774 research outputs found

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Deep Learning for Land Cover Change Detection

    Get PDF
    Land cover and its change are crucial for many environmental applications. This study focuses on the land cover classification and change detection with multitemporal and multispectral Sentinel-2 satellite data. To address the challenging land cover change detection task, we rely on two different deep learning architectures and selected pre-processing steps. For example, we define an excluded class and deal with temporal water shoreline changes in the pre-processing. We employ a fully convolutional neural network (FCN), and we combine the FCN with long short-term memory (LSTM) networks. The FCN can only handle monotemporal input data, while the FCN combined with LSTM can use sequential information (multitemporal). Besides, we provided fixed and variable sequences as training sequences for the combined FCN and LSTM approach. The former refers to using six defined satellite images, while the latter consists of image sequences from an extended training pool of ten images. Further, we propose measures for the robustness concerning the selection of Sentinel-2 image data as evaluation metrics. We can distinguish between actual land cover changes and misclassifications of the deep learning approaches with these metrics. According to the provided metrics, both multitemporal LSTM approaches outperform the monotemporal FCN approach, about 3 to 5 percentage points (p.p.). The LSTM approach trained on the variable sequences detects 3 p.p. more land cover changes than the LSTM approach trained on the fixed sequences. Besides, applying our selected pre-processing improves the water classification and avoids reducing the dataset effectively by 17.6%. The presented LSTM approaches can be modified to provide applicability for a variable number of image sequences since we published the code of the deep learning models. The Sentinel-2 data and the ground truth are also freely available

    Performance analysis of change detection techniques for land use land cover

    Get PDF
    Remotely sensed satellite images have become essential to observe the spatial and temporal changes occurring due to either natural phenomenon or man-induced changes on the earth’s surface. Real time monitoring of this data provides useful information related to changes in extent of urbanization, environmental changes, water bodies, and forest. Through the use of remote sensing technology and geographic information system tools, it has become easier to monitor changes from past to present. In the present scenario, choosing a suitable change detection method plays a pivotal role in any remote sensing project. Previously, digital change detection was a tedious task. With the advent of machine learning techniques, it has become comparatively easier to detect changes in the digital images. The study gives a brief account of the main techniques of change detection related to land use land cover information. An effort is made to compare widely used change detection methods used to identify changes and discuss the need for development of enhanced change detection methods

    Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore