3,267 research outputs found

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works

    BEDRF: Bidirectional Edge Diffraction Response Function for Interactive Sound Propagation

    Full text link
    We introduce bidirectional edge diffraction response function (BEDRF), a new approach to model wave diffraction around edges with path tracing. The diffraction part of the wave is expressed as an integration on path space, and the wave-edge interaction is expressed using only the localized information around points on the edge similar to a bidirectional scattering distribution function (BSDF) for visual rendering. For an infinite single wedge, our model generates the same result as the analytic solution. Our approach can be easily integrated into interactive geometric sound propagation algorithms that use path tracing to compute specular and diffuse reflections. Our resulting propagation algorithm can approximate complex wave propagation phenomena involving high-order diffraction, and is able to handle dynamic, deformable objects and moving sources and listeners. We highlight the performance of our approach in different scenarios to generate smooth auralization

    Two-dimensional beam tracing from visibility diagrams for real-time acoustic rendering

    Get PDF
    We present an extension of the fast beam-tracing method presented in the work of Antonacci et al. (2008) for the simulation of acoustic propagation in reverberant environments that accounts for diffraction and diffusion. More specifically, we show how visibility maps are suitable for modeling propagation phenomena more complex than specular reflections. We also show how the beam-tree lookup for path tracing can be entirely performed on visibility maps as well. We then contextualize such method to the two different cases of channel (point-to-point) rendering using a headset, and the rendering of a wave field based on arrays of speakers. Finally, we provide some experimental results and comparisons with real data to show the effectiveness and the accuracy of the approach in simulating the soundfield in an environment

    Noise Control And Speech Intelligibility Improvement Of A Toll Plaza

    Get PDF
    Vehicular toll roads are one component of many municipal transportation systems. Open communication windows, often used in tollbooths, facilitate essential communication and monetary transactions. However, the vehicle noise generated outside the booth is easily transmitted into the booth via the open window. Personnel working at toll collection plazas are exposed to extended, continuous traffic noise. Sustained noise levels of this nature may cause hearing loss, induce fatigue or stress, and reduce worker productivity. The annoyance and discomfort related to continuous noise exposure may create an unpleasant working condition and may affect the hospitality of the tollbooth operators and their attitude toward customers. Furthermore, the noise level may hinder communication with customers and may compromise safety. Reduction of the noise level and an improvement in speech intelligibility are highly desirable. The acoustics of a typical toll plaza and structural noise control strategies were modeled using a beam tracing technique. Noise control strategies involved the application sound absorbing material to the overhead canopy, the construction of sound absorbing partial barriers, and the treatment of tollbooth walls with sound absorbing material. In terms of noise control, the results suggest that the direct field is more important that the reflected field. The effects of active noise control (ANC) systems to reduce traffic noise and improve speech intelligibility at the toll plaza was investigated. The ANC systems included a range of headsets and a prototype external unit designed to create a local region of attenuation. Significant noise reduction can be achieved with a sealed, closed ear ANC headsets. However, the various systems seemed to have little positive effect upon speech intelligibility under traffic noise conditions. The result imply that the signal to noise ratio under toll plaza conditions is poor and that level overloading effects may further reduce intelligibility. Altered systems were modeled to improve the signal to noise ratio and reduce the noise level. The improved systems utilize a directional microphone and a sealed ANC headset. With a high order directional microphone, good speech intelligibility is achievable even in the presence of toll plaza vehicle noise

    Perceptually Driven Interactive Sound Propagation for Virtual Environments

    Get PDF
    Sound simulation and rendering can significantly augment a user‘s sense of presence in virtual environments. Many techniques for sound propagation have been proposed that predict the behavior of sound as it interacts with the environment and is received by the user. At a broad level, the propagation algorithms can be classified into reverberation filters, geometric methods, and wave-based methods. In practice, heuristic methods based on reverberation filters are simple to implement and have a low computational overhead, while wave-based algorithms are limited to static scenes and involve extensive precomputation. However, relatively little work has been done on the psychoacoustic characterization of different propagation algorithms, and evaluating the relationship between scientific accuracy and perceptual benefits.In this dissertation, we present perceptual evaluations of sound propagation methods and their ability to model complex acoustic effects for virtual environments. Our results indicate that scientifically accurate methods for reverberation and diffraction do result in increased perceptual differentiation. Based on these evaluations, we present two novel hybrid sound propagation methods that combine the accuracy of wave-based methods with the speed of geometric methods for interactive sound propagation in dynamic scenes.Our first algorithm couples modal sound synthesis with geometric sound propagation using wave-based sound radiation to perform mode-aware sound propagation. We introduce diffraction kernels of rigid objects,which encapsulate the sound diffraction behaviors of individual objects in the free space and are then used to simulate plausible diffraction effects using an interactive path tracing algorithm. Finally, we present a novel perceptual driven metric that can be used to accelerate the computation of late reverberation to enable plausible simulation of reverberation with a low runtime overhead. We highlight the benefits of our novel propagation algorithms in different scenarios.Doctor of Philosoph
    • …
    corecore