463 research outputs found

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    A galaxy of texture features

    Get PDF

    Artificially created stimuli produced by a genetic algorithm using a saliency model as its fitness function show that Inattentional Blindness modulates performance in a pop-out visual search paradigm

    Get PDF
    Salient stimuli are more readily detected than less salient stimuli, and individual differences in such detection may be relevant to why some people fail to notice an unexpected stimulus that appears in their visual field whereas others do notice it. This failure to notice unexpected stimuli is termed 'Inattentional Blindness' and is more likely to occur when we are engaged in a resource-consuming task. A genetic algorithm is described in which artificial stimuli are created using a saliency model as its fitness function. These generated stimuli, which vary in their saliency level, are used in two studies that implement a pop-out visual search task to evaluate the power of the model to discriminate the performance of people who were and were not Inattentionally Blind (IB). In one study the number of orientational filters in the model was increased to check if discriminatory power and the saliency estimation for low-level images could be improved. Results show that the performance of the model does improve when additional filters are included, leading to the conclusion that low-level images may require a higher number of orientational filters for the model to better predict participants' performance. In both studies we found that given the same target patch image (i.e. same saliency value) IB individuals take longer to identify a target compared to non-IB individuals. This suggests that IB individuals require a higher level of saliency for low-level visual features in order to identify target patches

    Medical image enhancement

    Get PDF
    Each image acquired from a medical imaging system is often part of a two-dimensional (2-D) image set whose total presents a three-dimensional (3-D) object for diagnosis. Unfortunately, sometimes these images are of poor quality. These distortions cause an inadequate object-of-interest presentation, which can result in inaccurate image analysis. Blurring is considered a serious problem. Therefore, “deblurring” an image to obtain better quality is an important issue in medical image processing. In our research, the image is initially decomposed. Contrast improvement is achieved by modifying the coefficients obtained from the decomposed image. Small coefficient values represent subtle details and are amplified to improve the visibility of the corresponding details. The stronger image density variations make a major contribution to the overall dynamic range, and have large coefficient values. These values can be reduced without much information loss

    Temporal Extension of Scale Pyramid and Spatial Pyramid Matching for Action Recognition

    Full text link
    Historically, researchers in the field have spent a great deal of effort to create image representations that have scale invariance and retain spatial location information. This paper proposes to encode equivalent temporal characteristics in video representations for action recognition. To achieve temporal scale invariance, we develop a method called temporal scale pyramid (TSP). To encode temporal information, we present and compare two methods called temporal extension descriptor (TED) and temporal division pyramid (TDP) . Our purpose is to suggest solutions for matching complex actions that have large variation in velocity and appearance, which is missing from most current action representations. The experimental results on four benchmark datasets, UCF50, HMDB51, Hollywood2 and Olympic Sports, support our approach and significantly outperform state-of-the-art methods. Most noticeably, we achieve 65.0% mean accuracy and 68.2% mean average precision on the challenging HMDB51 and Hollywood2 datasets which constitutes an absolute improvement over the state-of-the-art by 7.8% and 3.9%, respectively

    Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations.

    Get PDF
    By definition of Wikipedia, “big data is the term adopted for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The big data challenges typically include capture, curation, storage, search, sharing, transfer, analysis and visualization”. Proposed by the intergovernmental Group on Earth Observations (GEO), the visionary goal of the Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015 is systematic transformation of multisource Earth Observation (EO) “big data” into timely, comprehensive and operational EO value-adding products and services, submitted to the GEO Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/Val) requirements. To date the GEOSS mission cannot be considered fulfilled by the remote sensing (RS) community. This is tantamount to saying that past and existing EO image understanding systems (EO-IUSs) have been outpaced by the rate of collection of EO sensory big data, whose quality and quantity are ever-increasing. This true-fact is supported by several observations. For example, no European Space Agency (ESA) EO Level 2 product has ever been systematically generated at the ground segment. By definition, an ESA EO Level 2 product comprises a single-date multi-spectral (MS) image radiometrically calibrated into surface reflectance (SURF) values corrected for geometric, atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic legend is general-purpose, user- and application-independent and includes quality layers, such as cloud and cloud-shadow. Since no GEOSS exists to date, present EO content-based image retrieval (CBIR) systems lack EO image understanding capabilities. Hence, no semantic CBIR (SCBIR) system exists to date either, where semantic querying is synonym of semantics-enabled knowledge/information discovery in multi-source big image databases. In set theory, if set A is a strict superset of (or strictly includes) set B, then A B. This doctoral project moved from the working hypothesis that SCBIR computer vision (CV), where vision is synonym of scene-from-image reconstruction and understanding EO image understanding (EO-IU) in operating mode, synonym of GEOSS ESA EO Level 2 product human vision. Meaning that necessary not sufficient pre-condition for SCBIR is CV in operating mode, this working hypothesis has two corollaries. First, human visual perception, encompassing well-known visual illusions such as Mach bands illusion, acts as lower bound of CV within the multi-disciplinary domain of cognitive science, i.e., CV is conditioned to include a computational model of human vision. Second, a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development is systematic generation at the ground segment of ESA EO Level 2 product. Starting from this working hypothesis the overarching goal of this doctoral project was to contribute in research and technical development (R&D) toward filling an analytic and pragmatic information gap from EO big sensory data to EO value-adding information products and services. This R&D objective was conceived to be twofold. First, to develop an original EO-IUS in operating mode, synonym of GEOSS, capable of systematic ESA EO Level 2 product generation from multi-source EO imagery. EO imaging sources vary in terms of: (i) platform, either spaceborne, airborne or terrestrial, (ii) imaging sensor, either: (a) optical, encompassing radiometrically calibrated or uncalibrated images, panchromatic or color images, either true- or false color red-green-blue (RGB), multi-spectral (MS), super-spectral (SS) or hyper-spectral (HS) images, featuring spatial resolution from low (> 1km) to very high (< 1m), or (b) synthetic aperture radar (SAR), specifically, bi-temporal RGB SAR imagery. The second R&D objective was to design and develop a prototypical implementation of an integrated closed-loop EO-IU for semantic querying (EO-IU4SQ) system as a GEOSS proof-of-concept in support of SCBIR. The proposed closed-loop EO-IU4SQ system prototype consists of two subsystems for incremental learning. A primary (dominant, necessary not sufficient) hybrid (combined deductive/top-down/physical model-based and inductive/bottom-up/statistical model-based) feedback EO-IU subsystem in operating mode requires no human-machine interaction to automatically transform in linear time a single-date MS image into an ESA EO Level 2 product as initial condition. A secondary (dependent) hybrid feedback EO Semantic Querying (EO-SQ) subsystem is provided with a graphic user interface (GUI) to streamline human-machine interaction in support of spatiotemporal EO big data analytics and SCBIR operations. EO information products generated as output by the closed-loop EO-IU4SQ system monotonically increase their value-added with closed-loop iterations
    • …
    corecore