195 research outputs found

    A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities

    Get PDF
    Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important fields in which the application of deep learning still needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other industries. This paper reviews some recent scientific developments in the field of deep learning that have been applied to agriculture, and highlights some challenges and potential solutions using deep learning algorithms in agriculture. The results in this paper indicate that by employing new methods from deep learning, higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested.This work is supported by the R&D Project BioDAgro—Sistema operacional inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST-Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering of the University of Beira Interior, Covilhã, Portugal.info:eu-repo/semantics/publishedVersio

    Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling

    Get PDF
    Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.Project Centro-01-0145-FEDER000017-EMaDeS-Energy, Materials, and Sustainable Development, co-funded by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the EU through the European Regional Development Fund (ERDF). Fundação para a Ciência e a Tecnologia (FCT—MCTES) also provided financial support via project UIDB/00151/2020 (C-MAST).info:eu-repo/semantics/publishedVersio

    Tree Trunk Detection of Eastern Red Cedar in Rangeland Environment with Deep Learning Technique

    Get PDF
    Uncontrolled spread of eastern red cedar invades the United States Great Plains prairie ecosystems and lowers biodiversity across native grasslands. The eastern red cedar (ERC) infestations cause significant challenges for ranchers and landowners, including the high costs of removing mature red cedars, reduced livestock forage feed, and reduced revenue from hunting leases. Therefore, a fleet of autonomous ground vehicles (AGV) is proposed to address the ERC infestation. However, detecting the target tree or trunk in a rangeland environment is critical in automating an ERC cutting operation. A tree trunk detection method was developed in this study for ERC trees trained in natural rangeland environments using a deep learning-based YOLOv5 model. An action camera acquired RGB images in a natural rangeland environment. A transfer learning method was adopted, and the YOLOv5 was trained to detect the varying size of the ERC tree trunk. A trained model precision, recall, and average precision were 87.8%, 84.3%, and 88.9%. The model accurately predicted the varying tree trunk sizes and differentiated between trunk and branches. This study demonstrated the potential for using pretrained deep learning models for tree trunk detection with RGB images. The developed machine vision system could be effectively integrated with a fleet of AGVs for ERC cutting. The proposed ERC tree trunk detection models would serve as a fundamental element for the AGV fleet, which would assist in effective rangeland management to maintain the ecological balance of grassland systems

    Application of Artificial Intelligence algorithms to support decision-making in agriculture activities

    Get PDF
    Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important in which the application of artificial intelligence algorithms, and particularly, of deep learning needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models for decision-making can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other sectors. Recent scientific developments in the field of deep learning, applied to agriculture, are reviewed and some challenges and potential solutions using deep learning algorithms in agriculture are discussed. Higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested. The ability of artificial neural networks, specifically Long Short-Term Memory (LSTM) and Bidirectional LSTM (BLSTM), to model daily reference evapotranspiration and soil water content is investigated. The application of these techniques to predict these parameters was tested for three sites in Portugal. A single-layer BLSTM with 512 nodes was selected. Bayesian optimization was used to determine the hyperparameters, such as learning rate, decay, batch size, and dropout size. The model achieved mean square error (MSE) values ranging from 0.07 to 0.27 (mm d–1)² for ETo (Reference Evapotranspiration) and 0.014 to 0.056 (m³m–3)² for SWC (Soil Water Content), with R2 values ranging from 0.96 to 0.98. A Convolutional Neural Network (CNN) model was added to the LSTM to investigate potential performance improvement. Performance dropped in all datasets due to the complexity of the model. The performance of the models was also compared with CNN, traditional machine learning algorithms Support Vector Regression, and Random Forest. LSTM achieved the best performance. Finally, the impact of the loss function on the performance of the proposed models was investigated. The model with the mean square error (MSE) as loss function performed better than the model with other loss functions. Afterwards, the capabilities of these models and their extension, BLSTM and Bidirectional Gated Recurrent Units (BGRU) to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate endof- season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The BLSTM network outperformed the GRU, the LSTM, and the BGRU networks on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039 kg/ha. The performance of the BLSTM in the test was compared with the most commonly used deep learning method called CNN, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest regression. The BLSTM out-performed the other models with a R2-score between 0.97 and 0.99. The results show that analyzing agricultural data with the LSTM model improves the performance of the model in terms of accuracy. The CNN model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season. Additionally, a Deep Q-Network was trained for irrigation scheduling. The agent was trained to schedule irrigation for a tomato field in Portugal. Two LSTM models trained previously were used as the agent environment. One predicts the total water in the soil profile on the next day. The other one was employed to estimate the yield based on the environmental condition during a season and then measure the net return. The agent uses this information to decide the following irrigation amount. LSTM and CNN networks were used to estimate the Q-table during training. Unlike the LSTM model, the ANN and the CNN could not estimate the Qtable, and the agent’s reward decreased during training. The comparison of the performance of the model was done with fixed-base irrigation and threshold-based irrigation. The trained model increased productivity by 11% and decreased water consumption by 20% to 30% compared to the fixed method. Also, an on-policy model, Advantage Actor–Critic (A2C), was implemented to compare irrigation scheduling with Deep Q-Network for the same tomato crop. The results show that the on-policy model A2C reduced water consumption by 20% compared to Deep Q-Network with a slight change in the net reward. These models can be developed to be applied to other cultures with high importance in Portugal, such as fruit, cereals, and grapevines, which also have large water requirements. The models developed along this thesis can be re-evaluated and trained with historical data from other cultures with high production in Portugal, such as fruits, cereals, and grapes, which also have high water demand, to create a decision support and recommendation system that tells farmers when and how much to irrigate. This system helps farmers avoid wasting water without reducing productivity. This thesis aims to contribute to the future steps in the development of precision agriculture and agricultural robotics. The models developed in this thesis are relevant to support decision-making in agricultural activities, aimed at optimizing resources, reducing time and costs, and maximizing production.Nos últimos anos, a técnica de aprendizagem profunda (Deep Learning) foi aplicada com sucesso ao reconhecimento de imagem, reconhecimento de fala e processamento de linguagem natural. Assim, tem havido um incen tivo para aplicá-la também em outros sectores. O sector agrícola é um dos mais importantes, em que a aplicação de algoritmos de inteligência artificial e, em particular, de deep learning, precisa ser explorada, pois tem impacto direto no bem-estar humano. Em particular, há uma necessidade de explorar como os modelos de aprendizagem profunda para a tomada de decisão podem ser usados como uma ferramenta para cultivo ou plantação ideal, uso da terra, melhoria da produtividade, controlo de produção, de doenças, de pragas e outras atividades. A grande quantidade de dados recebidos de sensores em explorações agrícolas inteligentes (smart farms) possibilita o uso de deep learning como modelo para tomada de decisão nesse campo. Na agricultura, não há dois ambientes iguais, o que torna o teste, a validação e a implementação bem-sucedida dessas tecnologias muito mais complexas do que na maioria dos outros setores. Desenvolvimentos científicos recentes no campo da aprendizagem profunda aplicada à agricultura, são revistos e alguns desafios e potenciais soluções usando algoritmos de aprendizagem profunda na agricultura são discutidos. Maior desempenho em termos de precisão e menor tempo de inferência pode ser alcançado, e os modelos podem ser úteis em aplicações do mundo real. Por fim, são sugeridas algumas oportunidades para futuras pesquisas nesta área. A capacidade de redes neuronais artificiais, especificamente Long Short-Term Memory (LSTM) e LSTM Bidirecional (BLSTM), para modelar a evapotranspiração de referência diária e o conteúdo de água do solo é investigada. A aplicação destas técnicas para prever estes parâmetros foi testada em três locais em Portugal. Um BLSTM de camada única com 512 nós foi selecionado. A otimização bayesiana foi usada para determinar os hiperparâmetros, como taxa de aprendizagem, decaimento, tamanho do lote e tamanho do ”dropout”. O modelo alcançou os valores de erro quadrático médio na faixa de 0,014 a 0,056 e R2 variando de 0,96 a 0,98. Um modelo de Rede Neural Convolucional (CNN – Convolutional Neural Network) foi adicionado ao LSTM para investigar uma potencial melhoria de desempenho. O desempenho decresceu em todos os conjuntos de dados devido à complexidade do modelo. O desempenho dos modelos também foi comparado com CNN, algoritmos tradicionais de aprendizagem máquina Support Vector Regression e Random Forest. O LSTM obteve o melhor desempenho. Por fim, investigou-se o impacto da função de perda no desempenho dos modelos propostos. O modelo com o erro quadrático médio (MSE) como função de perda teve um desempenho melhor do que o modelo com outras funções de perda. Em seguida, são investigadas as capacidades desses modelos e sua extensão, BLSTM e Bidirectional Gated Recurrent Units (BGRU) para prever os rendimentos da produção no final da campanha agrícola. Os modelos usam dados históricos, incluindo dados climáticos, calendário de rega e teor de água do solo, para estimar a produtividade no final da campanha. A aplicação desta técnica foi testada para os rendimentos de tomate e batata em um local em Portugal. A rede BLSTM superou as redes GRU, LSTM e BGRU no conjunto de dados de validação. O modelo foi capaz de captar a relação não linear entre dotação de rega, dados climáticos e teor de água do solo e prever a produtividade com um MSE variando de 0,07 a 0,27 (mm d–1)² para ETo (Evapotranspiração de Referência) e de 0,014 a 0,056 (m³m–3)² para SWC (Conteúdo de Água do Solo), com valores de R2 variando de 0,96 a 0,98. O desempenho do BLSTM no teste foi comparado com o método de aprendizagem profunda CNN, e métodos de aprendizagem máquina, incluindo um modelo Multi-Layer Perceptrons e regressão Random Forest. O BLSTM superou os outros modelos com um R2 entre 97% e 99%. Os resultados mostram que a análise de dados agrícolas com o modelo LSTM melhora o desempenho do modelo em termos de precisão. O modelo CNN obteve o segundo melhor desempenho. Portanto, o modelo de aprendizagem profunda tem uma capacidade notável de prever a produtividade no final da campanha. Além disso, uma Deep Q-Network foi treinada para programação de irrigação para a cultura do tomate. O agente foi treinado para programar a irrigação de uma plantação de tomate em Portugal. Dois modelos LSTM treinados anteriormente foram usados como ambiente de agente. Um prevê a água total no perfil do solo no dia seguinte. O outro foi empregue para estimar a produtividade com base nas condições ambientais durante uma o ciclo biológico e então medir o retorno líquido. O agente usa essas informações para decidir a quantidade de irrigação. As redes LSTM e CNN foram usadas para estimar a Q-table durante o treino. Ao contrário do modelo LSTM, a RNA e a CNN não conseguiram estimar a tabela Q, e a recompensa do agente diminuiu durante o treino. A comparação de desempenho do modelo foi realizada entre a irrigação com base fixa e a irrigação com base em um limiar. A aplicação das doses de rega preconizadas pelo modelo aumentou a produtividade em 11% e diminuiu o consumo de água em 20% a 30% em relação ao método fixo. Além disso, um modelo dentro da táctica, Advantage Actor–Critic (A2C), é foi implementado para comparar a programação de irrigação com o Deep Q-Network para a mesma cultura de tomate. Os resultados mostram que o modelo de táctica A2C reduziu o consumo de água consumo em 20% comparado ao Deep Q-Network com uma pequena mudança na recompensa líquida. Estes modelos podem ser desenvolvidos para serem aplicados a outras culturas com elevada produção em Portugal, como a fruta, cereais e vinha, que também têm grandes necessidades hídricas. Os modelos desenvolvidos ao longo desta tese podem ser reavaliados e treinados com dados históricos de outras culturas com elevada importância em Portugal, tais como frutas, cereais e uvas, que também têm elevados consumos de água. Assim, poderão ser desenvolvidos sistemas de apoio à decisão e de recomendação aos agricultores de quando e quanto irrigar. Estes sistemas poderão ajudar os agricultores a evitar o desperdício de água sem reduzir a produtividade. Esta tese visa contribuir para os passos futuros na evolução da agricultura de precisão e da robótica agrícola. Os modelos desenvolvidos ao longo desta tese são relevantes para apoiar a tomada de decisões em atividades agrícolas, direcionadas à otimização de recursos, redução de tempo e custos, e maximização da produção.Centro-01-0145-FEDER000017-EMaDeS-Energy, Materials, and Sustainable Development, co-funded by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the EU through the European Regional Development Fund (ERDF). Fundação para a Ciência e a Tecnologia (FCT—MCTES) also provided financial support via project UIDB/00151/2020 (C-MAST). It was also supported by the R&D Project BioDAgro – Sistema operacional inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST - Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering of the University of Beira Interior, Covilhã, Portugal

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis

    Get PDF
    Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time consuming and accurate estimates compared to manual measurements. Highlights The number of fruits in apple and pear trees, could be estimated from images with promising results. The possibility of estimating the fruit numbers from images could reduce the time spent on this task, and above all, the costs. This allow growers to increase the number of trees sampled to make yield forecasts.Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time consuming and accurate estimates compared to manual measurements. Highlights The number of fruits in apple and pear trees, could be estimated from images with promising results. The possibility of estimating the fruit numbers from images could reduce the time spent on this task, and above all, the costs. This allow growers to increase the number of trees sampled to make yield forecasts

    Diagnosis of Cervical Cancer and Pre-Cancerous Lesions by Artificial Intelligence: A Systematic Review

    Get PDF
    The likelihood of timely treatment for cervical cancer increases with timely detection of abnormal cervical cells. Automated methods of detecting abnormal cervical cells were established because manual identification requires skilled pathologists and is time consuming and prone to error. The purpose of this systematic review is to evaluate the diagnostic performance of artificial intelligence (AI) technologies for the prediction, screening, and diagnosis of cervical cancer and pre-cancerous lesions

    Fruit Detection and Classification using YOLO Models

    Get PDF
    Computer Vision and Deep Learning techniques have become an advent in multiple domains like healthcare, Technology, as well as Agriculture . Computer vision techniques like object detection are being widely used in agriculture to reduce to efforts required and make agriculture a little more efficient for the farmers. The applications of deep learning in agriculture include leaf disease detection and weather forecasting, and the most advent applications include object detection to detect fruits, and vegetables which can be ensembled with robotics for automated yield production and harvesting. The proposed article describes one such application of fruit detection using various YOLO (You Only Look Once) models. The study encompasses four fruit classes namely Chiku, Mango, Mosambi, and Tomato. Models of Yolo V3, Yolo V4, and Yolo V8 were trained on a customized dataset collected from Indian farms and fruit gardens. The real time images images were collected, pre-processed, and annotated using online labeling tools. A total of 1200 images were used as a part of the complete training process. Basic preprocessing was performed on these images and possible inbuilt augmentation techniques supported by the above-mentioned models were used.Training is applied on custom dataset for all classes. In this experiment we have received the F1 score for YOLOv3(Chiku-82%.Mamgo-91%,Mosambi-87%,,Tomato-77%),YOLOv4(Chiku-89%.Mamgo-98%,Mosambi-95%,,Tomato-91%) and YOLOV8 (Chiku-90%.Mamgo-75%,Mosambi-82%,,Tomato-84%)models. In these models YOLOv4 with two layers gives the highest accuracy for all the classes
    corecore