145 research outputs found

    Modeling of Small-Scale Wind Power System with Virtual Synchronous Generator

    Get PDF
    Wind power systems are the most commonly used systems for a renewable energy source over the past few decades. Most of the current wind turbines are large scale wind turbines which produce mega watts power. This thesis is prepared to develop a small scale wind turbine with axial flux permanent magnet synchronous generator for regional areas and small commercial industries. This thesis mainly focuses on the Axial Flux PMSG which is a small scale prototype with the characteristics of the large scale wind turbine generator and having a super capacitor embedded in it. The first objective is to create the dynamic wind gust model. The second objective is to study the background of the large scale wind turbine synchronous generator characteristics and to derive the equations to model the AFPMSG. The next objective is to implement the super capacitor model with a controller. The other main objective of this thesis is to design a Virtual Synchronous Generator to emulate the inertia and damping same as the conventional synchronous generator to maintain output power and the frequency stable when there is a change in the load. The model will be tested using the MATLAB-Simulink environment and the results will be discussed

    Modeling of Small-Scale Wind Power System with Virtual Synchronous Generator

    Get PDF
    Wind power systems are the most commonly used systems for a renewable energy source over the past few decades. Most of the current wind turbines are large scale wind turbines which produce mega watts power. This thesis is prepared to develop a small scale wind turbine with axial flux permanent magnet synchronous generator for regional areas and small commercial industries. This thesis mainly focuses on the Axial Flux PMSG which is a small scale prototype with the characteristics of the large scale wind turbine generator and having a super capacitor embedded in it. The first objective is to create the dynamic wind gust model. The second objective is to study the background of the large scale wind turbine synchronous generator characteristics and to derive the equations to model the AFPMSG. The next objective is to implement the super capacitor model with a controller. The other main objective of this thesis is to design a Virtual Synchronous Generator to emulate the inertia and damping same as the conventional synchronous generator to maintain output power and the frequency stable when there is a change in the load. The model will be tested using the MATLAB-Simulink environment and the results will be discussed

    Seamless Transition of Microgrids Operation from Grid-Connected to Islanded Mode

    Get PDF

    Power Electronics in Renewable Energy Systems

    Get PDF

    On the Stability of Power Electronics-Dominated Systems:Challenges and Potential Solutions

    Get PDF

    Consensus Based Control Strategy for Virtual Synchronous Generators in Microgrids

    Get PDF
    Renewable energy sources such as photo-voltaic and wind energy are integrating very rapidly in power systems. These energy-based systems typically adopt power-electronic interfaced inverters to connect to the grid. However, unlike traditional generators, these sources have low inertia, resulting in system stability issues, especially in microgrids where they are the primary sources. To mitigate the low-inertia effect, the inverters are modeled as virtual synchronous generators (VSG), and their control is designed. The VSG emulates the inertia effect of the synchronous generator and maintains the stability of the system. Even though the droop control provides the primary control, it is insufficient due to the high variability of the power electronics in inverter systems. Hence, optimal and efficient power-sharing among distributed generators (DGs) is needed through secondary control. The consensus-based algorithm is proposed in this thesis to overcome the control challenges of inverters in a microgrid to obtain control under fast-changing system conditions and unbalanced scenarios. The developed controller is tested on microgrid systems through simulations in MATLAB/Simulink, and the performance is compared with other controllers and with just the primary controller

    Extraction of Inertial and Droop Response from Utility Scale Battery Pack at the State of Charging.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2018

    Microgrids:The Path to Sustainability

    Get PDF

    Microgrids

    Get PDF
    Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems
    corecore