3,465 research outputs found

    A Refinement-Based Validation Method for Programmable Logic Controllers

    Get PDF
    International audienceProgrammable logic controllers (PLCs) are widely used in computer-based industrial applications. Timers play a pivotal role in PLC real-time embedded system applications. The paper addresses the formal validation of PLC systems with timers in the theorem proving system Coq. The timer behavior is characterized formally. A refinement validation methodology is presented in terms of an abstract model and a concrete model. The refinement is calibrated by a mapping relation. The soundness of the methodology is shown in the proving system. An illustrative case study demonstrates the eectiveness of the approach

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    An evolutionary approach to the use of petri net based models : from parallel controllers to Hw/Sw codesign

    Get PDF
    The main purpose of this article is to present how Petri Nets (PNs) have been used for hardware design at our research laboratory. We describe the use of PN models to specify synchronous parallel controllers and how PN specifications can be extended to include the behavioural description of the data path, by using object-oriented concepts. Some hierarchical mechanisms which deal with the specification of complex digital systems are highlighted. It is described a design flow that includes, among others, the automatic generation of VHDL code to synthesize the control unit of the system. The use of PNs as part of a multiple-view model within an object-oriented methodology for hardware/software codesign is debated. The EDgAR-2 platform is considered as the reconfigurable target architecture for implementing the systems and its main characteristics are shown

    Simulation and Formal Verification for Improving Safety of PLC Programs

    Get PDF
    The use of analysis techniques for improving quality of software for industrial controllers is widely used. Mainly Simulation and Formal Verification can be used as complementary techniques improving dependability of mechatronic systems behavior. In this paper there are used Simulation and Formal Verification for guaranteeing safe software for Programmable Logic Controllers, mainly related with using Function blocks of IEC 61131-3 standard. For studying, simulating and verifying behavior of those blocks are used timed automata, as modeling formalism, and UPPAAL, as tool for simulation and Formal Verification purposes

    Precise specification matching for adaptive reuse in embedded systems

    Get PDF
    AbstractSpecification matching is a key to reuse of components in embedded systems. Existing specification matching techniques for embedded systems are designed to match reactive behaviors using adaptive techniques to dynamically alter behaviors. However, correct specification matching demands both behavioral matching (that checks component adaptability) and functional matching (that ensures that proper functionality is reused). While approaches for behavioral matching exist, combined functional and behavioral matching during component reuse in embedded systems is lacking. This paper presents a precise specification matching, including both behavioral and functional matching. We introduce attributed labeled transition systems (ALTS) to formally specify component behavior and functionalities. Given ALTS of a new specification (a function F) and an existing component (a device D), a new refinement relation from F to D, called an S-matching relation, is proposed for precise specification matching. The existence of an S-matching relation is also shown to be a necessary and sufficient condition for the existence of a correct adapter to adapt D to match F both behaviorally and functionally. Automated component adaptation is facilitated by a matching tool implemented in a tabled logic programming environment, which provides distinct advantages for rapid implementation. Practical examples are given to illustrate how the concrete adapter is derived automatically from specification matching

    Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies

    Full text link
    New testing and development procedures and methods are needed to address topics like power system stability, operation and control in the context of grid integration of rapidly developing smart grid technologies. In this context, individual testing of units and components has to be reconsidered and appropriate testing procedures and methods need to be described and implemented. This paper addresses these needs by proposing a holistic and enhanced testing methodology that integrates simulation/software- and hardware-based testing infrastructure. This approach presents the advantage of a testing environment, which is very close to f i eld testing, includes the grid dynamic behavior feedback and is risks-free for the power system, for the equipment under test and for the personnel executing the tests. Furthermore, this paper gives an overview of successful implementation of the proposed testing approach within different testing infrastructure available at the premises of different research institutes in Europe.Comment: 2018 IEEE Workshop on Complexity in Engineering (COMPENG

    High-level asynchronous system design using the ACK framework

    Get PDF
    Journal ArticleDesigning asynchronous circuits is becoming easier as a number of design styles are making the transition from research projects to real, usable tools. However, designing asynchronous "systems" is still a difficult problem. We define asynchronous systems to be medium to large digital systems whose descriptions include both datapath and control, that may involve non-trivial interface requirements, and whose control is too large to be synthesized in one large controller. ACK is a framework for designing high performance asynchronous systems of this type. In ACK we advocate an approach that begins with procedural level descriptions of control and datapath and results in a hybrid system that mixes a variety of hardware implementation styles including burst-mode AFSMs, macromodule circuits, and programmable control. We present our views on what makes asynchronous high level system design different from lower level circuit design, motivate our ACK approach, and demonstrate using an example system design
    corecore