functions) when a specific condition is satisfied. For example, the problem might
ask students to determine whether a very long sequence contains at least one particular
integer and to do so in the shortest possible time. Consequently, since the sequence is very
long, it is critical to stop as soon as the number is found. We consider the latter a more
artificial request and, consequently, less effective in stimulating the necessity of indefinite
iteration: this is not a task that can only be solved with the target concept but rather a task
that can be solved more efficiently with it.

9.3.4.3 The necessity of arrays

continued on next page

Necessity example 3

The necessity of arrays

Problem in a nutshell

Keeping track of how many times each number is drawn, with many possible numbers
and many extractions.

11Please, recall the discussion about this matter in 9.2.2.3.

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 143

continued on next page

What students already know

• Syntactic level + viable conceptual model

– Variables and assignments

– Boolean expressions

– for statement

– if statement

– Function to generate a random integer in an interval

– Function to plot a bar chart

• What students already know how to do (strategic level)

– Using a variable as a counter

Target concept

• Arrays/lists with index access (syntactic + conceptual)

• Using arrays/lists to store, read and modify values accessing them by index
(strategic)

Before the necessity sequence

Examples of previous tasks not needing the target concept

A. Given the possibility of tossing a coin (i.e., generating a random integer between
0 and 1), check whether the number of heads and tails is approximately equal
after a high number of tosses (e.g., 10000).

B. Given the possibility of throwing a die (i.e., generating a random integer between
0 and 5), check whether the results of the throws are evenly distributed after a
very high number of throws (e.g., 1 million).

P!S – Problem-solving phase (unsolvable problem)

Problem Given a simplified version of the Bingo game (i.e., the possibility of drawing
a number between 0 and 89), check whether the distribution of the results of the
extractions is uniformly distributed through a very high number of extractions (e.g., 1
million).

144 CHAPTER 9. NECESSITY LEARNING DESIGN

continued on next page

Necessity trigger Students need to create an unnaturally high number of unrelated
variables and handle them with a very long sequence of selection statements, resulting
in a program that is hard to manage without errors.

Necessity I need a data structure to collect the frequency of extraction of each
number and access (and modify) the values in that structure in a programmatic way
based on runtime informations (i.e., the current number extracted).

Sub-optimal solution

• (complete) Create a variable for each number (90 variables) and, after every
extraction, increment the corresponding variable through a multiple selection
statement.

I – Instruction phase

Illustrating:

• how to create a (fixed length) ordered structure (array/list) and initialize it with
constant values;

• how to access elements of the structure by integer index;

• how to modify an element by using index access on the left hand side of the
assignment.

PS – Second problem-solving phase

Target code An example, using Python lists as arrays, i.e., with fixed length.

from matplotlib.pyplot import *

from random import randint

L=[0]*90

for k in range (10**6):

L[randint (0 ,89)] += 1

bar(range (90),L)

show()

Characteristics

• Data abstractiona

• Upward abstraction movement (compared to using many unrelated variables)

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 145

• Soft necessity (complete, though sub-optimal, solutions are possible without the
target concept)

Implementation warning

Other concepts that students should not know yet for the mechanism to work:

• Dictionary-like data structures

aThis data abstraction allows also for a powerful control abstraction. See the related discussion
after the example.

Example discussion This sequence concerns data abstraction because a set of unrelated
variables is gathered in a single data structure. However, accessing by index to the elements
of this structure allows a powerful control abstraction since it makes a long cascade of if
statements (previously used to decide which variable to modify) disappear in one fell swoop.

Moreover, although the example uses Python’s lists (i.e., dynamically extendable struc-
tures), the core necessity here is accessing by index. Hence, this sequence is more suitable for
use with languages that provide array-like structures.

Lastly, this example scenario could also be used to introduce dictionaries instead of
arrays. However, we present below example 4 that we consider more effective for introducing
dictionaries since its necessity problem requires the use of non-numeric indexes.

9.3.4.4 The necessity of dictionaries

continued on next page

Necessity example 4

The necessity of dictionaries

Problem in a nutshell

Counting the frequency of each character in an input string.

What students already know

• Syntactic level + viable conceptual model

– Variables and assignments

– if statement

– Taking string input

– Type conversion from char to int

146 CHAPTER 9. NECESSITY LEARNING DESIGN

continued on next page

– foreach over a string

– Arrays/lists with index access

• What students already know how to do (strategic level)

– Check if a character is in a string

– Use a variable as a counter

– Iterating over values of a sequence

– Combine definite iteration with selection to iterate over a collection and
perform an action on the basis of a condition

– Using arrays/lists to store, read and modify values accessing them by index

Target concept

• Dictionaries (syntactic + conceptual)

• Using dictionaries to store, read and modify values accessing them by key
(strategic)

Before the necessity sequence

Example of a previous task not needing the target concept Given a string taken from
user input, determine the frequency of each of the ten digits in the string.

P!S – Problem-solving phase (unsolvable problem)

Problem Given a string taken from user input in an unknown (potentially very long)
alphabet, determine the frequency of each character in the string.

Necessity trigger Students need to keep correspondence between each character and
its frequency. However, arrays allow accessing values only by integer indexes.

Necessity I need a way to associate a non-integer element (i.e., a character) with
its frequency and use that element as a key to access and modify such frequency.

Sub-optimal solution (complete) Creating two “parallel” arrays/lists. The first one
stores each character encountered, and the second one stores the frequency of that
character in the corresponding position.
Note that a way to dynamically increase the structures’ length is needed because it is
unknown beforehand how many different characters are in the string.
Note also that looking up for characters (and their corresponding integer index) in the
first array/list introduces a high computational overheada.

9.3. A USE OF NLD IN THE CS1 ABSTRACTION ROLLERCOASTER 147

I – Instruction phase

Illustrating:

• how to create a dictionaryb data structure that keeps a collection of (key,value)
pairs, i.e., a correspondence between unique keys and arbitrary values;

• check if a key is already associated with a value in a dictionary;

• how to access dictionary elements by key;

• how to modify a dictionary element by using key access on the left-hand side of
the assignment.

PS – Second problem-solving phase

Target code We propose a solution using Python dictionaries.

text = input ()

freq = {}

for c in text:

if c not in freq:

freq[c] = 1

else:

freq[c] += 1

Characteristics

• Data abstraction

• Upward abstraction movement (compared to using structures with only integer
index access)

• Hard necessity (although complete but still heavily sub-optimal solutions are
possible without the target concept, they require advanced concepts such as
parallel arrays and dynamically increasing structures)

aFor each character c of the input string, O(len(L CAR)) to determine if c is already present in
L_CAR and, if present, to determine its integer index.

bOften called associative array.

Example discussion Although the sub-optimal solution presented (using parallel lists) is
complete, we still think this sequence stimulates an educationally hard necessity. Indeed, if
students are unaware of the parallel arrays/lists pattern, they are unlikely to conceive the

148 CHAPTER 9. NECESSITY LEARNING DESIGN

solution strategy reported as a possible sub-optimal (yet complete) solution.

Furthermore, we believe it is best if students are not exposed to the use of arrays/parallel
lists (as a way to keep correspondence between different sets of elements) to increase the
efficacy of this necessity sequence. Because this programming pattern allows the problem to
be solved completely and quite easily (though less straightforwardly than using dictionaries),
the necessity perceived by students would be much weaker. Besides, it would become a soft
necessity scenario (since students could resort to the tools they already know, see 9.2.2.3).
In that case, the necessity feeling would concern not the possibility of solving the problem
but just the efficiency of the solution (observable and significant only with very long inputs)
and the conciseness of the code.

This observation is worth making because programming courses traditionally teach this
pattern. However, in languages that include more advanced data abstractions (such as
dictionaries or OOP), we think it is not advisable to teach it, as it is less efficient, concise
and elegant than its more specialized and modern alternatives.

9.4 Conclusions

Two are the main contributions of this work.

1. The proposal of Necessity Learning Design (NLD), in particular:

• The definition of the necessity mechanism, observed in our experience of teaching
programming and inspired by some science education literature, but formalized
in an original way; the mechanism was conceived for teaching programming but
turned out to be more general.

• The development and analysis of Necessity Learning Design, a learning design
specific to introductory/CS1 programming that leverages the necessity mechanism;
NLD is designed to support the introduction of the core programming concepts.

Necessity Learning Design requires students to engage with programming tasks very
similar to those they already successfully faced, but this time they miss an essential
ingredient (the target concept). Hence, struggling without success to solve the task,
they will experience the necessity of that concept.

This is how we try to answer our research question: what kind of learning design can
support novice students when introducing a new programming concept?

2. A series of necessity sequences – framed in a concrete CS1 path – as examples of NLD
use at learning moments when abstraction changes because of the introduction of a
new programming concept.

These moments are some of the ups and downs of what we call the rollercoaster of
abstraction. Research shows that moving between the different abstraction levels of
the constructs of a programming language is difficult for novices, both going upward
and downward (albeit for different reasons).

9.4. CONCLUSIONS 149

Abstraction from the learners’ perspective is a lens through which we analyzed the
introduction of new programming constructs. Ultimately, this lens helps in the design
of necessity sequences.

Necessity Learning Design for introductory/CS1 programming From an educational
point of view, our design is inspired by PS-I approaches and, in particular, by Productive
Failure learning design. However, NLD is domain-specific [Nelson and Ko, 2018] since it
leverages inherent aspects of programming problems, like the interactivity of a program and
the possibility of having objective feedback from the machine to check whether the problem
is solved or not. Therefore, we developed a three-phase approach synthetically described as
P!S-I-PS.

i. In the P!S phase, students are not able to solve (or optimally solve) a given programming
problem, experiencing the necessity of the target concept.

ii. In the I phase, unlike in Productive Failure, students are not given the solution. The
target concept and its general usage are directly taught.

iii. In the final PS phase, students go back to the problem with the necessary knowledge
to solve it, building on their previous failed attempts.

Moreover, NLD approach seems more generally in line with the vast body of research on
CS1 courses for various reasons.

• It falls within the domain of active learning approaches (see 2.4), as students are
actively involved in solving a problem and return to it, compelled to reflect on their
previous attempt.

• It can help reduce cognitive load (see 1.4.1) because it allows for a very gradual path,
in which a new concept is proposed as a minimal addition to students’ prior knowledge
(see 9.2.1) and introduced in an isolated situation.

• Necessity problems (i.e., programming tasks) are carefully designed to capture the
essence of the target concept; they are meaningful and prototypical examples of the
use of that concept.

• Problems are constructed so that the target concept is (at least at that specific point
in the learning path) the optimal one to use to solve that problem. Therefore, NLD
helps students not only focus on syntactical and conceptual knowledge but is especially
useful in fostering strategic knowledge. Indeed, a necessity sequence puts students
immediately in a situation where the target concept is essential to satisfy the problem’s
request.

• The examples of necessity sequences we presented are designed to support students when
a new concept is introduced; therefore, they stand at the edges of core programming
concepts.

150 CHAPTER 9. NECESSITY LEARNING DESIGN

This choice aligns with the Learning Edge Momentum hypothesis (see 1.4): teachers and
educators should pay particular attention when introducing the first programming concepts
(and their connections). By supporting students to understand those core concepts in the
earliest stage, Necessity Learning Design can prevent building negative momentum from the
start. Indeed, we believe our learning design can benefit particularly those students who
cannot keep up with the pace of introductory programming courses (such as CS1) from the
early steps.

NLD examples in the abstraction rollercoaster The necessity sequences we proposed
(as examples of NLD use in a CS1 learning path) support learning moments in which the
abstraction level changes because of the introduction of the target concept. Programming
education literature acknowledges that these moments are critical for learners. Moreover, we
recognize an “abstraction rollercoaster” in a typical CS1 learning path because the abstraction
level goes up and down (more than once and in many different possible orders) within the
same programming language (whatever it is) chosen for the course. As teachers and educators
with years of experience teaching introductory programming, recognizing that both directions
are challenging for novices was a little surprise. Therefore, all the abstraction movements in
a programming learning path require instructors’ awareness because ups and downs demand
different kinds of attention and present different scenarios for the use of Necessity Learning
Design.

• Going down in abstraction is challenging – and it is easy to understand why – because it
adds details (which must also be handled correctly), thus increasing learners’ cognitive
load. Usually, to stimulate the right necessity in students, they have to be put in a
situation where the extra details are necessary to solve the problem (educationally hard
necessity).

• Going up is also (differently) challenging because details that students have learned
to control are taken away. Instructors may think this is easy because, from their
perspective, the new construct is more convenient. Instead, they need to convince
students that the new construct makes their life easier. A well-designed necessity
problem can help exemplify how the new construct is either simpler to use, efficient,
elegant, expressive, or a combination of these (educationally soft necessity).

While acknowledging that there is no agreement among researchers and educators on the
right path to follow in introductory programming courses such as CS1 (see 2.1), we presented
a concrete learning path (based on the CS1 for math we successfully tested for ten years, also
online). Along that path, we placed the four necessity sequences we developed as examples
of NLD use. As extensively discussed, the learning path (particularly the order of topics)
determines the abstraction movements within it and thus influences the choice and design of
the necessity sequences.

9.4. CONCLUSIONS 151

9.4.1 Limitations

As already pointed out and discussed, Necessity Learning Design is designed to support
students only in introductions of new concepts (and it is particularly suitable when the new
concept/construct determines a change of abstraction).

Two other significant limitations are related more to the necessity mechanism than the
learning design.

First, none of the students of a class group must know the target concept. If even one
student knew it, she would not experience the necessity feeling in the first stage (P!S) and, by
simply communicating with classmates, would make the necessity sequence worthless for her
entire class. This condition (i.e., that none of the students knows the target concept) may
not occur as often as instructors deem using NLD appropriate. Moreover, establishing such a
condition could not be straightforward, particularly without stimulating students’ curiosity.

The other limitation concerns students’ perceptions. If instructors leverage the necessity
mechanism too often, two scenarios (which unfortunately are not mutually exclusive) may
occur as a negative consequence. Students might “bite the bullet”. Having already experienced
at least a necessity sequence, they might remain inactive in the first phase (P!S), passively
waiting for the instruction phase to have the target concept at their disposal. In this scenario,
despite instructors’ efforts to implement the sequence, there is no benefit to motivation. In
the other negative scenario, students might feel “cheated” by their instructors, thus contesting
the method altogether. In any case, there would be no learning benefits but, on the contrary,
potential relational and trust issues to manage.

This latter limitation, particularly its two possible (and not mutually exclusive) negative
consequences, invites sparing use of Necessity Learning Design. Therefore, we remark (again
in line with the LEM hypothesis) to use NLD particularly early in the learning path (when
students are most likely not to know the potential target concepts) and only to introduce
new core concepts. In the same vein, we invite using NLD when the target concept requires
students to move (either up or down) in abstraction so as to “spend” NLD use at the most
critical stage of the learning path.

9.4.2 Accidents on the road

Since we started from the observation and analysis of the (later called) necessity mechanism
in our teaching situations, we did not know what the exact outcome of our research would
be. However, it was clear to us from the beginning that this learning mechanism could be
leveraged to support novices in learning introductory programming (being aware, also from
IEdR literature, of the difficulties of introductory programming and access to informatics;
see 1).

On the one hand, we did not expect the necessity mechanism to be more general than just
programming (9.2.1). Most notably, even when the development of Necessity Learning Design
was in an advanced stage, we had yet to realize that its use was precisely for introducing
concepts and not teaching them in general.

An in-depth analysis of abstraction – prompted by a publication opportunity and not
initially planned in the research project – allowed us to recognize the difficulty of abstraction

152 CHAPTER 9. NECESSITY LEARNING DESIGN

movements (even when abstraction increases) from the learners’ perspective. This insight
led us to realize that NLD’s potential is in supporting the introduction of core programming
concepts (and that it is especially beneficial when abstraction changes). This awareness
allowed us to define our research question more precisely and better connect our research to
the literature on introductory programming, particularly the LEM hypothesis (1.4) and its
implication on cognitive load (1.4.1).

Finally, in the original project (as anticipated in the earlier research work described in
chapter 8), there was the idea of including notional machines as part of our learning design
in an attempt to develop a theoretical model expressed in terms of progressions of notional
machines (educational devices) rather than language constructs (concrete artifacts).

Finally, this research project also had the ambition to consider notional machines (as seen
in the preliminary work described in chapter rifnece0), including them as an integral element
of our learning design. The more general and ambitious goal was to develop (alongside the
development of the learning design) a theoretical model for teaching introductory programming,
defined in terms of progressions of notional machines (educational devices; see 2.3.4) rather
than programming constructs (concrete artifacts).

This idea, which also arose from the example of learning languages (see 2.7), still remains
to be investigated and transformed into a more concrete proposal than one reported in 8.
Indeed, our research took a more applicative turn and focused on developing the learning
design along with concrete examples and general indications on how to use it. Our spirit
as teachers and educators emerged in wanting to create something immediately helpful to
mitigate the problem of teaching programming to novices. Therefore, it is not surprising that
the following research work was designing a school implementation and experimentation (see
the following 9.4.3 and particularly chapter 10).

9.4.3 Future works

Our proposal is built on education research literature (mostly from science education), and
we believe it is a sound necessity-driven learning design. We informally experimented with it
in several editions of a CS1 for math majors (at the undergraduate level) with good results
and positive feedback from the students.

However, we are aware that Necessity Learning Design must be tested in more rigorous
ways and more controlled environments. We need to gather quantitative and qualitative
data to evaluate its impact on the different types of programming knowledge, learning edge
momentum, cognitive load, and students’ perception. Ultimately, we need such data to
evaluate its effectiveness in supporting novices’ learning when introducing a new programming
concept. The following chapter (10) details the design of an NLD experiment in a real school
setting, its implementation, and reports a preliminary analysis of our observations (as external
researchers) and the information collected from the students and teachers involved.

Besides that, we welcome teachers and educators to let us know examples of any necessity
situations they recognise in their teaching (better if contextualised in a learning path to
identify the direction of the abstraction movement). Such information can help us build other
relevant necessity sequences to cover more and more core programming concepts in different
paths and thus continue refining our learning design. We also welcome anyone willing to try

9.4. CONCLUSIONS 153

any of the necessity sequences we proposed, and we are happy to provide any clarification
and support.

154 CHAPTER 9. NECESSITY LEARNING DESIGN

Chapter 10

Necessity School Experimentation

We knew that a necessary step was to evaluate the effectiveness of Necessity Learning Design
(see chapter 9) in an authentic learning context. We were aware that an initial trial, however
challenging to design and implement, would not bring definitive results on the effectiveness of
our learning design. However, it would provide valuable insights into possible improvements
and limitations, highlighting design flaws or neglected aspects. With this in mind, we sought
to measure the learning assessment dimension more quantitatively and the student motivation
and student and teacher perceptions in a mixed (both quantitative and qualitative) way.
Therefore, we organized an experiment in a local high school, choosing among the few school
strands where informatics and, in particular, programming are taught. We used NLD to
introduce arrays as a data structure in C++ (unfortunately, among the languages most taught
in Italian schools) and, more generally, an essential concept of introductory programming. A
first analysis of the collected data gave us a substantially positive picture of the use of NLD
to support the introduction of a new concept while also confirming the limitations already
expected at the design stage, highlighting some errors in the development of the sequence of
necessity investigated.

This chapter reports on the first school-based experimentation of NLD in a local high
school. The experimentation is described by following its phases. First, there was a preliminary
design phase (described in 10.1.2) that involved only us researchers and mainly set the
objectives and framed the general ways of experimentation. Then the concrete design was
defined with the teacher involved in the experimentation. The specific choices made are
described and discussed in 10.1.3. Section 10.2 reports everything significant that emerged
during the implementation of the experimentation in the experimental class and control
classes. Finally, section 10.3 discusses a preliminary analysis of the data collected.

The most relevant material built and used for the experimentation is attached in its
original form (in Italian, untranslated) in appendix 16.2.

155

156 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

10.1 Experimentation design

10.1.1 Non-interference principle

Before moving on to a detailed description of the various design phases of the experimentation,
we want to make explicit a principle that guided the entire design (and the implementation,
too). We tried to disrupt the school context as little as possible so that the only new element
was the use of Necessity Learning Design. This resolution concerned, for example, deciding to
interfere as little as possible with the modes of instruction, exercise and verification (including
materials) routinely used by the teacher involved in the experiment. At the same time, this
general principle advised us to limit the number and duration of self-perception questionnaires
administered to students. Also, with the same intention, we decided not to play an active role
during the implementation phases of the experimentation. In other words, we decided not to
support the students nor advise them during the steps of the necessity sequence (see 9.2.2.1),
which would have been natural given our experience of teaching informatics and programming,
also in high school. On the contrary, we tried to train the teacher beforehand and offer him
constant support, especially outside of school activities, for any requests or doubts (while
trying not to change his habits and strategies). Thus, during the activities, we would just
observe (keeping track of the observations in a private journal), trying to make our presence
as unobtrusive as possible so that the activities could unfold as naturally and similarly as
usual.

As far as possible, we wanted the use of NLD to be the only difference from the learning
contexts and processes to which the classes involved in the experimentation were accustomed.
In the following sections, we describe all design choices, and when they were motivated (also)
by this principle, we highlight it.

10.1.2 Preliminary design

10.1.2.1 What to measure

Before actually organizing the experimentation, we defined what we wanted (and could)
measure relative to the use of Necessity Learning Design in a concrete learning context.
Although we did not yet refer to a specific context, we already tried at this stage to take into
account the typical limitations we would encounter in an Italian high school. This context is
particularly familiar to the author of this thesis, as he has been teaching informatics in high
school since 2013 and holding a chair since 2016. For the quantitative dimension, we wanted
to consider the learning assessment grades for each student and the whole class to register
a possible discontinuity introduced by using NLD. Specifically, we intended to compare the
average of the grades up to the time of the intervention with NLD with the grade of the
first assessment test on the topic introduced with NLD. Also, from a quantitative point of
view, we wanted to analyze students’ self-perceptions on learning arrays (and informatics
programming in general) through purpose-built pre and post questionnaires mainly realized
by Likert-scales. Similarly, we wanted to evaluate possible changes in students’ motivation.
Qualitatively, we wanted to analyze students’ dispositions and impressions, and teachers’

10.1. EXPERIMENTATION DESIGN 157

opinions, through open-ended questionnaires, field observations conducted by us researchers,
and the writing and analysis of our private journal of the experimentation.

10.1.2.2 How to evaluate NLD efficacy in learning

We thought of proposing a necessity sequence of necessities to introduce a new programming
construct/concept to a third-grade class of an “Istituto Tecnico Tecnologico” (i.e. the
technological track of the technical strand of Italian upper-secondary school), following the
informatic sub-track. In this type of school (one of the very few where informatics is taught),
students (about 15-16 years old) start programming in the third grade. Thus, these are novice
students who face an introductory programming learning path. According to the national
guidelines for technical high schools and specifically for the technological-informatics track, this
path leads students to master programming with at least one imperative language, including
the object-oriented paradigm. Within three years (i.e., the end of high school), they should
know and use the most relevant software engineering techniques for software modularity and
reusability. In the meantime, they are supposed to have learned the main informatics concepts
and ways of thinking. In this context, we thought of organizing a quasi-experiment. We
would involve two third-grade classes, one using NLD and the other acting as a control group,
where the programming concept being experimented on was introduced in a “traditional”
way (we clarify later what is meant by traditional). The quasi-experiment, that is, having
an experimental group and a control group (i.e., the two classes) but without being able
to assign the participating students to these two groups freely1, is an unavoidable necessity
dictated by the actual school context. Indeed, interrupting normal classroom activities to
organize proper experimental groups is impossible. It is already complicated enough to
organize experimentation involving teachers and students – who are already amply engaged
and stressed by the regular school routine. However, we tried to minimize the uncontrollable
variables given these institutional limitations. We thus involved two third-grade classes at the
same point in the programming learning path. Another critical point, to have the two student
groups comparable as much as possible, was the intention to involve two classes with the
same informatics teacher. As anticipated, we planned to propose our intervention in the first
part of the school year, when the students are still basically programming novices (and thus
have the characteristics common to most of those undertaking introductory programming
paths). At the same time, we wanted to avoid NLD being the first mode students encountered
to learn a new programming concept. First, NLD does not allow it: the necessity mechanism
requires building mastery over preparatory programming exercises (see 9.2.1). Second, we
wanted to give students a chance to express an opinion about the mode they had previously
experienced (thus being able to compare it with NLD). Also, from a quantitative point of
view, we needed a history (albeit short) of previous grades to compare against the learning
assessment results for the topic introduced with NLD. In particular, we thought that two
classes (the experimental class receiving the mode with NLD and the control class), albeit in
a very similar situation, are difficult to compare, as each class often has very different starting

1Complying with the characteristic of the randomness of the sample is one of the necessary characteristics
of a “real” experiment.

158 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

characteristics and educational history. In other words, we did not deem it possible to directly
compare the experimental class’s grades with the control class’s. Instead, in each of the two
classes, we would compare (both at the class level and for each student) the assessment
grade for the experimentation concept (i.e., the one introduced with NLD in the experimental
class) with the average of the previous grades. The delta (i.e., the difference) between these
two measures would be nonzero in case NLD introduced a discontinuity (positive or negative)
from the previous mode. This delta is comparable between the experimental and control class
(both at the class and student levels). In addition, the presence of the control class makes
it possible to factor out the impact of the new topic on the delta. That said, there are a
great many other factors that could affect this measure (starting with the bio-psycho-social
status of individual students and also of the teacher, the general mood of the class, and many
others), as indeed happens in most social experiments organized in real-world settings. We
cannot eliminate them or control them completely. There are indications and methodologies
from statistics that help to consider and partially control these other factors. However, a
more in-depth analysis in this regard will take place at a later stage of the research project,
that of rigorous analysis of the data from NLD school experimentation. For now, the choices
already described (such as choosing two classes with the same teacher and at the same point
in the learning path, and also using a control group to compare the delta of the experimental
class with a baseline) and, in general, the choices made in defining the experimental protocol
(including those that concerned its actual implementation) were always aimed at making the
experimentation most rigorous and controllable as possible.

10.1.2.3 How to evaluate NLD effects on students

We thought of using a mix of quantitative and qualitative measurements to evaluate the
impact of NLD on students, particularly from their perceptions about the experimented
topic and, more generally, about informatics programming. The perceptions we sought to
capture were related to both auto-assessment of learning and various dimensions of students’
experience while learning programming.

Qualitative methods . Educational research suggests resorting to qualitative measures,
especially at the beginning of a research project, because they are more open-ended and,
therefore, suitable for detecting elements not anticipated by researchers (manca una REF).
At the same time, qualitative data can return a rich and informative picture, perhaps not
generalizable, but helpful in understanding and possibly evolving a new “object” (NLD in our
case) being experimented on.

Among the various tools made available by educational research, we decided to use non-
participatory observations to capture the qualitative perspective. We would have been present
as researchers during all phases of the experimentation implementation. Our role as NLD
developers would have been unknown to students, as would our experience as informatics
and programming teachers. This choice reflects the general approach already presented
in 10.1.1, namely, the intention to disrupt the observed contexts as little as possible so that,
in our case, the principal element of discontinuity was precisely using NLD to introduce a

10.1. EXPERIMENTATION DESIGN 159

new programming concept. Students obviously would have been informed in advance by the
teacher of our presence as researchers for a generic university project to survey teaching in
local schools and our also of “silent” role as observers of their habitual educational contexts
and processes. Our observations would have been recorded in a private researchers’ journal.
The journal’s analysis, daily during the implementation and more rigorously at the end of the
experimentation, could provide that open and rich information aforementioned. Such analysis
could help understand NLD better and improve it, from a foundational point of view, and for
its applications and limitations.

In addition, again on the qualitative front of student perceptions, we wanted students
to express their opinion and general state during the experimentation’s crucial phases (i.e.,
the phases of and around a necessity sequence). We wanted this chance to be perceived by
them in a light and accessible way, not as a burdensome task. Thus we decided to develop a
very simple in-progress questionnaire with two open-ended questions, openly emphasizing
the possibility of answering even with a single word or emoji. The questionnaire includes
one question about the activity (“What do you think about the activity you have just
experienced?”) and one about their state (“How do you feel after the activity?”). Students
are supposed to answer these two questions after every crucial activity. The questionnaire is
available (untranslated, in its original form) in appendix A.4.1.1.

In addition, and only for the experimental class, we thought of asking some specific
questions about the use of NLD at the end of the experiment. These are only four open-ended
questions, mandatory but without minimum (nor maximum) character limit so that students
can feel free to express their opinions but also to answer very briefly or even not at all.
Indeed, a no-answer or a very short one is still informative. As can be seen, the questions are
deliberately general and wide-ranging. They are consistent with the intent to qualitatively
analyze student responses, with the broad goal of a better understanding of NLD and its use
in real-world contexts. Below, the reader will notice a slight straining to the structure of this
chapter, making it easy to read these questions. We anticipate the programming concept
being experimented on, whose choice is described only in the following subsection (reporting
the concrete design of the experimentation), specifically in 10.1.3.2. Arrays are the target
concept of our experimentation; thus we refer to the necessity sequence to introduce arrays,
detailed in 3.

1. What aspects did you like about the way arrays were introduced (having you try to
solve the lotto problem before explaining arrays)?

2. On the other hand, what aspects did you not like?

3. How did you feel during the time when you did not know how to solve the lotto problem
(because you did not yet know arrays)?

4. Did it help you to learn arrays, or did it hinder you? Why?

These question can be consulted (untranslated, in their original form) at the end of the
post-experimentation questionnaire for the experimental class available in appendix A.4.2.1.

160 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

Quantitative measures. We thought of using a quantitative approach to get a more precise
estimate of student motivation before and after using NLD. We looked in the education
research literature for questionnaires, possibly validated, that would allow us to measure
student motivation. We did not find validated questionnaires suitable to assess student
motivation and, more generally, perceptions in our specific scenario.

However, we found a tool that came close to our needs. It is a series of questionnaires
consisting of Likert scales, therefore fit for quantitative analyses. It is not a validated tool
but has been extensively motivated and discussed by Kalish [2009] and tested in some
real-world scenarios. The original objective of these questionnaires was to assess the effects of
instructor immediacy and student need for cognition on student motivation and perceptions
of learning. Of the three questionnaires used by Kalish [2009], we selected two to be used in
combination with each other, specifically the State Motivation Scale (SMS) e the Cognitive
Learning/Learning Loss Measure (CL). The SMS was developed (based on work by Beatty and
Payne [1985]) and used by Richmond [1990] and also used by Christophel [1990] to measure
both student state and trait motivation. The SMS version we used was slightly adapted
by Kalish [2009] by removing the last five prompts (deemed to be repetitive). It consists of
twelve 7-point Likert scales where the prompt is rephrased twice (positively and negatively) for
the same questions. Kalish used the SMS in combination with the questionnaire for Cognitive
Learning/Learning Loss Measure, which consists of two questions structured as 10-point
Likert scales. Richmond et al. [1987] developed the Learning Loss scale, and Kalish used it to
collect student reports on the cognitive learning amount they engaged in. Indeed, according
to McCroskey et al. [1996] and Lang [2007], one of the better and accepted methods to
identify student learning is using student self-report measures. The Learning Loss is calculated
by subtracting the score of the first question from the score of the second question. Cognitive
learning is then evaluated by reversing the Learning Loss score.

We thought that by adapting the questions for Cognitive Learning/Learning Loss Measure,
we could use the questionnaire to assess the specific impact on the State Motivation Scale
not of the instructor (as in Kalish [2009]), but of the use of NLD. Since we intended to use
this tool both at the beginning of the experimentation and at the end, we readjusted the
questionnaire for Cognitive Learning/Learning Loss Measure twice. Below, the reader will
notice a slight straining to the structure of this chapter, allowing us to clarify better how
this evaluation tool was built. We anticipate the programming concept being experimented
on, whose choice is described only in the following subsection (reporting the concrete design
of the experimentation), specifically in 10.1.3.2. Arrays are the target concept of our
experimentation; thus, we refer to the necessity sequence to introduce arrays, detailed in 3.

The original questions for the Cognitive Learning/Learning Loss Measure are the following.
It can be seen how the second question aims to evaluate the impact of the instructor on
student learnings.

1. On a scale of 1–10, how much are you learning in the course immediately preceding
this course, with 1 meaning you learned nothing and 10 meaning you learned more
than in any other class you’ve had?

2. On a scale of 1–10, how much do you think you could have learned in the course

10.1. EXPERIMENTATION DESIGN 161

immediately preceding this course had you had the ideal instructor?

Our first adaptation, to be administered at the beginning of the experimentation, serve
as a baseline to measure any impact of NLD use on SMS size. The first question now refers
to specific learnings from the introductory programming course. The second question, rather
than evaluating the impact of the instructor, evaluates more generally the impact of teaching,
that is, the dimension that the use of NLD will alter.

1. How much are you learning in the introductory programming course this year?
(1: I learned nothing – 10: I learned more than I learned in any other course)

2. On a scale of 1–10, how much do you think you could have learned so far this year
in the introductory programming course if the teaching had been optimal (clear and
engaging activities and exercises, etc.)?

Our second adaptation, to be administered at the end of the experimentation (also after
the assessment test), refers specifically to the experimentation period (about two weeks of
activity) related to arrays introduction. Any different results in the experimental class could
show a discontinuity introduced by the use of NLD. Any different results in the control class
should allow us to factor out a possible specific impact of the topic itself (the arrays).

1. How much did you learn in the introductory programming course in this last period of
introduction to arrays?
(1: I learned nothing – 10: I learned more than I learned in any other course)

2. On a scale of 1–10, how much do you think you could have learned in the introductory
programming course, in this last period of introduction to arrays, if the teaching had
been optimal (clear and interesting activities and exercises, etc.)?

We refrain that all the questionnaires (available in their original form, untranslated in
appendix A.4) would be administered to both the experimental class and the control class,
again to use the control class as a baseline and also to possibly exclude any factors related to
the particular construct/concept of the experimentation.

10.1.3 Concrete design

10.1.3.1 Collaboration with the school teacher

First, we contacted an informatics teacher at the school where the writer of this thesis holds a
chair. The teacher had the ideal characteristics for the experimentation. He is a collaborative
professional who is open to experimenting with new teaching methods. As anticipated, he was
the teacher of two third-grade classes at the beginning of their learning path in introductory
programming.

Dialogue with him was constant and fruitful. This dialogue was necessary to concretize
the experimentation protocol and, later, to manage its day-to-day implementation in the
classrooms. We immediately shared with him the intent to alter the learning context as
little as possible, informing him that we would try not to interfere with his teaching habits
(see 10.1.1) except for the NLD part of the implementation.

162 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

10.1.3.2 NLD sharing and topic choice

First, we shared with the teacher the essential elements of our learning design. We started
from NLD motivations: supporting novice students when introducing a new programming
concept (see 9.1), particularly when the new construct results in a change of abstraction within
the language itself (see 9.3). We also shared his methodological premises (the inspiration
from PS-I approaches, and in particular Productive Failure; see 2.6.3) but also the specificities
due to the different characteristics (compared to mathematics and science) of introductory
programming (see 9.2.2.1). We guided him in understanding the necessity sequences we
developed as examples of NLD use (see 9.3.4), clarifying any doubts as we went along.

We then consulted with him on choosing which topic to introduce with NLD. The choice
was mainly dictated by reasons of expediency: what the students had learned and were dealing
with, what future topics he would cover, and most importantly, what would be an ideal
period to organize our experimentation at school. Gathering and cross-referencing all these
constraints, which is not interesting to discuss in more detail, we agreed that arrays could
be the construct (specifically, the data structure) to be introduced with NLD. In particular,
it was fundamental to make sure that the requirements (listed in the necessity sequence
for introducing arrays; see 3) had either already been addressed with students or would be
addressed prior to experimentation. It was a relatively easy task. In agreement with the
teacher, we gave up the skill of plotting a bar chart (an element of the developed example but
unessential to the learning objective). On the other hand, using a variable as a counter was
essential for the execution of the necessity sequence. This skill was already under construction
in both classes (like the rest of the prerequisites). Later the ability to use a variable as a
counter would have been the main subject of the approach phase to the necessity sequence
with the specific approach exercises (see the following 10.1.3.3). At the same time, we found
it necessary to make sure once more that the teacher had not mentioned the existence of
arrays in his classes. Moreover, as an occasion to go over the essential features of NLD again
with him, we recommended that from then on, he should not mention arrays among future
topics. This careful reserve was also to be held in the face of possible doubts or requests
from students, with respect to which the teacher would necessarily have to take his attention
elsewhere. In addition, among the recommendations made to the teacher was to be extremely
careful not to reveal any clues about the existence of the arrays, particularly during the crucial
P!S phase. Indeed, when students realize they cannot solve the proposed exercise, the teacher
likely faces insistence generated by their frustration.

Once the topic was identified and these recommendations made, we illustrated to the
teacher the characteristics of this specific necessity sequence: abstraction increase (as opposed
to the use of unrelated variables) on data, which results in a soft-necessity scenario (see 3). We
explained to the teacher that it was a matter of stimulating the need to use something more
convenient and evocative (namely, more abstract) than the tools the students were already
familiar with. We explained the need to put them in a situation where that convenience
became almost imperative. Indeed, in scenarios in which in new construct/concept is more
abstract, it is usually not factually “impossible”, not even for students, to solve the problems

10.1. EXPERIMENTATION DESIGN 163

with the tools already known (see 9.2.2.3)2. So teachers and educators need to construct
situations in which using the already-available tools is concretely hindered (e.g., more time-
consuming and more code-writing, more prone to errors), like having to deal with 90 variables
in the necessity sequence introducing the arrays.

10.1.3.3 Necessity sequence adaptation and development of new exercises

However, we agreed that the necessity sequence for introducing arrays developed as an
example (see 3) was also appropriate for our teacher’s actual classes. However, there was
the need to translate that sequence (originally developed in Python) into the programming
language the students were learning to program, i.e., C++. Also, in addition to this, the
need to prepare other approaching exercises (see 9.2.1) in addition to those already proposed
for the sequence to actually enable the students to develop the mastery that the necessity
mechanism needs to work. Also to be developed, again in C++, were simple consolidation
exercises on arrays, to be proposed after the pivotal P!S-PS exercise (the one that should
trigger the necessity of arrays) for the consolidation phase. Finally, it was necessary to write
texts in Italian (the example necessity sequences were developed in English) that would be
as similar as possible (both in wording and in the way of posing the requests) to those that
the two classes were used to deal with (remember our intent to interfere as little as possible;
see 10.1.1). Therefore, we agreed with the teacher that we would be the ones to adapt
our exercises and their solutions in C++ and develop the new ones needed. After that, he
would check their coherence with respect to the classes’ habits and skills. Conversely, he
would be in charge of the texts of the programming exercises, and we would ensure that they
were scientifically sound and suitable for NLD in our experimentation. These two specular
processes have proceeded relatively linearly and smoothly. Adjustments made to the exercises
by us (at the teacher’s suggestion) and the texts by the teacher (at our request) were minimal
and not substantial. All the exercises developed, broken down by stages of experimentation
(thus of NLD), are provided in appendix A.3.

10.1.3.4 Formalization of the instruction phase

An indispensable step was working with the teacher to formalize his instruction phase (I)
and make sure it had the required content (and nothing more, since we are dealing with the
introduction phase) to implement the necessity sequence that introduces the arrays. First, we
clarified again to him how NLD is intended only for introducing a new programming concept
and, thus, how this constraint limited our experimentation to a specific and circumstantial
learning phase of arrays. The teacher would then use his usual methodologies to develop
mastery over arrays and build new programming skills from them. The same goes for this
data structure’s implementation and theoretical aspects; this goes beyond the scope of NLD
experimentation and is not discussed.

It was crucial to agree on the minimum content the teacher would present to the control
class in a typical I-PS (instruction-problem solving) sequence. The same content would

2As explained in 9.2.2.3, when a language is Turing complete, no computable task is truly impossible, not
even in hard-necessity scenarios, even if it seems so from the student’s perspective.

164 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

instead be presented to the experimental class after the first unsuccessful problem-solving
phase (P!S), according to the NLD sequence (P!S-I-PS). The minimum and required content
involve array initialization (we have selected some, the most relevant, of the possible ways
offered by C++), access by index to read and write, and how with a simple for loop it is
possible to perform a linear scan of all elements of an array. The teacher proposed the
materials he usually uses to introduce the arrays. Again, according to the intent of change
as little as possible, our intervention involved only the selection and a (non-substantial)
rearrangement of the content just listed. This selection was at the expense, for example,
of all the implementation details concerning array memory allocation, which the teacher
was willing to address at a later time outside the experimentation. At the same time, we
selected emblematic and simple examples together, again leaving some of the more advanced
applications of arrays for after the experimentation. Otherwise, the teacher’s original materials
and related content were scientifically correct and did not require any other modifications.
The materials resulting from this collaborative work with the teacher were, therefore, similar
in all respects to the materials proposed to the students up to that point, in wording, style
and presentation. We emphasize again how the same materials were used in the instruction
(I) phase in both the control class (I-PS) and the experimental class (P!S-I-PS).

10.1.3.5 Assessment and management of the activities

The teacher’s mode of assessment varies according to the learning moment. Customarily, the
teacher proposed a first assessment moment very soon after introducing a new topic. This
verification produced a grade in students’ careers, having, however, for the teacher mainly
formative value. Indeed, from the indications of this first assessment, he decided how to set
the following stages of the learning activity. This first assessment was typically structured in
a few simple programming exercises and multiple-choice questions to assess understanding
of the constructs/concepts involved and their related basic skills. We considered this mode
appropriate for our measurement needs and that it did not require any restructuring. This
choice was particularly relevant to make grades from this assessment as homogeneous (and
thus comparable) as possible with the history of previous grades. Together with the teacher,
we developed three simple programming exercises and four multiple-choice questions (provided,
untranslated, in appendix A.2), requiring a basic understanding of arrays. We developed
these exercises and questions to be as relevant as possible to the content presented in the
Instruction phase (see 10.1.3.4 above). For the wording, style and requests, we relied on the
teacher for as much mimicry as possible. For the same reason, the correction of the students’
attempts was carried out entirely and autonomously by the teacher, according to his usual
methods and without any supervision or intervention on our part.

Sharing the teacher’s assessment methods was also an opportunity for us researchers to
learn what the classes used as learning tools. The school that hosted the experimentation
adopted Google Workspace for Education3 as its platform for teaching and learning. The
teacher with the two classes was making full and conscious use of it and of its services (e.g.,
Gmail, Documents, Presentations, Classroom). In particular, materials, in-class exercises

3https://edu.google.com/intl/en_ALL/workspace-for-education/editions/overview/

https://edu.google.com/intl/en_ALL/workspace-for-education/editions/overview/

10.1. EXPERIMENTATION DESIGN 165

and homework (and related students’ submissions) were proposed, managed and evaluated
through Google Classroom4. Google Classroom was also used for the assessments and tests
(both formative and summative), during which, however, the students could not freely browse
the Internet, except for the C++ documentation site. The teacher advised students to use the
Code::Blocks educational IDE or a simple text editor with terminal compilation and execution.
In any case, each student was free to use the preferred development tools, and the teacher
assisted students in any case. Keeping with the principle of perturbing the setting as little
as possible, we did not make any change requests, nor would it have been helpful for the
experimentation.

Finally, we briefly report on the administration of the short (2 questions) in-progress
questionnaire to follow the most significant phases of the activities (see 10.1.2.3). With
the teacher, we considered that however short, we could not interrupt activities too often.
The reasons were to avoid too much wasted time and attention lapses (always possible in a
school setting with numerous classes) and to avoid students being bothered, perceiving the
questionnaire as a burdensome task rather than a chance to express themselves. Therefore,
we agreed to administer the questionnaire in the experimental class only after the three phases
of the necessity sequence (P!S, I and PS) and in the control class after the two “traditional”
phases (I and PS). In addition, we would only propose it on another occasion, after the
approach exercises, as this phase was also a novelty (though not evident to the students)
introduced by the experiment.

10.1.3.6 Choice of the class for the experimentation

Several factors determined the choice of the experimental class. First, NLD characteristics
that make our learning design ideal for introducing new programming concepts to novice
or inexperienced students suggested choosing third-grade classes from the technological-
informatics track of a technical high school. Indeed, during that third school year, students
(after a general introduction to some basic informatics concepts and digital literacy) actually
begin programming. Moreover, our desire to control the experimentation’s conditions as
much as possible prompted us to look for a teacher who had two third-grade classes in the
same school year, a situation not obvious to find. As mentioned above, a colleague of the
author of this thesis, who is collaborative and open to trying new teaching methodologies,
was in the situation (ideal for our experimentation) of holding the informatics chair in two
third-grade classes.

The choice then came down to which of these two classes should be the experimental
class, where to experiment with the necessity sequence to introduce arrays, and the control
class. The two classes were comparable “on paper” (same track, same school year, same
point in introductory programming learning path) and also in size (23 and 21 students).
However, the two classes were quite different in reality and, all the more so for that reason,
not directly comparable (see 10.1.2.2). According to their teacher, one class (21 students)
was quite motivated with no particular learning problems. The other one (23 students) was
less motivated, more turbulent, and more fragile from a learning perspective. About the

4https://edu.google.com/intl/en_ALL/workspace-for-education/classroom/

https://edu.google.com/intl/en_ALL/workspace-for-education/classroom/

166 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

latter, the teacher reported that most students were struggling to comprehend (and thus
apply) the earliest programming concepts and grasp the related informatics principles. Lower
grades (than the other class) from September – the start of the school year and their first
programming course – to late December certified this problematic situation.

We found it more valuable and helpful to use NLD in the more fragile class. First, we
decided so because among the very goals of our learning design is precisely to support fragile
learners, who typically fail to catch the positive wave of the Learning Edge Momentum and
instead get swept away by it (see 1.4). Second, since the success of a necessity sequence
depends on students not knowing the target concept whose necessity the sequence aims
to stimulate in them (arrays in our case), we felt it safer to use NLD in the most fragile
class. Indeed, in the other class, some students were passionate about informatics and had
already attended extracurricular programming initiatives and courses in which they might
have already known about arrays or similar data structures.

10.1.3.7 Definition of a concrete and balanced timetable

At this point, it was necessary to set a concrete timetable. To do this, we needed to address
two dimensions.

The purely organizational one, which concerned the weekly schedule of the two classes, the
availability of the lab rooms where the students have the possibility of using one computer each
(as opposed to the traditional classroom, where most of the theoretical lessons take place),
the need to have the lab for at least 2 hours, preferably 3, in order to carry out the necessity
sequence in the same morning. Other requirements involved dealing with the introduction to
arrays maximum in the span of two weeks and without too many breaks between the various
phases other than the sequence (approach exercises, consolidation exercises, assessment, and
also pre and post questionnaires) and being able to carry out the activities aligned between
the two classes, so that students would not have (too many) occasion to share with any
classmates in the other class relevant information (especially the existence of arrays) that
could jeopardize the whole experimentation. The two-week duration for introducing arrays
is motivated by the institutional need to respect the activities’ general pace and also by
our intent to interfere as little as possible (see 10.1.1). Thus, even with the use of NLD,
experimentation times need to be substantially in line with those customarily scheduled for
introducing arrays. Such many constraints, set in a highly unflexible context such as the
school (where classrooms, labs, teachers and subjects are intertwined in a complex balance
that is very difficult to set up), made defining the experimentation’s timetable one of the
most challenging and critical phases. However, thanks to the teacher’s willingness and a
few other colleagues’ flexibility, we managed to squeeze all the activities in two weeks, the
same for both classes. Something not mentioned so far, nevertheless relevant, is that the two
classes (although very different) had to be at the same point in the learning path (which also
included the prerequisites for the array necessity sequence; see 10.1.3.2) to be able to proceed
side by side in introducing the arrays. Again, we have to thank the teacher’s commitment
and cooperation.

On the other hand, the other dimension that was decisive in defining the concrete timetable
imposed a balancing of the hourly load between the two classes. It was necessary that the

10.1. EXPERIMENTATION DESIGN 167

students, in terms of time spent, would be given the same opportunity to assimilate the arrays.
This requirement is one of the most significant in ensuring that the only discontinuity between
the two classes was whether or not NLD was used. The core of the activities are phases I
(instruction) and PS (problem solving) for the control class, and P!S (problem not solvable),
I and PS for the experimental class. As can be seen, the experimental class has an additional
phase, which amounts to extra time (in which students fail to solve the exercise and should
develop the necessity of arrays). We considered this time akin to what students spend on
consolidation exercises. Therefore, we allocated additional time for the consolidation phase
of the control class (30 min and one more exercise), roughly equivalent to the time spent by
the experimental class on the P!S phase. Only roughly, because the control class was given
15 min more in the Instruction phase since it was initial and could not take advantage of
the students’ necessity feeling (that should prime for learning; see 9.2.1), and 15 min more
to solve the programming exercise (the same of the P!S phase for the experimental class)
in the PS phase since it would be new to the control class. Here discontinuities end, thus
limited to the core phase of the activities (i.e., I-PS in the control class and P!S-!-PS in
the experimental class). Before the core, both classes must train equally on the approach
exercises to develop mastery. After the core phase, both classes engage in consolidation
exercises again in the same way. Finally, after consolidation, an assessment of the learnings
related to the essential elements of the arrays (see 10.1.3.4) follows. At the beginning of the
experimentation, the students spend about 10 minutes filling out the questionnaire (almost
exclusively based on Likert scales and therefore quantitative) surveying their perceptions of
informatics; the questionnaire repeats identically at the end, with additional questions specific
to the array learning experience.

Experimental class (approximately 7 hours total)

1. Approach phase (2 hours)

a. 80 min autonomous programming exercises

b. 40 min teacher-led correction and alignment

2. Core experimental phase (3 hours)

a. 60 min P!S (problem not solvable) phase

b. 45 min I (instruction) phase

c. 45 min PS (problem solving) phase

d. 30 min teacher-led correction and alignment (P!S exercise correction with explicit
demonstration of how to use arrays to solve it)

3. Consolidation phase (2 hours)

a. 80 min autonomous programming exercises

b. 40 min teacher-led correction and alignment

168 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

Control class (approximately 5 hours total)

1. Approach phase (2 hours)

a. 80 min autonomous programming exercises

b. 40 min teacher-led correction and alignment

2. Core “traditional” phase (2:30 hours)

a. 60 min I (instruction) phase

b. 45 min PS (problem solving) phase

c. 45 min teacher-led correction and alignment (PS exercise correction with explicit
demonstration of how to use arrays to solve it)

3. Consolidation phase (2:30 hours)

a. 100 min autonomous programming exercises

b. 50 min teacher-led correction and alignment

10.1.3.8 Privacy policy and consents

Because the experimentation took place in a big and important school, we found a tried-
and-true bureaucratic setup. Indeed, the school provided us with the template (prepared by
their team of experts and already used on similar occasions) of information for managing
the student data we would collect during the experimentation. Specifically, the data were
the students’ first and last names – but only to relate the various activities outputs to the
same student (the data would then be anonymized)5 – the students’ outputs of the various
activities, in particular, the programs they developed and their answers to the assessment test
and the questionnaires, and the grades issued by the teacher. The drafting of the final privacy
policy, declined for our experimentation, was also particularly agile because we considered
not making audio-video recordings of the various activities. The intent was, once again, to
make our presence as observers as unobtrusive as possible to make the activities unfold as
naturally and similarly as usual.

The whole process was straightforward also because every educational activity (including
assessment tests and questionnaires) took place on the school’s Google Workspace platform,
and any related data (students’ schedules, questionnaire completions, test evaluations)
remained on the platform. The school provided us with a temporary account (whose duration
was limited to the time of the experiment and the next two weeks) with which we could
access these data and create materials (such as exercises and questionnaires) and monitor
student activity. The experimentation privacy policy was also provided to the students via
Google Classroom and collected signed (by the parental authority holder) through the same

5It would have been possible to associate students with codes to avoid collecting their first and last names.
However, we feared that asking students to use the code system to identify themselves in the various activities
would have disrupted too much the ways they were used to (see 10.1.1).

10.2. IMPLEMENTATION 169

channel. All the students consented to participate in the experimentation and to allow us to
access the related data.

A final note. Before proceeding to the concrete design of the experimentation, we consulted
our supervisors within the informatics department to consider whether we should convene the
ethics committee and seek formal authorization to proceed. Since our experimentation would
affect only a specific and limited phase of the teaching activity (essentially resulting only in
the reversal between the instruction phase and the problem-solving phase), without altering
the educational setting in other significant ways (e.g., the evaluation criteria), it was judged
unnecessary. This decision was also made because we would not be collecting and handling
sensitive data, the data collected would be anonymized, and no audio-video recordings would
be made.

10.2 Implementation

Most of the observations we report here are related to the experience of the experimental
class. Although our observation effort also covered the control class, the activities there
took place without any particular things to report. Indeed, according to the teacher, the
array introduction followed the habitual times and ways for the control class. Apart from our
silent presence (as non-participating observers) and the brief moments dedicated to filling
out questionnaires (pre, post and the in-progress quick ones; see 10.1.2.3), there were no
other differences from the habits of the class. Even the defined and specific timetable did
not alter the usual times and manner of the class, a sign that the timetable definition (in
agreement with the teacher; see 10.1.3.7) was adequate for the learning objectives of arrays
introduction and complied with our intent of non-interference (see 10.1.1).

10.2.1 Keeping arrays secret

The first thing we report is the difficulty, already foreseen in the design phase (we discussed
this in 10.1.3.2 and 10.1.3.6), of making sure that none of the students involved in the
experiment knew about arrays. We report the difficulty of knowing this information before
the implementation of the necessity sequence. In particular, during the phase of the approach
exercises, this doubt (and its potential negative effect) prompted us to reconsider the issue.
Together with the teacher, we evaluated whether there were ways to verify it, given how
critical this precondition is for NLD functioning and effectiveness. Finally, we agreed that
it was not prudent to investigate it since we might have incited students’ curiosity and,
thus, possibly, subverted a potentially ideal situation. We agreed with the teacher on some
strategies we would implement during the core phases of the experimentation if any of
the students showed that they knew about the arrays. For example, the teacher would try
to deflect the discussion by not showing interest in the “informed” student’s remarks in
front of the class. The teacher then would try to talk to her privately as soon as possible,
congratulating her on her knowledge, and offering all the support and clarification she might
need. He would also ask the “informed” student not to share information about the arrays
for the smooth running of the activities and out of respect for her classmates.

170 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

Luckily, this situation did not occur. From this, however, it is possible to draw some
considerations regarding an obvious limitation of NLD, which we discuss in 10.3.1.

Regarding the necessary secrecy to be maintained about the target concept of the
experimentation (the arrays), we also report the difficulty for the teacher (already foreseen in
the design phase; see 10.1.3.2) to cope adequately with students’ insistent requests during
the P!S phase. There were no actual problems in this first implementation: the teacher was
flawless in not revealing array information during the P!S phase. However, we reiterate how
important it is and point out that we repeated this same recommendation to the teacher
many times before and during the implementation. Many students asked how the proposed
exercise was to be solved and whether there was a specific tool for doing so. Some of these
students also asked us (in our role as observers) the same questions, and even from our
perspective, we corroborate the difficulty of handling students’ insistence in the P!S phase.
Of course, we maintained our role as silent observers in that situation, deflecting the students’
inquiries and answering that we did not know how to solve the programming exercise.

10.2.2 Exercises to approach the necessity sequence

For a necessity sequence to work, students must develop mastery of the approach exercises.
Approach exercises are similar in wording and requests to the P!S exercise, the core of
the sequence meant to generate the necessity of the target concept in students. However,
students must know very well how to solve them with the tools they already know and use
(see 9.2.1). During the correction of these exercises, we observed some students (many in
the experimental class) bored, distracted, and passive, and, in parallel, few students engaged
and focused. However, the teacher described this attitude as rather usual when correcting
the exercises.

10.2.3 P!S phase: unsuccessful problem solving

The hour devoted to solving the P!S (problem not solvable) exercise in the experimental class
was eventful. The exercise required keeping track of one million lotto draws, with numbers
(randomly generated by an already provided function) ranging from 0 to 89. The version
proposed in the necessity sequence examples can be seen here 3, and the version adapted in
C++ for the experimentation can be seen in appendix A.3.2.

Some students autonomously set out in small groups (2-4 students) to search online
for the way to create parametric variables, following the intuition of creating and somehow
automatically managing variables of the type extractN, where N was the number actually
extracted. One of these groups landed on a set of pages presenting arrays in C++, complete
with theoretical and implementation details and many usage examples. However, they could
not select and use that information to solve the P!S exercise in the assigned hour.

The other significant behavior that emerged involved seven students, who, in pairs or
individually, decided to try solving the problem with the tools they already knew, i.e., by
defining and managing 90 variables and implementing a conditional structure (made of 90
interrelated if statements) for updating them. None of them succeeded in solving the proposed
exercise, complicit in the length of the code and the numerous errors made in developing it.

10.2. IMPLEMENTATION 171

Other students initially followed this path but abandoned the attempt when they realized
there had to be other options than such a lengthy solution.

Many students insistently asked the teacher (and sometimes even us) what was the way
to solve the proposed exercise but did not get helpful answers (see 10.2.1).

Some students, sensing that the exercise was not solvable with their current knowledge,
jokingly complained about the situation. Among them, some confessed to feeling frustrated
or very frustrated, and a couple were even angry with the teacher. In general, as the hour
approached its end, we noticed an increase in frustration and agitation in many students,
even among those who had set out at the beginning of the phase to work calmly.

In general, one thing was immediately clear to the teacher, who immediately shared it with
us (and repeated it later on other times). The class, which generally dealt quite passively with
all teaching activities, even those designed to be more active and engaging (such as moments
of participatory correction and collective discussion), came alive with unusual energy.

Finally to be reported was the difficulty in getting students to stop their attempts to solve
the problem, particularly those trying to use online resources and especially those who had
taken the 90-variable route. The teacher had to use his authority to get all the students to
stop using their computers and tune in to the instruction phase that was about to begin.

10.2.4 Instruction phase

First of all, we were thrilled to observe that the instruction phase was much more closely
followed and participated in the experimental class.

In addition, we report two more significant macro-observations about the instruction
phase, the first concerning the students’ experiences and the second the teacher’s.

Following on from what has just been said about the problematic termination of the
previous P!S phase, many students (at least one-third) showed difficulty focusing on the
teacher’s explanation as they repeatedly returned to trying to develop a program that solved
the exercise. Some students did so without considering what the teacher was explaining.
Others, on the other hand, were moving from what the teacher was illustrating, however
often gathering just insufficient information and thus still being unable to solve the exercise.
Meanwhile, the explanation went on, and they missed essential elements of it. These students,
who repeatedly disconnected from the explanation to return to the exercise, all missed
essential elements of the instruction phase. The negative consequences are reported in the
following A.1.

The other significant observation concerns the difficulty the teacher experienced explaining
arrays to keep up with the NLD requirement of not anticipating anything in the instruction
phase about using the target concept to solve the problem that the class had just unsuccessfully
addressed. In other words, the teacher knew that he had to introduce arrays and their essential
elements (i.e., initialization, access by index, and linear scan) in a general way and through
simple examples (following the agreed-upon approach and materials; see 10.1.3.4) without
ever referring to their use in solving the P!S exercise. The teacher had to sidestep all the
numerous and frequent questions from many students asking if arrays were indeed the tool to
solve the exercise and how to use what he was explaining to solve it. Also, these questions
often interrupted the explanation, causing difficulty for the teacher himself and constituting

172 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

another (other than the temptation of getting back to the exercise by themselves) source of
distraction for the students.

10.2.5 PS phase: second problem solving

Of particular note are two things in the problem-solving phase concluding the necessity
sequence.

The first was a vitality level in the experimental class that contrasted (again, according
to the teacher) with its “usual” habit. As mentioned, many students were already pawing
during the previous instruction phase to get back to work on the exercise. In general, all
students seemed willing, and some were even enthusiastic, to get back to the computer to
develop a solution.

The second observation is less positive. It concerns the difficulty of solving the exercise
even though, at this phase, students had the target concept (i.e., basic knowledge about
arrays) at their disposal. Only a few students, about one-third, managed to develop a correct
and working program that solved the proposed exercise using arrays. During the students’
autonomous work, as the teacher moved around the lab room giving support to anyone who
asked, two main reasons for this difficulty emerged. The first is anticipated already in the
previous report of the instruction phase. Those students who, while the teacher was explaining,
became distracted and tried to solve the exercise already at that phase missed fundamental
elements from the arrays’ explanation. Indeed, without those pieces of knowledge, they
could not produce a correct and working program, although most of them seemed to have
understood the general purpose and use of the new tool.

On the other hand, the second reason for this difficulty is due to a design flaw in the P!S
exercise. Indeed, developing it, we did not realize how the solution required not only using an
array as a structure for keeping track of linked data (the extracted lotto numbers) but also
using the same array within a loop other than the one that would perform its linear scan.
The solution loop repeats for the number of extractions (thus, it is not the loop that would
scan the array linearly shown in the instruction phase). Within this loop, it is necessary to
understand that one must use the extracted number not only as the information updating
the corresponding counter but also as a mechanism to access the corresponding position in
the array.

Many students did not realize this particular conceptual step: using the extracted number
(also) as an index. Undoubtedly it would have helped to include among the information and
examples of the instruction phase the use of a variable – other than the traditional index
(conventionally i) of a for loop – as an index to access an array element. Some reflections
on this are in the following 10.3.4. One final observation. Although the experimental class
already knew how to use loops to realize determinate iterations loops (and had been using
them for a few months), it seems that up to that point, the loop index was for them only an
“invisible” cog participating in its operation.

10.2. IMPLEMENTATION 173

10.2.6 Correction and alignment, consolidation, and later steps

The teacher’s participatory correction of the P!S exercise – answering the class’s questions
and making continuous reference to the essential elements of the arrays presented in the
instruction phase – seemed quite effective in aligning all the students in understanding the
optimal solution (despite the difficulty unintentionally introduced by the P!S exercise design
illustrated in the previous section). Even in this phase, the class was quite engaged and lively,
again in contrast (according to the teacher) to the attitude shown up to that point in the
school year.

The subsequent consolidation phase (autonomous yet assisted exercises and collective
correction) and the final learning assessment then took place according to the agreed timetable,
with no particular events to report.

We have not yet had a chance to analyze the students’ programs developed in the consoli-
dation phase, nor to analyze (concretely implementing the protocol described in 10.1.2.2) the
grades assigned by the teacher for the assessment test on the arrays’ introductory knowledge
and use.

However, the teacher gave us his preliminary impression, which he urged us to take with
caution as it was rough and not the result of a more precise analysis. The control class,
traditionally motivated and well-prepared, scored in line with its history and expectations,
generally positive or very positive, with few failures. The experimental class, on the other
hand, appeared to be slightly improving from its usual level. There were only two severe
failures (whereas there were usually about a quarter on the first test on a new topic), and
less than a quarter of the class failed. Many students (about half) were around or just above
sufficiency, while about a quarter scored good or very good. Thus, about three-fourths of the
students met at least the minimum objectives on the introduction of arrays. This landscape
is an improvement over the class history, which, again from the teacher’s estimate, usually
saw about half or a little more of the students getting a passing grade on the first assessment
test after the introduction of a new topic.

As mentioned, in a later phase of our research project devoted entirely to rigorous analysis
of the data (the assessments grades, but also the questionnaire fillings and the observations
collected in our journal), it will be possible to calculate that delta (see 10.1.2.2) on a per-
student and class basis and more objectively evaluates the impact of using NLD to introduce
the arrays. In addition, being able to rely on the same measures in the control class will allow
us to factor out (at least partially) a possible perturbative component inherent to the array
topic itself.

10.2.7 Administering questionnaires to the students

There is nothing relevant to report about the two moments of administration of the initial
questionnaire on students’ self-perceptions about programming and their experience and
motivation in learning it (see 10.1.2.3). These were two relatively short moments (about 15
minutes each) that took place, both in the experimental and control classes, before every
activity of our experimentation and at the end of everything (after the final assessment). On
the other hand, about the quick in-progress questionnaires (see again 10.1.2.3) that we asked

174 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

to fill out immediately after the most significant phases, we confirm what was already foreseen
in the concrete design phase of the experimentation (see the end of 10.1.3.5). Although
structured in an extremely light form to be answered quickly, this questionnaire significantly
interrupted the classes’ activities. Indeed, aiming to give all the students a chance to answer
the two questions personally, some took longer than expected (about 10 minutes total for the
two questions), despite the invitation to answer quickly, even with one word. During these
moments, most students, having already answered quickly or very quickly, set themselves in
“pause mode”, making it challenging to resume the activities, resulting in wasted time and
drops in attention.

10.2.8 On our role as external observers

Finally, about our role as observers, we report that it was not easy to stick to the purpose
of being as external to the activities as possible. In particular, the writer’s habit of working
with high school students led him to give some guidance of a purely practical nature to make
the development of activities easier for some experimental class students who, at various
moments, seemed uncertain about what to do. On the other hand, this cooperative attitude
led some students to see us as a resource also from an educational point of view. As a result,
we received several questions on the programming exercise of the necessity sequence during
the P!S phase and the PS phase. Deflecting the questions was relatively easy. On the other
hand, however, some students asked if our presence was related to the new way they were
dealing with the arrays. Unfortunately, this testifies to the fact that somehow, although not
intended, the careless suggestions we gave betrayed, at least in part, our intent to remain as
invisible as possible and to interfere as little as possible with the learning context (see 10.1.1).

10.3 Preliminary observations and results

10.3.1 The teacher must keep the secret

The need (already evident in the development of the learning design) for none of the students
in a class in which NLD is used to introduce a new programming concept to be familiar with
that same concept emerged strongly at the beginning of the implementation. Verifying this
precondition a priori and checking that it applies to all students in the class makes this the
weakest point of NLD. First, it gives even greater force to the recommendation of using
necessity sequences only for introductory programming and with substantially novice students.
This is to reduce the likelihood that students have already been exposed to the concepts
to be introduced with NLD and, at the same time, do not have the tools to immediately
discover the missing concept during the P!S phase. Indeed, at that stage, it is essential that
they do not easily discover the existence of the concept/construct because it would be like
exposing them to it right away with an instruction phase that precedes the problem-solving
phase. They need to experience a little frustration at not being able to solve the proposed
exercise, so they can mature the necessity of that concept and thus prepare for its learning.
Finally, the difficulty experienced during the first school implementation reaffirms that NLD

10.3. PRELIMINARY OBSERVATIONS AND RESULTS 175

cannot be used on many occasions or too close together, at the risk of students expecting
this modality, thus making it ineffective.

In addition, during the instruction phase, it was not easy for the teacher (so it appeared
to us, and the teacher reported the same) not to answer the multiple questions from the
students about using arrays for solving the P!S exercise. He struggled to find ways not
to answer without making the students feel ignored. We report this difficulty but cannot
formulate meaningful reflections about it, except again, the recommendation to use NLD
sparingly.

We thus return to one of the recommendations already expressed in the description
of our learning design (see 9.4). Educators should limit the use of NLD to introductory
programming concepts and do so primarly when their introduction results in a change in the
level of abstraction (upward or downward, within the language studied) from the student’s
perspective.

10.3.2 Students’ frustration

We take the opportunity of what has just been stated to reflect on the students’ frustration
level in the experimental class described in 10.2.3. These observations are confirmed by a
preliminary reading of the responses of the in-progress questionnaires conducted after the P!S
phase and of the final four open-ended questions designed to investigate students’ opinions
of NLD as a learning mode (see 10.1.2.3).

From the in-progress questionnaire administered immediately after the P!S phase, we
report (our translation of) some significant student answers to the question ‘What do you
think about the activity you have just experienced?’: (i) “It is frustrating not to be able to
find a solution”; (ii) “An incitement to hate”; (iii) “A punch in the stomach”.

From the same questionnaire after the P!S phase, we report (our translation of) some
significant student answers to the question ‘How do you feel after the activity?’: (i) “Stressed”;
(ii) “Frustrated by humanity”; (iii) “Exhausted”; (iv) “Interested, but nervous and agitated”.

From the post-questionnaire administered at the end of the experimentation, we report
(our translation of) some significant student answers to the question ‘How did you feel during
the time when you did not know how to solve the lotto problem (because you did not yet
know arrays)?’: (i) “My head was exploding”; (ii) “Helpless”; (iii) “Confused, with my back
to the wall”; (iv) “Fairly blown away”.

From the same post-questionnaire at the end of the experimentation, we report (our
translation of) some significant student answers to the question ‘What aspects did you not
like [about the way arrays were introduced (having you try to solve the lotto problem before
explaining arrays)]?’: (i) “It makes no sense to have a student who is a first-year in informatics
programming do something that has not even been explained”; (ii) “For me it was crazy
stress”; (iii) “I find it was a little frustrating”.

All these answers precisely reiterate the recommendation made at the end of the previous
paragraph, namely to use NLD sparingly, only when it can be most helpful (when abstraction
changes). The students’ perspective thus lends additional depth to this recommendation,
mainly for two reasons. The first is related to the effectiveness of NLD. Using too much
NLD would cause students to tip off and passively wait for the instruction phase without any

176 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

benefit to motivation. The second is about respecting their well-being and sense of justice,
which is often particularly strong in young people. Suppose a student feels too frustrated or,
worse, deceived. In that case, students may challenge this learning method altogether, not
only making it ineffective but even counterproductive compared to more traditional methods,
possibly even raising relational and trust issues with the teacher.

In addition, during the implementation, we observed an increase in frustration and agitation
as the hour was ending, even among those students who had set out at the beginning of the
P!S phase to work calmly (see 10.2.3). So the P!S phase cannot last too long. One of the
challenges, then, to be reinterpreted from time to time depending on the concept introduced
with NLD and the characteristics of the class (educational, human, and also the familiarity of
the class with NLD) is to find the right balance. The balance is to be found between a time
long enough for the students to mature the necessity of the target concept but not too much
to make them too frustrated and thus ill-disposed.

10.3.2.1 Managing student frustration

Student frustration is a natural consequence of that desirable difficulty, a condition for the
necessity mechanism (9.2.1). However, frustration must be kept within limits that make
it functional for learning and not a potential risk of falling into the same issues of prior
informatics education work, where learners drop out or outright see programming as an
unattainable skill mainly because of the frustration.

The recommendation that NLD has to be used sparingly at specific and carefully selected
learning moments also serves to limit the negative effects of frustration within functional
boundaries, as already recognized in the development of the learning design (see 9.4.1).

The other fundamental counterbalance to student frustration is keeping the P!S phase
short, which emerged during this experimentation (10.2.3). Specifically, one hour had been
allocated for the P!S phase (10.1.3.7). However, during the experience with the class, after
about 45 minutes, the teacher estimated that all students had experienced the abstract
necessity of arrays and at least a hint of frustration in not knowing them. The following
is not a scientific consideration, but the teacher should have a finger on the pulse of the
situation. The teacher’s experience and knowledge of those particular students could help her
or him decide to anticipate the following instruction phase or to allow a little more time if
the students seem positively engaged. Ideally, the I phase should begin when all students
have experienced precisely that necessity, i.e., they have understood the problem and at least
intuited the tool they would need (e.g., “I would like a way to index variable names”).

In addition, as an antibody to the negative effects of frustration, NLD is structured to
“transform” frustration immediately. The I phase (minimal and rapid) directly follows the
P!S phase. The following PS phase allows the energy of frustration to be put back into
circulation, transforming it into success, i.e., the exercise solved. When this does not happen,
the subsequent consolidation phase, designed to align all students with the new learning,
should put frustration aside.

10.3. PRELIMINARY OBSERVATIONS AND RESULTS 177

10.3.3 A boost to motivation

In the second phase of problem solving following the instruction, only about one-third of the
experimental class students were to solve the P!S exercise using arrays. This is not necessarily
a negative result since solving the P!S exercise is not the true objective of NLD (although it
is an indicator of its effectiveness). The objective is to prepare students for learning arrays,
both from a motivation and a cognitive standpoint. The observations, confirmed by the
teacher and his familiarity with the class, reported increased interest and motivation. The
performance during the instruction phase, with students generally more participatory than
usual and focused on the explanation, is also a good indicator (albeit a preliminary one) that
the P!S phase is a helpful cognitive preparation for learning a new concept (in line with one
of the most significant benefits of Productive Failure, see 2.6.3.1).

In addition, the experimental class’s lively participation in the second problem-solving
phase (even though some students still failed to solve the problem) is very promising. It
(preliminary) suggests that the choice not to anticipate the solution of the P!S exercise
in the instruction phase (unlike Productive Failure and, in general, PS-I approaches) helps
capitalize on a learning potential generated along with the development of the feeling of
necessity. It also suggests that this choice effectively stimulates motivation, even in fragile
students. We recall that on many occasions, the teacher declared himself amazed at how
the experimental class, usually passive and unmotivated, lit up with unusual vitality. In
support of this decision, and preliminary (with respect to a more accurate analysis of students’
self-assessments) evidence of NLD’s positive impact on motivation, the vitality and interest
shown by the students during the three phases of the necessity sequence also prolonged in
the subsequent correction and alignment phase and also, albeit to a lesser extent, in the
consolidation exercises phase.

10.3.4 Difficulties in solving the exercise in the second PS phase

However, let us return for a moment to the fact that it was still not possible for many students
to solve the exercise in the second stage of problem solving. There are some reflections to be
made in this regard.

The first is the most general. Namely, strategic knowledge is the most difficult to acquire
of the three knowledge related to knowing how to program (see 2.3.1), and the one that
takes the longest to develop since it corresponds to the skill of using something one knows
and knows how to use to solve a more general problem. It is obvious that this knowledge/skill
cannot be fully developed in only three hours of a necessity sequence, nor is this the goal of
NLD (see 9.2.2.2). A similar argument can be made for the higher levels of knowledge of the
SOLO taxonomy; on this, we refer to the end of 9.2.2.1.

The second reflection concerns the level of engagement generated by the P!S problem,
which is also determined by feelings of frustration. We observed that this engagement could
distract students in the instruction phase because they feel compelled to return to the P!S
exercise. This distraction prevents them from acquiring all the elements of the target concept
necessary to solve the exercise effectively. In addition to suggesting that teachers should exert
more control over students, which is only possible up to a point, this observation prompts

178 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

considering a change of location between the P!S phase and the subsequent instruction.
Indeed, without having the computer at their disposal during the instruction phase, students
can focus solely on the explanation.

The third reflection concerns the nature of the P!S exercise. In the problem-solving
phase after the instruction, some students did not solve the exercise with arrays because they
decided to go ahead with the 90-variables suboptimal solution (to borrow terms from the
Productive Failure literature; see 2.6.3.1). This scenario testifies to the unexpected difficulty
(yet foreseen during the development of NLD; see 9.3.2) of moving up in abstraction level and
abandoning known tools for easier (“on paper”) and more suitable ones. In a soft necessity
scenario (see 9.2.2.3), this convenience is not evident from the perspective of students who,
therefore, must be effectively pushed not to use what they already know. Evidently, the 90
variables (which corresponded to the 90 possible lotto numbers) were too much for many but
not for all. This experience prompts us to consider reformulating this P!S exercise (and others
in soft necessity scenarios) in an even more extreme way, for example, by imagining a scenario
in which the variables were not just 90 but, say, 200. In short, what from the theoretical
point of view of NLD is a soft necessity must turn out to be a full-fledged necessity (i.e.,
hard necessity) from the student’s perspective.

Again on the P!S exercise, we recorded the difficulty for many students to solve it even
after knowing the arrays due to its design flaw (described in 10.2.5). In this regard, it
only remains to urge educators who intend to use NLD to take extreme care in developing
particularly the P!S exercise, which is the heart of the necessity sequence and, ultimately, of
the whole learning design. The P!S exercise must be calibrated precisely to the content of
the instruction phase, no more and no less. Added to this recommendation is the invitation,
if possible, to have (at least) the P!S exercise tested by students in a similar situation as
the students for whom the exercise is intended. The aim is that problems such as this may
emerge before the actual use of NLD.

10.3.5 Positive students’ feelings and opinions

Having highlighted the positive effects on motivation that emerged from the use of NLD in
our experimentation, but also made recommendations to limit the negative ones and collected
NLD’s main limitations, we like to end this review of preliminary results by reporting the
most relevant positive statements of the students. We particularly point out that in the
last question reported at the end of this subsection, we record an overwhelming majority of
positive opinions about the usefulness of NLD in learning arrays.

From the in-progress questionnaire administered immediately after the P!S phase, we
report (our translation of) some significant student answers to the question ‘What do you
think about the activity you have just experienced?’: (i) “A nice challenge”; (ii) “Formative”;
(iii) “Fascinating”; (iv) “Useful”.

From the same questionnaire after the P!S phase, we report (our translation of) some
significant student answers to the question ‘How do you feel after the activity?’: (i) “Interested;
(ii) “Curious about what the solution is”; (iii) “Excited to see if I can do it”; (iv) “Interested
and intrigued”.

10.3. PRELIMINARY OBSERVATIONS AND RESULTS 179

From the post-questionnaire administered at the end of the experimentation, we report
(our translation of) some significant student answers to the question ‘What aspects did you
like about the way arrays were introduced (having you try to solve the lotto problem before
explaining arrays)?’: (i) “I liked the method of asking to do an exercise before explaining
the solution”; (ii) “I appreciated the idea of trying to solve the problem without the arrays”;
(iii) “The fact that I had a chance to try it on my own first”; (iv) “I find it was a good idea
to show us how useful an array is”; (v) “[I liked] Everything”.

From the same post-questionnaire at the end of the experimentation, we report that to
the question ‘What aspects did you not like [about the way arrays were introduced (having you
try to solve the lotto problem before explaining arrays)]?’, 7 students (out of 23) responded
(in various forms) “None”.

From the same post-questionnaire at the end of the experimentation, we report (our
translation of) some significant student answers to the question ‘How did you feel during
the time when you did not know how to solve the lotto problem (because you did not yet
know arrays)?’: (i) “Engaged and curious”; (ii) “Definitely interested in finding a solution”;
(iii) “Motivated”; (iv) “I knew something like this would exist”. The last answer highlights
one of the feelings that, from the beginning of the research that led us to develop NLD, we
would have liked to stimulate in students: the feeling that something must necessarily exist
to solve a particular problem. This intuition is one of the ingredients of the necessity feeling.

From the same post-questionnaire at the end of the experimentation, we report (our
translation of) some significant student answers to the question ‘Did [having you try to solve
the lotto problem before explaining arrays] help you to learn arrays, or did it hinder you?
Why?’: (i) “Yes, it helped me because it was a clear example”; (ii) “It rocked, it was very
good and helpful”; (iii) “The lotto exercise served to demonstrate right from the start the
usefulness of the array in that kind of exercise”; (iv) “It did not hinder me at all... in fact,
I think it was useful to me”. We like to report that out of 23 responses received to this
question, as many as 18 were positive or highly positive.

10.3.6 Future works: the fourth phase

The design and implementation of experimentation are the second and third phases of our
research project, whose original ambition (see also chapter 8) is to mitigate the problem of
introductory programming, which is described and discussed in 1. The first phase was the
research and development of our Necessity Learning Design, extensively reported and discussed
in the previous chapter (see 9). As anticipated several times throughout the chapter, the
fourth phase of this project will be a rigorous analysis of all the quantitative and qualitative
data to understand NLD better, provide even more timely recommendations and possibly
evolve it.

In particular, the quantitative analysis of the learning assessment results will allow us to
understand whether using NLD to introduce arrays had an impact (positive or negative) on
early learning related to arrays (as described in 10.1.2.2).

The quantitative analysis of the self-assessment on the State Motivation Scale, cross-
referenced with the analysis of (our adaptation of) the Cognitive Learning/Learning Loss

180 CHAPTER 10. NECESSITY SCHOOL EXPERIMENTATION

Measure, will allow us to more analytically measure the impact of using NLD on novice
students’ motivation and perceptions about learning programming (as described in 10.1.2.3).

Finally, a more rigorous qualitative analysis (than the preliminary one described here) of
the students’ open-ended answers and our journal will give us an even better understanding
of NLD, its applications, limitations and possible evolutions. However, we do not expect to
discover anything remarkably different from what emerged from the preliminary analysis of
the same data reported in the previous subsections of this section.

Chapter 11

The Online Course Was Great: I
Would Attend It Face-to-Face

This chapter reports our teaching and research experience on “The Good, the Bad and
the Ugly”1 of information technology in emergency remote teaching of CS1. We describe
how we redesigned, because of the 2020 COVID-19 pandemic, the CS1 course for math
undergraduates to be held online yet reflecting the face-to-face experience as much as possible.
We present the course structure, the IT tools we used, and the strategies we implemented
to preserve the benefits of a synchronous experience in learning introductory programming.
We discuss the positive and negative aspects that emerged from the students’ opinions
through qualitative analysis from the perspective of the challenge of providing optimally
guided constructivist instruction in a remote-only CS1. We use the COI framework as a lens
to explain what worked, what did not, and what can be improved to strengthen the perception
of a face-to-face experience and mitigate the “presence paradox” we found. Despite students
being enthusiastic about the online format, most would still prefer a face-to-face course.

This chapter is based on the poster “The Good, The Bad, and The Ugly of a Synchronous
Online CS1” [Sbaraglia et al., 2021b] – published in the proceedings of the 26th ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE ’21) –
and even more on the article “The Online Course Was Great: I Would Attend It Face-to-Face:
The Good, The Bad, and the Ugly of IT in Emergency Remote Teaching of CS1” [Lodi et al.,
2021b] – published in the proceedings of the ACM Conference on Information Technology for
Social Good (GoodIT ’21).

11.1 Introduction

One of the challenges of the modern university is the ability to match the skills needs expressed
by the labor market while maintaining its original trait as universitas. That is, teachers
and learners collaborate in knowledge production, in that never-ending dynamics where the
teacher’s experience and students’ fresh energy make any course instance both unique and a

1The reference is to the famous 1966 film “The Good, the Bad and the Ugly” ’by Sergio Leone.

181

182 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

building block of the democratic society2. One of the main ingredients of this universitas is
the lecture, where students’ active participation (with questions, comments, and different
opinions) orientates the (usually standard) material towards a non-standard organization of
the subject matter. A lecture delivered and attended at the same moment (synchronously) is
when the interaction between students and instructors also produces new material on the
spot3.

We consistently maintained this view over the years, even for an introductory, technical
course such as “CS1 for Math majors”. Nonetheless, we were confronted with the COVID-19
emergency, which forced us to move online all the teaching on short notice. Well aware that
it is not possible to simply transpose online a course designed to be face to face (also said
in person), we used the one week we had before the beginning of the lessons for a drastic
redesign. Even though delivering an online synchronous course can be challenging, we were
determined to provide a remote-only deployment – including all lab work – that could stand
the comparison with a face-to-face course by preserving teachers’ presence and students’
participation.

Having feedback on remotely connected students’ engagement and understanding was
much harder. The unforeseen emergency made it infeasible to set up quantitative, experimental
research; instead, we choose a qualitative approach that is particularly suited when “we
may not fully understand a phenomenon – or even what the important phenomena are in a
situation” [Tenenberg, 2019, p. 172].

Concretely, in this work, we address the following questions. (RQ1) Could consumer
technologies be successfully used to move online a face-to-face CS1 course on short notice?
(RQ2) What are the effects of our design choices – made to preserve the advantages of a
face-to-face experience – on the students’ experience? (RQ3) What worked, what did not,
and what can be improved to provide a fulfilling online synchronous experience?

See section 2.8 of the literature review (part I) for a review of the literature on remote
teaching and learning in CS1 (and, more generally, in introductive programming courses).

Section 11.2 of this chapter presents the specific CS1 course whose experience we report
and discuss in the chapter, the technologies we used, and our role as teachers and researchers.
Section 11.3 describes the main methodologies adopted for the research, the characteristics of
the participating students, and the COI framework (found during data analysis) that helped
us interpret the collected data and shape our reflections. Section 11.4 reports the most
relevant findings emerging from the analysis of our remote CS1, organized in themes (which
emerged from the inductive categorization of the collected data). In particular, we were
surprised by the insights that emerged about time management during labs (here) and the
presence paradox we found (here). Section 11.5 discusses these findings (and the course
experience in general), their usefulness (and limitations) for CS1 educators, and frames this
work in the research for optimally guided constructivist instruction. Section 11.6 reports a
brief conclusion and outlines possible scenarios for future research.

2We cannot argue here on this vision, which goes back to Humboldt, and has been elaborated by J.H.
Newman, Jaspers, Heidegger, or Habermas, among the many others.

3It is worth citing the “conversational framework” from Laurillard [2002], which argues learning is “a
continuing iterative dialogue between teacher and student”.

11.2. CONTEXT 183

11.2 Context

At the University of Bologna, CS1 for math is a mandatory course for first-year students in
mathematics. It is an introduction to programming in Python with no prerequisites.

As for most CS1 courses, its goal is to teach, in an integrated way, both programming
skills and their linguistic expression in the chosen programming language. Students should
fully understand local and global scopes, aliasing, and side effects and develop a simple but
accurate (albeit not complete) model of a Python abstract machine. Emphasis is placed on a
good programming style. CS1 for math is 80 hours, 30 of which are supervised lab sessions
(1-2 times per week) delivered in four 2-hours slots per week. On each lab, homework is
assigned and is due at the beginning of the following lab. The course is offered once a year
by four instructors: one professor and three teaching assistant (TAs). Enrollment is around
180 students.

A significant portion of students finds the course difficult because it deviates from the
other courses offered for math majors, being more experimental and without “definitions,
lemmas and theorems”.

In the previous years, CS1 had a traditional organization – formal lectures at the hand-
written blackboard, supported, when needed, by the projection of a programming IDE; BYOD
(Bring Your Own Device) lab work with pair-programming, with no replications.

CS1 was about to start when the first wave of COVID-19 struck Italy at the end of
February 2020. All instructors were asked to move online the first lectures and deploy the
remote-only classes on a week’s notice. CS1 started on March 2nd, 2020, broadcast from
the instructors’ homes. While the course contents remained essentially unchanged, the
organization was radically rebuilt to support fully remote and synchronous teaching, including
all labs.

During online lectures, attending students varied between 180 and 200 (with a decrease
to around 160-170 during the last two weeks of lectures).

11.2.1 Technologies and Methodologies

Lectures and labs were broadcast using MS Teams, a video conferencing tool used as a
standard at our university, plus Moodle-based platforms to disseminate the learning resources.
Teams allowed for integrated broadcast4 of audio, video, the shared instructor’s screen, and
for a public chat. We used a private Telegram chat for real-time synchronization between the
instructors, especially during labs.

During lectures and labs, instructors always encouraged students to ask general questions
(or to comment) as they liked, either on audio, by writing in the chat, or by publicly sharing
their screen. We felt the need to structure the interaction explicitly: rules that are natural face
to face – both because of non-verbal communication and students’ previous experience with
face-to-face lectures – must be precisely defined in online settings. Therefore, we iteratively

4Broadcasting from home, instructors used the laptop’s built-in camera to capture the instructor’s head
and maintain a “postage-stamp”-sized video feed, more to enhance the sense of connectedness than as a tool
for content transmission [Lidstone and Shield, 2010].

184 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

built and shared explicit rules and hints on how to interact with instructors during lectures,
labs, and asynchronously.

11.2.1.1 Lectures

The primary instructor shared a screen divided into two halves. The left part was a MS
PowerPoint canvas, where the instructor would type as on a blackboard. The canvas could
be initially empty or present some content (e.g., snippets of code, short titles, or brief
enumerations), which was not enough for understanding the subject. During the lecture, the
canvas evolved into a more self-contained (though not complete) resource, later uploaded to
the Moodle platform, together with any Python code shown or constructed during the lecture,
for offline use. The right part of the screen was a window of a Python IDE, where code could
be presented and run as needed. We used Thonny [Annamaa, 2015] because it is easy to
install and use for moderately complex programs, consistent across different OSs, and has
extensive logging capabilities. Despite Thonny’s debugging facilities, the instructor insisted,
instead, on using the online tool Python Tutor [Guo, 2013], which allows for a visualization
of the internal state evolution, especially helpful with mutable values. A browser window
with Python Tutor would replace one of the two halves of the screen when required. This
arrangement was used consistently during all the lectures.

The instructor used a graphic tablet and digital ink software to make notes or handwritten
drawings on the screen. Such annotations were later integrated into the MS PowerPoint
canvas. The primary instructor kept the live chat of the course on a second non-shared screen.
Typically, all the instructors used an additional device for their private synchronization chat.

The professor held the lectures. The teaching assistants were always present during the
theory classes, giving support mainly in three ways. (i) In the course chat, they answered
about materials and organizational issues and also provided answers to trivial questions about
class topics. (ii) In the private instructors’ chat, they report to the professor any student
questions he had missed while conducting the lesson, mitigating the instructor’s blindness
and ensuring that no student felt ignored nor that any relevant issue remained unaddressed.
(iii) At the same time, they summarized or rephrased important concepts live in the course
chat to ensure that no one would miss any crucial element, emphasizing the importance of a
topic and supporting understanding of a challenging concept.

Students asked their questions mainly in chat. After the lesson, instructors remained
online for some minutes to answer more questions or discuss with the students. Occasional
email exchanges occurred during the course.

11.2.1.2 Labs

In our view, one of the advantages of a synchronous approach is to bring instructors’ experience
and guidance in crucial learning moments like application and exploration. Therefore, we
accepted the challenge of keeping all the labs as synchronous activities. Laboratory lessons
were given by one of the teaching assistants, in turn, and were also attended by the other
instructors. During labs, after a brief theory recap, programming exercises were assigned.
A request for help in the public chat was followed by a private chat (or call, always using

11.3. METHODS 185

Teams) between one of the instructors and the student. The student could share her screen
with the instructor helping her. Students were encouraged to use Thonny for solving the
in-class problems. Students had to upload homework assignments (simple programs) on a
Moodle platform with the CodeRunner plugin for the automatic assessment through test
cases [Lobb and Harlow, 2016]. Solutions to those exercises were discussed at the beginning
of the following lab.

11.2.2 Teachers-researchers

The primary instructor is a senior professor of informatics with several years of experience in
CS1 for math and consistently good feedback from students. The teaching assistants are
either Ph.D. students or post-docs in informatics, all with a research interest in informatics
education. After the lectures, the primary instructor and the TAs had detailed debriefings.
The debriefings were very helpful in improving the course delivery, both because of the
challenge of emergency online implementation and because the primary instructor does not
usually have any colleagues observing the lectures.

11.3 Methods

Qualitative research is standard in social sciences and other disciplinary education research
(such as math and physics), far less in informatics education research [Hazzan et al., 2006]. We
follow the recent advice on qualitative methods for informatics education research [Tenenberg,
2019].

11.3.1 Data collection

At the course’s beginning, we obtained informed consent from all participants, approved by
the “Council of Mathematics Degree”.

Halfway through the course, we organized a focus group with ten students, randomly
selected among the most active – and so, we believed, more inclined to share comments
and proposals. The suggestions from the focus group influenced some changes made in the
course (especially in the organization of lab lectures: see section 11.4.3).

Moreover, the discussion brought us to design a questionnaire, submit a preliminary
version to the focus group students, and then ask the whole class to fill in the final version.

The questionnaire was delivered as an anonymous Google Forms module. Three weeks
after the last lecture, a message explaining motivations for helping instructors in the research
was sent to all the 274 students who joined the online platform. Reminders were sent in the
following weeks, and a link to the questionnaire was published in every online space related
to the course.

We received 113 fillings. However, three were duplicated and discarded, leaving 110 fillings.
We collected students’ insights through the questionnaire via close-ended and open-ended
questions and (anonymous) demographics.

Among all the questions (see Sbaraglia et al. [2021c] for an English translation), we focused
on 15 open-ended ones related to the contrast between online and face to face, other broad

186 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

aspects of the course, and some specific but crucial elements of our 2020 implementation. We
use a short tag to identify each question quickly. To those who had already attended previous
years, we asked what they found better (what better) and what was worse (what worse)
this year. We asked all students what they found effective and ineffective both during theory
lectures (theory ok, theory bad) and labs (lab ok, lab bad). We asked if they believe
CS1 fits more than other courses to online education (cs fit online) and then to motivate
why they would choose to attend face-to-face (why pres) or online (why online). We
asked students why they would (why share) or would not (why not share) share their
screen during labs. We then asked about two specific aspects of our course: how to decide
the time assigned to each lab exercise (lab times) and whether they found having teaching
assistants even during lectures helpful (TAs theory). We asked for suggestions on how to
encourage students to participate and ask for help (more help) and general suggestions for
improving the course (suggest).

11.3.2 Participants

By chance, 55 students identified themselves as male and 55 as female. The students in
the course were from 18 years old (the youngest, born in 2001) to 45 (the oldest, born in
1974). The median is 19 years old, representing the age of 69% of the students, followed
by 20 years old, covering 13% of them. In our sample, 77 students did not have previous
programming experience; 26 students studied programming in high school, and the others
in different contexts (private courses, self-taught, and so on). Regarding the amount of
theory and laboratory lessons they attended, from 0 (did not attend any) to 5 (attended all),
80% attended all lectures and labs (5), 10% almost all (4). In contrast, only a few students
attended none (0).

11.3.3 Data analysis: inductive categorization with a grounded approach

Our coding involved the students’ responses to each open-ended question on the questionnaire.
Each question is identified by a label (see 11.3.1). For each question, we extracted categories
that would reduce and systematize the variety of student responses as much as possible
without losing important information in the coding process. We performed an inductive and
iterative categorization [Tenenberg, 2019, p. 191] of the answers by identifying and assigning
(coding) each filling of that question to one or more categories. In doing so, we decided
to take an approach inspired by grounded theory by Strauss and Corbin [1998] to analyze
qualitative data to produce new theoretical insights grounded in the data. A grounded theory
approach emphasizes a systematic and rigorous data analysis process guided by the data
rather than researchers’ preconceived notions or hypotheses. Therefore our categories were
not chosen a priori but constructed from the data in a grounded fashion.

First, note that multiple researchers engaged in collaborative coding. The four authors
(see 11.2.1.1) worked together and always co-present in all coding stages, maintaining an
open and peer discussion despite their different roles in the course (and university) and
different experiences. Every decision was made together, discussing the various options
aloud and always reaching a shared agreement. The co-presence at all coding stages and the

11.3. METHODS 187

agreement on each decision were time-consuming. However, these realize a more constructivist
approach to coding, closer to the spirit of grounded theory and less to the classical (more
quantitative) approach to coding. This constructivist approach (substantiated by co-presence
and agreement-building through peer discussion) also means that requirements of classical
coding, such as measuring inter-rater agreement, did not have to be considered.

Based on the original formulation of Grounded Theory by Glaser and Strauss [1967],
Strauss and Corbin [1998] propose three stages of coding for a grounded theory approach:
initial, focused, and theoretical coding.

Initial coding

Initial coding is the first stage in a grounded theory approach to data analysis. In this
stage, researchers examine the data and identify concepts, categories, and patterns that
emerge from the data. Researchers start to break down the data into smaller units that
can be analyzed more easily and begin to develop initial codes that capture the essence
of the data. The goal of initial coding is to identify and label the various elements of the
data while remaining open to the possibility of discovering new concepts or categories that
were not initially anticipated. This approach is often referred to as “open coding” because
researchers are open to any potential patterns or themes that may emerge from the data.
During initial coding, researchers may use a variety of techniques to identify concepts and
categories, such as highlighting key phrases, making notes, or creating concept diagrams. In
our initial coding, we divided each student response into autonomous semantic units, when
more than one, and assigned each unit a preliminary label summarizing its meaning. Overall,
initial coding is a critical stage in a grounded theory approach to data analysis, as it lays the
foundation for all subsequent coding and analysis. It allows researchers to identify the most
important concepts and categories in the data and to begin to develop an understanding of
the underlying patterns and themes. Once the initial coding is complete, researchers will
have a set of codes describing the data’s various elements. These codes can then be used to
develop more focused categories in the following coding stage, referred to as focused coding.

Focused coding

Focused coding is the second stage of coding in grounded theory, following initial coding,
and it involves a more detailed examination of the data related to a select few core categories
identified during the first coding stage. Focused coding is used to refine the categories and
subcategories generated in the open coding stage and to develop a more detailed and nuanced
understanding of the relationships between categories. The goal of focused coding is to
identify the most important categories to focus on in the theoretical coding stage. By selecting
a few core categories to focus on during focused coding, researchers can identify the most
important themes and patterns in the data and develop a more coherent and comprehensive
theory. Specifically, we returned to the students’ open-ended responses and the preliminary
labels we had assigned. We tried to abstract more, defining new, more general, and broad
labels that could contain several of them to uniform the landscape of responses without losing
too much detail. This process of abstraction was also based on recognizing some recurring

188 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

themes in the responses to each question, recognizing that labels from the first stage could
be subsumed into more general labels that summarized those specific themes. In addition
to identifying relationships between categories, focused coding may involve identifying the
properties and dimensions of categories and comparing and contrasting different categories
to identify similarities and differences. In particular, for each question, we considered the
dimension of each label (counting how many answers fell under that label) to recognize the
most recurring themes in students’ responses. Overall, focused coding is an essential part of
the grounded theory process, as it allows researchers to identify and refine the most important
categories in the data and to develop a more detailed and comprehensive understanding of
the importance of those categories.

Theoretical coding and COI as a unifying framework

In the final stage of coding, theoretical coding, researchers identify the core category or
categories that tie all of the other categories together. Researchers start to develop a
theoretical framework explaining the relationships between the categories and the core category.
Researchers also begin to look for ways to extend the theory and to make connections to
other theories and research in the field. In particular, we found that the Community of Inquiry
(COI) framework [Garrison et al., 1999] could help make sense of our focused categories and
preliminary insights. COI describes the essential elements (called presences) of a successful
online higher education: cognitive presence (i.e., construction of knowledge through discourse
and reflection), teaching presence (i.e., design, facilitation, and direction of learning processes),
and social presence (i.e., learners’ ability to feel affectively connected with peers). The results
of our theoretical coding, through the unifying lens of COI, are given in the next section.
Often, we report excerpts from students’ answers to “provide a “prototypical” semantic unit
that illustrates, concretizes, and in this way represents the entire category” and support the
trustworthiness of our categorization [Tenenberg, 2019, p. 186,199].

11.4 Findings

We analyze and discuss the most relevant aspects that emerged from the day-to-day work
and analysis of students’ opinions.

11.4.1 Individual assistance and live tutoring

To provide the individual support that students usually get during in-person laboratory sessions,
we designed a simple interaction protocol to ask for assistance. Beyond the help in overcoming
programming difficulties, we wanted to make students feel less isolated and more connected
with instructors. A student had just to ask for help in the course chat, and the first instructor
available would “Like” that message to let the other instructors know that the request had
been taken care of. Then, the instructor would send a private message to the student,
initiating individual assistance.

In the question on what worked during the labs (lab ok), 43% of respondents (32 out
of 74) praised the assistance given by the TAs (being always present, competent, supportive,

11.4. FINDINGS 189

and different in their style). At the same time, there is no mention of the teaching assistants’
assistance in the symmetrical question on what did not work (lab bad).

The teaching assistants’ presence during the theory classes (see 11.2.1.1) was highly
appreciated: in the specific question (TAs theory), 92% of respondents (101 out of 110)
found the TAs’ presence useful or very useful.

In summary, the teaching assistants’ availability to provide support5, their number, their
summaries, and re-elaborations of crucial concepts, as well as their helpfulness and closeness,
were much appreciated.

We recognized that students perceived teaching assistants as both “deskmates” (filling the
lack of face-to-face classmates) and an integral and competent part of the teacher’s presence
and support. This idea emerges from answers like “The teaching assistants help the professor
with the many questions since there is no deskmate to ask”, “The opportunity to ask for help
for a specific doubt without having to interrupt the lesson and putting at ease the shyest
people”6, “The teaching assistants have always been friendly, helpful and competent” and
also “They offer human contact with almost peers”. This ambivalent perception about TAs is
an example of how teaching and social presence could affect each other positively [Garrison
et al., 2010].

11.4.2 Live-built materials, LMS and auto-grading

As described (see 11.2.1.1), slides were built or completed during lectures, based on interactions
(both chat messages and voice interventions) with students, to promote active learning, foster
interest, and highlight the importance of participation. Programs were written and executed
live alongside the slides.

When asked about what they found effective in theory classes (theory ok), students
expressed positive feelings about the live construction of teaching materials. On a total of
82 answers, 52% of respondents liked one or more of these aspects: (i) live programming
examples, (ii) live-built slides during the lecture, (iii) instructor handwriting on the shared
screen. As a possible drawback, live-built slides cannot be available before the lesson, as few
students requested in suggest.

The Learning Management System (LMS) Moodle was useful for organizing materials
across lessons, and uploading slides, programs’ code, and homework after every class. We
used the CodeRunner plugin to enrich the assignments with automatic tests and grading. The
results of the multiple tests of each programming exercise provided students with progressive,
specific information about their code. This strategy allowed us to give students constant
feedback about their homework, which is otherwise impossible for just four instructors with
more than 200 students. It is worth noting that providing an adequate number of auto-graded

5This finds evidence in literature: from Bowers’ review [Bower et al., 2014, p. 16], it is crucial to hire
teaching assistants to respond to text chat, managing issues not related to core aspects of the lesson. Moreover,
increasing the ratio of TAs to participants helps minimize disruption and “can also lead to a richer learning
experience for students”.

6Other works confirm this. For Bower et al. [2014, p. 15], “students who have the choice of attending
face-to-face or remotely, often choose to participate remotely [...] because they can unobtrusively contribute
to the lecture discussion via text chat”.

190 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

exercises each week took much time, effort, and precision.
Results show 44 positive answers across four questions. The most relevant categories are:

‘Materials available online’ (17 in theory ok), ‘Home assignments with automatic tests’
(12 in lab ok), and ‘Solutions available online’ (4 in lab ok).

11.4.3 Time management in labs

In redesigning the laboratory routine, we initially decided not to allot prefixed times for
autonomous activities. First, we believed that prefixed times, established by instructors and
equal for all, were not inclusive. Second – coherently with our premise – we also wanted the
laboratory classes to evolve from participants’ contributions. Therefore we devised an ad hoc
interaction protocol. For every autonomous activity, the first student completing it should
write “Done” on the course chat, and the coursemates that followed should just “Like” that
message. For each activity, depending on its difficulty, the instructors would evaluate how
many “Done” were sufficient to end the autonomous work and start the discussion. This
“quorum” mechanism gave us the (false) impression that we had the pulse of the situation,
relying on quantitative information to assess better when to move forward.

Students in the focus group expressed tepidly about the quorum mechanism, and many of
them said they would prefer a fixed time for every activity. At the time, we naively attributed
this preference to the downtime experienced by skilled students. Nonetheless, we decided
to test prefixed times for autonomous activities in the remaining laboratory lessons. In the
questionnaire, we asked students about their preference and their motivation.

The preference for prefixed times (across questions fixed times and lab bad) is based
on two opposite perspectives. The quorum mechanism displeased the more skilled students.
36 respondents perceived it as a waste of time (non-inclusive vision, contrasting ours). More
surprisingly, it displeased the fragile students, too. Seventeen respondents perceived it as an
anxious run-up to the execution speed of the best colleagues. Remarkably, according to 17
students, the instructor would know the ideal resolution time of each exercise, assuming an
objective one exists. Communicating this univocal time would be the most “democratic” way
to allow students to measure themselves against their limits and without looking at others
(i.e., at the increasing number of “Done” in the course chat).

The strong preference for prefixed times and this latter misconception show that it is
crucial to systematically share the didactic choices with students, especially in an online
learning context7. Moreover, being able to count “Likes” inspired us with excessive and
unfounded confidence and resulted in an abuse of the quorum mechanism that displeased
most students. However, it remains an open problem to figure out and balance the different
competence levels of such a large class.

11.4.4 Sharing the screen

During lab lessons, it was hard for the instructors to note if a student needed help. Contrary
to what happens in the lecture hall, where instructors can look at students’ screens, the only

7According to Peachey [2017, p. 150], online education “need[s] to provide exceptional levels of student
support”, by explicitly explaining the didactic relevance of the tasks.

11.4. FINDINGS 191

way to understand if someone needed help was when they explicitly asked. We asked the
students if, during labs, they would share their screen with instructors only (share scr).
The preference is clear: 85 (out of 110) would share the screen to get assistance, and 25
would not.

The main motivations of those in favor were (i) the opportunity of receiving more effective
and even unsolicited assistance – e.g., when the student would not know what to ask for or
is too shy to ask for help; (ii) the idea that sharing the screen is “just the same as in the
classroom”.

Among the students opposed to screen sharing, the largest group fears for their privacy
(“I don’t want to be observed while I could also mind my own business”). As a possible
solution, a screen-sharing system could warn students in advance that an instructor will look
at their monitor, just as students in the classroom realize that instructors are approaching
their station. Moreover, a system that allows sharing just the IDE should be used.

11.4.5 Presence paradox

One of the most interesting aspects that emerged from the analysis of students’ opinions
is the coexistence of two antithetical judgments on the course. First, the end-of-course
questionnaire revealed a high level of satisfaction for almost all the students8. Moreover, by
looking (in all the questions presented in section 11.3) for explicit and strong statements in
favor of the course, we found that 64 out of 110 respondents highly valued the online course.
For instance, when asked for suggestions to improve the course (suggest), one student
answered “No, the course was perfect like that!”.

However, when asked if they preferred distance or face-to-face learning if they had a
choice, 68 chose face to face and 42 distance. In particular, half of those strongly in favor
of the online mode replied that they would choose the face-to-face course. The reasons for
preferring face to face are primarily related to the lack of interaction with instructors and
peers. The reasons are either didactic (“Being able to talk face to face with the teacher
allows me to explain myself better”) or socio-relational. On the other hand, those who choose
the online mode reported logistical reasons9.

We believe this “presence paradox”10 is the effect of our effort to provide an online
synchronous experience as rich as the face-to-face one.

8An external, university-level evaluation reported that 94% of students expressed high satisfaction with
the course (N=165).

9Other works confirm it: reasons for choosing online courses are mainly practical – flexible schedules, costs,
time, no need to commute (see, e.g., [Rudestam and Schoenholtz-Read, 2010; Bower et al., 2014; Bower,
2009; Joyner et al., 2020]).

10Paraphrasing the “Synchronicity Paradox” of Joyner et al. [2020]: students seem to desire synchronicity,
despite being attracted to online courses mainly because of asynchronicity.

192 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

11.5 Discussion

Using a movie metaphor, we will discuss what we believe to be “The Good, the Bad and the
Ugly”11 of our adaptation of a face-to-face CS1 to be held entirely online.

The Good is that students highly appreciated the course. They praised those aspects that
favored synchronous interactions (e.g., live-built slides, live programming examples, individual
support from TAs during labs, and course chat interactions) and leveraged technology to
mitigate online learning drawbacks (e.g., Tas’ presence and support during theory lessons, a
learning management system for sharing materials and automatic homework testing).

The Bad is mainly related to instructors’ misconceptions (over-reliance on quantitative
tools to track live the completion of exercises and manage lab times accordingly) and students’
misconceptions (overconfidence in instructors’ ability to help in any situation).

The Ugly concerns human aspects of the face-to-face experience not to be lost, like the
instructors being able to see students’ screens during labs and proactively help them (but with
attention to privacy). Moreover, instructors need to be more explicit about didactic choices,
which are more difficult for students to understand online. Finally, most of our students would
choose a face-to-face course, especially for the unmediated social interactions (didactic and
socio-relational) with instructors and peers.

Conclusively, the strong and appreciated teaching presence is one of the key factors –
the most recurrent one in students’ answers – related to high course satisfaction. At the
same time, the lamented lack of social interactions is a direct symptom of a poor social
presence. We hypothesize that this deficiency is the primary cause of students preferring face
to face and also the cause of most misconceptions we found. First, the “isolation” of the
students may have generated the wrong perception, hence the anxiety, that most of their
coursemates had already finished the exercise (see 11.4.3). Also, the strong teaching presence
not counterbalanced by a robust social presence may have generated the misconception of
omniscient and omnipotent instructors, partly deresponsibilizing the students.

About cognitive presence, it is worth pointing out that an introductory and most technical
course – whose primary goal is literacy in the basic programming and informatics concepts –
does not focus on a critical analysis of knowledge. That said, our students positively received
the strategies that could foster cognitive presence by favoring reflection (i.e., CodeRunner
testing, live construction of materials, program reading and comprehension, time for questions
and discussion of alternative solutions).

11.5.1 Online CS1 and the search for optimal guidance

Being the course remote only, especially not being able to see students’ screens as they
program, leads instructors – if no correctives are made – to the “minimal guidance” of the
most extreme forms of constructivism (see 2.5.3.5). Despite being online, we wanted to find
ways to tend as much as possible to the “optimally guided constructivist instruction” by Taber
[2012]. In this sense, all the interventions documented and discussed in this chapter can be
framed in this overarching effort. Adapting to our face-to-face CS1, these correctives intend to

11We refer to the 1966 movie “The Good, the Bad and the Ugly” by Sergio Leone.

11.6. CONCLUSIONS AND FUTURE WORKS 193

prevent a solely online context from being minimally guided by reducing instructor’s blindness
(11.2.1.1) and (we discovered in a grounded fashion) fostering the three COI presences.

11.5.2 Validity and Limitations

The validity of this qualitative research is inevitably tied to the trustworthiness of the presented
analysis. We, four authors, all informaticians with experience in education, actively coded
and discussed all the open-ended answers together (see 11.3.3). Provided examples are
representative of the kind of answers we received and coded. The large sample forms a solid
base for the analysis.

In qualitative research, the primary goal is not generalizability but gaining a deep un-
derstanding of specific phenomena in context. This vision is widely accepted, as evidenced
by the leading reference publications in the research field, which articulately motivate how
qualitative research provides a unique and necessary way of knowing and experiencing the
world [see, e.g., Lewis, 2015; Denzin and Lincoln, 2017]. Qualitative research is beneficial
for understanding complex social phenomena challenging to measure or quantify, such as
attitudes, beliefs, and social interactions. Consequently, it is an essential way to investigate
educational contexts. Specifically, we aimed at “making explicit the anomalies, problems,
and contradictions” [Tenenberg, 2019, p. 179] in a specific situation, like the COVID-19
pandemic.

Finally, an obvious limitation is the social desirability of responding positively to a
questionnaire provided by the course instructors themselves. We tried to mitigate this by
opting for anonymity.

11.6 Conclusions and Future Works

We presented how consumer information technology and tools could be assembled to suc-
cessfully move online a face-to-face CS1 course, thus positively answering our (RQ1). In
particular, we evaluated the impact of the technologies against students’ perception using the
COI framework – (RQ2) and (RQ3). We maintained that the online, synchronous experience
must reflect the face-to-face experience – although not necessarily with the same tools,
methodologies, and behaviors. While we managed to preserve teaching presence, the presence
paradox indicates that improvements are still necessary, mainly to help students experience
social presence too, even online. For example, we could foster casual interactions in the
course meeting room while waiting for the lesson, facilitate social connections with more
structured activities (like remote pair programming), or introduce homework peer correction.
We plan to introduce and evaluate such activities in future implementations of CS1 for math
majors.

194 CHAPTER 11. THE ONLINE COURSE WAS GREAT: I WOULD ATTEND IT F2F

Chapter 12

Castle and Stairs to Learn Iteration:
UMC Co-design

This chapter presents a participatory process that involved primary school teachers and
informatics education researchers. The objective of the process was to co-design a learning
module based on the Use-Modify-Create methodology to teach iteration to second graders
using a visual programming environment. The co-designed learning module was piloted
with three second-grade classes. We experienced that sharing and reconciling the different
perspectives of researchers and teachers was doubly effective. On the one hand, it improved
the quality of the resulting learning module; on the other hand, it constituted a very significant
professional development opportunity for both teachers and researchers. We describe the
co-designed learning module, discuss the most significant hinges in the process that led to
such a product, and reflect on the lessons learned.

This chapter is based mainly on the article (yet to be published) “Castle and Stairs to
Learn Iteration: Co-designing a UMC Learning Module with Teachers” by Capecchi et al.
[2023].

12.1 Introduction

Despite the critical role it has recently gained in public debate and policy, informatics education
in primary school is still not compulsory in our country. Moreover, primary school teachers’
background does not usually include any specific education in informatics or informatics
education. However, several initiatives – often promoted by universities, associations, or
teacher networks – have been launched that offer teaching materials, learning platforms,
suggestions to schools and teachers on curricula, and professional development opportunities.
Among those initiatives, two are particularly relevant to the experience we report in this
paper.

• Nardelli et al. [2017] developed a proposal for a national informatics curriculum (grades
1 to 10) in Italy, developed by the national association of informatics departments and
informatics/informatics engineering professors.

195

196 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

• “Programma Il Futuro”, the national localization of Code.org [Code.org, nd], provides
a support website and training initiatives for teachers, with over 3 million students and
41,000 teachers involved since 2014 [Corradini et al., 2017a].

Following up on these initiatives, a national project was recently funded (by a research grant
to Italy’s CINI National Lab “Informatica e Scuola”) to disseminate programming education in
the early grades of Italian primary school. This project aims to investigate the effectiveness and
feasibility of different pedagogical approaches to teaching programming in the school context
of our country, focusing in particular on iteration – a fundamental concept in introductory
programming. The topic, target students, methodology, and programming environment for
the learning module were established in the context of the general national project (see 12.2).
In particular, the Code.org platform was chosen because it is already well known to teachers
in our country through the popular “Programma Il Futuro” initiative [Corradini et al., 2017a].

As a preliminary step of the project, a learning module for teaching iteration to second
graders was developed based on the Use-Modify-Create (UMC) methodology [Lee et al., 2011].
UMC engages young learners through a three-stage progression: first, they use a computing
artifact created by others, then they modify it, and finally, iteratively, they approach the
creation of their own artifact.

A participatory process involving four informatics education researchers (and authors of
this report) from three universities, four primary school teachers, and about 60 students was
conducted (by us researchers) to develop the learning module. This design approach1 actively
involves stakeholders in the design process to ensure that its outcomes are usable and meet
their needs [Bødker et al., 2000].

This chapter focuses on the participatory process we carried out with the goal of co-
designing with teachers (parts of) the learning material for the national project (i.e., the
materials for teaching iteration using the UMC approach to grade 2 students). We describe the
participatory process with the teachers and analyze how such a process positively influenced
the outcome (i.e., the co-designed learning module). We highlight the positive effects of
the participatory process (e.g., the materials that teachers were able – and willing – to use
autonomously, valuable training moments for teachers and researchers) and discuss those
that can be improved (e.g., more structuring and facilitation, better-defined roles in the
participatory process). As was the case for this experience, we believe that the participatory
design methods can be fruitfully applied to the design of learning materials. We hope the
insights we offer promote wider adoption of such methods by the informatics education
community.

See section 2.9 of the literature review (part I) for a review of the relevant literature on
participatory design and section 2.6.4 (part I) for UMC-related teaching methodologies.

The chapter is organized as follows. The following section 12.2 describes briefly the
national project, which is the general context for the research work we present in this chapter.
Section 12.3 describes the learning module developed during the participatory process and the
related material. Section 12.4 discusses the most significant hinges in the co-design process.
Finally, Section 12.5 reflects on the lesson learned.

1Also called co-design, it was initially developed in urban planning but also applied in other fields such as
software development and product design Bødker et al. [2000].

12.2. GENERAL CONTEXT 197

12.2 General context

We investigated the efficacy of two alternative instructional methods to scaffold the learning
of iterations for young students in grades 2-3 in a project partially financed by research
grant PANN20 00690 to Italy’s CINI National Lab “Informatica e Scuola”. The project is
jointly conducted by eight university groups from throughout the nation in two phases that
took place in 2022. Teachers’ feedback collected across the two rounds helped fine-tune
the deployment of the interventions. The trial results demonstrate measurable short-term
outcomes variations between the two interventions.

This section is based on the poster Learning Iteration for Grades 2-3: Puzzles vs. UMC
in Code.org [Nardelli et al., 2023], in press in the proceedings of the 54th ACM Technical
Symposium on Computer Science Education (SIGCSE ’23).

12.2.1 Project research goals

In order to carry out the project, we recruited 125 primary school teachers in two rounds,
aligning them to the design of the two learning modules, both focused on the idea of iteration
using block-based programming and aimed at students in grades 2-3. The project’s goal
was to compare how well those two learning variants performed in terms of the students’
measured effectiveness and every participant’s perceived satisfaction. Variant V1 required
children to use and modify projects created for them within the Code.org Artist (Pre-Reader)
lab [Code.org, 2022] before they could create their own projects in the same environment.
Variant V1 used the Use-Modify-Create (UMC) approach [Lee et al., 2011]. Variant V2 used
a standard set of puzzle-style coding exercises from the Code.org platform and had a more
rigid structure. With regard to duration, expected outcomes, and evaluation criteria, the two
learning variants were isomorphic.

12.2.2 Overall approach

The project was completed in two phases, each lasting three weeks. The first round occurred
in the spring of 2022, and the second in the fall. The only difference between the two rounds
was that the second round’s deployment was improved thanks to the first round’s lessons
learned. Several hundred primary school teachers from all over the country were invited to
the project. We recruited 22 of them for the first round and another 93 for the second round.
The Fall semester worked better for the teachers’ schedules. We divided the teachers into two
groups, one per variant, nearly equal in size, and we paid attention to balance provenance
and professional profile. The V1 learning variant (UMC) was given to one group, and the V2
variant (standard Code.org) to the other. All teachers in both groups: a) used two 1-hour
lessons from Code.org to align their students on sequences; b) administered an identical
pre-test to assess the children’s comprehension of sequences; c) taught the idea of iteration
following the group-specific learning variant in two to four 1-hour lessons; d) administered an
identical questionnaire to collect the children’s satisfaction with the activities and an identical
post-test to evaluate their understanding of iteration (concept and use); e) filled out an
evaluation survey on their own experience.

198 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

12.2.3 Project preliminary findings

In the first round of the experimentation, a total of 184 students (87, V1 – 97, V2) participated
in all the activities carried out by 13 (of the 22 recruited) teachers. In the second round, the
entire program was completed by all 93 recruited teachers for 1250 students (624, V1 – 626,
V2). In total, 1434 students participated in the experimentation (711, V1 – 723, V2).

The children-side responses from the first round’s post-project analyses reveal measurable
V1-to-V2 differences in a few hotspots. The V1 group (UMC) felt slightly more fatigued by
the learning effort, had more trouble understanding the code shown in two pre-test questions,
performed worse in two post-test questions (a counted iteration of a single instruction and
a counted iteration of two instructions), and better in one (a sequence of two counted
iterations).

The second round of responses is currently being analyzed. The program was very
engaging for all the students (between the ages of 8 and 12) and the teachers.

12.3 The learning module

This section presents the learning module resulting from the co-design process. All material,
translated in English, is available at https://codesignumc.web.app/ [Capecchi et al., 2022].
Section 12.4 analyzes how the process influenced the outcome described here.

The learning module aims at introducing second graders to the programming iteration
construct in a graphical programming environment – namely in Code.org Studio – using the
Use-Modify-Create methodology. The module’s learning goals are consistent with promoting
the development of skills described in the “Proposal for a national Informatics curriculum in
the Italian school” that suggests that pupils should be able “to use loops to concisely express
that a certain action has to be repeatedly executed a prefixed number of times” [Nardelli
et al., 2017, p. 3].

As prior knowledge, we assume that pupils can build programs formed by a sequence of
instructions, knowing that such instructions will be executed in the order they occur in the
program. We also assume that they are familiar with Code.org Studio and the blocks of Artist
(Pre-Reader) lab [Code.org, 2022]. The prerequisites and learning outcomes for the learning
module, with reference to the CSTA K–12 CS Standards [CSTA, 2017] and ANON-PROP,
are better articulated in Capecchi et al. [2022]. Together with the topic (i.e., iteration), and
the context (second grade), several design constraints had already been determined by the
overall design of the general project (see 12.2). First, the learning module would be structured
according to the Use-Modify-Create (UMC) methodology (see section 2.6.4). Second, the
learning module would be based on the Code.org Studio platform [Code.org, nd]; this was
chosen as it is also the platform used by “Programma il Futuro”, hence it is already known
by a relevant portion of Italian school teachers [Corradini et al., 2017a].

We took inspiration from other publicly available materials, such as UChicago STEM
Education [nd] and ECforALL [nd]. Even if they align with our goals, we could not simply
translate them into our spoken language for two main reasons. First, they are very “Scratch-
centric” (whereas our constraints required us to use the Code.org, see section 12.3), and

https://codesignumc.web.app/

12.3. THE LEARNING MODULE 199

secondly, the storytelling needed adaptation to our country’s cultural context.

12.3.1 Prerequisites and learning objectives

The “Proposal for a national Informatics curriculum in the Italian school” suggests that pupils
should be able “to use loops to concisely express that a certain action has to be repeatedly
executed a prefixed number of times” [Nardelli et al., 2017, p. 3]. Other proposals’ objectives
align with our activity, for example, pupils being able “to understand that difficult problems
can be solved by breaking them down in smaller parts”, “to order the sequence of instructions
correctly”, and “to recognize that a sequence of instructions can be considered as a single
action, which can be repeated or selected” [Nardelli et al., 2017, pp. 2-4].

In addition, the objectives of the Italian proposal for an informatics curriculum overlap
strongly with CSTA K–12 CS Standards [CSTA, 2017] that we consider in the following.
The general objective of our learning module aligns with objective 1A-AP-10 of the CSTA
Standards (i.e., developing programs with sequences and simple loops to express ideas or
address a problem). Other related objectives are 1A-AP-11 (breaking down the steps required
to solve a problem into a precise sequence of instructions) and 1A-AP-14 (identifying and
fixing errors in an algorithm or program that includes sequences and simple loops).

The module’s expected learning outcomes can be articulated as follows. (i) Pupils know
that the block repeat in a program determines the repeated execution of actions and that
the role of the number in the block is to determine the number of repetitions. (ii) Pupils can
build a program with the repeat block. (iii) Pupils can create a desired (simple) pattern
(e.g., stairs, including a sequence of instructions in one repeat block). (iv) Pupils can predict
the behavior of a program containing a repeat block. (v) Pupils understand the role of
repeat blocks into programs . (vi) Pupils can distinguish the effects of different repeat
blocks in the same program (built by themselves or others).

In addition, we assume the following prerequisites. (i) Sequence construct. Pupils can
build programs formed by a sequence of instructions and know that such instructions will
be executed in the order they occur in the program. (ii) Familiarity with Code.org Studio.
Pupils can distinguish between the play area (where the program will run), the toolbox area
containing the blocks available to build the program, and the workspace (where blocks are
dragged to build the program); pupils can add/remove/combine blocks in the program area
to create programs; pupils can run their programs. (iii) Familiarity with the blocks of Artist
(Pre-Reader) lab2 [Code.org, 2022]. Pupils know the semantics of move and jump blocks in
programs that draw turtle-graphics pictures.

12.3.2 Classrooms activities

The learning module is designed according to the Use-Modify-Create principles and structure
and consists of two 2-hour lessons. Three purposely prepared Code.org programs [Capecchi
et al., 2022] are available for pupils to run, look into, and modify. The first of such programs

2Code.org also offers puzzles (usually grouped into lessons of around 10 puzzles, see, e.g., https:
//studio.code.org/s/course1/lessons/10) where the subset of available blocks is limited for the specific
puzzle.

https://studio.code.org/s/course1/lessons/10
https://studio.code.org/s/course1/lessons/10

200 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

Figure 12.1: The program that draws the tower with the wizard.

is shown in Figure 12.1. In each lesson, tasks are proposed, and questions are asked that
guide the pupils to become familiar with the programs, understand their behavior, modify
them, and finally learn how to use the iteration construct.

The first lesson uses the first program and focuses mainly on the Use and Modify stages.
In the Use stage, pupils do not have access to the program’s source code. They are asked to
run the program, observe its behavior and the effect of its execution (e.g., “what did the
artist draw?”), and reflect on what happened (e.g., “which part of the drawing was drawn
first?”). To answer the questions, they are invited to run the program as often as they like,
possibly changing the execution speed.

In the Modify stage, pupils see the source code; this stage aims at making them read
and explore the blocks of the program. We propose three types of Modify tasks.

(i) Syntactical change. Under direct instruction, pupils are asked to make a specified
change in the program (e.g., move or replace a block, modify the parameter in the
repeat block), then run it, observe, and verbalize the effect of the change on the
execution and/or resulting drawing.

(ii) Prediction. The teacher describes a specific program change (as in the previous task),

12.3. THE LEARNING MODULE 201

and pupils are asked to predict how this change will affect the execution and/or resulting
drawing before actually modifying the program.

(iii) Intentional modification. Pupils are given a simple, specific objective, such as modifying
the program behavior or getting a drawing variation (e.g., “make the castle tower
taller”), and are encouraged to take a trial-and-error approach. They can edit and run
the program as often as they want; if necessary, they can discard their current program
and start over from the original one.

In the first lesson, all the modifications concern the simplest loops, that is, those defined
as a repeat block with only one instruction. At the end of the first lesson, pupils are invited
to modify the program, for example, by adding characters or simple elements.

The second lesson uses two other programs, each producing a variant of the first drawing.
For both programs, the Use stage is limited and aims only at getting pupils familiar with
the new program. In contrast, the Modify stage focuses on loops (drawing the stairs) that
contain two-instruction sequences. The second lesson then includes a substantial Create
stage. Pupils are invited to make their own drawings by building a program that uses the
repeat block. Some drawing ideas are made available to possibly inspire pupils who do
not know what to draw or are stuck trying to realize drawings that are too complex and
unfeasible.

12.3.3 Developed materials

12.3.3.1 Programs

Three Code.org programs were developed purposely for the learning module; see Capecchi
et al. [2022]. They produce drawings of a castle tower with additional characters and stairs;
the drawings are similar but obtained differently (e.g., starting from a different corner).
Figure 12.1 shows the program proposed to pupils first.

The programs are built using the Artist (Pre-Reader) lab [Code.org, 2022]. Each contains
multiple (five or six) repeat blocks; some loops are simple in that they include only one
other block, while others are more complex. In particular, all programs include a repeat

block containing a sequence of four movement blocks used to draw the tower battlements.

These programs are designed to be short enough to be managed by the pupils, rich
enough to provide interesting, attractive behavior, and complex enough to challenge the
pupils’ understanding and cognitive processes.

12.3.3.2 Support slides

We prepared a series of slides Capecchi et al. [2022] to support teachers in conducting the
lessons. The slides collect all the questions and tasks proposed to pupils and are to be
displayed at the appropriate moment during the lessons. Slides mainly use visual language
and include very little textual content; see, ss an example, Figure 12.2. Pupils work in pairs
following the indications given orally by the teacher, with the visual support of the slides.

202 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

Figure 12.2: Examples of support slides. The slide on the right is used as checkpoint w.r.t.
to the task posed in the slide on the left.

Besides the slides with questions and instructions, there are also some “checkpoint slides”
whose purpose is to align the class group at critical moments (see the right-hand slide in
Figure 12.2). For instance, some checkpoint slides show the effect of a specific change in
the program. Generally, they allow pupils to verify that they got the same effect or help
them catch up if they had difficulties understanding or executing the questions/instructions.
The checkpoint slides also allow the teacher to discuss or clarify crucial points, starting with
pupils’ answers and comments. The use of checkpoint slides is intended to allow pupils to
proceed at their own pace while maintaining an overall pace for the whole class. Hence it
helps the class group and the teacher keep the focus on essential points, avoid dispersion and
confusion, and guarantee a certain level of autonomy for the pupils.

Motivation for the slides. Pupils’ learning pace can vary significantly, and for the above-
described activities to be fruitful, they should be allowed to proceed at their own pace.
However, asking them to read and understand a long sequence of written assignments and
questions on their own while carrying out the related activities is not reasonable. Indeed,
given their age, reading and understanding individual assignments or questions may be alone
too complex a task. Therefore, we decided to make pupils work in pairs and follow the
teacher’s proposals, also being visually supported by the slides. On the one hand, this allows
for some meaningful autonomy of pupils’ pairs when addressing the proposed tasks. For
example, if they have fallen a little behind and missed the spoken instruction, they can look
at the slide and understand the next step to be carried out. On the other hand, it allows the
teacher to manage the whole class group and compensate for the different pupils’ paces.

12.3.3.3 Teacher’s guide

The learning module’s classroom activities are presented and commented on in a “Teacher’s
Guide” [Capecchi et al., 2022]. Although teachers could also use the guide as a reference

12.4. CO-DESIGNING WITH TEACHERS 203

during the lessons, its purpose is to support teachers in preparing for the lessons.
The guide has a threefold function. First, it presents the module’s pedagogical approach,

illustrating the three stages of the Use-Modify-Create methodology. Second, it provides a
detailed description (consistent with the slides’ content) of the series of tasks/questions to
be proposed to the pupils in the two lessons. Third, it states the intended purpose of each
proposed tasks/questions, anticipates possible reactions, comments, doubts, and mistakes
that pupils might manifest, pinpoints the critical role of some specific tasks/questions in the
learning process, and frames the tasks/questions in a general learning context.

Hence, the guide aims to provide a solid background to support teachers in conducting
the learning module.

12.4 Co-designing with teachers

This section describes the participatory process we conducted and how it affected its outcome,
i.e., the learning module described above.

12.4.1 Phases of the participatory process

Three main phases can be identified in the process.

1. First, the group of researchers drafted some ideas for programs and tasks.

2. Then, a few selected primary school teachers were involved in discussing and revising
such initial ideas.

3. Finally, these teachers in their classes piloted the resulting learning module and related
material.

During the first phase, the group of researchers – the authors of this paper from three
different universities – met online to draft some preliminary ideas of programs and tasks for
the learning module, structured according to the UMC methodology. The programs were
designed to be short enough for pupils to handle, rich enough to provide interesting and
attractive behavior, and complex enough to challenge pupils’ understanding and cognitive
processes. Those preliminary materials were then informally tested with some children from
the family environment of the researchers. The Use and Modify stages worked well, as tasks
positively challenged children. However, the first program turned out to be too complex, and
the wording of the questions was difficult to understand. We revised the materials accordingly,
but we felt that our work would have benefited greatly from the contribution of primary
school teachers that are experts in the specific target learning context and population.

Rather than simply asking for separate feedback on the material, for example, through
an online questionnaire, we decided to promote a participatory process and invite a diverse
group of primary school teachers to act as informants (see section 2.9). Our design ideas,
still in preliminary form, would be submitted for open discussion to a diverse group of primary
school teachers. We opened up for a comprehensive review and (possibly major) revision of

204 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

the material, where teachers would have the chance to interact with both the researchers and
each other.

More precisely, we reached out to primary school teachers we had already worked with
for other STEM projects. Four teachers from four different cities accepted our short-advice
invitation to collaborate. They did not know each other; all had a strong motivation and long
teaching experience; their background with respect to programming ranged from novice to
expert, as well as their experience in teaching informatics. This collaboration lasted about two
months and consisted of four online meetings (attended by both researchers and teachers),
some intermediate meetings between researchers only, and continuous asynchronous work (by
individual participants or small subgroups) on the shared documents. One of the researchers
acted as a facilitator of the process.

This co-design phase ended with three of the four teachers piloting the learning module
in their classes with the related material. Overall, about 60 pupils were involved in the
pilots. We did not collect data on pupil performance or behavior, nor did the teachers use
the learning experience to assess their pupils. The teachers were interviewed briefly after
the completion of their pilots. Since the pilot tests were successful and did not reveal any
particular problems, the learning module was finalized by implementing minor fixes.

All meetings with the teachers and the final interviews were conducted online and recorded
using a videoconferencing tool. In addition, several documents were shared, collaboratively
edited, and commented on during the process. In order to refine the activity and its materials
(and write this report), we researchers watched the recordings and transcribed the most
relevant passages, then reviewed all the transcripts, together with the comments and history
of the shared documents. All the involved people were informed and agreed to be recorded
for these purposes.

12.4.2 How the process affected the outcome

As mentioned earlier, the programs and tasks that compose the learning module presented in
Section 12.3 are significantly different from those initially designed by the researchers and
submitted to the teachers at the beginning of the participatory process. The comments and
objections raised by the teachers led to fruitful discussions. They led either to confirmation
and clarification of core ideas (e.g., the UMC structure, the cognitive progression of activities)
or revision of some aspects related to the learning module’s content or the presentation of
the material.

We report some concrete episodes that we deem both meaningful for their impact on the
process outcome and representative of the kind of interactions that occurred. We organize
them under five main themes for the sake of readability, but it is worth mentioning that, as
they are strongly interconnected, most of them occurred interleaved and in more than one
meeting. Teachers and researchers are named respectively using the initials ‘T’ and ‘R’.

Storytelling and visual aspects. Many comments focused on the setting for the programs
to be proposed in the classroom, as the initial programs produced simple drawings (e.g., stairs,
letters of the alphabet) unrelated to each other. For example, T3 noted the importance of

12.4. CO-DESIGNING WITH TEACHERS 205

the storytelling and visual aspects, emphasizing that these also increase the effectiveness of
the activities from a learning perspective; T2 pointed out the difficulty of devising programs
with these visual and narrative enjoyable features and whose complexity is still manageable by
young children. After several interactions, a good balance was found and the initial programs
were dropped. They were replaced by three new programs (described in Section 12.3) with
similar complexity that, however, refer to one single story with two characters (a wizard and
a dragon) moving around a castle tower (see Figure 12.1).

Informatics content and relationship with other disciplines. When preparing the first
draft of the learning material, the researchers mainly focused on its informatics content. Since
the first interactions with teachers, it was clear that this focus would likely conflict with
other points of view that do not concern informatics but are very relevant, especially in early
education.

For instance, when learning to write the parts that make up a letter, children are
encouraged to move the pencil in a prescribed sequence and direction. However, in one
of our initial programs, the artist drew a letter following a purposely scrambled sequence
and directions so that the relation between the program blocks and their effect would be
less predictable. Although this trick seemed justifiable and even useful from the researchers’
informatics perspective, it was challenged by T3 and finally deemed unacceptable by the
teachers: they know that many second graders still have difficulty writing letters in the correct
direction, so they should not be presented with contradictory examples. Similar observations
were made by T1 and T4 regarding difficulties with laterality, as some tasks relied on the
ability to distinguish right from left or similar topological relationships that may still be under
acquisition for some second graders. These discussions also strongly affected the revision
mentioned above of the overall setting of the programs.

Presentation of questions and tasks – wording and format. A large part of the discussion
concerned how to present the tasks (including the questions to be answered) so that pupils
would easily understand them. The researchers designed a sequence of tasks to propose to
pupils and drafted a written document with preliminary notes describing those tasks. That
document was intended as a tool for discussion; thus, we deliberately omitted to work on
refining its wording. Instead, we explicitly left this matter to be explored in the co-design
process and asked the teachers to help us shape the format and linguistic aspects of the tasks
and questions.

Indeed, all teachers found in the text several hurdles for pupils, such as complex terms
or long sentences. They also found imprecise or misleading wording and, while raising their
doubts, offered the researchers the chance to clarify the intended purpose of the tasks from a
cognitive point of view. This discussion was also very formative for the teachers, who had
the opportunity to understand better some informatics aspects involved in both the programs
and the questions.

As for the format, the initial version relied very much on verbal communication, the main
question from the researchers being whether the tasks should be presented to pupils in written
form (e.g., using a worksheet, as in Salac et al. [2020]) or explained orally by their teachers.

206 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

The teachers brought up a different approach that was more based on visual communication,
as they observed that relying only on words is inappropriate for second graders. In particular,
T3 suggested using colors and arrows to identify parts of the screen or portions of a program.
To overcome R3 and R4’s initial hesitation, T4 went further and prepared some slides to show
how to present the tasks in a visual format, which convinced the group of the effectiveness of
this approach. Some concepts were then formulated using a graphical notation instead of
text. For instance, to answer the question “Where did the artist start to draw the castle?”,
colored quarters can be used instead of text options like up, down, right and left. As an
example of the outcomes of these interactions, see the slide in Figure 12.2, where one can
see that the role of text is marginal.

From then on, instead of acting only as an informant, T4 played a much more active role
in preparing the slides and the teacher’s guide, working closely with R1 and R2 as a partner
in the process (see section 2.9). Figure 12.2 shows an example of the resulting slides.

Foster reflection in pupils. The teachers learned about the Use-Modify-Create methodology
from the researchers and appreciated it. R2 emphasized that the approach allows for more
complex programs, balancing the greater difficulty with increased involvement of pupils. T3
noticed that the Create stage motivates learners and linked the Modify stage to experiential
learning, as it fosters reflection on doing (remember 2.4). T4 remarked that the approach
accommodates different expertise levels, effectively engaging also students with previous
extracurricular experience in coding. Several comments focused on the effectiveness of the
UMC methodology in fostering reflection in pupils, whose trial-and-error style is often too
impulsive and not very organized and principled. For instance, the tasks in the Use stage
make pupils observe important details and reflect on what happened; the prediction questions
in the Modify stage force them to pause to think and reason about the expected outcomes.

However, T4 noted that such reflective and open-ended questions (e.g., “What do you
notice?”) are difficult for young children because they require them to give explanations,
which is a challenging task at their age. When R2 and R4 replied that the answer is not
the essential part, as what is more relevant is thinking about the question, T4 insisted that
keeping things practical and concrete is crucial from a learning perspective. A question that is
not “answerable” is bad for both the pupil – who does not know how to deal with it – and the
teacher – who cannot understand whether the pupil has grasped the point. This concern was
addressed by rewording several questions, paying more attention to the cognitive progression
of tasks, and adding checkpoint slides to help pupils check their reasoning without having to
produce verbose explanations.

Class management and the teachers’ role. Given the context of the national project,
which aims to compare two ways of teaching iteration(see 12.2), we tried to provide teachers
with maximum clarity. In particular, clear guidance on how the learning module should be
conducted in the classroom or, in other words, on their role as teachers in managing the class
group during the activities. In the first phase, however, the researchers deliberately omitted
to define this role more precisely than just providing the tasks structured and organized
according to the UMC methodology. On the contrary, this issue was explicitly left to be

12.4. CO-DESIGNING WITH TEACHERS 207

explored in the co-design process, hoping to find a balance that would let each pupil explore
and reflect on the tasks and questions while avoiding dispersion and confusion and keeping
the group class focused on the crucial points.

The discussion was initiated by asking teachers how they would conduct the activ-
ities. Should pupils work individually at their own pace (as, for example, in Code.org
lessons [Code.org, nd]), or should the activities be carried out together with the whole class?
If explained verbally, would the questions be understood? Does it make sense to give second
graders written questions to be read on their own, or should the questions be somehow
mediated by the teachers? T3 noted that the answers to that questions did not depend only
on the activities as such but on many other factors as well, including the characteristics of
the pupils’ group (e.g., listening skills, the habit of working on open-ended problems) and the
teacher’s personal style in conducting any activity. T4 and T3 agreed that all pupils should
be offered the opportunity to explore, thus suggesting that work in pairs or small groups
should be encouraged. R2 and R4 were concerned that the teachers might have difficulties
managing the class because of different group paces.

At this point in the co-design process, we sketched out the following scheme of work.
Pupils are set in pairs. Then, the teacher explains the following task to the whole class group
using the related support slide. Pupils work, reflect, and discuss in pairs. After a while, the
teacher asks the whole class what answers they gave and helps them discuss, trying to include
all the pupils.

T2 objected that, following this approach, the discussions might take too much time
and be annoying. Moreover, T1 pointed out that the resulting pace may not be respectful
to the slower pupils. At this point, the idea of using checkpoint slides (see 12.3.3) as a
tool to balance the pupils’ freedom to follow their own pace while preserving the overall
pace of the class arose. Checkpoint slides emerged as a way to align the class at the most
critical moments of learning, to help pupils catch up if they had difficulties understanding or
executing the questions and tasks, and to focus on and clarify the essential points (starting
from the answers and comments from the pupils).

Moreover, T4 emphasized the importance for teachers to accurately understand the
intended purpose of the proposed tasks and questions and to anticipate possible reactions,
comments, doubts, and mistakes that pupils might manifest. The resulting discussion led to
another significant decision. We agreed on the importance of providing a solid background to
support teachers in conducting the learning module. Therefore, we decided that the teacher’s
guide would contain not only a detailed description of the series of tasks and questions but
also some crucial reflections on their purpose and meaning from the informatics perspective.
At the same time, the guide would also suggest to teachers possible adaptations of the
learning module (e.g., different timings, additional details when proposing tasks, methods for
promoting and leading discussion during activities) to take into account the characteristics of
their class groups.

12.4.3 Possible improvements

Even though external constraints or lack of resources often hinder this, the best practices
in participatory processes suggest that the process be planned thoroughly in advance, use

208 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

structured participatory methods, and be facilitated by external experts not involved in the
design itself [Bødker et al., 2017].

In our case, we acknowledge that we turned to co-design only after a preliminary design
phase; hence we did not plan the participatory process in detail, and we conducted it in a short
time, with close meetings. Moreover, we did not have the time to organize preliminary forms of
infrastructure and “backstage work” to create rapport and trust between participants [Bødker
et al., 2017]. Therefore, we could only include in the process teachers with whom we were
already in contact for collaborating on other informatics education-related projects. That
previous knowledge acted as a “backstage work”, though incomplete. Also, the process was
facilitated informally, with one of the researchers acting as facilitator, based on her prior
expertise in participatory design.

Despite this, participatory design principles were followed. In particular, we cared to create
a context that genuinely allowed an open discussion and establish equitable power relations
within the co-design group, as testified by the fact that T4 was unexpectedly promoted as a
partner in the design process3.

12.5 Conclusion

In this chapter, we reported the process of co-designing a learning module aimed at teaching
iteration to second graders with the UMC methodology in a block-based programming
environment. The effectiveness of the developed learning module for teaching iteration is
compared with that of a more traditional approach (a standard set of puzzle-style coding
exercises with a more rigid structure) as part of a national project involving 125 teachers and
1434 students. Consistently with what was reported by other UMC research [e.g., Lytle et al.,
2019], the process successfully produced teaching material that the teachers felt comfortable
experimenting with in their classes without the researchers’ support.

The heterogeneous co-design context (including primary school teachers and informatics
researchers) helped hold different educational needs together. The presence of specific diverse
expertise ensured that the fundamental aspects and objectives of the learning experience
and informatics content were correctly preserved, which would have been impossible without
a homogeneous project team. For example, this allowed us to find a satisfying mediation
regarding different – and sometimes contrasting – needs. For example, balancing the freedom
in interpreting the teacher’s guide to accommodate different class group characteristics while
assuring a correct implementation of the activity; or balancing the activity’s ease, economy,
and length while making students focus on specific informatics aspects. The result is an
educational product that maintains its informatics scientific soundness while being usable by
teachers and appropriate for second-grade students.

The ample space granted to the teachers’ peer discussion, the researchers’ openness
to listen and – when needed – heavily revise the work (while always being firm on crucial
informatics concepts), and the teachers’ generous participation in the process were crucial for
the design’s success.

3Even if, according to Coenraad et al. [2022], to put teachers in the role of design partner, specific
approaches are needed to establish equitable power relations with the researchers’ group.

12.5. CONCLUSION 209

As illustrated in the analysis, the co-design process has been very formative for both the
teachers and researchers. Teachers had developed a better understanding of critical cognitive
aspects of teaching iteration by diving into the material to understand it and looking for the
best way to engage students. Researchers learned to better take into account pedagogical
aspects not strictly related to teaching informatics. Most importantly, while keeping the
original constructivist approach, we moved from a minimal guidance proposal to a more
scaffolded one, creating materials that can help teachers provide pupils with the optimal
guidance they need Taber [2012] (see also our 2.5.3.6 in part I).

Overall, we advocate for such participatory design methods as a helpful approach to
both increase the quality of the resulting learning material and contribute to the professional
development of the people involved. We also hope this report can contribute to illustrating
how these participatory methods can be fruitfully applied in the development of learning
material, thus promoting a wider adoption by the informatics education community.

210 CHAPTER 12. CASTLE AND STAIRS TO LEARN ITERATION: UMC CO-DESIGN

Part IV

Original Contributions – Informatics
for All

211

213

Introduction to part IV

In this second original part of the thesis, we present the contributions of our research on
teaching informatics principles through unconventional pathways (such as exposing young
students to the basic principles of cryptography) to convey its value as a necessary lens for
understanding our society and as a set of principles, ways, and tools for acting in it. In
an ideal scan (ideal since the reader will also be able to grasp intertwined references), this
production is situated within the literature reviewed in part I.

Inspired by the big ideas of science and particularly the big ideas of informatics education,
we report how we tried to take the same approach to teach cryptography in high school after
recounting the research project from which this initiative originated. We tried to expose and
teach the basic principles of cryptography, which have revolutionized our society and that
we use daily. However, the purely cultural perspective did not neglect the minimum and
necessary scientific and technical elements functional to understand a principle.

Then we present an activity for teaching public-key cryptography using graphs to help
pre-service STEM teachers explore fundamental concepts and methods in informatics and
mathematics. The activity was designed using the Didactical Engineering research method-
ology and the Theory of Didactical Situations. Participants were required to explore and
understand concepts and methods from mathematics and informatics and move between
different disciplines and semiotic registers.

Again, the teaching approach was a “balanced constructivism”, adopting active and
reflective activities as much as possible but always pursuing optimal guidance for adaptive
scaffolding. The common goal of these research initiatives is to enable a broader audience
(than those who choose to learn specifically informatics) to understand the importance of
informatics in our lives and its interdisciplinary implications while increasing motivation to
learn more about it and fostering the building of skills in the realm of computational thinking.

214

Chapter 13

SIGCSE Special Project on
Cryptography

In 2020, we submitted a research proposal on cryptography education to SIGCSE for a 5,000$
Special Projects Grant.

These grants help SIGCSE members investigate and introduce new ideas in the
learning and teaching of computing. Projects must provide some clear benefit
to the wider disciplinary community in the form of new knowledge, developing
or sharing of a resource, or good practice in learning, teaching, or assessment.
[SIGCSE Special Projects, [n.d.]]

At that time, we wanted to seize two opportunities: the SIGCSE special projects grant
and the proposal of a local high school (a scientific lyceum) for a short course within the
national project of Liceo Matematico1.

Our research group was working on cryptography education, specifically on leveraging
cryptography to train STEM disciplines teachers to foster interdisciplinary teaching of mathe-
matics and informatics. Chapter 15 extensively discusses this research work, part of a massive
European Erasmus K2+ project involving five European universities.

Working on cryptography education, we had been fascinated for some time by the idea
of being able to distill its big ideas (see section 4). The reason was twofold. First, from a
review of cybersecurity education literature, we found that cryptography was underrepresented.
Second, in our teaching experience, we encountered widespread ignorance of the essential
cryptography principles as a cultural lens for grasping many aspects of today’s digital society.

That is the scenario in which we developed our proposal for cryptography education and
submitted it to SIGCSE as a special project. At the end of 2020, our proposal was awarded
one of three Special Projects Grants for that year. The following is a summary and a report
of our project, which frames and motivates most of our research on cryptography education.

1Liceo Matematico offers volunteer lyceum students extracurricular activities to let them experience
interdisciplinarity between mathematics and other disciplines and broaden their cultural horizons; more
in 14.2.1

215

216 CHAPTER 13. SIGCSE SPECIAL PROJECT ON CRYPTOGRAPHY

13.1 Background

In today’s digital society, cryptography is at the core of many activities and tools (e.g.,
instant messaging, e-commerce, stock exchange, cryptocurrency). Various frameworks (e.g.,
DigComp [European Commission, 2017]) and curricula (e.g., CSTA K–12 CS Standards [K-12
CS Framework, 2016] and the UK computing curriculum [UK Department of Education,
2013]) include cybersecurity competencies. Some of them are more oriented on using security
for personal purposes, others on understanding how digital security works, but they all
recognize that cybersecurity skills are essential for students to be active citizens of digital
society. Cryptography is one of the foundations of cybersecurity. In addition, novices identified
cryptography “as an interesting context for computer science lessons” [Lindmeier and Mühling,
2020, p. 3]. pretertiary (or K-12) education does not aim to train professionals but to help
students understand our world and act in it, therefore it is important to help them understand
the principles of cryptography and their importance in our society. Much more on this in the
review section, particularly in 6.1, 6.2.1 and 6.2.2.

13.2 Research activities

We designed a short course with no prerequisites, built around different types of activities.
Since educational research has shown the effectiveness of active and cooperative learning
methodologies [Loui and Borrego, 2019, p. 304], we designed non-traditional hands-on activi-
ties to be interactive and meaningful for students. We developed cryptography playgrounds
for students to use, understand, and attack emblematic cryptosystems (e.g., Caesar cipher,
One-time pad) and a “remote-unplugged” activity to enact the Diffie-Hellman key agreement
in pairs. We realized both types of activities with Snap!, a block-based graphical programming
language. Due to the ongoing COVID-19 pandemic, we had to design the first iteration of
our intervention as remote-only.

Our pathway includes a few emblematic cryptographic systems and schemes, carefully
selected as representatives of cryptography core ideas. With the aim to create a motivating
progression, the introduction of a new scheme is always triggered by the necessity (which
we stimulate in students; see [Sbaraglia et al., 2021a; Sbaraglia, 2021] and also chapters 9
and 8) to overcome the limitations of the previous one(s).

13.3 Project outputs

The project has two primary outputs.

1. A learning progression to teach fundamental cryptography ideas by making students
encounter some representative cryptosystems (from classical to modern) and experience
their limitations, and consequently, the necessity to overcome those limitations towards
more secure systems. The cryptography learning progression is presented at https://
bigideascryptok12.bitbucket.io/#progression, discussed in Lodi et al. [2022b]
and in more detail in chapter 14.

https://bigideascryptok12.bitbucket.io/#progression
https://bigideascryptok12.bitbucket.io/#progression

13.4. OUTCOMES, ONGOING AND FUTURE RESEARCH 217

2. Teaching materials for 4/5 lessons (suitable for high school students) following the
path of point 1, consisting of

• ad-hoc Snap! environments to experience firsthand how relevant cryptosystems
work, their weaknesses, and possible attacks

• unplugged activities (which can also be used in remote teaching): for example, a
Diffie-Hellman key agreement simulation through color mixing (with the mixing
based on the actual math of the protocol)

• animated slides showing the high-level functioning of asymmetric encryption
scenarios step by step and a narrative evaluation summary

All materials [Lodi et al., 2021a] are freely available and presented at
https://bigideascryptok12.bitbucket.io/#playgrounds; they are also discussed in Lodi
et al. [2022b] and in more detail in chapter 14.

13.4 Outcomes, ongoing and future research

The outcomes of cryptography learning progression, materials and their school implementations
are presented in 14.3 and lengthy discussed in 14.4.

As mentioned, the grant-winning project became the framework of a broader line of
research on cryptography education.

13.4.1 Cryptography big ideas

We interviewed experts in cryptography and informatics education with the aim of distilling
the “big ideas of cryptography”, sharing the core motivations, and following the example
of the big ideas in science education and informatics education (see our review in 4). The
developments of big ideas – for example, for pretertiary education in science [Harlen et al.,
2015], informatics [Bell et al., 2018], and in artificial intelligence [Touretzky et al., 2019] –
are ongoing processes; current proposals are sometimes very mature (e.g., for science and
informatics education) but are not to be considered definitive.

It is useful to distill the fundamental concepts of a topic in a way that is understandable
to students and teachers who are not necessarily experts in that particular field so that these
fundamental ideas can serve as “beacons” to guide teaching and learning (more on this in 4).

While we are still analyzing the interview transcripts and planning more structured
questionnaires to circulate among experts, many of the emerged ideas have been integrated
into our learning progression (see 13.3 and more in detail in 14.2.4 and 14.2.5) built around
representative cryptosystems to teach the fundamental ideas of cryptography.

13.4.2 Cryptography course implementations

We tested our course two more times. See chapter 14, particularly 14.2.2, 14.3 and 14.4.

https://bigideascryptok12.bitbucket.io/#playgrounds

218 CHAPTER 13. SIGCSE SPECIAL PROJECT ON CRYPTOGRAPHY

13.5 Publications and Dissemination

An experience report paper [Lodi et al., 2022b] on the first iteration of the course has been
accepted and presented at ITiCSE 2022 in Dublin.

In addition, our work was presented at the 2021 Cryptography and Coding Theory
Conference2. A short paper (in Italian) is published in the conference proceedings [Lodi et al.,
2022a].

Finally, for Rendiconti3, the international mathematics journal of the University of Turin,
an extended article (in Italian) describing and comparing different aspects of the two iterations
is in press [Lodi et al., 2023].

A website4 has been set up with all the material in English and Italian [Lodi et al., 2021a].
All material is available under an open license to promote its dissemination and reuse.

The project has been presented several times to hundreds of teachers and several educa-
tional researchers. For example,

• at the “Bologna Linux Day 2021”5 (Bologna, 23rd October 2021);

• at a meeting of the Cryptography and Coding Theory subgroup of the Italian Math-
ematical Union working on cryptography teaching and outreach (Online, 23rd June
2021);

• at a meeting between informatics and mathematics education researchers (University
of Milan, 1st February 2022)

The course will be repeated a fourth time as part of the “Science Degree Project” (PLS),
an Italian project to attract high school students to enroll in science degrees.

2https://sites.google.com/view/crittografiaecodici/convegno-annuale
3http://www.seminariomatematico.polito.it/rendiconti/
4https://bigideascryptok12.bitbucket.io/
5https://docs.google.com/document/d/1kpOo3tAvhhI6dCzrZVkYBWgg8j7lQkF_zICf4rSW35k/

https://sites.google.com/view/crittografiaecodici/convegno-annuale
http://www.seminariomatematico.polito.it/rendiconti/
https://bigideascryptok12.bitbucket.io/
https://docs.google.com/document/d/1kpOo3tAvhhI6dCzrZVkYBWgg8j7lQkF_zICf4rSW35k/

Chapter 14

Cryptography in Grade 10: Big Ideas
with Snap! and Unplugged

We describe an introductory course on the “big ideas” of cryptography, designed for the
second year of the Liceo Matematico, an Italian experimental strand of the scientific lyceum
(high school).

The key feature of our course is the approach “by discovery” (see 5.1.1). It involves
a succession of cryptosystems (from classical to modern ones); of each one, students can
experience the characteristics, possible attacks, and limitations to feel the necessity to
discover the following. After experimenting with each system, students are involved in a
Socratic discussion on how to overcome the discovered limitations. Precisely the necessity of
overcoming such limitations motivates introducing the following system in the learning path.
We used Snap!1 – a block-based graphical programming language for learning – to build
playgrounds (i.e., task-specific programming languages (see) with a minimal selection of
targeted instructions) where students can experiment with various cryptosystems and schemes.
We also used Snap! to conduct an unplugged activity on the Diffie-Hellman protocol.

Our first goal is to describe how we taught some big ideas of cryptography by making
students encounter a progression of representative cryptosystems and discover their character-
istics and limitations. Our second goal is to evaluate the students’ perceptions and learning
of cryptography core ideas. They appreciated the course and felt that, despite being remote,
it was fun and engaging. According to the students, the course helped them understand
the role of cryptography, mathematics, and informatics in society and sparked their interest,
particularly in cryptography and informatics. The final assessment showed that the students
well understood the cryptography ideas covered in the course. Our third goal is to discuss
what worked and areas of improvement. The “remote-unplugged” Diffie-Hellman, where the
meeting chat was a metaphor for the public channel, engaged the students in understanding
this groundbreaking protocol. Overall, they praised the activities as engaging, even when
challenging. However, a strong “instructor blindness” induced by remote teaching often
prevented us from giving the students the right amount of guidance during the exploration

1https://snap.berkeley.edu/about

219

https://snap.berkeley.edu/about

220CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

activities.
In the following, we present in detail the course, activities, and materials, as well as a

preliminary evaluation of the teaching intervention performed after two classroom implemen-
tations (the first online and the second in person).

14.1 Introduction

Section 6.1 illustrates how cryptography is an essential ingredient of many of the activities and
tools of our contemporary digital and connected society. In addition, section 6.2.1 shows how
European frameworks and various international curricula include skills related to cryptography
as a pillar of informatics security. Pre-college education does not aim to train professionals
but to help students understand the world we live in so that they can take an active part in
it, pursuing their own goals. Therefore, we believe it is important for students to know and
understand the principles of cryptography and their relevance to the activities and tools of
the digital society.

With these premises in mind, we realized a short course on cryptography. It is a course
without specific prerequisites, built, on the one hand, around the fundamental concepts of
cryptography (its big ideas; see 4), and, on the other hand, on various kinds of hands-on
activities that allow for a direct and active experience of those concepts. This approach has
its roots in educational research, which has extensively documented the effectiveness of active
and cooperative methodologies in fostering learning [Loui and Borrego, 2019, p. 304]. About
active learning for informatics education, see also.

Therefore, we designed and developed innovative, hands-on, interactive activities that
were as immediately meaningful as possible for young, novice students. In particular, we
built cryptography playgrounds, that is, digital environments for experimentation in which
students, through visual block programming, could use, understand, and attack some of
the most significant classical ciphers (e.g., Caesar and one-time pad ciphers). We also
developed an unplugged2 yet remote activity, as the course’s first iteration, in February
2021, was held remotely due to the COVID-19 pandemic. Through such “remote-unplugged”
activity, students could run the Diffie-Hellman protocol in pairs to generate (securely, despite
communicating only over an insecure channel) a secret communication key. We implemented
both kinds of activities using Snap!, a block-based graphical programming language designed
to be easily used even by those completely new to programming.

The course addresses some of the most significant cryptography schemes and systems
(classical and modern), selected so that they are emblematic representatives of some key
ideas of cryptography. In order to realize a motivating progression, the introduction of a
new scheme or system is always triggered by the necessity to overcome the limitations of
the previous system(s). Indeed, the progression is designed to stimulate in students the
necessity mechanism, a general learning mechanism discussed in 9.2.1 (which is the core
of our learning design for introductory programming described in chapter 9 and the journal
article by Sbaraglia [2021]).

2See for a general review of the unplugged approach in informatics education and 6.2.5 for its use to teach
cryptography.

14.2. THE COURSE 221

As mentioned, the first iteration of the course (February 2021 for the school year 2020/21)
was held exclusively remotely due to the pandemic, while the second one was held in person
(November-December 2021 for the school year 2021/22).

In the following 14.2, we present the learning path we developed to introduce the
fundamental ideas and principles of cryptography. We discuss in detail the concepts and
schemes that drive the learning progression (14.2.3) and describe the development and
testing of the activities implemented with Snap!, both the cryptography playgrounds and the
Diffie-Hellman unplugged activity (14.2.6.2). We present the results of data collection on
two iterations of our course (14.3 and 14.4) both from the perspective of comprehension of
the cryptography concepts addressed (14.3.1) and in terms of the students’ own perceived
satisfaction and usefulness of the course at the end of each iteration (14.3.2). Finally,
we discuss what worked and what can be improved (14.4.1) and how to help teachers of
informatics (but also of mathematics and STEM disciplines in general) to adopt (and adapt)
our learning progression and its hands-on activities in different contexts (14.4.3).

This report is an extended version – expanding on the course design and, in addition,
analyzing the second iteration – of the experience report we published in ITiCSE ’22 titled
“Cryptography in Grade 10: Core Ideas with Snap! and Unplugged” [Lodi et al., 2022b],
which was shortlisted for best paper.

14.2 The course

14.2.1 Context: Mathematical Lyceum

In Italy, upper secondary school lasts five years (usually, students start when they are 14
years old and finish when they are 18 years old), but only the first two are compulsory. The
upper secondary level has three main strands, lyceum, technical school, and professional
school, each with various tracks. Our intervention took place in a lyceum3 that gives a
theoretical basis in classical, scientific, or artistic areas and naturally leads to university studies.
When choosing a lyceum, students select among specific tracks (e.g., “classical”, “scientific”,
“linguistic”) established at a national level. In Italy, lyceums “provide students with the
cultural and methodological tools for an in-depth understanding of reality so that they can
place themselves, with a rational, creative, planning, and critical attitude, before situations,
phenomena, and problems and acquire knowledge, skills, and competencies coherent with
personal abilities and choices and appropriate for pursuing higher-order studies, entering
social life and the world of labor.” [MIUR, 2010, p. 4, our translation]. Our intervention took
place in the context of a national experimental project called Mathematical Lyceum (“Liceo
Matematico”), which involves more than 140 schools. It consists of extracurricular activities
in which students from all lyceum tracks can voluntarily participate. Students are involved in
laboratory activities so that they can have concrete interdisciplinary experiences involving
mathematics and other disciplines. The purpose of Mathematical Lyceum is not to impart
new notions to students but to engage them in interdisciplinary thinking on the fundamentals
of knowledge so that they can expand their tools for interpreting reality and ultimately

3See Bellettini et al. [2014] for a summary of the Italian secondary school system.

222CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

broaden their cultural horizons [Liceo Matematico, [n.d.]]. We delivered a cryptography
course as one of these extracurricular activities in a local scientific lyceum. Our short course
on cryptography was conceived and developed in the context of Mathematical Lyceum and, in
line with the general objectives of this national project, does not aim to provide new (technical
and professionalizing) notions but to help students understand cryptography importance today
by letting them experience its fundamental principles and transformative ideas concretely
through an interdisciplinary teaching approach.

14.2.2 Two iterations: online and in person

We conducted two iterations of the course with students who chose the extracurricular path
of Mathematics Lyceum in a scientific lyceum in Casalecchio di Reno (Bologna). The first
iteration was held in the school year 2020/21 with students in their second year of lyceum
(15-16 years old), and the second iteration in 2021/22 also with students in their second year.

The course was taught by two of the authors (myself included) of the ITiCSE paper [Lodi
et al., 2022b], who are informatics education researchers and have extensive experience
teaching informatics in secondary school.

First iteration (online) The first iteration took place in February 2021. We held four
lessons (of 2 hours each) on Tuesday afternoons. Due to the COVID-19 pandemic, the lessons
were held online through the Google Meet platform adopted by the school.

Fifteen students (5 girls and 10 boys) participated. None of them had previous program-
ming experience.

Second iteration (in person) The second iteration occurred between November and
December 2021, in 5 lessons (2 hours each) on Tuesday afternoons. The classes were held,
all in person, in one of the school’s informatics laboratories, where a computer was available
for each student.

Thirteen students (5 girls and 8 boys) participated. Three students had already done a
few simple visual block programming activities in primary or secondary school. All others had
no previous programming experience.

14.2.3 A progression driven by the limitations of the previous cryptosystems

The course aims to teach fundamental cryptography ideas (crypto big ideas) by having
students experience firsthand significant cryptographic schemes and protocols, from classical
to more modern ones. Students, using block programming, experiment with encryption,
decryption, and attack mechanisms of some cryptosystems and, with an interactive sim-
ulation in pairs, generate a shared secret key. These hands-on activities are intended to
help students understand the cryptographic principles of the schemes and protocols they
encounter. Understanding is often stimulated by students’ direct experience of the limitations
of such schemes and protocols. In particular, students encounter schemes and protocols
in a progression designed so that the introduction of a new system is always motivated by
the necessity to overcome the limitations of the previous one(s), always advancing toward

14.2. THE COURSE 223

more secure systems. The course also addresses some mathematical concepts fundamental to
cryptography (e.g., modular arithmetic), seeking to show, with an interdisciplinary approach,
their role in the conception and implementation of the systems encountered.

14.2.4 Cryptography principles and ideas through meaningful cryptosystems

As mentioned, the choice of cryptosystems was motivated by the cryptography ideas and
principles that can be taught through them.

Caesar cipher, proposed in the version where the key is a positive integer indicating
the shift in the alphabet, was chosen because it has a simple function. Therefore, it is
convenient to introduce fundamental concepts such as key, plaintext message, ciphertext
message, encryption algorithm, and decryption in a concrete context. Moreover, it is easy
to perform brute-force and frequency-based attacks and to reflect on the reasons for its
vulnerability to these two kinds of attacks (respectively: few keys and the fact that the same
plaintext character is always mapped into the same cipher character).

In contrast to traditional pathways, which consider many historical ciphers, we decided
to mention only the Vigenère cipher and Enigma briefly. In order to promote a more
straightforward understanding, polyalphabetic ciphers are presented as ciphers in which the
key is composed of a finite sequence (of fixed length) of “Caesar’s keys”. The first letter
of the message will be ciphered with Caesar using the first number of the key sequence,
the second still with Caesar but with the second number of the key sequence, and so on.
Even following this simple approach, it is still possible to easily show the vulnerabilities of
polyalphabetic ciphers. For example, common words that repeat at distances multiple of the
key length allow discovering this distance (i.e., the length of the key) and thus attacking with
frequencies.

It is precisely this vulnerability that suggests moving to a system in which the key is a
sequence of random numbers that is as long as the message. We continue to informally call
the numbers of the key “Caesar’s keys” again to support students’ understanding. In this new
system, each letter in the plaintext message is encrypted with a different key number, the one
whose position corresponds to the letter’s position in the plaintext. This way, the one-time pad
cipher is introduced. Through the related hands-on activity (implemented through one of the
Snap! playgroungs), students soon realize that, for long messages, each letter has the same
probability of being encrypted with all possible “Caesar’s keys”. This phenomenon corresponds
to a “flattening” of the frequencies of each character in the encrypted message, thus making
frequency-based attacks ineffective. Brute-force attacking one-time pad cipher is even more
surprising. Since the keys are all possible sequences of numbers (from 1 to the length of
the alphabet), the encrypted message has the same probability of originating from every
plaintext message of the same length. A brute-force attack generates all possible message-
long permutations (with repetitions) of the alphabet letters (i.e., all possible sequences of
alphabet characters of a given length), thus without revealing any information about which
of those might be the original plaintext message. Then the idea that one-time pad reveals no
information about either the original message or the key (as long as it is changed each time
and is truly random) is made explicit to students, thus realizing perfect security. One-time
pad security is perfect but not sustainable in practice because of the difficulty of generating,

224CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

using, and exchanging truly random keys, as long as the plaintext message, and different
each time.

Then, some mention is made of transposition ciphers: the transposition mechanism and
the substitution mechanism (extensively tested with Caesar and one-time pad ciphers) are
fundamental elements of modern ciphers.

Modern block ciphers are then introduced. This is an opportune time to show how
computers (without which modern cryptography could not concretely come to fruition)
represent information. In particular, it is shown how all characters are represented by 0 and 1
through specific and conventional encoding schemes. It is then made explicit to students that
computers represent, through some form of encoding, any kind of information with sequences
of only 0 and 1, binary digits called bits. Simple operations (which computers perform very
quickly) on bits are also shown. In particular, we illustrate XOR, the exclusive disjunction bit
operator, which results in 1 only if exactly one of its two operands is 1. XOR is much used in
cryptography because it hides all information about the value of the operands: it only reveals
whether they are the same or different from each other without giving any other information.
Because of this property, bit-to-bit XOR between a plaintext and a key (whose bit sequence
is as long as the plaintext’s) reveals nothing about the plaintext and key other than whether
their corresponding bits are equal.

The transition to using bits is necessary to show some fundamental properties of block
ciphers. For example, the fact that appropriate and repeated substitutions and permutations
of bits generate the so-called “avalanche effect”: a small change in the plaintext and/or
key causes a large change in the ciphertext. The avalanche effect ensures the properties of
confusion and diffusion. This topic provides an opportunity to discuss the security model.
Security is no longer perfect, like that of one-time pad, but computational. Computational
security is based on the fact that such systems are not attackable with the computing power
of today (and the immediate years to come) in a “reasonable time”; performing a successful
attack would require a time frame much longer than the human lifespan.

It is also made clear that modern block ciphers still base their security on the existence of
a secret key shared between the parties; in other words, they do not solve the problem of key
distribution.

Ceasar cipher

• Representative for: monoalphabetic substitution ciphers

• Motivations: basic example of symmetric-key cryptography; easy to show the typical
cryptosystem elements (plaintext, ciphertext, encrypt and decrypt functions, key) and
simple attacks; easy to understand and experiment with it

↓ Problems to overcome: attackable with both brute-force and frequency analysis

One-time pad chiper

14.2. THE COURSE 225

• Representative for: polyalphabetic ciphers (taken to the extreme); perfect secrecy;
resistant to both brute-force and frequency attacks (no clues about the key or the
plaintext from the ciphertext)

• Motivations: easy to explain as “a different Caesar for each letter”

↓ Problems to overcome: key-distribution problem; feasibility issues (e.g., one-time and
random keys, key as long as the message)

Simple substitution–permutation network

• Representative for: modern symmetric block cryptosystems (e.g., AES); confusion and
diffusion (avalanche effect); efficient hardware implementation; “only” computationally
secure

• Motivations: introducing operations on bits; grasping how modern cryptosystems are
implemented (efficiently) with computers

↓ Problems to overcome: key-distribution problem

Diffie-Hellman key-agreement protocol

• Representative for: shared-key generation protocols; groundbreaking solution to the
key-distribution problem

• Motivations: understanding how the discrete logarithm (easy to calculate, hard to
invert) allows generating a shared secret over a public (insecure) channel

↓ Problems to overcome: person-in-the-middle attack

Idea of public-key secrecy and authentication

• Representative for: asymmetric cryptosystems

• Motivations: grasping that the properties of certain math functions (e.g., prime
factorization) can be used to achieve both secrecy and authentication

↓ Problems to overcome: computationally expensive

Idea of hybrid cryptosystems

• Representative for: today’s complex cryptosystems

• Motivations: understanding how the best of symmetric and asymmetric cryptosystems
combine in today’s practice; grasping how relevant modern services (e.g., e2e instant
messaging) work

◦ Problems to overcome: not raised in the course

226CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

14.2.5 Contents

We implemented the learning path in 4 lessons in the first iteration and 5 in the second. For
both iterations, we schematically report the contents below.

First iteration Lesson 1

• The social debate about encryption in digital communication

• Caesar cipher: encryption, decryption, brute-force attack

• Homework: transposition vs. substitution, Kerckhoffs’s principle

Lesson 2

• Caesar cipher: frequency-based attack

• One-time pad cipher: encryption, decryption, frequency-based attack

• Homework: encoding characters as bits, example of toy cryptosystem using XOR and
bit permutation, hints at modern block ciphers (DES, AES)

Lesson 3

• One-time pad cipher: brute-force attack, perfect secrecy, limitations, key-distribution
problem

• Diffie-Hellman protocol: simulation with colors

• Homework: quiz on one-time pad cipher and Diffie-Hellman protocol

Lesson 4

• Math of Diffie-Hellman protocol: modular arithmetic, exponential and its inverse
(discrete logarithm), primes and coprimes (and hints at generators)

• Diffie-Hellman protocol: an example with small numbers, computational security,
person-in-the-middle attack

• Asymmetric-key cryptography: terminology, properties of public/private key pairs, non-
technical, high-level schemes for authentication and secrecy, intuitive idea of one-way
function (prime multiplication vs. factorization)

• Putting all together: how intuitively combine asymmetric and symmetric schemes for
authentication and secrecy

• Homework: satisfaction survey, fill-in-the-blanks assessment (and consolidation)

14.2. THE COURSE 227

Second iteration In the second iteration, we decided to add an introductory lesson (for
this reason, called “Lesson 0”) to

• foster the creation of a class group (students are from different classes and often do
not know each other) by having them discuss in pairs and bigger groups;

• stimulate students better about the importance of cryptography by bringing out their
ideas and prior knowledge through an initial open discussion;

• introduce students to Snap! simply and playfully (by showing the creation of a toy
video game) so that they become familiar with the environment without having to pay
attention to cryptography concepts (thus reducing cognitive load).

The structure of the lessons is presented below. Differences from the first iteration are
highlighted in bold.
Lesson 0

• Peer discussion: where and for what purposes cryptography is used in our lives;
why it is important in society

• The social debate about encryption in digital communication

• Introduction to Snap!: creating a simple video game

• Caesar cipher (on the blackboard): encryption, decryption, today’s uses: ROT13

• Homework: invent a safe way to communicate

Lesson 1

• Caesar cipher: encryption, decryption, brute-force attack

• Homework: transposition vs. substitution, Kerckhoffs’s principle

• Caesar cipher: frequency-based attack

• Homework: invent a cryptosystem that resists both brute-force and frequency-
based attacks

Lesson 2

• Hints at polyalphabetic ciphers and Enigma

• One-time pad cipher: encryption, decryption, frequency-based attack, brute-force
attack

• One-time pad cipher: reasons for its perfect security, limitations, key-distribution
problem

• Homework: quiz on one-time pad cipher, reflection on the key-distribution problem

228CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

Lesson 3

• Example of a transposition cipher

• Encoding characters as bits, XOR operator, UNICODE

• Interactive educational cipher: simple substitution and permutation network;
reflection on confusion and diffusion properties

• AES: hints on key length and computational security

• Homework: further reflection on how to realize a secure exchange of a key via
an insecure channel

Lesson 4

• Diffie-Hellman protocol: simulation with colors

• Math of Diffie-Hellman protocol: modular arithmetic, exponential and its inverse
(discrete logarithm), primes and coprimes (and hints at generators)

• Diffie-Hellman protocol: an example with small numbers, computational security,
person-in-the-middle attack

• Asymmetric-key cryptography: terminology, properties of public/private key pairs, non-
technical, high-level schemes for authentication and secrecy, intuitive idea of one-way
function (prime multiplication vs. factorization)

• Putting all together: how intuitively combine asymmetric and symmetric schemes for
authentication and secrecy

• Homework: satisfaction survey, fill-in-the-blanks assessment (and consolidation)

14.2.6 Tools, activities and methodologies

14.2.6.1 Tools used

The host school uses Google Workspace for Education, a suite of software tools to support
education. Therefore, in the first iteration, we used Google Meet for the video conferencing
lessons.

In both iterations, we used Google Classroom to share links to the activities, instructions
and announcements, materials and homework assignments. In addition, we used Google
Slides to present the content and animations of the cryptographic schemes and as ongoing
support for the various moments of the lessons. We used Google Docs to share longer texts
and collect student reflections and works. Furthermore, we used Google Forms as a working
tool to structure hands-on activities with guiding questions and homework assignments. At
the end of the course, we relied on Google Forms also to collect students’ perceptions and
opinions about the course and students’ answers to the final consolidation and evaluation
activity.

14.2. THE COURSE 229

Snap! is a block-based graphical programming language for learning. It is a re-
implementation of Scratch, a well-known block language for children ages 8 and up. Compared
to Scratch, Snap! has many additional features that allow it to introduce programming in
a simple and playful yet rigorous way to novice students in primary and lower secondary
school and even upper secondary. In our specific case, we chose Snap! because it allows new
customized blocks to be created (in addition to the standard blocks provided). Unlike in
Scratch, such blocks can return values, thus realizing functions (in the informatics sense of
the term), and their implementation (the function’s body) can be kept hidden from students.

14.2.6.2 Tools created

Using Snap!, we created a progression of crypto playground, i.e., digital environments in which
students can experiment with some relevant cryptosystems using programming. However, the
programming is limited to simple combinations of a few available blocks. Such environments
allow students to use and try to attack some significant cryptosystems (e.g., Caesar and
one-time pad ciphers) and also to gain concrete experience of their limitations (for example,
the ease or difficulty of attacking them or the processing time required to carry the attacks).
Specifically, our playgrounds are Snap! projects in which the visible and available instruction
set (the blocks) has been limited.

We take advantage of the possibility given by Snap! to hide some predefined blocks of the
language and especially to create new custom blocks. For each cryptosystem, we provided
students with only the blocks they needed to encrypt and decrypt messages and possibly,
depending on the activity, to run some of the potential attacks on the system. We identified
specific cryptographic mechanisms we wanted to draw students’ attention to and implemented
them via Snap! as ad-hoc blocks of the language. We tried to maximize the expressiveness
of these new blocks for the cryptographic context while minimizing the technical aspects
related to programming to facilitate their understanding and use. Under these choices,
our playgrounds can be considered as teaspoon languages [Yadav and Berthelsen, 2021],
i.e., “task-specific languages [. . . that]: support learning tasks that teachers (typically non-
CS teachers) want students to achieve; are programming languages, in that they specify
computational processes for a computational agent to execute; and are learnable in less than
10 minutes, so that they can be learned and used in a one hour lesson” [Guzdial, 2021]
(about task-specific languages, see 5.1.3).

Since our high-school students had no prior programming experience, we did not consider
it feasible – or even beneficial, given the mathematics context and the high-level goals of
the course – for them to program the (algorithms of) cryptosystems at a lower level of
abstraction than the combination of cryptographic blocks. In such a context, an excessive
focus on programming might pull students away from the cryptographic scenario and prevent
them from focusing on its fundamental ideas. However, we still wanted to allow students
to build their knowledge through concrete manipulation of computational objects [Papert,
1980] related to cryptography. Specifically, we avoided putting students into micro-worlds à
la Papert, which usually rely on general-purpose programming languages such as LOGO –
which, even when designed for educational purposes, require significant learning time [Guzdial
and Naimipour, 2019]. Instead, we have developed and implemented much simpler (and

230CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

thus easier to use) mini-languages, circumscribed (thus not general-purpose) to our specific
learning goals, according to Guzdial [2021] and also our vision on computational thinking
(see 3.1)4. For example, in the playground where students can try to attack Caesar cipher
using frequencies, the blocks available are: calculating the letters’ frequencies in a text,
sorting a table (i.e., a matrix of letters and their frequencies) by frequency, representing table
data with a histogram, and the table of letters’ average frequencies in Latin (fig. 14.1).

Figure 14.1: Snap! playground for frequency-based attacks on Caesar cipher

Our playgrounds are available for exploration and use [Lodi et al., 2021a]. Following the
instructions we shared with them each time, the students engaged in small challenges in
which they had to encrypt, decrypt or attack a particular system by combining some specific
Snap! blocks provided in the playground. These challenges’ broader goal was for students
to experience cryptosystems so as to foster an understanding rooted in the experience of
how they work and their limitations. In addition, we aimed to contextualize these hands-on
activities in scenarios meaningful for students. For example, the activities on Caesar cipher
involved deciphering and then discovering a Latin text (the same text they were to translate
in the upcoming test) that their teacher, quarantined for COVID, had to communicate to the
substitute teacher without students being able to intercept it5.

Since the students in the two courses were entirely new to programming, we felt that it
was too challenging for them (and not appropriate in a short course with other objectives) to
program a cryptographic protocol such as the Diffie-Hellman key agreement. As a result, we
decided to adopt an unplugged approach so as to develop an activity that was concrete –
leading to the actual generation of a shared secret key – while maintaining a solid connection
to the formal aspects of this revolutionary protocol. Indeed, the unplugged approach can help
understand at a high level how meaningful informatics algorithms work by having students
perform them “firsthand” through kinaesthetic and fun activities [Bell et al., 2009].

In the literature and instructional materials analyzed, we found at least two ways tradi-
tionally used to explain the workings of the Diffie-Hellman protocol for generating a shared
secret key (e.g., Wikipedia contributors [2022]). Color mixing, which is more evocative but

4We believe that leveraging this kind of hands-on activity (e.g., crypto playgrounds in which students use
programming as a “task-specific” tool) in a learning path aimed at big ideas embraces both the constructivist
soul of computational thinking [Papert, 1980; Papert and Harel, 1991] and its broader, soft-skills-oriented
perspective [Wing, 2006; 2008].

5All students in our courses had Latin among their curricular subjects.

14.2. THE COURSE 231

simplified, and the step-by-step execution of the algorithm with small numbers, which is more
precise and faithful but also more complex to understand at first. We tried to combine these
two by developing a series of learning steps to gradually move from the color metaphor to
the algorithm’s mathematical operation.

An unplugged activity in pairs is the core of our strategy to get students to understand the
high-level operation of the Diffie-Hellman protocol. The activity is based on an executable-only
Snap! project (the code cannot be modified or explored) which functions as an interactive app.
This app guides students in the step-by-step execution of the Diffie-Hellman protocol through
color mixing [Lodi et al., 2021a]. The color mixing is not done with classical additive or
subtractive algorithms; instead, it is based on the actual protocol calculations (albeit initially
hidden from students) on small numbers, from 0 to 99, representing the colors available in
Snap!. Using the Snap! project as an interactive app, the student pairs were able to generate
a shared secret color. Communications within each pair – necessary to agree on an initial
color and then to exchange their respective calculated intermediate colors – took place in the
meeting public chat of the videoconferencing service (i.e., Google Meet) by which the lessons
were broadcast. The public chat of the meeting was used to represent, and did so effectively,
an insecure channel: all participants in the lesson could “listen” on that channel (i.e., read
the chat) without any restriction (see fig. 14.2).

Figure 14.2: Meeting chat and support app for the Diffie-Hellman activity

After students experienced firsthand the high-level functioning of the Diffie-Hellman
protocol, we illustrated the essential mathematical tools for its operation (see 14.2.5). Then,
we showed the step-by-step execution of the protocol between two communicating parties

232CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

using an animation [Lodi et al., 2021a]. This animation shows the correspondence between
colors and the small numbers (from 0 to 99) that represent such colors in Snap!, revealing
the actual calculations behind the color mixing experienced in the unplugged activity.

Because of the short duration of the course, we decided to use a still interactive and dialogic
but more frontal method to teach more advanced public key cryptography schemes. We think
that hands-on activities – effective in supporting learning but necessarily requiring a longer
time – are strategic in the first part of the course to facilitate everyone’s understanding of the
basic concepts and mechanisms. Hands-on activities on easier cryptosystems and schemes
are also instrumental in sharing specific terminology, language, and reasoning in context from
the beginning. Based on the solid foundation built through the initial (meaningful yet easy-to-
understand) hands-on activities, we just illustrated the high-level mechanisms of asymmetric
cryptography and their usage in concrete scenarios and discussed their importance today. On
the other hand, given the overall objectives of the course (i.e., a general understanding of the
cryptography core ideas and the awareness of how the interplay of the various cryptographic
schemes enables today’s safe, fast, affordable security and authentication), we decided to
increase the pace and abstraction level to complete the overview of cryptography. Indeed, we
believe that a comprehensive and “operational” overview, even if simplified and abstract, is
necessary to engage students on a real ground that connects to their everyday experiences
with cryptography (e.g., confidential communications with friends, participation in social
media, paid digital services).

We illustrated to the students that it is possible to create two keys, one public and
one private, linked by the property that what has been locked (encrypted) with one key
can only be opened (decrypted) with the other. We merely suggested the mathematical
mechanism on which this asymmetric encryption works. In a key pair, the public key is
related to the multiplication of two very large prime numbers (easy), while a private key is
related to the factorization of their very large product (difficult). We asked the students to
imagine how to use the key pair to realize a secret communication. Then, we guided them to
the concept of authentication – which emerges here for the first time in the course – and
illustrated its implementation with the asymmetric scheme. Following, we discussed at a
high level the specular use of the two keys to realize secrecy and authentication and how to
combine their use to achieve both properties. In order to support the understanding of the
schemes of asymmetric cryptography, we developed animations [Lodi et al., 2021a] of simple
communication scenarios. In these animations, we used two characters from the well-known
TV series Power Rangers6 so that the actions and messages of the different parties were
evident through the characters’ colors. The various scenes in these animations paced and
supported the introduction of cryptographic concepts, encouraging reflections through their
concrete visual elements. After finishing the step-by-step (yet high-level) analysis of the two
proposed communication schemes, specific closing animations allowed students to visually
summarize the overall functioning of the asymmetric authentication and secrecy schemes.

Modern block ciphers using symmetric keys (such as AES) had been covered in the
first iteration only in the homework, through a reading on the origin of DES and with a
simple exercise of bit manipulation. Since we found this approach to be unfriendly and not

6https://en.wikipedia.org/wiki/Power_Rangers

https://en.wikipedia.org/wiki/Power_Rangers

14.3. DATA COLLECTION AND ANALYSIS 233

particularly engaging, we decided to use some of the extra time to give students a better
understanding of the mechanisms underlying modern substitution and permutation networks
(SP-networks). Therefore we realized (using a Google Sheet spreadsheet) a simplified version
of an SP-network, working on four blocks of four bits each, with three substitution rounds
and two permutation rounds [Lodi et al., 2021a]. The key and message can be changed in
the spreadsheet to observe live changes on the bits across the network. Despite the small
size of the network, the spreadsheet allows students to easily and interactively observe the
avalanche effect on the encrypted message with minimal changes in the bits of the key or
plaintext message.

The other relevant change from the first iteration concerns the other homework more
generally. The first three (out of four) homework assignments in the second iteration
encouraged students to invent their own cryptosystems. The first was completely free,
and the second asked for resistance to frequency-based and brute-force attacks. Then, for
the third homework, the students were asked for a way to exchange a secret key securely
between two parties. These tasks always preceded the explanation of possible solutions
found by cryptography throughout history. In this way, students experience even more the
limitations and crucial difficulties of cryptosystem design and can thus feel the necessity
of new cryptographic schemes that overcome them. The students in the second iteration
often came up with creative solutions, although – as was to be expected – rarely as secure
as required. The lessons that followed a homework assignment always began with highly
participatory discussions on students’ solutions. These discussions were a perfect springboard
for introducing an emblematic cryptosystem or scheme (e.g., One-time pad, Diffie-Hellman)
that solved the problems of students’ proposals that we teachers helped bring out during the
discussion.

14.3 Data collection and analysis

At the end of each course iteration, we asked the students to fill out two Google Forms
to collect their feedback and evaluate their learning. No grades were provided for these
conclusive activities.

In the first iteration, the two questionnaires were filled out by the same 14 students (out
of 15). In the second iteration, the two questionnaires were filled out by the same 11 students
(out of 13).

14.3.1 Learning assessment

We prepared a summary of about 2000 words [Lodi et al., 2021a] of the important ideas and
concepts covered in the course, identifying several key passages in the text. Students had to
choose between the right fill and the wrong alternative for each one. We also wanted the
activity to be a review opportunity for students, so we structured it as a “story” summarizing
the most important content of the course to consolidate their learning.

The original text (used at the end of the first iteration) includes 43 key passages in which
to choose between two options. In the second iteration, the text remained largely unchanged,

234CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

except for minor stylistic changes and the addition of a few sentences related to additional
content. Thus, in the second version (the one available in the course materials [Lodi et al.,
2021a]), the key passages became 46.

First iteration From a learning perspective, the results were positive. Out of 43 choices to
be made, the mean of correct answers was 32.5, and the median was 34, with a range of
correct answers between 17 and 41.

Second iteration The results of the second iteration were even more positive. Out of 46
choices to be made, the mean of correct answers was 40.7, and the median was 40, with a
significantly smaller range of correct answers between 35 and 45.

14.3.2 Student satisfaction and perceptions

In both iterations, the students’ participation was high.

First iteration Out of 14 students who responded to the questionnaire, 13 attended Lesson
1, 12 attended Lesson 2, 11 attended Lesson 3, and 12 attended Lesson 4.

Second iteration Out of 11 students who responded to the questionnaire, all attended
Lesson 0, 10 attended Lesson 1, 7 attended Lesson 2, 10 attended Lesson 3, and 9 attended
Lesson 4.

14.3.2.1 Feedback on the experience

In the satisfaction questionnaire, we asked students for feedback on their learning experience
and the course’s impact on their perception of informatics, mathematics, and cryptography.
All questions were mandatory.

The course duration was adequate for the vast majority of students in both iterations
(see fig. 14.3).

As for the activities, most students found them easy, engaging, and useful for their
personal development and understanding of the world. Some students reported that their
prior school background was not fully adequate for the course activities (see fig. 14.4). In the
second iteration, the students were asked about the course’s usefulness for their own school
career, the only dimension most students were not positive about.

Concerning the course difficulties, in both iterations, only one and two students, respec-
tively, reported that they ‘often’ experienced difficulties during the course, while almost all of
them only ‘sometimes’ (see fig. 14.5).

In both iterations, most of the difficulties reported were related to the complexity of
classroom activities. On the other hand, regarding timing and organization, the second
iteration showed a significant improvement, probably due to the additional lesson and the
in-person context (see fig. 14.6).

14.3. DATA COLLECTION AND ANALYSIS 235

Figure 14.3: Students’ opinion on the course duration

Figure 14.4: Students’ overall evaluation of the activities

The students were extremely satisfied with their interaction with course teachers in both
iterations (see fig. 14.7).

Overall satisfaction with the course was also very high in both iterations; only one student

236CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

Figure 14.5: Students’ self-assessment of difficulties experienced

in the first iteration said he was ‘A little’ satisfied (see fig. 14.8). As an indication of high
satisfaction, 13 out of 14 students in the first iteration, and all 11 in the second, would
recommend the course to a friend.

Getting more specific, we asked students for their opinions on the specific tools and
methodologies to better evaluate their perceived effectiveness and satisfaction. We refer to
the figures (from 14.9 to 14.12) for a detailed overview; however, we report here the emerging
insights that are most relevant.

The students reported that Cryptography block-programming activities with Snap! play-
grounds were ‘Rather much’ or ‘Very much’ useful and engaging; less than half of the students
did not find such activities easy (see fig. 14.9).

In the second iteration, being in person allowed us to have very participatory discussions
that we felt were stimulating, an impression confirmed by almost all of the students who
found them useful and engaging (see fig. 14.10).

Since students in the first iteration considered the homework not engaging, the homework
in the second iteration was reconsidered entirely and redesigned. The students’ opinions show
a clear shift in perception in favor of the new proposals (see fig. 14.11).

In the first iteration, the students appreciated the unplugged activity on the Diffie-Hellman
protocol ‘Very much’ (see fig. 14.12). A school network malfunction prevented us from
replicating it in the second iteration, so we were forced to show it in action by involving only
two students. Consequently, the related question was not included in the questionnaire of the
second iteration.

14.3.2.2 Perceived usefulness

Regarding the perceived usefulness of the course, most students in both iterations found it
useful in better understanding cryptography, what it is about, and its role in society. There
was also an improved understanding of the role of informatics and mathematics in society.
These aspects were particularly positive in the second iteration. More generally, perceived
usefulness was higher in the second iteration.

14.3. DATA COLLECTION AND ANALYSIS 237

Figure 14.6: Students’ self-assessment of the kind(s) of the difficulties experienced

Finally, in both iterations, while the course prompted interest in informatics and cryp-
tography in about 2/3 of the students, only less than half perceived an increased interest in
mathematics (see 14.13).

14.3.2.3 Students’ free comments

At the end of the satisfaction questionnaire, we gave the students a chance to freely express
comments, remarks, and suggestions (i.e.,“A free space where you can write down what you
feel like”).

238CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

Figure 14.7: Students’ evaluation of the interaction with the teachers

Figure 14.8: Students’ overall satisfaction with the course

First iteration All but one of the comments were positive. Most students said the activities
were interesting and fun (e.g., “I liked the fact that through Snap! we could play and
experiment with cryptography”). According to them, the lessons were engaging and well
organized, even at a distance. A student wrote: “I enjoyed myself and really appreciated that
there was room for debate. I learned a lot and would have liked it to last longer.” Other
students also wished the course had been longer. A student would have liked to explore
programming with Snap! beyond the boundaries of our playground activities.

The only non-positive comment concerns comprehension difficulties; the student would
have liked more “schemes and animations before moving on to more practical work”.

We are pleased to report that a student used (one of) the Ceaser cipher playground to
encrypt (with a key unknown to us) his positive comment.

Second iteration The open comments from the second iteration were all very positive as
well and confirmed the appreciation for the course.

The course was considered stimulating, so much so that some students continued to study

14.4. RESULTS AND OBSERVATIONS 239

Figure 14.9: Students’ evaluation of the activities with Snap! playgrounds

Figure 14.10: Students’ evaluation of classroom discussions

cryptography independently. In the words of two students, the course was “more interesting
than I could have thought”, “because it teaches things they don’t teach you in school”.

14.4 Results and observations

14.4.1 Methodologies used and two iterations’ results

Activities on the Diffie-Hellman protocol were highly appreciated. The simulation of the
insecure channel through the meeting public chat was perceived, as we intended, as a helpful
metaphor for understanding the protocol. The students found the Diffie-Hellman unplugged

240CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

Figure 14.11: Students’ evaluation of homework

Figure 14.12: Students’ evaluation of the activity in pairs on the Diffie-Hellman protocol

activity engaging and fun (see fig. 14.12), confirming our positive impressions.

We consider it a “remote-unplugged” activity because it has almost all the characteristics
of a CS Unplugged activity, except that it was delivered via technological devices because of
the COVID-19 situation. Specifically, such characteristics are: to be real computer science –
as it presents fundamental concepts and algorithms of informatics; to be based on learning
by doing ; and to be fun, co-operative, stand-alone, and resilient to student error (see CS
Unplugged [[n.d.]]). However, in our scenario, the technological devices were merely a means of
communication rather than a necessary informatics tool for the activity itself. The interactive
app (i.e., the “execute-only” Snap! project) made this activity on the Diffie-Hellman protocol
concrete and easy to follow, proving to be an excellent solution for the remote context of
the course’s first iteration. As mentioned, we could not replicate this activity in person at

14.4. RESULTS AND OBSERVATIONS 241

Figure 14.13: Students’ self-evaluation of course effects

the second iteration of the course due to a malfunction of the host school’s network. In an
exclusively in-person scenario, the activity on the Diffie-Hellman protocol could be adapted
so that it becomes unplugged for all intents and purposes, as long as an appropriate medium
is found to represent the insecure channel (e.g., a blackboard on which everyone can read
and write).

The entire course was structured around collective discussions guided by the students’
doubts and insights. The space given to these interactions was greatly appreciated (see 14.3.2).
If we compare the two iterations, the in-person one registered broader participation in the
discussions, which we believe can be attributed to several factors.

• The additional Lesson 0 – which began with pair and group discussions before even
introducing any cryptography concept – early on set up a working mode based on
interaction.

• Being in person favored more natural interaction with the teachers and among the
students (who did not know each other at the beginning of the course, coming from
different classes).

242CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

• More creative and open-ended homework fostered debates about the students’ different
proposals.

The Snap! playgrounds worked well – for the simpler cryptosystems such as Caesar cipher
– to gain experience and understanding of the elements of a cryptosystem, some of the
possible attacks, and its main limitations (e.g., the computation time required). However,
some students found the more advanced playgrounds difficult, especially in the first iteration.
In this case, the online context and its limitations weighed in. Not being able to walk around
the students’ desks led to significant “instructor blindness” (see Lodi et al. [2021b]), making
it difficult for us to act as facilitators and provide students with optimal guidance (see Taber
[2012] and also our 2.5.3.6) while exploring the playgrounds. Indeed, the Snap! hands-on
activities ended up being minimally guided (see Tobias and Duffy [2009] and also our review
in 2.5.3.5) and, therefore, too difficult, especially for the weaker students. In the second
iteration, this negative effect was mitigated. While some students still found the activities
with Snap! difficult, all the students vastly enjoyed them, suggesting that they posed the right
level of challenge: not trivial but also not overly difficult, and therefore engaging without
being discouraging.

For the simpler cryptosystems, the Snap! playgrounds were used to have students experi-
ment before discussing and analyzing those systems. The guiding questions (accompanying
all the activities) were essential to get students to focus on precisely those aspects and
limitations we needed to highlight. It was only after these hands-on experiences that collective
discussions were used to explicit and formalize the most relevant content. This approach was
also adopted with the activity on the Diffie-Hellman protocol.

On the other hand, public-key systems, being conceptually more complex, are less suitable
for a hands-on, more constructivist approach (see 2.5.3). However, even for this more
frontal part of the course, the formalization of the schemes and principles occurred only after
discussing the ideas and schemes that the students came up with intuitively after the essential
ingredients (e.g., the public/private key pair) had been presented.

Coherently with the course objectives, the final assessment [Lodi et al., 2021a] focused
on the fundamental ideas of cryptography. Both iterations’ results were very positive
(see 14.3.1): the students clearly grasped the main contents. We are satisfied with both the
citizenship goal (i.e., every citizen should have the tools to understand today’s digital society;
see particularly 6.1) and the opportunity for university and professional orientation toward
informatics and mathematics. The satisfaction questionnaire confirmed the achievement of
these two goals, indicating that the students better understood the role of cryptography
in society, grasped more precisely what this discipline is about, and saw their interest in
cryptography increase.

14.4.2 Learning programming

Our playgrounds can be seen as task-specific languages (see 14.2.6.2) with narrow scopes on
specific cryptosystems. They do not aim to (nor could they) teach students how to program
(more in 14.4.2). However, they can convey some general principles about programming. For
example, the fact that “programs are assembled out of basic elements, and different orderings

14.4. RESULTS AND OBSERVATIONS 243

of elements can sometimes have the same result, and even that the program determines the
computer’s behavior (there’s no magic)” [Yadav and Berthelsen, 2021, p. 186].

Compared to other task-specific programming languages [Yadav and Berthelsen, 2021],
our activities more explicitly expose some classic programming concepts (e.g., sequence,
function composition, variables, lists). In perspective, more custom blocks could be developed,
together with activities requiring more extensive programming, such as using other fundamental
elements of structured programming (like conditionals and loops) or “looking inside” the
custom blocks provided to understand and adapt them (maybe within a UMC approach;
see 2.6.4).

At present, inspecting the code of the blocks in our playgrounds does not have the
educational value it could have. In addition to many of Snap!’s predefined blocks, curious
students would find some JavaScript code and a few uninteresting workarounds, which we
have used to overcome Snap!’s current limitations. For this reason, we plan to design a
hierarchy of notional machines at different abstraction levels (see [Sbaraglia, 2021] and also
chapter 8) so that students can see progressively more detail by inspecting the blocks (thus
moving downward the abstraction hierarchy) without being overwhelmed by all the complexity
at once.

14.4.3 Suggestions for adoption and adaption

All the content, the learning path, the tools created for our course (e.g., Snap! playgrounds),
and the materials (e.g., the narrative text for the final assessment) are available under a free
license [Lodi et al., 2021a].

The level of guidance in the hands-on activities can be adjusted. How much to guide the
activities or leave them to students’ free experimentation can be determined on a case-by-case
basis. If the course is in person, instructors can get a clearer picture of students’ difficulties
and address them immediately while still leaving a high degree of freedom. If the course is
held remotely, we suggest more frequent checks and realignments in order to provide students
with adequate guidance and support.

Although the course has the big ideas of cryptography as its learning objectives, it is only
possible to understand the fundamental ideas of a discipline by dealing with them in (some
of) the concrete, albeit simple, scenarios or systems in which they arise (see 4 and also 3.1.1,
particularly Voogt et al. [2015]).

Finally, suppose it is possible to allocate more time to the course than we had available.
In that case, we suggest that even more time should be devoted to hands-on explorations
and discussions rather than covering new cryptosystems (unless such systems are strategic to
other fundamental cryptography principles instructors intend to teach).

244CHAPTER 14. CRYPTO IN GRADE 10: BIG IDEAS WITH SNAP! AND UNPLUGGED

Chapter 15

A Didactical Situation on
Interdisciplinary Cryptography

In this chapter, we present an activity to teach the idea of public-key cryptography and
make pre-service STEM teachers explore fundamental informatics and mathematical concepts
and methods. We follow the Didactical Engineering research methodology and rely on the
Theory of Didactical Situations to design a situation (based on an unplugged activity) about
public-key cryptography using graphs. After the preliminary analysis of the content and the
constraints and conditions of the teaching context, we conceived and analyzed the situation a
priori. We specified a milieu and the different didactical variables. We discussed their impact
on the problem-solving strategies participants must develop to decrypt a secret message in
the chosen cryptosystem. We implemented our situation and collected qualitative data during
the experimentation. We then analyzed the different strategies that participants actually
used in the a posteriori analysis, which showed the learning potential of the activity. To
conceive and develop different problem-solving strategies, the participants needed to explore
and understand (at least intuitively) several concepts and methods from mathematics and
informatics. They also needed to move between the boundaries of the two disciplines (such
as backtracking, stacks, the adjacency matrix of a graph, and matrices for modeling a linear
system of equations), also moving between different semiotic and disciplinary registers.

15.1 Introduction

In the last decade, the importance of the introduction of informatics education in pretertiary
(or K-12) education has been strongly advocated. Informatics should be recognized as a
fundamental, independent scientific discipline to be taught to students (see 3), so they can
understand the digital world we are immersed in and become active and informed citizens
and, potentially, workers in the ever-increasing digital job market (see 4.1.1 and 4.2.2).

However, in our increasingly complex and rapidly changing world, many criticize the
traditional siloed teaching of disciplines in school and advocate a much more integrated,
interdisciplinary teaching, particularly for the STEM (science, technology, engineering, and
mathematics) fields (see 7.2).

245

246 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

In the context of the IDENTITIES Erasmus+ European Project, a more extensive project
about interdisciplinarity in STEM education and pre-service teacher training (see 7.1), we
developed a teaching activity on public-key cryptography. The activity was designed for
teacher training and was tested during pre-service teacher training events. Furthermore, its
content and organization have the potential to be used by teachers for classroom activities or
as projects with high school students (although the activity has yet to be tested in school
contexts).

The activity we developed aims to teach the big ideas and challenges of public-key
cryptography and make participants interact with the interdisciplinary objects (of informatics
and mathematics) the activity includes.

We used Didactical Engineering, a methodology widely used for decades in mathematics
education research. Its main objective is “the controlled design and experimentation of teaching
sequences [. . .] adopting an internal mode of validation based on the comparison between the
a priori and a posteriori analyses of these” [Artigue, 2020, p. 203]. Didactical engineering is
an approach to designing learning environments based on the Theory of Didactical Situations
principles. Theory of Didactical Situations provides a theoretical foundation for understanding
the learning and teaching process in the classroom, while Didactical Engineering applies
these principles to design learning sequences and environments. In other words, Didactical
Engineering is a practical application of Theory of Didactical Situations (see 7.5).

For the content of our activity, we relied on a cryptosystem first described by Fellows and
Koblitz [1994], based on the problem of finding a perfect dominating set in a random graph.
Bell et al. [2003, pp. 209-211] developed a CS Unplugged activity for high-school students
using that cryptosystem. As we will discuss, while using the same cryptosystem and realizing
an unplugged activity, our design differs significantly from the original one.

We choose to design a public-key cryptography activity (based on a computationally hard
problem on graphs) for epistemological and educational reasons. Epistemologically, informatics
and mathematics are deeply interconnected in the cryptography research field and discipline,
and the activity, as we will see, can bring up many topics like algorithms, computational
complexity, graphs, matrices, and linear systems. Educationally, informatics and cryptography
are well suited to provide adidacticity, which is the potential to enable learning independently
of teacher interventions (see 7.5.1 and 15.2.2). For example, adidacticity may consist of
students being able to test whether an informatics program is correct simply by running it or
whether a decryption strategy works by finding a meaningful plaintext from a ciphertext.

Chapter 7 of the review (part II) provides the general context for this work. First, it reports
a literature review on interdisciplinarity – within the context of the IDENTITIES project –
to better define it (also in terms of boundaries between disciplines) and discuss its role in
STEM education. Second and more specifically, the main theoretical and methodological
underpinnings of our research are presented: Didactical Engineering (7.5.2) within the Theory
of Didactical Situations (7.5.1).

Back to this chapter, its sections are organized according to the phases of the Didactical
Engineering research methodology. Section 15.2 presents the preliminary analysis of the current
epistemological, institutional and didactical context of interdisciplinary and cryptography
teaching. Section 15.3 details the chosen cryptosystem’s computational, mathematical, and

15.2. PRELIMINARY ANALYSIS 247

educational aspects, which are necessary to understand our activity. Section 15.4 describes
the design of our didactic situation. Section 15.5 details the a priori analysis of the didactical
variables and their impact on the different problem-solving strategies and their relative
interdisciplinary potential. Section 15.6 describes the implementation of our situation and
the data collected. Section 15.7 presents our a posteriori analysis in light of the a priori one.
Finally, section 15.8 discusses our results and offers concluding remarks.

15.2 Preliminary analysis

15.2.1 Institutional analysis

The didactical situation reported in this chapter is part of a module on cryptography for
prospective science teachers. The module is one of the outputs of the IDENTITIES European
project involving five universities that aims to design novel teaching approaches to interdisci-
plinarity in science to innovate pre-service teacher education. The project develops and tests
innovative teaching modules on interdisciplinary curricular topics (such as cryptography) to
explore inter-multi-trans-disciplinary knowledge organizations and to develop interdisciplinary
classroom activities and new models of co-teaching. The teaching modules aim to highlight
and question the identities of STEM disciplines through reflections on their epistemological
and linguistic structures, focusing on the interaction between physics, mathematics, and
informatics. Each module must last about 6 hours. Its interdisciplinary content must be
socially relevant and potentially suitable for high school students as well. Indeed, the content
must be understandable to high school teachers of STEM disciplines without discipline-
specific prerequisites. Module activities must be easy to understand for all the participants
yet engaging and approachable in the given time.

These interdisciplinary modules were implemented and tested twice in week-long training
schools for student teachers. The first training school took place in 2021 and was held
online because of the COVID-19 pandemic restrictions. This first remote implementation
of our cryptography module informed our design and helped us refine the teaching activity
and prepare an observation grid for researchers to use during the implementation. This
chapter focuses on analyzing the teaching activity and its implementation during the second
training school, which took place in 2022 in physical presence. Twenty-eight student teachers
participated, five or six from each partner’s institution. They had a disciplinary background
(bachelor’s or master’s degree) in informatics, mathematics, physics, or natural sciences, and
experience or motivation in science education1. In addition, twenty-one researchers from all
the project institutions were involved as both modules’ instructors and researchers of the
project. The training school was held in English (which was not the native language of any
of the participants). Each module was attended by about 14 prospective teachers (out of 28,
as it was possible to choose between two alternative modules on different interdisciplinary
topics).

Therefore, the institutional constraints for the design of our didactical situation were

1The participants had to be enrolled in a master’s program (or equivalent course, depending on the
national regulations) to become high-school teachers in STEM disciplines.

248 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

the following. i) Three hours (out of six) available for the didactical situation during the
module. ii) Fourteen participating student teachers with different disciplinary and linguistic
backgrounds. iii) No specific disciplinary prerequisites of the participants could be assumed.
iv) Participants could use PCs and tablets, and Internet access was provided.

15.2.2 Epistemological and Didactical analysis

15.2.2.1 Interdisciplinarity in STEM and between Informatics and Mathematics

The incredibly rapid development of our digital society has widened the gap between what is
taught in schools and what students experience daily. One of the most significant causes
may be the rigid discipline-based organization of the school curriculum [Miani, 2021]. STEM
movement tries to answer this challenge by proposing the integration of science, technology,
engineering, and mathematics in an interdisciplinary and applied approach that deals with
real-world problems and problem-based learning (see also 2.6.2). According to the movement,
these subjects do not exist in isolation in the real world, and therefore they should not be
taught separately [STEM Task Force, 2014, p. 11]. However, the “traditional siloed subject
teaching of STEM” is far from being overcome. Many challenges are still to be tackled, like
“inadequate teacher knowledge incorporating all STEM fields, and the lack of materials and
instructional and assessment support and guidance”. Moreover, teachers “struggle to make
connections across the STEM disciplines [. . . and] expressed difficulty in using frameworks
from other disciplines [. . .] and felt [. . . not] able to impart meaningful learning” [Miani, 2021].
Also, it is still fundamental to keep and value the specific characteristics, methods, and ways
of thinking of the different disciplines for fruitful interdisciplinary interaction [Barelli et al.,
2022]. That is why we designed an activity to make these different disciplinary characteristics
emerge in an interdisciplinary context.

In this chapter, we focus on the interdisciplinarity between informatics and mathematics.
The disciplines have “strong links and a common history”, sharing common foundations,
“fields developing at their interface” and “a very similar relation to other sciences through
modelling and simulation” [Modeste, 2016, pp. 243-244]. Cryptography is one of the fields
that is developing at the interface of informatics and mathematics [Modeste, 2016], and
therefore it is a good candidate for our activity.

15.2.2.2 Teaching cryptography in K-12 education

The following is just a summary of what is presented in 6 and particularly in 6.2; it is helpful
here to recall what is the more general context of our research on cryptography education.
We point out that this context is also shared by both the project that won the SIGCSE grant
(see chapter 13) and the cryptography course we developed for high school mathematics
(chapter 14).

The Cybersecurity Curricula 2017 [Joint Task Force on Cybersecurity Education, 2018]
and K-12 CS Education Standards from CSTA [CSTA, 2017] recommend that graduate
programs in cybersecurity include basic cryptography concepts, including symmetric and
asymmetric-key ciphers, and suggest hands-on, inquiry-based, unplugged activities for learning.

15.2. PRELIMINARY ANALYSIS 249

Nevertheless, a review of ACM education conferences from 2010-2019 [Švábenský et al., 2020]
found that most publications on informatics education focus on cybersecurity and often only
consider cryptography from a mere technical perspective [e.g., Sommers, 2010; Turner et al.,
2011; Brown et al., 2012; Deshpande et al., 2019]. However, some significant indications
emerge from a review of the works that deal specifically with cryptography in school settings.
Hands-on, inquiry-based activities can improve students’ self-efficacy and problem-solving
skills [Konak, 2018]. Educational tools that visualize and simulate how cryptosystems work
and their vulnerabilities are also frequently used [e.g., Simms and Chi, 2011; Schweitzer
and Brown, 2009; Ma et al., 2016; Anane and Alshammari, 2020], but these can be too
technical for nonspecialist students and need more interactivity. Unplugged activities that
allow students to experience encryption and decryption algorithms, protocols and attacks at
a high level without computers have also been proposed and implemented [e.g., Bell et al.,
2003; Konak, 2014; Fees et al., 2018], using simple objects and actions to simulate concepts.

Inspired by Bell et al. [2003], our activity involves constructing a graph with a perfect
dominating set to simulate a one-way function. Such a graph is the base for a cryptosystem
that uses elementary arithmetic computations to encrypt a number. Since this is the core of
our didactical situation, it is explained in detail later (see 15.3).

15.2.2.3 Didactical aspects of cryptography

Communicating in secret and trying to decrypt messages without knowing the key is engaging
and motivating for students [Lindmeier and Mühling, 2020].

Moreover, cryptanalysis has an inherent potential for adidacticity, that is, the potential
for learning with substantial autonomy left to students’ interactions with the problem. Indeed,
suppose one is trying to find the secret key of a cryptosystem (where encryption and decryption
algorithms are public). In that case, the supposed key can be tested by decrypting the messages
that have been encrypted with that key, thus verifying whether the result is the original
plaintext message. Similarly, in informatics programming, students can test their program
themselves and see if it works by comparing the desired and actual results of the computation
without waiting for teacher validation.

Considering these two aspects of cryptography, we have organized a didactical situation
based on a public-key cryptosystem.

Based on bibliographic research and the analysis of several proposals, we chose a cryp-
tographic system based on a graph theory problem: the existence of a perfect dominating
set on a graph. The choice was guided by the need for the activity to be understandable
by students with no informatics or cryptography background and to involve interdisciplinary
objects like graphs.

In the following, we provide some definitions and formalize the cryptosystem.

250 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

15.3 A public-key cryptosystem using perfect dominating sets
on graphs

In an encryption scheme, we assume two individuals communicate on a public channel. In
order to ensure the confidentiality of their communication, the parties use an encryption
algorithm to transform a plaintext message into an encrypted message (a ciphertext). The
security of this process is based on (one or several) keys, allowing both parties to encrypt
and decrypt messages. There are two types of cryptosystems: symmetric (or secret-key) and
asymmetric (or public-key). In a symmetric cryptosystem, the encryption and decryption
key is the same. The encryption key (public key) and the decryption key (private key) are
different in an asymmetric cryptosystem.

In our work, we focus on public-key cryptosystems. The main elements of a public-key
encryption scheme2 are: a key generation algorithm Gen that generates a pair of keys (pk, sk),
i.e., a public key and a private key for each user; an encryption algorithm Enc that, given the
pk of the receiver and a plaintext message m, outputs a ciphertext message c = Encpk(m);
a decryption algorithm Dec that, given the sk of the receiver and a ciphertext c, outputs
a plaintext m = Decsk(c). Both functions Enc and Dec should be easy (that is, efficient)
to compute if the keys pk and sk, respectively, are available. The security of the scheme
depends on the difficulty (that is, the computational complexity) of computing the function
Dec without also knowing the secret key sk.

Fellows and Koblitz [1994] proposed an asymmetric cryptosystem based on a difficult
problem: the Perfect Dominating Set (PDS) problem.

Let a graph G = (V,E) with V the set of vertices and E the set of edges. A (closed)
neighborhood of a vertex u ∈ V is the set N [u] = {v ∈ V |uv ∈ E} ∪ {u}, of vertices
of V adjacent to u as well as u (in other words, all vertices of distance ⩽ 1 from u). A
dominating set of G is a subset of vertices S ⊆ V such that every vertex of V is included
in the neighborhood of a vertex of S. If S is a dominating set of G = (V,E), then every
vertex of V is a neighbor to at least one vertex of S, or it belongs to S. If each vertex of V
is included in exactly one neighborhood of a vertex of S, then S is said to be a perfect code,
often referred to also as perfect dominating set (noted PDS in the following). Figure 15.1
gives an example of a graph with a PDS.

A practical, useful result is that if a graph has more than one PDS, they all have the
same size [Klostermeyer, 2015, p 106].

Thus, the PDS problem is the following [Fellows and Hoover, 1991; Haynes et al., 2013].

PDS Problem

Input: A graph G = (V,E)
Output: A PDS of G (if one exists)

In general, deciding whether there exists a PDS in a given graph is an NP-complete
decision problem [Klostermeyer, 2015, p. 107], and therefore finding a PDS in a given graph

2For a formal definition, see for example Katz and Lindell [2007, p. 366]

15.3. A PUBLIC-KEY CRYPTOSYSTEM USING PERFECT DOMINATING SETS 251

(our PDS Problem) is a NP-hard problem3.
This means that we only know algorithms that take exponential time with respect to the

number of nodes, and we do not know if we will ever be able to do better than that. We can
use this feature to design a cryptosystem, as we will explain.

For our didactical situation, we used an instance of the PDS problem, i.e., we have
constructed a graph with a PDS. The choice of this graph is crucial, as will be explained
later.

Using the PDS problem, we can design a cryptosystem based on the following two
facts:

• given a set of vertices, we can easily construct a graph whose PDS will be this set of
vertices;

• given a graph containing a PDS, it is difficult to find the PDS if we only know the
graph.

The PDS cryptosystem is the following: Alice and Bob want to communicate confidentially.
Bob wants to send a message m (in this case, m is an integer) to Alice. They use the
following encryption protocol:

1. Alice builds a graph G = (V,E) with a PDS S. The graph G is Alice’s public key, and
the PDS S is Alice’s private key. Let V = {v1, v2, ...vk}.

2. Bob chooses integers m1,m2, ...,mk such that m1 +m2 + ...+mk = m.

3. Bob assigns to each vertex vi of V an mi. We call mi the secret value of the vertex vi.

4. For each vertex vi, Bob sums its secret value with the secret values of its neighbors.
This new value pi is called the public value of the vertex vi.

5. Bob writes on each vertex its public value and deletes the secret values. The encrypted
message is the graph G with the public values.

3We summarize here, in an informal way, the most relevant ideas. NP-completeness is a vast topic in the
study of the computational complexity of problems: for a formal introduction, we suggest Cormen et al. [2022,
ch. 34].

We say a problem is in the set P if we can solve it in polynomial time with respect to the input size (i.e., it
can be solved in O(nk) time for some constant k, with n the input size).

We say a problem is in NP if we can verify a solution (or, more formally, a solution ‘certificate’) in polynomial
time with respect to the input size. Intuitively, P ⊆ NP, but if P = NP or P ̸= NP is one of the most famous,
relevant and open questions of Informatics.

We focus on a particular set of NP problems: the NP-complete problems. These problems are considered
‘the most difficult NP problems’ because if we find a polynomial-time solution for one of them, then we can
solve all the NP problems in polynomial time. NP-complete problems include relevant problems for today’s
world. Still, unfortunately, no one has ever found a polynomial solution for any of them, nor has it proven that
such a polynomial solution cannot exist.

Formally, the NP-complete set includes only decision problems, i.e., those problems whose output is either a
‘yes’ or a ‘no’. For example, as said, determining if a graph has a PDS is an NP-complete problem. Since we
are interested here in the complexity of finding an actual instance of that PDS, we are not dealing with a
decision problem. However, it should be easy to convince ourselves that our problem is at least as difficult as
the decision problem. Therefore, we say that finding a PDS on a given graph (our PDS problem) is NP-hard.

252 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

Figure 15.2 gives an example of a graph with its public and secret values.
To decrypt the message, Alice computes the sum of the values on the vertices of the PDS

(Alice knows the PDS because it is her private key). Note that the graph G (public key) and
the encrypted message (graph G with public values) can circulate without an eavesdropper
being able to read the plaintext message (a priori). Note also that if the graph has several
PDS, then any PDS can be used for decryption.

The system’s security is based on the fact that it is (NP-)hard to find the PDS given the
graph. Of course, this system is only ‘didactically secure’ because simple algebraic attacks
are possible [Fellows and Koblitz, 1994], as we will see.

As said, the PDS cryptosystem was first presented in [Fellows and Koblitz, 1994], and an
unplugged activity based on it has been included in the Classic CS Unplugged [Bell et al.,
2003; 2015].

Figure 15.1: {I,K, F} is a PDS of this graph.

15.4 Conception

15.4.1 Research purposes

As explained above, this research was developed within a European project whose broader goal
is to create innovative teaching modules for pre-service teacher training on interdisciplinarity in
STEM fields (with a particular focus on links and interactions between physics, mathematics,
and informatics).

In this context, and in order to address the interactions between mathematics and
informatics, we have designed, implemented, and analyzed a didactical situation for student
teachers about public-key cryptography with the following research purposes.

15.4. CONCEPTION 253

Figure 15.2: Example of an encrypted message using a graph G. Secret values in red and
public values in green. The plaintext message m is the sum of the secret values (m = 19).

RP1 Examine the different strategies (analyzed both a priori and a posteriori, after an actual
implementation) that student teachers will adopt to decrypt a message starting from
different information at their disposal (access to information is the main didactical
variable of the situation, see 15.5.2).

RP2 Examine how student teachers will interact with different disciplinary and interdisciplinary
objects like matrices and graphs, using methods and practices from mathematics and
informatics, moving between different semiotic representations4.

As said, the cryptosystem is already known [Fellows and Koblitz, 1994] and used for
didactic purposes [Bell et al., 2003; 2015]. However, we did not just use the original PDS
activity. Instead, we have built the didactical situation and the teaching activity around
it. Our contribution is the precise organization of its milieu (see 7.5.2) and the analysis of
the didactical variables that come into play, together with specific choices for their values.
Moreover, we propose a classroom implementation that considers the PDS problem’s strength
as a constructive way to use it for pre-service teacher training.

During the didactical situation, the participants are given a problem (i.e., deciphering
a message) that is not broken down into simpler tasks. Because of this (and the careful
choices of the didactical variables), the participants need to elaborate specific strategies
to address the problem. These strategies (explained in the next section) require using and
understanding several concepts and methods from mathematics and informatics (for example,

4Intuitively, the theory of registers of semiotic representation [Duval, 1995; 2017] is based on the fact that
“there are as many different semiotic representations of the same mathematical object as semiotic registers
utilised” [Pino-Fan et al., 2015].

254 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

the representation of a graph by its adjacency matrix) and sometimes the change of semiotic
registers.

In what follows, we describe the choices of the didactical variables and the resulting
strategies, underlining the concepts and the methods involved.

The more general research purpose of examining this activity’s learning potential and
impact on related disciplinary and interdisciplinary concepts is left for future work.

15.4.2 The didactical situation

The objectives of the didactical situation are the following.

• Introduce some general concepts and terminology of cryptography (e.g., plaintext and
encrypted message, encryption and decryption algorithms, key, attack models, private
and public keys, difficult-to-reverse problem, one-way function) and make students
understand and explore the principles and issues of public-key cryptography.

• Make students explore and interact with mathematical and informatics concepts and
objects on the boundary of the two disciplines (such as graphs, algorithms, and matrices).

The didactical situation is organized as follows.

Step 1: Encryption We explain to the participants the encryption algorithm using a graph
G (G is the public key). We do not introduce or explain the notion of PDS (it is not needed
to encrypt a message). We do not say that G has a PDS either.

Step 2: Cryptanalysis The participants are divided into three groups. All the groups are
given the same encrypted message (i.e., the graph G with public values on it) and asked to
decrypt it. Each group is given different information to solve the problem.

• Group A is given the definition of PDS and the (unique) PDS for the given graph G. We
do not explain the decryption algorithm. Group A is in the position of a cryptographic
engineer who has all the mathematical elements available and needs to combine them
to design a public-key cryptosystem.

• Group B is given the definition of PDS and the decryption algorithm (which uses the
PDS). They do not know the PDS for the graph G. Group B is in the position of
a cryptanalyst carrying out a person-in-the-middle attack; that is, the attacker has
knowledge of the public-key cryptosystem but does not know the private key.

• Group C has no information other than the encrypted message itself. Group C does
not know the decryption algorithm. There is also no reference to the existence of a
PDS. Group C is in the position of a cryptanalyst trying to find the plaintext message
without necessarily finding the private key.

All groups can independently check whether they have decrypted the message correctly.

15.5. A PRIORI ANALYSIS 255

15.5 A priori analysis

15.5.1 A priori analysis elements

In the following, we schematically describe the strategies groups may use to decrypt the
message considering their available information.

15.5.1.1 Group A

Available information: the definition of PDS and the (unique) PDS for the given graph G.
Note that group A is not given any elements on how to use the PDS to decrypt: their goal is
to find by themselves the decryption algorithm using the PDS.

Strategy: identifying the neighborhoods of all vertices that belong to the given PDS. Then
observe that the intersection of these neighborhoods is empty and that the union of these
neighborhoods covers graph G. The neighborhoods can be represented as lists of vertices or
graphically as ‘stars’ on the graph (see Figure 15.3). By the cryptosystem construction, the
public value of each vertex is the sum of the secret values of its neighborhood. Thus, the
sum of the public values of the PDS vertices is equal to the sum of the secret values of all
the nodes, which is the plaintext message.

The definition of PDS is expressed using terminology from set theory. In order to elaborate
this strategy, group A needs to interpret this definition on the graphical representation of
the graph and make the connection with the encryption procedure. More precisely, they
need to deduct what the perfect domination property means for the public values of the
nodes. This procedure is not trivial and requires an intuitive understanding of the proof
of correctness of the cryptosystem. This way, group A has the potential to explore the
central idea of such proof, i.e., the decryption of an encrypted message returns the plaintext
message Decsk(Encpk(m)) = m. This can be the object of a formulation phase consisting of
making the decryption algorithm explicit and of a validation step of proving the encryption’s
correctness.

15.5.1.2 Group B

Available information: the definition of PDS and the decryption algorithm (which uses
the PDS). Group B knows that there is a PDS in the graph G, but they do not know which
nodes are the PDS on that specific graph. This scenario incites the group to try to find the
private key (the PDS) using the encrypted message and the public key (G with the public
values noted on its vertices). Group B is thus confronted with an instance of the difficult
problem of finding a PDS in a graph.

Strategies. We describe three possible strategies for this group. These strategies are
interesting because they use different semiotic registers [Duval, 1995; 2017]: the graph
representation, the lists of vertices, and the graph’s adjacency matrix. These three strategies

256 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

amount to a structured, exhaustive search of the subsets of vertices to find a PDS that is
known to exist. This search can be done in an organized and structured way (algorithm) or
in a more heuristic way based on the same principles.

Strategy 1: Finding stars in the graph. Let a graph G = (V,E) and let S be a PDS
of G. This strategy is based on the following ideas:

• Let v be a vertex of V . By the definition of the PDS, in the neighborhood N [v] exists
exactly one vertex that belongs to S. Thus, if the v vertex is not in S, then exactly
one of its neighbors is in S.

• If a vertex u belongs to S, then (a) the neighbouring vertices of u do not belong to S,
and (b) for any neighbour u′ of u, the neighbouring vertices of u′ do not belong to S
either (otherwise u′ would be linked to two vertices that belong to S). Thus, if we find
a vertex of S, we can deduce that its neighbors and the neighbors of its neighbors are
not in S.

Informally, we add step-by-step vertices in a set S in order to find a PDS. When we
do not succeed, we backtrack to the choices of vertices made to continue the exploration
of potential PDS. In informatics, backtracking is a “systematic way to run through all the
possible configurations of a search space”. It is relevant especially when we “we must generate
each possible configuration exactly once” [Skiena, 2020, p. 281]. Intuitively, we build a
solution incrementally; when we reach a partial solution that can no longer become a correct
solution, we abandon the path and backtrack to explore other paths.

Elaborating this strategy first requires understanding the definition of PDS (which is
expressed symbolically in set theory language) and then interpreting such definition on the
graphical representation of the graph (by drawing subgraphs as stars, see Figure 15.3).
Systematizing the steps of the algorithm requires an intuitive understanding of both the
properties of domination and perfect domination and the idea of backtracking.

In Algorithm 1, we provide a more formal description of this strategy. Note that, although
more rigorous, it is still informal in some operations.

In a heuristic approach to the above strategy, we start with a vertex v of a small degree
to deal with a small number of starting cases.

Strategy 2: Lists. Let G be a graph and S a PDS of G. For each vertex of G, we write
its neighborhood as a list. We then study these lists to find a set of lists whose intersection
is empty and whose union covers the graph G. The basic idea of this strategy is that each
vertex of the graph G belongs to precisely one neighborhood of a vertex of S.

Informally, the idea is to incrementally build a collection L of lists ℓi, such that the
intersection of the ℓi ∈ L is empty, while their union contains all the vertices of G.

More rigorously, we formalized this strategy in Algorithm 2, where L is a LIFO stack since
the first element removed is always the last one added. In informatics, a stack is a collection
of elements that implements the LIFO (last-in, first-out) policy: like in a pile of plates, you
can only push a new plate on top of the stack, or pop the plate on the top of the pile.

15.5. A PRIORI ANALYSIS 257

Algorithm 1 Finding stars in the graph

S ← {}
Choose a vertex v, with neighbourhood N [v]

▷ We are sure that v or one of its neighbours is in the PDS
while True do

Choose t ∈ N [v]
Add t to S
repeat

Mark red all nodes in N [t]
▷ A previous blue may be overridden with red, if necessary

Mark blue any non-red neighbor of neighbors of t
▷ i.e. the non red nodes in N [x] for all x ∈ N [t]

if there is an uncoloured vertex w connected to a blue vertex then
▷ Backtracking point

Choose such w and add it to S
t← w
Done ← False

else
Done ← True

end if
until Done or S is a PDS
if S is a PDS then

return S
else if backtracking is possible then

▷ i.e., if we may choose some other vertex at one backtracking point
Backtrack (undoing the coloring and the additions to S) to the last possible

backtracking point
Choose a different w and start again from there

else
Remove all the colouring ▷ We want to iterate again with a new t
Remove t from N [v]
S ← {}

end if
end while

258 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

Figure 15.3: We can visualise the ‘stars’ with the PDS nodes as centres, showing that each
node is directly connected to exactly one node of the PDS.

Therefore, the “order in which plates are popped from the stack is the reverse of the order in
which they were pushed onto the stack, since only the top plate is accessible” [Cormen et al.,
2022, p. 254]: the last plate you pushed in is the first you pop out.

Developing this strategy requires understanding the domination and perfect domination
properties, expressing these properties using lists, and also an intuitive understanding of a
LIFO stack (even if it is not necessarily recognized as such).

Strategy 3: Adjacency matrix of the graph. This strategy consists in writing the
adjacency matrix of the graph G and in selecting a set of rows whose sum is a row of 1.
Indeed, in the adjacency matrix, for a vertex i, in the corresponding row li = [ai1, ai2..., ain]
the coefficients aij = 1 if the vertices j and i are connected and 0 otherwise. Note that
here aii = 1 for all vertex i (because, in the PDS definition, we are considering closed
neighborhoods). Thus, if we find a set of rows whose sum is [1, 1, ..., 1], the vertices
corresponding to these lines constitute a PDS (because each vertex of G is adjacent to exactly
one of the chosen vertices).

The idea of strategy 3 is very close to that of strategy 2. Still, the register of representation
is different: on the same scheme as algorithm 2, we go through the set of rows of the matrix,
including or excluding rows, to find a subset of rows whose sum is [1, 1, ..., 1].

Developing this strategy requires, once again, understanding the properties of the PDS
definition and expressing these properties using the adjacency matrix.

15.5. A PRIORI ANALYSIS 259

Algorithm 2 Merging lists

V ← the set of vertices of G ▷ Vertices are enumerated starting from 1
for all vi ∈ V do

ℓi ← N [vi] as a list
end for
L←emptystack ▷ L is a LIFO stack; any item in L is a list ℓi
k ← 0
while

⋃
L ̸= V do ▷

⋃
L is the union of all the lists ℓi in L

if there exists i > k such that (
⋃
L) ∩ ℓi = ∅ then

Let i be the min index that satisfies the condition
Push ℓi onto L
k ← i

else
Pop (remove) the top item ℓj from L
k ← j

end if
end while
return the set {vi : ℓi ∈ L} (that is a PDS)

15.5.1.3 Group C

Available information: no information other than the encrypted message. Group C only
knows the encryption algorithm and does not know that a PDS exists in the graph nor how it
can be used to decrypt. This group is asked (implicitly) to search for possible flaws in the
cryptosystem without necessarily searching for the private key.

Strategy: starting from the encrypted message, we form a linear system as follows. For each
vertex v, of public value pv and neighbourhood N [v] = [v, v1, ...vk], we write the equation
xv + xv1 + ...+ xvk = pv where xi is the secret value of vertex i. This equation translates
the encryption step that allowed passing from private values to public values. We thus build
a system of linear equations with as many equations and unknowns as there are vertices in G.
The solution of the linear system is the tuple of all secret values [x1, x2, ..., xn], whose sum is
the plaintext message m.

The linear system can be formed using the graph’s adjacency matrix G or by writing
the linear equations for each vertex by hand. We highlight that, in this activity, there is a
correspondence between the adjacency matrix (one of the standard ways to represent the
graph data structure in informatics [Cormen et al., 2022, p. 549]) and the matrix equation
that can be used to solve the linear system associated with the encrypted message on the
graph. For example, the graph in Figure 15.1 can be represented by the following adjacency
matrix (note that, as said, the diagonal is all 1s because, even if edges from each node to
itself are not drawn, each node is a neighbor of itself in the PDS definition).

260 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

A B C D E F G H I J K L M
A 1 0 0 0 0 0 0 1 1 0 0 0 1
B 0 1 0 0 0 1 1 0 0 0 0 1 0
C 0 0 1 1 0 0 0 0 0 1 1 0 0
D 0 0 1 1 0 0 0 1 1 0 0 0 0
E 0 0 0 0 1 1 1 0 0 1 0 0 0
F 0 1 0 0 1 1 0 0 0 0 0 0 1
G 0 1 0 0 1 0 1 0 0 0 1 0 0
H 1 0 0 1 0 0 0 1 0 0 1 0 0
I 1 0 0 1 0 0 0 0 1 1 0 0 0
J 0 0 1 0 1 0 0 0 1 1 0 0 0
K 0 0 1 0 0 0 1 1 0 0 1 1 0
L 0 1 0 0 0 0 0 0 0 0 1 1 1
M 1 0 0 0 0 1 0 0 0 0 0 1 1

This is precisely the matrix A in the matrix equation Ax = b (that represents the linear
system of equations that can be used to find the secret values given the public values on the
graph) where

A =

1 0 0 0 0 0 0 1 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 0 1 1

x =

A
B
C
D
E
F
G
H
I
J
K
L
M

b =

5
8
4
4
12
11
10
3
5
6
3
5
2

.

Groups A and B can also be tempted to use linear systems too (even if, for group A, this
means not using the private key, which is available).

Unfolding this strategy requires interpreting the cryptosystem as a linear system and
examining its resolution. Note that the solution to the problem does not necessitate the
resolution of the linear system but just finding the sum of all secret values; this can be done
by finding the rows corresponding to the PDS nodes (for example, using the third strategy
of group B). The concepts that come into play when elaborating this strategy are matrices,
linear systems and their resolution, and also the correspondence of the adjacency matrix with
the system’s matrix.

15.5.2 Didactical variables

This section identifies the didactical variables to choose relevant values for our learning
objectives. These variables have been identified through the study, design, and development
of the problem and pre-experimented with volunteer students.
Access to information. In our didactical situation, the main didactical variable is the access
to information which differs for the three groups. We have analyzed in the previous section
the possible strategies that correspond to different values of this variable.

The type of the graph G. It should be hard to find the PDS in the graph G. So one
should exclude certain types of graphs for which it is known that the PDS problem is not
hard. For example, if the graph is a tree, a fast algorithm exists that solves the PDS
problem [Klostermeyer, 2015, p. 107]. The PDS problem is hard for planar graphs, but we
observed that using non-planar graphs makes the problem visually more difficult for the
participants. Therefore, we decided to use a non-planar graph.

15.5. A PRIORI ANALYSIS 261

The size of the graph ∥V ∥. The graph must satisfy specific criteria that make it usable
when dealing with humans. More precisely, it must be large enough so that an exhaustive
search of the PDS will be hard or tedious. At the same time, it must be small enough so
that writing the linear system generated would still be possible for participants.

The graph’s maximum degree and the difference of degrees between vertices. A sig-
nificant difference of degrees between the vertices of the graph potentially influences the
starting point and the execution of Algorithm 1; the participants tend to consider that
the vertices that have a degree ‘too low’ or ‘too high’ have “special” properties and they
usually start the algorithm from those nodes. In order to avoid this effect, it is desirable to
use a graph “almost” regular. Note that if the graph is regular (i.e., all nodes have the
same degree k), there is an easy solution to get the plaintext message that does not require
finding the PDS. If we add all the linear system equations and divide by k + 1, we get the
plaintext message (because each mi will be added precisely k + 1 times in encryption).

Moreover note that the size of the PDS ∥S∥ is always in the interval ∥V ∥
∆+1 ⩽ ∥S∥ ⩽ ∥V ∥

2
where V is the set of vertices of the graph G and ∆ is the maximum degree of the vertices
of G. For a given number of vertices, if the size of the PDS is close to the minimum value,
the vertices that belong to the PDS have more neighbors. For our experimentation of the
didactical situation, we have chosen a graph with 22 vertices and ∥S∥ = 4.

The plaintext message and its composition. The plaintext message is a positive integer
number. This number is subsequently decomposed into the values mi (secret values) such
that Σn

i=1mi with ∥V ∥ = n the size of the graph. Then mi ∈ Z; this can be repeated. We
have chosen a decomposition in mi where the absolute value for all mi is small not to add
cognitive difficulty for the participants. In our case, a number between 20 and 100 is a
reasonable choice.

Using (or not) a computer algebra system. We chose to give the possibility of using a
computer algebra system to solve the linear system. Its use was optional and only proposed
if the participants had independently come up with the idea of writing the linear system.

15.5.3 Learning potential

Following the strategies presented in this section, students have to: i) translate the PDS
properties of the graph into properties of lists, matrices, and the visual graph representation;
ii) do an exhaustive structured search in the matrix or list space or the graph representation
(intuitively understanding the idea of LIFO stacks and backtracking); iii) understand and
justify why their strategies are correct.

When dealing with a linear system, they may try to reduce it, determine if there is a
unique solution or many, and reflect on the complexity of solving linear systems.

Therefore, in this situation – because of the retroactions with the milieu – students have
to mobilize concepts, methods, and practices from mathematics and informatics to overcome
the obstacles they encounter. Doing so, they also need to move between different semiotic
representations [Duval, 1995; 2017] of the interdisciplinary boundary objects involved (i.e.,

262 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

“artifacts [that] can fulfill a specific function in bridging intersecting practices” [Akkerman and
Bakker, 2011, p. 134]; see 7.3), such as matrices and graphs. We believe this allows students
to grasp the challenges of public-key cryptography and better understand the concepts,
methods, and practices involved in the situations and their interdisciplinarity as well.

15.6 Realization, observation and data collection

In 2021, we piloted an early implementation of the cryptography module entirely online via
video conference, which particularly impacted the modes of interaction. In particular, group
activity suffered. It was hampered by the less natural interactions (further complicated by
the use of English, which was not the native language of any of the participants) and the
inability to physically work together on the graphs (even though they were available online,
in collaborative editors). However, this preliminary implementation helped us improve the
didactical situation. Indeed, we deepened the a priori analysis, developed a design more
consistent with the preliminary analysis, and better defined the practical organization (timing,
mode, materials).

We present the implementation of the cryptography didactical situation, exactly as
described in section 15.4, which took place as part of the 2022 school for pre-service teachers,
this time held in person (see 15.2.1).

The experimentation took place during a one-day (6 hours) session that included a
preliminary presentation on symmetric and asymmetric-key cryptography (and its use and
relevance in our society), the didactical situation (3 hours), and a collective reflection on
the interdisciplinary aspects that emerged from the groups’ work, led by the instructors.
The teaching material for the entire module, including the situation, is available at https:
//identitiesproject.eu/cryptography/. Here we focus on the didactical situation itself.

The didactical situation (about 3 hours) constitutes its active learning part. The core
of the didactical situation is an autonomous group activity (about 1 hour): a decryption
challenge on which each group is then asked to report back to the other groups.

The participating student teachers were organized into the three groups (A, B, and C)
needed for implementing the didactical situation, as described in 15.5.1. The groups of 4 or 5
were composed so that the members were teachers of all the different disciplines (mathematics,
informatics, physics, chemistry, and various engineering branches) and nationalities (French,
Greek, Italian, and Spanish) and balanced by gender. All participants had a bachelor’s or
master’s degree and were enrolled in a master’s program (or equivalent course, depending on
the national regulations) to become high-school teachers in STEM disciplines.

After the high-level introduction to symmetric and asymmetric cryptography, the didactical
situation began. All three groups were given the same encrypted (with the PDS cryptosystem)
message (Fig. 15.4) to decrypt in one hour but starting with different information. The
groups were also asked to pay attention to their solving strategies and keep track of difficulties
and results so that they could later present their group’s work to everyone (10 minutes of
presentation and 5 of Q&As). English was used both for interacting with participants and
presenting their groups’ work.

During this first experiment of our didactical situation, the participants were quickly

https://identitiesproject.eu/cryptography/
https://identitiesproject.eu/cryptography/

15.7. A POSTERIORI ANALYSIS 263

engaged in solving the problem. The choices of didactical variables and the organization of
the environment stood appropriate: in particular, few interventions by the researchers were
necessary during the groups’ autonomous work. The mathematics and informatics works in
the different groups were generally consistent with the expectations of the a priori analysis,
and the choices of didactical variables had the expected effects.

One researcher was associated with each group to observe mainly the development of
decryption strategies and also the use of the different disciplinary languages (from mathematics
and informatics but also the other disciplines of the group members), and the communication
dynamics of the groups. This observation aimed to verify whether the implementation of
the situation had provided developments consistent with the a priori analysis to capture
the students’ interactions with different disciplinary and interdisciplinary concepts, objects,
and methods between different semiotic representations. To support the observation, the
researchers relied on a grid, a product of the a priori analysis phase (also informed by the
2021 preliminary online experimentation). Such a grid helps the researchers observe for each
group three main dimensions: group work and communication dynamics, strategies for solving
the decryption problem, and linguistic and epistemological interdisciplinary elements. The
grid is provided in appendix B.1. In addition to the observations collected by the researchers,
all the sessions were filmed.

An informed consent explaining the objectives of the research, the data collection tools,
and the commitment to process data in a pseudo-anonymous manner was provided and signed
by all participants.

15.7 A posteriori analysis

The a priori analysis (15.5) was supported by the observations collected during the imple-
mentation: the participants tried almost all of the problem-solving strategies we envisioned
and described. The student teachers did not formulate the strategies exactly as they were
presented in the a priori analysis. Also, not all the groups were able to solve the problem
despite using these strategies. However, they tried parts of all the envisioned strategies and
seemed to understand (at least partially) the main ideas of how and why these strategies
are correct. However, the data collected showed that all groups tried (parts of) all the
expected strategies. Moreover, the participants’ presentations and following discussions
demonstrate their intuitive understanding of the strategies and why they are correct. In this
regard, the successful outcome of the instructor-led institutionalization benefited from each
group’s experience being shared with everyone through the presentations and deepened in
the discussions.

More specifically, group C was given the encrypted message and no other information
(see 15.5.1 for the information given to each group). The participants solved the problem by
formulating a system of linear equations (22 equations and 22 variables) and solving it with
an online automatic linear solver5. The solver was suggested by the observing researcher only
after the group had formulated the system of equations and decided that they would try to

5Built by us in Python (https://lodi.ml/solver) with the SymPy library (www.sympy.org).

https://lodi.ml/solver
www.sympy.org

264 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

Figure 15.4: The graph with the public values in green (i.e., the encrypted message) chosen
for our experimentation. In orange, the PDS of the graph (i.e., the private key).

solve it. The opportunity to use the software tool strongly influenced their strategy to solve
the problem. The size of this linear system makes it difficult to solve it by hand. Without
an automatic solver available, the students would have probably tried to solve the problem
by another strategy, such as reducing the system of equations. They were the only group
to solve the didactical situation, finding the plaintext message encrypted in the graph (an
integer number). Also, they used the cryptographic language correctly.

Group A was given the definition of perfect dominating set and the actual PDS on the
graph, and they had to figure out how to use this information to decrypt the secret message.
The researcher observing did not explain the definition of PDS, nor the decryption algorithm
was presented. The participants had to figure out by themselves how to use the PDS to
decrypt the secret message. This scenario brought them to write down the linear system by
interpreting the encryption algorithm and trying to make the connection between the system
and the PDS definition. We observed that understanding the PDS definition presents several
difficulties. First, the PDS definition is complex and structured in three steps. First, there is
the notion of domination; second, the notion of dominating set; third, the notion of perfect
dominating set. Domination is a symmetrical property (i.e., if node a dominates node b,
then b also dominates a), while in natural language, domination is usually non-symmetric.

15.7. A POSTERIORI ANALYSIS 265

Comprehending and using this definition was not easy for the students dealing with this
property for the first time. In addition, domination was defined by the following: ‘A vertex
v of a graph G dominates vertex u if either v = u or there is an edge from v to u.’ We
observed that ‘if v = u’ was not interpreted as ‘vertex v dominates itself’, as was intended.
Instead, the participants thought this was related to the public values written on the nodes:
their interpretation was that a vertex dominates the vertices with the same public value. This
may be related to mathematics’s different uses of the equality symbol. In mathematics, it is
common to refer to length, width, and measure of quantities in phrases such as the length
of side v is 3 cm, and we write v = 3; the equality symbol is used to give the value 3 to
the variable v, i.e., a typical assignment from an informatics perspective. We also use it to
express the equality of values, so we can write u = v if they have the same value. Moreover,
the equality symbol in algebra is often used to express that two different letters (like u and
v) refer to the same object, as we did in defining a PDS. Furthermore, although we thought
group A had the “easiest” task since they had the private key at their disposal (i.e., the
graph’s PDS), their task revealed less trivial and straightforward than expected. Finding how
to use the PDS in order to decrypt requires three main steps:

1. understanding the definition of PDS

2. formulating the linear system based on the encrypted message

3. translating the PDS properties (on the graph) into properties related to the equations
of the PDS nodes

The last step required a change of semiotic registers and was particularly tricky for the
participants. We observed that they spent much time understanding the definition of the
PDS and formulating and reducing the linear system but experienced difficulty connecting
the two.

Group B was given the PDS definition and the decryption algorithm (without revealing
the graph’s PDS). As was expected, the participants started looking for the PDS in the graph.
They partially tried all three algorithms presented in the a priori analysis. Note that all three
algorithms are not polynomial: they are a ‘structured’ exhaustive search of the PDS in the
graph. Therefore, the objective of the situation is not to solve the problem but to translate
the PDS properties into algorithmic steps on the three different registers used (the graph,
the lists, and the adjacency matrix). In that sense, the students succeeded the task. More
precisely, group B started with the list algorithm: they formed the list of neighbors for every
node, interpreted the PDS properties with the task of finding a number of lists with empty
intersections whose union covers the graph, and started comparing lists. In order to make a
more efficient comparison, they decided to take into consideration the lists’ size, too. Given
that the graph has 22 nodes, if they had a union of lists with size X, they only considered
lists with a cardinal of size ≤ 22 − X for the following step. As a next step, instead of
ordering the lists to facilitate the comparison, they decided to use a matrix, which led to
forming the graph’s adjacency matrix. As one of the students stated, “with the matrix, we
see the connections between the nodes more easily”. Algorithm 1 came up in the last part of
the situation in a different form. Instead of choosing a starting node (assumed in the PDS)

266 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

and erasing its neighbors and its neighbors’ neighbors, the students decided to note all paths
of length 2 starting from a node (assumed in the PDS) and then all the paths of length 3,
which would give them the possible candidates for the second node in the PDS. This idea
was not pursued because of the limited time allotted for autonomous group work.

Institutionalization of the solution strategies that emerged and the cryptographic elements
involved was done at the end of the implementation. The goal was to transpose some elements
of the problem solutions in order to complete the description of the cryptosystem involved and
present the cryptographic concepts brought into play. We observed that almost all participants
participated in the conversation and the final discussion about interdisciplinarity. They all
seemed to have developed an intuitive understanding of the problem-solving techniques and
the main ideas behind the strategies that emerged from the groups’ work. Although there
were some language misunderstandings during the problem-solving process, we observed that
the students could properly use the terminology used about graphs, cryptography, and linear
system resolution during the discussion. We conjecture that even if their respective group
was not successful in decrypting the message, listening to all the groups’ presentations (and
Q&As that followed) and the instructor-led institutionalization helped the participants form a
viable mental model of the elements involved.

To conclude, the groups’ work resulting from the implementation supports our a priori
analysis of the didactical situation. The participants were strongly involved in problem solving,
and our observations (regarding the retroactions and the strategies used) indicate that our
organization of the milieu and our choices in terms of didactical variables proved effective.
Indeed, the different configurations of the didactical variables across the groups produced the
results predicted by the a priori analysis for those configurations. Also, researchers needed
few and small interventions to support the groups’ autonomous work.

15.8 Discussion

In this chapter, we presented the study of a didactical situation on cryptography between
informatics and mathematics, designed, implemented, and analyzed using the Didactical
Engineering methodology within the Theory of Didactical Situations.

The situation’s implementation showed a learning potential of fundamental concepts,
methods, and ideas not only of cryptography but also of mathematics and informatics. Given
the nature of the designed problem-solving activity, the participants need to conceive and
develop strategies to solve the problem. To develop these strategies, they need to explore
and understand (at least intuitively) several concepts and methods from mathematics and
informatics (such as backtracking, LIFO stacks, the adjacency matrix of a graph, and matrices
for modeling a linear system of equations). The participants must also move between semiotic
registers by interpreting the properties of the PDS definition written in set theory language,
graphically, or using lists.

The choices of the values for the didactical variables are essential in this sense: for
example, the graph (its size, the vertices degrees, and its graphical representation) does not
allow the participants to find the PDS by trial and error and reveals the hardness of the
problem while still allowing them to form a linear system by hand; also, the number of PDSs

15.8. DISCUSSION 267

in the graph is closely related to the existence of a (unique) solution of the linear system.
The participants are restricted in their retroactions by those elements and, therefore, need to
explore the strategies in order to solve the problem.

Moreover, we conjecture that our didactical situation has the learning potential to
introduce topics like the complexity and correctness of algorithms, as well as to work on
graphs, dominating sets, linear systems, and matrices and their representations in mathematics
and informatics. To illustrate that, we paraphrase and report some questions the participants
discussed within their groups while trying to solve the problem.

• Is there always a perfect dominating set in a graph? And a dominating set?

• How complex is solving a linear system?

• Are the graph algorithm and the list algorithm more efficient than the brute force
solution?

• What is the relationship between the linear system and the PDS?

• Why is decoding with a PDS correct?

15.8.1 Future work

The research work of the IDENTITIES project (of which the current work is part) is still
ongoing (see 7.1). In this chapter, we have analyzed our observations of the implementation
of the didactical situation on cryptography. We conjecture that students were able to
grasp the challenges of public-key cryptography and develop a better understanding of the
interdisciplinary objects involved. Nevertheless, we still have to refine this analysis rigorously:
transcribe the audio and process the videos to identify and analyze all the steps of the problem-
solving procedure in detail. Following, we have to identify all interdisciplinary boundary objects
(see 7.3) that come into play and analyze them from an interdisciplinary point of view, for
example, by using the Akkerman and Bakker [2011] framework on interdisciplinarity.

A future direction for this work would be to implement our didactical situation with
different values for the didactical variables and also to adapt the activity for, and experiment
it with, high school students.

15.8.2 Conclusions

To conclude, we successfully used the Didactical Engineering research methodology to design
a teaching activity that enables students to explore the idea and the complexity of public-key
cryptosystems while interacting with the informatics and mathematics interdisciplinary objects
involved in that activity and the related disciplinary concepts. Therefore, to overcome the
obstacles students encounter in this didactical situation, they must mobilize concepts, methods,
and practices of mathematics and informatics, moving between semiotic representations of
interdisciplinary objects.

The specific analysis of the interdisciplinary interactions between pre-service STEM
teachers and the model of interdisciplinarity that can emerge from this kind of activity is part
of the larger project and will be analyzed in future works.

268 CHAPTER 15. A DIDACTICAL SITUATION ON INTERDISCIPLINARY CRYPTO

Part V

Conclusions, Appendix and
Bibliography

269

Chapter 16

Conclusions and Future Works

16.1 Introductory programming

We developed a proposal for a learning model to support the learning of introductory pro-
gramming by drawing on the educational literature that we found most promising, particularly
about notional machines and Productive Failure. Delving into both, we left notional machines
aside but only from an operational point of view; their flexibility as educational devices has
always served us well in the conception and design of subsequent research initiatives and
interventions. In particular, analyzing Productive Failure led us to identify what we had
recognized in our experience as informatics educators: the necessity mechanism, a learning
mechanism with intriguing educational potential.

Future work. That of notional machines remains an exciting research topic to explore both
theoretically and concretely, to use them not only to model computational systems related to
programming but also to model informatics systems in other areas (e.g., cryptosystems).

The study of Productive Failure and PS-I approaches, in general, helped us to precisely
define the necessity mechanism from which we developed our learning design. The constant
comparison with Productive Failure allowed us to recognize the specificities of our Necessity
Learning Design due both to the specific requirements of introductory programming and to
the nature of student solutions, i.e., programs that are “living”, interrogable artifacts. These
insights have enabled us to define a necessity sequence precisely.

Then, the further exploration of abstraction in the perspective of learning programming
allowed us to recognize the inevitable changes in the abstraction level that a student undergoes
in an introductory programming path. The difficulty of these abstraction changes (both up
and down) clarified further the ideal moments to use NLD and better defined its educational
scenarios and requirements.

The school experimentation of Necessity Learning Design that followed brought many
new insights, revealing its potential and also notable limitations.

271

272 CHAPTER 16. CONCLUSIONS AND FUTURE WORKS

Future works. The concrete use of NLD has revealed a flaw in the design of one of our
necessity sequences. In general, this pushes for the need to test them to assess their real
consistency with the goals and requirements of our learning design.

In addition, the data collected from the school experimentation (whose preliminary light
analysis has been presented) need to be systematically analyzed to give more precise answers
to our research questions, particularly on the impact of NLD use on learning.

More generally, the attempt to balance student autonomy and scaffolding has guided our
other research efforts, yielding interesting preliminary results in pilot experiments in primary
schools and the CS1 course we teach. In all these initiatives, whenever possible, we have
always tried to stimulate – though in less structured ways than those of NLD – the necessity
mechanism to motivate and prime students to learn the next thing. Empirically, we have
always detected a positive motivational and cognitive response in the students involved.

16.2 Informatics for all

While, on the one hand, we tried to distill the big ideas of cryptography, drawing on the
principles and modes of the Big Ideas of Science and CS education, on the other hand, we
already recognized some transformative principles and ideas of cryptography. We constructed
a cryptography course for non-informatics high school students to help them grasp the
relevance of such principles and ideas and their essential scientific elements through hands-on
and autonomous yet carefully scaffolded activities.

Future work. The process of expert interviews, reflections, and literature analysis that
has led us to have a tentative first draft of possible big ideas of cryptography needs to be
completed. The next step will be a more stable draft of about ten big ideas to be submitted
to a broader community of stakeholders, along with a questionnaire to survey their opinions,
which is also yet to be developed.

The cryptography course was designed and developed with a non-professional but cultural
and citizenship perspective, proposing an approach to principles and ways of informatics less
technical and demanding than learning to program.

The same approach (including the cryptography context) was also adopted in developing
a Didactical Situation for pre-service teachers. The intervention allowed participants to
experience and recognize some relevant concepts in informatics (e.g., computational com-
plexity), effectively showing the interdisciplinarity of cryptography between mathematics and
informatics.

Future work. A more accurate qualitative analysis of the group work recordings filmed
during the Didactical Situation implementation remains to be done. Such analysis could
give more precise answers about the actual interdisciplinary potential of the asymmetric
cryptography activities we developed.

16.2. INFORMATICS FOR ALL 273

Overall, the data analysis so far confirmed our intuition that less traditional (and less
technical) access to informatics can help students better understand the role of informatics
in our lives and grasp its most essential principles and ways of thinking. This approach seems
promising for developing computational thinking through the study of informatics (and not
as a set of soft skills that can be acquired separately).

274 CHAPTER 16. CONCLUSIONS AND FUTURE WORKS

Appendix A

Material of Necessity School
Experimentation

A.1 Instructional material

The instructional material for introducing arrays, as described in 10.1.3.4, follows.

275

 Introduzione agli array
 Un array è una sequenza di elementi dello stesso tipo. Ad un array è identificato da un nome
 (come per le variabili), unico per tutta la sequenza.
 Per dichiarare un array è necessario specificare il tipo dei suoi elementi (hanno tutti lo
 stesso tipo) e il numero dei suoi elementi (cioè la lunghezza della sequenza).

 Nel seguente frammento di codice viene mostrato un esempio di inizializzazione e
 dichiarazione di un array:

 // dichiarazione senza inizializzazione, con lunghezza 5
 // (in questo caso obbligatorio specificare la lunghezza)
 int myArray[5];

 // dichiarazione e inizializzazione con una sequenza di lunghezza 5
 // di soli zero (anche in questo caso obbligatorio specificare la lunghezza)
 int myArray[5] = {};

 // dichiarazione e inizializzazione con una sequenza specifica, il
 compilatore determina la lunghezza (4) a partire dal numero di elementi con
 cui l’array viene inizializzato
 int myNewArray[] = {42, -3, 16, 1};

 La lunghezza dell’array è fissata al momento della dichiarazione e non può cambiare durante
 l’esecuzione del programma.

 Il solo nome dell’array lo rappresenta tutto, ma si può anche accedere ai singoli elementi in
 base alla loro posizione nell’array; la posizione è anche chiamata indice dell’elemento.
 Il primo elemento dell’array ha posizione 0.

 Il nome dell’array e una posizione consentono di accedere (leggere e/o modificare)
 all'elemento dell’array a quella specifica posizione. Per accedere ai singoli elementi si usa
 l’operatore di selezione [] .
 Gli elementi così selezionati nomeArray[pos] possono essere trattati come “semplici”
 variabili.
 Quindi è possibile:

 ● leggere e usare il valore dell’elemento in posizione pos
 // stampa del primo elemento di myArray
 cout << myNewArray [0]; //stampa 42

 // somma del terzo e del quarto elemento di myNewArray
 int somma = myNewArray [2] + myNewArray [3]; //somma vale 17

 ● modificare il valore memorizzato in posizione pos (se nomeArray[pos] è a sinistra
 di un assegnamento)

 // modifica del secondo elemento di myNewArray
 // dopo questa istruzione myNewArray è {42, 100, 16, 1}
 myNewArray[1] = 100;

 Esempio completo
 int myNewArray[] = {42, -3, 16, 1};
 myNewArray[1] = 100;
 // ciclo che stampa tutti gli elementi di myNewArray

 for(int i=0; i<4; i++) {
 cout << myNewArray[i] << endl;

 }
 Questo codice stampa:

 42
 100
 16
 1

 Questo esempio mostra come sia possibile usare l’indice di un ciclo for (con i che va da 0
 alla lunghezza meno uno dell’array) per accedere a tutti gli elementi di un array. L’indice
 rappresenta la posizione degli elementi (ricorda: la prima posizione è 0).

 Esempi utili
 3 esempi in un unico programma (si affrontano uno alla volta in sequenza):
 https://onlinegdb.com/gDJVsyTSm

 1. stampa tutti gli elementi di un array preceduti dalla loro posizione
 2. raddoppia tutti gli elementi con valore dispari di un array di interi
 3. stampa tutti gli elementi di un array con una funzione

 Punti da ricordare
 Array: sequenza di elementi dello stesso tipo

 ● La sequenza è identificata da un nome unico
 ● Il tipo dell’array (cioè il tipo di tutti i suoi elementi) va specificato all'atto della

 creazione
 ● La lunghezza della sequenza va specificata all'atto della creazione*
 ● La lunghezza non può cambiare

 Elementi di un array accessibili per posizione (chiamata anche indice)
 ● Le posizioni partono da 0
 ● Si usa il nome della sequenza insieme alle parentesi quadre con la posizione

 dell'elemento a cui si vuole accedere
 ● Gli elementi così selezionati possono essere trattati come “semplici” variabili

 ○ leggere il valore presente a quella posizione
 ○ modificare il valore memorizzato in quella posizione, se a sinistra di un

 assegnamento
 ● Si può usare un ciclo (es. ciclo for) per accedere a tutti gli elementi di un array

 (es. usando l’indice del ciclo come posizione degli elementi)

A.2. LEARNING ASSESSMENT 279

A.2 Learning Assessment

The learning assessment about arrays introductory knowledge and skills, as described
in 10.1.3.5, follows.

 Esercizio 1: rispondi alle seguenti domande
 Per accedere ad un elemento di un array devo usare … (1 punto)
 (una sola risposta possibile)

 A. la posizione dell’elemento
 B. il valore dell’elemento
 C. il nome dell’elemento
 D. l’indirizzo dell’elemento
 E. nessuna delle precedenti

 Cosa non può MAI mancare nella dichiarazione di un array? (1.5 punto)
 (più di una risposta possibile)

 A. il suo nome
 B. la sua lunghezza
 C. il tipo dei suoi elementi
 D. i suoi elementi
 E. il primo elemento
 F. nessuno di questi è indispensabile

 Quali tra questi array sono ammissibili? (1.5 punto)
 (più di una risposta possibile)

 A. Un array che contiene tutti i numeri interi da -10 a 100
 B. Un array che contiene tutte le lettere (char) di un cognome
 C. Un array che contiene nome, cognome (stringhe) e anno di nascita (intero)
 D. Un array che contiene float e char
 E. Un array che contiene il numero di studenti di ciascuna classe di una scuola

 In quale di queste situazioni è opportuno usare un array? (2 punti)
 (più di una risposta possibile)

 A. Ricevo in input un certo numero (non noto a priori) di valori e ne devo calcolare la
 media

 B. Ricevo in input 1000 valori (che possono ripetersi) e devo tenere traccia della
 frequenza di ciascun valore

 C. Devo tenere traccia delle temperature per ogni giorno del mese
 D. Per un periodo indefinito, ogni giorno ricevo il numero di giocatori attivi su Fortnite e

 devo sempre sapere il numero di giocatori più alto
 E. Ricevo e memorizzo l'anagrafica di uno studente: nome (stringa), cognome

 (stringa), età (intero), genere (carattere)

 Esercizio 2 (4 punti)
 Sviluppare una funzione ' somma_pari ' che prende in input un array di interi e la sua lunghezza. La
 funzione restituisce (come int) la somma dei soli numeri dell’array che sono pari (divisibili per 2).
 Nel main di esempio sotto, con l’array {6,12,3,4,11,5}, l'output deve essere:

 La somma dei pari e' 22

 #include <iostream>
 using namespace std;

 int somma_pari (int numeri[], int lun) {
 // il tuo codice QUI

 }

 /* Questo main è solo un esempio di programma che usa la funzione
 che devi sviluppare tu. Non serve modificarlo. */
 int main () {

 int numeri[] = {6,12,3,4,11,5};
 int lun = 6;
 cout << "La somma dei pari e' " << somma_pari(numeri,lun) << endl;

 }

 Esercizio 3 (5 punti)
 Scrivere il main di un programma che tiene traccia delle frequenze con cui il giorno di Natale capita
 nei vari giorni della settimana a partire dall’anno 0 (compreso) fino al 2022 (escluso).

 I giorni della settimana sono rappresentati da numeri interi:
 0 domenica, 1 lunedì, 2 martedì, 3 mercoledì, 4 giovedì, 5 venerdì, 6 sabato

 Per sapere in che giorno della settimana cade Natale in un certo anno, usare la funzione
 'calcola_giorno_natale' già fornita (e che non deve essere modificata!)
 Ad esempio

 calcola_giorno_natale(2021)
 restituisce l’intero 6 (che indica sabato) perché nel 2021 Natale è caduto di sabato

 Alla fine, il programma deve stampare per ogni giorno della settimana (0…6) quante volte è stato
 Natale quel giorno per tutti gli anni dall’anno 0 all’anno 2021 (inclusi).

 L’output deve essere simile a questo (le frequenze sono quelle giuste).
 0: 293
 1: 283
 2: 294
 3: 288
 4: 288
 5: 293
 6: 283

 L’output indica che, dall’anno 0 all’anno 2021 inclusi, Natale è capitato di domenica (indicata con 0)
 293 volte, di lunedì (1) 283 volte,... di sabato (6) 283 volte.

 #include <iostream>
 using namespace std;

 /* Questa funzione restituisce il giorno della settimana in cui capita

 il giorno di Natale nell’anno 'anno' preso in input; restituisce
 0 per domenica, 1 per lunedì, ..., 6 per sabato. NON modificarla!
 (PS non c’è bisogno che tu ne capisca il funzionamento intero) */
 int calcola_giorno_natale (int anno) {

 int k = anno%400, anchor = 3;
 if(k >= 0 && k < 100) anchor = 2;
 else if(k >= 100 && k < 200) anchor = 0;
 else if(k >= 200 && k < 300) anchor = 5;
 int y = anno % 100;
 int doomsday = ((y/12 + y%12 + (y%12)/4)%7 + anchor) % 7;
 int g_natale = (doomsday-1);
 if(g_natale == -1) g_natale = 6;
 return g_natale;

 }

 int main () {
 // il tuo codice QUI

 return 0;
 }

 Esercizio 4 (extra)
 Scrivere una funzione ' media_array ' che prende in input un array di float e un intero che
 rappresenta la lunghezza di quell’array.
 La funzione deve calcolare la media degli elementi dell’array maggiori o uguali a zero.
 I valori minori di zero NON devono essere considerati nel calcolo della media.
 Inoltre, la funzione modifica l’array sostituendo tutti i valori negativi presenti nell'array con il valore
 -9999.
 La funzione deve restituire (come float) la media così calcolata.

 Nel main di esempio sotto, con l’array {10.1, 0, 0.0, -6.4, 5, -7.3, 13}, l'output deve essere:
 Media:5.62

 E l’array modificato sarà: {10.1, 0, 0, -9999, 5, -9999, 13}

 #include <iostream>
 using namespace std;

 // la tua funzione QUI

 /* Questo main è solo un esempio di programma che usa la funzione
 che devi sviluppare tu.
 Se vuoi, dopo la chiamata di funzione, puoi aggiungere la stampa
 dell’array per verificare che sia stato modificato come richiesto. */
 int main () {

 float valori[] = {10.1, 0, 0.0, -6.4, 5, -7.3, 13};
 int lun = 7;
 cout << "Media: " << media_array(valori,lun) << endl;

 }

A.3. PROGRAMMING EXERCISES IN C++ 283

A.3 Programming exercises in C++

A.3.1 Approach exercises

A.3.1.1 First approach exercise

/*

Completare il main di un programma che effettua 1 milione di lanci

di una monenta e stampa il numero finale di teste e croci ottenute.

Un esempio di output:

teste 500028 - croci 499972

La funzione che simula il lancio di una moneta - lancio_moneta() -

restituendo 0 (testa) oppure 1 (croce), è già fornita ed è sufficiente

usarla correttamente.

INTERESSANTE: verificare che i numeri finali di teste e croci

siano simili; più è grande il numero di lanci, più i due numeri

si avvicinano (il che mostra che la probabilità di ottenere testa

o croce è la stessa). */

#include <iostream>

using namespace std;

int lancio_moneta() {

return (rand()%2);

}

int main() {

srand(time(NULL));

/*** codice studenti da QUI ***/

int teste, croci;

teste = croci = 0;

int lancio;

for(int i=0; i<1000000; i++) {

lancio = lancio_moneta();

if (lancio == 0) teste++;

else if (lancio == 1) croci++; //potrebbe anche essere solo ’else’

}

cout << ‘‘teste ’’ << teste << ‘‘ - ’’;

284 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

cout << ‘‘croci ’’ << croci << endl;

/*** FINE codice studenti ***/

}

A.3.1.2 Second approach exercise

/*

Completare il main di un programma che effettua 1 milione

di lanci di un dado a 6 facce e stampa il numero finale di volte

che è uscita ciascuna faccia

Un esempio di output:

167164 166339 166702 166594 166566 166635

Un esempio alternativo di output:

1: 167164

2: 166339

3: 166702

4: 166594

5: 166566

6: 166635

La funzione che simula il lancio del dado - lancio_dado() - restituendo

un numero da 1 a 6, è già fornita ed è sufficiente usarla correttamente.

INTERESSANTE: verificare che la frequenza con cui esce ciascuna faccia

(cioè i numeri da 1 a 6) è sostanzialmente uguale

alle frequenze delle altre facce;

più è grande il numero di lanci, più le frequenze sono simili (il che

mostra che tutte le facce hanno la stessa probabilità di uscire).

*/

#include <iostream>

using namespace std;

int lancio_dado() {

return (rand()%6)+1;

}

int main() {

srand(time(NULL));

/*** codice studenti da QUI ***/

A.3. PROGRAMMING EXERCISES IN C++ 285

int frq1, frq2, frq3, frq4, frq5, frq6;

frq1 = frq2 = frq3 = frq4 = frq5 = frq6 = 0;

int lancio;

for(int i=0; i<1000000; i++) {

lancio = lancio_dado();

if (lancio == 1) frq1++;

else if (lancio == 2) frq2++;

else if (lancio == 3) frq3++;

else if (lancio == 4) frq4++;

else if (lancio == 5) frq5++;

else if (lancio == 6) frq6++; //potrebbe essere anche solo ’else’

}

cout << frq1 << ‘‘ ’’;

cout << frq2 << ‘‘ ’’;

cout << frq3 << ‘‘ ’’;

cout << frq4 << ‘‘ ’’;

cout << frq5 << ‘‘ ’’;

cout << frq6 << endl;

/*** FINE codice studenti ***/

}

A.3.1.3 Third approach exercise

/*

Completare il main di un programma che chiede 20 volte

all’utente l’input di un numero intero tra 1 e 12 (rappresenta il mese

di nascita di 20 studenti di una classe). Il programma deve poi stampare,

mese per mese, il numero di studenti nati in quel mese.

Un esempio di output:

gen:2, feb:4, mar:4, apr:0, mag:1, giu:1, lug:2, ago:3, set:0, ott:0, nov:2, dic:1

Un esempio di output alternativo:

2, 4, 4, 0, 1, 1, 2, 3, 0, 0, 2, 1

Si usi la funzione già fornita (input_mese_nascita())

che chiede all’utente di inserire un numero tra 1 e 12 e restituisce tale numero.

La funzione continua a chidere l’inserimento finché il dato non è corretto.

La funzione è già fornita ed è sufficiente usarla correttamente.

*/

286 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

#include <iostream>

using namespace std;

int input_mese_nascita() {

int mese = 0;

do {

cout << ‘‘Il tuo mese di nascita (da 1 a 12): ’’;

cin >> mese;

if (mese<=0 || mese>12)

cout << ‘‘NON VALIDO! Inserisci un intero tra 1 e 12’’ << endl;

} while (mese<=0 || mese>12);

return mese;

}

int main() {

/*** codice studenti da QUI ***/

int gen, feb, mar, apr, mag, giu;

int lug, ago, set, ott, nov, dic;

gen = feb = mar = apr = mag = giu = 0;

lug = ago = set = ott = nov = dic = 0;

int mese;

for(int i=0; i<20; i++) {

mese = input_mese_nascita();

if (mese == 1) gen++;

else if (mese == 2) feb++;

else if (mese == 3) mar++;

else if (mese == 4) apr++;

else if (mese == 5) mag++;

else if (mese == 6) giu++;

else if (mese == 7) lug++;

else if (mese == 8) ago++;

else if (mese == 9) set++;

else if (mese == 10) ott++;

else if (mese == 11) nov++;

else if (mese == 12) dic++; //potrebbe essere anche solo ’else’

}

cout << ‘‘gen:’’ << gen << ‘‘, ’’;

cout << ‘‘feb:’’ << feb << ‘‘, ’’;

cout << ‘‘mar:’’ << mar << ‘‘, ’’;

A.3. PROGRAMMING EXERCISES IN C++ 287

cout << ‘‘apr:’’ << apr << ‘‘, ’’;

cout << ‘‘mag:’’ << mag << ‘‘, ’’;

cout << ‘‘giu:’’ << giu << ‘‘, ’’;

cout << ‘‘lug:’’ << lug << ‘‘, ’’;

cout << ‘‘ago:’’ << ago << ‘‘, ’’;

cout << ‘‘set:’’ << set << ‘‘, ’’;

cout << ‘‘ott:’’ << ott << ‘‘, ’’;

cout << ‘‘nov:’’ << nov << ‘‘, ’’;

cout << ‘‘dic:’’ << dic << endl;

/*** FINE codice studenti ***/

}

/* (un esempio di output)

gen:2, feb:4, mar:4, apr:0, mag:1, giu:1, lug:2, ago:3, set:0, ott:0, nov:2, dic:1

*/

A.3.2 PS-I exercise

/*

Completa il main di un programma che effettua dieci milioni di estrazioni

del lotto e stampa il numero finale di volte che è uscito ciascun numero.

La funzione che simula l’estrazione di un numero del lotto, restituendo

un intero compreso tra 0 e 89, è già fornita.

Un esempio di output:

0: 111080

1: 111224

2: 110810

3: 110573

...

88: 111208

89: 110468

INTERESSANTE: verificare che la frequenza con cui esce ciascun numero

(cioè i numeri da 0 a 89) è sostanzialmente uguale alle frequenze

di tutti gli altri numeri;

più è grande il numero di lanci, più le frequenze sono simili

(il che mostra che, ad ogni estrazione, tutti i numeri hanno

la stessa probabilità di uscire).

*/

#include <iostream>

288 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

using namespace std;

/* simula l’estrazione dei numeri del lotto;

nel nostro mondo di informatici, il lotto

prevede 90 numeri interi, compresi tra 0 e 89 */

int estrazione_numero_lotto() {

return (rand() % 90);

}

int main() {

srand(time(NULL));

/* codice studenti da QUI */

/* FINE codice studenti */

}

A.3.2.1 More challenging version

/*

Completa il main di un programma che effettua dieci milioni

di estrazioni del lotto per ciascuna delle 4 ruote (Bologna, Firenze,

Roma, Palermo) e, per ogni ruota, stampa il numero finale

di volte che è uscito ciascun numero.

La funzione che simula l’estrazione di un numero del lotto, restituendo

un intero compreso tra 0 e 89, è già fornita.

E’ fornita anche la funzione che stampa ogni elemento di un array,

preceduto dal suo indice.

Un esempio di output:

BOLOGNA

0: 111080

...

89: 110468

FIRENZE

0: 111019

...

89: 111326

A.3. PROGRAMMING EXERCISES IN C++ 289

ROMA

0: 111094

...

89: 111081

PALERMO

0: 110912

...

89: 110457

EXTRA

E’ fornita anche una funzione che dato un array, lo stampa

sotto forma di istogramma.

Sperimentarne l’ultilizzo in relazione alle estrazioni del lotto.

*/

#include <iostream>

using namespace std;

/* simula l’estrazione dei numeri del lotto;

nel nostro mondo di informatici, il lotto

prevede 90 numeri interi, compresi tra 0 e 89 */

int estrazione_numero_lotto() {

return (rand() % 90);

}

/* stampa tutti gli elementi di un array,

preceduti dal loro indice. */

void print_array(int array[], int dim) {

for (int i = 0; i < dim; i++) {

cout << i << ‘‘: ’’ <<array[i] << endl;

}

}

/* stampa un istogramma a barre orizzontali in cui gli asterischi,

per ogni valore intero contenuto nell’array,

rappresentano un certo numero di estrazioni. */

void print_istogramma(int array[], int dim) {

int peso = 10000; //quante estrazioni rappresenta un solo asterisco

for (int i = 0; i < dim; i++) {

cout << i << ‘‘:\t’’;

int asterischi = array[i] / peso;

290 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

for (int j = 0; j < asterischi; j++) {

cout << ‘‘*’’;

}

cout << endl;

}

cout << endl;

}

int main() {

srand(time(NULL));

/* codice studenti da QUI */

/* FINE codice studenti */

}

A.3.3 Consolidation exercises

A.3.3.1 First consolidation exercise

/*

Completare il main di un programma che effettua 1 milione di lanci

di un dado a 6 facce e stampa il numero totale di volte che è uscita

ciascuna faccia. Usare gli array.

Un esempio di output:

167164 166339 166702 166594 166566 166635

Un esempio alternativo di output:

1: 167164

2: 166339

3: 166702

4: 166594

5: 166566

6: 166635

La funzione ’lancio_dado()’ che simula il lancio di un dado a 6 facce

(restituisce un numero intero tra 1 e 6) è già fornita.

Se il programma funziona puoi osservare la

LEGGE DEI GRANDI NUMERI

A.3. PROGRAMMING EXERCISES IN C++ 291

Ad ogni lancio, le facce hanno tutte la stessa probabilità

di uscire. Più aumentano i lanci, più le frequenze sono simili.

*/

#include <iostream>

using namespace std;

int lancio_dado() {

return (rand()%6)+1;

}

int main() {

srand(time(NULL));

/*** codice studenti da QUI ***/

int frequenze[6] = {};

int lancio;

for(int i=0; i<1000000; i++) {

lancio = lancio_dado();

// NELLA CORREZIONE

// soluzione con array più semplice e leggibile

frequenze[lancio-1]++; //frequenze[lancio-1] += 1

}

/*** FINE codice studenti ***/

// stampa più semplice e leggibile con gli array

for(int i=0; i<6; i++) {

cout << i << ‘‘: ’’ << frequenze[i] << endl;

}

}

A.3.3.2 Second consolidation exercise

/* Nel main vedi un esempio di programma che definisce e istanzia

un qualsiasi array ’numeri’ di ’lun’ numeri interi.

Il main chiama la funzione ’modifica_numeri’

(che devi implementare tu e di cui c’è già l’intestazione)

e la funzione deve modifica l’array in questo modo:

per ogni numero dell’array:

292 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

- se è maggiore di zero, raddoppia il numero

- altrimenti, mette uno zero al suo posto

Dopo aver modificato l’array, la funzione stampa tutti

i numeri dell’array modificati.

Nell’esempio {4,7,-3,-4,5,6,0}, l’output deve essere:

8 14 0 0 10 12 0

*/

#include <iostream>

using namespace std;

void modifica_numeri(int numeri[], int lun) {

/* codice studenti da QUI */

for(int i=0; i<lun; i++) {

if(numeri[i]>0)

numeri[i] *= 2;

else

numeri[i] = 0;

}

for(int i=0; i<lun; i++) {

cout << numeri[i] << ‘‘ ’’;

}

cout << endl;

/* FINE codice studenti */

}

int main() {

int numeri[] = {4,7,-3,-4,5,6,0};

int lun = 7;

modifica_numeri(numeri, lun);

}

A.3.3.3 Third consolidation exercise

/*

Sviluppare una funzione ’conta_positivi’ che prende in input un array di interi

e la sua lunghezza.

La funzione conta quanti numeri dell’array sono maggiori o uguali a 0

A.3. PROGRAMMING EXERCISES IN C++ 293

e restituisce il conteggio dei positivi (un intero).

Nell’esempio {16,-2,-3,-4,11,5,0,-7}, l’output deve essere:

Nell’array ci sono 4 num positivi

*/

#include <iostream>

using namespace std;

// LA TUA FUNZIONE QUI

/* codice studenti da QUI */

int conta_positivi(int numeri[], int lun) {

int conta = 0;

for(int i=0; i<lun; i++) {

if(numeri[i]>=0) conta++;

}

return conta;

}

/* FINE codice studenti */

int main() {

int numeri[] = {16,-2,-3,-4,11,5,0,-7};

int lun = 8;

cout<<‘‘Nell’array ci sono ’’<< conta_positivi(numeri,lun)<<‘‘ num positivi’’;

}

A.3.3.4 Fourth consolidation exercise

/*

Sviluppare una funzione ’accumula_array’ che prende in input un array di interi

e la sua lunghezza.

La funzione sostituisce ad ogni valore dell’array la somma del valore stesso

con tutti i suoi precedenti. Il primo elemento resta invariato.

Dopo aver modificato l’array, la funzione ne stampa tutti i valori modificati.

Nell’esempio {2,5,3,4,0,1}, l’output deve essere:

2 7 10 14 14 15

2 il primo elemento resta invariato

7 = 5 + 2

294 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

10 = 3 + 7

14 = 4 + 14

14 = 0 + 14

15 = 1 + 14

*/

#include <iostream>

using namespace std;

// LA TUA FUNZIONE QUI

/* codice studenti da QUI */

void accumula_array(int numeri[], int lun) {

int somma = 0;

int tmp = 0;

for(int i=0; i<lun; i++) {

tmp = numeri[i];

numeri[i] += somma;

somma += tmp;

}

for(int i=0; i<lun; i++) {

cout<<numeri[i]<<‘‘ ’’;

}

cout<<endl;

}

/* FINE codice studenti */

int main() {

int numeri[] = {2,5,3,4,0,1};

int lun = 6;

accumula_array(numeri, lun);

return 0;

}

A.4 Student Questionnaires

A.4.1 Pre-experimentation Questionnaire (common)

The questionnaire, as described in 10.1.2.2 and 10.1.2.3, follows.

1. Email *

Per ciascuna delle coppie che trovi sotto, scegli il numero che meglio descrive come ti senti
rispetto alla materia Informatica.

Riferito alla materia 'Informatica' di quest'anno, da settembre �no ad adesso.

Informatica fino ad ora
Siamo due ricercatori dell’università di Bologna:
michael.lodi@unibo.it
marco.sbaraglia@unibo.it

Per circa una settimana osserveremo le vostre lezioni di informatica.
Quello che osserviamo ci serve a ri�ettere sulla didattica dell’informatica, non serve a
valutarvi e nemmeno viene condiviso con i vostri proff.

Le vostre risposte verranno utilizzare in modo anonimo.
Per analizzarle ci serve il consenso �rmato da voi, o dai vostri genitori se siete minorenni.
Vi forniremo l’informativa insieme al modulo da compilare per il consenso.

Quando vi chiederemo le vostre opinioni e percezioni - cercheremo di disturbarvi il meno
possibile - siate il più possibile sinceri e diretti. Nessuno vi giudicherà per quello che dite,
più sinceri siete, più ci aiutate nel nostro lavoro.

Se vi è sorto qualche dubbio su questa cosa, chiedeteci pure �n da adesso.
Se i vostri genitori dovessero avere dubbi, chiarite che si tratta di semplici domande sulla
vostra esperienza di studenti, come quelle a cui state per rispondere.

*Campo obbligatorio

2.

Contrassegna solo un ovale.

Motivato

1

2

3

4

5

6

7

Non motivato

*

3.

Contrassegna solo un ovale.

Interessato

1

2

3

4

5

6

7

Non interessato

* 4.

Contrassegna solo un ovale.

Coinvolto

1

2

3

4

5

6

7

Non coinvolto

*

5.

Contrassegna solo un ovale.

Non stimolato

1

2

3

4

5

6

7

Stimolato

* 6.

Contrassegna solo un ovale.

Non voglio studiarla

1

2

3

4

5

6

7

Voglio studiarla

*

7.

Contrassegna solo un ovale.

Ispirato

1

2

3

4

5

6

7

Non ispirato

* 8.

Contrassegna solo un ovale.

Non messo alla prova

1

2

3

4

5

6

7

Messo alla prova

*

9.

Contrassegna solo un ovale.

Non energizzato

1

2

3

4

5

6

7

Energizzato

* 10.

Contrassegna solo un ovale.

Non entusiasta

1

2

3

4

5

6

7

Entusiasta

*

11.

Contrassegna solo un ovale.

Elettrizzato

1

2

3

4

5

6

7

Non elettrizzato

* 12.

Contrassegna solo un ovale.

Carico

1

2

3

4

5

6

7

Non carico

*

13.

Contrassegna solo un ovale.

Non affascinato

1

2

3

4

5

6

7

affascinato

* 14.

Contrassegna solo un ovale.

1

2

3

4

5

6

7

8

9

10

Quanto stai imparando in Informatica quest'anno? *
1 non ho imparato niente -- 10 ho imparato più di quanto abbia imparato in ogni altra
materia

15.

Contrassegna solo un ovale.

1

2

3

4

5

6

7

8

9

10

Questi contenuti non sono creati né avallati da Google.

Fino ad ora, quanto pensi che avresti potuto imparare quest'anno in Informatica
se la didattica fosse stata ottimale (attività ed esercizi chiari e interessanti,
ecc.)?

*

 Moduli

A.4. STUDENT QUESTIONNAIRES 299

A.4.1.1 In-progress checkpoints (common)

The questionnaire, as described in 10.1.2.3, follows.

27/01/23, 16:44 Checkpoint 1

https://docs.google.com/forms/d/142oX9xgboNKRr_GLhE4Pu650lcwRsOWZEvF2u9Qg1kE/edit 1/1

1. Email *

2.

3.

Questi contenuti non sono creati né avallati da Google.

Checkpoint 1
Rispondi alle due domande in modo molto sintetico, anche con una sola parola

*Campo obbligatorio

Come ti senti dopo questa attività (esercizio estrazione del lotto)? *
...in pochissime parole, anche una sola può bastare!

Come hai trovato questa attività (esercizio estrazione del lotto)? *
...in pochissime parole, anche una sola può bastare!

 Moduli

A.4. STUDENT QUESTIONNAIRES 301

A.4.2 Post-experimentation Questionnaires

The questionnaires, as described in 10.1.2.2 and 10.1.2.3, follow.

A.4.2.1 Post-experimentation Questionnaire for the experimental class

1. Email *

2.

Contrassegna solo un ovale.

Motivato

1

2

3

4

5

6

7

Non motivato

Informatica dopo l'intro agli array
NOTA BENE
Per ciascuna delle coppie che trovi sotto, scegli il numero che meglio descrive come ti
senti rispetto alla materia Informatica dopo l'introduzione agli array.

*Campo obbligatorio

*

3.

Contrassegna solo un ovale.

Interessato

1

2

3

4

5

6

7

Non interessato

*

4.

Contrassegna solo un ovale.

Coinvolto

1

2

3

4

5

6

7

Non coinvolto

* 5.

Contrassegna solo un ovale.

Non stimolato

1

2

3

4

5

6

7

Stimolato

*

6.

Contrassegna solo un ovale.

Non voglio studiarla

1

2

3

4

5

6

7

Voglio studiarla

* 7.

Contrassegna solo un ovale.

Ispirato

1

2

3

4

5

6

7

Non ispirato

*

8.

Contrassegna solo un ovale.

Non messo alla prova

1

2

3

4

5

6

7

Messo alla prova

* 9.

Contrassegna solo un ovale.

Non energizzato

1

2

3

4

5

6

7

Energizzato

*

10.

Contrassegna solo un ovale.

Non entusiasta

1

2

3

4

5

6

7

Entusiasta

* 11.

Contrassegna solo un ovale.

Elettrizzato

1

2

3

4

5

6

7

Non elettrizzato

*

12.

Contrassegna solo un ovale.

Carico

1

2

3

4

5

6

7

Non carico

* 13.

Contrassegna solo un ovale.

Non affascinato

1

2

3

4

5

6

7

affascinato

*

14.

Contrassegna solo un ovale.

1

2

3

4

5

6

7

8

9

10

Quanto hai imparato in Informatica in quest'ultimo periodo di introduzione agli
array?

*

1 non ho imparato niente -- 10 ho imparato più di quanto abbia imparato in ogni altra
materia

15.

Contrassegna solo un ovale.

1

2

3

4

5

6

7

8

9

10

Quanto pensi che avresti potuto imparare in Informatica, in quest'ultimo periodo
di introduzione agli array, se la didattica fosse stata ottimale (attività ed esercizi
chiari e interessanti, ecc.)?

*

16.

17.

18.

19.

Quali aspetti hai apprezzato del modo in cui sono stati introdotti gli array (farti
provare a risolvere il problema del lotto prima di spiegare gli array)?

*

Quali aspetti invece non ti sono piaciuti? *

Come ti sei sentitə durante la fase in cui non sapevi risolvere il problema del
lotto (perché ancora non conoscevi ancora array)?

*

Ti ha aiutatə a imparare gli array oppure ti ha ostacolatə? Perché? *

Questi contenuti non sono creati né avallati da Google.

 Moduli

306 APPENDIX A. MATERIAL OF NECESSITY SCHOOL EXPERIMENTATION

A.4.2.2 Post-experimentation Questionnaire for the control class (shorter)

1. Email *

2.

Contrassegna solo un ovale.

Motivato

1

2

3

4

5

6

7

Non motivato

Informatica dopo l'intro agli array
NOTA BENE
Per ciascuna delle coppie che trovi sotto, scegli il numero che meglio descrive come ti
senti rispetto alla materia Informatica dopo l'introduzione agli array.

*Campo obbligatorio

*

3.

Contrassegna solo un ovale.

Interessato

1

2

3

4

5

6

7

Non interessato

*

4.

Contrassegna solo un ovale.

Coinvolto

1

2

3

4

5

6

7

Non coinvolto

* 5.

Contrassegna solo un ovale.

Non stimolato

1

2

3

4

5

6

7

Stimolato

*

6.

Contrassegna solo un ovale.

Non voglio studiarla

1

2

3

4

5

6

7

Voglio studiarla

* 7.

Contrassegna solo un ovale.

Ispirato

1

2

3

4

5

6

7

Non ispirato

*

8.

Contrassegna solo un ovale.

Non messo alla prova

1

2

3

4

5

6

7

Messo alla prova

* 9.

Contrassegna solo un ovale.

Non energizzato

1

2

3

4

5

6

7

Energizzato

*

10.

Contrassegna solo un ovale.

Non entusiasta

1

2

3

4

5

6

7

Entusiasta

* 11.

Contrassegna solo un ovale.

Elettrizzato

1

2

3

4

5

6

7

Non elettrizzato

*

12.

Contrassegna solo un ovale.

Carico

1

2

3

4

5

6

7

Non carico

* 13.

Contrassegna solo un ovale.

Non affascinato

1

2

3

4

5

6

7

affascinato

*

14.

Contrassegna solo un ovale.

1

2

3

4

5

6

7

8

9

10

Quanto hai imparato in Informatica in quest'ultimo periodo di introduzione agli
array?

*

1 non ho imparato niente -- 10 ho imparato più di quanto abbia imparato in ogni altra
materia

15.

Contrassegna solo un ovale.

1

2

3

4

5

6

7

8

9

10

Questi contenuti non sono creati né avallati da Google.

Quanto pensi che avresti potuto imparare in Informatica, in quest'ultimo periodo
di introduzione agli array, se la didattica fosse stata ottimale (attività ed esercizi
chiari e interessanti, ecc.)?

*

 Moduli

Appendix B

Material of the Didactical Situation
on Interdisciplinary Cryptography

B.1 Researcher Observation Grid

The researcher observation grid used during the Didactical Situation, as described in 15.6,
follows.

311

Observer <Name> Start time <hh:mm>
Group <ID> (<milieu short description>) End time <hh:mm>

Participants (prospective teachers)
● P1 <Name Surname> – <discipline>
● P2 <Name Surname> – <discipline>
● P3 <Name Surname> – <discipline>
● P4 <Name Surname> – <discipline>
● P5 <Name Surname> – <discipline>

Group work

P1 P2 P3 P3 P5 Notes

Works mainly together with the group

Works in subgroups

specify subgroups & different approaches

Works alone

specify approach(es)

Constantly communicates with others

Does not (try to) communicate

Not understood by other students

Other / notes:

Problem-solving strategies

P1 P2 P3 P3 P5 Notes

Heuristic algorithm (partitions of the graph)

proposed

followed

abandoned

Algorithm using lists (each list is a
neighborhood of a PDS node)

(alt. desc.: find a subset of lists of neighbors
that include each node exactly once)

proposed

followed

abandoned

P1 P2 P3 P3 P5 Notes

Algorithm 1 using the adjacency matrix:
find a linear combination that has 1
everywhere

(alt. desc.: use the adjacency matrix to
represent the graph and then to find a subset of
rows whose sum is exactly a list of 1s)

proposed

followed

abandoned

Algorithm 2 using the adjacency matrix:
create a linear system of equations (to be solved by a linear solver)

proposed

followed

abandoned

Other strategy (specify):

proposed

followed

abandoned

Other / notes:

Boundary objects

P1 P2 P3 P3 P5 Notes

Talks about the adjacency matrix as a
way to represent and solve a system of
equations

Talks about the adjacency matrix as a
way to represent the graph (1 for
neighbor)

Other / notes:

Linguistic aspects

P1 P2 P3 P3 P5 Notes

Talks about the problem using a
cryptography language, e.g., PDS as the
(private) key

Talks about the problem using own
discipline language

Talks about the problem using OTHER
discipline languages

Other / notes:

Interdisciplinary aspects

P1 P2 P3 P3 P5 Notes

Effort in being understood by students of
other disciplines

Remain in / go back to their “disciplinary
confort zone”

Other / notes:

Disciplinary thinking / acting

P1 P2 P3 P3 P5 Notes

"First make it work, then make it nice"
(CS) approach

Comfort in doing a lot of computations
(CS) (e.g., a lot of equations without
simplifying, brute force for sublists)

Search for an elegant
representation/strategy before trying to
solve (Math/Phys?)

Discomfort in doing a lot of
computations (search for
simplification/abstraction) (Math/Phys?)

Other / notes:

Bibliography

Joint Task Force on Computing Curricula ACM/IEEE-CS. 2013. Computer Science Cur-
ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Science. ACM Press and IEEE Computer Society Press, USA. https://doi.org/
10.1145/2534860 [Cited on pages 18 and 22]

B. Adelson and E. Soloway. 1985. The Role of Domain Expenence in Software Design.
IEEE Transactions on Software Engineering SE-11, 11 (1985), 1351–1360. https:

//doi.org/10.1109/TSE.1985.231883 [Cited on page 31]

Sanne F. Akkerman and Arthur Bakker. 2011. Boundary Crossing and Boundary Objects.
Review of Educational Research 81, 2 (June 2011), 132–169. https://doi.org/10.3102/
0034654311404435 [Cited on pages 95, 96, 262, and 267]

Giora Alexandron, Michal Armoni, Michal Gordon, and David Harel. 2012. The Effect of
Previous Programming Experience on the Learning of Scenario-Based Programming. In
Proceedings of the 12th Koli Calling International Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’12). Association for Computing Machinery (ACM),
New York, NY, USA, 151–159. https://doi.org/10.1145/2401796.2401821 [Cited on

page 129]

V. H. Allan and M. V. Kolesar. 1997. Teaching Computer Science: A Problem Solving
Approach That Works. SIGCUE Outlook 25, 1–2 (jan 1997), 2–10. https://doi.org/
10.1145/274375.274376 [Cited on page 15]

Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigating Novice
Programming Mistakes in Large-Scale Student Data. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (Kansas City, Missouri, USA)
(SIGCSE ’15). Association for Computing Machinery (ACM), New York, NY, USA, 522–527.
https://doi.org/10.1145/2676723.2677258 [Cited on page 54]

David Alvargonzález. 2011. Multidisciplinarity, Interdisciplinarity, Transdisciplinarity, and the
Sciences. International Studies in the Philosophy of Science 25, 4 (Dec. 2011), 387–403.
https://doi.org/10.1080/02698595.2011.623366 [Cited on page 97]

Rachid Anane and Mohammad T. Alshammari. 2020. A Dynamic Visualisation of the DES
Algorithm and a Multi-Faceted Evaluation of Its Educational Value. In Proceedings of

315

https://doi.org/10.1145/2534860
https://doi.org/10.1145/2534860
https://doi.org/10.1109/TSE.1985.231883
https://doi.org/10.1109/TSE.1985.231883
https://doi.org/10.3102/0034654311404435
https://doi.org/10.3102/0034654311404435
https://doi.org/10.1145/2401796.2401821
https://doi.org/10.1145/274375.274376
https://doi.org/10.1145/274375.274376
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1080/02698595.2011.623366

316 BIBLIOGRAPHY

the 25th ACM Conference on Innovation & Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery (ACM), New
York, NY, USA, 370–376. https://doi.org/10.1145/3341525.3387386 [Cited on pages 91

and 249]

Aivar Annamaa. 2015. Thonny,: A Python IDE for Learning Programming. In Proceedings of
the 2015 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’15). Association for Computing Machinery (ACM), New York, NY, USA, 343.
https://doi.org/10.1145/2729094.2754849 [Cited on page 184]

Leo Apostel, Guy Berger, Asa Brigs, and Guy Michaud. 1972. Interdisciplinarity Problems
of Teaching and Research in Universities. Technical Report. Organisation for Economic
Cooperation and Development, Paris (France). Centre for Educational Research and
Innovation. 307 pages. [Cited on page 98]

Michèle Artigue. 1994. Didactical engineering as a framework for the conception of teaching
products. Didactics of mathematics as a scientific discipline 13 (1994), 27–39. [Cited on page 99]

Michéle Artigue. 2014. Didactic Engineering in Mathematics Education. In Encyclopedia
of Mathematics Education. Springer Netherlands, 159–162. https://doi.org/10.1007/
978-94-007-4978-8_44 [Cited on pages 99 and 100]

Michèle Artigue. 2020. Didactic Engineering in Mathematics Education. In Encyclopedia of
Mathematics Education, Stephen Lerman (Ed.). Springer International Publishing, Cham,
Switzerland, 202–206. https://doi.org/10.1007/978-3-030-15789-0_44 [Cited on pages

99, 100, and 246]

J. W. Atwood and E. Regener. 1981. Teaching Subsets of Pascal. In Proceedings of the
Twelfth SIGCSE Technical Symposium on Computer Science Education (St. Louis, Missouri,
USA) (SIGCSE ’81). Association for Computing Machinery (ACM), New York, NY, USA,
96–103. https://doi.org/10.1145/800037.800969 [Cited on page 55]

Lindsay Baker, Stella Ng, and Farah Friesen. 2019. Paradigms of Education. An Online Sup-
plement. Retrieved November 8, 2022 from https://www.paradigmsofeducation.com
[Cited on pages 36, 38, 39, and 40]

Doug Baldwin. 1996. Discovery Learning in Computer Science. SIGCSE Bull. 28, 1 (mar
1996), 222–226. https://doi.org/10.1145/236462.236544 [Cited on pages 81 and 82]

Doug Baldwin and Johannes A. G. M. Koomen. 1992. Using Scientific Experiments in Early
Computer Science Laboratories. In Proceedings of the Twenty-Third SIGCSE Technical
Symposium on Computer Science Education (Kansas City, MO, USA) (SIGCSE ’92).
Association for Computing Machinery (ACM), New York, NY, USA, 102–106. https:

//doi.org/10.1145/134510.134532 [Cited on page 82]

T. Balman. 1981. Computer assisted teaching of FORTRAN. Computers & Education 5, 2
(1981), 111–123. https://doi.org/10.1016/0360-1315(81)90020-8 [Cited on page 55]

https://doi.org/10.1145/3341525.3387386
https://doi.org/10.1145/2729094.2754849
https://doi.org/10.1007/978-94-007-4978-8_44
https://doi.org/10.1007/978-94-007-4978-8_44
https://doi.org/10.1007/978-3-030-15789-0_44
https://doi.org/10.1145/800037.800969
https://www.paradigmsofeducation.com
https://doi.org/10.1145/236462.236544
https://doi.org/10.1145/134510.134532
https://doi.org/10.1145/134510.134532
https://doi.org/10.1016/0360-1315(81)90020-8

BIBLIOGRAPHY 317

Bianca Vienni Baptista and Julie Thompson Klein. 2022. Institutionalizing Interdisciplinarity
and Transdisciplinarity. Routledge. https://doi.org/10.4324/9781003129424 [Cited on

page 94]

E Barelli, B Barquero, O Romero, M R Aguada, J Giménez, C Pipitone, G Sala-Sebastià,
A Nipyrakis, A Kokolaki, I Metaxas, E Michailidi, D Stavrou, I Bartzia, M Lodi, M
Sbaraglia, S Modeste, S Martini, V Durand-Guerrier, V Bagaglini, S Satanassi, P Fan-
tini, S Kapon, L Branchetti, and O Levrini. 2022. Disciplinary identities in interdis-
ciplinary topics: challenges and opportunities for teacher education. In Proceedings
of ESERA 2021 (Braga, Portugal) (European Science Education Research Association
2021 Biannual Conference), G S Carvalho, A S Afonso, and & Z Anastácio (Eds.),
Vol. 13. 934–943. https://esera2021.org/en/content/eproceedings/conference-
proceedings/conf-proceedings.html [Cited on pages 94 and 248]

Erik Barendsen and Carsten Schulte. 2018. Perspectives on Computing Curricula. In
Computer Science Education. Perspectives on Teaching and Learning in School, S. Sentance,
E. Barendsen, and C. Schulte (Eds.). Bloomsbury Academic, London, United Kingdom,
Chapter 7, 77–90. https://doi.org/10.5040/9781350057142.ch-007 [Cited on page 22]

Berta Barquero and Marianna Bosch. 2015. Didactic Engineering as a Research Methodology:
From Fundamental Situations to Study and Research Paths. In Task Design In Mathematics
Education. Springer International Publishing, Cham, Switzerland, 249–272. https:

//doi.org/10.1007/978-3-319-09629-2_8 [Cited on page 99]

Howard S. Barrows. 1996. Problem-based learning in medicine and beyond: A brief overview.
New Directions for Teaching and Learning 1996, 68 (1996), 3–12. https://doi.org/
10.1002/tl.37219966804 [Cited on page 47]

Walter L. Bateman. 1990. Open to Question: The Art of Teaching and Learning by Inquiry.
Jossey-Bass Inc., San Francisco, CA, USA. [Cited on page 81]

Aminah Bibi Bawamohiddin and Rozilawati Razali. 2017. Problem-based Learning for Program-
ming Education. International Journal on Advanced Science, Engineering and Information
Technology 7, 6 (Dec. 2017), 2035. https://doi.org/10.18517/ijaseit.7.6.2232 [Cited

on pages 47 and 48]

Piraye Bayman and Richard E. Mayer. 1988. Using conceptual models to teach BASIC
computer programming. Journal of Educational Psychology 80, 3 (Sept. 1988), 291–298.
https://doi.org/10.1037/0022-0663.80.3.291 [Cited on page 25]

Michael J Beatty and Shelly K Payne. 1985. Is construct differentiation loquacity?: A
motivational perspective. Human Communication Research 11 (1985), 605–612. [Cited on

page 160]

Theresa Beaubouef and John Mason. 2005. Why the High Attrition Rate for Computer
Science Students: Some Thoughts and Observations. ACM SIGCSE Bulletin 37, 2 (jun
2005), 103–106. https://doi.org/10.1145/1083431.1083474 [Cited on page 15]

https://doi.org/10.4324/9781003129424
https://esera2021.org/en/content/eproceedings/conference-proceedings/conf-proceedings.html
https://esera2021.org/en/content/eproceedings/conference-proceedings/conf-proceedings.html
https://doi.org/10.5040/9781350057142.ch-007
https://doi.org/10.1007/978-3-319-09629-2_8
https://doi.org/10.1007/978-3-319-09629-2_8
https://doi.org/10.1002/tl.37219966804
https://doi.org/10.1002/tl.37219966804
https://doi.org/10.18517/ijaseit.7.6.2232
https://doi.org/10.1037/0022-0663.80.3.291
https://doi.org/10.1145/1083431.1083474

318 BIBLIOGRAPHY

Byron Weber Becker. 2001. Teaching CS1 with Karel the Robot in Java. SIGCSE Bull. 33, 1
(feb 2001), 50–54. https://doi.org/10.1145/366413.364536 [Cited on page 55]

Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer Science
Unplugged: School Students Doing Real Computing Without Computers. The New Zealand
Journal of Applied Computing and Information Technology 13, 1 (2009), 20–29. [Cited on

pages 83, 84, 85, and 230]

Tim Bell, Peter Andreae, and Anthony Robins. 2014. A Case Study of the Introduction
of Computer Science in NZ Schools. 14, 2, Article 10 (jun 2014), 31 pages. https:

//doi.org/10.1145/2602485 [Cited on page 75]

Tim Bell and Caitlin Duncan. 2018. Teaching Computing in Primary Schools. In Com-
puter Science Education. Perspectives on Teaching and Learning in School, S. Sentance,
E. Barendsen, and C. Schulte (Eds.). Bloomsbury Academic, London, United Kingdom,
Chapter 10, 131–150. https://doi.org/10.5040/9781350057142.ch-010 [Cited on pages 76,

77, 79, and 80]

Tim Bell, Harold Thimbleby, Mike Fellows, Ian Witten, Neil Koblitz, and Matthew Powell.
2003. Explaining cryptographic systems. Computers & Education 40, 3 (2003), 199–215.
https://doi.org/10.1016/S0360-1315(02)00102-1 [Cited on pages 92, 246, 249, 252, and 253]

Tim Bell, Paul Tymann, and Amiram Yehudai. 2018. The Big Ideas in Computer Science for
K-12 Curricula. Bulletin of EATCS 1, 124 (2018). [Cited on pages 71, 75, 76, 77, and 217]

Tim Bell and Jan Vahrenhold. 2018. CS Unplugged—How Is It Used, and Does It Work?
In Adventures Between Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj
Hromkovič on the Occasion of His 60th Birthday, Hans-Joachim Böckenhauer, Dennis
Komm, and Walter Unger (Eds.). Springer International Publishing, Cham, Switzerland,
497–521. https://doi.org/10.1007/978-3-319-98355-4_29 [Cited on pages 84 and 85]

Tim Bell, Ian Witten, and Michael Fellows. 2015. Public Key Encryption. CS Unplugged. Re-
trieved July 24, 2022 from https://classic.csunplugged.org/activities/public-
key-encryption/ [Cited on pages 252 and 253]

Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo, Mauro
Torelli, and Luisa Zecca. 2014. Informatics Education in Italian Secondary Schools.
ACM Transactions on Computing Education 14, 2, Article 15 (June 2014), 6 pages.
https://doi.org/10.1145/2602490 [Cited on page 221]

Jens Bennedsen and Michael E. Caspersen. 2006. Abstraction Ability as an Indicator of
Success for Learning Object-Oriented Programming? ACM SIGCSE Bulletin 38, 2 (jun
2006), 39–43. https://doi.org/10.1145/1138403.1138430 [Cited on page 29]

Jens Bennedsen and Michael E. Caspersen. 2007. Failure Rates in Introductory Program-
ming. ACM SIGCSE Bulletin 39, 2 (jun 2007), 32–36. https://doi.org/10.1145/
1272848.1272879 [Cited on page 15]

https://doi.org/10.1145/366413.364536
https://doi.org/10.1145/2602485
https://doi.org/10.1145/2602485
https://doi.org/10.5040/9781350057142.ch-010
https://doi.org/10.1016/S0360-1315(02)00102-1
https://doi.org/10.1007/978-3-319-98355-4_29
https://classic.csunplugged.org/activities/public-key-encryption/
https://classic.csunplugged.org/activities/public-key-encryption/
https://doi.org/10.1145/2602490
https://doi.org/10.1145/1138403.1138430
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1145/1272848.1272879

BIBLIOGRAPHY 319

Jens Bennedsen and Michael E. Caspersen. 2019. Failure Rates in Introductory Programming:
12 Years Later. ACM Inroads 10, 2 (apr 2019), 30–36. https://doi.org/10.1145/
3324888 [Cited on pages 15 and 21]

John B Biggs and Kevin F Collis. 1982. Evaluating the Quality of Learning: the SOLO
Taxonomy (Structure of the Observed Learning Outcome). Elsevier. https://doi.org/
10.1016/c2013-0-10375-3 [Cited on page 25]

Gro Bjerknes and Tone Bratteteig. 1995. User Participation and Democracy: A Discussion
of Scandinavian Research on System Development. Scandinavian Journal of Information
Systems 7, 1 (Jan. 1995). https://aisel.aisnet.org/sjis/vol7/iss1/1 [Cited on page 58]

Elizabeth Bjork and Robert Bjork. 2011. Making things hard on yourself, but in a good way:
Creating desirable difficulties to enhance learning. Psychology and the Real World: Essays
Illustrating Fundamental Contributions to Society (01 2011), 56–64. [Cited on pages 49, 119, and 120]

Susanne Bødker, Pelle Ehn, Dan Sjögren, and Yngve Sundblad. 2000. Co-operative De-
sign—perspectives on 20 years with ‘the Scandinavian IT Design Model’. In proceedings of
NordiCHI, Vol. 2000. 22–24. [Cited on pages 58 and 196]

Charles C. Bonwell and James A. Eison. 1991. Active Learning: Creating Excitement in the
Classroom. 1991 ASHE-ERIC Higher Education Reports. [Cited on pages 34 and 35]

Richard Bornat, Saeed Dehnadi, and Simon. 2008. Mental Models, Consistency and Pro-
gramming Aptitude. In Proceedings of the Tenth Conference on Australasian Computing
Education - Volume 78 (Wollongong, NSW, Australia) (ACE ’08). Australian Computer
Society, Inc., AUS, 53–61. [Cited on page 16]

M. Bosch, J. Gascón, A. Mercier, and C. Magnolias. 2005. La praxéologie comme unité
d’analyse des processus didactiques (1 ed.). 107–122. [Cited on page 100]

Nigel Bosch and Sidney K. D’Mello. 2013. Sequential Patterns of Affective States of Novice
Programmers. CEUR Workshop Proceedings 1009 (01 2013), 1–10. [Cited on page 15]

Matt Bower. 2009. Learning Computing Online – Key Findings From Students. In Proceedings
of EdMedia + Innovate Learning 2009, George Siemens and Catherine Fulford (Eds.).
Association for the Advancement of Computing in Education (AACE), Honolulu, HI, USA,
4166–4175. https://www.learntechlib.org/p/32082 [Cited on pages 57, 58, and 191]

Matt Bower. 2011. Synchronous collaboration competencies in web-conferencing environments
– their impact on the learning process. Distance Education 32, 1 (2011), 63–83. https:

//doi.org/10.1080/01587919.2011.565502 [Cited on page 58]

Matt Bower, Gregor Kennedy, Barney Dalgarno, Mark JW Lee, and Jacqueline Kenney. 2014.
Blended synchronous learning: A handbook for educators. Australian Government, Office
for Learning and Teaching, Department of Education, Sydney, NSW, Australia. [Cited on pages

57, 58, 189, and 191]

https://doi.org/10.1145/3324888
https://doi.org/10.1145/3324888
https://doi.org/10.1016/c2013-0-10375-3
https://doi.org/10.1016/c2013-0-10375-3
https://aisel.aisnet.org/sjis/vol7/iss1/1
https://www.learntechlib.org/p/32082
https://doi.org/10.1080/01587919.2011.565502
https://doi.org/10.1080/01587919.2011.565502

320 BIBLIOGRAPHY

Garry D. Brewer. 1999. The Challenges of Interdisciplinarity. Policy Sciences 32, 4 (1999),
327–337. https://doi.org/10.1023/a:1004706019826 [Cited on pages 94 and 95]

Guy Brousseau and Nicolas Balacheff. 1997. Theory of didactical situations in mathematics:
didactique des mathématiques, 1970-1990. Number v. 19 in Mathematics education library.
Kluwer Academic Publishers, Dordrecht; Boston. [Cited on pages 98 and 99]

Guy Brousseau, Bernard Sarrazy, and Jarmila Novotná. 2020. Didactic Contract in
Mathematics Education. In Encyclopedia of Mathematics Education, Stephen Ler-
man (Ed.). Springer International Publishing, Cham, Switzerland, 197–202. https:

//doi.org/10.1007/978-3-030-15789-0_46 [Cited on page 99]

Guy Brousseau and Virginia Warfield. 2020. Didactic Situations in Mathematics Education. In
Encyclopedia of Mathematics Education, Stephen Lerman (Ed.). Springer International Pub-
lishing, Cham, Switzerland, 206–213. https://doi.org/10.1007/978-3-030-15789-
0_47 [Cited on page 99]

Christopher Brown, Frederick Crabbe, Rita Doerr, Raymond Greenlaw, Chris Hoffmeister,
Justin Monroe, Donald Needham, Andrew Phillips, Anthony Pollman, Stephen Schall, John
Schultz, Steven Simon, David Stahl, and Sarah Standard. 2012. Anatomy, Dissection,
and Mechanics of an Introductory Cyber-Security Course’s Curriculum at the United
States Naval Academy. In Proceedings of the 17th ACM Conference on Innovation &
Technology in Computer Science Education (Haifa, Israel) (ITiCSE ’12). Association
for Computing Machinery (ACM), New York, NY, USA, 303–308. https://doi.org/
10.1145/2325296.2325367 [Cited on pages 90 and 249]

Neil C. C. Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart: The
Resurgence of Computer Science in UK Schools. ACM Transactions on Computing
Education 14, 2 (2014), 9:1–9:22. [Cited on page 75]

Rachael L Brown. 2020. Why philosophers and scientists should work together. The Biologist
(2020). [Cited on page 94]

Valerie A. Brown, John A. Harris, and Jacqueline Y. Russell. 2010. Tackling wicked problems
through the transdisciplinary imagination. Earthscan, London, United Kingdom. OCLC:
669503940. [Cited on page 94]

Kim B. Bruce. 2004. Controversy on How to Teach CS 1: A Discussion on the SIGCSE-
Members Mailing List. ACM SIGCSE Bulletin 36, 4 (jun 2004), 29–34. https://

doi.org/10.1145/1041624.1041652 [Cited on pages 18 and 22]

Jerome S. Bruner. 1961. The Act of Discovery. Harvard Educational Review 31, 1 (1961).
[Cited on pages 41 and 81]

Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip
Miller. 1997. Education and Information Technologies 2, 1 (1997), 65–83. https:

//doi.org/10.1023/a:1018636507883 [Cited on page 55]

https://doi.org/10.1023/a:1004706019826
https://doi.org/10.1007/978-3-030-15789-0_46
https://doi.org/10.1007/978-3-030-15789-0_46
https://doi.org/10.1007/978-3-030-15789-0_47
https://doi.org/10.1007/978-3-030-15789-0_47
https://doi.org/10.1145/2325296.2325367
https://doi.org/10.1145/2325296.2325367
https://doi.org/10.1145/1041624.1041652
https://doi.org/10.1145/1041624.1041652
https://doi.org/10.1023/a:1018636507883
https://doi.org/10.1023/a:1018636507883

BIBLIOGRAPHY 321

P. Brusilovsky and Others. 1994. Teaching programming to novices: a review of approaches
and tools. Technical Report. https://eric.ed.gov/?id=ED388228 ERIC Number:
ED388228. [Cited on page 55]

Suzanne Fox Buchele. 2013. Two Models of a Cryptography and Computer Security Class
in a Liberal Arts Context. In Proceedings of the 44th ACM Technical Symposium on
Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for
Computing Machinery (ACM), New York, NY, USA, 543–548. https://doi.org/
10.1145/2445196.2445360 [Cited on page 90]

Winslow Burleson and Rosalind W Picard. 2004. Affective agents: Sustaining motivation to
learn through failure and a state of stuck. In Workshop on Social and Emotional Intelligence
in Learning Environments. MIT Media Lab. [Cited on page 15]

Susanne Bødker, Christian Dindler, and Ole Sejer Iversen. 2017. Tying Knots: Participatory
Infrastructuring at Work. Computer Supported Cooperative Work (CSCW) 26, 1-2 (April
2017), 245–273. https://doi.org/10.1007/s10606-017-9268-y [Cited on page 208]

Sara Capecchi, Michael Lodi, Violetta Lonati, and Sbaraglia Marco. 2022. Materials of
“Castle and Stairs to Learn Iteration: UMC Co-design”. https://codesignumc.web.app/
[Cited on pages 198, 199, 201, and 202]

Sara Capecchi, Michael Lodi, Violetta Lonati, and Marco Sbaraglia. 2023. Castle and Stairs
to Learn Iteration: Co-designing a UMC Learning Module with Teachers. (2023). Not yet
published. [Cited on page 195]

Michael E. Caspersen. 2018. Teaching Programming. In Computer Science Education.
Perspectives on Teaching and Learning in School, S. Sentance, E. Barendsen, and C. Schulte
(Eds.). Bloomsbury Academic, London, United Kingdom, Chapter 9, 109–130. https:

//doi.org/10.5040/9781350057142.ch-009 [Cited on pages 13, 21, 23, 24, 45, 46, and 128]

Michael E. Caspersen and Michael Kölling. 2009. STREAM: A First Programming Process.
ACM Transactions on Computing Education 9, 1, Article 4 (mar 2009), 29 pages. https:

//doi.org/10.1145/1513593.1513597 [Cited on page 23]

Francisco Enrique Vicente Castro and Kathi Fisler. 2017. Designing a multi-faceted SOLO
taxonomy to track program design skills through an entire course. In Proceedings of the
17th Koli Calling International Conference on Computing Education Research. Association
for Computing Machinery (ACM), New York, NY, USA. https://doi.org/10.1145/
3141880.3141891 [Cited on page 27]

Christina Chalmers, Merilyn Carter, Tom Cooper, and Rod Nason. 2017. Implementing “Big
Ideas” to Advance the Teaching and Learning of Science, Technology, Engineering, and
Mathematics (STEM). International Journal of Science and Mathematics Education 15,
S1 (Feb. 2017), 25–43. https://doi.org/10.1007/s10763-017-9799-1 [Cited on page 71]

https://eric.ed.gov/?id=ED388228
https://doi.org/10.1145/2445196.2445360
https://doi.org/10.1145/2445196.2445360
https://doi.org/10.1007/s10606-017-9268-y
https://codesignumc.web.app/
https://doi.org/10.5040/9781350057142.ch-009
https://doi.org/10.5040/9781350057142.ch-009
https://doi.org/10.1145/1513593.1513597
https://doi.org/10.1145/1513593.1513597
https://doi.org/10.1145/3141880.3141891
https://doi.org/10.1145/3141880.3141891
https://doi.org/10.1007/s10763-017-9799-1

322 BIBLIOGRAPHY

Yves Chevallard and Marianna Bosch. 2020. Anthropological Theory of the Didactic (ATD).
In Encyclopedia of Mathematics Education, Stephen Lerman (Ed.). Springer International
Publishing, Cham, Switzerland, 53–61. https://doi.org/10.1007/978-3-030-15789-
0_100034 [Cited on page 101]

Nancy L Chick, Aeron Haynie, Regan AR Gurung, and AR Regan. 2009. From generic
to signature pedagogies: teaching disciplinary understandings. In Exploring signature
pedagogies: Approaches to disciplinary habits of min. Stylus Publishing, 1–16. https:

//books.google.co.il/books?id=0SWec-nwL4EC [Cited on page 67]

Bernard C. K. Choi and Anita W. P. Pak. 2007. Multidisciplinarity, interdisciplinarity, and
transdisciplinarity in health research, services, education and policy: 2. Promotors, barriers,
and strategies of enhancement. Clinical & Investigative Medicine 30, 6 (Dec. 2007),
224. https://doi.org/10.25011/cim.v30i6.2950 [Cited on page 95]

David M Christophel. 1990. The relationships among teacher immediacy behaviors, student
motivation, and learning. Communication Education 39, 4 (1990), 323–340. [Cited on page 160]

Code.org. 2022. Artist pre-reader. Retrieved January 4, 2023 from https://

studio.code.org/projects/artist_k1/new [Cited on pages 197, 198, 199, and 201]

Code.org. n.d. Code.org. https://code.org/ [Cited on pages 196, 198, and 207]

Code.org, CSTA, & ECEP Alliance. 2020. 2020 State of Computer Science Education:
Illuminating Disparities. Technical Report. https://advocacy.code.org/2020_state_
of_cs.pdf [Cited on page 15]

Code.org, CSTA, & ECEP Alliance. 2022. 2022 State of Computer Science Education:
Understanding Our National Imperative. Technical Report. https://advocacy.code.org/
2022_state_of_cs.pdf [Cited on page 15]

Merijke Coenraad, Jen Palmer, Donna Eatinger, David Weintrop, and Diana Franklin. 2022.
Using participatory design to integrate stakeholder voices in the creation of a culturally
relevant computing curriculum. International Journal of Child-Computer Interaction 31
(2022), 100353. https://doi.org/10.1016/j.ijcci.2021.100353 [Cited on pages 59 and 208]

John W. Coffey. 2010. Web Conferencing Software in University-Level, E-Learning-Based,
Technical Courses. Journal of Educational Technology Systems 38, 3 (2010), 367–381.
https://doi.org/10.2190/ET.38.3.f [Cited on page 58]

Timothy Colburn and Gary Shute. 2007. Abstraction in Computer Science. Minds and
Machines 17, 2 (2007), 169–184. https://doi.org/10.1007/s11023-007-9061-7
[Cited on page 31]

Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein. 2022.
Introduction to algorithms (fourth ed.). The MIT Press, Cambridge, Massachusetts, USA.
[Cited on pages 251, 258, and 259]

https://doi.org/10.1007/978-3-030-15789-0_100034
https://doi.org/10.1007/978-3-030-15789-0_100034
https://books.google.co.il/books?id=0SWec-nwL4EC
https://books.google.co.il/books?id=0SWec-nwL4EC
https://doi.org/10.25011/cim.v30i6.2950
https://studio.code.org/projects/artist_k1/new
https://studio.code.org/projects/artist_k1/new
https://code.org/
https://advocacy.code.org/2020_state_of_cs.pdf
https://advocacy.code.org/2020_state_of_cs.pdf
https://advocacy.code.org/2022_state_of_cs.pdf
https://advocacy.code.org/2022_state_of_cs.pdf
https://doi.org/10.1016/j.ijcci.2021.100353
https://doi.org/10.2190/ET.38.3.f
https://doi.org/10.1007/s11023-007-9061-7

BIBLIOGRAPHY 323

Malcolm Corney, Donna Teague, and Richard N. Thomas. 2010. Engaging Students in
Programming. In Proceedings of the Twelfth Australasian Conference on Computing
Education - Volume 103 (Brisbane, Australia) (ACE ’10). Australian Computer Society,
Inc., AUS, 63–72. [Cited on pages 15 and 16]

Isabella Corradini, Michael Lodi, and Enrico Nardelli. 2017a. Computational Thinking in
Italian Schools: Quantitative Data and Teachers’ Sentiment Analysis after Two Years of
“Programma Il Futuro”. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education (Bologna, Italy) (ITiCSE ’17). Association
for Computing Machinery (ACM), New York, NY, USA, 224–229. https://doi.org/
10.1145/3059009.3059040 [Cited on pages 196 and 198]

Isabella Corradini, Michael Lodi, and Enrico Nardelli. 2017b. Conceptions and Misconceptions
about Computational Thinking among Italian Primary School Teachers. In Proceedings
of the 2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery (ACM), New York,
NY, USA, 136–144. https://doi.org/10.1145/3105726.3106194 [Cited on page 66]

Isabella Corradini, Michael Lodi, and Enrico Nardelli. 2018. An Investigation of Italian
Primary School Teachers’ View on Coding and Programming. In Informatics in Schools.
Fundamentals of Computer Science and Software Engineering. Lecture Notes in Computer
Science (ISSEP 2018), Sergei N. Pozdniakov and Valentina Dagienė (Eds.), Vol. 11169.
Springer International Publishing, Cham, Switzerland, 228–243. [Cited on page 66]

Tom Crick, Cathryn Knight, Richard Watermeyer, and Janet Goodall. 2020. The Im-
pact of COVID-19 and “Emergency Remote Teaching” on the UK Computer Science
Education Community. In United Kingdom & Ireland Computing Education Research Con-
ference. (UKICER ’20). ACM, New York, NY, USA, 31–37. https://doi.org/10.1145/
3416465.3416472 [Cited on page 58]

CS Unplugged. [n.d.]. Principles. Retrieved December 29, 2022 from https://

csunplugged.org/en/principles/ [Cited on pages 84 and 240]

CSTA. 2017. CSTA K-12 Computer Science Standards, rev. 2017. Technical Report. Computer
Science Teachers Association. http://www.csteachers.org/standards [Cited on pages 90, 198,

199, and 248]

Computer Science Teachers Association CSTA. 2016. CSTA K–12 Computer Science Stan-
dards [INTERIM]. https://kipdf.com/interim-csta-k-12-computer-science-
standards_5b1132977f8b9a2d218b45db.html [Cited on page 22]

Paul Curzon. 2015. Unplugged Computational Thinking for Fun. KEYCIT 2014 - Key
Competencies in Informatics and ICT 7 (2015), 15–27. [Cited on page 83]

Paul Curzon, Tim Bell, Jane Waite, and Mark Dorling. 2019. Computational Thinking. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and Anthony V.

https://doi.org/10.1145/3059009.3059040
https://doi.org/10.1145/3059009.3059040
https://doi.org/10.1145/3105726.3106194
https://doi.org/10.1145/3416465.3416472
https://doi.org/10.1145/3416465.3416472
https://csunplugged.org/en/principles/
https://csunplugged.org/en/principles/
http://www.csteachers.org/standards
https://kipdf.com/interim-csta-k-12-computer-science-standards_5b1132977f8b9a2d218b45db.html
https://kipdf.com/interim-csta-k-12-computer-science-standards_5b1132977f8b9a2d218b45db.html

324 BIBLIOGRAPHY

Robins (Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 17,
513–546. https://doi.org/10.1017/9781108654555.018 [Cited on pages 66, 83, 111, and 117]

Paul Curzon and Peter William McOwan. 2017. The Power of Computational Thinking:
Games, Magic and Puzzles to Help You Become a Computational Thinker. World Scientific
Publishing Europe Ltd, London, United Kingdom. [Cited on page 83]

Paul Curzon, Peter W McOwan, James Donohue, Seymour Wright, and William Marsh.
2018. Teaching of Concepts. In Computer Science Education. Perspectives on Teaching
and Learning in School, S. Sentance, E. Barendsen, and C. Schulte (Eds.). Bloomsbury
Academic, London, United Kingdom, Chapter 8, 91–108. https://doi.org/10.5040/
9781350057142.ch-008 [Cited on pages 65, 79, 81, and 83]

Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. 2014. Introducing
Teachers to Computational Thinking Using Unplugged Storytelling. In Proceedings of the
9th Workshop in Primary and Secondary Computing Education (WiPSCE ’14). Association
for Computing Machinery (ACM), New York, NY, USA, 89–92. https://doi.org/
10.1145/2670757.2670767 [Cited on page 84]

Dean C. Dauw. 1967. Vocational interests of highly creative computer personnel. Personnel
Journal 46, 10 (1967), 653–659. [Cited on page 16]

Neil Davidson. 1990. Cooperative Learning in Mathematics: A Handbook for Teachers.
Addison-Wesley Innovative Division, Menlo Park, CA, USA. [Cited on page 82]

Michael de Raadt, Richard Watson, and Mark Toleman. 2005. Textbooks: under inspection.
Technical Report. University of Southern Queensland, Toowoomba, Australia. https:

//eprints.usq.edu.au/167/ [Cited on page 23]

FadiP. Deek, Howard Kimmel, and James A. McHugh. 1998. Pedagogical Changes in the
Delivery of the First-Course in Computer Science: Problem Solving, Then Programming.
Journal of Engineering Education 87, 3 (July 1998), 313–320. https://doi.org/10.1002/
j.2168-9830.1998.tb00359.x [Cited on page 48]

Saeed Dehnadi and Richard Bornat. 2006. The camel has two humps (working title). (2006).
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf [Cited on page 16]

Jill Denner and Shannon Campe. 2018. Equity and Inclusion in Computer Science Education. In
Computer Science Education. Perspectives on Teaching and Learning in School, S. Sentance,
E. Barendsen, and C. Schulte (Eds.). Bloomsbury Academic, London, United Kingdom,
Chapter 14, 189–206. https://doi.org/10.5040/9781350057142.ch-014 [Cited on page 14]

Peter J. Denning. 2013. The Science in Computer Science. Commun. ACM 56, 5 (may
2013), 35–38. https://doi.org/10.1145/2447976.2447988 [Cited on page 15]

Peter J. Denning and Craig H. Martell. 2015. Great Principles of Computing. The MIT Press,
Cambridge, Massachusetts, USA. [Cited on page 75]

https://doi.org/10.1017/9781108654555.018
https://doi.org/10.5040/9781350057142.ch-008
https://doi.org/10.5040/9781350057142.ch-008
https://doi.org/10.1145/2670757.2670767
https://doi.org/10.1145/2670757.2670767
https://eprints.usq.edu.au/167/
https://eprints.usq.edu.au/167/
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
https://doi.org/10.5040/9781350057142.ch-014
https://doi.org/10.1145/2447976.2447988

BIBLIOGRAPHY 325

Peter J. Denning, Matti Tedre, and Pat Yongpradit. 2017. Misconceptions about Computer
Science. Commun. ACM 60, 3 (Feb. 2017), 31–33. https://doi.org/10.1145/3041047
[Cited on page 67]

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011. Understanding
the Syntax Barrier for Novices. In Proceedings of the 16th Annual Joint Conference
on Innovation and Technology in Computer Science Education (Darmstadt, Germany)
(ITiCSE ’11). Association for Computing Machinery (ACM), New York, NY, USA, 208–212.
https://doi.org/10.1145/1999747.1999807 [Cited on page 54]

Norman K Denzin and Yvonna S Lincoln. 2017. The SAGE Handbook of Qualitative Research.
SAGE Publications, Thousand Oaks, CA, USA. [Cited on page 193]

Pranita Deshpande, Cynthia B. Lee, and Irfan Ahmed. 2019. Evaluation of Peer Instruction
for Cybersecurity Education. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery (ACM), New York, NY, USA, 720–725. https://doi.org/
10.1145/3287324.3287403 [Cited on pages 90 and 249]

John Dewey. 1916. Democracy and Education : An Introduction to the Philosophy of
Education. Macmillan. [Cited on page 34]

A. A diSessa and H. Abelson. 1986. Boxer: A Reconstructible Computational Medium.
Commun. ACM 29, 9 (sep 1986), 859–868. https://doi.org/10.1145/6592.6595 [Cited

on page 29]

Allen Downey. 2015. Think Python. O’Reilly Media, Sebastopol, CA. [Cited on page 131]

Allison Druin. 2002. The role of children in the design of new technology. Behaviour
& Information Technology 21, 1 (Jan. 2002), 1–25. https://doi.org/10.1080/
01449290110108659 [Cited on page 58]

Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of Educational
Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/3LFX-9RRF-67T8-
UVK9 [Cited on pages 28, 109, and 110]

Caitlin Duncan. 2019. Computer science and computational thinking in primary schools.
Ph.D. Dissertation. University of Canterbury. http://hdl.handle.net/10092/17160
[Cited on page 67]

Raymond Duval. 1995. Sémiosis et pensée humaine: registres sémiotiques et apprentissages
intellectuels. Peter Lang, Berne, Switzerland. [Cited on pages 253, 255, and 261]

Raymond Duval. 2017. Understanding the Mathematical Way of Thinking – The Registers of
Semiotic Representations. Springer International Publishing, Cham, Switzerland. https:

//doi.org/10.1007/978-3-319-56910-9 [Cited on pages 253, 255, and 261]

https://doi.org/10.1145/3041047
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/3287324.3287403
https://doi.org/10.1145/3287324.3287403
https://doi.org/10.1145/6592.6595
https://doi.org/10.1080/01449290110108659
https://doi.org/10.1080/01449290110108659
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://hdl.handle.net/10092/17160
https://doi.org/10.1007/978-3-319-56910-9
https://doi.org/10.1007/978-3-319-56910-9

326 BIBLIOGRAPHY

Sidney D’Mello and Art Graesser. 2012. Dynamics of affective states during complex
learning. Learning and Instruction 22, 2 (2012), 145–157. https://doi.org/10.1016/
j.learninstruc.2011.10.001 [Cited on page 15]

ECforALL. n.d. Act 1 Curriculum. https://impactconectar.wixsite.com/website/
act-1 [Cited on page 198]

Anna Eckerdal, Robert McCartney, Jan Erik Moström, Mark Ratcliffe, Kate Sanders, and
Carol Zander. 2006. Putting Threshold Concepts into Context in Computer Science
Education. ACM SIGCSE Bulletin 38, 3 (jun 2006), 103–107. https://doi.org/
10.1145/1140123.1140154 [Cited on page 15]

Joseph Elarde. 2016. Toward Improving Introductory Programming Student Course Success
Rates: Experiences with a Modified Cohort Model to Student Success Sessions. J. Comput.
Sci. Coll. 32, 2 (dec 2016), 113–119. [Cited on page 16]

Richard J. Enbody and William F. Punch. 2010. Performance of Python CS1 Students in
Mid-Level Non-Python CS Courses. In Proceedings of the 41st ACM Technical Symposium
on Computer Science Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association
for Computing Machinery, New York, NY, USA, 520–523. https://doi.org/10.1145/
1734263.1734437 [Cited on page 54]

Richard J. Enbody, William F. Punch, and Mark McCullen. 2009. Python CS1 as Preparation
for C++ CS2. In Proceedings of the 40th ACM Technical Symposium on Computer Science
Education (Chattanooga, TN, USA) (SIGCSE ’09). Association for Computing Machinery,
New York, NY, USA, 116–120. https://doi.org/10.1145/1508865.1508907 [Cited on

page 54]

Yrjö Engeström, Ritva Engeström, and Merja Kärkkäinen. 1995. Polycontextuality and
boundary crossing in expert cognition: Learning and problem solving in complex work
activities. Learning and Instruction 5, 4 (Jan. 1995), 319–336. https://doi.org/
10.1016/0959-4752(95)00021-6 [Cited on pages 95 and 96]

Nathan L. Ensmenger. 2010. The Computer Boys Take Over: Computers, Programmers,
and the Politics of Technical Expertise. The MIT Press, Cambridge, Massachusetts, USA.
https://doi.org/10.7551/mitpress/9780262050937.001.0001 [Cited on pages 14 and 16]

Henry A. Etlinger. 1990. A Retrospective on an Early Software Projects Course. SIGCSE
Bull. 22, 1 (feb 1990), 72–77. https://doi.org/10.1145/319059.319087 [Cited on page 82]

Joint Research Centre European Commission. 2017. DigComp 2.1: the digital competence
framework for citizens with eight proficiency levels and examples of use. Publications Office.
https://doi.org/10.2760/38842 [Cited on pages 89 and 216]

Katrina Falkner and Judy Sheard. 2019. Pedagogic Approaches. In The Cambridge
Handbook of Computing Education Research, Sally A. Fincher and Anthony V. Robins
(Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 15, 445–480.
https://doi.org/10.1017/9781108654555.016 [Cited on pages 24, 28, 36, 37, 38, and 50]

https://doi.org/10.1016/j.learninstruc.2011.10.001
https://doi.org/10.1016/j.learninstruc.2011.10.001
https://impactconectar.wixsite.com/website/act-1
https://impactconectar.wixsite.com/website/act-1
https://doi.org/10.1145/1140123.1140154
https://doi.org/10.1145/1140123.1140154
https://doi.org/10.1145/1734263.1734437
https://doi.org/10.1145/1734263.1734437
https://doi.org/10.1145/1508865.1508907
https://doi.org/10.1016/0959-4752(95)00021-6
https://doi.org/10.1016/0959-4752(95)00021-6
https://doi.org/10.7551/mitpress/9780262050937.001.0001
https://doi.org/10.1145/319059.319087
https://doi.org/10.2760/38842
https://doi.org/10.1017/9781108654555.016

BIBLIOGRAPHY 327

Katrina Falkner, Rebecca Vivian, and Nickolas Falkner. 2014. The Australian Digital Technolo-
gies Curriculum: Challenge and Opportunity. In Proceedings of the Sixteenth Australasian
Computing Education Conference - Volume 148 (Auckland, New Zealand) (ACE ’14).
Australian Computer Society, Inc., AUS, 3–12. [Cited on page 75]

Michel Fayol and Patrick Lemaire. 1989. Une étude expérimentale du fonctionnement
distinctif de la virgule dans des phrases: perspective génétique. Études de Linguis-
tique Appliquée; Paris 73 (1989), 71–80. https://search.proquest.com/docview/
1307660874/citation/AD75E7B1D3194174PQ/1 [Cited on page 54]

Yvon Feaster, Luke Segars, Sally K. Wahba, and Jason O. Hallstrom. 2011. Teaching
CS Unplugged in the High School (with Limited Success). In Proceedings of the 16th
Annual Joint Conference on Innovation and Technology in Computer Science Education
(Darmstadt, Germany) (ITiCSE ’11). Association for Computing Machinery (ACM), New
York, NY, USA, 248–252. https://doi.org/10.1145/1999747.1999817 [Cited on page 85]

Rachel E Fees, Jennifer A Da Rosa, Sarah S Durkin, Mark M Murray, and Angela L Moran.
2018. Unplugged cybersecurity: An approach for bringing computer science into the
classroom. International Journal of Computer Science Education in Schools 2, 1 (Feb.
2018), 3–13. https://doi.org/10.21585/ijcses.v2i1.21 [Cited on pages 92 and 249]

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2004.
The TeachScheme! Project: Computing and Programming for Every Student. Computer
Science Education 14, 1 (2004), 55–77. https://doi.org/10.1076/csed.14.1.55.23499
arXiv:https://doi.org/10.1076/csed.14.1.55.23499 [Cited on page 55]

Michael R Fellows and Mark N Hoover. 1991. Perfect domination. Australas. J Comb. 3
(1991), 141–150. [Cited on page 250]

Michael R Fellows and Neal Koblitz. 1994. Combinatorially based cryptography for children
(and adults). Congressus Numerantium 99 (1994), 9–41. [Cited on pages 246, 250, 252, and 253]

Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay, Matthias
Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas Mühling, Janice L.
Pearce, and Andrew Petersen. 2020. Notional Machines in Computing Education: The
Education of Attention. In Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education (Trondheim, Norway) (ITiCSE-WGR ’20).
Association for Computing Machinery (ACM), New York, NY, USA, 21–50. https:

//doi.org/10.1145/3437800.3439202 [Cited on pages 29, 110, and 111]

Sally A. Fincher and Anthony V. Robins. 2019. The Cambridge Handbook of Computing
Education Research. Cambridge University Press, Cambridge, United Kingdom. https:

//doi.org/10.1017/9781108654555 [Cited on page 41]

Diana Franklin, Merijke Coenraad, Jennifer Palmer, Donna Eatinger, Anna Zipp, Marco
Anaya, Max White, Hoang Pham, Ozan Gökdemir, and David Weintrop. 2020a. An Analysis
of Use-Modify-Create Pedagogical Approach’s Success in Balancing Structure and Student

https: //search.proquest.com/docview/1307660874/citation/AD75E7B1D3194174PQ/1
https: //search.proquest.com/docview/1307660874/citation/AD75E7B1D3194174PQ/1
https://doi.org/10.1145/1999747.1999817
https://doi.org/10.21585/ijcses.v2i1.21
https://doi.org/10.1076/csed.14.1.55.23499
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1017/9781108654555
https://doi.org/10.1017/9781108654555

328 BIBLIOGRAPHY

Agency. In Proceedings of the 2020 ACM Conference on International Computing Education
Research (Virtual Event, New Zealand) (ICER ’20). Association for Computing Machinery
(ACM), New York, NY, USA, 14–24. https://doi.org/10.1145/3372782.3406256
[Cited on page 53]

Diana Franklin, Jean Salac, Zachary Crenshaw, Saranya Turimella, Zipporah Klain, Marco
Anaya, and Cathy Thomas. 2020b. Exploring Student Behavior Using the TIPP&SEE
Learning Strategy. In Proceedings of the 2020 ACM Conference on International Computing
Education Research (Virtual Event, New Zealand) (ICER ’20). Association for Com-
puting Machinery (ACM), New York, NY, USA, 91–101. https://doi.org/10.1145/
3372782.3406257 [Cited on pages 53 and 54]

Scott Freeman, Sarah L. Eddy, Miles McDonough, Michelle K. Smith, Nnadozie Okoroafor,
Hannah Jordt, and Mary Pat Wenderoth. 2014. Active learning increases student perfor-
mance in science, engineering, and mathematics. Proceedings of the National Academy
of Sciences 111, 23 (2014), 8410–8415. https://doi.org/10.1073/pnas.1319030111
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1319030111 [Cited on pages 29, 34, 45, and 115]

Robert Frodeman. 2014. Sustainable Knowledge. Palgrave Macmillan UK. https://

doi.org/10.1057/9781137303028 [Cited on page 94]

Maurizio Gabbrielli and Simone Martini. 2010. Programming Languages: Principles and
Paradigms. Springer London, London, United Kingdom. https://doi.org/10.1007/
978-1-84882-914-5 [Cited on pages 29, 31, 32, and 33]

Reinaldo AZ Garcia. 1987. Identifying the academic factors that predict the success of
entering freshmen in a beginning computer science course. Doctoral thesis. http:

//hdl.handle.net/2346/59483 [Cited on page 15]

D.R. Garrison, Martha Cleveland-Innes, and Tak Shing Fung. 2010. Exploring causal re-
lationships among teaching, cognitive and social presence: Student perceptions of the
community of inquiry framework. The Internet and Higher Education 13, 1 (2010), 31–36.
https://doi.org/10.1016/j.iheduc.2009.10.002 Special Issue on the Community of
Inquiry Framework: Ten Years Later. [Cited on page 189]

D. Randy Garrison, Terry Anderson, and Walter Archer. 1999. Critical Inquiry in a Text-
Based Environment: Computer Conferencing in Higher Education. The Internet and
Higher Education 2, 2-3 (March 1999), 87–105. https://doi.org/10.1016/S1096-
7516(00)00016-6 [Cited on page 188]

Dedre Gentner. 1983. Mental models. Erlbaum, Hillsdale, N.J. [Cited on page 27]

Dedre Gentner. 2002. Mental models, psychology of. Elsevier Science, 9683–9687. [Cited on

page 27]

W. Wayt Gibbs. 1994. Software's Chronic Crisis. Scientific American 271, 3 (Sept. 1994),
86–95. https://doi.org/10.1038/scientificamerican0994-86 [Cited on page 14]

https://doi.org/10.1145/3372782.3406256
https://doi.org/10.1145/3372782.3406257
https://doi.org/10.1145/3372782.3406257
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1057/9781137303028
https://doi.org/10.1057/9781137303028
https://doi.org/10.1007/978-1-84882-914-5
https://doi.org/10.1007/978-1-84882-914-5
http://hdl.handle.net/2346/59483
http://hdl.handle.net/2346/59483
https://doi.org/10.1016/j.iheduc.2009.10.002
https://doi.org/10.1016/S1096-7516(00)00016-6
https://doi.org/10.1016/S1096-7516(00)00016-6
https://doi.org/10.1038/scientificamerican0994-86

BIBLIOGRAPHY 329

Marleen Gilsing and Felienne Hermans. 2021. Gradual Programming in Hedy: A First User
Study. In 2021 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–9. https://doi.org/10.1109/vl/hcc51201.2021.9576236 [Cited on

page 87]

David Ginat and Eti Menashe. 2015. SOLO Taxonomy for Assessing Novices’ Algorithmic
Design. In Proceedings of the 46th ACM Technical Symposium on Computer Science Edu-
cation (Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery
(ACM), New York, NY, USA, 452–457. https://doi.org/10.1145/2676723.2677311
[Cited on page 26]

B.G. Glaser and A.L. Strauss. 1967. The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine Publishing Company. [Cited on page 187]

Inga Glogger-Frey, Corinna Fleischer, Lisa Grüny, Julian Kappich, and Alexander Renkl. 2015.
Inventing a solution and studying a worked solution prepare differently for learning from
direct instruction. Learning and Instruction 39 (Oct. 2015), 72–87. https://doi.org/
10.1016/j.learninstruc.2015.05.001 [Cited on page 51]

Google LLC. & Gallup Inc. 2016. Diversity gaps in computer science: exploring the under-
representation of girls, Blacks and Hispanics. Technical Report. http://goo.gl/PG34aH
[Cited on page 15]

Andreas Gramm, Malte Hornung, and Helmut Witten. 2012. Email for You (Only?): De-
sign and Implementation of a Context-Based Learning Process on Internetworking and
Cryptography. In Proceedings of the 7th Workshop in Primary and Secondary Computing
Education (Hamburg, Germany) (WiPSCE ’12). Association for Computing Machinery
(ACM), New York, NY, USA, 116–124. https://doi.org/10.1145/2481449.2481477
[Cited on page 91]

Kathryn E. Gray and Matthew Flatt. 2003. ProfessorJ: A Gradual Introduction to Java
through Language Levels. In Companion of the 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (Anaheim, CA,
USA) (OOPSLA ’03). Association for Computing Machinery (ACM), New York, NY, USA,
170–177. https://doi.org/10.1145/949344.949394 [Cited on page 55]

Raymond Greenlaw, Christopher Brown, Zachary Dannelly, Andrew Phillips, and Sarah Stan-
dard. 2015. Using a Message Board as a Teaching Tool in an Introductory Cyber-Security
Course. In Proceedings of the 46th ACM Technical Symposium on Computer Science Edu-
cation (Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery
(ACM), New York, NY, USA, 308–313. https://doi.org/10.1145/2676723.2677221
[Cited on page 92]

David Gries. 1974. What Should We Teach in an Introductory Programming Course? ACM
SIGCSE Bulletin 6, 1 (jan 1974), 81–89. https://doi.org/10.1145/953057.810447
[Cited on page 23]

https://doi.org/10.1109/vl/hcc51201.2021.9576236
https://doi.org/10.1145/2676723.2677311
https://doi.org/10.1016/j.learninstruc.2015.05.001
https://doi.org/10.1016/j.learninstruc.2015.05.001
http://goo.gl/PG34aH
https://doi.org/10.1145/2481449.2481477
https://doi.org/10.1145/949344.949394
https://doi.org/10.1145/2676723.2677221
https://doi.org/10.1145/953057.810447

330 BIBLIOGRAPHY

Shuchi Grover and Roy Pea. 2013. Computational Thinking in K–12: A Review of the State
of the Field. Educational Researcher 42, 1 (2013), 38–43. https://doi.org/10.3102/
0013189X12463051 [Cited on page 15]

Till Grüne-Yanoff. 2016. Interdisciplinary success without integration. European Journal for
Philosophy of Science 6, 3 (March 2016), 343–360. https://doi.org/10.1007/s13194-
016-0139-z [Cited on page 94]

Raymonde Guindon, Herb Krasner, and Bill Curtis. 1987. Breakdowns and processes during
the early activities of software design by professionals. (12 1987), 65–82. [Cited on page 30]

Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visualization
for Cs Education. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (SIGCSE ’13). Association for Computing Machinery (ACM), New York,
NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368 [Cited on page 184]

Ayush Gupta, David Hammer, and Edward F. Redish. 2010. The Case for Dy-
namic Models of Learners’ Ontologies in Physics. Journal of the Learning Sci-
ences 19, 3 (2010), 285–321. https://doi.org/10.1080/10508406.2010.491751
arXiv:https://doi.org/10.1080/10508406.2010.491751 [Cited on page 29]

Regan A. R. Gurung, Nancy L. Chick, and Aeron Haynie. 2009. Exploring signature pedagogies:
approaches to teaching disciplinary habits of mind (1st ed ed.). Stylus Publishing, Sterling,
Va. OCLC: 309904368. [Cited on page 67]

John Guttag. 2021. Introduction to Computation and Programming Using Python : With Ap-
plication to Computational Modeling and Understanding Data. The MIT Press, Cambridge,
Massachusetts, USA. [Cited on page 131]

Mark Guzdial. 2007. What makes programming so hard. http://home.cc.gatech.edu/
csl/uploads/6/Guzdial-blog-pieces-on-what-is-CSEd.pdf [Cited on page 16]

Mark Guzdial. 2008. Paving the Way for Computational Thinking. Commun. ACM 51, 8
(Aug. 2008), 25–27. https://doi.org/10.1145/1378704.1378713 [Cited on page 128]

Mark Guzdial. 2010. Why is it so hard to learn to program. Making Software: What Really
Works, and Why We Believe It. O’Reilly Media (2010), 111–124. [Cited on pages 15 and 16]

Mark Guzdial. 2013. Exploring Hypotheses about Media Computation. In Proceedings of
the Ninth Annual International ACM Conference on International Computing Education
Research (San Diego, San California, USA) (ICER ’13). Association for Computing Machin-
ery (ACM), New York, NY, USA, 19–26. https://doi.org/10.1145/2493394.2493397
[Cited on page 86]

Mark Guzdial. 2015. Learner-Centered Design of Computing Education: Research on Com-
puting for Everyone. Synthesis Lectures on Human-Centered Informatics 8, 6 (Nov. 2015),
1–165. https://doi.org/10.2200/s00684ed1v01y201511hci033 [Cited on page 15]

https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1007/s13194-016-0139-z
https://doi.org/10.1007/s13194-016-0139-z
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1080/10508406.2010.491751
http://home.cc.gatech.edu/csl/uploads/6/Guzdial-blog-pieces-on-what-is-CSEd.pdf
http://home.cc.gatech.edu/csl/uploads/6/Guzdial-blog-pieces-on-what-is-CSEd.pdf
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.2200/s00684ed1v01y201511hci033

BIBLIOGRAPHY 331

Mark Guzdial. 2017. Balancing Teaching CS Efficiently with Motivating Students. Commun.
ACM 60, 6 (May 2017), 10–11. https://doi.org/10.1145/3077227 [Cited on pages 45 and 116]

Mark Guzdial. 2019a. Computing Education as a Foundation for 21st Century Literacy.
In Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery (ACM),
New York, NY, USA, 502–503. https://doi.org/10.1145/3287324.3290953 [Cited on

page 86]

Mark Guzdial. 2019b. What’s generally good for you vs what meets a need: Balancing
explicit instruction vs problem/project-based learning in computer science classes.
Retrieved January 26, 2023 from https://computinged.wordpress.com/2019/09/16/
whats-good-for-you-vs-what-fixes-you-balancing-explicit-instruction-

vs-problemproject-based-learning-in-computer-science-classes/ [Cited on pages 43

and 44]

Mark Guzdial. 2020. How I’m lecturing during emergency remote teaching. Retrieved
January 30, 2023 from https://computinged.wordpress.com/2020/04/06/how-im-
lecturing-during-emergency-remote-teaching/ [Cited on page 58]

Mark Guzdial. 2021. Helping social studies teachers to teach data literacy
with Teaspoon languages. Retrieved December 23, 2022 from https:

//computinged.wordpress.com/2021/12/22/helping-social-studies-teachers-
to-teach-data-literacy-with-teaspoon-languages/ [Cited on pages 56, 86, 88, 229, and 230]

Mark Guzdial, Shriram Krishnamurthi, Juha Sorva, Jan Vahrenhold, Anthony Bagnall,
Richard L Cole, Themis Palpanas, Konstantinos Zoumpatianos, Christoph Becker, et al.
2020. Dagstuhl Reports, Volume 9, Issue 7, July 2019, Complete Issue. (2020).
https://doi.org/10.4230/DAGREP.9.7 [Cited on page 110]

M. Guzdial, W.M. McCracken, and A. Elliott. 1997. Task specific programming languages as
a first programming language. In Proceedings Frontiers in Education 1997 27th Annual
Conference. Teaching and Learning in an Era of Change. IEEE. https://doi.org/
10.1109/fie.1997.632675 [Cited on page 86]

Mark Guzdial and Bahare Naimipour. 2019. Task-Specific Programming Languages for
Promoting Computing Integration: A Precalculus Example. In Proceedings of the 19th Koli
Calling International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’19). Association for Computing Machinery (ACM), New York, NY, USA, Article
21, 5 pages. https://doi.org/10.1145/3364510.3364532 [Cited on pages 85, 86, 87, and 229]

Mark Guzdial and Elliot Soloway. 2002. Teaching the Nintendo Generation to Program.
Commun. ACM 45, 4 (apr 2002), 17–21. https://doi.org/10.1145/505248.505261
[Cited on page 15]

Wynne Harlen et al. 2010. Principles and Big Ideas of Science Education. Association for
Science Education, Hatfield, Hertfordshire, United Kingdom. [Cited on page 71]

https://doi.org/10.1145/3077227
https://doi.org/10.1145/3287324.3290953
https://computinged.wordpress.com/2019/09/16/whats-good-for-you-vs-what-fixes-you-balancing-explicit-instruction-vs-problemproject-based-learning-in-computer-science-classes/
https://computinged.wordpress.com/2019/09/16/whats-good-for-you-vs-what-fixes-you-balancing-explicit-instruction-vs-problemproject-based-learning-in-computer-science-classes/
https://computinged.wordpress.com/2019/09/16/whats-good-for-you-vs-what-fixes-you-balancing-explicit-instruction-vs-problemproject-based-learning-in-computer-science-classes/
https://computinged.wordpress.com/2020/04/06/how-im-lecturing-during-emergency-remote-teaching/
https://computinged.wordpress.com/2020/04/06/how-im-lecturing-during-emergency-remote-teaching/
https://computinged.wordpress.com/2021/12/22/helping-social-studies-teachers-to-teach-data-literacy-with-teaspoon-languages/
https://computinged.wordpress.com/2021/12/22/helping-social-studies-teachers-to-teach-data-literacy-with-teaspoon-languages/
https://computinged.wordpress.com/2021/12/22/helping-social-studies-teachers-to-teach-data-literacy-with-teaspoon-languages/
https://doi.org/10.4230/DAGREP.9.7
https://doi.org/10.1109/fie.1997.632675
https://doi.org/10.1109/fie.1997.632675
https://doi.org/10.1145/3364510.3364532
https://doi.org/10.1145/505248.505261

332 BIBLIOGRAPHY

Wynne Harlen et al. 2015. Working with Big Ideas of Science Education. Science Education
Programme (SEP) of IAP, Trieste, Italy. [Cited on pages 71, 72, 73, 74, 75, and 217]

Teresa W Haynes, Stephen Hedetniemi, and Peter Slater. 2013. Fundamentals of domination
in graphs. CRC press, Boca Raton, Florida, USA. [Cited on page 250]

Orit Hazzan, Yael Dubinsky, Larisa Eidelman, Victoria Sakhnini, and Mariana Teif. 2006.
Qualitative Research in Computer Science Education. In Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE ’06). Association for
Computing Machinery (ACM), New York, NY, USA, 408–412. https://doi.org/
10.1145/1121341.1121469 [Cited on page 185]

Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium, for Learning Haskell.
In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Uppsala, Sweden)
(Haskell ’03). Association for Computing Machinery (ACM), New York, NY, USA, 62–71.
https://doi.org/10.1145/871895.871902 [Cited on page 55]

Felienne Hermans. 2020. Hedy: A Gradual Language for Programming Education. In
Proceedings of the 2020 ACM Conference on International Computing Education Research
(Virtual Event, New Zealand) (ICER ’20). Association for Computing Machinery (ACM),
New York, NY, USA, 259–270. https://doi.org/10.1145/3372782.3406262 [Cited on

pages 54, 55, 87, 110, and 111]

Felienne Hermans and Marlies Aldewereld. 2017. Programming is Writing is Programming.
In Companion Proceedings of the 1st International Conference on the Art, Science, and
Engineering of Programming (Brussels, Belgium) (Programming ’17). Association for
Computing Machinery (ACM), New York, NY, USA, Article 33, 8 pages. https://

doi.org/10.1145/3079368.3079413 [Cited on page 55]

Eric Hicks, Quang Tran, Kriangsiri Malasri, Nam Sy Vo, and Vinhthuy Phan. 2020. Ac-
tive Learning: The Almost Silver Bullet. In 2020 12th International Conference on
Knowledge and Systems Engineering (KSE). 131–135. https://doi.org/10.1109/
KSE50997.2020.9287513 [Cited on page 33]

Rashina Hoda and Peter Andreae. 2014. It’s Not Them, It’s Us! Why Computer Science
Fails to Impress Many First Years. In Proceedings of the Sixteenth Australasian Computing
Education Conference - Volume 148 (Auckland, New Zealand) (ACE ’14). Australian
Computer Society, Inc., AUS, 159–162. [Cited on page 18]

R. C. Holt, D. B. Wortman, D. T. Barnard, and J. R. Cordy. 1977. SP/k: A System
for Teaching Computer Programming. Commun. ACM 20, 5 (may 1977), 301–309.
https://doi.org/10.1145/359581.359586 [Cited on page 55]

Trudy Howles. 2009. A study of attrition and the use of student learning commu-
nities in the computer science introductory programming sequence. Computer Sci-
ence Education 19, 1 (2009), 1–13. https://doi.org/10.1080/08993400902809312
arXiv:https://doi.org/10.1080/08993400902809312 [Cited on page 15]

https://doi.org/10.1145/1121341.1121469
https://doi.org/10.1145/1121341.1121469
https://doi.org/10.1145/871895.871902
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3079368.3079413
https://doi.org/10.1145/3079368.3079413
https://doi.org/10.1109/KSE50997.2020.9287513
https://doi.org/10.1109/KSE50997.2020.9287513
https://doi.org/10.1145/359581.359586
https://doi.org/10.1080/08993400902809312

BIBLIOGRAPHY 333

Wen-Jung Hsin. 2005. Teaching Cryptography to Undergraduate Students in Small Liberal Art
Schools. In Proceedings of the 2nd Annual Conference on Information Security Curriculum
Development (Kennesaw, Georgia) (InfoSecCD ’05). Association for Computing Machinery
(ACM), New York, NY, USA, 38–42. https://doi.org/10.1145/1107622.1107632
[Cited on page 90]

Mary A. Hudak and David E. Anderson. 1990. Formal Operations and Learning Style
Predict Success in Statistics and Computer Science Courses. Teaching of Psy-
chology 17, 4 (1990), 231–234. https://doi.org/10.1207/s15328023top1704_4
arXiv:https://doi.org/10.1207/s15328023top17044 [Citedonpage 16]

Ann Hulbert. 2007. The Paradox of Play. Are kids today having enough fun? https:

//slate.com/human-interest/2007/06/the-new-play-movement.html. [Cited on page 53]

Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. 2002. A Meta-Study
of Algorithm Visualization Effectiveness. Journal of Visual Languages & Computing 13, 3
(2002), 259–290. https://doi.org/10.1006/jvlc.2002.0237 [Cited on page 29]

E. Hunt. 2001. Intelligence: Historical and Conceptual Perspectives. In International Encyclopedia
of the Social & Behavioral Sciences. Elsevier, 7658–7663. https://doi.org/10.1016/
b0-08-043076-7/01631-4 [Cited on page 19]

Katri Huutoniemi, Julie Thompson Klein, Henrik Bruun, and Janne Hukkinen. 2010. Analyzing
interdisciplinarity: Typology and indicators. Research Policy 39, 1 (2010), 79–88. https:

//doi.org/10.1016/j.respol.2009.09.011 [Cited on page 94]

Petri Ihantola, Juho Leinonen, and Matti Rintala. 2020. Students’ Preferences Between
Traditional and Video Lectures: Profiles and Study Success. Association for Computing
Machinery (ACM), New York, NY, USA. https://doi.org/10.1145/3428029.3428561
[Cited on page 57]

Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A Study of Code Design Skills in Novice
Programmers using the SOLO taxonomy. In Proceedings of the 2016 ACM Conference on
International Computing Education Research. Association for Computing Machinery (ACM),
New York, NY, USA. https://doi.org/10.1145/2960310.2960324 [Cited on page 26]

Jerry A Jacobs. 2014. In defense of disciplines. In In Defense of Disciplines. University of
Chicago Press. [Cited on page 94]

P. N. Johnson-Laird. 1983. Mental models: towards a cognitive science of language, inference,
and consciousness. Number 6 in Cognitive science series. Harvard University Press, Cambridge,
Mass. [Cited on page 27]

Joint Task Force on Cybersecurity Education. 2018. Cybersecurity Curricula 2017: Curriculum
Guidelines for Post-Secondary Degree Programs in Cybersecurity. Association for Comput-
ing Machinery (ACM), New York, NY, USA. https://dl.acm.org/doi/book/10.1145/
3184594 [Cited on pages 89, 90, and 248]

https://doi.org/10.1145/1107622.1107632
https://doi.org/10.1207/s15328023top1704_4
https://slate.com/human-interest/2007/06/the-new-play-movement.html
https://slate.com/human-interest/2007/06/the-new-play-movement.html
https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/10.1016/b0-08-043076-7/01631-4
https://doi.org/10.1016/b0-08-043076-7/01631-4
https://doi.org/10.1016/j.respol.2009.09.011
https://doi.org/10.1016/j.respol.2009.09.011
https://doi.org/10.1145/3428029.3428561
https://doi.org/10.1145/2960310.2960324
https://dl.acm.org/doi/book/10.1145/3184594
https://dl.acm.org/doi/book/10.1145/3184594

334 BIBLIOGRAPHY

B. Joyce, M. Weil, and B. Showers. 1992. Models of Teaching. Allyn and Bacon, Boston, MA,
USA. [Cited on page 82]

David A. Joyner, Qiaosi Wang, Suyash Thakare, Shan Jing, Ashok Goel, and Blair MacIntyre.
2020. The Synchronicity Paradox in Online Education. In Proceedings of the Seventh ACM
Conference on Learning @ Scale (L@S ’20). Association for Computing Machinery (ACM),
New York, NY, USA, 15–24. https://doi.org/10.1145/3386527.3405922 [Cited on page 191]

K-12 CS Framework. 2016. K–12 Computer Science Framework. Technical Report. http:

//www.k12cs.org [Cited on pages 89 and 216]

Daniel Kahneman. 2011. Thinking, fast and slow. FSG - Macmillan, New York, NY, USA. [Cited

on page 18]

Sabrina Kalish. 2009. Effects Of Instructor Immediacy And Student Need For Cognition On
Student Motivation And Perceptions Of Learning. Master’s thesis. University of Central
Florida. http://purl.fcla.edu/fcla/etd/CFE0002785 [Cited on page 160]

Shulamit Kapon and Sibel Erduran. 2021. Crossing Boundaries – Examining and Problematizing
Interdisciplinarity in Science Education. In Contributions from Science Education Research.
Springer International Publishing, Cham, Switzerland, 265–276. https://doi.org/10.1007/
978-3-030-74490-8_21 [Cited on page 97]

Manu Kapur. 2016. Examining Productive Failure, Productive Success, Unpro-
ductive Failure, and Unproductive Success in Learning. Educational Psycholo-
gist 51, 2 (2016), 289–299. https://doi.org/10.1080/00461520.2016.1155457
arXiv:https://doi.org/10.1080/00461520.2016.1155457 [Cited on pages 50, 51, and 116]

Manu Kapur and Katerine Bielaczyc. 2012. Designing for Productive Failure. Journal of the Learn-
ing Sciences 21, 1 (Jan. 2012), 45–83. https://doi.org/10.1080/10508406.2011.591717
[Cited on pages 49, 50, 51, 111, 116, 120, and 121]

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography. Chapman and
Hall/CRC, New York, NY, USA. https://doi.org/10.1201/9781420010756 [Cited on page 250]

Judy Kay, Michael Barg, Alan Fekete, Tony Greening, Owen Hollands, Jeffrey H. Kingston, and
Kate Crawford. 2000. Problem-Based Learning for Foundation Computer Science Courses.
Computer Science Education 10, 2 (aug 2000), 109–128. https://doi.org/10.1076/0899-
3408(200008)10:2;1-c;ft109 [Cited on page 48]

Colin J. Kessel and Christopher D. Wickens. 1982. The Transfer of Failure-
Detection Skills between Monitoring and Controlling Dynamic Systems. Human
Factors 24, 1 (1982), 49–60. https://doi.org/10.1177/001872088202400106
arXiv:https://doi.org/10.1177/001872088202400106 [Cited on page 29]

Shaista E. Khilji. 2014. Human aspects of interdisciplinary research. South Asian Journal of
Global Business Research 3, 1 (Feb. 2014), 2–10. https://doi.org/10.1108/sajgbr-12-
2013-0090 [Cited on page 94]

https://doi.org/10.1145/3386527.3405922
http://www.k12cs.org
http://www.k12cs.org
http://purl.fcla.edu/fcla/etd/CFE0002785
https://doi.org/10.1007/978-3-030-74490-8_21
https://doi.org/10.1007/978-3-030-74490-8_21
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1080/10508406.2011.591717
https://doi.org/10.1201/9781420010756
https://doi.org/10.1076/0899-3408(200008)10:2;1-c;ft109
https://doi.org/10.1076/0899-3408(200008)10:2;1-c;ft109
https://doi.org/10.1177/001872088202400106
https://doi.org/10.1108/sajgbr-12-2013-0090
https://doi.org/10.1108/sajgbr-12-2013-0090

BIBLIOGRAPHY 335

Päivi Kinnunen and Lauri Malmi. 2006. Why Students Drop out CS1 Course?. In Proceedings
of the Second International Workshop on Computing Education Research (Canterbury, United
Kingdom) (ICER ’06). Association for Computing Machinery (ACM), New York, NY, USA,
97–108. https://doi.org/10.1145/1151588.1151604 [Cited on page 15]

Paul A. Kirschner, John Sweller, and Richard E. Clark. 2006. Why Minimal Guidance During
Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-
Based, Experiential, and Inquiry-Based Teaching. Educational Psychologist 41, 2 (June 2006),
75–86. https://doi.org/10.1207/s15326985ep4102_1 [Cited on page 42]

Julie Thompson Klein. 2010. A taxonomy of interdisciplinarity. In The Oxford handbook
of interdisciplinarity, Robert Frodeman (Ed.). Oxford University Press, Oxford; New York,
Chapter 15, 15. [Cited on pages 95 and 97]

William F. Klostermeyer. 2015. A Taxonomy of Perfect Domination. Journal of Discrete
Mathematical Sciences and Cryptography 18, 1-2 (2015), 105–116. https://doi.org/
10.1080/09720529.2014.914288 [Cited on pages 250 and 260]

Donald E. Knuth. 1972. George Forsythe and the Development of Computer Science. Commun.
ACM 15, 8 (aug 1972), 721–726. https://doi.org/10.1145/361532.361538 [Cited on page 86]

David A. Kolb. 1984. Experiential learning: experience as the source of learning and development.
Prentice-Hall, Englewood Cliffs, N.J. [Cited on pages 34 and 35]

Michael Kölling. 2003. The curse of hello world. In Workshop on Learning and Teaching
Object-Orientation–Scandinavian Perspectives. Oslo, Norway. Invited Lecture. [Cited on page 23]

Michael Kölling. 2010. The Greenfoot Programming Environment. ACM Transactions on
Computing Education 10, 4, Article 14 (nov 2010), 21 pages. https://doi.org/10.1145/
1868358.1868361 [Cited on page 16]

Michael Kölling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based Editing: Easing
the Transition from Blocks to Text-Based Programming. In Proceedings of the Workshop
in Primary and Secondary Computing Education (London, United Kingdom) (WiPSCE
’15). Association for Computing Machinery (ACM), New York, NY, USA, 29–38. https:

//doi.org/10.1145/2818314.2818331 [Cited on page 29]

Abdullah Konak. 2014. A cyber security discovery program: Hands-on cryptography. In
2014 IEEE Integrated STEM Education Conference. IEEE. https://doi.org/10.1109/
isecon.2014.6891029 [Cited on pages 92 and 249]

Abdullah Konak. 2018. Experiential Learning Builds Cybersecurity Self-Efficacy in K-12 Students.
Journal of Cybersecurity Education, Research and Practice 2018, 1 (July 2018). https:

//digitalcommons.kennesaw.edu/jcerp/vol2018/iss1/6 [Cited on pages 91 and 249]

Shriram Krishnamurthi and Kathi Fisler. 2019. Programming Paradigms and Beyond. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and Anthony V.

https://doi.org/10.1145/1151588.1151604
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1080/09720529.2014.914288
https://doi.org/10.1080/09720529.2014.914288
https://doi.org/10.1145/361532.361538
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1109/isecon.2014.6891029
https://doi.org/10.1109/isecon.2014.6891029
https://digitalcommons.kennesaw.edu/jcerp/vol2018/iss1/6
https://digitalcommons.kennesaw.edu/jcerp/vol2018/iss1/6

336 BIBLIOGRAPHY

Robins (Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 13, 377–413.
https://doi.org/10.1017/9781108654555.014 [Cited on page 29]

J. M. Lang. 2007. Did you learn anything? The Chronicle of Higher Education C1–C4 (march
2007). [Cited on page 160]

D. Laurillard. 2002. Rethinking university teaching: A conversational framework for the effective
use of learning technologies. RoutledgeFalmer, London, United Kingdom. [Cited on page 182]

Ákos Lédeczi, Miklós Maróti, Hamid Zare, Bernard Yett, Nicole Hutchins, Brian Broll, Péter
Völgyesi, Michael B. Smith, Timothy Darrah, Mary Metelko, Xenofon Koutsoukos, and
Gautam Biswas. 2019. Teaching Cybersecurity with Networked Robots. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA)
(SIGCSE ’19). Association for Computing Machinery (ACM), New York, NY, USA, 885–891.
https://doi.org/10.1145/3287324.3287450 [Cited on page 91]

Irene Lee, Fred Martin, and Katie Apone. 2014. Integrating Computational Thinking across
the K–8 Curriculum. ACM Inroads 5, 4 (dec 2014), 64–71. https://doi.org/10.1145/
2684721.2684736 [Cited on page 52]

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith,
and Linda Werner. 2011. Computational Thinking for Youth in Practice. ACM Inroads 2, 1
(feb 2011), 32–37. https://doi.org/10.1145/1929887.1929902 [Cited on pages 52, 196, and 197]

David C. Leonard. 2002. Learning Theories: A to Z. Greenwood - ABC-CLIO. [Cited on page 36]

J. Paul Leonard. 1930. The Use of Practice Exercises in Teaching Capitalization and Punctuation.
Vol. 21. https://doi.org/10.1080/00220671.1930.10880030. 186–190 pages. [Cited on page 55]

O. Levrini, L. Branchetti, and P. Fantini. 2019. In S. Kapon (Chair) & S. Erduran (Discus-
sant), Crossing boundaries – Examining and problematizing interdisciplinarity in science
education (Bologna, Italy) (European Science Education Research Association 2019 Biannual
Conference). Invited symposium. [Cited on pages 97 and 98]

S. T. Levy, A. R. Zohar, and I. Dubovi. 2019. Slipping between disciplines: How forming
causal explanations may compel crossing disciplinary boundaries. In S. Kapon (Chair) & S.
Erduran (Discussant), Crossing boundaries – Examining and problematizing interdisciplinarity
in science education (Bologna, Italy) (European Science Education Research Association
2019 Biannual Conference). Invited symposium. [Cited on page 97]

Colleen M. Lewis. 2017. Good (and Bad) Reasons to Teach All Students Computer Science.
In New Directions for Computing Education: Embedding Computing Across Disciplines,
Samuel B. Fee, Amanda M. Holland-Minkley, and Thomas E. Lombardi (Eds.). Springer
International Publishing, Cham, Switzerland, 15–34. https://doi.org/10.1007/978-3-
319-54226-3_2 [Cited on page 67]

https://doi.org/10.1017/9781108654555.014
https://doi.org/10.1145/3287324.3287450
https://doi.org/10.1145/2684721.2684736
https://doi.org/10.1145/2684721.2684736
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1007/978-3-319-54226-3_2
https://doi.org/10.1007/978-3-319-54226-3_2

BIBLIOGRAPHY 337

Colleen M. Lewis, Michael J. Clancy, and Jan Vahrenhold. 2019a. Pedagogic Approaches. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and Anthony V.
Robins (Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 27, 773–800.
https://doi.org/10.1017/9781108654555.028 [Cited on page 28]

Colleen M. Lewis, Niral Shah, and Katrina Falkner. 2019b. Equity and Diversity. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and Anthony V.
Robins (Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 16, 481–510.
https://doi.org/10.1017/9781108654555.017 [Cited on page 14]

Sarah Lewis. 2015. Qualitative Inquiry and Research Design: Choosing Among Five Approaches.
Health Promotion Practice 16, 4 (April 2015), 473–475. https://doi.org/10.1177/
1524839915580941 [Cited on page 193]

Yeping Li, Alan H. Schoenfeld, Andrea A. diSessa, Arthur C. Graesser, Lisa C. Benson, Lyn D.
English, and Richard A. Duschl. 2019. On Thinking and STEM Education. Journal for
STEM Education Research 2, 1 (Feb. 2019), 1–13. https://doi.org/10.1007/s41979-
019-00014-x [Cited on page 67]

Liceo Matematico. [n.d.]. Retrieved December 29, 2022 from https://

www.liceomatematico.it/ [Cited on page 222]

John Lidstone and Paul Shield. 2010. Virtual reality or virtually real: blended teaching and
learning in a Master’s level research methods class. In Cases on Online and Blended Learning
Technologies in Higher Education: Concepts and Practices, Yukiko Inoue (Ed.). IGI Global,,
Hershey, PA, USA, 91–111. [Cited on page 183]

Janet Mei-Chuen Lin and Cheng-Chih Wu. 2007. Suggestions for content selection and
presentation in high school computer textbooks. Computers & Education 48, 3 (2007),
508–521. [Cited on page 23]

Anke Lindmeier and Andreas Mühling. 2020. Keeping Secrets: K-12 Students’ Understanding of
Cryptography. In Proceedings of the 15th Workshop on Primary and Secondary Computing Edu-
cation (Virtual Event, Germany) (WiPSCE ’20). Association for Computing Machinery (ACM),
New York, NY, USA, Article 14, 10 pages. https://doi.org/10.1145/3421590.3421630
[Cited on pages 89, 216, and 249]

Raymond Lister. 2016. Toward a Developmental Epistemology of Computer Programming. In
Proceedings of the 11th Workshop in Primary and Secondary Computing Education (Münster,
Germany) (WiPSCE ’16). Association for Computing Machinery, New York, NY, USA, 5–16.
https://doi.org/10.1145/2978249.2978251 [Cited on page 54]

Raymond Lister, Tony Clear, Simon, Dennis J. Bouvier, Paul Carter, Anna Eckerdal, Jana
Jacková, Mike Lopez, Robert McCartney, Phil Robbins, Otto Seppälä, and Errol Thompson.
2010. Naturally Occurring Data as Research Instrument: Analyzing Examination Responses
to Study the Novice Programmer. ACM SIGCSE Bulletin 41, 4 (jan 2010), 156–173.
https://doi.org/10.1145/1709424.1709460 [Cited on page 17]

https://doi.org/10.1017/9781108654555.028
https://doi.org/10.1017/9781108654555.017
https://doi.org/10.1177/1524839915580941
https://doi.org/10.1177/1524839915580941
https://doi.org/10.1007/s41979-019-00014-x
https://doi.org/10.1007/s41979-019-00014-x
https://www.liceomatematico.it/
https://www.liceomatematico.it/
https://doi.org/10.1145/3421590.3421630
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/1709424.1709460

338 BIBLIOGRAPHY

Richard Lobb and Jenny Harlow. 2016. Coderunner: A Tool for Assessing Computer Programming
Skills. ACM Inroads 7, 1 (Feb. 2016), 47–51. https://doi.org/10.1145/2810041 [Cited on

page 185]

Michael Lodi. 2020a. Informatical Thinking. Olympiads In Informatics 14 (Dec. 2020), 113–132.
https://doi.org/10.15388/ioi.2020.09 [Cited on pages 13, 67, 68, 79, and 117]

Michael Lodi. 2020b. Introducing computational thinking in k-12 education: historical, episte-
mological, pedagogical, cognitive, and affective aspects. Ph.D. Dissertation. Alma Mater Stu-
diorum - Università di Bologna. https://doi.org/10.6092/unibo/amsdottorato/9188
[Cited on pages 41 and 83]

Michael Lodi and Simone Martini. 2021. Computational Thinking, Between Papert and Wing.
Science & Education 30, 4 (Aug. 2021), 883–908. https://doi.org/10.1007/s11191-
021-00202-5 [Cited on pages 13, 15, 66, 79, and 117]

Michael Lodi, Simone Martini, and Enrico Nardelli. 2017. Do we really need com-
putational thinking? Mondo Digitale 72, Article 2 (Nov. 2017), 15 pages.
http://mondodigitale.aicanet.net/2017-5/articoli/MD72_02_abbiamo_davvero_
bisogno_del_pensiero_computazionale.pdf In Italian. [Cited on pages 66 and 79]

Micahel Lodi, Simone Martini, and Marco Sbaraglia. 2022a. Crittografia a blocchi al Liceo
Matematico. In Cryptography and Coding Theory Conference 2021. Collectio Ciphrarum,
Vol. 3. Aracne, Roma, Italy, 103–104. https://doi.org/10.53136/979125994981340 In
Italian. [Cited on page 218]

Micahel Lodi, Simone Martini, and Marco Sbaraglia. 2023. Programmare per imparare la
crittografia al Liceo Matematico. Rendiconti del Seminario Matematico 80, 2 (2023).
http://www.seminariomatematico.polito.it/rendiconti/ In Italian; in press. [Cited on

page 218]

Michael Lodi, Marco Sbaraglia, and Simone Martini. 2021a. Resources of “Big Ideas of
Cryptography in K-12”. https://bigideascryptok12.bitbucket.io/ [Cited on pages 217, 218, 230,

231, 232, 233, 234, 242, and 243]

Michael Lodi, Marco Sbaraglia, and Simone Martini. 2022b. Cryptography in Grade 10:
Core Ideas with Snap! and Unplugged. In Proceedings of the 27th ACM Conference on
Innovation and Technology in Computer Science Education Vol. 1 (Dublin, Ireland) (ITiCSE
’22). Association for Computing Machinery (ACM), New York, NY, USA, 7. https:

//doi.org/10.1145/3502718.3524767 [Cited on pages 216, 217, 218, 221, and 222]

Michael Lodi, Marco Sbaraglia, Stefano Pio Zingaro, and Simone Martini. 2021b. The Online
Course Was Great: I Would Attend It Face-to-Face: The Good, The Bad, and the Ugly of IT
in Emergency Remote Teaching of CS1. In Proceedings of the ACM Conference on Information
Technology for Social Good (Roma, Italy) (GoodIT ’21). Association for Computing Machinery
(ACM), New York, NY, USA, 242–247. https://doi.org/10.1145/3462203.3475902 [Cited

on pages 131, 181, and 242]

https://doi.org/10.1145/2810041
https://doi.org/10.15388/ioi.2020.09
https://doi.org/10.6092/unibo/amsdottorato/9188
https://doi.org/10.1007/s11191-021-00202-5
https://doi.org/10.1007/s11191-021-00202-5
http://mondodigitale.aicanet.net/2017-5/articoli/MD72_02_abbiamo_davvero_bisogno_del_pensiero_computazionale.pdf
http://mondodigitale.aicanet.net/2017-5/articoli/MD72_02_abbiamo_davvero_bisogno_del_pensiero_computazionale.pdf
https://doi.org/10.53136/979125994981340
http://www.seminariomatematico.polito.it/rendiconti/
https://bigideascryptok12.bitbucket.io/
https://doi.org/10.1145/3502718.3524767
https://doi.org/10.1145/3502718.3524767
https://doi.org/10.1145/3462203.3475902

BIBLIOGRAPHY 339

Katharina Loibl, Ido Roll, and Nikol Rummel. 2017. Towards a Theory of When and How
Problem Solving Followed by Instruction Supports Learning. Educational Psychology Review
29, 4 (Dec. 2017), 693–715. https://doi.org/10.1007/s10648-016-9379-x [Cited on pages

50, 51, 111, 116, and 120]

Katharina Loibl and Nikol Rummel. 2013. The impact of guidance during problem-solving prior
to instruction on students’ inventions and learning outcomes. Instructional Science 42, 3
(June 2013), 305–326. https://doi.org/10.1007/s11251-013-9282-5 [Cited on page 51]

Michael C. Loui and Maura Borrego. 2019. Engineering Education Research. In The Cambridge
Handbook of Computing Education Research, Sally A. Fincher and Anthony V. Robins
(Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 11, 292–322.
https://doi.org/10.1017/9781108654555.012 [Cited on pages 216 and 220]

Stephanie Lunn, Máıra Marques Samary, and Alan Peterfreund. 2021. Where is Com-
puter Science Education Research Happening?. In Proceedings of the 52nd ACM Tech-
nical Symposium on Computer Science Education (Virtual Event, USA) (SIGCSE ’21).
Association for Computing Machinery (ACM), New York, NY, USA, 288–294. https:

//doi.org/10.1145/3408877.3432375 [Cited on page 21]

Andrew Luxton-Reilly. 2016. Learning to Program is Easy (ITiCSE ’16). Association for
Computing Machinery (ACM), New York, NY, USA, 284–289. https://doi.org/10.1145/
2899415.2899432 [Cited on page 15]

Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Giannakos, Amruth N.
Kumar, Linda Ott, James Paterson, Michael James Scott, Judy Sheard, and Claudia Szabo.
2018. Introductory Programming: A Systematic Literature Review (ITiCSE 2018 Companion).
Association for Computing Machinery (ACM), New York, NY, USA, 55–106. https:

//doi.org/10.1145/3293881.3295779 [Cited on page 21]

Nicholas Lytle, Veronica Cateté, Danielle Boulden, Yihuan Dong, Jennifer Houchins, Alexandra
Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany Barnes. 2019. Use, Modify,
Create: Comparing Computational Thinking Lesson Progressions for STEM Classes. In
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science
Education (Aberdeen, Scotland Uk) (ITiCSE ’19). Association for Computing Machinery
(ACM), New York, NY, USA, 395–401. https://doi.org/10.1145/3304221.3319786
[Cited on pages 52 and 208]

Jun Ma, Jun Tao, Jean Mayo, Ching-Kuang Shene, Melissa Keranen, and Chaoli Wang. 2016.
AESvisual: A Visualization Tool for the AES Cipher. In Proceedings of the 21st ACM
Conference on Innovation & Technology in Computer Science Education (Arequipa, Peru)
(ITiCSE ’16). Association for Computing Machinery (ACM), New York, NY, USA, 230–235.
https://doi.org/10.1145/2899415.2899425 [Cited on pages 91 and 249]

Miles MacLeod. 2016. What makes interdisciplinarity difficult? Some consequences of domain
specificity in interdisciplinary practice. Synthese 195, 2 (Oct. 2016), 697–720. https:

//doi.org/10.1007/s11229-016-1236-4 [Cited on page 94]

https://doi.org/10.1007/s10648-016-9379-x
https://doi.org/10.1007/s11251-013-9282-5
https://doi.org/10.1017/9781108654555.012
https://doi.org/10.1145/3408877.3432375
https://doi.org/10.1145/3408877.3432375
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3304221.3319786
https://doi.org/10.1145/2899415.2899425
https://doi.org/10.1007/s11229-016-1236-4
https://doi.org/10.1007/s11229-016-1236-4

340 BIBLIOGRAPHY

Lauri Malmi. 2020. COMPUTING EDUCATION RESEARCH The New Normal of Teaching
Computer Science. ACM Inroads 11, 4 (Nov. 2020), 17–19. https://doi.org/10.1145/
3433692 [Cited on page 58]

Linda Mannila, Mia Peltomäki, and Tapio Salakoski. 2006. What about a simple lan-
guage? Analyzing the difficulties in learning to program. Computer Science Ed-
ucation 16, 3 (2006), 211–227. https://doi.org/10.1080/08993400600912384
arXiv:https://doi.org/10.1080/08993400600912384 [Cited on page 54]

Lauren E. Margulieux, Brian Dorn, and Kristin A. Searle. 2019. Learning Sciences for Computing
Education. In The Cambridge Handbook of Computing Education Research, Sally A. Fincher
and Anthony V. Robins (Eds.). Cambridge University Press, Cambridge, United Kingdom,
Chapter 8, 208–230. https://doi.org/10.1017/9781108654555.009 [Cited on page 42]

Maria A. Martinez, Narcis Sauleda, and Güenter L. Huber. 2001. Metaphors as blueprints of
thinking about teaching and learning. Teaching and Teacher Education 17, 8 (Nov. 2001),
965–977. https://doi.org/10.1016/s0742-051x(01)00043-9 [Cited on page 37]

Simone Martini. 2016a. Several Types of Types in Programming Languages. In History and Phi-
losophy of Computing (IFIP Advances in Information and Communication Technology), Fabio
Gadducci and Mirko Tavosanis (Eds.). Springer International Publishing, Cham, Switzerland,
216–227. https://doi.org/10.1007/978-3-319-47286-7_15 [Cited on page 127]

Simone Martini. 2016b. Types in Programming Languages, between Modelling, Abstraction,
and Correctness. In CiE 2016: Pursuit of the Universal (LNCS), Arnold Beckmann, Laurent
Bienvenu, and Nataša Jonoska (Eds.), Vol. 9709. Springer International Publishing, Cham,
Switzerland, 164–169. https://doi.org/10.1007/978-3-319-40189-8_17 [Cited on page 127]

Simone Martini. 2020. The Standard Model for Programming Languages: The Birth of a
Mathematical Theory of Computation. In Recent Developments in the Design and Implemen-
tation of Programming Languages (OpenAccess Series in Informatics (OASIcs)), Frank S.
de Boer and Jacopo Mauro (Eds.), Vol. 86. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 1–13. https://doi.org/10.4230/OASIcs.Gabbrielli.8 [Cited on page 123]

Michael R. Matthews. 1997. Introductory Comments on Philosophy and Constructivism in
Science Education. Science & Education 6, 1 (01 Jan. 1997), 5–14. https://doi.org/
10.1023/A:1008650823980 [Cited on page 42]

Alasdair McAndrew. 2008. Teaching Cryptography with Open-Source Software. SIGCSE Bull.
40, 1 (March 2008), 325–329. https://doi.org/10.1145/1352322.1352247 [Cited on page 91]

Brendan McCane, Claudia Ott, Nick Meek, and Anthony Robins. 2017. Mastery Learning in
Introductory Programming. In Proceedings of the Nineteenth Australasian Computing Educa-
tion Conference (Geelong, VIC, Australia) (ACE ’17). Association for Computing Machinery
(ACM), New York, NY, USA, 1–10. https://doi.org/10.1145/3013499.3013501 [Cited on

page 18]

https://doi.org/10.1145/3433692
https://doi.org/10.1145/3433692
https://doi.org/10.1080/08993400600912384
https://doi.org/10.1017/9781108654555.009
https://doi.org/10.1016/s0742-051x(01)00043-9
https://doi.org/10.1007/978-3-319-47286-7_15
https://doi.org/10.1007/978-3-319-40189-8_17
https://doi.org/10.4230/OASIcs.Gabbrielli.8
https://doi.org/10.1023/A:1008650823980
https://doi.org/10.1023/A:1008650823980
https://doi.org/10.1145/1352322.1352247
https://doi.org/10.1145/3013499.3013501

BIBLIOGRAPHY 341

Jeffrey J. McConnell. 1996. Active Learning and Its Use in Computer Science. SIGCUE Outlook
24, 1–3 (jan 1996), 52–54. https://doi.org/10.1145/1013718.237526 [Cited on pages 34 and 35]

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-
David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001. A
Multi-National, Multi-Institutional Study of Assessment of Programming Skills of First-Year
CS Students. In Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education (Canterbury, United Kingdom) (ITiCSE-WGR ’01). Association
for Computing Machinery (ACM), New York, NY, USA, 125–180. https://doi.org/
10.1145/572133.572137 [Cited on page 25]

James C McCroskey, Ari Sallinen, Judith M Fayer, Virginia P Richmond, and Robert A
Barraclough. 1996. Nonverbal immediacy and cognitive learning: A cross-cultural investigation.
Communication Education 45 (1996), 200–211. [Cited on page 160]

Andrew Mcgettrick, Roger Boyle, Roland Ibbett, John Lloyd, Gillian Lovegrove, and Keith
Mander. 2005. Grand Challenges in Computing: Education—A Summary. Comput. J. 48, 1
(jan 2005), 42–48. https://doi.org/10.1093/comjnl/bxh064 [Cited on pages 21, 23, and 24]

Tanya J. McGill and Simone E. Volet. 1997. A Conceptual Framework for Analyzing
Students’ Knowledge of Programming. Journal of Research on Computing in Edu-
cation 29, 3 (1997), 276–297. https://doi.org/10.1080/08886504.1997.10782199
arXiv:https://doi.org/10.1080/08886504.1997.10782199 [Cited on pages 24, 25, and 28]

Laura Meagher. 2017. Teaching London Computing Follow-up Evaluation through Interviews
with Teachers. (2017), 1–10. https://www.london.gov.uk/sites/default/files/lsef_
legacy_interviews_evaluation_report-final.pdf [Cited on page 83]

Antonio Jose Mendes, Luis Paquete, Amilcar Cardoso, and Anabela Gomes. 2012. Increasing
student commitment in introductory programming learning. In 2012 Frontiers in Education
Conference Proceedings. IEEE. https://doi.org/10.1109/fie.2012.6462486 [Cited on page 15]

Jan Meyer and Ray Land. 2006. Overcoming Barriers to Student Understanding. Routledge.
https://doi.org/10.4324/9780203966273 [Cited on page 18]

Lorenzo Miani. 2021. Highlighting interdisciplinarity between physics and mathematics in
historical papers on special relativity: design of blended activities for pre-service teacher
education. Master’s thesis. http://amslaurea.unibo.it/23544/ Master thesis in Physics,
University of Bologna. [Cited on page 248]

MIUR. 2010. Regolamento Licei del 16/02/2010. Retrieved Decem-
ber 29, 2022 from https://archivio.pubblica.istruzione.it/riforma_superiori/
nuovesuperiori/doc/Regolamento_licei_definitivo_16.02.2010.pdf [Cited on page 221]

Mahnaz Moallem, Woei Hung, and Nada Dabbagh (Eds.). 2019. The Wiley Handbook of
Problem-Based Learning. John Wiley & Sons, Hoboken, NJ. https://doi.org/10.1002/
9781119173243 [Cited on page 47]

https://doi.org/10.1145/1013718.237526
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/572133.572137
https://doi.org/10.1093/comjnl/bxh064
https://doi.org/10.1080/08886504.1997.10782199
https://www.london.gov.uk/sites/default/files/lsef_legacy_interviews_evaluation_report-final.pdf
https://www.london.gov.uk/sites/default/files/lsef_legacy_interviews_evaluation_report-final.pdf
https://doi.org/10.1109/fie.2012.6462486
https://doi.org/10.4324/9780203966273
http://amslaurea.unibo.it/23544/
https://archivio.pubblica.istruzione.it/riforma_superiori/nuovesuperiori/doc/Regolamento_licei_definitivo_16.02.2010.pdf
https://archivio.pubblica.istruzione.it/riforma_superiori/nuovesuperiori/doc/Regolamento_licei_definitivo_16.02.2010.pdf
https://doi.org/10.1002/9781119173243
https://doi.org/10.1002/9781119173243

342 BIBLIOGRAPHY

Simon Modeste. 2016. Impact of Informatics on Mathematics and Its Teaching. In History and
Philosophy of Computing, Fabio Gadducci and Mirko Tavosanis (Eds.). Springer International
Publishing, Cham, Switzerland, 243–255. [Cited on page 248]

Thomas K. Moore. 1993. Scientific Investigation in a Breadth-First Approach to Introductory
Computer Science. SIGCSE Bull. 25, 1 (mar 1993), 63–67. https://doi.org/10.1145/
169073.169350 [Cited on page 82]

Michael Morgan, Jane Sinclair, Matthew Butler, Neena Thota, Janet Fraser, Gerry Cross,
and Jana Jackova. 2018. Understanding International Benchmarks on Student Engagement:
Awareness and Research Alignment from a Computer Science Perspective. In Proceedings
of the 2017 ITiCSE Conference on Working Group Reports (Bologna, Italy) (ITiCSE-WGR
’17). Association for Computing Machinery (ACM), New York, NY, USA, 1–24. https:

//doi.org/10.1145/3174781.3174782 [Cited on page 15]

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel
Velázquez-Iturbide. 2002. Exploring the Role of Visualization and Engagement in Computer
Science Education. In Working Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education (Aarhus, Denmark) (ITiCSE-WGR ’02). Association for
Computing Machinery (ACM), New York, NY, USA, 131–152. https://doi.org/10.1145/
960568.782998 [Cited on page 29]

Enrico Nardelli, Luca Forlizzi, Michael Lodi, Violetta Lonati, Claudio Mirolo, Mattia Monga,
Alberto Montresor, and Anna Morpurgo. 2017. Proposal for a national Informatics curriculum
in the Italian school. Technical Report. CINI. https://www.consorzio-cini.it/images/
PROPOSAL-Informatics-curriculum-Italian-school.pdf [Cited on pages 195, 198, and 199]

Enrico Nardelli, Francesco Lacchia, Veronica Rossano, Enrichetta Gentile, Luca Forlizzi, Gio-
vanna Melideo, Sara Capecchi, Ilenia Fronza, Tullio Vardanega, Renzo Davoli, Michael Lodi,
Marco Sbaraglia, Violetta Lonati, Mattia Monga, and Anna Morpurgo. 2023. Learning Itera-
tion for Grades 2-3: Puzzles vs. UMC in Code.org. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education (Toronto, ON, Canada) (SIGCSE ’23). Associa-
tion for Computing Machinery (ACM), 1. https://doi.org/10.1145/3545947.3576312
In press. [Cited on page 197]

Greg L. Nelson and Amy J. Ko. 2018. On Use of Theory in Computing Education Research. In
Proceedings of the 2018 ACM Conference on International Computing Education Research.
Association for Computing Machinery (ACM), New York, NY, USA. https://doi.org/
10.1145/3230977.3230992 [Cited on page 149]

Greg L. Nelson, Benjamin Xie, and Amy J. Ko. 2017. Comprehension First: Evaluating a Novel
Pedagogy and Tutoring System for Program Tracing in CS1. In Proceedings of the 2017
ACM Conference on International Computing Education Research (Tacoma, Washington,
USA) (ICER ’17). Association for Computing Machinery (ACM), New York, NY, USA, 2–11.
https://doi.org/10.1145/3105726.3106178 [Cited on page 29]

https://doi.org/10.1145/169073.169350
https://doi.org/10.1145/169073.169350
https://doi.org/10.1145/3174781.3174782
https://doi.org/10.1145/3174781.3174782
https://doi.org/10.1145/960568.782998
https://doi.org/10.1145/960568.782998
https://www.consorzio-cini.it/images/PROPOSAL-Informatics-curriculum-Italian-school.pdf
https://www.consorzio-cini.it/images/PROPOSAL-Informatics-curriculum-Italian-school.pdf
https://doi.org/10.1145/3545947.3576312
https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1145/3105726.3106178

BIBLIOGRAPHY 343

R Newman, R Gatward, and M Poppleton. 1970. Paradigms for teaching computer programming
in higher education. WIT Transactions on Information and Communication Technologies 7
(1970). [Cited on page 15]

Elena Novak and Javed Khan. 2022. A Research-Practice Partnership Approach for Co-
Designing a Culturally Responsive Computer Science Curriculum for Upper Elementary
Students. TechTrends (apr 2022), 1–12. https://doi.org/10.1007/s11528-022-00730-
z [Cited on page 59]

Esko Nuutila, Seppo Törmä, Päivi Kinnunen, and Lauri Malmi. 2008. Learning Programming with
the PBL Method — Experiences on PBL Cases and Tutoring. In Reflections on the Teaching
of Programming: Methods and Implementations, Jens Bennedsen, Michael E. Caspersen,
and Michael Kölling (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, 47–67.
https://doi.org/10.1007/978-3-540-77934-6_5 [Cited on pages 47 and 48]

OECD. 2019. Education at a Glance 2019. 497 pages. https://doi.org/https://doi.org/
10.1787/f8d7880d-en [Cited on page 94]

Michael J. O’Grady. 2012. Practical Problem-Based Learning in Computing Education. ACM
Transactions on Computing Education 12, 3 (jul 2012), 1–16. https://doi.org/10.1145/
2275597.2275599 [Cited on page 48]

Armanda Maria C. Amorim Oliveira, Simone C. dos Santos, and Vinicius Cardoso Garcia. 2013.
PBL in teaching computing: An overview of the last 15 years. In 2013 IEEE Frontiers in
Education Conference (FIE). IEEE, Oklahoma City, Oklahoma. https://doi.org/10.1109/
fie.2013.6684830 [Cited on pages 47 and 48]

Jairo Ortiz-Revilla, Agust́ın Adúriz-Bravo, and Ileana M. Greca. 2020. A Framework for
Epistemological Discussion on Integrated STEM Education. Science & Education 29, 4
(June 2020), 857–880. https://doi.org/10.1007/s11191-020-00131-9 [Cited on page 94]

Fred Paas, Alexander Renkl, and John Sweller. 2003. Cognitive Load The-
ory and Instructional Design: Recent Developments. Educational Psychol-
ogist 38, 1 (2003), 1–4. https://doi.org/10.1207/S15326985EP3801_1
arXiv:https://doi.org/10.1207/S15326985EP38011x [Citedonpage 18]

John F. Pane, Chotirat Ratanamahatana, and Brad A. Myers. 2001. Studying the language
and structure in non-programmers’ solutions to programming problems. International Jour-
nal of Human-Computer Studies 54, 2 (2001), 237–264. https://doi.org/10.1006/
ijhc.2000.0410 [Cited on page 134]

Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc., New York, NY, USA. [Cited on pages 55, 66, 86, 131, 229, and 230]

Seymour Papert and Idit Harel. 1991. Situating Constructionism. In Constructionism, Seymour
Papert and Idit Harel (Eds.). Ablex Publishing Corporation, Norwood, NJ, Chapter 1. [Cited on

pages 66, 83, and 230]

https://doi.org/10.1007/s11528-022-00730-z
https://doi.org/10.1007/s11528-022-00730-z
https://doi.org/10.1007/978-3-540-77934-6_5
https://doi.org/https://doi.org/10.1787/f8d7880d-en
https://doi.org/https://doi.org/10.1787/f8d7880d-en
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1109/fie.2013.6684830
https://doi.org/10.1109/fie.2013.6684830
https://doi.org/10.1007/s11191-020-00131-9
https://doi.org/10.1207/S15326985EP3801_1
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1006/ijhc.2000.0410

344 BIBLIOGRAPHY

Roy D. Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Programming. Journal
of Educational Computing Research 2, 1 (Feb. 1986), 25–36. https://doi.org/10.2190/
689t-1r2a-x4w4-29j2 [Cited on page 27]

Nik Peachey. 2017. Synchronous Online Teaching. In Digital Language Learning and Teaching,
M. Carrier et al. (Eds.). Routledge, New York, NY, USA. [Cited on pages 57, 58, and 190]

Wu Peng. 2010. Practice and experience in the application of problem-based learning in computer
programming course. In 2010 International Conference on Educational and Information
Technology. IEEE, Chongqing, China. https://doi.org/10.1109/iceit.2010.5607778
[Cited on page 47]

Schwartz S. Perkins, D. N. and R. Simmons. 1988. Instructional strategies for the problems of
novice programmers. L. Erlbaum Associates, Hillsdale, N.J, 153–178. [Cited on page 27]

Alan J. Perlis. 1962. The Computer in the University. In Computers and the World of the
Future, Martin Greenberger (Ed.). The MIT Press, Cambridge, Massachusetts, USA. [Cited on

page 86]

E.J. Pharo, A. Davison, K. Warr, M. Nursey-Bray, K. Beswick, E. Wapstra, and C. Jones. 2012.
Can teacher collaboration overcome barriers to interdisciplinary learning in a disciplinary
university? A case study using climate change. Teaching in Higher Education 17, 5 (Oct.
2012), 497–507. https://doi.org/10.1080/13562517.2012.658560 [Cited on page 94]

Jean Piaget. 1973. To Understand is to Invent: The Future of Education. Grossman Publishers,
New York, NY, USA. [Cited on page 38]

L Pino-Fan, Ismenia Guzmán, Raymond Duval, and Vicenç Font. 2015. The theory of registers
of semiotic representation and the onto-semiotic approach to mathematical cognition and
instruction: linking looks for the study of mathematical understanding. In Proceedings of the
39th Conference of the International Group for the Psychology of Mathematics Education,
Vol. 4. PME, Hobart, Australia, 33–40. [Cited on page 253]

Martinha Piteira and Carlos Costa. 2013. Learning Computer Programming: Study of Difficulties
in Learning Programming. In Proceedings of the 2013 International Conference on Information
Systems and Design of Communication (Lisboa, Portugal) (ISDOC ’13). Association for
Computing Machinery (ACM), New York, NY, USA, 75–80. https://doi.org/10.1145/
2503859.2503871 [Cited on page 54]

Jan L. Plass, Roxana Moreno, and Roland Brünken (Eds.). 2010. Cognitive Load Theory.
Cambridge University Press. https://doi.org/10.1017/cbo9780511844744 [Cited on page 18]

Leo Porter and Daniel Zingaro. 2014. Importance of Early Performance in CS1: Two Conflicting
Assessment Stories. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for Computing Machin-
ery (ACM), New York, NY, USA, 295–300. https://doi.org/10.1145/2538862.2538912
[Cited on page 18]

https://doi.org/10.2190/689t-1r2a-x4w4-29j2
https://doi.org/10.2190/689t-1r2a-x4w4-29j2
https://doi.org/10.1109/iceit.2010.5607778
https://doi.org/10.1080/13562517.2012.658560
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1145/2503859.2503871
https://doi.org/10.1017/cbo9780511844744
https://doi.org/10.1145/2538862.2538912

BIBLIOGRAPHY 345

Leo Porter, Daniel Zingaro, and Raymond Lister. 2014. Predicting Student Success Using
Fine Grain Clicker Data. In Proceedings of the Tenth Annual Conference on International
Computing Education Research (Glasgow, Scotland, United Kingdom) (ICER ’14). Association
for Computing Machinery (ACM), New York, NY, USA, 51–58. https://doi.org/10.1145/
2632320.2632354 [Cited on page 18]

Scott R. Portnoff. 2018. The Introductory Computer Programming Course is First and Foremost
a Language Course. ACM Inroads 9, 2 (apr 2018), 34–52. https://doi.org/10.1145/
3152433 [Cited on page 55]

Michael Prince. 2004. Does Active Learning Work? A Review of the Research. Journal of
Engineering Education 93, 3 (July 2004), 223–231. https://doi.org/10.1002/j.2168-
9830.2004.tb00809.x [Cited on pages 34, 45, and 115]

Michael J. Prince and Richard M. Felder. 2006. Inductive Teaching and Learning Methods:
Definitions, Comparisons, and Research Bases. Journal of Engineering Education 95, 2 (April
2006), 123–138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.x [Cited on pages 40, 41,

47, and 82]

Noa Ragonis and Mordechai Ben-Ari. 2005. A long-term investigation of the comprehension
of OOP concepts by novices. Computer Science Education 15, 3 (Sept. 2005), 203–221.
https://doi.org/10.1080/08993400500224310 [Cited on page 28]

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin
Kafai. 2009. Scratch: Programming for All. Commun. ACM 52, 11 (Nov. 2009), 60–67.
https://doi.org/10.1145/1592761.1592779 [Cited on page 55]

John W. Rice. 2012. The Gamification of Learning and Instruction: Game-Based Methods and
Strategies for Training and Education. Int. J. Gaming Comput. Mediat. Simul. 4, 4 (Oct.
2012), 81–83. https://doi.org/10.4018/jgcms.2012100106 [Cited on page 37]

Virginia P Richmond. 1990. Communication in the classroom: Power and motivation. Commu-
nication Education 39 (1990), 181–195. [Cited on page 160]

Virginia P Richmond, John S Gorham, and James C McCroskey. 1987. The relationship between
selected immediacy behaviors and cognitive learning. Communication Yearbook 10 (1987),
574–590. [Cited on page 160]

Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science 13, 3 (July 1989),
389–414. https://doi.org/10.1207/s15516709cog1303_3 [Cited on pages 30 and 31]

Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program Design: A
Comparison of Novice and intermediate Student Programmers. Human–Computer
Interaction 6, 1 (1991), 1–46. https://doi.org/10.1207/s15327051hci0601_1
arXiv:https://doi.org/10.1207/s15327051hci06011 [Citedonpages30and 31]

https://doi.org/10.1145/2632320.2632354
https://doi.org/10.1145/2632320.2632354
https://doi.org/10.1145/3152433
https://doi.org/10.1145/3152433
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.4018/jgcms.2012100106
https://doi.org/10.1207/s15516709cog1303_3
https://doi.org/10.1207/s15327051hci0601_1

346 BIBLIOGRAPHY

Robert S Rist. 2005. Learning to Program: Schema Creation, Application, and Evaluation.
In Computer Science Education Research, Sally Fincher and Marian Petre (Eds.). Taylor &
Francis, Chapter 5, 175–197. [Cited on pages 30 and 31]

Eric Roberts. 2001. An Overview of MiniJava. SIGCSE Bull. 33, 1 (feb 2001), 1–5. https:

//doi.org/10.1145/366413.364525 [Cited on page 55]

Anthony Robins. 2010. Learning edge momentum: a new account of outcomes in CS1. Computer
Science Education 20, 1 (2010), 37–71. https://doi.org/10.1080/08993401003612167
arXiv:https://doi.org/10.1080/08993401003612167 [Cited on pages 16, 17, and 46]

Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Educa-
tion 13, 2 (2003), 137–172. https://doi.org/10.1076/csed.13.2.137.14200
arXiv:https://doi.org/10.1076/csed.13.2.137.14200 [Cited on pages 14 and 23]

Anthony V Robins. 2018. Outcomes in introductory programming. Technical Report OUCS-2018-
02. Department of Computer Science, University of Otago. https://www.otago.ac.nz/
computer-science/otago685184.pdf [Cited on page 16]

Anthony V. Robins. 2019. Novice Programmers and Introductory Programming. In The
Cambridge Handbook of Computing Education Research, Sally A. Fincher and Anthony V.
Robins (Eds.). Cambridge University Press, Cambridge, United Kingdom, Chapter 12, 327–376.
https://doi.org/10.1017/9781108654555.013 [Cited on pages 16, 17, 18, 21, 28, 45, and 46]

Anthony V. Robins. 2022. Dual Process Theories: Computing Cognition in Context. ACM
Transactions on Computing Education 22, 4, Article 41 (sep 2022), 31 pages. https:

//doi.org/10.1145/3487055 [Cited on pages 18 and 19]

Anthony V. Robins, Lauren E. Margulieux, and Briana B. Morrison. 2019. Cognitive Sciences
for Computing Education. In The Cambridge Handbook of Computing Education Research,
Sally A. Fincher and Anthony V. Robins (Eds.). Cambridge University Press, Cambridge,
United Kingdom, Chapter 9, 231–275. https://doi.org/10.1017/9781108654555.010
[Cited on page 38]

Jeremy Roschelle and William R. Penuel. 2006. Co-Design of Innovations with Teachers:
Definition and Dynamics. In Proceedings of the 7th International Conference on Learning
Sciences (Bloomington, Indiana, USA) (ICLS ’06). International Society of the Learning
Sciences, 606–612. [Cited on page 59]

Kjell Erik Rudestam and Judith Schoenholtz-Read. 2010. The Flourishing of Adult Online
Education. Handbook of Online Learning (2010). [Cited on pages 57 and 191]

Yvan Russell. 2022. Three Problems of Interdisciplinarity. Avant 13 (08 2022), 1–19. https:

//doi.org/10.26913/avant [Cited on page 94]

https://doi.org/10.1145/366413.364525
https://doi.org/10.1145/366413.364525
https://doi.org/10.1080/08993401003612167
https://doi.org/10.1076/csed.13.2.137.14200
https://www.otago.ac.nz/computer-science/otago685184.pdf
https://www.otago.ac.nz/computer-science/otago685184.pdf
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1145/3487055
https://doi.org/10.1145/3487055
https://doi.org/10.1017/9781108654555.010
https://doi.org/10.26913/avant
https://doi.org/10.26913/avant

BIBLIOGRAPHY 347

Philip Sadler and Gerhard Sonnert. 2018. The Path to College Calculus: The Impact of High
School Mathematics Coursework. Journal for Research in Mathematics Education 49, 3 (May
2018), 292–329. https://doi.org/10.5951/jresematheduc.49.3.0292 [Cited on page 87]

Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin. 2020. TIPP&SEE:
A Learning Strategy to Guide Students through Use - Modify Scratch Activities. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education. Association for
Computing Machinery (ACM), New York, NY, USA, 79–85. https://doi.org/10.1145/
3328778.3366821 [Cited on pages 53 and 205]

Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, and Carol Zander. 2017.
Folk Pedagogy: Nobody Doesn’t Like Active Learning. In Proceedings of the 2017 ACM
Conference on International Computing Education Research (Tacoma, Washington, USA)
(ICER ’17). Association for Computing Machinery (ACM), New York, NY, USA, 145–154.
https://doi.org/10.1145/3105726.3106192 [Cited on pages 33 and 35]

John R. Savery and Thomas M. Duffy. 1995. Problem Based Learning: An Instructional
Model and Its Constructivist Framework. Educational Technology 35, 5 (1995), 31–38.
http://www.jstor.org/stable/44428296 [Cited on page 29]

Marco Sbaraglia. 2021. A Necessity-Driven Learning Design for Computer Science. In Proceedings
of the 26th ACM Conference on Innovation & Technology in Computer Science Education
V. 2 (Virtual Event, Germany) (ITiCSE ’21). Association for Computing Machinery (ACM),
New York, NY, USA, 664–665. https://doi.org/10.1145/3456565.3460017 [Cited on pages

109, 216, 220, and 243]

Marco Sbaraglia, Michael Lodi, and Simone Martini. 2021a. A Necessity-Driven Ride on the
Abstraction Rollercoaster of CS1 Programming. Informatics in Education 20, 4 (dec 2021),
641–682. https://doi.org/10.15388/infedu.2021.28 [Cited on pages 115 and 216]

Marco Sbaraglia, Michael Lodi, Stefano Pio Zingaro, and Simone Martini. 2021b. The Good, The
Bad, and The Ugly of a Synchronous Online CS1. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 2 (ITiCSE ’21). Association
for Computing Machinery (ACM), 1. https://doi.org/10.1145/3456565.3460075 [Cited on

page 181]

Marco Sbaraglia, Michael Lodi, Stefano Pio Zingaro, and Simone Martini. 2021c. Questionnaire.
Retrieved January 7, 2023 from https://figshare.com/s/ac683cb7fecd743794f6 [Cited on

page 185]

Cathryne Schmitz, C.H. Stinson, and Channelle James. 2010. Community and environmental
sustainability: Collaboration and interdisciplinary education. Critical Social Work 11 (01
2010), 83–100. [Cited on page 94]

Donald A. Schön. 1995. Educating the reflective legal practitioner. Clinical L. Rev. 2 (1995),
231. [Cited on page 34]

https://doi.org/10.5951/jresematheduc.49.3.0292
https://doi.org/10.1145/3328778.3366821
https://doi.org/10.1145/3328778.3366821
https://doi.org/10.1145/3105726.3106192
http://www.jstor.org/stable/44428296
https://doi.org/10.1145/3456565.3460017
https://doi.org/10.15388/infedu.2021.28
https://doi.org/10.1145/3456565.3460075
https://figshare.com/s/ac683cb7fecd743794f6

348 BIBLIOGRAPHY

Carsten Schulte. 2008. Block Model: An Educational Model of Program Comprehension as a Tool
for a Scholarly Approach to Teaching. In Proceedings of the Fourth International Workshop
on Computing Education Research (ICER ’08). Association for Computing Machinery (ACM),
New York, NY, USA, 149–160. https://doi.org/10.1145/1404520.1404535 [Cited on pages 25

and 28]

Robert M. Schumacher and Mary P. Czerwinski. 1992. Mental Models and the Acquisition of
Expert Knowledge. Springer-Verlag, Berlin, Heidelberg, Germany, 61–79. [Cited on page 29]

M. Schvartzer, T. Peer, and S. Kapon. 2019. Learning physics through Maker projects -
Between disciplinary authenticity and personal relevance. In S. Kapon (Chair) & S. Erduran
(Discussant), Crossing boundaries – Examining and problematizing interdisciplinarity in science
education (Bologna, Italy) (European Science Education Research Association 2019 Biannual
Conference). Invited symposium. [Cited on page 97]

Daniel L. Schwartz and John D. Bransford. 1998. A Time For Telling. Cognition and Instruction
16, 4 (Dec. 1998), 475–5223. https://doi.org/10.1207/s1532690xci1604_4 [Cited on pages

48, 116, and 119]

Daniel L. Schwartz and Taylor Martin. 2004. Inventing to Prepare for Future Learning:
The Hidden Efficiency of Encouraging Original Student Production in Statistics Instruc-
tion. Cognition and Instruction 22, 2 (June 2004), 129–184. https://doi.org/10.1207/
s1532690xci2202_1 [Cited on pages 49 and 51]

Dino Schweitzer and Jeff Boleng. 2009. Designing Web Labs for Teaching Security Concepts. J.
Comput. Sci. Coll. 25, 2 (Dec. 2009), 39–45. [Cited on page 91]

Dino Schweitzer and Wayne Brown. 2009. Using Visualization to Teach Security. Journal of
Computing Sciences in Colleges 24, 5 (May 2009), 143–150. [Cited on pages 91 and 249]

Andreas Schwill. 1994. Fundamental ideas of computer science. Bulletin - European Association
for Theoretical Computer Science 53 (1994), 274–274. [Cited on pages 74, 75, and 76]

Sue Sentance, Erik Barendsen, and Carsten Schulte (Eds.). 2018. Computer Science Education.
Perspectives on Teaching and Learning in School. Bloomsbury Academic. https://doi.org/
10.5040/9781350057142 [Cited on page 22]

Sue Sentance and Jane Waite. 2017. PRIMM: Exploring Pedagogical Approaches for Teaching
Text-Based Programming in School. In Proceedings of the 12th Workshop on Primary and
Secondary Computing Education (Nijmegen, Netherlands) (WiPSCE ’17). Association for
Computing Machinery (ACM), New York, NY, USA, 113–114. https://doi.org/10.1145/
3137065.3137084 [Cited on page 52]

Sue Sentance, Jane Waite, and Maria Kallia. 2019a. Teachers’ Experiences of Using PRIMM
to Teach Programming in School. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for
Computing Machinery (ACM), New York, NY, USA, 476–482. https://doi.org/10.1145/
3287324.3287477 [Cited on pages 53 and 54]

https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1207/s1532690xci1604_4
https://doi.org/10.1207/s1532690xci2202_1
https://doi.org/10.1207/s1532690xci2202_1
https://doi.org/10.5040/9781350057142
https://doi.org/10.5040/9781350057142
https://doi.org/10.1145/3137065.3137084
https://doi.org/10.1145/3137065.3137084
https://doi.org/10.1145/3287324.3287477
https://doi.org/10.1145/3287324.3287477

BIBLIOGRAPHY 349

Sue Sentance, Jane Waite, and Maria Kallia. 2019b. Teaching computer programming with
PRIMM: a sociocultural perspective. Computer Science Education 29, 2-3 (2019), 136–176.
https://doi.org/10.1080/08993408.2019.1608781 [Cited on page 52]

Judy Sheard and Dianne Hagan. 1998. Our Failing Students: A Study of a Repeat Group. ACM
SIGCSE Bulletin 30, 3 (aug 1998), 223–227. https://doi.org/10.1145/290320.283550
[Cited on page 15]

Bruce L. Sherin. 2001. International Journal of Computers for Mathematical Learning 6, 1
(2001), 1–61. https://doi.org/10.1023/a:1011434026437 [Cited on page 86]

Ben Shneiderman. 1977. Teaching programming: A spiral approach to syntax and semantics.
Computers & Education 1, 4 (Jan. 1977), 193–197. https://doi.org/10.1016/0360-
1315(77)90008-2 [Cited on pages 55, 56, 110, 111, 120, and 128]

SIGCSE Special Projects. [n.d.]. Special Project Grants. Retrieved December 30, 2022 from
https://sigcse.org/programs/special/ [Cited on page 215]

Xavier Simms and Hongmei Chi. 2011. Enhancing Cryptography Education via Visualization
Tools. In Proceedings of the 49th Annual Southeast Regional Conference (Kennesaw, Georgia)
(ACM-SE ’11). Association for Computing Machinery (ACM), New York, NY, USA, 344–345.
https://doi.org/10.1145/2016039.2016139 [Cited on pages 91 and 249]

Jean Simon. 1973. La Langue écrite de l’enfant. Presses universitaires de France. [Cited on page 54]

Tanmay Sinha and Manu Kapur. 2019. When productive failure fails. In Proceedings of the
41st Annual Meeting of the Cognitive Science Society (CogSci 2019): Creativity + Cognition
+ Compulation. COGSCI, Montreal, Canada, 2811–2817. [Cited on pages 50, 110, and 121]

Tanmay Sinha, Manu Kapur, Robert West, Michele Catasta, Matthias Hauswirth, and Dragan
Trninic. 2021. Differential benefits of explicit failure-driven and success-driven scaffolding in
problem-solving prior to instruction. Journal of Educational Psychology 113, 3 (April 2021),
530–555. https://doi.org/10.1037/edu0000483 [Cited on pages 51, 110, 111, and 121]

Steven S. Skiena. 2020. Combinatorial Search. Springer International Publishing, Cham,
Switzerland, 281–306. https://doi.org/10.1007/978-3-030-54256-6_9 [Cited on page 256]

James D. Slotta and Michelene T. H. Chi. 2006. Helping Students Understand
Challenging Topics in Science Through Ontology Training. Cognition and In-
struction 24, 2 (2006), 261–289. https://doi.org/10.1207/s1532690xci2402_3
arXiv:https://doi.org/10.1207/s1532690xci24023 [Citedonpage 29]

Neil Smith, Yasemin Allsop, Helen Caldwell, David Hill, Yota Dimitriadi, and Andrew Paul
Csizmadia. 2015. Master Teachers in Computing: What Have We Achieved?. In Proceedings
of the Workshop in Primary and Secondary Computing Education (WiPSCE ’15). Association
for Computing Machinery (ACM), New York, NY, USA, 21–24. https://doi.org/10.1145/
2818314.2818332 [Cited on page 83]

https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/10.1145/290320.283550
https://doi.org/10.1023/a:1011434026437
https://doi.org/10.1016/0360-1315(77)90008-2
https://doi.org/10.1016/0360-1315(77)90008-2
https://sigcse.org/programs/special/
https://doi.org/10.1145/2016039.2016139
https://doi.org/10.1037/edu0000483
https://doi.org/10.1007/978-3-030-54256-6_9
https://doi.org/10.1207/s1532690xci2402_3
https://doi.org/10.1145/2818314.2818332
https://doi.org/10.1145/2818314.2818332

350 BIBLIOGRAPHY

Philip Smith and Geoffrey Webb. 1995. Reinforcing a Generic Computer Model for Novice
Programmers. In Proceedings of the 12nd Australasian Society for Computers in Learning in
Tertiary Education (ASCILITE ’95). [Cited on page 27]

E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms and Explanations.
29, 9 (Sept. 1986), 850–858. https://doi.org/10.1145/6592.6594 [Cited on page 142]

Joel Sommers. 2010. Educating the next Generation of Spammers. In Proceedings of the 41st
ACM Technical Symposium on Computer Science Education (Milwaukee, Wisconsin, USA)
(SIGCSE ’10). Association for Computing Machinery (ACM), New York, NY, USA, 117–121.
https://doi.org/10.1145/1734263.1734302 [Cited on pages 90 and 249]

Juha Sorva. 2012. Visual program simulation in introductory programming education. Doctoral
thesis. School of Science. http://urn.fi/URN:ISBN:978-952-60-4626-6 [Cited on pages 29, 39,

and 41]

Juha Sorva. 2013. Notional Machines and Introductory Programming Education. ACM
Transactions on Computing Education 13, 2, Article 8 (jul 2013), 31 pages. https:

//doi.org/10.1145/2483710.2483713 [Cited on pages 28 and 110]

Juha Sorva. 2018. Misconceptions and the Beginner Programmer. In Computer Science
Education. Perspectives on Teaching and Learning in School, S. Sentance, E. Barendsen, and
C. Schulte (Eds.). Bloomsbury Academic, London, United Kingdom, Chapter 13, 171–188.
https://doi.org/10.5040/9781350057142.ch-013 [Cited on page 28]

J. A Spencer and R. K Jordan. 1999. Learner centred approaches in medical education. BMJ
318, 7193 (May 1999), 1280–1283. https://doi.org/10.1136/bmj.318.7193.1280 [Cited on

page 82]

David Statter and Michal Armoni. 2020. Teaching Abstraction in Computer Science to 7th
Grade Students. ACM Trans. Comput. Educ. 20, 1, Article 8 (Jan. 2020), 37 pages.
https://doi.org/10.1145/3372143 [Cited on page 128]

Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into Programming
Language Syntax. ACM Trans. Comput. Educ. 13, 4, Article 19 (nov 2013), 40 pages.
https://doi.org/10.1145/2534973 [Cited on page 54]

STEM Task Force. 2014. Innovate: a blueprint for science, technology, engineering, and
mathematics in California public education. Technical Report. Californians Dedicated to Ed-
ucation Foundation, Dublin, CA, USA. https://www.cde.ca.gov/pd/ca/sc/documents/
innovate.pdf [Cited on page 248]

Anselm L. Strauss and Juliet M. Corbin. 1998. Basics of qualitative research: techniques and
procedures for developing grounded theory. Sage Publications, Thousand Oaks, CA, USA.
[Cited on pages 186 and 187]

https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/1734263.1734302
http://urn.fi/URN:ISBN:978-952-60-4626-6
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.5040/9781350057142.ch-013
https://doi.org/10.1136/bmj.318.7193.1280
https://doi.org/10.1145/3372143
https://doi.org/10.1145/2534973
https://www.cde.ca.gov/pd/ca/sc/documents/innovate.pdf
https://www.cde.ca.gov/pd/ca/sc/documents/innovate.pdf

BIBLIOGRAPHY 351

Lucy Suchman. 1993. Working relations of technology production and use. Computer Supported
Cooperative Work 2, 1-2 (March 1993), 21–39. https://doi.org/10.1007/bf00749282
[Cited on pages 95 and 96]

Patrick Suppes. 1974. The Place of Theory in Educational Research. Educational
Researcher 3, 6 (1974), 3–10. https://doi.org/10.3102/0013189X003006003
arXiv:https://doi.org/10.3102/0013189X003006003 [Cited on page 35]

John Sweller. 1988. Cognitive load during problem solving: Effects on learning. Cognitive
Science 12, 2 (1988), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7 [Cited

on page 18]

John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional design. Learning
and Instruction 4, 4 (1994), 295–312. https://doi.org/10.1016/0959-4752(94)90003-
5 [Cited on page 18]

John Sweller, Jeroen J. G. van Merrienboer, and Fred G. W. C. Paas. 1998. Cognitive
Architecture and Instructional Design. Educational Psychology Review 10, 3 (1998), 251–296.
https://doi.org/10.1023/a:1022193728205 [Cited on page 19]

Keith S. Taber. 2012. Constructivism as educational theory: Contingency in learning, and
optimally guided instruction. In Educational theory, Hassaskhah Jaleh (Ed.). Nova, New
York, NY, USA, 39–61. [Cited on pages 43, 44, 192, 209, and 242]

O.S. Tan, R.D. Parsons, S.L. Hinson, and D. Sardo-Brown. 2003. Educational Psychology: A
Practitioner-Researcher Approach. Thomson Educational Publishing, Singapore. [Cited on page 48]

Cara Tang and Christian Servin. 2020. COMMUNITY COLLEGE CORNER Challenges and
Opportunities during COVID: A Community College Perspective. ACM Inroads 11, 4 (Nov.
2020), 12–16. https://doi.org/10.1145/3429984 [Cited on page 58]

Rivka Taub, Michal Armoni, and Mordechai Ben-Ari. 2012. CS Unplugged and Middle-
School Students’ Views, Attitudes, and Intentions Regarding CS. ACM Transactions on
Computing Education 12, 2, Article 8 (April 2012), 29 pages. https://doi.org/10.1145/
2160547.2160551 [Cited on page 85]

Matti Tedre. 2018. The Nature of Computing as a Discipline. In Computer Science Education.
Perspectives on Teaching and Learning in School, S. Sentance, E. Barendsen, and C. Schulte
(Eds.). Bloomsbury Academic, London, United Kingdom, Chapter 2, 5–18. https://

doi.org/10.5040/9781350057142.ch-002 [Cited on page 15]

Josh Tenenberg. 2019. Qualitative Methods for Computing Education. In The Cambridge
Handbook of Computing Education Research, Sally A. Fincher and Anthony V. Robins (Eds.).
Cambridge University Press, Cambridge, United Kingdom, 173–207. https://doi.org/
10.1017/9781108654555.008 [Cited on pages 182, 185, 186, 188, and 193]

https://doi.org/10.1007/bf00749282
https://doi.org/10.3102/0013189X003006003
https://doi.org/10.1016/0364-0213(88)90023-7
https://doi.org/10.1016/0959-4752(94)90003-5
https://doi.org/10.1016/0959-4752(94)90003-5
https://doi.org/10.1023/a:1022193728205
https://doi.org/10.1145/3429984
https://doi.org/10.1145/2160547.2160551
https://doi.org/10.1145/2160547.2160551
https://doi.org/10.5040/9781350057142.ch-002
https://doi.org/10.5040/9781350057142.ch-002
https://doi.org/10.1017/9781108654555.008
https://doi.org/10.1017/9781108654555.008

352 BIBLIOGRAPHY

The Committee on European Computing Education (CECE). 2017. Informatics Education in
Europe: Are We all in the Same Boat? Technical Report. ACM Europe & Informatics Eu-
rope. http://www.informatics-europe.org/component/phocadownload/category/
10-reports.html?download=60:cece-report [Cited on page 15]

Renate Thies and Jan Vahrenhold. 2013. On Plugging “Unplugged” into CS Classes. In
Proceeding of the 44th ACM Technical Symposium on Computer Science Education (Denver,
Colorado, USA) (SIGCSE ’13). Association for Computing Machinery (ACM), New York, NY,
USA, 365–370. https://doi.org/10.1145/2445196.2445303 [Cited on page 85]

Sigmund Tobias and Thomas M. Duffy (Eds.). 2009. Constructivist instruction: Success or
failure? Routledge. [Cited on pages 42 and 242]

Ivan Tomek, Tomasz Muldner, and Saleem Khan. 1985. PMS—A program to make learning
Pascal easier. Computers & Education 9, 4 (1985), 205–211. https://doi.org/10.1016/
0360-1315(85)90009-0 [Cited on page 55]

David Touretzky, Fred Martin, Deborah Seehorn, Cynthia Breazeal, and Tess Posner. 2019.
Special Session: AI for K-12 Guidelines Initiative. In Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
Association for Computing Machinery (ACM), New York, NY, USA, 492–493. https:

//doi.org/10.1145/3287324.3287525 [Cited on page 217]

Ari Tuhkala. 2021. A systematic literature review of participatory design studies involving
teachers. European Journal of Education 56, 4 (Dec. 2021), 641–659. https://doi.org/
10.1111/ejed.12471 [Cited on page 59]

Claude F. Turner, Blair Taylor, and Siddharth Kaza. 2011. Security in Computer Literacy: A
Model for Design, Dissemination, and Assessment. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11). Association for
Computing Machinery (ACM), New York, NY, USA, 15–20. https://doi.org/10.1145/
1953163.1953174 [Cited on pages 90 and 249]

Raymond Turner. 2021. Computational Abstraction. Entropy 23, 2 (2021). https://doi.org/
10.3390/e23020213 [Cited on page 31]

UChicago STEM Education. n.d. Scratch Encore. https://www.canonlab.org/scratch-
encore [Cited on page 198]

UK Department of Education. 2013. National curriculum in England: computing programmes
of study. https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study [Cited on pages 89 and 216]

U.S. Bureau of Labor Statistics. 2015. Table 4. employment by Major Occupational Group,
2014 and projected 2024. Retrieved October 31, 2022 from https://www.bls.gov/
news.release/ecopro.t04.htm [Cited on page 14]

http://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report
http://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report
https://doi.org/10.1145/2445196.2445303
https://doi.org/10.1016/0360-1315(85)90009-0
https://doi.org/10.1016/0360-1315(85)90009-0
https://doi.org/10.1145/3287324.3287525
https://doi.org/10.1145/3287324.3287525
https://doi.org/10.1111/ejed.12471
https://doi.org/10.1111/ejed.12471
https://doi.org/10.1145/1953163.1953174
https://doi.org/10.1145/1953163.1953174
https://doi.org/10.3390/e23020213
https://doi.org/10.3390/e23020213
https://www.canonlab.org/scratch-encore
https://www.canonlab.org/scratch-encore
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.bls.gov/news.release/ecopro.t04.htm
https://www.bls.gov/news.release/ecopro.t04.htm

BIBLIOGRAPHY 353

Ian Utting, Allison Elliott Tew, Mike McCracken, Lynda Thomas, Dennis Bouvier, Roger Frye,
James Paterson, Michael Caspersen, Yifat Ben-David Kolikant, Juha Sorva, and Tadeusz
Wilusz. 2013. A Fresh Look at Novice Programmers’ Performance and Their Teachers’
Expectations. In Proceedings of the ITiCSE Working Group Reports Conference on Innovation
and Technology in Computer Science Education-Working Group Reports (Canterbury, England,
United Kingdom) (ITiCSE -WGR ’13). Association for Computing Machinery (ACM), New
York, NY, USA, 15–32. https://doi.org/10.1145/2543882.2543884 [Cited on page 16]

Dirk van der Linden, Awais Rashid, Emma Williams, and Bogdan Warinschi. 2018. Safe
Cryptography for All: Towards Visual Metaphor Driven Cryptography Building Blocks.
In Proceedings of the 1st International Workshop on Security Awareness from Design to
Deployment (Gothenburg, Sweden) (SEAD ’18). Association for Computing Machinery
(ACM), New York, NY, USA, 41–44. https://doi.org/10.1145/3194707.3194709 [Cited

on page 91]

Kurt VanLehn, Stephanie Siler, R. Charles Murray, Takashi Yamauchi, and William Baggett.
2003. Why Do Only Some Events Cause Learning During Human Tutoring? Cognition and
Instruction 21 (09 2003), 209–249. https://doi.org/10.1207/S1532690XCI2103_01 [Cited

on pages 49 and 122]

Marianne Verhallen and Simon Verhallen. 1994. Woorden leren, woorden onderwijzen. CPS.
[Cited on page 55]

Eelco Visser. 2015. Understanding software through linguistic abstraction. Science of Computer
Programming 97 (2015), 11–16. https://doi.org/10.1016/j.scico.2013.12.001 Special
Issue on New Ideas and Emerging Results in Understanding Software. [Cited on page 127]

Willemien Visser. 1987. Strategies in Programming Programmable Controllers: A Field Study
on a Professional Programmer. In Empirical Studies of Programmers: Second workshop
(ESP2), G. M. Olson, S. Sheppard, and E. Soloway (Eds.). Ablex, 217–230. https:

//inria.hal.science/hal-00641376 [Cited on page 30]

Joke Voogt, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. 2015. Computational
thinking in compulsory education: Towards an agenda for research and practice. Education
and Information Technologies 20, 4 (Dec. 2015), 715–728. https://doi.org/10.1007/
s10639-015-9412-6 [Cited on pages 67 and 243]

Valdemar Švábenský, Jan Vykopal, and Pavel Čeleda. 2020. What Are Cybersecurity Education
Papers About? A Systematic Literature Review of SIGCSE and ITiCSE Conferences. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education (Portland,
OR, USA) (SIGCSE ’20). Association for Computing Machinery (ACM), New York, NY, USA,
2–8. https://doi.org/10.1145/3328778.3366816 [Cited on pages 90 and 249]

Lev S. Vygotsky. 1978. Mind in Society. Harvard University Press, Cambridge, MA, USA. [Cited

on pages 41 and 43]

https://doi.org/10.1145/2543882.2543884
https://doi.org/10.1145/3194707.3194709
https://doi.org/10.1207/S1532690XCI2103_01
https://doi.org/10.1016/j.scico.2013.12.001
https://inria.hal.science/hal-00641376
https://inria.hal.science/hal-00641376
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1145/3328778.3366816

354 BIBLIOGRAPHY

Jacques Wainer and Eduardo C. Xavier. 2018. A Controlled Experiment on Python vs C for an
Introductory Programming Course: Students’ Outcomes. ACM Trans. Comput. Educ. 18, 3,
Article 12 (aug 2018), 16 pages. https://doi.org/10.1145/3152894 [Cited on page 54]

Christopher Watson and Frederick W.B. Li. 2014. Failure Rates in Introductory Programming
Revisited. In Proceedings of the 2014 Conference on Innovation and Technology in Computer
Science Education (Uppsala, Sweden) (ITiCSE ’14). Association for Computing Machinery
(ACM), New York, NY, USA, 39–44. https://doi.org/10.1145/2591708.2591749 [Cited

on pages 15 and 21]

Bruce F. Webster. 1996. The real software crisis: The shortage of top-notch program-
mers threatens to become the limiting factor in software development. Byte Maga-
zine (1996). https://brucefwebster.com/2013/09/13/the-real-software-crisis-
byte-magazine-january-1996/ [Cited on page 16]

Gordon Wells. 1999. Dialogic inquiry: Towards a socio-cultural practice and theory of education.
Cambridge University Press. [Cited on page 85]

Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins, P. K. Ajith
Kumar, and Christine Prasad. 2006. An Australasian Study of Reading and Comprehension
Skills in Novice Programmers, Using the Bloom and SOLO Taxonomies. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart, Australia)
(ACE ’06). Australian Computer Society, Inc., AUS, 243–252. [Cited on page 25]

Wikipedia contributors. 2022. Diffie–Hellman key exchange — Wikipedia, The Free Encyclopedia.
Retrieved December 23, 2022 from https://en.wikipedia.org/wiki/DiffieHellman_
key_exchange [Cited on page 230]

Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (mar 2006), 33–35.
https://doi.org/10.1145/1118178.1118215 [Cited on pages 66 and 230]

Jeannette M. Wing. 2008. Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366,
1881 (2008), 3717–3725. https://doi.org/10.1098/rsta.2008.0118 [Cited on page 230]

J. Winterton, F.D.L. Deist, E. Stringfellow, and European Centre for the Development of
Vocational Training. 2006. Typology of Knowledge, Skills and Competences: Clarification of
the Concept and Prototype. Office for Official Publications of the European Communities.
[Cited on page 25]

David Wood, Jerome S. Bruner, and Gail Ross. 1976. The role of tutoring in problem
solving. Journal of Child Psychology and Psychiatry 17, 2 (April 1976), 89–100. https:

//doi.org/10.1111/j.1469-7610.1976.tb00381.x [Cited on pages 43 and 85]

Aman Yadav and Ulf Dalvad Berthelsen. 2021. Computational Thinking in Education. Routledge.
https://doi.org/10.4324/9781003102991 [Cited on pages 86, 88, 229, and 243]

https://doi.org/10.1145/3152894
https://doi.org/10.1145/2591708.2591749
https://brucefwebster.com/2013/09/13/the-real-software-crisis-byte-magazine-january-1996/
https://brucefwebster.com/2013/09/13/the-real-software-crisis-byte-magazine-january-1996/
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.4324/9781003102991

BIBLIOGRAPHY 355

Aharon Yadin. 2013. Using Unique Assignments for Reducing the Bimodal Grade Distribution.
ACM Inroads 4, 1 (mar 2013), 38–42. https://doi.org/10.1145/2432596.2432612 [Cited

on page 16]

Bernard Yett, Nicole Hutchins, Gordon Stein, Hamid Zare, Caitlin Snyder, Gautam Biswas,
Mary Metelko, and Ákos Lédeczi. 2020. A Hands-On Cybersecurity Curriculum Using a
Robotics Platform. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery
(ACM), New York, NY, USA, 1040–1046. https://doi.org/10.1145/3328778.3366878
[Cited on page 91]

Maximilian Zinkus, Oliver Curry, Marina Moore, Zachary Peterson, and Zoë J. Wood. 2019.
Fakesbook: A Social Networking Platform for Teaching Security and Privacy Concepts to
Secondary School Students. In Proc. of the 50th ACM Technical Symposium on Computer Sci-
ence Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery
(ACM), New York, NY, USA, 892–898. https://doi.org/10.1145/3287324.3287486 [Cited

on page 91]

https://doi.org/10.1145/2432596.2432612
https://doi.org/10.1145/3328778.3366878
https://doi.org/10.1145/3287324.3287486

356 BIBLIOGRAPHY

Acknowledgments

Ringrazio innanzitutto il professor Michael Lodi. Con grande generosità e fiducia, Michael mi
ha da subito messo a disposizione le sue notevoli competenze scientifiche e metodologiche,
incoraggiandomi e consentendomi di crescere come ricercatore e professionista. Nonostante la
disparità di valore ed esperienza, mi ha sempre trattato da pari, permettendomi di esprimermi
senza imbarazzi e di contribuire al meglio al nostro lavoro di ricerca. Mi ritengo davvero
fortunato di aver trovato in lui un amico.

Ringrazio il mio supervisore, il professor Simone Martini, scienzato, educatore e persona di
grande valore, il cui esempio è per me sprone e la cui conoscenza motivo d’orgoglio. La
sua presenza discreta ma costante, la sua chiarezza e correttezza sono state un supporto
fondamentale per affrontare questo percorso e ingredienti di crescita professionale e umana.

Thanks also to Professors Valentina Dagienė and Francisco Castro for the time they devoted to
a thorough and generous review of my thesis, leaving me with rich indications that empowered
me to improve it.
To Professor Dagienė, special thanks for the hospitality and esteem with which she welcomed
me to Lithuania and allowed me to participate in a valuable and beautiful doctoral consortium.

Ringrazio i professori Rebecca Montanari e Gianluigi Zavattaro, per la fiducia e la stima e per
le loro indicazioni misurate ma decisive nei momenti chiave di questo percorso che mi hanno
consentito di migliorare la qualità del mio lavoro.
Grazie al professor Alessandro Ricci, fonte di ispirazione professionale, ma anche persona
eccezionale e amico.
Grazie al mio ex Dirigente Scolastico, ingegner Salvatore Grillo, che ha sostenuto la mia
avventura di dottorato, facilitandone la burocrazia e incoraggiandomi.

Grazie alla mia famiglia.
Grazie all’amore costante della nonna Maria, alla fervida stima del nonno Gino e alla forza
sicura di mia sorella Silvia.
Grazie tantissimo ai miei genitori per il loro supporto senza fine... grazie all’esuberante sprone
della mamma Mara e alla fiducia attenta del babbo Claudio.
Un ringraziamento speciale a Sofia, compagna che con amore e pazienza mi ha accompagnato
dappertutto, sacrificando se stessa e donandomi tesori che non sapevo esistessero.
Grazie ad Alice, amica e sorella, che non mi ha mai fatto mancare ascolto e comprensione,
supporto e fiducia.

357

	Contents
	Abstract
	Introduction
	Thesis maps

	I Literature Review – Introductory programming
	Role and Issue of Programming in Informatics
	The early days of informatics and the programming issue
	Is it really (still) difficult to learn programming?

	Research in the 20th century: programmers by birth
	New millennium research: two populations
	Is there such a thing as the programming gene?

	The LEM hypothesis: learning to program is easy/difficult
	LEM, Cognitive Load and Dual Process Theory

	Teaching To Make People Learn To Program
	Lack of agreement
	Abundance of programming languages and tech
	A two-speed evolution

	What really means learning to program?
	The three dimensions of learning to program
	The SOLO taxonomy
	(Faulty) Mental models in learning to program
	Notional machines as mental models of execution
	Schemas in learning to program
	Abstraction in informatics and programming languages

	Active learning
	Major learning paradigms
	Behaviorism
	Cognitivism
	Constructivism

	Influential active methodologies with scaffolding
	The introductory programming context
	Problem-based learning
	Activities and difficulties that prepare for instruction
	UMC approaches

	Languages for teaching programming
	Emergency remote teaching of CS1
	Participatory design with teachers

	II Literature Review – Part 2
	Informatics for All
	Informatics and Computational Thinking
	Why computational thinking belongs in informatics
	Computational thinking and coding

	Big Ideas
	Big ideas of science
	Context and motivation
	Benefits of big ideas
	How to distil big ideas
	Progression to teach big ideas

	Big ideas of informatics
	Features
	Benefits
	A collaborative process

	Teaching Informatics Concepts
	Approaches
	Discovery Learning
	Unplugged approach
	Task-specific programming languages

	Cryptography
	Importance of cryptography today
	Cryptography education
	International frameworks
	Cryptography education in IEdR conferences
	Hands-on and inquiry-based activities
	Visualization tools and high-level programming
	Unplugged activities

	Interdisciplinarity and Non-Informatics Methodologies
	The context of the IDENTITIES project
	The necessity of interdisciplinarity
	Defining interdisciplinarity
	The boundaries perspective
	Learning through boundary crossing

	Interdisciplinarity in education
	Interidiscipinarity and disciplines

	Theory of Didactical Situations and Didactical Engineering
	Theory of Didactical Situations
	Didactical Engineering
	TDS, DE and participatory design

	III Original Contributions – Introductory Programming
	Necessity of a Progression of Notional Machines
	Context and motivation
	Problem statement
	Research Goals
	Research methods
	Early contributions
	Conclusions

	Necessity Learning Design
	Introduction and motivations
	Outline
	Summary of relevant literature

	Necessity Learning Design
	Necessity mechanism
	Necessity Learning Design for introductory programming

	A use of NLD in the CS1 abstraction rollercoaster
	Abstraction movements in introductory programming
	Abstraction ups and downs: different and difficult
	A possibile CS1 learning path
	Examples of NLD use in abstraction movements

	Conclusions
	Limitations
	Accidents on the road
	Future works

	Necessity School Experimentation
	Experimentation design
	Non-interference principle
	Preliminary design
	Concrete design

	Implementation
	Keeping arrays secret
	Exercises to approach the necessity sequence
	P!S phase: unsuccessful problem solving
	Instruction phase
	PS phase: second problem solving
	Correction and alignment, consolidation, and later steps
	Administering questionnaires to the students
	On our role as external observers

	Preliminary observations and results
	The teacher must keep the secret
	Students' frustration
	A boost to motivation
	Difficulties in solving the exercise in the second PS phase
	Positive students' feelings and opinions
	Future works: the fourth phase

	The Online Course Was Great: I Would Attend It F2F
	Introduction
	Context
	Technologies and Methodologies
	Teachers-researchers

	Methods
	Data collection
	Participants
	Data analysis: inductive categorization with a grounded approach

	Findings
	Individual assistance and live tutoring
	Live-built materials, LMS and auto-grading
	Time management in labs
	Sharing the screen
	Presence paradox

	Discussion
	Online CS1 and the search for optimal guidance
	Validity and Limitations

	Conclusions and Future Works

	Castle and Stairs to Learn Iteration: UMC Co-design
	Introduction
	General context
	Project research goals
	Overall approach
	Project preliminary findings

	The learning module
	Prerequisites and learning objectives
	Classrooms activities
	Developed materials

	Co-designing with teachers
	Phases of the participatory process
	How the process affected the outcome
	Possible improvements

	Conclusion

	IV Original Contributions – Informatics for All
	SIGCSE Special Project on Cryptography
	Background
	Research activities
	Project outputs
	Outcomes, ongoing and future research
	Cryptography big ideas
	Cryptography course implementations

	Publications and Dissemination

	Crypto in Grade 10: Big Ideas with Snap! and Unplugged
	Introduction
	The course
	Context: Mathematical Lyceum
	Two iterations: online and in person
	A progression driven by the limitations of the previous cryptosystems
	Cryptography principles and ideas through meaningful cryptosystems
	Contents
	Tools, activities and methodologies

	Data collection and analysis
	Learning assessment
	Student satisfaction and perceptions

	Results and observations
	Methodologies used and two iterations' results
	Learning programming
	Suggestions for adoption and adaption

	A Didactical Situation on Interdisciplinary Crypto
	Introduction
	Preliminary analysis
	Institutional analysis
	Epistemological and Didactical analysis

	A public-key cryptosystem using perfect dominating sets on graphs
	Conception
	Research purposes
	The didactical situation

	A priori analysis
	A priori analysis elements
	Didactical variables
	Learning potential

	Realization, observation and data collection
	A posteriori analysis
	Discussion
	Future work
	Conclusions

	V Conclusions, Appendix and Bibliography
	Conclusions and Future Works
	Introductory programming
	Informatics for all

	Material of Necessity School Experimentation
	Instructional material
	Learning Assessment
	Programming exercises in C++
	Approach exercises
	PS-I exercise
	Consolidation exercises

	Student Questionnaires
	Pre-experimentation Questionnaire (common)
	Post-experimentation Questionnaires

	Material of the Didactical Situation on Interdisciplinary Crypto
	Researcher Observation Grid

	Bibliography
	Acknowledgments

