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ABSTRACT 

 

Salient stimuli are more readily detected than less salient stimuli, and individual 

differences in such detection may be relevant to why some people fail to notice an 

unexpected stimulus that appears in their visual field whereas others do notice it. This failure 

to notice unexpected stimuli is termed ‘Inattentional Blindness’ and is more likely to occur 

when we are engaged in a resource-consuming task. A genetic algorithm is described in 

which artificial stimuli are created using a saliency model as its fitness function. These 

generated stimuli, which vary in their saliency level, are used in two studies that implement a 

pop-out visual search task to evaluate the power of the model to discriminate the performance 

of people who were and were not inattentionally blind (IB). 

In one study the number of orientational filters in the model was increased to check if 

discriminatory power and the saliency estimation for low-level images could be improved. 

Results show that the performance of the model does improve when additional filters are 

included, leading to the conclusion that low-level images may require a higher number of 

orientational filters for the model to better predict participants’ performance. In both studies 

we found that given the same target patch image (i.e. same saliency value) IB individuals 

take longer to identify a target compared to non-IB individuals. This suggests that IB 

individuals require a higher level of saliency for low-level visual features in order to identify 

target patches. 
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1 Introduction 

Inattentional blindness (IB) occurs when someone fails to notice a stimulus when it 

unexpectedly appears in front of them. This phenomenon is more likely to occur when the 

person is engaged in a task that consumes resources (Dehaene & Changeux, 2005; Mack & 

Rock, 1998; Hannon & Richards, 2010; Most, Scholl, Clifford, & Simons, 2005; Most, 

Simons, Scholl, Jimenez, Clifford, & Chabris, 2001; Richards, Hannon, & Derakshan, 2010; 

Richards, Hannon, & Vitkovitch, 2010). Understanding the IB phenomenon may give insight 

into the functioning of the attentional system. For example, one hypothesis is that IB is due in 

part to a processing failure, that is, when working memory resources are fully involved in 

another task, there are insufficient resources remaining for processing of the unexpected 

stimulus. Another possibility is that the stimulus may be processed but because it is irrelevant 

to the primary task it is inhibited and therefore does not reach awareness (Richards, Hannon, 

Iqbal Vohra, & Golan, 2013; Morey & Cowan, 2004). Inattentional blindness may have 

important implications for safety procedures such as those related to flying aeroplanes 

(Green, 2005), air traffic control or for eye witness accounts of crimes occurring a few metres 

away (Chabris, Weinberger, Fontaine, & Simons, 2011). 

There are individual differences in the propensity to be IB as, given the same physical 

environment and conditions, some people will notice the unexpected stimulus whereas other 

will not. An unexpected stimulus is more likely to be detected if it is salient (Wickens, 

Helleberg, Kroft, Talleur, & Xu, 2001), and therefore one possible contributing factor in 

individual propensity to IB in a visual task is how sensitive people are to detect saliency 

differences in visual scenes.  
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The attentional system could be viewed as a seeking-features mechanism where what 

we perceive depends on what the mechanism is focused upon (Driver, 2001). Therefore some 

details of the visual input may not be processed when the system does not attend them. 

However, there are some visual aspects that automatically modulate our attention towards 

salient stimuli (e.g., face stimuli have the power to attract attention over other stimuli; see 

Mack, Pappas, Silverman, & Gay, 2002), although even salient stimuli may go unnoticed if 

they are not relevant/expected to the task at issue; this may lead to Inattentional Blindness 

(Mack & Rock, 1998). 

In a typical sustained IB task, participants are asked to track a series of white Ls and 

Ts as they move around the screen and to silently count how many times these letters 

(targets) hit the frame on the screen but to ignore a similarly moving series of black Ls and Ts 

(distractors). Several seconds after subjects have started this primary task, a red cross appears 

on the right hand side of the screen and moves across the centre to the left hand side. 

Participants who, when questioned at the end of the task, report seeing the red-cross are 

classified as non-IB, whereas those who fail to report having seen it are classified as IB. This 

is one possible dynamic task to address this phenomenon (see Most et al., 2001; Simons, 

2003). One limiting factor in IB research is that subjects are categorized into one of just two 

groups (i.e., IB and non-IB groups, Inattentionally and Non-Inattentionally Blind, 

respectively) on the basis of a one-trial task. This is a general problem in the literature related 

to this psychophysical phenomenon (Hannon & Richards, 2010). However, several 

alternatives are present in the literature; see for example Kuhn and Findlay (2010) for the 

relationship between IB and misdirected attention, or Simons and Chabris (1999) for IB in 

dynamic events. 

Unfamiliar objects/targets are more readily detected than familiar objects/targets if the 

unfamiliar item is displayed along with familiar ones (Wolfe, 2001; Levin, Drivdahl, Momen, 
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& Beck, 2002; Treisman & Souther, 1985). One way to control for this effect is to create a set 

of stimuli (both target and distracters) that are completely unfamiliar to the subject. To do 

this, a saliency model based on that of Verma and McOwan (2009) was used to create to 

stimuli whose representations do not induce detection as a result of the possible confounding 

effect of their familiarity. A genetic algorithm (GA) uses the saliency model as its fitness 

function to perform an artificial process of selection in order to achieve certain levels of 

saliency for stimuli. Although the model reported here is very similar to that presented by 

Verma and McOwan (2009), changes were made to the pipeline of events (e.g., changes to 

the drawing algorithm and the way stimuli are coded in chromosomes). Verma and McOwan 

(2009) showed that visual searching behaviour was modulated by the saliency of the scene, 

namely high saliency portions of an image were inspected by the subjects more readily than 

low saliency areas. This affected the time taken to identify a change in that changes made in 

high saliency regions were noticed much faster than those made in low saliency portions of 

the image. This was also confirmed when the saliency of the region was reversed (e.g. when a 

low saliency region that presents a change is manipulated to become a high saliency region, 

the time a subject takes to identify the same change is shortened; see Verma and McOwan, 

2010). 

We report a genetic algorithm that uses two versions of this saliency model as its 

fitness function to create a series of stimuli that are then used in two studies. Both studies test 

whether a low-level saliency model (e.g. bottom-up processing based) is able to discriminate 

two different trends in searching behaviour: given the same levels of saliency participants 

classified as IB  subjects may be slower to detect a target in target-present images, compared 

to those participants showing quicker responses in terms of reaction times (i.e., non-IB 

subjects).  
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2 The Saliency Model 

The model developed by Verma and McOwan (2009) is based on an earlier model 

(Itti, Koch, & Niebur, 1998) which computes a saliency map of an image from feature 

contrasts derived from spatial filters, colour filters, a luminance filter and orientational filters, 

as well as modelling top-down factors. However, the model presented in Verma and 

McOwan (2009) does not make use of either top-down factors or features such as flicker and 

motion (Itti & Baldi, 2008). Our goal is achieve a reasonably good saliency estimation that 

allows us to predict human behaviour and discriminate between IB and non-IB subjects, 

rather than mirroring a large number of attentional mechanisms. (Several implementations of 

saliency models can be found in Desimone & Duncan, 1995; Milanese, 1993; Itti, Koch & 

Niebur, 1998; Peters, Iyer, Itti & Koch, 2005; Li and May, 2007; Field, 1987; Koene & 

Zhaoping, 2007; Li & May, 2007.) 

For an image  , the model provides a global saliency value and a saliency map (Koch 

& Ullman, 1985). The saliency estimation is achieved through the computation of orientation 

and luminance Scales, which are then further combined to form Sub-Features Maps and 

Feature Maps (see Figure 1).  Since our saliency model is inspired by the one described in 

Verma and McOwan (2009), only differences and crucial details of our approach are 

discussed. 

The model makes use of a hierarchical structure which was inspired by Marr’s (1982) 

model of visual processing, and in particular, by the so-called primal sketch of a given visual 

scene that employs feature extraction of basic components including regions, edges, textures, 

etc. The outcome of the model can be defined as: 

           
                                           )  (Equation 1) 
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   is the saliency model that returns two main outputs:    , a global saliency value 

estimated on the basis of the saliency map (i.e.,    ) obtained from a given image  . 

 

Figure 1. The diagram depicts the decomposition of a given image for the features analysed by the 

saliency model. Orientation scales and luminance contrasts are extracted (see Scales/Contrasts level), combined 

together (i.e. sub-feature map and feature map levels), normalised and then further combined to form the global 

saliency map. 

 



A low-level saliency model Page 8 of 48 

 

   represents the weighting function used to combine maps at each step as depicted in 

Figure 1 (see section 2.3).           is the luminance channel and               relates to the 

channel that comprises 9 orientational filters. No colour channels are implemented as only 

greyscale pictures were used. 

The following two sections illustrate how luminance and orientation features are 

extracted and then combined to form the saliency map and to compute its numerical 

estimation. 

2.1 Extraction of visually low-level information 

Luminance 

For the feature extraction we chose the implementation of a biologically inspired 

centre-surround filter for luminance (Hubel & Wiesel, 1962). This involves obtaining a 

Gaussian Pyramid of the image of interest (Burt & Adelson, 1983) and creating contrasts 

according to a given rule (i.e. inter-scale subtraction; see Itti, Koch, & Niebur, 1998). The 

construction of the pyramid starts from the original greyscale image. This scaling technique is 

used to simulate centre-surround receptive fields in neuro-computational modelling and has 

resulted in reasonably successful modelling of on/off simple receptive fields with a 

Difference in Gaussian function (DoG) (Field & Tolhurst, 1986; Jones & Palmer, 1987; Marr 

& Hildreth, 1980). This method is grounded in the assumption that simple cells in the visual 

cortex V1 are sensitive to visual features that pop out against a homogenous background, e.g., 

when a foreground elicits a different neural activity compared to the background (Knierim & 

van Essen, 1992; Nothdurft, Gallant, &Van Essen, 1999). 

In order to build centre-surround filters we used the MatLab™ function impyramid 

which allows selection of subsampled versions of the original image. This function makes use 
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of a 2-dimensional Gaussian kernel to subsample the image in n scales by applying a scaling 

factor of 2 (i.e. scales are progressively smaller copies of the same image), resulting in the 

resolution of the image at the top of the pyramid being 
 

  
 of its original dimension. To 

determine the number of scales we applied the following formula: 

      [          ] (Equation 2) 

  and   are the width and height of the input image  . We used a 1000   1000 pixel 

resolution to build images; this led to a constant number of scales (i.e.,  ). To allow inter-

scale subtractions among the previously obtained scales, the down-sampled images were 

resized to the original size using bilinear interpolation (see ‘scales’ and ‘centre-surround 

contrasts’ in Figure 1). The number and the type of subtractions performed are based on the 

following formulae: 

                (Equation 3) 

        where             (Equation 4) 

Because the number of Scales is equal to 7, we obtained a total of 9 luminance 

contrasts, as follows:                                    . 

 

Orientation 

The implementation of orientational filters cannot be successfully achieved by 

standard DoG filters for several issues. One main problem is that that the orientation features 

are more complex than those of uniform foregrounds or backgrounds, because the receptive 

field (RF) of a complex cell is the product of several RFs of simple cells (Kandel, Schwartz, 
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& Jessell, 2000). A log-Gabor filter is more suitable to model this computational aspect 

(Valois, Albrecht, & Thorell, 1982). 

A Log-Gabor filter is made from two components: a radial part (Fr) and an angular 

part (Fa). The former defines the spatial frequency that the filter is sensitive to, whereas the 

latter adjusts a periodic wave to the filter. This can be formulated as follows: 

    

  [    (
 
  

)]
 

 [    (
  
  

)]  
 (Equation 5) 

  

    
          

   
 

  (Equation 6) 

 

   represents the orientation that the filter is selective to,     is the centre of the 

frequency domain, whereas     and    are respectively the bandwidths of the radial and 

angular parts (measured in octaves). To avoid overlap between filters being selective to 

different orientations, the ratio between the bandwidth of the radial part and the centre 

frequency of filter is held constant. 

The radial part is split into seven Scales (labelled 1 to 7). That is performed for all 

nine orientation filters used in our implementation:                                     

and     . The higher number of orientation filters should enhance the performance of the 

model compared to the Verma and McOwan (2009) implementation, where four filters were 

used
1
. 

                                                           
1
 The function used to compute Log-Gabor filters was scripted by Kovesi (2001, 2010) and available 

from the author’s website: 

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/PhaseCongruency/gaborconvolve.m 
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The two parts can be further combined to get the polar coordinates in the frequency 

domain: 

                (Equation 7) 

Following Valois, Albrect and Thorell (1982) the bandwidth was set to approximately 

1.5 octaves, which is thought to be the norm to simulate orientation filters; whereas    and  

   are respectively equal to 2 octaves and  
 

 
. For each orientation filter the wavelength    is 

set at 75Hz at the beginning (e.g. scale 1), and then reduced by a scaling factor of 
 

   (with n = 

1,…,7). Eventually the calculation of the orientation scales results in 63 scales (7 for each of 

the 9 orientations).  

2.2 Saliency Estimation 

In order to quantify the amount of saliency present in a given image we utilised a peak 

analysis approach according to the findings presented in Hu, Xie, Ma, Chia and Rajan (2004), 

Verma and McOwan (2009) and Verma (2009). This is carried out for both the luminance 

and orientation channels. The Hurst exponent estimation was implemented (Hurst, 1951; 

Blok, 2000; Racine, 2011), which measures the amount of signal (i.e., quantifying the 

saliency) present in a given map. Its value ranges between 0 and 1, approaching 1when the 

map at issue contains a highly visible target-patch. This estimation can be achieved using 

several methods (see Taqqu, Teverovsky, & Willinge, 1995). The Aggregated Variance 

method (Taqqu et al., 1995) was chosen as this has the best trade-off between accuracy and 

economy in terms of computational demand against the disadvantages of the methodologies 

discussed in Hu, Xie, Ma, Chia, and Rajan (2004) and Li and May (2003). Moreover, this 

approach appears to be biologically plausible in terms of sensory information analysed by the 

central nervous system (Reichardt, 1961). 
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To compute the Hurst estimation, pixels present in each     shown in Figure 1 were 

collapsed into two 1-dimensional data series. This was done by computing the standard 

deviation of the image pixel values first by the x-dimension (i.e., pixel row) and then by the 

y-dimension (i.e. pixel column). The two estimations are then summed to form a global Score 

as follows: 

    (      )   (     
)          

   (Equation 8) 

 

Where      is the saliency value for a given       , whereas      
 and      

 are 

respectively the standard deviations of the data series computed on the x and y dimensions. 

Since      is the sum of two Hurst estimation, its range is from 0 to 2. When      

approaches 2 there is a strong cross-correlation in terms of spatial similarity of the orientation 

filter response across the data series. The main advantage of using the Hurst exponent is that 

it favours isolated peaks against a series of peaks irrespective of the amplitude (e.g. low 

frequencies against high frequencies; see Verma, 2009). The same applies to the luminance 

contrasts. A single peak (e.g., a target-patch against a homogeneous background) is more 

likely to be self-similar across a data series (e.g. having a low standard deviation), whereas 

several peaks (e.g. a uniform background such as a target-absent image) determine a high 

standard deviation and thus a lower      is assigned. 

2.3 Feature Combination 

Combining scales, contrasts and maps is useful to reduce the number of maps per 

feature being analysed, but maps containing higher amounts of signal need to be more 

heavily weighted than others. Several methods are available to combine different scales and 

contrasts (Itti & Koch, 2001; Verma & McOwan, 2009). A review of these combination 

strategies can be found in Verma (2009). Following Verma and McOwan (2009), we used a 
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Logarithmic combination strategy (PA-Log). According to Verma (2009), PA-Log is more 

reliable than other methods because it picks up a smaller spread of false detections, in that 

maps with the highest scores (e.g. a  strong localised peak detecting one target) will be given 

a much higher weight than those with the lowest scores (e.g. a uniform background). 

In order to weigh heavily those maps with the highest scores, maps are sorted in 

descending order, so that the highest weights are assigned to maps with the highest scores. 

This is achieved with the formula: 

    
 

      (
   

     
)  (Equation 9) 

Where M is the total number of maps to be combined: this equals to 9 for the 

luminance centre-surround contrasts and 7 for the orientation scales; see the maps in Figure 1 

at the centre-surround and scale level. This value varies as the process of obtaining the final 

saliency map proceeds. For example, M = 2 at the feature map level (see Figure 1 at the 

feature map level box). The   symbol in Equation 9 represents the  -th position that a given 

sub-map occupies when they are sorted according to their      scores.  

When weights are obtained the following strategy is used to form a map that 

combines different sub-maps: 

       ∑             
 
     (Equation 10) 

Where the  -th             represents the map to be combined (e.g. from the sub-

map with the strongest signal to the one with the weakest); whereas    is the corresponding 

weight according to the sorted scores (i.e. from the highest to lowest). 

We normalised the newly generated maps to the range [   ]. A linear normalisation 

procedure is undertaken, as follows:    
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 (Equation 11) 

Where        is a newly produced map resulting from the combination of those 

present at a lower level. Normalisation is an efficient method to overcome two potential 

issues related to the estimation of the saliency. Firstly, the use of two different methods to 

obtain the saliency present in the luminance and orientation channel (i.e., centre-surround 

contrasts and log-gabor filters), may favour one feature over another. Secondly, the weighting 

function produces overpowered pixels (i.e., outside the range [   ]) that need to be rescaled 

to within [   ] without altering the result of the weighting process. 

Normalisation takes place when luminance centre-surround contrasts and orientation 

filters are combined to form respectively one luminance feature map and one single 

orientation map, and again to obtain the final saliency map. Figure 1gives an illustration of 

the normalisation points.  

Several estimations can be computed in order to obtain the global saliency score for 

the final saliency map (see top of Figure 1). However, according to Verma (2009) the best 

estimate for the saliency is the sum of the maximum scores obtained from both luminance 

centre-surround contrasts and orientational scales:  

          
 (∑            

  
   )            

   (Equation 12) 

 

Where                  
  is the  -th maximum saliency score obtained from one of the 

9 orientation piles at scale level (bottom right of Figure 1); whereas           
  is the 

highest saliency value from one of the 9 centre-surround contrasts. This estimation leads 
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 to range between 0 and 20 for a 9 orientation filter model, and between 0 and 10 

for a 4 orientation model (see later in Study 2 for a comparison between these two saliency 

models). 

The next section explains how the saliency model and its two main outputs, i.e. the 

final saliency map and its numerical estimation are embedded into a Genetic Algorithm (GA) 

used to produce pop-out pictures. 

2.4 The Genetic Algorithm 

A genetic algorithm (GA) is a function that uses several variables to find a solution or 

group of solutions that maximise or minimise some quantity. It does this through a process 

akin to reproduction and a fitness function. Over time unfit individuals tend not to pass on to 

the next generation whereas fitter individuals reproduce and pass on their traits to future 

generations (Holland, 1975; Goldberg, 1989; De Jong, 1975; Koza, 1990). The fitness 

function is the crucial aspect allowing evolution to take place over generations. In our 

implementation the saliency model was used as a fitness function within a GA operating over 

image stimuli. This allows an artificial process of selection to be performed to achieve 

different levels of saliency for unbiased stimuli (from a minimum to a maximum level of 

saliency). To create these stimuli we used a form of “Biomorph” based on the work of 

Richard Dawkins presented in his book The Blind Watchmaker (1986).  

In contrast to Dawkins, we avoided the use of the symmetry to prevent our artificially 

generated stimuli from appearing to be related to real life stimuli and therefore we called 

them Randmorphs rather than Biomorphs (Verma [2009] used the latter term; see Figure 2).  
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Figure 2. Top panel: four different randmorphs created in our implementation and used to produce a 

target-patch. Mid panel: one target-absent and three target-present patches at several levels of saliency. Left 

image shows a grid with the four possible positions for the target-patch. Bottom panel: the saliency maps 

obtained by the run of the saliency model with their saliency values given below. 

 

Both our Randmorphs and Verma’s Biomorphs are a form of texton, fundamental 

elements in visual perception that are used to form texture segregation images (Julesz, 1981; 

Bergen & Julesz, 1983; Julesz, Gilbert, &Victor, 1978). 

The GA in this implementation is a complex function that takes as an input several 

components to give one output, which is a population of increasingly more salient pictures: 

                                        

(Equation 13) 
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Where            is the population bin:     is the saliency model as described earlier 

in the previous section,            the set of centred coordinates for the target-patch,      a 

random parameter used to select the orientation of the branches for the randmorphs to be 

drawn (see further), and       the chromosome that stores the information for the drawing 

of a pair of two randmorphs. 

In order to operate the selection process we used both binary and integer encoding to 

encode the chromosomes (Holland, 1975; Chakraborty, 2010; Davis & Mitchell, 1991; 

Goldberg, 1989). A binary “genotype” chromosome consisting of 282-bits is employed to 

express a pair of Randmorphs used to build a target patch image.  Genes codify for integers 

representing radians in the continuum between 0 and          (rather than the range 0-2 ). 

Simulations of the GA show that more occurrences of the same cosine and sine values for a 

given radian lead to a smoother spread of the saliency values across the generations (see 

Figure 3). To draw a pair of randmorphs a radian (    ) rounded to its nearest integer is 

randomly selected to obtain 8 different orientations separated by an arbitrary unit of       . 

However, for simplicity, a set of orientations in degrees, rather than radians, is used to draw a 

randmorph as shown in Figure 4a. 
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Figure 3. A wider range in the radian space was used to obtain more occurrences of the same cosine 

and sine values for a given radian (i.e., 57.32   ; see part A). For instance,                       (i.e. 

Z is a set of positive integer numbers including zero). This allows the drawing algorithm to build a broader 

range of randmorphs that leads the selection process to an evenly distributed continuum of saliency values, 

preventing the algorithm from producing sudden changes to the structure of the randmorphs (i.e. a smoother 

increase of the pop-out effect across images; see part B). 

 

A “phenotype” chromosome is obtained from the 282-bit chromosome to form a 94-

integer positions sequence, with each integer represented by 3 bits and having a value ranging 

between 1 and 8. Each phenotype chromosome is divided into two halves, each containing 5 

segments coding for the following: first and second set of angles used to draw the two parts 

of a randmorph (8 int. each), trunk of the randmorph (1 int.), left and right part of the 

randmorph (respectively 15 int. positions; see Figure 4b and 4c). To draw a target-patch, a set 

of centred coordinates in a 4 4 block lattice are randomly produced (i.e.,           ). Each 

lattice block allows 16 replications of a randmorph. One randmorph is assigned as target and 

reproduced 16 times to fill 1 out of 4 blocks surrounding the central area of the image (see 

Figure 4c, bottom). 
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Figure 4. Part A: an angle is selected randomly to obtain a set of 8 angles separated by 45 degrees. For 

simplicity, we show here the drawing of a randmorphs in degrees (rather than radians). Part B: depicts the first 3 

genome segments (out of 5) to construct the trunk and the first branch of the first half for the randmorph used as 

the target in the pop-out image. The first 8 genes codify the 8 orientation utilised to draw the first randmorphs. 

The next single-gene and the 15 that follow represent the positions of the angles selected in the first 8-integers 

sequence. Please note that this encryption allows two different loci to code for the same orientation. This allows 

branches to overlap and therefore to obtain a wide variety of patterns. Once the angle position has been retrieved 

from the chromosome, its corresponding angle is used to obtain the coordinates for the first segment to be drawn 

(trunk); this is done using cosine and sine functions. A scaling factor for the depth of the drawing is used to limit 

the pattern from getting too complex (starting from 5, i.e. depth = 0; see part C). Part C: represents the building 

of a randmorph by the drawing algorithm. Randmorphs are drawn in a two-dimensional space, with the first 

coordinate being (0,0). The drawing algorithm uses a recursive rule which diminishes the length of each 

segment by a factor of 1 at each depth. The final end of each segment is the starting point for the next two 

branches until the algorithm “runs out” at depth =4. Once the pair of randmorphs has been produced, one 

randmorph is used to construct the target-patch and therefore is replicated 16 times to form a square. A 4x4 

lattice, each consisting of 16 positions, is used to form the image. The target-patch is allocated to 1 of 4 central 

positions. Overall, 256 randmorphs are used to produce a picture (240 to form the background plus 16 to create 

the target-patch). 

 

Once the image has been obtained, a saliency map and a global saliency value are 

produced by the fitness function (i.e., the saliency model); this provides the GA with the 

necessary information to start the selection process. 
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The GA starts with a population of 12 images that is produced by the process 

described above. An elitism approach was used (De Jong, 1975), which allows the fittest 

images to be transferred to the next generation. This parameter was set to 0.2 which implies 

that in our population of 12 individuals, 2 are selected as the fittest and passed on (e.g., 

individuals/images with the highest saliency values); whereas, the two least fit individuals in 

the population are selected and passed on after the mutation function has applied a random bit 

change. The mutation function changes the structure of the two binary chromosomes from 

this starting population (the bit change probability is equal to 0.5)
2
. The first bit change is 

always applied at depth = 4, proceeding through the generations towards depth = 0 (i.e., trunk 

level) where a change usually determines a substantial change in the saliency of the image. 

3 Studies 

Two studies were performed to investigate differences between IB and non-IB 

individuals in detecting the presence/absence of a target-patch on a uniform background. The 

performance of the model will be also discussed. 

 Subjects in the two studies were classified as IB or non-IB on the basis of their 

performance on a dynamic IB Task. In addition, the Randmorphs task was performed in the 

two studies where the maximum stimulus exposure duration was 10s (Study 1) and 1s (Study 

2). The model used to produce the saliency estimations in Study 1 was implemented with 9 

orientational filters. Study 2 compared the performance of the 9 orientational filters model 

                                                           
2
 The model does not make use of a crossover function. This is because in our implementation 

crossovers would cause sudden changes to the Randmorphs structure that would result in sudden changes to the 

saliency of the images. This would result in the GA converging without producing a set of images whose 

saliency is evenly distributed in the continuum 0-20 or 0-10 respectively for the 9 orientations and 4 orientations 

saliency models. 
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with a 4 orientational filters model, the latter being theoretically equivalent to the one 

presented in Verma and McOwan (2009).  

3.1 Study 1: 10-seconds Randmorphs task  

We used a sample of 250 target-present images, along with an equal number of null 

trials depicting a uniform texture of Randmorphs (i.e., target-absent). The goal was to 

evaluate whether this model produced a reliable saliency estimate which allows predicting 

human behaviour in terms of RTs to detect target-patches, and therefore discriminate between 

IB and non-IB individuals.  

In Study 1 the Randmorphs Task required participants to decide whether a target 

region was present or not in each of the images. Each image had a saliency score as obtained 

from the procedure outlined above. It was hypothesised that the time taken to respond to each 

image would be negatively correlated with the saliency scores.  

3.1.1 Apparatus 

For the Randmorphs task stimulus images were presented on a 19-inch standard LCD 

monitor (Samsung Sync Master 931BF) with a spatial resolution of 1280   1024 pixels and a 

temporal resolution of 75Hz. Participants viewed the presented stimuli at a viewing distance 

of 57 cm. The dimensions of the active display area were 33.9   27.1 cm. A chin rest was 

used to constrain head movements. Subjects responded to stimuli using the Eprime S-R box. 

The size of each stimulus image was 10.6   10.6 cm (378   378 pixels), so each image 

subtended 10.6
o
 of visual angle. Eye movements were monitored using an LC Technologies 

video eye tracker with Eprime 2.0 (Schneider, Eschman, & Zuccolotto, 2002). 

The same setting was used for the IB standard task apart from the following changes: 

the active display area was 26   17.55 cm, subtending an angle of 27.14
o
   17.93

o
. 
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3.1.2 Participants 

Twenty-five undergraduate students (3 male) from the Birkbeck College took part in 

the study for course credit. The participants were naive about the purpose of the research. All 

subjects had normal or corrected-to-normal vision and were aged 18 to 51 (mean=31.46; 

SD=8.74).  

3.1.3 Stimuli 

The IB Task (Figure 5a) was created using MatLab, and was very similar to the 

dynamic IB task developed by Most et al. (2001; based on the video clip courtesy of Simons, 

2003). The IB task comprised black and white letters (Ls and Ts) on a grey background 

moving around the screen hitting the borders of the display. When the video begins there is a 

still frame for 8.5 s showing the starting positions of the targets (white letters) and distractors 

(black letters). 

 

Figure 5. Part (a) shows the dynamic IB Task where four black and four white Ls and Ts move linearly 

around the screen and bounce off the edge of the display. Subjects monitor the white letters (targets) and ignore 

the black letters (distractors), and silently count the number of times the targets hit the edge of the frame (total 

hits= 21). After 20 s of this 32.5 s task, a red plus sign (grey in the picture) appears at the right hand side of the 

frame taking 11 s to travel across the display and disappear at the left hand side. Part (b) Randmorph task 

(depicted here for Study 1): subjects attend a screenshot instructing them to fixate centrally for 1500ms. A 

fixation cross is then presented for at least 500ms. The paradigm uses a gaze contingency approach, allowing 

subjects to move on to the next trial only after having looked at the fixation cross for 500ms. 
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The primary task required that participants track the targets but ignore the distractors, 

and report the number of times the targets bounced off the border of the display (i.e., ‘hits’) at 

the end of the 32.5 s video. After 20 s from the onset of the video a red cross (in dark grey in 

Figure 5a) moves across the screen, taking 11 s to traverse the screen starting from the right 

hand side and exiting at the left side. Participants who failed to notice the red cross when 

questioned at the end of the video were classified as IB subjects, whereas those noticing the 

red cross as non-IB. 

The randmorphs task consisted of 500 images, 250 of which were target-present 

images. Each image display comprised a 4   4 grid. In 250 displays, one texton was 

presented in each of these 16 positions, creating a seamless uniform background (i.e., target 

absent displays). In the other 250 displays, one texton was used as the background (15 

positions) but one of the four grid positions surrounding the central point was filled by a 

second texton that served as the target (i.e., target-present).  For the target-absent displays, 

the saliency of the display ranged between 1.80 and 4.40 whereas for the target-present 

displays, the saliency ranged between 11.79 and 18.20. 

3.1.4 Procedure 

Participants first completed the Randmorph task. Following the calibration procedure, 

participants were instructed to view each display and to decide if there was a target present or 

absent by pressing one of two keys on the response box.  At the beginning of each trial a 

screen displaying ‘Fixate Here’ was presented for 1.5 s. A gaze-contingent procedure was 

then employed such that participants were required to maintain a central fixation for an 

additional 500ms during which a fixation cross was displayed prior to the onset of the image. 

This was implemented to standardise the starting position of the participants' fixation at the 

beginning of each trial. Participants were told they had a time limit of 10 seconds per trial and 
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asked to perform a 1 interval forced choice (1IFC) deciding whether or not a target region 

was present (see Figure 5b). Participants were told they could freely look around from the 

onset of the image and make a response anytime within the 10 s limit. Once the participant 

has made a response, a 500 ms blank screen was presented before the beginning of the next 

trial. 

Participants were then presented with the IB task. They were instructed to silently 

count the number of times the moving targets (white Ls and Ts) hit the border of the display 

whilst ignoring the moving distractors (black Ls and Ts) – this was the primary task. At the 

end of the task, participants were asked how many target hits they had counted and then 

asked if they had seen anything else. Those participants reporting having seen the red cross 

were classified as being non-IB whereas those who did not report it were classified as IB. All 

participants who were classified as IB spontaneously reported seeing the red cross when they 

were shown the task again but this time instructed not to do the counting task (i.e., full 

attention task). 

3.1.5 Results 

The time taken to detect the target in the target-present trials was correlated with the 

saliency level of the 250 trials (collapsed over all participants; IB status was not considered). 

This showed a significant Spearman’s rho coefficient between the estimated saliency values 

and reaction times (rs(248) = -.687; p<.001; one-tailed; see Figure 6a).  

In addition, the same pattern is present if we consider the number of misses as a 

function of saliency. As Figure 6b shows, the number of misses drops as the level of saliency 

increases (rs(248) = -.736; p<.001; one-tailed). Interestingly, the number of false alarms 

increases as saliency gets higher (rs(248) = 0.136, p<.05; two-tailed), although this 

correlation is rather weak. It appears that given an image without any target, subjects are 
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more inclined to see a target patch as the saliency increases, even though this is not present 

(see Figure 6c; note that the saliency range for target-absent images is much lower because 

the saliency is simply based on a uniform background). 

 

Figure 6. (a) Plot of the linear fit, irrespectively of the IB status. Reaction times were fitted as a 

function of the saliency estimation for the target-present patches. This clearly shows that as the saliency 

increases the time taken to recognise a target-patch is longer, whereas the subject response for low saliency 

pictures is, albeit variable, significantly slower. (b) Histogram of miss rates as a function of the saliency, 

showing a proportional decrease as the saliency increases. (c) Histogram of false alarm rates as a function of the 

saliency, depicting an equally distributed pattern. 

 

A linear fit was carried out (see Figure 6a, dashed line) that accounted for 44.6% of 

the total variability (F(1,248) = 199.449, p<.001; R
2
 =0.446), with the predictor ‘saliency’ 

being significant (  = -.668; t = -14.123, p<.001).  
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With respect to Inattentional Blindness, 6 subjects were not-IB whereas the remaining 

15 subjects were IB. Two subjects were excluded as they appeared not to perform the primary 

task properly (e.g. less than 11 out of 21 hits); moreover, two more subjects had to be 

excluded because it was unclear from their report whether or not they notice the unexpected 

stimulus. Response times showed a different trend in the two groups. A multiple regression 

with saliency and IB-status as predictors showed that the beta parameter saliency for the IB 

group interpolates longer response times compared to the Non-IB group, with the latter 

assumed as the baseline (  for dichotomous variable IB-status:   = 0.934; t = 3.174, p<0.01; 

see Figure 7). This was also confirmed from the negative estimate of the interaction term 

(Saliency   IB-status:   =       ;                ): the regression line for IB 

individuals, compared to Non-IB individuals, presents a more negative slope  (i.e. inverse 

relationship). 

 

Figure 7. Linear fit for (left) non-IB individuals, and (right) IB individuals in study 1. 

 

This shows that IB subjects are overall less sensitive to changes in the saliency of the 

visual scene, whereas Non-IB individuals tend to pick up target-patches that are relatively 

low in saliency with a quicker response. IB subjects require a higher level of saliency to 
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perform as quickly as Non-IB subjects (i.e., less sensitive). There was a significant 

interaction between the two factors, and the addition of the interaction term increased the 

amount of explained variance although only by 0.79 % (                    ). 

To evaluate saliency sensitivity differences between the two subgroups,    was 

calculated and an independent-samples t-test performed. Results show that although the two 

samples present a different pattern for RT, the saliency difference are in the predicted 

direction but not significant. The IB individuals are non-significantly poorer to identify a 

signal among the noise (                   , one-tailed; equal variances assumed; 

 ̅                     ̅                      )
3
.  

3.2 Study 2: one-second Randmorphs task 

In order to check the replicability and generality of the findings of Study 1, a second 

study was conducted using a shorter time window and so the presentation time for images 

was reduced from 10 s to 1 s following by a 1 s blank interval. Participants were required to 

respond within this shorter interval, which should reduce the influence of strategic processing 

on performance. Secondly, we wanted to evaluate whether or not the removal of 5 

orientational filters in the saliency model has an impact on the power of the model to 

discriminate between IB and non-IB individuals. Thus a 4-orientational filters model 

                                                           
3
 We also carried out the same analysis using more conservative criteria for the IB task (i.e., excluding 

those who counted less than 17 out of 21 hits or whose report was unclear). This resulted in the loss of 6 IB 

subjects whose performance was below the above criteria, although their report was clear. A t-test shows a 

difference in sensitivity (                   ; two-tailed; equal variances assumed;  ̅              

       ̅                      ). 
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(theoretically equivalent to the one present in Verma & McOwan, 2009), was compared with 

the 9 orientation model. 

3.2.1 Apparatus 

The same experimental apparatus was used as for Study 1, but here the eye-tracker 

was not used to monitor gaze contingent viewing. This is because a short presentation time 

encourages participants to look at the centre of the screen as this is the most efficient strategy 

(i.e., targets that appeared randomly in one of the four positions that surround this central 

point are more likely to be detected if fixation is central rather than peripheral). 

3.2.2 Participants 

Twenty-nine subjects (9 males) took part in the study. All participants were naive 

about the purpose of the research, had normal or corrected-to-normal vision and were aged 

from 19 to 41 (mean=27.74; SD=6.02). 

3.2.3 Stimuli 

The saliency range was reduced because target-present images with the lowest 

saliency values (e.g. 11-12) were too difficult to detect (an average of 55% of misses was 

found in Study 1 between 11.70 and 13.00). Fifty-three target-present images in the 11.70-

12.99 range were replaced with an equal number of new images evenly distributed along the 

new range 13.00-18.70 for the 9 orientation model. The run of the 4 orientation filter model 

on this modified image set gave a range of 3-10 for the same target-present images given as 

input to the 9 orientation model. The same target-absent images used in Study 1 were utilised. 

The saliency estimations from the 4 orientation filter model for these images ranged between 

0.25 and 2.35.  
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3.2.4 Procedure 

The procedure remained the same as for Study 1 apart from reducing the duration of 

image presentation. Subjects attended a screenshot showing a fixation cross for 2 s, followed 

by a blank screen for 300 ms, and then the image appeared up to 1 s. Once the participant 

made a response the image disappeared and a 1.5 s blank screen was presented before the 

onset of the next trial. Responses were accepted within 2 s from the stimulus onset. 

3.2.5 Results 

We compared the False Alarm (FA) rates for the target-absent images for the 9 

orientation model here with those from Study 1, to evaluate the consistency of the saliency 

values for the target-absent images across the two studies. Figure 6c and Figure 8a-b (right 

panel) show that the FA rates follow the same pattern. We found no significant rho 

correlations for both of the saliency estimations produced (4-filters model: rs(248) =  -.08, p = 

.205; two-tailed; 9-filters model: rs(248) = -.054, p = 0.39; two-tailed).  

The saliency scores from the 4 orientation filter model showed a weaker correlation 

(4-filters model: rs(248)= -.612, p<.001; one-tailed;) with target detection response latencies 

compared to the ones from the 9 filter model (9 filter model: rs(248)= -.668, p<.001; one-

tailed; see Figure 8c and 8d). In order to compare the two correlations the Fisher’s r-to-z 

transformation was utilised. Using the Fisher’s z-test (Howell, 1987), we found that the 9 

filter model is not significantly better than the 4 filter model to predict participant’s reaction 

times (   
    

 =1.06, p=0.146; one-tailed). However, an analysis of the misses showed 

significant correlations with saliency for both models (4-filters model: rs(225)= -.717, p<.001 

one-tailed; 9-filters model: rs(225)= -.790, p<.001; one-tailed), with the 9-filters model better 

able to estimate miss rates than the 4 filter model (   
    

 = 1.79, p<0.05; one-tailed). 
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Figure 8. Results from Study 2 showing the comparison between the 4 and 9 orientation model. 
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The goodness of fit of the two models was examined showing that, although both are 

significant, they account for a different proportion of variance (4-filters model: 

F(1,248)=139.500, p<.001,   =0.360; 9-filters model: F(1,248)=193.525, p<.001; 

  =0.438). We then used a Cox test
4
 to compare the two non-nested models. Results from the 

Cox test show that the two models are significantly different, with the 9-filters model 

producing better saliency estimations when compared to the one with 4 filters only (  

            ).  

Fourteen participants were assigned to the IB group and seven to the non-IB group on 

the same basis as for Study 1 (i.e., same exclusion criteria). No subjects were excluded on the 

basis of the number of hits. However, 9 subjects were excluded as it was not possible to 

determine whether they were inattentionally blind or not, as it was unclear from their reports 

whether or not they noticed the unexpected stimuli (e.g., “something floating on the screen”, 

“something red”, etc.). We therefore excluded these participants from further analysis. 

 A multiple regression with IB-status and the saliency estimations on RTs was 

performed. Results show that IB subjects again were slower in detecting target patches 

compared to the non-IB (4-filters model: IB-status:   = 0.759; t = 4.24, p<0.001; 9-filters 

model: IB-Status:   = 1.412; t = 3.752, p<0.001). As for Study 1, we then included the 

interaction term and we found it to be significant in both models (4-orientation model: 

Saliency   IB-status:   =       ;                ; 9-orientation model: Saliency   

IB-status:    =       ;                ).  

                                                           
4
 The idea of the Cox test is the following: if the first model (i.e. 4-filters model) does not contain the 

correct set of regressors, then a fit of the regressors from the second model (i.e. 9-filters model) to the fitted 

values from the first model should provide more explanatory power. But if it has not, it can be concluded that 

model 1 does contain the correct set of regressors (see for further information: Zeileis & Hothorn, 2002; Greene, 

1993; 2003). In our case the saliency regressor from the second model to the fitted value from the first model is 

significant (i.e. more explanatory power), showing that the model with 9 orientation filters gives a better 

saliency estimation to predict RTs (i.e. the saliency regressor from the 4-filters model is less accurate). 
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The inclusion of the interaction term in both models increased the proportion of 

explained variance respectively of 1.7% for the 4 orientation model and 1.3% for the 9 

orientation model (4 orientation model:                        ; 9 orientation model: 

                      ). However, there was a 6%    difference in the amount of the 

variance explained by the full 9 orientation model (main effect of saliency, group and their 

interaction) when compared with the full 4 orientation model. 

Because the two multiple regressions used to evaluate the saliency models are not 

nested, we assessed which model produced a better estimation to predict the human 

performance given the same number of regressors (i.e. the two main effects and their 

interaction). A Cox test was again used to evaluate the two non-nested multiple regressions, 

showing that the inclusion of the subjects’ status and its interaction with the regressor 

‘saliency’ still favours the model with 9-filters (               ). 

In summary, the addition of more orientational filters does increase the discriminatory 

power of the 9 orientation filter model – compared to the 4-filters model – even for simple 

images such as the ones that were used here (i.e., low-level images). 

As for Study 1, we carried out a    analysis between the two groups. No difference in 

sensitivity was found in this study between IB and non-IB individual (             

    ; one-tailed; equal variances assumed;  ̅                     ̅                  

    )
5
.  

  

                                                           
5
 This is also confirmed when we use a more conservative exclusion criteria, which led to the exclusion 

of one IB subject (i.e. as for Study l: less than 17 out of 21 hits;                  ; one-tailed; equal 

variances assumed;  ̅                   ̅                  ). 
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4 Discussion 

The studies presented here show that the two models used to estimate saliency values 

are able to pick up crucial visual details in the images used (e.g., luminance and orientation). 

Changes in the pictures relate to the visual properties of the Randmorphs, and once the 

structure of a pair of Randmorphs is sufficiently different, a human subject is able to detect 

them as two separate entities on a screen. However, the saliency of the target patches was 

estimated not only on the basis of the Randmorphs pair but also on the overall saliency scene 

resulting from the replication of the pair throughout the lattice. This was done in order to 

follow Gestaltic principles of perception (Von Ehrenfels, 1890; Koffka, 1935). It appears that 

a target patch emerges from a higher-order pattern or gestalt, and the models presented here, 

especially the one with 9 orientation filters, demonstrate that measuring this emergent 

property may be possible. However, to test whether gestalts are leading to a pop-out effect, it 

would be interesting to use pairs of Randmorphs of different saliency values in a visual 

search task with varying set-sizes (targets and distractors previously used to form pop-out 

images). This might give some insight into the strategies used by subjects: whether they are 

using the saliency of the scene to identify the target, or they are performing a same-different 

task.  For instance, in our study we showed that performance is quicker when the saliency of 

the image is high and the same number of target and distractors is used. This would suggest 

an automatic processing at high saliency levels. However, set-size may play a role in 

detection, inducing strategic processing when a small set-size is used (i.e., longer reaction 

time; see for example: Schubö, Wykowska, & Müller, 2007; Schubö, Schröger, & Meinecke, 

2004). In summary, it may be interesting to assess more closely the relationship between set-

size and saliency, respectively a quantitative and qualitative aspect in perception. 
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 The 9-filters model accounts for a significantly higher proportion of the variance than 

the 4-filters model, even though this difference is small. However, it is likely that is due to 

the low-level images utilised in the experiments, and that the difference would be more 

pronounced if real-life images were used. 

Furthermore, what is striking is that these visual features involve only low-level or 

bottom-up properties and are sufficient on their own to provide a good prediction  for how 

long it takes for a human subject to identify patches on a monitor. This implies that 

measuring the saliency may be carried out from the elementary constituents of a visual scene. 

The importance of using this approach is that it prevents any possible confounding factors 

from the manual selection or creation of images by the experimenter, which may introduce 

top-down factors. 

In order to reduce the influence of top-down processing, Study 2 reduced the 

presentation of the images to 1 s. Even though the influence of strategic processing was 

attenuated, we were still able to observe two different RT patterns for IB and non-IB subjects. 

This supports the idea that not seeing something in a visual scene is influenced by low-level 

factors (i.e., bottom-up). In an MEG study of working memory maintenance, van Dijk, van 

der Werf, Mazaheri, Medendorp and Jensen (2010) found a modulation in the oscillatory 

power, substantially in the alpha band of the posterior regions (but also in the beta), that 

could be interpreted as a mechanism to inhibit task-irrelevant information (Klimesch, 1999; 

Palva & Palva, 2007). When a stimulus (i.e., target patch) is processed, the alpha power 

increases in those regions not necessary for the storage of information (Palva & Palva, 2007; 

Jensen, Gelfand, Kounios, & Lisman, 2002). Conversely, finding no power modulation 

(background alpha power remains unchanged or increases) during the presentation of a target 

may be interpreted as an inhibition of the target from being processed. For instance, a low 

saliency target (e.g., target-patch) may not be processed by the visual system until we use a 
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robust level of saliency to allow this stimulus to be processed by the early attentional 

mechanisms as sufficiently salient and therefore made accessible to consciousness. 

However, this may not be the result of a low-level process. Some researchers argue 

that that top-down factors may be influential when something is present but not noticed 

(Dehaene & Changeux, 2005; Baluch & Ittti, 2011), and performance cannot be entirely 

explained by low-level saliency factors (i.e., bottom-up factors) even when short durations 

are used. The availability of a stimulus to awareness can depend on the state of the top-down 

networks. For instance, Dehaene and Changeux (2005) showed in their model of 

consciousness that the availability of a stimulus to awareness depends on the oscillatory top-

down activity, which can prevent the stimulus from being available to consciousness, even 

though these stimuli have been processed to a lower level.  

An EEG study may help to test this hypothesis, as a neural response can be observed 

when the brain detects a target patch even when there is no associated behavioural response 

(i.e., oscillatory top-down activity hindering the access of the stimulus to conscious 

awareness). This may correlate with a decrease in the alpha power during the stimulus 

presentation, showing that the stimulus has been processed at an early stage (Van Dijk et al., 

2010). Because we can quantify the saliency, we are able to give an estimate of the amount of 

“salient” information necessary for the visual system to detect a target patch.  

When a stimulus is processed at a low-level, high-level activity (mainly intrinsic 

oscillatory activity in the gamma band) among cortical neurons can “ignite” a spontaneous 

activity that can block external sensory stimuli from being available to awareness (Dehaene 

& Changeux, 2005). This “covertly-processed-but-not-overtly-available-to-consciousness” 

dissociation may explain why, for example, the same stimulus can be processed but not 

available at one time, but available at another time, depending on the internal spontaneous 
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activity. The images produced with our approach may be useful to further investigate this 

phenomenon as they provide an easy way to measure the threshold for which a visual 

unbiased stimulus is detected but not consciously available to the subject. 

The models presented in this paper do not take into account the inter-element spacing 

in the lattice (Julesz, 1981; Reddy & VanRullen, 2007; Franconeri, Jonathan, & Scimeca, 

2010). Although this was addressed implicitly via the estimation of the Hurst exponent, there 

is no modelling of such an attribute from which the models would benefit. This also applies 

to the implementation of those mechanisms that evaluate the size, spatial distribution and the 

density of elements in a visual scene (for instance bigger objects should have a higher 

saliency and so on)
 6

. In addition, as the model used here is a low-level one, the modelling of 

high-level factors (Baluch & Itti, 2011), may be beneficial to obtain a better saliency 

estimation; this is particularly important for real life images, when the impact of semantics is 

deemed to have a stronger effect (see for example the recent advances in computer science on 

this point: Borji, Sihite, & Itti, in press). The two saliency models in the present paper are 

likely to have performed better had real-life images been used rather than artificial 

Randmorphs. Real-life images are by definition more complex and therefore the use of 

additional orientational filters would help to discriminate small differences in saliency of the 

scenes. 

The amount of information picked up by the model is computed via the Hurst 

exponent estimation, and one conspicuous limitation of this approach, for instance, is that one 

target (e.g., single peak) is weighted more heavily than two targets (e.g. two similar peaks in 

the same image; see Verma, 2009). As Verma (2009) suggests “a display with one red target 

                                                           
6
 In our model there are no specific mechanisms to evaluate these visual features separately. The Hurst 

exponent evaluates an image as a whole and its final value is based on those conspicuous areas where the target 

Randmorph is present, as well as those where the spatial distribution and the density of the Randmorphs differ 

from the target foreground (i.e., Randmorhs in the background). 
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amongst a series of green targets produces a higher saliency value than a display with a group 

of red targets amongst a background of green targets” (p.73). This means that a bias is present 

only if we compare the saliency of two images with a different number of targets (e.g., one 

with one target and one with two targets), whereas in the case of two images with the same 

number of targets (e.g., one target each) the model is able to evenly estimate the saliency. 

In summary, the approach presented here has demonstrated its accuracy in predicting 

human performance under the condition of a visual pop-out search and has provided the 

groundwork for this methodology to be used in the study of psychological processes such as 

Inattentional Blindness. We have shown that IB subjects are on average slower than non-IBs 

to detect targets on uniform backgrounds. However, previous research (e.g., Richards, 

Hannon,Vohra, & Golan, 2013) has shown that this classification is affected by the visual 

features of the paradigm, the primary task and the ability to cope with the cognitive demands 

of the task . For example, in both studies reported here we used an IB Task that was very 

similar to the one developed by Simons (2003).  One possible issue with this standard IB task 

is that the status of the unexpected stimulus is ambiguous. It does not form part of the 

primary goal of the task, which is to count white targets and ignore black distractors, and it is 

therefore not clear whether the most efficient or best strategy is to process the red cross and 

remember it or to ignore it by either not processing it or by processing it and inhibiting it to 

prevent it from interfering with the primary task (Richards, Hannon, Vohra, & Golan, 2013). 

Previous research has shown that IB individuals, who typically have low working memory 

resources, spend more time fixating irrelevant distractor stimuli compared to non-IB 

individuals (e.g., Richards, Hannon, & Vitkovitch, 2010). One could argue that IB subjects 

are less efficient than non-IB subjects just because they spend too much time looking at 

irrelevant objects (i.e. not part of the primary task), and that training may be required for the 

primary task prior to the IB task. However, training significantly reduces the incidence of IB 
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on a subsequent IB task (Richards, Hannon, & Derakshan, 2010; Richards et al., 2013). 

Moreover, different types of IB tasks would inevitably produce different classifications. One 

possible solution may be to use the saliency model on the visual aspects of the IB task in 

order to manipulate their saliency and see how this affects the likelihood of noticing an 

unexpected stimulus. Another interesting direction is to try to systematically investigate the 

saliency difference      necessary for IB subjects to perform as quickly as the Non-IB 

subjects. This could be done by selectively manipulating the saliency of the pictures until no 

difference in terms of RT performance is found. The    difference would then give the extra 

amount of saliency necessary for IB subject to perceive and therefore perform as Non-IB 

subjects. 

Taken together these findings suggest that further research is necessary on those 

aspects of the visual processing that have an influence on the behaviour of the observer and in 

its turn on brain activity. Nevertheless, we acknowledge that further model developments, 

such as the inclusion of high-level processing (i.e. top-down), are necessary to achieve a 

better saliency estimation. However, our results show that Non-IB individuals are better able 

than IB individuals to pick up the saliency of a visual scene which is based on a low-level 

saliency estimation (i.e., purely bottom-up). Non-IB subjects appear to be less influenced by 

the saliency, giving a quicker response throughout the entire saliency range; whereas IB 

subjects present longer reaction times when the saliency of the images is relatively low. At 

high saliency values, the difference between the two groups is minor, and both present a 

similar RT pattern. 
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