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ABSTRACT

Atul Rungta: Perceptually Driven Interactive Sound Propagation for Virtual Environments
(Under the direction of Dinesh Manocha)

Sound simulation and rendering can significantly augment a user‘s sense of presence in virtual environ-

ments. Many techniques for sound propagation have been proposed that predict the behavior of sound as it

interacts with the environment and is received by the user. At a broad level, the propagation algorithms can

be classified into reverberation filters, geometric methods, and wave-based methods. In practice, heuristic

methods based on reverberation filters are simple to implement and have a low computational overhead, while

wave-based algorithms are limited to static scenes and involve extensive precomputation. However, relatively

little work has been done on the psychoacoustic characterization of different propagation algorithms, and

evaluating the relationship between scientific accuracy and perceptual benefits.

In this dissertation, we present perceptual evaluations of sound propagation methods and their ability

to model complex acoustic effects for virtual environments. Our results indicate that scientifically accurate

methods for reverberation and diffraction do result in increased perceptual differentiation. Based on these

evaluations, we present two novel hybrid sound propagation methods that combine the accuracy of wave-

based methods with the speed of geometric methods for interactive sound propagation in dynamic scenes.

Our first algorithm couples modal sound synthesis with geometric sound propagation using wave-based

sound radiation to perform mode-aware sound propagation. We introduce diffraction kernels of rigid objects,

which encapsulate the sound diffraction behaviors of individual objects in the free space and are then used

to simulate plausible diffraction effects using an interactive path tracing algorithm. Finally, we present a

novel perceptual driven metric that can be used to accelerate the computation of late reverberation to enable

plausible simulation of reverberation with a low runtime overhead. We highlight the benefits of our novel

propagation algorithms in different scenarios.
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5.1 We highlight the different components of the sound field. The sound directly
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5.9 We highlight the application of P −Reverb metric to predict variations in RT60
in a scene composed of interconnected rooms of different shapes and volumes: (a)
shows the variation in µ along a path that goes through three rooms with volumes
135 m3, 256m3, and 125 m3 from left to right; (b) shows three regions (1, 2, 3)
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CHAPTER 1: INTRODUCTION

Sound is one of the most important senses available for conveying information about the world around

us. It constitutes a fundamental mode of communication, entertainment, and education, among other things.

Mathematically, sound is a pressure wave creating compression and rarefaction when traveling through a

medium. These waves create changes in pressure that, upon reaching our ears, cause the eardrum to vibrate,

which creates the sensation we call sound. Human hearing is only sensitive to a subrange of sound wave

frequencies called the human hearing range (20Hz − 20kHz).

Sound has many associated phenomena that have been studied both physically and psychophysically.

Physically speaking, sound propagation constitutes the emanation of sound from a source, and transmission

through an environment undergoing phenomena such as diffraction, reflections, scattering before reaching

the listener. Once the sound waves reach the listener, they create the perception of sound and the study of

these perceptual effects constitutes the psychophysical aspect of sound. The field of psychophysics that deals

with studying the perception of sound is called psychoacoustics.

1.1 Motivation

In the last few years, virtual reality has seen a resurgence that has been bolstered by the availability of

affordable, off-the-shelf head-mounted displays. Studies have shown that sound forms a critical component

of virtual environments and that it has an augmentative effect on the user‘s sense of presence and immersion

(Dubois et al., 2009; Larsson et al., 2002a; Hendrix and Barfield, 1996). In training simulations such as

treatment of post-traumatic stress disorder (PTSD), studies have shown the importance of accurate sound

cues (Rothbaum et al., 1999) to maintain training fidelity. Combat training simulations in VR also benefit

from accurate sound simulation (Hughes et al., 2006). Video games are as popular as ever and, although

much focus has been put on creating the most realistic visuals, they benefit greatly from sound. Accurate

sound propagation can enhance the gamer’s sense of realism in the environment and, improve gameplay and

immersion. Augmented reality (AR) is poised to become popular in the years to come, and along better
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visuals, better sound will enhance the user’s sense of realism. Sound propagation can be used to generate

realistic environmental sound effects such as diffraction and reverberation for virtual sound sources placed

in a real environment. Teleconferencing systems can benefit from sound propagation by considering the

geometry and materials of the rooms in which the callers are located, making the remote callers sound like

they are in the same room. Big architectural projects such as building auditoriums, hospitals, and airports

can benefit tremendously from realistic sound simulation on their CAD models to achieve the desired aural

characteristics before the projects are implemented, saving a lot of time and money. Similarly, classrooms

can benefit from sound propagation to gauge the intelligibility of speech in all parts of a classroom before it

is constructed.

Given the importance of sound, much research has gone into modeling sound propagation and the

associated effects to capture the interaction of sound with the environment as it emanates from a source,

undergoing diffraction, reflection, and scattering. These techniques can be broadly categorized as: (a)

parametric filter-based, (b) geometric, and (c) wave-based. Each of these techniques offers a trade-off in terms

of scientific accuracy and computation cost/requirements. Parametric filters or heuristic techniques form

the simplest and cheapest way to simulate sound propagation, especially reverberation, in an environment.

These techniques use digital filters that must be tuned manually and this is normally done based on the

sound designer’s intuition. Although these filters are not physically accurate, their low-compute and memory

overheads make them widely used in video games and virtual acoustic systems. Geometric techniques work

under the simplifying assumption that sound travels in straight lines. This allows them to use methods such

as image-sources, ray tracing, beam tracing, and frustum tracing to simulate the interaction of sound with

the environment. These techniques are accurate for high sound frequencies and can accurately simulate

phenomena such as reverberation. However, low-frequency phenomena such as diffraction cannot be easily

modeled. These methods have relatively low-compute requirements leading to their increased use in computer

games and virtual reality systems. The final category of sound propagation system includes wave-based or

numerical techniques. These constitute the most accurate methods of sound propagation because they solve

the underlying wave equation (acoustic wave equation) that governs the propagation of sound. These methods

can accurately simulate all underlying phenomena associated with sound propagation but have extremely

high compute and memory requirements largely precluding their use in interactive applications. Therefore,

each of the sound propagation techniques offers a trade-off in terms of accuracy and computational cost.
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While sound propagation numerically simulates acoustic phenomena, an equally important aspect of

modeling sound is the perceptual study of these phenomena. Some of the earliest experiments in modern

psychoacoustics were done by Hermann von Helmholtz (Von Helmholtz, 1912), who studied human hearing

and the perception of music. Lord Rayleigh, in addition to his pioneering work on the physics of sound,

did ground-breaking work in sound localization propounding his duplex theory (Rayleigh, 1907). With

the advent of telephony, psychoacoustic measures concerning auditory thresholds, intensity discrimination,

and frequency discrimination were established to reduce the bandwidth requirements of telephone lines

(Fletcher and Galt, 1950; Fletcher, 1953). As sound made its way into virtual environments, a whole new

realm of applied psychoacoustics was developed dealing with not only the perception of sound in these

environments but also how the environments themselves affect the perception of sound. A typical example

of this type of work is experiments on sound localization in virtual environments (Begault and Trejo, 2000)

and the associated studies of the head-related transfer functions (HRTF) (Wenzel et al., 1993; Algazi et al.,

2001; Kistler and Wightman, 1992) that are either numerically or experimentally synthesized. An interesting

example of the virtual environment itself affecting a psychoacoustical phenomenon is that of auditory distance

perception which is the ability to discern the distance to a sound source based on the sound. In real-life,

auditory distance perception is compressive (Bronkhorst and Houtgast, 1999), but when coupled with a

virtual environment, the compression characteristics change (Zahorik, 2002).

1.2 Psychoacoustic Evaluation of Interactive Sound Propagation Algorithms

As mentioned above, sound propagation has seen a plethora of research yielding methods that offer

varying trade-offs between scientific accuracy and computational cost. Despite this, not much work has

been done in establishing another crucial trade-off: perceptual accuracy and cost. Because of this gap,

the psychoacoustical differentiation capabilities of sound propagation algorithms remain largely unstudied

and the question whether increased scientific accuracy afford increased perceptual differentiation goes

unanswered. Given the associated sound propagation phenomena, e.g., diffraction, reverberation, and the

different techniques available to simulate them, one obvious question arises as to whether a more expensive

but scientifically accurate method performs better perceptually compared to a cheaper but approximate

method.
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Evaluation of Approximate and Accurate Diffraction Simulation Diffraction is a very important, yet

psychoacoustically understudied, phenomenon referring to the bending of sound around obstacles. Diffraction

helps a listener hear sounds not in the line- of-sight and is observed in everyday life (Tsingos et al., 2001a).

The acoustic wave equation explains the phenomenon; hence, wave-based methods simulate it automatically.

Geometric methods, on the other hand, work on the simplifying assumption of rectilinear propagation of

sound cannot account for it intrinsically, must incorporate diffraction externally. This has been done by

incorporating methods such as the uniform theory of diffraction. (Kouyoumjian and Pathak, 1974). With the

advent of better algorithms and faster hardware, realtime diffraction is now used for interactive geometric

propagation (Schissler et al., 2014a; Tsingos et al., 2001a). Few psychoacoustical studies have been performed

on diffraction. (Torres and Kleiner, 1998) conducted a study investigating the audibility of diffracted sound

for a simple open geometry and found that diffracted sound is audible in non-shadow regions. (Torres et al.,

2001a) performed listening tests to compute the audibility of edge diffraction in a stage house and found that

first order diffraction is significantly more audible than second order diffraction. However, none of these

studies considered interactive sound propagation algorithms or virtual environments and they were done in

actual, physical environments. (Mehra et al., 2015) conducted experiments to evaluate the subject localization

performance using wave-based and geometric propagation and found that diffraction helped the subjects

localize faster. However, this study did not consider diffraction as a separate phenomenon from other acoustic

effects, necessitating the comparative study of diffraction as computed by an accurate (wave-based) and an

approximate (UTD) method.

Evaluation of Approximate and Accurate Reverberation Simulation Unlike diffraction, reverberation is

a well-studied phenomenon in psychoacoustics, both in real life and in virtual reality. Reverberation has

myriad perceptual effects on humans. (Zannini et al., 2011) found that sound localization performance

decreased with increasing reverberation times. (Hartmann, 1983) established how the localization accuracy

decreases in the same room if it is reflective compared to absorptive. (Rakerd and Hartmann, 1985) showed

the detrimental effect of reverberation on localization, even at low frequencies. Other perceptual effects

of reverberation include the reduction of speech clarity. (Knudsen, 1932) showed how reverberation can

reduce the number of sounds that are heard correctly. (Galster, 2007) established the relationship between the

speech transmission index (STI) and the reverberation conditions. This relationship shows the significant

decrease in speech intelligibility in small, highly-reflective rooms. Despite negatively affecting localization
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and speech intelligibility, reverberation is known to a have positive impact on externalization, environment

size estimation, and auditory distance perception. (Begault, 1992) conducted studies to show that spatial

reverberation increases externalization. (Hameed et al., 2004) assessed reverberation parameters (RT60

and DRR) and their effect on room size estimation, finding that RT60 is the most important in this regard.

(Cabrera et al., 2005) performed studies in real and virtual rooms to investigate the role of various parameters,

while (Pop and Cabrera, 2005) performed experiments in three real rooms to find a negative relation between

sound level and room size perception. Reverberation parameters such as direct-to-reverberant ratio (DRR)

are known to increase auditory distance perception (Mershon and King, 1975). (Richards and Wiley, 1980)

showed the effect of reverberation on auditory distance perception in outdoor environments. (Bronkhorst and

Houtgast, 1999) formulated a computational model of auditory distance perception as a function of the DRR

showing that increases in simulated reflections of sounds in virtual environments can result in increased

auditory distance perception.

Given the strong effect reverberation has on human auditory perception, most virtual environments

incorporate it either using approximate reverberation filters or a geometric acoustic system. Reverberation

filters use a combination of nested all-pass and comb filters to produce a series of decaying echoes. These

filters require setting reverberation parameters such as RT60 and DRR to model reverberation. Since RT60

requires either real-world measurements or accurate simulation to estimate, a well-known empirical formula

called the Sabine’s equation is used to estimate RT60. Sabine’s equation establishes the relationship between

the volume, surface area, and absorptivity of the room and is given by:

RT60 ≈ 0.1611sm−1
V

Sa
, (1.1)

where V is the total volume of the room in m3, S is total surface area in m2, a is the average absorption

coefficient of the room surfaces, and Sa is the total absorption in sabins. Geometric acoustic systems, on

the other hand, simulate the effect of reverberation from first principles by performing high-order specular

and diffuse reflections in the environment. However, no existing work looks at the perceptual comparison

of accurate (geometric acoustics) and approximate (reverberation filter) methods. A comparative study is

thus required to validate whether the more expensive, more accurate geometric acoustic methods offer better

perceptual performance compared to the cheap, approximate digital filters.
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1.3 Accurate Simulation of Sound Propagation Effects

Modeling sound propagation involves simulating the constituent phenomena such as scattering, diffrac-

tion, early reflections, and late reverberation. As mentioned above, research in simulating these phenomena

has yielded three distinct categories of methods: heuristic or parametric filters, geometric methods, and

wave-based methods.

Typically, parametric filters are used to simulate reverberation based on reverberation parameters of the

environment; hence, these filters are also called artificial reverberators.These reverberators typically fall into

three distinct categories: delay networks, convolutional, and room models. Out of the three, delay networks

are by far the most commonly used because of their low computational complexity. The first artificial

reverberator was introduced by Schroeder (Schroeder and Logan, 1961) and is an example of a delay network

based reverberator. It uses digital nested allpass filters in combination with a parallel bank of comb filters

to produce a series of decaying echoes. These filters require parameters such as reverberation time (RT60)

and direct-to-reverberant ratio (DRR) to tune the allpass and comb filters. An important improvement to

Schroeder’s filter was made by Moorer (Moorer, 1979) who added one-pole filters to Schroeder’s filter to

enable setting (RT60) in a frequency-dependent way. Another important type of delay network filter is the

Feedback Delay Network (FDN) introduced by Jot and Chaigne (Jot and Chaigne, 1991). Despite its age, the

Schroeder filter remains the most widely used artificial reverberator due to its simplicity and low compute

requirements.

Geometric methods, are high-frequency approximations that work under the simplifying assumption that

sound travels in straight lines. The most commonly used geometric techniques are based on image-source

methods (Allen and Berkley, 1979; Borish, 1984a) and ray-tracing (Krokstad et al., 1968a; Vorländer, 1989).

In addition, beam tracing (Funkhouser et al., 1998a) and frustum tracing have also been used (Taylor et al.,

2009b; Chandak et al., 2008). Geometric methods tend to be efficient and are thus used in interactive

virtual environments to simulate specular and diffuse reflections. More recently, (Schissler et al., 2014a) use

temporal coherence to significantly accelerate the computation of high-order diffuse reflections at interactive

rates. Although these methods can simulate high-frequency acoustic phenomena accurately, their simplifying

assumption breaks down at low frequencies where phenomena such as diffraction become common. In order

to address this, methods such as the uniform theory of diffraction (UTD) (Kouyoumjian and Pathak, 1974)
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and Biot-Tolstoy-Medwin (BTM) (Biot and Tolstoy, 1957) have been incorporated into interactive geometric

acoustic systems (Tsingos et al., 2001a; Antani et al., 2012b).

Wave-based methods solve the underlying mathematical formulation that governs sound phenomena (the

acoustic wave-equation) numerically to generate accurate results. The acoustic wave-equation is a second

order partial differentiation equation given in the time domain as:

∇2p− 1

c2
∂p2

∂2t
= F (x, t) x ∈ Ω, (1.2)

where ∇2 is the Laplacian, p is pressure, c = 343ms−1 is the speed of sound, F (x, t) is the forcing

term corresponding to the source, and Ω is the domain of interest. Equivalently, it can be expressed in the

frequency domain as the Helmholtz equation:

∇2p+
ω2

c2
p = 0, x ∈ Ω, (1.3)

where p = p(x, ω) is the complex-valued pressure field, ω is the angular frequency, c is the speed of sound in

the medium, and∇2 is the Laplacian operator.

Methods solving the frequency domain Helmholtz equation are based on the finite element method (FEM)

(Zienkiewicz et al., 2006) which discretizes the entire domain volume, and the boundary element method

(BEM), which only discretizes the surface or boundary of the domain in question. (Cheng and Cheng, 2005;

Liu and Nishimura, 2006; Gumerov and Duraiswami, 2009). Time-domain methods for solving the acoustic

wave-equation include methods such as the finite-difference time domain (FDTD) (Yee, 1966; Taflove and

Hagness, 2005), which uses finite-differences and iterates over the time steps. Stability requirements for these

methods mandate time step sizes that make these methods scale linearly with the volume of the scene and, by

the fourth-order with the increasing frequency of simulation. Other, more efficient, time-domain methods

include adaptive rectangular decomposition (ARD) (Raghuvanshi et al., 2009) and the pseudo-spectral time

domain (PSTD) (Liu, 1997). These methods can accurately model all acoustic phenomena but their high

precomputation and runtime costs limit their application to interactive sound propagation in static virtual

environments.

Considering the distinct advantages and disadvantages of the different techniques available for sound

propagation modeling, we need methods that provide perceptual accuracy and computational efficiency for

high-fidelity virtual environments.
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Modal Source Propagation Research in sound simulation can be broadly categorized into two different

groups: sound synthesis and sound propagation. While sound propagation deals with how sound interacts

with the environment, sound synthesis deals with how a source itself produces sound based on its physical

characteristics when provided with an external impulse, e.g., hitting a bell (O’Brien et al., 2002a; Raghuvanshi

and Lin, 2006). While many standalone algorithms have been developed for each of these categories, these

methods tend to be mutually exclusive. Rigid sound sources vibrate on being applied on impact, but the final

sound we hear is these vibrations that propagate through the environment. Existing methods can model the

propagation of these vibrations in freespace (James et al., 2006a), but no method can handle the propagation

of the complex vibrational modes through an environment while accounting for the specific directivities of

vibrational modes on the object. In other words, there is a need for a method that can couple the modally

synthesized sound with sound propagation to give us mode-aware sound propagation.

Diffraction refers to the bending of sound waves around obstacles when the object dimensions are com-

parable to the wavelength. Few virtual acoustic systems incorporate diffraction because of the high com-

plexity of simulating it. Geometric acoustic systems use methods such as the uniform theory of diffraction

(UTD)(Kouyoumjian and Pathak, 1974) and Biot-Tolstoy-Medwin (BTM) (Biot and Tolstoy, 1957) to approx-

imate diffraction. These methods have been incorporated into existing geometric acoustic systems (Tsingos

et al., 2001a; Antani et al., 2012b), but these are approximate methods that only work for very simple objects.

Further, the cost of these methods increases quadratically off of which sound must diffract. Wave-based

techniques incorporate all the associated wave effects, including diffraction. As explained above, however,

these methods have very high computation requirements, especially during the precomputation stage, and can

only work in realtime virtual environments for scenes with limited number of sources and limited dynamism

(Mehra et al., 2013; Raghuvanshi et al., 2009). Some hybrid methods (Yeh et al., 2013) combine the speed of

geometric methods with the accuracy of numerical methods but suffer from some of the same drawbacks as

the wave-based methods, i.e. large compute requirements for precomputation. Therefore, it is important to

develop methods for simulating diffraction that have both a low precomputation and a low runtime overhead

while having an accuracy comparable to wave-based methods.

Reverberation is the phenomenon of repeated reflections of sound in an enclosed environment. Reverbera-

tion is one of the most important phenomena in sound propagation and has a multitude of perceptual effects

on hearing as mentioned in the section above. Given the importance of this phenomenon, most virtual acoustic
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systems incorporate reverberation to various degrees of accuracy. The first attempt at simulating reverberation

was through the use of artificial reverberators (Schroeder and Logan, 1961), which are parametric filters that

use combinations of all-pass and comb filters to create delayed and attenuated versions of the input signal to

simulate repeated reflections. These methods work well when the parameters of the filters are tuned based on

the actual physical parameters such as the RT60 and DRR, but estimating these parameters requires running

simulations or doing actual acoustical measurements. Hence the parametric filters are normally tuned based

on the sound designer’s intuition of what the reverberation would sound like in that particular space making

these methods inaccurate. However, artificial reverberators are still widely used in virtual acoustic systems

such as game engines because of their simplicity and low computational overhead. Another way in which

reverberation is simulated in virtual environments is through geometric acoustic systems. Since reverberation

is repeated reflections of sound in an environment as the sound decays, geometric acoustic systems simulate

this by repeating reflections of the geometric primitive (rays, frusta, beams) reducing the energy of the

primitive with each bounce based on the material parameters of the surface. Typically, these systems can only

compute a few orders of specular reflections for realtime environments (Chandak et al., 2008; Funkhouser

et al., 2004; Vorländer, 1989), but recent developments in geometric acoustics have made it possible to get

accurate reverberation using high-order specular and diffuse reflections(Schissler et al., 2014a; Schissler and

Manocha, 2017) at interactive rates for multiple sources. Although this makes accurate reverberation possible

at interactive rates, these methods need at least the computational power of a mid-range desktop machine.

With virtual reality moving to low-powered devices (e.g., mobile), there is a need to simulate reverberation

that is both plausible and low in its computational requirements.

1.4 Challenges

Although sound propagation research has made tremendous progress, the high-quality interactive sim-

ulation of acoustic effects in dynamic environments remains a challenging problem. First, no rigorous

evaluations exist that compare the perceptual performance of various propagation algorithms in virtual

environments. These evaluations are critical to establishing the relationship between the scientific accuracy of

these algorithms and their perceptual accuracy. Second, although source representation and source directivity

have been incorporated into existing propagation systems (Mehra et al., 2014a; Ren et al., 2012), none of

these methods consider the propagation of individual modes of a vibrating rigid object in an interactive

9



framework. (James et al., 2006a) introduced the idea of using multipole basis functions to compute the

propagated sound of these individual modes, but this work only considers freespace propagation. While the

idea of multipole basis functions can be extended to environmental sound propagation within the framework

of a wave-based system, the high frequencies often generated by small rigid-bodies would be well beyond

the capabilities of the current generation of wave-based techniques. Current geometric methods offer the

best way to couple modal sounds with a propagation engine for all mode frequencies by weighting the rays

using the multipole basis functions. This presents a significant challenge in terms of maintaining interactivity

because tens of thousands of rays would be needed to get artifact free sound, and each one of these rays

would have to be weighted using these complex and expensive multipole basis functions.

Diffraction has long been challenging to simulate accurately, especially for geometric systems. The

state-of-the-art geometric system (Schissler et al., 2014a) incorporates the uniform theory of diffraction

method and can handle high-orders of diffraction at interactive rates. However, it can only do so for objects

with few edges or simplified versions of complex objects. Wave-based methods, as mentioned, handle

diffraction for any object shape, but their exorbitant precomputation costs make them impractical for most

applications. Further, these methods often only work in static scenes and can handle very few sources

interactively. The state-of-the-art hybrid method (Yeh et al., 2013) offers the speed of geometric methods

with the accuracy of wave-based methods, but it also suffers from very high precomputation costs that can

reach on the order of weeks on desktop machines. This necessitate the use of high-performance compute

clusters, which makes these methods impractical. We thus need a method that can significantly reduce the

precomputation time for computing diffraction without sacrificing accuracy and that can work interactively at

runtime.

Finally, accurate reverberation modeling has come a long way with current geometric methods such as

(Schissler et al., 2014a), becoming capable of computing very high orders of specular and diffuse reflections

by exploiting temporal and spatial coherence. These geometric methods can run at interactive rates on a

desktop machine for a large number of sources. Parametric digital filters, although not physically-based, can

be tuned to sound very similar to the actual reverberant field (provided we know the values of parameters such

as reverberation time RT60 and direct-to-reverberant ratio DRR) and have very low compute requirements.

As virtual reality moves to low-powered devices, ray-tracing based solutions are not viable as they are too

expensive to compute. Parametric filters offer a cheap solution to the problem provided accurate reverberation

parameters are provided. One simple solution to this problem would be to use ray tracing at a number of
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sample points and precompute the reverberation parameters for each of those points. Depending on the size

of the scene, however, thousands of such sample points might be needed for precomputation and even with

a fast sound propagation system, computing the full reverberation characteristics of all those points might

take too long for it to be practical. We thus need a way of computing reverberation on low powered devices

that avoids expensive ray tracing at runtime and precomputation, but that provides accurate reverberation

parameters for tuning the digital reverberation filters.

1.5 Thesis Statement

The perceptual differentiation of acoustic effects such as modal source propagation, diffraction, and

reverberation is enhanced by accurate simulation, and can be modeled efficiently in immersive virtual

environments.

Figure 1.1: Overview of our work: The figure shows the various components of our work. We consider sound
propagation as a combination of three distinct phenomena: Source directivity, diffraction, and reverberation.
Then, user evaluations tell us if numerical accuracy matters perceptually. These results are then utilized to
design more perceptually accurate and efficient algorithms
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In this dissertation, we propose a set of experiments that evaluate the perceptual accuracy of various

existing algorithms that simulate phenomena such as diffraction and reverberation. Based on the results of

these experiments, we propose a set of efficient techniques to model challenging acoustic phenomena with a

focus on interactive virtual environments. All the methods developed have runtime computation on the order

of a few milliseconds and have been integrated with commercial game engines to highlight their efficiency in

a variety of challenging scenarios. Figure 1.1 gives a high-level overview of the thesis’ flow.

1.6 Main Results

Figure 1.2: Overview of the results of our user studies:. a) The loudness perception for a sound source
behind an obstacle and multiple listener positions around it in an open environment. The figure on top is
the result for geometric diffraction (UTD), while the one below is for wave-based diffraction. b) The results
of the room size perception experiment using two different reverberation algorithms. c) The results of the
auditory distance perception experiment using two different reverberation algorithms.

1.6.1 Psychoacoustic Evaluation of Interactive Sound Propagation Algorithms

We conducted three different user studies comparing listeners perceptual responses to both accurate and

approximate propagation algorithms simulating two key acoustic effects: diffraction and reverberation. Our

first set of experiments evaluated diffraction computed using two methods: an accurate wave-based method

and an approximate uniform theory of diffraction (UTD) method. The second and third sets of experiments

evaluated reverberation computed using an accurate ray tracing based method and an approximate filter-based
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method. The first of these experiments evaluated the effect of the reverberation method on the perception of

room size while the second experiment evaluated the effect of the two reverberation conditions on acoustic

distance perception. In all three cases we saw a positive effect of the more physically-accurate algorithm over

the approximate algorithm. (Figure 1.2)

1.6.2 Mode-aware Sound Propagation

Sound simulation research has focused on either sound synthesis or sound propagation, and many

standalone algorithms have been developed for each domain. Although the current sound propagation

methods can handle myriad sound sources and model their directional characteristics, none of these methods

account for the modal characteristics of rigid sound sources that vibrate on impact (e.g., hitting a bell). The

final sound we hear in such cases is the vibrations that propagate through the environment. In other words,

the sounds we hear from these objects are coupled, i.e. the sound is synthesized when a source has an impulse

applied to it and propagates through the environment in a manner defined by the vibrational characteristics

of the sound (or their modes). In this work, we present an integration approach for coupling modal sound

synthesis for rigid bodies with an interactive sound propagation system. The main contributions of this work

are as follows:

1. First method that enables per-mode coupling of synthesis and propagation through single-point multipole

expansion.

2. Interactive mode-adaptive propagation technique based on perceptually-driven Hankel function approxi-

mation.

3. High degree of dynamism to model dynamic surface vibrations, sound radiation, and propagation for

moving sources and listeners.

Figure 1.3 highlights our approach. We first perform modal analysis on the object to compute its

vibrational modes and their respective frequencies. The modes and the frequencies are used to compute the

directivity patterns of the object using a frequency-domain, acoustic wave equation solver (BEM) which are

then stored in compact basis functions. At runtime, these basis functions are sampled by weighting each ray

depending on its angle and the distance traveled to give a mode-adaptive propagation algorithm. Given that a

scene needs a large number of rays (∼ 104) to avoid sampling artifacts, computing the basis function for each
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Figure 1.3: Overview of our coupled synthesis and propagation pipeline for interactive virtual environ-
ments:. The first stage of precomputation comprises the modal analysis. The figures in red show the first
two sounding modes of the bowl. We then calculate the radiating pressure field for each of the modes using
BEM, place a single multipole at the center of the object, and approximate the BEM evaluated pressure. In
the runtime part of the pipeline, we use the multipole to couple with an interactive propagation system and
generate the final sound at the listener. We present a new perceptual Hankel approximation algorithm to
enable interactive performance.

one of them is too slow for interactive runtime. The main bottleneck is the large number of Hankel function

evaluations (our basis function is a combination of spherical harmonics and Hankel functions). To keep our

system interactive, we present a novel approximation scheme to significantly reduce the cost of evaluating

the Hankel function when the listener is far enough away from the source. We use the threshold of hearing to

compute the distance at which switching to an approximate version of the Hankel function would produce no

noticeable difference. This scheme gives a 3x - 7x speedup in evaluating the basis function making our system

interactive even in complex environments. We also conducted a preliminary, online user-study to evaluate

whether our Hankel function approximation causes any perceptible loss of audio quality. The results indicate

that the subjects were unable to distinguish between the audio rendered using the approximate function

and the audio rendered using the full Hankel function in our benchmarks. The overall approach allows for

high degrees of dynamism - it can support dynamic sources, dynamic listeners, and dynamic directivity
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simultaneously. We have integrated our system with the Unity game engine and demonstrate the effectiveness

of this fully-automatic technique for audio content creation in complex indoor and outdoor scenes.

Figure 1.4: Interactive Sound Propagation and Rendering: We highlight different stages of our novel
sound propagation and rendering pipeline, which uses per-object diffraction kernels. In the precomputation
stage, we adaptively perform BEM simulations for certain directions (computed using our novel source
placement algorithm) and measure the outgoing pressure fields produced by the scattering of plane waves at
various frequencies. These pressure fields encode the scattering as a function of frequency and the input and
output directions. These fields are then converted into an efficient spherical harmonic representation called
the diffraction kernel. At runtime, the diffraction kernel is coupled with an interactive path tracing algorithm
to simulate sound propagation and auralization in dynamic scenes.

1.6.3 Diffraction Kernels for Interactive Sound Propagation in Dynamic Environments

In this work, we introduce the notion of diffraction kernels to incorporate plausible diffraction in an

interactive sound propagation algorithm. Diffraction kernels encapsulate the diffraction sound interaction

behaviors of individual objects in the free field by representing them in a compact spherical harmonic

basis function. We precompute the diffraction characteristic using an accurate wave-based method. Since

diffraction is a direction-dependent phenomenon, a significant amount of precomputation is required to

capture the effect from all possible incident angles. To remedy this, we introduce a novel source placement

algorithm that significantly reduces the precomputation time required to compute the complete diffracted

field of an object. Our source placement algorithm clusters the incident source positions that are likely to

produce similar or symmetric diffracted fields and computes the diffracted field for only one source per

cluster, thus giving us a substantial speedup in the precomputation stage. The main contributions of this work

are as follows:

• Adaptive source-placement algorithm that significantly reduces the precomputation time by comparing

the view-dependent shape signatures of an object.
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• Handling of highly tessellated or smooth objects while modeling diffraction and occlusion effects.

• General approach that can be integrated into existing geometric sound propagation methods.

Figure 1.4 shows the approach. We consider a densely sampled sphere around the object representing

all possible incident angles for diffraction computation. Using our source placement algorithm we compute

the incident angles that are expected to produce similar diffracted fields and cluster them together. An

accurate wave-based solver (BEM) is run for one representative point per cluster and the diffracted fields

for the other points in the cluster are interpolated from the representative point. The computed diffracted

field is then represented in a spherical harmonic basis that we call diffraction kernels. We have performed

extensive evaluation of the method and find that our approach results in a significant speedup (up to 130x) in

the precomputation time and introduces a mean absolute error (MAE) of < 2dB even for complex, highly-

tessellated objects. The diffraction kernels are easily integrable with interactive sound propagation algorithms

to produce plausible diffraction effects for highly complex objects.

1.6.4 Perceptual Characterization of Early and Late Reflections for Auditory Displays

Even though geometric sound propagation is interactive on PC-based systems, its compute and memory

requirements are still too high for devices with limited resources such as mobile-based VR devices such as

Oculus Go and Samsung GearVR. This becomes particularly evident in reverberant environments where the

decay of sound energy is slow requiring multiple reflections to compute the reverberation. As an alternative,

parametric reverb filters can approximate reverberation efficiently, but must be tuned by hand to match the

reverberation characteristics of a given environment. This makes these filters a feasible option for resource-

constrained platforms, but tuning of the filters poses a significant challenge since reverberation characteristics

often vary within an environment requiring one to establish multiple reverb zones with different reverberation

parameters. A viable approach to the problem could be the dense sampling of the scene at a multitude of

points and using a high-fidelity sound propagation system to estimate the reverberation parameters (e.g.,

RT60) at each of these sample points and then using these RT60 values to Since computing late reverberation

is a computationally expensive process, such naive preprocessing could take a long time.

We approach this problem by observing that while late reverberation is expensive to compute, early

reflection computation is relatively cheap, typically requiring an order of magnitude fewer rays than late

reverberation. However, early reflections do not directly estimate reverberation parameters such as RT60. We
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introduce a novel, perceptually derived metric P −Reverb that relates the just-noticeable difference (JND)

of the early reflections to the late reverberation in terms of the mean-free path (MFP) of the environment. We

conduct two extensive user evaluations that establish the JND of the early reflections and late reverberation in

terms of the mean-free path of the environment. We then relate the two JNDs in terms of the mean-free path

giving us the P −Reverb metric. We demonstrate the use of the metric in speeding up the precomputation

of late reverberation parameters (e.g., RT60). The main contributions of this work are as follows:

• A novel, perceptually derived metric relating early reflections to the late reverberation (P −Reverb)

• Two extensive user-studies establishing the JND of early reflections and JND of late reverberation in

terms of mean-free path of the environment.

• Significant speed-up in the precomputation of RT60 using P −Reverb metric.

1.7 Organization

The rest of this dissertation is organized as follows:

Chapter 2 presents various user studies evaluating the perceptual differentiation capabilities of current

sound propagation methods by comparing their efficacy in modeling acoustic phenomena showcasing the

advantages of using physically-accurate algorithms.

Chapter 3 presents an efficient method to couple modal sound synthesis with sound propagation using an

efficient, perceptually-driven approximation of the Hankel function.

Chapter 4 presents an adaptive source placement algorithm for reducing the computation time of acoustic

scattering problems. We also highlight the performance and effectiveness of this approach by coupling our

algorithm to a geometric sound propagation system to compute diffraction effects from complex objects in

real-time.

Chapter 5 presents two extensive user evaluations to derive a novel metric that relates the just-noticeable

difference (JND) of early reflections to the JND of late reverberation in terms of the mean-free path of

the environment. We highlight the accuracy of the metric and its ability to significantly accelerate the

precomputation of late reverberation parameter (RT60).
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Chapter 6 concludes the dissertation and includes a discussion on the limitations and future challenges in

the area of simulating sound propagation effects.
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CHAPTER 2: Psychoacoustic Evaluation of Interactive Sound Propagation

2.1 Introduction

Sound plays a vital role in increasing the degree of realism in virtual environment (VE) systems (Begault

et al., 1994; Larsson et al., 2002a) and other interactive applications such as video games. This observation

has motivated the development of different sound propagation methods that are used to simulate how sound

waves, emitted from a source, travel through an environment and interact with the objects before reaching a

listener. These methods are used to model well-known acoustic phenomena such as diffraction, reverberation

(comprising early reflections and late reverberation), and scattering. At a broad level, sound propagation

methods are categorized into geometric (Krokstad et al., 1968a; Borish, 1984b; Allen and Berkley, 1979) and

wave-based (Zienkiewicz, 2005; Yee, 1966; Cheng and Cheng, 2005) algorithms. While these computational

techniques have been studied for many decades in different fields, only recent advancements in terms of new

algorithms and fast hardware have enabled the development of interactive propagation systems that are useful

for VE. These include interactive geometric methods based on ray tracing and beam tracing (Schissler et al.,

2014a; Tsingos et al., 2001a; Taylor et al., 2009b; Funkhouser et al., 2004) that can simulate approximate

diffraction, early reflections, and high-order late reverberation. Furthermore, advancements in scientific

solvers (Mehra et al., 2013; Raghuvanshi et al., 2009; Webb and Gray, 2013; Mehra et al., 2015) have made

it possible to compute highly accurate solutions to the wave equation for large domains, and thereby perform

interactive sound propagation.

Given the recent developments in interactive sound propagation algorithms, it is imperative to evaluate

their perceptual effectiveness. Psychoacoustics researchers have focused on evaluating the perceptual effects

of many of these acoustic phenomena and many important results have been published on how different

propagation phenomena affect our perception of the environment (Fastl and Zwicker, 2007). Most of these

studies were conducted in either real-world environments or in very simple virtual environments that could

only simulate limited acoustic effects. The advent of interactive and accurate sound propagation techniques

makes the task of perceptually evaluating these phenomena simpler and less expensive.
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In this chapter, we mainly focus on two of the aforementioned phenomena: diffraction and late rever-

beration (hereafter referred to as reverberation). Early reflections were not considered here, as they are

easy to simulate and have been widely studied in the literature (Haas, 1951; Djelani and Blauert, 2001).

Reverberation is also a well-studied phenomenon in psychoacoustics and enhances immersion (Kuttruff,

2007). Despite this, one of its fundamental effects, namely, to convey the size of the environment remains

relatively unexamined. Reverberation is typically approximated using artificial filters, and such filters are

widely used in computer games and VE (Jot and Chaigne, 1991).

Therefore, we evaluate the reverberation computed in a physically accurate manner using an interactive,

state-of-the-art geometric propagation system to a pre-computed (Schroeder-type) filter and evaluate their

relative effectiveness in telling us the size of an environment. Perceptual effects of diffraction, although

important (Torres et al., 2001b), are seldom evaluated in virtual environments primarily due to the complexity

of modeling diffraction. Most interactive geometric sound propagation systems approximate edge diffraction

based on Uniform Theory of Diffraction (UTD) (Tsingos et al., 2001a). Therefore, we evaluate the perceptual

performance of diffraction effects computed using UTD with a numerically accurate solver that directly solves

the wave equation. We report two separate comparative studies to evaluate whether increased numerical

accuracy of sound propagation translates to perceptual differentiation.

In our diffraction study, we construct a virtual test scene similar to (Kawai, 1981) and perform a

psychoacoustical evaluation. We evaluate the diffracted sound field around an obstacle by placing subjects

along a semi-circle for the two methods: UTD and wave-based. The subjects are asked to rate the perceived

loudness for different positions along the semi-circle. Our results show that wave-based diffraction results in a

diffracted field that decays nearly linearly with an increasing diffraction angle, as compared to the UTD-based

diffraction, which shows erratic behavior.

Prior psychoacoustics studies in reverberation normally focus on evaluating how the human response

to the environment varies with the changing reverberation parameters (e.g., RT60). Our study builds upon

these evaluations and seeks to compare the effectiveness of two competing methods to model reverberation:

statistical filters and physically-accurate path tracing. We use free-magnitude estimation to compute the

magnitude of the internal responsiveness of the subjects to the change in the physical dimensions of the

environment and thereby, its reverberation characteristics. Our results show poor size discrimination for both

the methods but show increasing discrimination ability for the physically accurate one as the subjects become

more familiar with the task.
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The rest of the chapter is organized as follows. In Section 2 we give a brief overview of the two acoustic

effects and the corresponding techniques and algorithms used in the study to model them and their evaluation.

Sections 3 and 4 describe the two studies, including their designs and procedures. Section 5 describes our

evaluation metrics. In Sections 6 and 7 we discuss our results and their applications.

2.2 Background

In this section, we give a brief overview of the two sound phenomena, the methods used to model them,

and the related work in psychoacoustic evaluation of these phenomena.

2.2.1 Diffraction

Diffraction refers to the bending of a wave around an obstacle when the obstacle’s dimensions are

comparable to the wavelength of the wave. Diffraction helps a listener hear sounds not in the line-of-sight and

is observed in everyday life (Tsingos et al., 2001a). Diffraction is explained through the wave equation; hence

wave-based methods emulate it automatically. Geometric methods, on the other hand, assume rectilinear

propagation of sound. As these methods do not account for the bending of sound rays around an obstacle,

this effect must be incorporated separately. Doing so is difficult and computationally expensive, which is

why most virtual environments avoid incorporating diffraction even though the theories for approximating

its effects have existed for decades (Biot and Tolstoy, 1957; Kouyoumjian and Pathak, 1974). With the

advent of better algorithms and fast hardware, real-time diffraction is now used for interactive geometric

propagation (Tsingos et al., 2001a; Schissler et al., 2014a).

2.2.2 Reverberation

Reverberation forms the later part of the impulse response(IR) within closed environments. It is caused

by successive reflections or ‘echoes’ as they diminish in intensity.

Reverberation forms a critical part of the acoustics of an environment and directly correlates with the

size and the clarity of sound in the environment. For these reasons, reverberation plays a very important

role in architectural acoustics, especially while constructing auditoriums and concert-halls. This has led to

considerable research in characterizing reverberation, and a number of parameters such as the reverberation
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time (RT60) and clarity index (C50 and C80) have been formulated (Kuttruff, 2007). We concern ourselves

with RT60 in this study. RT60 is defined as the time it takes for the sound to decay by 60dB.

Given the importance of reverberation to architectural/room acoustics, and complexity of simulating it

from physical principles, empirical methodologies have been developed to artificially simulate reverberation

in virtual acoustics such as digital and convolution reverberators. These reverberators are parametrized using

a number of values, the most important of which is the RT60. We use a digital Schroeder filter for our

evaluation as these filters are the most common form of digital reverberators in use today. A well-known

empirical formula used to estimate RT60 is Sabine’s equation, which gives the relationship between the RT60

of a room, its volume, and the total absorption by:

RT60 ≈ 0.1611sm−1
V

Sa
, (2.1)

where V is the total volume of the room in m3, S is total surface area in m2, a is the average absorption

coefficient of the room surfaces, and Sa is the total absorption in sabins. Another, more accurate, way

to estimate the RT60 of a room is to look at the room’s impulse response (RIR) and directly compute the

time it took for the sound to decay by 60 dB as specified in ISO 3382-1:2009. This method involves a

reverse cumulative trapezoidal integration to estimate the decay of the impulse response and using a linear

least-squares fit to estimate the slope between 0 dB and -60 dB. This is the method we used to compute the

RT60 for our digital reverberator.

2.2.3 Geometric Acoustics

Geometric acoustics methods work under the assumption that the wavelength of sound is much smaller

(i.e., higher frequency) than the objects in the scene. This assumption allows these methods to assume that

sound waves travel in straight lines and thereby use ray tracing (Vorländer, 1989; Krokstad et al., 1968a) and

its variants such as beam tracing (Funkhouser et al., 2004). Other methods such as image sources (Allen

and Berkley, 1979; Borish, 1984b) have also been employed. In order to approximate diffraction, geometric

methods use formulations based on uniform theory of diffraction (UTD) or Biot-Tolstoy-Medwin (BTM). We

focus on UTD-based diffraction, as that has been used for interactive applications.
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2.2.3.1 Uniform Theory of Diffraction

The Uniform theory of diffraction (Kouyoumjian and Pathak, 1974) is a high frequency approximation

of the phenomenon of diffraction. These methods were initially developed for the propagation of light, but

later used for sound (Tsingos et al., 2001a). UTD assumes that a diffracting edge is of infinite length and

acts as a secondary sound source. Another assumption made by UTD is that the source and listener are far

away as compared to the wavelength of sound. According to UTD, an incoming sound ray hitting an infinite

wedge results in a cone of diffracted rays, and a single ray with the shortest distance to the listener (in a

homogeneous medium) forms the diffracted field.

2.2.4 Numerical or Wave-based Acoustics

Sound propagation is governed by the acoustic wave equation (in time domain):

∇2p− 1

c2
∂p2

∂t2
= F (x, t) x ∈ Ω, (2.2)

where ∇2 is the Laplacian, p is pressure, c = 343ms−1 is the speed of sound, F (x, t) is forcing term

corresponding to the source, and Ω is the domain of interest.

Solving Eq. 2.2 gives us the sound pressure P at any point in the domain. Unfortunately, closed-form

solutions to the wave equation only exist for the simplest of domains, and most solvers use numerical

techniques. However, the complexity of these methods increases as a fourth power of the frequency.

2.2.4.1 Adaptive Rectangular Decomposition

This technique was developed by (Raghuvanshi et al., 2009) and constitutes a domain-decomposition

technique to solve the wave equation (Eq. 2.2) in homogeneous media. The underlying principle of this

technique is based on the observation that the wave-equation can be solved analytically inside a rectangular

domain. Therefore, this technique first decomposes the domain (scene) into a set of connected rectangles

and computes the pressure in each of those rectangles analytically. The pressure is then transferred between

rectangles using a finite-difference stencil. For more details on the technique, refer to (Raghuvanshi et al.,

2009).
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2.2.5 Related Work

Reverberation and its effects have been widely studied in psychoacoustics. (Zannini et al., 2011) explored

the effect of source localization in reverberant conditions and found that the localization deteriorates with

changing reverberation times. (Hartmann, 1983) found that localization accuracy decreases in a reflecting

room compared to the same absorbing room. (Rakerd and Hartmann, 1985) showed that reverberation has a

considerable effect on localization even at low frequencies. (Giguère and Abel, 1993) found localization was

poorer in reverberant environments as compared to absorbing ones. Other studies involving reverberation

have analyzed the impact of reverberation on speech clarity. (Knudsen, 1932) showed that the presence

of reverberation reduces the number of sounds that are heard correctly. (Galster, 2007) found the relation

between the Speech transmission index (STI) as a function of signal-to-noise ratio and the reverberant condi-

tions and found speech intelligibility decreases significantly in a small, highly reflective rooms. Although

reverberation decreases localization accuracy, it is known to have positive effects with respect to externaliza-

tion. Externalization is defined as the perception of the sound source emanating from a point in the world in

contrast to internalization where the sound appears to be emanating from within one’s own head. (Begault,

1992) conducted studies that showed that spatial reverberation increased externalization. Another important

perceptual effect of reverberation is that of size estimation. (Hameed et al., 2004) conducted studies to assess

the effect of two reverberation parameters: the reverberation time RT60 and the direct-to-reverberant energy

ratio (D/R) ratio and found thatRT60 is the most important parameter in room size estimation. (Cabrera et al.,

2005) performed experiments using real and virtual rooms and investigated the role of various parameters

including the reverberation time. They found reverberation strongly affects the room size perception. (Pop

and Cabrera, 2005) tested the relationship between acoustical characteristics of a room and its perceived size

for three real rooms. They found that a negative relation between sound level and room size.

Most studies on diffraction have been numerical in nature (Kawai, 1981; Chu et al., 2007). Few

psychoacoustical studies have been performed on diffraction. (Torres et al., 2001b) conducted a study

investigating the audibility of diffracted sound for a simple open geometry and found that diffracted sound is

audible in non-shadow regions. (Torres et al., 2001a) concluded that reflected-diffracted combinations are

significant and audible even for minute spectral changes. (Torres and Kleiner, 1998) perform listening tests to

compute the audibility of edge diffraction in a stage house and found that first order diffraction is significantly

more audible than second order diffraction. (Mehra et al., 2015) conducted experiments to evaluate the subject

24



localization performance using wave-based and geometric propagation and found that diffraction played a

part in helping the subjects localize faster. However, this study did not consider diffraction as a separate

phenomena from other acoustic effects.

2.3 Experiment 1: Diffraction Study

2.3.1 Participants

Sixteen subjects participated in this study with informed consent. The ages ranged from 22 to 28 (Mean

= 24.6 with SD = 1.4, 2 females and 14 males). The participants were recruited from the staff and students at

a university campus. All participants reported normal hearing.

2.3.2 Apparatus

The setup consisted of a Dell T7600 workstation with the sound delivered through a pair of Beyerdynamic

DT990 PRO headphones. The subjects wore a blindfold. The software consisted of in-house code to auralize

precomputed IRs. All code was written in C++.

2.3.3 Stimuli

The source consisted of a pre-recorded sound of a ringing bell. Since diffraction is a frequency-dependent

phenomenon and more prominent at low frequencies, the bell clip was low-pass filtered with a cut-off

frequency of 300 Hz. The choice of frequency range was motivated by:

• The edge-diffraction phenomena is most prominent in the 20 Hz - 350 Hz range. (Torres et al., 2001b)

• The loudness characteristic of sound is least complex (near linear) with respect to frequency in the

frequency range chosen by us. Fig. 2.2

The subjects were placed at a radius of 5m from the sound source along a semi-circle covering two orders

of diffraction as shown in Fig 4.9. The scene was an open scene making sure no reflected sound reached the

subjects. The semi-circle was sampled at 10 ◦ giving 18 positions plus one for the direct sound region for a

total of 19 positions. The impulse response for each of these 19 positions and the two methods of diffraction

were pre-computed and stored on file. The stimuli consisted of 38 combinations (19 positions x 2 diffraction

types) of convolved source and IR signals. Each trial consisted of the subject being placed at one these 19
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Figure 2.1: The figure shows the setting used for characterizing diffraction. The obstacle was 0.5m x 0.5m.
The solid barrier prevents the sound from reaching the listener from behind the obstacle. The barrier and the
obstacle are fully absorptive to prevent any reflections and making sure only the diffracted sound reached the
listener. The figure is not drawn to scale for better viewing of the experimental setup.
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positions randomly with the audio either auralized using the UTD-based or the wave-based diffraction, the

order of which was also randomized.

Figure 2.2: ISO equal-loudness contours with frequency in Hz.

2.3.4 Design and Procedure

We designed a virtual environment to ensure only the diffracted sound reached the subject. The

environment was effectively open, the ground was perfectly absorptive, and the source was not kept in the

line-of-sight.(Fig.4.9). Ideally, we would need to have an infinitely high obstacle and an infinitely long barrier

as shown in Fig. 4.9 to make sure that the sound reaching the listener is the one that diffracts around the
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lateral plane of the obstacle. Otherwise, the sound would diffract around the top of the obstacle and the edge

of the barrier. These dimensions can obviously not be achieved in practice and in order to simulate an open

environment with seemingly infinite features, we enclosed the scene with a perfectly absorptive box. The box

was 100m x 12m x 100m.

Another advantage of having an enclosure on the scene is that it acts as an infinitely far away region

for wave-based methods. Wave-based methods inherently cannot handle open scenes and need an artificial

boundary to act as infinity. In order to make sure this artificial infinity doesn’t reflect back into the scene,

an absorbing boundary condition called Perfectly Matched Layer (PML) (Berenger, 1994) is used at the

boundaries. In order to add the PML boundary, the aforementioned bounding box is enclosed within a slightly

bigger bounding box. The space between these boxes acts as the absorbing layer.

This makes the environment effectively open with respect to sound propagation and would give the same

result as in a truly open, similar environment. Moreover, the environment also ensured that computing the

propagated sound field with a wave-based propagation system was computationally tractable.

The barrier was added to one side of the cuboid to ensure that no sound could reach the subject from the

other side. (Fig.4.9). The barrier, too, was perfectly absorbing to avoid spurious reflections in the scene. We

tested up to two orders of diffraction. It should be noted that the concept of diffraction ‘order’ does not apply

to wave-based methods but does in the case of geometric methods. An order of diffraction is defined as the

number of edges sound has to diffract around in order to reach the listener. Typically, the cost of geometric

diffraction methods such as UTD increases exponentially with increasing order.

This was a within-subject study with the same participants for each method of diffraction. The subjects

wore a blindfold and the audio was monaural sound delivered using headphones. Before starting the

experiments, subjects were played a sample of the sound source to make sure they were familiar with the

sound source.

A total of 16 participants took part in each group. For each of the 19 positions, the subjects were asked

to rate the loudness of the sound heard on an arbitrary, non-physical scale ranging from 1-20. The loudness

scale was explained before the start of the experiment. The extrema of the scale were compared to a verbal

standard: 1 was the loudness of a falling leaf while 20 was the loudness of someone shouting nearby. The

sounds for the two methods were level-matched by matching the root mean square (RMS) of the signals in

the direct sound region.
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A block consisted of 38 trials(19 positions x 2 diffraction methods). There were three blocks per subject,

giving a total of 114 readings. The virtual placement of the subjects was controlled by the experimenters,

who pressed a key that placed the subjects at a random position along the semi-circle and randomly chose

one of two diffraction methods. The subjects were allowed to take as many breaks as needed. Subjects took

an average of 25-30 minutes for the entire experiment.

2.3.5 Results

Figure 2.3: Mean subject ratings for different positions along a semi-circle for two methods of diffraction, plus
one direct sound region. The cross-hatches show the between-subjects standard deviation of the responses.
The upper figure shows the results for the UTD-based diffraction while the lower one shows results for wave-
based diffraction. Wave-based diffraction shows a strongly linear decay while the UTD-based diffraction
shows considerable deviation from linear decay.

To equate use of the scale for analysis, each subject’s ratings were averaged over the three blocks,

normalized by the subject’s mean score (over all listener positions and diffraction methods), and then scaled
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by the grand-mean. The results for the are shown in Fig. 2.3, which shows the average values with the

standard errors for different listener positions around the obstacle for the two methods of diffraction. As can

be seen in the figure, the decay trend for the wave-based diffraction is more uniform than the UTD-based one,

which shows substantial variation in the perceived loudness.

The significance of these trends was confirmed by a two-way, repeated measures ANOVA with factors

diffraction method and position. It showed a significant 2-way interaction: position, F(18,270) = 48.64, p <

0.001, indicating variations in the positional response across the two methods.

To analyze the additional effect of diffraction order within a factorial design, the direct sound condition

was eliminated, and a subsequent three-way ANOVA with factors diffraction method, diffraction angle (the

18 non-direct angles), and order was performed. It showed a significant 3-way interaction, F(8, 120) =

34.52, p < .001, indicating that the relation between diffraction order and diffraction angle changes with the

diffraction method. All 2-way interactions were also significant: diffraction angle by diffraction method, F(8,

120) = 15.83, p < 0.001, diffraction angle by order, F(8, 120) = 20.10, p < 0.001, and diffraction method by

order, F(1, 15) = 370.00, p < 0.001. The ANOVA also yielded significant main effects for diffraction angle

F(8,120) = 288.99, p < 0.001 and diffraction order F(1, 15) = 672.54, p < 0.001.

2.4 Experiment 2: Reverberation Study I

Figure 2.4: The reverberation experiment setup consisted of seven cubes of increasing dimension three of
which are shown here. The listener path length in all the cubes was the same.
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2.4.1 Participants

Twelve subjects took part in this study, all males. The ages ranged from 18 to 23 (Mean = 21 with SD =

1.5). All reported normal hearing. The participants were recruited from the staff and students at a university

campus.

2.4.2 Apparatus and Stimuli

The setup consisted of a MacBook Pro laptop with the sound delivered through a pair of Beyerdynamic

DT990 PRO headphones. The subjects were blindfolded.

Since reverberation forms the later part of the impulse response of a room, the initial part of the IR has

to be remain consistent across the two cases to isolate reverberation as the only variable. In order to make

sure that only the reverberation part of the impulse response is compared, we use the same system based

on (Schissler et al., 2014a) to perform our task. This allows us to make sure that the early part of the IR is

constant for both cases. In the first case, the IR is computed as is, without any modification corresponding

to computing the reverberation using full impulse response. In the second case, we disable the physically

computed reverberation and use a Schroeder-type filter (Schroeder, 1962) to compute the reverberation and

add it to the final IR. The materials of the rooms were chosen to be gypsum board for all the surfaces including

the ceiling and the floor. This was done because gypsum boards are commonly used in wall-paneling and

hence would retain the subjects’ familiarity with everyday environments. The sound source was a male voice.

Reverberation filters must be hand-tuned by setting the RT60 and Direct-to-reverberant (D/R) ratio in

order to get the reverberation for an environment. Typically, these parameters are set by the audio designer

based on his/her perception of what the environment would sound like. In order to remove this subjectivity,

we decided to compute the parameters from the actual room parameters. The impulse response for each

of the rooms was obtained and the parameters were estimated from the response as explained in Section 2.

Subjective ratings of room size were obtained using the method of free-magnitude estimation.

The stimuli consisted of seven cubes of increasing dimensions (100m3 − 1600m3 in increments of

250m3) for each of the two reverberation conditions(Fig. 2.4). The sound source was placed near the center

of the room slightly to the right. The subjects were allowed to move along a fixed path on the floor in order to

hear the sound at different positions and get an average estimate of the reverberation in the room.
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2.4.3 Design and Procedure

This was a between-subject study with the same participants for both methods of reverberation. The

subjects wore a blindfold and headphones. The sound was rendered in stereo.

Before starting the study, the blindfolded subjects were played examples of sound originating in a small

sized room and a large sized one. This was done so that the subjects could get an idea about the reverberation

characteristics of the two ends of the room size spectrum and scale their internal response accordingly. They

then underwent a training round in which each of the rooms were played in random order with one of the two

reverberation methods. This was done in order to let the subjects come up with their own scale for scaling

the room size. It is important to clarify that the subjects were not asked to judge the size of the room in m3,

instead, they were asked to give a dimensionless number representing how large they thought the rooms were.

Each subject rated the complete set of 7 rooms x 2 reverberation conditions with the order of the rooms

randomized, on each of three separate blocks, giving a total of 42 measurements per subject (7 rooms x 2

reverberation conditions x 3 blocks). The subjects always started at the same initial position (relative to the

room) and were asked to use one key on the keyboard to move forward and another to move backward. On

reaching the end of the walking distance on either side, they were notified by the experimenter and asked to

move in the opposite direction. The walking distance was kept constant irrespective of the size of the room,

so that the subjects could not get a sense of the room size by the distance walked. The subjects were allowed

to take as many breaks as needed. The average duration of the experiment was one hour. No fatigue was

reported.

2.4.4 Results

To analyze the data, we first normalized it for each subject to account for the different scales adopted by

the different subjects (Zwislocki and Goodman, 1980). This was done by first taking the mean of the subjects’

scores for the three trial rounds. Then, each subject’s mean score was computed over all the seven rooms and

the two reverberation conditions. This mean was used to normalize the scores. Finally, the normalized scores

were scaled by the grand mean over all subjects to give a sense of the scale used.

Fig. 2.5 shows the average magnitudes for each of the seven rooms for the two reverberation conditions

across different blocks.
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Figure 2.5: The average subjective magnitude given by the subjects for the two reverberation conditions
across the three blocks of trials. The IR-based reverberation starts doing better as the experiment progresses
and starts showing a logarithmic relation between the volume of the room and perceived reverberant intensity
(Purple dotted line in Block 3 is the log fit). The reverberation filter shows no such learning effect.
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The 3-way ANOVA with reverberation method, room size, and block showed three significant effects:

First, there was a main effect of room size, F(6,66) = 2.63, p = 0.025, indicating that overall, participants did

differentiate reverberant quality. Second, the interaction between room size with reverberation method was

significant, F(6,66) = 4.01, p = 0.003, indicating that room size had different effects on the two reverberation

methods , and finally, room size interacted with block, F(2,22) = 4.029, p = 0.034, indicating a change in

room size perception with experience making the judgments. The interaction involving method led us to

examine the two reverberation methods separately.

A 2-way ANOVA for the reverberation filter with trial block and room size failed to show any significance

for block (F(2,22) = 0.794, p = 0.466), room size, F(6,66) = 0.759, p = 0.605, or room size with block,

F(12,132) = 0.77, p = 0.678, thus indicating that neither the room size nor the trial block mattered. Essentially,

the subjects were unable to discriminate different room sizes and did not show any improvement even when

the experiment was repeated across blocks.(see Fig. 2.5)

In contrast, the same 2-way ANOVA for the reverberation computed using full impulse response showed

significance for block, F(2,22) = 5.08, p = 0.016, and room size, F(6,66) = 5.855, p < 0.001. Although room

size did not significantly interact with block (F(12,132) = 0.709, p = 0.741) (Fig. 2.5), it is clear that the

changes with experience were confined to the smaller room sizes. A log fit to the block 3 mean data accounts

for a substantial amount of the variance in the means across room size (91.5%). Thus, after two blocks of

practice with the full impulse response method, subjects were differentiating the intensity of reverberation in

an approximately logarithmic relation to room volume. Such compressive scaling of perceptual dimensions is

commonly found, and the logarithmic relation known as Fechners law (Wolfe et al., 2014)

2.5 Experiment 3: Reverberation Study II

2.5.1 Participants

Seventeen participants took part in the study with informed consent. Their ages ranged from 19 to 47

(mean = 25.9 and SD = 7.4 - Four females, thirteen males). The participants were recruited from the students

and staff at the university. All participants reported normal hearing.
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2.5.2 Apparatus

The set up consisted of a Dell T7600 workstation and the sound was delivered via a pair of Beyerdynamic

DT990 PRO headphones. The subjects were blindfolded for the study. The software to compute the RT60

and DRR was based on open-source MATLAB code (?). The calibration and auralization were done using

in-house software, also written in MATLAB.

2.5.3 Stimuli

The source was a pre-recorded sound of human clapping. Since clapping is somewhat similar to an

impulse, it tends to have a broad frequency content making wave-based methods impractical for virtual

environments with such stimuli. The virtual environment consisted of a rectangular room 45m× 10m× 3m

with highly reflective walls to create a highly-reverberant environment with an 8m walking path as shown

in Figure 2.6. Seven omnidirectional sound sources were kept at increasing distances from the center of

the path starting from 10m up to 40m in increments of 5m. The sources were all kept at the same height

of 1.7m from the floor. This value was chosen assuming a standard listener height of 1.7m in the virtual

environment. The source sound power was 78dB.

2.5.4 Filter calibration

The filter was calibrated to match the reverberation characteristics of the geometric sound propagation

system by appropriately scaling and splicing the early part of the impulse response (∼ 80ms), starting at the

approximate onset time of reverberation to match the RT60 and DRR of the ray-traced impulse response.

Further data and results on the calibration are available on the project website.

2.5.5 Design & Procedure

A rectangular room was chosen as the environment with highly reverberant environment similar to a

painted, concrete room with no windows. In order to make sure we were comparing the underlying methods

and not the specific parameters, we matched the RT60 and the DRR for both reverberation methods.
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Figure 2.6: The room used for the experiment. The path marked in red is the walking path along which the
subject walks. The sound sources are perpendicular to the walking path and kept at increasing distances from
it. The labels 1-7 show the different source distances sampled uniformly from the range 10-40m

2.5.6 Training

Before the participants started the experiments, they completed a training task in a real-world setting. An

8m long walking path was constructed and the sound sources were placed at 3m and 6m from the center of

the walking path, starting with 3m. The participants were blindfolded before being led into the room so as to

not give them an idea of the room dimensions. The dry (without reverberation) sound clip was played from a

Harmon/Kardon HK 195 desktop speaker. The participants were asked to point at the sound source with their

right hand and keep pointing at the source as they walked along the 8m path. Since the participants were

blindfolded, they were helped by the test administrators as they walked down the path. Once they reached the

end of the path, the participants were asked to give their best evaluation (in meters) as to how far from them

they thought the sound source to be when it seemed closest to them. The training task was then repeated with

the source moved to 6m. The subjects were told the actual distances at the end of the training. The training

exercise was not meant to be an exact replica of the experiment, as it was not possible to construct a physical

room with the same kind of reverberance as the one in the virtual environment. Instead, the training was

meant to give the participants a feeling for what to expect and how to make judgments.

2.5.7 Method

This was a within-subject study. The walking in the virtual environment was not controlled by the

participants; instead, the 81 impulse responses per source were first convolved with sound source and
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then sampled such that each one of them contributed to 0.1m of the total 8m for a human traveling at an

average speed of 1.39 m/s. The contributions from each of these 81 convolved impulse responses were

spliced together (with interpolation) to create a sound file for each source. This sound file was played to

the participants and they were asked to give the same estimate as they performed in the training, i.e., the

perceived distance (in meters) of the sound when it seemed to be the closest to them. The impulse responses

were spatialized using a generic HRTF-filter being applied to the direct sound and the early reflections. The

participant’s head orientation was fixed and they were always looking straight ahead. Each participant rated

the complete set of 7 source positions × 2 reverberation methods with the order of the sources randomized

for each block, giving a total of 42 (7 source positions × 2 methods × 3 blocks) judgments. The total time

for the experiment, including the training, took around 15 minutes. The participants were allowed to take

breaks between blocks, as required. No fatigue was reported.

2.5.8 Results

A 3-way ANOVA on block, distance, and reverberation method found a significant effect of method

(F (1, 16) = 15.29, p < 0.01) and distance (F (6, 96) = 29.12, p < 0.01). All two-way interactions (block-

distance, block-method, distance-method) failed to show significance. This finding indicates that the shape of

distance compression is statistically the same for both reverberation methods, and the ray tracing algorithm

exhibits an overall tendency to give longer distances. The null effect of block indicates that no trends are

obscured by averaging over this factor.

2.6 Analysis

2.6.1 Diffraction Study

In any VE the sound field should not appear discontinuous to the listeners as that could break presence.

Fig. 2.3 shows how the sound field was perceived by the subjects in the two cases. A simple linear-regression

fit further solidifies the notion: The coefficient-of-determination, R2
UTD evaluates to 0.91 whereas R2

Wave =

0.98 for the same set of diffraction angles relative to the source.

The high R2 values for both diffraction methods indicate that the subject responses for both the methods

at least approximate a linearly-decreasing trend in terms of perceived loudness. While this is the expected

trend for perceived loudness in such a setting as shown by our experiment, the UTD-based diffraction shows
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Figure 2.7: The residual error from the simple linear regression for both diffraction methods. As is clearly
evident, UTD-based diffraction shows high error when trying to fit its response to a straight line as compared
to the wave-based method. The X-axis represents the 19 equi-spaced diffraction angles ranging from 0◦ to
180◦

substantially more deviation from linear. In contrast, the wave-based diffraction is highly linear in its trend.

Fig. 2.7 shows how amenable each of the methods is to a linear model fitting.

Based on these results, it can be concluded that UTD-based diffraction is a reasonable diffraction model

perceptually and for applications where some discontinuity in the sound field is acceptable (e.g., games).

In addition, UTD serves as a relatively inexpensive means to get reasonably good diffracted sound. On the

other hand, applications where presence should not be affected by abruptly changing sound fields should use

wave-based methods.

2.6.2 Reverberation Study

Study I It is well-known that volume estimation is a complex phenomenon, and the trends in the data for

size scaling from reverberant cues reflect this, in showing that people are relatively insensitive to these cues.

We would expect to see a monotonically increasing trend in both cases. The full impulse response shows this

characteristic, in that the subjective magnitude for the full impulse response shows an increasing trend over

the smaller room sizes, but this trend quickly saturates. However, the subjects seem to learn to scale with this

technique over the course of the experiment. The scaling by reverberation filter, on the other hand tends to

vary in a non-systematic manner with increasing room size and shows high inter-subject variability as well.

38



Based on log-linear regression model, there is consistent poor performance in the case of the reverberation

filter while the physically accurate reverberation improves with repetition. Fig. 2.8 shows how the value of

R2 varies with the block: reverberation filter performs poorly across the three blocks, indicating it doesn’t

lend itself to any meaningful relation between the perceived reverberation intensity and the volume of the

environment. Accurate reverberation, on the other hand, starts showing improvement with R2
(IR)B3

= 0.92

for the third block, indicating the logarithmic relation between volume and reverberation intensity becomes

more prominent as subjects start to learn judging the volume based only on the sound cues alone.
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Figure 2.8: The value of R2 for the reverberation types across all the three trial blocks.

Although, the data indicate that untrained listeners are not particularly good at judging the size of an

environment, it appears using full impulse response offers some benefit in the way of consistency and seems to

offer much superior discriminatory ability in room size perception as the subjects become trained. (Hameed

et al., 2004) pointed out that subjects tend to only use the RT60 in room size perception and if fidelity with

respect to this phenomenon is desired, the absorption coefficient of the room can be adjusted to get the proper

relationship to the volume of the space.

2.7 Conclusions, Limitations, and Future Work

In this chapter we have presented two user studies to evaluate the perceptual merits of accurate and

approximate interactive sound propagation algorithms. To the best of our knowledge, the diffraction study
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is the first of its kind in evaluating the perceived smoothness of the diffracted field for different methods;

while the reverberation study evaluates the ability to provide accurate space cues for different methods. The

study results show that accurate sound propagation algorithms offer an increased perceptual differentiation

capability, exemplified by the reverberation study. Although, the subjects were not able to differentiate

the volumes of the rooms very well, the accurate reverberation method resulted in a significantly better

discriminatory capability compared to the reverberation filter.

The regression fits offer a concise and numerical value that encapsulate the perceptual differentiation

capabilities of the algorithms and serve as simple metrics to evaluate the performance of these methods.

We expect these metrics will serve as a means to let users decide which algorithms to use specific to their

requirements. Currently, the R2 values offer a very high level view of the algorithms and may not present an

accurate picture for all scenarios. This can easily be the case if the wave-based diffraction had an unacceptably

high peak at particular listener position(s), but still lent itself to a better linear fit than UTD. We believe that

our choice of these metrics can be made more robust to such anomalies by using more sophisticated statistical

models, as part of future work.

We would also like to point out that the environments in case of both experiments were kept very simple

so that the approximate algorithms could work to their full potential. Normally, reverberation filters are tuned

with respect to simple cubical environments, whereas UTD’s performance starts degrading substantially

with increasing number of diffraction edges. So, in a way, these experiments also represent the ‘best case

scenario’ for the performance of the approximate algorithms. Since most VEs are going to be significantly

more complicated, these approximate algorithms should be expected to perform worse than what they did in

our experiments.

The studies, too, can be extended in multiple ways: It would be interesting to vary the spectral content

of the source in the diffraction experiment, since diffraction is a frequency dependent phenomenon and

evaluate the subjects’ responses. The subject’s distance from the source can also be varied and evaluated.

The reverberation experiment could be verified by constructing real world rooms and using an actual sound

source to verify the logarithmic relation of subjects’ responses to changing room size.

40



CHAPTER 3: Mode-Aware Sound Propagation

3.1 Introduction

Realistic sound simulation can increase the sense of presence for users in games and VR applica-

tions (Durlach and Mavor, 1995; Shilling and Shinn-Cunningham, 2002). Sound augments both the visual

rendering and tactile feedback, provides spatial cues about the environment, and improves the overall immer-

sion in a virtual environment, e.g., playing virtual instruments (Ren et al., 2012; Serafin, 2004; Rocchesso

et al., 2008; Young and Serafin, 2003) or walking interaction (Franinovic and Serafin, 2013; Nordahl et al.,

2010; Steinicke et al., 2015; Visell et al., 2009; Turchet, 2015). Current game engines and VR systems

tend to use pre-recorded sounds or reverberation filters, which are typically manipulated using digital audio

workstations or MIDI sequencer software packages, to generate the desired audio effects. However, these

approaches are time consuming and unable to generate appropriate auditory cues or sound effects that are

needed for virtual reality. Further, many sound sources have a very pronounced directivity patterns which get

propagated into the environment. And as these sources move, so do their directivities. Thus, it is important to

model these time-varying, dynamic directivities propagating in the environment to make sure the audio-visual

correlation is maintained and the presence not disrupted.

Recent trend has been on development of physically-based sound simulation algorithms to generate

realistic effects. At a broad level, they can be classified into sound synthesis and sound propagation

algorithms. Sound synthesis techniques (van den Doel et al., 2001; O’Brien et al., 2002b; Zheng and

James, 2009; Chadwick et al., 2009; Zheng and James, 2011; Turchet et al., 2015) model the generation

of sound based on vibration analysis of the object resulting in modes of vibration that vary with frequency.

However, these techniques only model sound propagation in free-space and do not account for the acoustics

effects caused by interaction of sound waves with the objects in the environment. On the other hand, sound

propagation techniques (??Mehra et al., 2014b, 2015) model the interaction of sound waves with the objects

in environment, but assume pre-recorded or pre-synthesized audio clips as input. Therefore, current sound

simulation algorithms ignore the dynamic interaction between the processes of sound synthesis, emission
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(radiation), and propagation, resulting in inaccurate (or non-plausible) solutions for the underlying physical

processes. For example, consider the case of a kitchen bowl falling from a countertop; the change in the

directivity of the bowl with different hit positions and the effect of this time-varying, mode-dependent

directivity on the propagated sound in the environment is mostly ignored by the current sound simulation

techniques. Similarly, for a barrel rolling down the alley, the sound consists of multiple modes, where each

mode has a time-varying radiation and propagation characteristic that depends on the hit positions on the

barrel along with the instantaneous position and orientation of the barrel. Moreover, the interaction of the

resulting sound waves with the walls of the alley cause resonances at certain frequencies and damping at others.

Current sound simulation techniques model the barrel as a sound source with either static, mode-independent

directivity, and model the resulting propagation in the environment with a mode-independent acoustic

response or model the time-varying directivity of the barrel but propagate those in free-space only (Chadwick

et al., 2009). Due to these limitations, artists and game audio-designers have to manually design sound effects

corresponding to these different scenarios, which can be very tedious and time-consuming (Raghuvanshi and

Snyder, 2014).

Main Results: In this chapter, we present the first coupled synthesis-propagation algorithm which models

the entire process of sound simulation starting from the surface vibration of rigid objects, radiation of

sound waves from these surface vibrations, and interaction of the resulting sound waves with the virtual

environment for interactive applications. The key insights of our work is the use of a single-point multipole

expansion (SPME) to couple the radiation and propagation characteristics of a source for each vibration mode.

Mathematically, a single-point multipole corresponds to a single radiating source placed inside the object; this

expansion significantly reduces the computational cost of the propagation stage compared to a multi-point

multipole expansion. Moreover, we present a novel interactive mode-adaptive sound propagation technique

that uses ray tracing to compute the per-mode impulse responses for a source-listener position. We also

describe a novel perceptually-driven Hankel function approximation scheme that reduces the computational

cost of this mode-adaptive propagation to enable interactive performance for virtual environments. The main

benefits of our approach include:

1. Per-mode coupling of synthesis and propagation through the use of single-point multipole expansion.

2. Interactive mode-adaptive propagation technique based on perceptually-driven Hankel function approxi-

mation.
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3. High degree of dynamism to model dynamic surface vibrations, sound radiation and propagation for

moving sources and listeners.

Our technique performs end-to-end sound simulation from first principles and enables automatic sound

effect generation for interactive applications, thereby reducing the manual effort and the time-spent by artists

and game-audio designers. Our system can automatically model the complex acoustic effects generated

in various dynamic scenarios such as (a) swinging church bell inside a reverberant cathedral, (b) swaying

wind chimes on the balcony of Tuscany countryside house, (c) a metal barrel falling downstairs in an indoor

game scene and (d) orchestra playing music in a concert hall, at 10fps or faster on a multi-core desktop PC.

We have integrated our technique with the UnityTM game engine and demonstrated complex sound effects

enabled by our coupled synthesis-propagation technique in different scenarios

Furthermore, we evaluated the effectiveness of our perceptual Hankel approximation algorithm by

performing a preliminary user-study. The study was an online one where the subjects where shown snippets

of three benchmarks ( Cathedral, Tuscany, and Game ) with audio delivered through headphones/earphones

and rendered using our perceptual Hankel approximation and using no approximation. The subjects were

asked to judge the similarity between the two sounds for the three benchmarks. Initial results show that the

subjects were unable to distinguish between the two sounds indicating that our Hankel approximation doesn’t

compromise on the audio quality in a perceptible way.

3.2 Related Work and Background

In this section, we give an overview of sound synthesis, radiation, and propagation and survey some

relevant work.

3.2.1 Sound Synthesis for rigid-bodies

Given a rigid body, sound synthesis techniques solve the modal displacement equation

Kd + Cḋ + Md̈ = f , (3.1)

where K, C, and M are the stiffness, damping, and mass matrices, respectively and f represents the (external)

force vector. This gives a discrete set of mode shapes d̂i, their modal frequencies ωi, and the amplitudes qi(t).
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The vibration’s displacement vector is given by:

d(t) = Uq(t) ≡ [d̂1, ..., ˆdM ]q(t), (3.2)

where M is total number of modes and q(t) ∈ <M is the vector of modal amplitude coefficients qi(t)

expressed as a bank of sinusoids:

qi(t) = aie
−ditsin(2πfit+ θi), (3.3)

where fi is the modal frequency (in Hz.), di is the damping coefficient, ai is amplitude, and θi is the initial

phase.

(Adrien, 1991) introduced modal analysis approach to synthesizing sounds. (van den Doel et al., 2001)

introduced a measurement-driven method to determine the modes of vibration and their dependence on

the point of impact for a given shape. Later, (O’Brien et al., 2002b) were able to model arbitrarily shaped

objects and simulate realistic sounds for a few of these objects at interactive rates. This approach is called the

modal analysis and requires an expensive precomputation, but achieves interactive runtime performance. The

number of modes generated tend to increase with the geometric complexity of the objects. (Raghuvanshi

and Lin, 2006) used a system of spring-mass along with perceptually motivated acceleration techniques to

generate realistic sound effects for hundreds of objects in real time. (Ren et al., 2010) developed a contact

model to capture multi-level surface characteristics based on (Raghuvanshi and Lin, 2006). Recent work on

modal synthesis also uses the single point multipole expansion (Zheng and James, 2011).

3.2.2 Sound Radiation and Propagation

Sound propagation in frequency domain is described using the Helmholtz equation

∇2p+
ω2

c2
p = 0, x ∈ Ω, (3.4)

where p = p(x, ω) is the complex-valued pressure field, ω is the angular frequency, c is the speed of

sound in the medium, and ∇2 is the Laplacian operator. To simplify the notation, we hide the dependence

on angular frequency and represent the pressure field as p(x). Boundary conditions are specified on the

boundary of the domain ∂Ω by either the Dirichlet boundary condition that specifies the pressure on the
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boundary p = f(x) on ∂Ω, the Nuemann boundary condition that specifies the velocity of the medium

∂p(x)
∂n = f(x) on ∂Ω, or a mixed boundary condition that specifies Z ∈ C, so that Z ∂p(x)

∂n = f(x) on ∂Ω.

The boundary condition at infinity is also specified using the Sommerfeld radiation condition (Pierce et al.,

1981)

lim
r→∞

[
∂p

∂r
+ i

ω

c
p] = 0, (3.5)

where r = ||x|| is the distance of point x from the origin.

Equivalent Sources: The uniqueness of the acoustic boundary value problem guarantees that the

solution of the free-space Helmholtz equation along with the specified boundary conditions is unique inside

Ω (Ochmann, 1999). The unique solution p(x) can be found by expressing the solution as a linear combination

of fundamental solutions. One choice of fundamental solutions is based on equivalent sources. An equivalent

source q(x,yi) is the solution of the Helmholtz equation subject to the Sommerfeld radiation condition. Here

x is the point of evaluation, yi is the source position and xi 6= yi. The equivalent source can be expressed as:

q(x,yi) =
L−1∑
l=0

l∑
m=−l

cilmϕlm(x,yi) =
L2∑
k=1

eikϕk(x,yi), (3.6)

where k is a generalized index for (l,m), ϕk are multipole functions, and cilm is the strength of multipoles.

Multipoles are given as a product of two functions:

ϕlm(x,yi) = Γlmh
(2)
l (kdi)ψlm(θi, φi), (3.7)

where (di, θi, φi) is the vector (x−yi) expressed in spherical coordinates, h2l is the spherical Hankel function

of the second kind, k is the wavenumber given by ω
c , ψlm(θi, φi) are the complex-valued spherical harmonics

functions, and Γlm is the normalizing factor for the spherical harmonics.

3.2.2.1 Sound Radiation

The Helmholtz equation is the mathematical way to model sound radiation from vibrating rigid bodies.

Boundary element method is a widely used method for solving acoustic radiation problems (Ciskowski and

Brebbia, 1991) but has a major drawback in terms of high memory requirements. An efficient technique

known as the Equivalent source method (ESM) (Ochmann, 1999) exploits the uniqueness of the solutions to

the acoustic boundary value problem. ESM expresses the solution field as a linear combination of equivalent
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sources of various orders (monopoles, dipoles, etc.) by placing these simple sources at variable locations

inside the object and matching the boundary conditions on the object’s surface, guaranteeing the correctness

of solution. The pressure at any point in Ω due to N equivalent sources located at {yi}Ni=1 can be expressed

as a linear combination:

p(x) =
N∑
i=1

L−1∑
l=0

m=l∑
m=−l

cilmϕlm(x,yi). (3.8)

This compact representation of the pressure p(x) makes it possible to evaluate the pressure at any point of the

domain in an efficient manner. This is also known as the multi-point multipole expansion. Typically, this

expansion uses a large number of low-order multipoles (L = 1 or 2) placed at different locations inside the

object to represent the pressure field. (James et al., 2006b) use this multi-point expansion to represent the

radiated pressure field generated by a vibrating object. Another variant of this, is the single-point multipole

expansion represented as

p(x) =

L−1∑
l=0

m=l∑
m=−l

clmϕlm(x,y). (3.9)

discussed in (Ochmann, 1999). In this expansion, only a single multipole of high order is placed inside the

object to match outgoing radiation field.

3.2.2.2 Geometric Sound Propagation

Geometric sound propagation techniques use the simplifying assumption that the wavelength of sound is

much smaller than the features on the objects in the scene. As a result, these methods are most accurate for

high frequencies and approximately model low-frequency effects like diffraction and scattering as separate

phenomena. Commonly used techniques are based on image source methods and ray tracing. Recently, there

has been a focus on computing realistic acoustics in real-time using algorithms designed for fast simulation.

These include beam tracing (Funkhouser et al., 1998b) and ray-based algorithms (Lentz et al., 2007; Taylor

et al., 2009a) to compute specular an diffuse reflections and can be extended to approximate edge diffraction.

Diffuse reflections can also be modeled using acoustic rendering equation (Siltanen et al., 2007; Antani et al.,

2012a). In addition, frame-to-frame coherence of the sound field can be utilized to achieve a significant

speedup (Schissler et al., 2014b).
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3.2.3 Coupled Synthesis-Propagation

Ren et al. (Ren et al., 2012) presented an interactive virtual percussion instrument system that used

modal synthesis as well as numerical sound propagation for modeling a small instrument cavity. However,

the coupling proposed in this system did not incorporate a time-varying, mode-dependent radiation and

propagation characteristic of the musical instruments. Additionally, this system only modeled propagation

inside the acoustic space of the instrument and not the full 3D environment. Furthermore, the volume of the

underlying acoustic spaces (instruments) in (Ren et al., 2012) was rather small in comparison to the typical

scenes shown in this chapter.

Figure 3.1: Overview of our coupled synthesis and propagation pipeline for interactive virtual environments.
The first stage of precomputation comprises the modal analysis. The figures in red show the first two sounding
modes of the bowl. We then calculate the radiating pressure field for each of the modes using BEM, place a
single multipole at the center of the object, and approximate the BEM evaluated pressure. In the runtime
part of the pipeline, we use the multipole to couple with an interactive propagation system and generate the
final sound at the listener. We present a new perceptual Hankel approximation algorithm to enable interactive
performance. The stages labeled in bold are the main contributions of our approach.

3.3 Overview

In this section, we provide an overview of our mode-adaptive, coupled synthesis-propagation technique

(see Figure 3.1).

The overall technique can be split into two main stages: preprocessing and runtime. In the preprocessing

stage, we start with the vibration analysis of each rigid object to compute its modes of vibrations. This step

is performed using the finite element analysis of the object mesh to compute displacements (or shapes),
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frequencies, and amplitudes of all the modes of vibration. The next step is to compute the sound radiation

field corresponding to each mode. This is done by using the mode shapes as the boundary condition for the

free-space Helmholtz equation and solving it using the state-of-the-art boundary element method (BEM).

This step computes the outgoing radiation field corresponding to each vibration mode. To enable interactive

evaluation at runtime, the outgoing radiation fields are represented compactly using the single-point multipole

expansion (Ochmann, 1999). This representation significantly reduces the runtime computational cost for

sound propagation by limiting the number of multipole sources to one per mode instead of hundreds or even

thousands per mode in the case of multi-point multipole expansion (Ochmann, 1999; James et al., 2006b).

This completes our preprocessing step. The coefficients of the single-point multipole expansion are stored for

runtime use.

At runtime, we use a mode-adaptive sound propagation technique that uses the single-point multipole

expansion as the sound source for computing sound propagation corresponding to each vibration mode. In

order to achieve interactive performance, we use a novel perceptually-driven Hankel function approximation.

The sound propagation technique computes the impulse response corresponding to the instantaneous position

for source-listener pair for each vibration mode. High modal frequencies are propagated using the geometric

sound propagation techniques. Low modal frequencies can be propagated using the wave-based techniques.

Hybrid techniques combine geometric and wave-based techniques to perform sound propagation in the entire

frequency range. The final stage of the pipeline takes the impulse response for each mode, convolves it with

that mode’s amplitude, and sums it for all the modes to give the final audio at the listener.

We now describe each stage of the pipeline in detail.

Modal Analysis: We adopt a finite element method (O’Brien et al., 2002b) to precompute the modes of

vibration of an object. In this step, we first discretize the object into a tetrahedral mesh and solve the modal

displacement equation (Eq. 3.1) analytically under the Raleigh-damping assumption (i.e. damping matrix C

can be written as a linear combination of stiffness K and mass matrix M). This facilitates the diagonalization

of the modal displacement equation, which can then be represented as a generalized eigenvalue problem and

solved analytically as system of decoupled oscillators. The output of this step is the vibration modes of the

object along with the modal displacements, frequencies, and amplitudes. (Ren et al., 2013) showed that the

Raleigh damping model is a suitable geometry-invariant sound model and is therefore a suitable choice for

our damping model.
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Sound Radiation: This step computes the sound radiation characteristic of the vibration modes of each

object by solving the free-space Helmholtz equation (James et al., 2006b). The modal displacements of each

mode serves as the boundary condition for the Helmholtz equation. The boundary element method (BEM) is

then used to solve the Helmholtz equation and resulting outgoing radiation field is computed on an offset

surface around the object. This outgoing pressure field can be efficiently represented by using either the

single-point or multi-point multipole expansion.

Single-point Multipole fitting A key aspect of our approach is to represent the radiating sound fields

for each vibrating mode in a compact basis by fitting the single-point multipole expansion, instead of a

multi-point expansion. This representation makes it possible to use just one point source position for all the

vibration modes. This formulation makes it possible to perform interactive modal sound propagation (Eq.

3.9).

Mode-Adaptive Sound Propagation: The main idea of this step is to perform sound propagation for

each vibration mode of the object independently. The single-point multipole representation calculated in

the previous step is used as the sound source in this step. By performing a mode-adaptive propagation, our

technique models the mode-dependent radiation and propagation characteristic of sound simulation. The

modal frequencies generated for the objects in our scenes tend to be high (i.e., more than 1000Hz). Ideally,

we would like to use wave-based propagation algorithms (Mehra et al., 2014b, 2015), as they are regarded

more accurate. However, the complexity of wave-based methods increase as a fourth power of the frequency,

and therefore they can very high time and storage complexity. We use a mode-adaptive sound propagation

based on geometric methods.

Geometric Propagation: Given single-point multipole expansions of the radiation fields of a vibrating

object, we use a geometric acoustic algorithm based on ray-tracing to propagate the field in the environment.

In particular, we extend the interactive ray-tracing based sound propagation algorithm (Schissler et al., 2014b;

Schissler and Manocha, 2015) to perform mode-aware propagation. As discussed above, we use a single

source for all the modes and trace rays from this source into the scene. Then, at each listener position, the

acoustic response is computed for each mode by using the pressure field induced by the rays and scaled by

the mode-dependent radiation filter corresponding to the the single-point multipole expansion for that mode.

In order to handle low-frequency effects, current geometric propagation algorithm use techniques based on

uniform theory of diffraction. While they are not as accurate as wave-based methods, they can be used to

generate plausible sound effects for virtual environments.
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Auralization: The last stage of the pipeline involves computing the final audio corresponding to all the

modes. We compute this by convolving the impulse response of each mode with the mode’s amplitude and

summing the result:

q(x, t) =

M∑
i=1

qi(t) ∗ pωi(x, t), (3.10)

where pωi(x, t) is the acoustic response of the ith mode with angular frequency ωi computed using sound

propagation, qi(t) is the amplitude of the ith mode computed using modal analysis, x is the listener position,

M is the number of modes, and ∗ is the convolution operator.

3.4 Coupled Synthesis-Propagation

In this section, we discuss in detail the single-point multipole expansion and the mode-adaptive sound

propagation.

3.4.1 Single-Point Multipole Expansion

There are two types of multipole expansions that can be used to represent radiating sound fields: single-

point and multi-point. In a single-point multipole expansion (SPME), a single multipole source of high

order is placed inside the object to represent the sound field radiated by the object. On the other hand,

multi-point multipole expansion places a large number of low order multipoles at different points inside the

object to represent the sound field. Both SPME and MPME are two different representations of the outgoing

pressure field and do not restrict the capabilities of our approach in terms of handling near-field and far-field

computations.

To perform sound propagation using a multipole expansion, the number of sound sources that need to be

created depend on the number of modes and the number of multipoles in each mode. In case of a single-point

expansion, the number of sound sources is equal to M where M is the number of modes since the number of

multipoles in each expansion is 1. In case of multi-point multipole expansion, the number of sound sources is

equal to
∑M

i Ni where Ni is the number of multipoles in ith mode. The number of multipoles at each mode

vary with the square of the mode frequency. This results in thousands of sound sources for multi-multipole

expansion. The computational complexity of a sound propagation technique (wave-based or geometric) varies

with the number of sound sources. As a result, we selected SPME in our approach. However, it is possible
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that there are some cases where low-order MPME could be more efficient than a single and very high-order

SPME. However, in the benchmarks used in the chapter, SPME results in efficient runtime performance.

Previous sound propagation approaches have proposed the use of source clustering to reduce the com-

putation required for scenes with many sources (Tsingos et al., 2004). However, these techniques cannot

be used to cluster multipoles as the clustering disrupts the phase of the multipoles, producing error in the

sound radiation. Therefore, we chose to use a single-point multipole expansion to enable interactive sound

propagation at runtime.

The output of this stage is the set of coefficients of the single-point multipole expansion (Eq. 3.9) for

each mode (for example, coefficients cωlm for mode ω).

3.4.2 Mode-adaptive Sound Propagation

We now propose a position invariant method of computing the sound propagation for each mode of

the vibrating object. This approach brings down the number of sound sources to be propagated from M

to just one. This is achieved by placing the SPME for all the modes at exactly the same position. Given a

ray-tracing based geometric technique, this implies that instead of tracing rays for each mode separately, we

trace rays from only a single source position. These rays are emitted from the source in different directions,

get reflected/diffracted/scattered/absorbed in the scene, and reach the listener with different pressure values.

Mode-dependent impulse response is computed for each mode by multiplying the pressure values produced

by the traced rays with the corresponding SPME weights for each ray. We describe this approach in detail as

follows:

Sound propagation is split into two computations: mode-independent and mode-dependent computations.

Mode-independent: We make use of the ray-based geometric technique of (Schissler et al., 2014b) to

compute sound propagation paths in the scene. This system combines path tracing with a cache of diffuse

sound paths to reduce the number of rays required for an interactive simulation. The approach begins by

tracing a small number (e.g., 500) of rays uniformly in all directions from each sound source. These rays

strike the surfaces and are reflected recursively up to a specified maximum reflection depth (e.g., 50). The

reflected rays are computed using vector-based scattering (Christensen and Koutsouris, 2013), where the

resulting rays are a linear combination of the specularly reflected rays and random Lambertian-distributed

rays. The listener is modeled as a sphere the same size as a human head. At each ray-triangle intersection,

the visibility of the listener sphere is sampled by tracing a few additional rays towards the listener. If some
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fraction of the rays are not occluded, a path to the listener is produced. A path contains the following output

data: The total distance the ray traveled d, along with the attenuation factor α due to reflection and diffraction

interactions. Diffracted sound is computed separately using the UTD diffraction model (Tsingos et al., 2001b).

The frequency dependent effects are computed using a vector of frequency attenuation coefficients given the

mode’s frequency for both diffraction and reflection. This step remains the same for all the modes since the

position of the source remains the same (across all the modes) as described above.

Mode-dependent: Given the output of the geometric propagation system, we can evaluate the mode-

dependent acoustic response for a mode with angular frequency ω as:

pω(x, t) =
∑
r∈R
|pωr (x)| wr δ(t− dr/c), (3.11)

where wr is the contribution from a ray r in a set of rays R, dr is the distance traveled by the ray r, c is the

speed of sound, δ is the delta function, and pωr (x) is the pressure contribution generated by the ray r for mode

ω computed using the single-point multipole expansion:

pωr (x) = αr

L−1∑
l=0

m=l∑
m=−l

cωlmϕ
ω
lm(dr, θr, φr), (3.12)

where ϕωlm is the multipole, k is wavenumber of the mode (k = ω/c), (θr, φr) is the direction of emission of

ray r from the source, and αr is the attenuation factor. We switch between h(2)l (kdr) and its approximate

variant h̃(2)l (kdr) based on the distance dr in a mode-dependent manner as described next.

These mode-dependent acoustic responses are used in the auralization step as described in Section 3.

3.4.3 Hankel Approximation

The spherical Hankel function of the second kind, h(2)l (kd), describes the radially-varying component

of the radiation field of a multipole of order l. It is a complex-valued function of the distance d from the

multipole position and the wave number k = ω/c. This function itself is a linear combination of the spherical

Bessel functions of the first and second kind, jl(kd) and yl(kd): h(2)l (kd) = jl(kd)− iyl(kd). (Abramowitz

and Stegun, 1972). These Bessel functions are often evaluated to machine precision using a truncated infinite

power series.
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While this computation of the Bessel functions is accurate, it is also slow when the functions need to be

evaluated many times. Within sound propagation algorithm, both Bessel functions need to be evaluated for

each mode and each sound path through the scene. The number of paths in a reflective scene (e.g. cathedral)

can easily exceed 105, and the number of modes for the sounding objects is around 20 to 40, resulting in

millions of Bessel function evaluations per frame. The Hankel function is also amenable to computation

using recurrence relation(s). One such relation is given as:

h
(2)
l+1(kd) =

2l + 1

kd
h
(2)
l (kd)− h(2)l−1(kd) (3.13)

Unfortunately, computing the Hankel function using this recurrence relation has similar runtime costs as

evaluating the Bessel functions, and can become a bottleneck for interactive applications. If the Hankel

function is used directly, its evaluation for all modes and paths can take seconds.

Another possibility is to precompute a table for different values, and perform table lookup at runtime.

However, such an approach is not practical, since Hankel is a 2D function (l, kd). For a table, the granularity

of the arguments would have to be extremely fine, given the high numeric sensitivity of the function. Although,

it would be easy to store the values of l and k as they’re known beforehand, the value of d can have a large

range, even for a small scene. This is because the value of d depends on the distance a ray travels as it reaches

the listener position which could include multiple bounces in the environment.

Perceptual Hankel Approximation: We present an approximation technique for evaluation of the Hankel

function for interactive applications. Our approach uses a perceptually-driven error threshold to switch

between the full function evaluation and the approximation. We use the approximation function given

by (Mehra et al., 2014b):

h
(2)
l (kd) ≈ h̃(2)l (kd) = il+1 e

−ikd

kd
. (3.14)

This approximation converges to h(2)l (kd) for large values of kd, but does not match well near the

multipole. For this reason, we apply this approximation only in the far field, where the value of the distance d

is greater than a threshold distance dh̃. Overall, the approximation works well even for small scenes since the

reflected rays can take a long path before they reach the listener and be in the far field.

We determine this distance threshold independently for each mode frequency ω and its corresponding

wave number k so that a perceptual error threshold is satisfied. We derive the error threshold for each mode
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from the absolute threshold of hearing at the mode’s frequency. If the pressure error from the approximation

is less than the threshold of hearing, the difference in pressure is unable to be perceived by a human listener

(Painter and Spanias, 2000). The threshold of hearing can be well-approximated by the analytic function

(Terhardt, 1979):

Tq(f) =3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)
2)+

10−3(f/1000)4. (dB SPL),
(3.15)

SPL stands for Sound Pressure Level and is measured in decibels (dB).

In a preprocessing step, we evaluate this function at each mode’s frequency to determine a per-mode

error threshold, and then determine the distance threshold dh̃ where the approximation is perceptually valid

for the mode. This information is computed and stored for each sounding object. At runtime, when the

pressure contribution for each path i is computed, we use the original Hankel h(2)l (kidi) when di < dh̃ and

the approximation h̃(2)l (kidi) when di ≥ dh̃.

We would like to note that although the approximation to Hankel function specified in Eq 3.14 is standard,

the novelty of our approach lies in the way we use it. As described above, we use perceptually-driven

thresholds to decide when to automatically switch to the approximate version. We also did a user-evaluation

to make sure the perceptually-motivated approximation doesn’t cause any loss of quality in our context. The

details of the evaluation are presented in the Section 5.

Error Threshold Preprocessing: Given a perceptual error threshold such as ε = 5 dB SPL, we use a

brute-force approach to determine the smallest value of dh̃ for which the error of the approximation is less

than ε for all distances d > dh̃. We have included Figure 3.2 that shows an example of how the error shrinks

at increasing values of d. Our approach starts at the multipole position and samples the error value at λ/10

to avoid aliasing. The method stops when d reaches a point past the end of the longest expected impulse

response (e.g., 1000m). The final value for dh̃ is chosen to be the last d sample where the error dropped

below ε.

The result of applying this approximation is that our sound propagation system is able to handle pressure

computation for interactive scenes that are much more complex and with many more sound paths than with

the original Hankel formulation. In addition, the error due to our approach is small and not perceptible by a

human listener.
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Figure 3.2: The error between the Hankel function approximation h̃(2)l (kd) and the original function h(2)l (kd)
decreases at increasing values of d for order l = 6 and mode frequency 1000Hz. An error threshold of ε = 5
dB SPL is overlaid. For this case, the approximation threshold distance is chosen to be dh̃ = 93m. All sound
paths for this mode frequency with d > 93m use this approximation.

Near-field vs. far-field: As mentioned in Sec 4.1, Equivalent Source theory states that if the pressure on the

offset surface is matched by matching the appropriate boundary condition, the pressure field is valid in the

near-field as well as far-field. We use the perceptual Hankel approximation for far-field computation, but we

don’t truncate the order of the multipole anywhere. In particular, we use the exact multipole formulation

everywhere with the following difference: the Hankel function part of multipole is approximated in the far-

field but the expansion is never truncated anywhere in the domain. So the only difference in the computation

of near and far-fields is in terms of Hankel computation.

3.5 User-Evaluation of Hankel Approximation

In order to evaluate the accuracy of our chosen thresholds, we performed an online user-study with 3

benchmark: the Cathredal, Tuscany, and the Game benchmark. Given the scope of our experiments, an online

study was the best choice as it offered the subjects convenience of taking the study as per their convenience

and at a pace they were comfortable with. This also eased the process of keeping their identities confidential.

We generated the audio for these scenes using the perceptual Hankel approximation and the full Hankel

computation. The Tuscany benchmark has the Unity in-game, static soundscape playing and was left that
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Figure 3.3: Mean and standard errors of the subjects’ scores on the user-study. Full refers to sound computed
using Full Hankel, while Approx refers to sound computed using our perceptual approximation. The response
is to the question,”Compared to the audio in the left video, how similar is the audio in the right video?”

way to make scene appear more natural and have a better audio-visual correlation. For the study, we consider

the full Hankel computation to be the base method while the approximated-Hankel was considered as our

method.

Participants The study was taken by 29 subjects all within the age group of 18 and 50 with 18 males

and 11 females. The mean age of all the participants was 27.3 and all of them reported normal hearing. The

subjects were recruited by sending out emails to the departments, colleagues, and friends. The subjects were

not paid for their participation.

Procedure The participants were given instructions on the study and asked to fill out a questionnaire

on their background. The subjects were required to have a headphone/earphone before they could take part

in the study. There was one test scene to help them calibrate their headphones/earphones and make sure

they’re oriented correctly (right channel on right ear, left channel on left). We designed four cases: base

vs. base, our vs. base, base vs. our, and our vs. our for each of the three scenes. In total, twelve video

pairs were generated for the benchmarks ( 4 cases x 3 benchmarks ). We performed an online survey where

subjects were presented the four cases in a random order and asked to answer a single question, ”Compared

to the audio in the left video, how similar is the audio in the right video ?”. The choice of the question

was motivated by (Polk et al., 2002; Aldrich et al., 2009) where the authors use a similar question and

a similar scale to measure similarity between two stimuli. Our hypothesis was: Sound produced by our

method would be indistinguishable from the base method. If our hypothesis is validated, it would indicate

that our Hankel approximation is perceptually equivalent to full Hankel computation. The subjects were then
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presented the 12 benchmarks in a random order and asked to rate the similarity on a scale on 1 to 11 with 1

being the audio in the two videos is very different and 11 being the audio in the two videos is virtually the

same. There was no repetition of stimuli to make sure there was no learning between subsequent iterations

given the low number of stimuli present. The study had no time constraints and the participants were free

to take breaks in-between the benchmarks as long as the web-session did not expire. After presenting the

12 benchmarks, the subjects were given the opportunity to leave open (optional) comments. Although, it is

difficult to ascertain the average time it took the subjects to finish the study, in our experience, the study took

around 15-20 minutes on average.

Results and Discussion The questions posed to participants of the study include mixed cases between

audio generated using the full Hankel and approximate Hankel functions as well as cases where either the full

or approximate Hankel function was used to generate both audio samples in a pair. Our hypothesis is thus

that the subjects are going to rate the full vs. approximate similar to what they rate full vs. full, which would

indicate that users are unable to perceive a difference between results generated using the full functions and

those generated using their approximation. The mean values and the standard errors are shown in the Fig 3.3.

The figure shows how close the mean scores are for the full vs. approximate test as compared to the full vs.

full test.

The responses were analyzed using the non-parametric Wilcoxon signed-rank test on the full vs. full and

approximate vs. approximate data to ascertain whether their population mean ranks differ. The Wilcoxon

signed-rank test failed to show significance for all the three benchmarks: Cathedral (Z = -0.035, p = 0.972),

Tuscany (Z = -1.142, p = 0.254), and Game (Z = 0.690, p = 0.49) indicating that the population means do not

differ for all the three benchmarks. The responses were also analyzed using the non-parametric Friedman test.

The Friedman test, too, failed to show significance for the benchmarks: Cathedral (χ2(1) = 0.048, p = 0.827),

Tuscany (χ2(1) = 2.33, p = 0.127), Game (χ2(1) = 0.053, p = 0.819).

The responses were further analyzed using confidence interval approach to show equivalence between

the groups. The equivalence interval was chosen to be the ±20% of our 11-point rating scale, i.e., ±2.2. The

confidence level was chosen to be 95%. Table 3.1 shows that the lower and upper values of the confidence

intervals lie within our equivalence intervals indicating that the groups are equivalent.
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Scene Full vs. Approx Approx vs. Approx Approx vs. Full Full vs. Full
Lower Upper Lower Upper Lower Upper Lower Upper

Cathedral -0.4021 1.2054 -0.3587 1.0754 -0.3064 0.9184 -0.3259 0.9769
Tuscany -0.3246 0.9729 -0.2572 0.7710 -0.2298 0.6890 -0.2350 0.7043
Game -0.2919 0.8751 -0.2856 0.8562 -0.3504 1.0502 -0.2935 0.8798

Table 3.1: Equivalence test results for the three scenes. The equivalence interval was ±2.2 while the
confidence level was 95%

3.6 Implementation and Results

In this section, we describe the implementation details of our system. All the runtime code was written

in C++ and timed on a 16-core workstation with Intel Xeon E5 CPUs with 64 GB of RAM running Windows

7 64-bit. In the preprocessing stage, the eigen decomposition code was written in C++, while the single-point

multipole expansion was written in MATLAB.

Preprocessing: We used finite element technique to compute the stiffness matrix K which takes the

tetrahedralized model, Young’s modulus, and the Poisson’s ratio of the sounding object and compute the

stiffness matrix for the object. Next, we compute the eigenvalue decomposition of the system using Intel’s

MKL library (DSYEV) and calculate the modal displacements, frequencies, and amplitudes in C++. The

code to find the multipole strengths was written in MATLAB, the Helmholtz equation was solved using

the FMM-BEM (Fast-multipole BEM) method implemented in FastBEM software package. Our current

implementation is not optimized. It takes about 1-15 hours on our current benchmarks.

Sound Propagation: We use a fast, state-of-the-art geometric ray tracer (Schissler et al., 2014b) to get

the paths for our pressure computation. This technique is capable of handling very high orders of diffuse

and specular reflections (e.g., 10 orders of specular reflections and 50 orders of diffuse reflections) and still

Scene #Tri. #Paths #S #M Time
Prop. Pres. Tot

Sibenik 77083 30850 1 15 52.2 57.9 110.1
Game 100619 58363 1 5 69.5 22.7 92.2

Tuscany 98274 9232 3 14 62.2 16.8 79
Auditor. 12373 13742 3 17 82.5 12.5 95

Table 3.2: We show the performance of our runtime system (mode-adaptive propagation). The number of
modes for Tuscany and Auditorium is the sum over all sources used. The number of modes and number of
paths were chosen to give a trade-off for speed vs. quality. All timings are in milliseconds. We show the
breakdown between ray-tracing based propagation (Prop.) and pressure (Pres.) computation and the total
(Tot) time per frame on a multi-core PC. #S is the number of sources and #M is the number of modes.
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maintain interactive performance. The ray tracing system scales linearly with the number of cores keeping

the propagation time low enough for the entire frame to be interactive (see Table 3.2).

Spherical Harmonic computation: The number of spherical harmonics computed per ray varies as O(L2),

making naive evaluation too slow for an interactive runtime. We used a modified version of available fast

spherical harmonic code (Sloan, 2013) to compute the pressure contribution of each ray. The available code

computes only the real spherical harmonics by making extensive use of SSE (Streaming SIMD Extension).

We find the complex spherical harmonics from the real ones following a simple observation:

Y m
l =

1√
2

(Y m
l + ι Y −ml ) m > 0, (3.16)

Y m
l =

1√
2

(Y m
l − ι Y −ml )(−1)m m < 0. (3.17)

Since our implementation uses the recurrence relation to compute the associated Legendre polynomials along

with extensive SIMD usage, it makes it faster than the GSL implementation and significantly faster other

implementation such as BOOST.

Approximate Hankel Function: As mentioned in Section 4, the Hankel function is approximated when

the listener is sufficiently far away from the listener. The approximate Hankel function h̃(2)l (kd) = il+1 e−ikd

kd

reduces to computing sin(kd) and cos(kd). In order to accelerate this computation further, we use a lookup

table for computing sines and cosines, improving the approximate Hankel computation by a factor of about

four, while introducing minimal error as seen in Section 7.3. The lookup table for the sines and cosines make

no noticeable perceptual difference in the quality of sound.

Parallel computation of mode pressure: In order to make the system scalable, we parallelize over the

number of paths in the scene rather than the number of modes. Parallelizing over the number of modes would

not be beneficial if number of cores > number of modes. Since the pressure computation for each ray is

done independent of the other, the system parallelizes easily over the paths in the scene. We use OpenMP

for the parallelization on a multi-core machine. Further, the system is configured to make extensive use of

SIMD allowing it to process 4 rays at once. Refer to Table 3.2 for a breakdown of time spent on pressure

computation and propagation for the different scenes.

Real-Time Auralization: The final audio for the simulations is rendered using a streaming convolution

technique (Egelmeers and Sommen, 1996). Once the audio is rendered, it can be played on the usual output
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devices such as headphones or multi-channel stereo. Although, headphones would give the best results in

terms of localization. All audio rendering is performed at a sampling rate of 44.1 kHz.

3.6.1 Results

Objeect #Tris Dim. (m) #Modes Freq. Range (Hz) Order

Bell 14600 0.32 20 480 - 2148 13-36
Barrel (Auditorium) 7410 0.6 20 397 - 2147 13-37
Barrel (Game) 7410 1.03 9 370 - 2334 8-40
Chime - Long 3220 0.5 4 780 - 2314 7-19
Chime - Medium 3220 0.4 6 1135 - 3958 10-24
Chime - Short 3220 0.33 4 1564 - 3495 10-15
Bowl 20992 0.35 20 870 - 5945 8-36
Drum 7600 0.72 13 477 - 1959 8-28
Drum stick 4284 0.23 7 1249 - 3402 7-15
Trash can 7936 0.60 5 480 - 1995 11-17

Table 3.3: We show the characteristics of SPME for different geometries and materials.

We now describe the different scenarios we used to test our system.

Cathedral: This scene serves as a way to test the effectiveness of our method in a complex indoor

environment. We show a modal object (Bell) that has impulses applied to it. As the listener moves about in

the scene the intensity of sound varies depending on the distance of the listener from the bell. Further, since

the cathedral corresponds to an indoor environment, effects such as reflections and late reverberation coupled

with modal sounds become apparent.

Tuscany: The Tuscany scene provides a means to test the indoor/outdoor capabilities of our system.

The modal object (Three bamboo chimes) is placed on the balcony with the wind providing the impulses. As

the listener goes around the house and moves inside, the propagated sound of the chimes changes depending

on the position of the listener in the environment. The sound is much less in intensity outside owing to most

of the propagated sound being lost in the environment and increases dramatically when the listener goes in.

Game Scene: This demo showcases the effectiveness of our system in a game like environment

containing, both, an indoor and a semi-outdoor environment. We use a metal barrel as our sounding object

and let the listener interact with it. Initially, the barrel rolls down a flight of stairs in the indoor part of the

scene. The collisions with the stairs serve as input impulses and generate sound in an enclosed environment,

with effects similar to that in the Cathedral scene. The listener then picks up the barrel and rolls it out of the
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Figure 3.4: The order required by the Single-Point multipole generally increases with increasing modal
frequency. We show the results for the objects used in our simulations. It is possible for the same modal
frequency (for different objects) to have different order multipole owing to difference in geometries of these
objects. The plot shows the SPME order required for approximating the radiation pattern of different objects
as a function of their increasing modal frequencies.

door and follows it. As soon as the barrel exits the door, the environment outside is a semi-outdoor one, the

reverberation characteristics change, demonstrating the ability of our system to handle modal sounds with

different environments in a complex game scene.

Auditorium: This scene showcases the ability of our system to support multiple sound sources and

propagate them inside an environment. We use a metal barrel, bell (from the Cathedral), a toy wooden drum,

a drum stick, and a trash can lid to form a garage band. The instruments play a joyful percussive piece and

provide the listener with the sound from a particular seat in the auditorium. (Fig. 3.5)

3.6.2 Analysis

Fig 3.4 shows the different orders of Single-Point Multipoles needed for the different objects as function

of their modal frequencies. We choose an error threshold based on (Mehra et al., 2014b) as our error threshold

ε when computing the co-efficients of SPME for a particular mode. The order of the SPME is iterated till the

error drops below ε. We used ε = 0.15 for each mode. (Fig. 3.6)
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Figure 3.5: The Auditorium Music Scene. This scene includes multiple sources playing a musical composi-
tion.

We have included a table (Table 3.4) that shows the performance improvement we get in various scenes

with our Perceptual-Hankel approximation. The results were computed on a single thread. The first three

scenes had the listener moving around in the scene and being at different distances from the sounding object.

This indicates that the listener moves in and out of the near-field of the object (Refer to the supplemental

video). And as the table indicates, approximation is still at least 3x faster than full Hankel computation

without loss in quality.

Scenario #Paths F-Hankel(ms) P-Hankel(ms) Speed-up
Sibenik 42336 7837.72 1794.5 4.37

Game 55488 5391.6 754.5 7.14
Tuscany 6575 225.73 69.75 3.23

Auditorium 11889 1395 284.75 4.9

Table 3.4: The speed-up obtained using the Perceptual-Hankel approximation. We achieve at least 3− 7x
speed-up with no loss in the perceptual quality of sound. Here, F-Hankel stands for Full-Hankel while
P-Hankel stands for Perceptual-Hankel. The results for Tuscany and Auditorium are averaged over all the
sources.

Table 3.2 shows that we can achieve interactive performance (10 fps) using our system. The number of

modes and number of rays in the scene can be controlled in order to get the best performance vs. quality

balance. Table 3.5 shows the case for the Cathedral scene. The bell has 20 computed modes with about 44k

rays on the one end and 13k rays with 1 mode on the other. The framework can be customized to suit the
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Figure 3.6: For an increasing error threshold ε, the order of the multipole decreases almost quadratically.
This demonstrates our SPME algorithm provides a very good approximation.

needs of a particular scenario to offer the best quality/cost ratio. Further, owing to the scalable nature of our

system, more number of cores scales the performance almost linearly.

#Paths Prop. Time 1 mode 5 modes 10 modes 15 modes 20 modes
44148 84.23 3.23 15.46 31.9 60.8 152.5
30850 52.27 2.2 11.2 29.9 57.9 144.1
22037 37.8 2 10.5 31.3 61 127.9
13224 25 1.6 9.4 27.8 53.7 102.7

Table 3.5: The table shows how controlling the number of rays and the number of modes can influence
the timing in the Cathedral scene with a bell. This can help one customize the system to provide the best
quality/performance ratio for a particular scenario. The total time taken is propagation time + time for chosen
number of modes. All times are reported in milliseconds.

3.7 Limitations, Conclusion and Future Work

We present the first coupled sound synthesis-propagation algorithm that can generate realistic sound

effects for computer games and virtual reality, by combining modal sound synthesis, sound radiation, and

sound propagation. The radiating sound fields are represented in a compact basis using a single-point multiple

expansion. We perform sound propagation using this source basis via a fast ray-tracing technique to compute

the impulse responses using perceptual Hankel approximation.

The resulting system has been integrated and we highlight the performance in many indoor and outdoor

scenes. Our user-study demonstrates that perceptual Hankel approximations doesn’t degrade sound quality

and results in interactive performance. To the best of our knowledge, ours is the first system that successfully

63



combines these methods and can handle a high degree of dynamism in term of source radiation and propagation

in complex scenes.

Our approach has some limitations. Our current implementation is limited to rigid objects and modal

sounds. Moreover, the time complexity tends to increase with the mode frequency. Our single-point multipole

expansion approach can result in high orders of multipoles. The geometric sound propagation algorithm may

not be able to compute the low frequency effects (e.g. diffraction) accurately in all scenes. Moreover, the

wave-based sound propagation algorithm involves high pre-computation overhead and is limited to static

scenes.

There are several avenues for future work. In addition to overcoming these limitations, we can further

integrate other acceleration techniques, such as mode compression, mode culling etc (Raghuvanshi and Lin,

2006) for use in more complex indoor and outdoor environments and generate other sound effects in large

virtual environments (e.g. outdoor valley). It would also be useful to consider the radiation efficiency of each

mode and use more advanced compression techniques (Raghuvanshi and Snyder, 2014). It would be useful to

accelerate the computations using iterative algorithms like Arnoldi’s (Arnoldi, 1951). Integrating non-rigid

synthesized sounds, e.g., liquid sounds (Moss et al., 2010) into our framework would be an interesting

direction of future research. Our system is fully compatible with binaural rendering techniques such as

HRTF-based (Head Related Transfer Function) rendering and it is our strong belief that using such techniques

would improve the degree of presence that our system currently provides. (Begault et al., 1994; Larsson et al.,

2002a). To this end, we would like to incorporate fast HRTF extraction methods such as (Meshram et al.,

2014) and evaluate the benefits. Our current user-evaluation can be expanded in multiple ways that might

reveal interesting perceptual metrics which might further help optimize the system. Finally, we would like to

use these approaches in VR applications and evaluate their benefits.
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CHAPTER 4: Diffraction Kernels for Interactive Sound Propagation

4.1 Introduction

Research in virtual environments over the last few decades has demonstrated that improved sound

simulation and rendering can significantly augment a user’s sense of presence (Larsson et al., 2002b). Sound

can induce a sense of “object presence” and “spatial presence” at the same time, raising the fidelity of VR

and AR simulations (Dubois et al., 2010). As the characteristics of the environment or source locations vary

in real time, it is important to perform interactive auralization that accurately captures any changes caused by

the user or the environment, and to generate smoothly rendered audio.

The most accurate algorithms for sound simulation are based on directly solving the acoustic wave

equation using numerical methods and compute the pressure field. Recently, different precomputation-based

solvers have been proposed to compute an acoustic kernel, which is used at runtime for interactive propagation

for dynamic sources or listeners (James et al., 2006a; Raghuvanshi et al., 2016; Yeh et al., 2013). However,

these technique have two major limitations: (a) the precomputation time and the memory overhead can be

very high requiring large compute clusters; (b) they are limited to static scenes and cannot handle dynamic

objects, a common scenario in virtual environments.

Most interactive algorithms for sound simulation and rendering for dynamic scenes are based on

geometric acoustics and ray tracing (Krokstad et al., 1968b; Lentz et al., 2007; Taylor et al., 2012; Schissler

et al., 2014b). Recent ray tracing algorithms can handle a high number of sources and compute higher order

reflections at interactive rates on commodity desktop processors (Cao et al., 2016). It is well-known that pure

geometric-acoustics techniques work well for high frequencies, and can’t model low-frequency wave effects

such as diffraction or occlusion. In practice, it is important to model these wave effects to correct the spectral

content of reflected sound from finite surfaces, such as overhead reflectors or wall edges. Diffraction becomes

very important for listeners located inside the shadow zones of obstacles and the inaccurate modeling of these

effects can lead to a loss of realism in VR (Rungta et al., 2016).
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There is significant literature on augmenting the geometric acoustic techniques with diffraction approxi-

mation. Most prior techniques are designed to model edge diffraction (Tsingos et al., 2001c; Taylor et al.,

2012; Schissler et al., 2014b), which includes propagating sound around the corners as well as scattering

sound in all directions from wedges of any angle.

However, current interactive diffraction algorithms have some limitations. First, they are less accurate for

highly tessellated objects or smooth surfaces and can result in discontinuous sound field in occlusion scenarios.

Second, it is computationally challenging to handle highly tessellated objects because the computational

complexity increases exponentially with the number of diffracting edges.

Main Results: We present a novel approach based on object-based diffraction kernels to model sound

propagation in dynamic environments. Our hybrid formulation combines the accuracy benefits of wave-based

computation with the efficiency and flexibility of geometric ray-tracing methods. The resulting approach can

handle virtual environments composed of highly tessellated, dynamic objects at interactive rates and offers

these benefits:

• Efficient source-placement algorithm that significantly reduces the precomputation time by reducing the

required number of wave-based simulations needed to compute the diffraction kernel of an object.

• Handles highly tessellated or smooth objects while modeling diffraction and occlusion effects.

• Efficient runtime based on ray tracing with minimal overhead enabling interactive performance for

dynamic scenes.

In the preprocessing stage, we efficiently compute the diffraction kernels that encapsulate the sound

interaction behavior of individual objects in free field. These kernels capture all the interactions of sound

waves with the objects, including reflections, diffraction, scattering and interference, and we present a novel

source placement algorithm for efficient computation. Our algorithm exploits the symmetric properties of the

scattering field and the object shape to compute diffraction kernels at only a few incoming directions and

accelerates the precomputation by 1− 2 orders of magnitude (Section 3) for efficient desktop computation.

We present a new coupling algorithm that integrates these diffraction kernels with interactive ray tracing

at runtime. Our modified ray tracing algorithm uses the object-based diffraction kernels to approximate

the wave effects such as diffraction and combines them with standard geometric ray tracing techniques to

compute reflections at interactive rates (Section 4).
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We demonstrate the interactive performance on many dynamic scenes with smooth, highly tessellated

objects undergoing rigid motion (Section 5). We highlight improved accuracy as compared to prior interactive,

geometric methods for capturing diffraction effects and also compare the performance with wave-based

solvers (Section 6). We also perform a perceptual evaluation using a user study to compare the auditory

perception of our algorithm with a wave-based propagation algorithm (Section 7).

4.2 Related Work

In this section, we give a brief overview of prior work on sound propagation.

4.2.1 Wave-Based Methods

These methods are the most accurate way of simulating sound propagation as they solve the acoustic

wave equation directly. Some of the frequency domain solvers include methods based on the finite-element

method (FEM), boundary-element method (BEM), and the time domain solvers include methods such as finite-

difference time domain (FDTD) and adaptive rectangular decomposition (ARD). However, their space and

time complexity increases as a third or fourth power of frequencies. Many interactive propagation techniques

have been proposed for static scenes that precompute an acoustic kernels and use them to compute the

impulse responses at runtime as a function of the source or listener positions. Equivalent source method based

techniques have been used to precompute the acoustic radiation characteristics of rigid objects (James et al.,

2006a) or the per-object and inter-object transfer functions for sound propagation (Mehra et al., 2013, 2015)

and can also be combined with ray tracing algorithms (Yeh et al., 2013). However, the computational overhead

of these methods is very high and they require large compute clusters for pre-computations. Furthermore,

none of these methods can handle dynamic objects in the scene owing to need to recompute the total field if

the objects in the scene move (i.e., the inter-object transfer function computation would change), thereby

limiting their application to static scenes. (Mehra et al., 2015) can handle moving sources and listeners but

not moving objects while (Mehra et al., 2013) can handle either a moving source or a moving listener. In

contrast, our method has a lower computational overhead and can handle dynamic source, listeners, and

objects, though our accuracy is slightly lower. Raghuvanshi et al. (Raghuvanshi et al., 2010, 2016) use the

adaptive rectangular decomposition method to precompute acoustic responses on a sampled spatial grid.
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Figure 4.1: Interactive Sound Propagation and Rendering: We highlight different stages of our novel
sound propagation and rendering pipeline, which uses per-object diffraction kernels. In the precomputation
stage, we adaptively perform BEM simulations for certain directions (computed using our novel source
placement algorithm) and measure the outgoing pressure fields produced by the scattering of plane waves at
various frequencies. These pressure fields encode the scattering as a function of frequency, the input and
output directions and converted into an efficient spherical harmonic representation called the diffraction
kernel. At runtime, the diffraction kernel is coupled with an interactive path tracing algorithm to simulate
sound propagation and auralization in dynamic scenes.

4.2.2 Geometric Acoustics and Diffraction

Geometric techniques model the acoustic effects based on ray theory and typically work well for high-

frequency sounds to model specular and diffuse reflections (Savioja and Svensson, 2015). Wave phenomena

such as diffraction must be modeled explicitly or separately and prior methods are limited to edge diffraction.

The Biot-Tolstoy-Medwin (BTM) model is an accurate time-domain diffraction formulation that evaluates an

integral of diffracted sound along finite rigid edges, can be extended to higher-order diffraction, and can be

combined with wave-based methods (Svensson et al., 1999; Román et al., 2016). However, it is expensive

to evaluate for complex scenes and limited to offline computations. An alternative approach, the uniform

theory of diffraction (UTD), is a less accurate frequency-domain model of diffraction for infinite edges that

can generate plausible results for interactive simulation in certain scenarios (Tsingos et al., 2001c; Taylor

et al., 2012). The complexity of these edge-based diffraction techniques can increase exponentially with the

maximum diffraction order, since each edge in the scene can interact with every other edge. To reduce the

cost of visibility testing for high-order UTD diffraction, a precomputed edge-to-edge visibility graph can be

used for static scenes, but current interactive systems are limited to low orders of edge-diffraction (Schissler

et al., 2014b). However, it is not clear whether techniques based on UTD can handle complex (highly

tesselated) models that are frequently used in gaming and VR due to the high number of potential diffraction

edges (Tsingos et al., 2007). An accurate sound particle model of edge diffraction based on the Heisenberg
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uncertainty principle has been proposed for high-order diffraction (Stephenson, 2010), but is not robust for

complex objects.

4.2.3 Hybrid Methods

Given the relative benefits of wave-based and geometric methods, hybrid techniques have been proposed

to combine them. These include methods based on spectral decomposition of the low frequencies (i.e., less

than 1kHz or 2kHz) are modeled using wave-based solvers, such as FDTD or FEM, and the high frequencies

are modeled using ray tracing or beam tracing (Lokki et al., 2011; Southern et al., 2011; Granier et al., 1996).

The computational complexity of these hybrid approaches is dominated by the wave-based methods that are

performed over the entire acoustic domain. Another set of hybrid algorithms performs a spatial decomposition

of the simulation domain into near-object regions and far-field regions for precomputation (Yeh et al., 2013).

It uses an equivalent source formulation to compute the per-object and inter-object transfer functions, and

combines that with a geometric ray tracing method to handle higher frequencies. However, the computation of

per-object and inter-object transfer is expensive and also requires a large compute cluster for precomputation.

As with (Mehra et al., 2013, 2015), moving objects in the scene would require recomputing the inter-object

transfer functions making this method limited to static scenes with either a moving source or a moving listener.

Furthermore, different coupling techniques have been proposed to combine the results at the interfaces, based

on BEM (Hampel et al., 2008), FDTD (Wang et al., 2000), FEM (Barbone et al., 1998), and ESM (Yeh et al.,

2013). However, none of these approaches can handle dynamic scenes at interactive rates.

4.3 Acoustic Field & Diffraction Kernel

In this section, we present a high-level overview of our sound propagation algorithm based on diffraction

kernels. Figure 4.1 shows the overall pipeline of our approach divided into two distinct stages: precomputation

to compute the diffraction kernels and runtime based on interactive ray tracing.

Table 4.1 gives a list of all the symbols used.
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Symbols Meaning

x Incident direction
y Outgoing direction
ω Frequency

d(y, ω) Scattered pressure field
d̃(y, ω) SH representation of d(y)

D(x, y, ω) Diffraction kernel
P (y) Probability density function
Ii Incident sound intensity
Io Outgoing sound intensity

Aproj Projected area
H Visible-curvature histogram
SS Shape signature

Table 4.1: A table of important mathematical symbols used in the text.

4.3.1 Acoustic wave equation

The acoustic wave-equation models the scattering behavior of objects. In spherical coordinates the

wave-equation can be expressed as:

∇2p =
∂2p

∂r2
+

2

r

∂p
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radial part

+
1

r2sinθ

∂

∂θ
(sinθ

∂p

∂θ
) +

1

r2sin2θ

∂2p

∂φ2︸ ︷︷ ︸
angular part

(4.1)

where p is the pressure and (r, θ, φ) correspond to x in spherical coordinates. The complete solution to the

equation above can be expressed in terms of the radial and angular parts:

ψlm(x, y) = Γlm h
2
l (kr)︸ ︷︷ ︸
radial

Y m
l (x− y)︸ ︷︷ ︸

angular

(4.2)

The angular part of the solution is described using spherical harmonics Y m
l while variation in the pressure

because of distance is controlled by the Hankel function h2l .

4.3.2 Diffraction Kernels

We use a diffraction kernel representation to capture the angular portion of the solution while the radial

variation of pressure is approximated by a geometric sound propagation technique. We consider a spherical

grid of incoming directions and generate plane-waves from each direction of this grid. For each plane
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Figure 4.2: Overview of our source placement algorithm: We use a novel source placement algorithm to
compute the representative source positions for each object: (a) Given a scatterer (human), we consider a
densely sampled sphere around it; (b) For each point si on the sphere the projected area and viewed curvatures
are computed; (c) The curvature values are binned into histograms Hi and together with the projected area Ai
give a shape signature SSi at si. (d) These shape signatures are used to compute geometric similarity between
different viewpoints. (e) Points are grouped together if their shape signatures are within error thresholds εA
and εH . The overall algorithm results in 1− 2 order of magnitude improvement in the precomputation stage.

wave, we compute the scattered field for the object on an offset surface of the object using a wave-based

method. The angular portion of this scattered field is expressed using the diffraction kernel in a compact

spherical harmonic basis. With the angular scattering behavior of an object computed for all the plane wave

directions and frequencies, we use a geometric sound propagation method to handle the radial portion thus

approximating the solution to the wave-equation.

Our diffraction kernel encapsulates the sound field interactions of the object and maps the incoming

sound field reaching the object to outgoing, diffracted field emanating from the object. In contrast to the

per-object transfer function (Mehra et al., 2013), the diffraction kernel formulation is defined in the far-field

of the object. This can significantly reduce the precomputation overhead and makes it easier to integrate with

interactive ray tracing. Mathematically, the incoming pressure field in the far-field can be expressed in the

plane-wave basis whereas the outgoing sound field in the far-field is expressed using spherical harmonic

basis, as shown in Equation 4.1.

Scene Classification Our approach is based on computing the diffraction kernel for each objects in the scene.

As a preprocess, we classify the scene in terms of the object type. The scene is first classified into static

and dynamic (moving) objects. Static objects typically include walls, buildings, and other typically large,

immovable objects in the scene. Dynamic objects can include cars, humans, chairs, and doors, all of which

can potentially undergo rigid motion in the environment. Our approach is designed to capture the scattering

behavior of dynamic objects, while the static environment is handled by other sound propagation techniques.
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4.3.3 Source Placement

Diffraction is a direction dependent phenomenon and in order to capture the variations in the diffracted

field, we need to capture the sound interaction behavior of an object from all possible directions. This

can be naı̈vely computed by constructing a densely sampled sphere around the object and evaluating the

diffracted field for each vertex on the sphere. However, such a method would incur a large precomputation

cost because the wave-based solvers typically used to compute the scattering are slow and the complexity

increases as a function of the geometric tessellation and maximum frequency. In order to reduce the pre-

computation overhead, we present a novel source placement algorithm that exploits the acoustic scattering

invariance of a dynamic object to reduce the number of sources we need to place on the sphere to capture its

scattering behavior from all incident angles. Our source placement algorithm is used in the first stage of our

precomputation pipeline and computes the representative source positions, as shown in Figure 4.1.

4.3.3.1 Visual Symmetry vs. Scattering Field Symmetry

The goal of our source placement tends to exploit the symmetry in the acoustic scattering field of each

object, and thereby compute a few representative source positions. One possibility is to exploit the visual

or shape symmetry of each object. There is extensive work on symmetry detection in computer vision and

geometry processing (Mitra et al., 2006), which are used to compute a representation of their Euclidean

symmetries. However, the criteria used in these methods are not sufficient for detecting the symmetry in the

acoustic scattering field of an object. For example, there are objects that exhibit little or no shape symmetry,

but still exhibit symmetry in their acoustic scattering field. As a result, our goal is to develop an approach that

generalizes the notion of shape-similarity and is not sensitive to the small variations in the viewed-geometry.

One of the metrics in our source placement algorithm is to use projected areas to overcome these issues.

4.3.3.2 Multi-stage Algorithm

Next, we describe various stages of our source placement algorithm including mesh simplification,

computing the projected area for each incident direction and identifying the shape and diffraction field from

each direction. We compare the view-dependent shape information to compute the geometric invariance

among various incident directions and clump them together.
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Projected Area: The diffraction field is a strong function of the shape and orientation of the object. In

particular, for convex objects it has been shown that diffraction is a function of the projected area of the

object (Chinnery et al., 1997; Vickers, 1996). Formally,

Psc(x) = KAproj(x)Pin, (4.3)

where Aproj(x) is the projected area at x, Pin is the incident field, Psc is the scattered field (or diffraction

field), and K is a constant. We exploit this dependence of the scattered field on the projected area and extend

it to arbitrary or non-convex objects by augmenting the projected area with curvature histograms (described

below) to uniquely identify the shape signature.

Shape Signature: Our source placement algorithm initially considers a densely-sampled list of possible

source positions S on a sphere. For a point si ∈ S, ∀i ∈ (1..|S|), we compute an orthographic projection

matrix P (xi) and compute the projection of the vertices of the object (v ∈ V ), whose normals Nv
j satisfy

the Nv
j · si > 0. Next, we construct a boundary Bi using the alpha or α−shape of v and compute the area

enclosed by the boundary Aproji . α− shape is the generalization of the notion of a convex-hull of a point set

M , with α→ 0 gives us M , while α→∞ giving us the convex-hull of M . At the end of this step, we have

computed the projected area of the object for each point on S.

In practice, the projected area alone cannot be used as a unique signature of the viewed shape and may

result in false positives, in terms of classifying rather different shapes as similar. Therefore, we augment

our metric by using the curvature of the object to define the shape signature of the object for each si. This

view-dependent shape signature encapsulates the intrinsic characteristics of the shape when viewed from

different source points (or incident angles). We use well-known techniques (Cohen-Steiner and Morvan,

2003) to compute the principal curvatures κ1 and κ2 for the scatterer, and compute them for each v. Instead

of using κ1 & κ2 separately, we consider them as κvj = |κ1vj |+ |κ2vj | and bin them in a histogram Hi that

uses N bins. The bin values range between the minimum and maximum values of |κ1| + |κ2|. Using the

projected area and curvature, we get a shape signature (SSi) for each si:

SSi =

Aproji

Hi

 (4.4)
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Figure 4.3: Similar Shape Signatures: We highlight different points that have similar shape signatures.
Each set of points with the same color on the sphere corresponds to a set that is computed as geometrically
invariant and will be represented using a single sound source. (a) The source placement automatically detects
symmetry in the model which is bilateral in this case; (b) shows another viewpoint and the since no symmetry
exists in that plane, the two hemispheres have different colors.

Rotational symmetry: After computing the shape signature, we iterate over the points in S. Starting with a

point si, we compare its shape signature SSi with every other point’s shape signature SSj by computing the

relative difference in the projected area Aproji and Aprojj ; and we also compute the difference in histogram

Hi and Hj using the Kullback-Lieber divergence:

DKL(Hi||Hj) =

N∑
k

Hi(k)log(
Hi(k)

Hj(k)
) (4.5)

This metric gives us a measure of the mutual information contained in two shapes. A DKL value of zero

indicates that the shapes are similar and would likely have similar scattering properties. On the other hand,

a value of one would indicate that the shapes are very dis-similar. Using appropriate thresholds for the

relative projected areas and DKL, we cluster the points that fall within the threshold bounds with respect to

si. The threshold values are used to strike a balance between the number of sources that are selected from S

and the error in computing the total scattering function of an object. Finally, we choose one representative

point in each cluster and use that point as the source position for which the scattering function is computed
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Figure 4.4: Reflection symmetry detection: Given a cluster of points with similar shape signatures (a) we
perform a pair-wise comparison of the boundaries and compute Hausdorff distance; (b) Boundaries B1 and
B2 that nearly overlap after being reflected result in a large drop of their Hausdorff distances, while B3 and
B4 do not exhibit reflection symmetry with each other or with B1 or B2’ (c) A relative change in the distance
indicates reflection symmetry between (B1 and B2).

using a wave-based solver. The scattering functions for other points in the cluster are extrapolated from this

representative point.

Reflection Symmetry: Many objects used in the real world exhibit reflective symmetry (e.g., a pillar).

Although our algorithm can recognize some sort of symmetry in the object, it cannot identify the nature of

that symmetry. The previous steps detect the invariance in geometry which includes rotational symmetry

along with insignificant changes in shape with the change in incident angle.

In order to explicitly identify the reflection symmetries in a cluster, we perform a pair-wise comparison

between the points in the cluster (Fig. 4.4). For each such pair of points, we compute the silhouette of

the object from these points and compute the Hausdorff distance between these boundaries. The Hausdorff

distance (dH ) between two non-empty sets (X,Y ) that are subsets of a metric space (M,d) is given by:

dH(X,Y ) = max
x∈X
{min
y∈Y
{d(X,Y )}}, (4.6)

where d(X,Y ) is some measure of distance in M (L2 metric in our case). We reflect these 2D boundaries

either along X or Y axis depending on the source positions and compare their Hausdorff distances. If the
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relative Hausdorff distance is below our threshold, we consider these boundaries as reflections of each other.

(Fig. 4.4(b,c)). In case an object exhibits both rotational and reflection symmetry at the same point, our

method automatically considers them to be rotationally symmetric.

4.3.4 Diffraction Kernel Computation

After the reflection symmetry test, we compute the setRP (S) = {{AProj1 , H1}, {AProj2 , H2}, . . . , {AProjn , Hn}},

where each element of RP is the set of points with a similar projected area (Aproji ) and curvatures (Hi).

In terms of diffraction kernel computation, we perform a single wave-based simulation for such a set, as

explained below. Overall, our algorithm performs O(n) wave simulations, where n = |RP | with n ≤ |S|, to

capture the diffracted field from all incident directions. In practice, n is orders of magnitude smaller than

|S| (Table 2). After these n simulations, we extrapolate the field within a particular set by rotating and/or

reflecting the computed field, thereby giving us the complete diffracted field for all si ∈ S.

For an incoming plane wave coming from direction x, the outgoing sound field d(y, ω) is computed

using state-of-the-art wave-based methods (e.g. BEM) on a spherical offset surface in far-field. This outgoing

field d(y, ω) can be expressed in the spherical harmonic basis using least-squares fitting:

d(y, ω) ≈ d̃(y, ω) =

lmax∑
l=0

l∑
m=−l

Y m
l (y)cml (ω) (4.7)

where d(y, ω) is the outgoing sound field computed using the wave-based solver, lmax is the spherical

harmonic order, and cml (ω) are the basis function coefficients as a function of frequency. This process is

repeated for all the incoming plane wave directions for all the frequencies. We use a rectangular subdivision

in spherical coordinates to compute the possible incoming plane wave directions. This enables efficient

bi-linear interpolation of the outgoing field for any arbitrary incoming direction during the runtime stage of

our pipeline.

4.4 Interactive Ray Tracing with Diffraction Kernels

In this section, we present our diffraction kernel-based technique for object-based sound propagation in

dynamic scenes. We utilize a precomputed diffraction kernel to model sound interactions for complex objects

and couple it with a Monte Carlo path tracing framework to compute sound propagation for the entire scene.
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Figure 4.5: We highlight how the diffraction kernel D(x, y, ω) can be integrated into Monte Carlo path
tracing using two-way coupling. When an incoming ray with direction x strikes a diffracting object, the ray is
scattered in a randomly chosen direction y with probability density function P (y). The diffraction kernel
in the direction y is evaluated at the four corners of the quad intersected by x, and the resulting pressures
D(x1, y, ω), D(x2, y, ω), D(x3, y, ω), and D(x4, y, ω) are bilinearly interpolated according to x to yield the
pressure transfer function D(x, y, ω). The energy carried by the ray is then multiplied by D(x,y,ω)2

P (y) to get the
output ray energy.

For the simulation of diffuse reflections, many variants of Monte Carlo path tracing have been proposed

that simulate the propagation of sound energy by rays in frequency bands (Krokstad et al., 1968b). These

include backward ray tracing for multisource scenes (Schissler and Manocha, 2016), and bidirectional path

tracing (Cao et al., 2016), which can also be accelerated by exploiting temporal coherence. Our approach

extends these methods by developing new interactive techniques for two coupling between the rays and

diffraction kernels.

The interactive ray tracing uses a bounding volume hierarchy to accelerate ray intersections. These

hierarchies are updated using refitting algorithms, as the dynamic objects undergo rigid motion.

After the diffraction kernel D of a particular object is computed according to Section 4, it can be used

within any Monte Carlo path tracing sound propagation algorithm to efficiently compute diffracted sound for

the object. This kernel information is stored in the bounding volume hierarchy nodes associated with those

dynamic objects. Our formulation treats the diffraction kernel using a mathematical framework
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similar to surface scattering modeled using bidirectional scattering distribution functions (BSDF), which

is widely used in visual rendering. BSDFs describe the distribution of sound energy as a function of frequency

and the input and output direction of sound transport (Dindart et al., 1999). We use the diffraction kernel in

a similar way to model the wave scattering induced by objects in all directions. Our modified path tracing

algorithm uses the diffraction kernel information to compute the new paths using D for each ray, after it hits

a dynamic object.

4.4.1 Coupling between ray and diffraction kernels

Our propagation algorithm exploits a two-way coupling between D that are computed using BEM (i.e.,

wave-based method) and path tracing (i.e., geometric acoustics). For the case of a single ray with input sound

intensity Ii and direction x, the outgoing sound intensity Io is given by a spherical integral of the diffraction

kernel over the outgoing direction y:

Io(x, ω) =

∫
S
IiD(x, y, ω)2dS. (4.8)

Monte Carlo techniques are a simple way to numerically evaluate integrals of this form as a weighted sum

of many random samples (Krokstad et al., 1968b). As the number of samples approaches∞, the expected

value of the integral converges to the exact value. The outgoing scattered intensity can be approximated by a

Monte Carlo estimator:

Io(x, ω) ≈ 1

N

N∑
j=1

Ii
D(x, yj , ω)2

P (yj)
(4.9)

where N is the number of samples, yj are the samples, and P (yj) is the probability of generating sample

yj . If a uniform sampling strategy is used, P (yj) = 1
4π . This formulation can be easily integrated with

any Monte Carlo ray tracer to compute object-based scattering. We utilize this formulation to model the

diffraction effects and approximate the sound field in the regions that are occluded from each source.

In traditional forward path tracing, N random rays are emitted from the surface of a sound source in the

scene with energy 1
N . These rays are then propagated through the environment until they strike a surface,

where the rays are scattered and attenuated according to the sound material BSDF. The rays may undergo

many interactions with the geometry before either exiting the scene, reaching a maximum interaction order or

propagation time (Schissler and Manocha, 2016), or being eliminated via Russian Roulette (Kapralos et al.,
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2005). If a ray hits the listener, the ray’s intensity at various frequency bands is accumulated to the impulse

response at the appropriate delay time. At each interaction, a shadow ray can also be traced to the listener’s

position to find additional propagation paths. This is known as next-event estimation or diffuse rain (Schröder,

2011). This procedure can also be conducted in reverse by emitting rays from the listener (Schissler and

Manocha, 2016), or by emitting rays from both source and listener (Cao et al., 2016). Figure 4.5 demonstrates

how the diffraction kernel can be integrated into this path tracing framework. When a ray hits an object in

the scene that has an associated precomputed diffraction kernel, we scatter the ray using the precomputed

scattering function rather than the usual BSDF. This is performed by randomly sampling the outgoing ray

direction y according to probability density function P (y). The diffraction kernel is evaluated at y for the four

precomputed scattering functions that are closest to the incident ray direction x, then the evaluated pressure is

bilinearly interpolated. The energy carried by the outgoing ray is then given by:

Io(x, ω) ≈ Ii
D(x, y, ω)2

P (y)
. (4.10)

When many rays hit the scattering object, the integral of the outgoing energy over all rays converges to the

exact solution.

4.5 Implementation & Results

In this section, we discuss our implementation and highlight the results on complex benchmarks.

4.5.1 Performance and Comparisons

The preprocessing algorithm has been implemented using MATLAB. We used available MATLAB code

for computing the curvatures of our objects. FastBEM is used as the boundary element method solver. The

runtime interactive ray-tracer is based on the geometric sound propagation algorithm described in (Schissler

et al., 2014b) and written in C++. We do not use the original UTD-based method proposed in (Schissler

et al., 2014b), and rather use the coupled algorithm described in Section 4.2.1 for path tracing with diffraction

kernels.

Precomputation: Table 4.2 gives the geometric details of the objects used in our scenes and the performance

of our source placement algorithm. Since BEM computation can be expensive and increases as cubic function

of the frequency, our novel source placement algorithm makes it possible to handle complex, smooth objects
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with thousands of triangles. We observe 8− 137X speedups due to our source placement algorithm. That

enables us to perform the diffraction kernel precomputation on a desktop PC, as opposed to using a large

compute cluster. Most prior wave-based methods (Mehra et al., 2013; Yeh et al., 2013; Raghuvanshi et al.,

2010) have significantly higher memory and computational requirements.

Runtime System: Our interactive sound propagation algorithm has been integrated with the Unreal Engine

and used to evaluate the performance of complex, dynamic benchmarks shown in Fig. 1. All the timings were

generated on a multi-core desktop PC CPU. The overall system with integrated visual and sound rendering

runs at 60Hz or more, as shown in the video. The additional overhead of handling diffraction kernels is very

small and the overall performance is comparable to UTD-based interactive propagation algorithms (Tsingos

et al., 2001c; Schissler et al., 2014b).

4.5.2 Benchmarks

We have evaluated our approach on various scenarios to highlight the performance of our diffraction

kernels in challenging environments (Table 4.3). To accentuate the effect of diffraction kernels, we turn off

reflections in each of our benchmarks.

Concert: The concert scene shows the effectiveness of our diffraction kernels in handling complex

diffracting objects such as humans in an open environment. Each human model is represented using 11K

triangles and prior interactive UTD-based methods can’t handle such scenes for plausible diffraction effects.

The listener moves among a crowd of people attending a concert and ducks to pick up a dropped phone. The

complex interactions of the sound source and human bodies are efficiently and plausibly calculated using

diffraction kernels.

City Block: This scene shows the listener moving through a modern metropolis with various high-rise

buildings. A helicopter flying over the city goes behind one of the high-rises (cylindrical) causing the sound

to diffract around highly-tessellated objects. This scene demonstrates the ability of our method to handle

highly-tessellated, curved objects and generate a smooth diffraction field around them. This results in smooth

audio rendering.

Parking Garage: This benchmark consists of a typical parking garage with multiple pillars and cars. We

use the pillars in the garage and a moving ambulance as the diffracting objects. The listener moves through

the garage experiencing diffraction effects as the pillars obstruct the line-of-sight between the listener and

various sources. Then an ambulance comes into the garage to park and acts as a dynamic diffraction object.
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Object #Vert. Size(m) freq(Hz) |RP| Speedup

Ellipsoid 10242 2 1000 50 38X
Ambulance 21746 3.9 1000 150 13X

Human 11250 1.8 2000 254 8X
Column 29954 4.7 1000 118 16X

Tower 44168 15 500 14 137X
Ball 2562 0.5 2000 1 1922X

Monitor 3650 0.46 2000 99 19X
Robot 23971 0.44 1000 229 8X
Pillar 25746 3 500 221 8X

Planter 11114 2.78 500 323 6X

Table 4.2: Diffraction Kernel Computations: The table highlights the geometric complexity, size of objects
(meter), maximum frequency, running times for computing the diffraction kernel of different objects. The
value of |S| is 1922 in all the benchmarks. The speedups obtained using our source placement algorithm are
highlighted in the last column.

Oculus® First Contact: This benchmark is a modified version of the famous First Contact demonstration

that is being shipped by Oculus ®, along with their HMD. In this scenario, a playful robot acts as the object

and comes in between the sound source and the listener and creates diffraction effects dynamically due to no

line-of-sight. The 3D printer in the scene generates an interactive object that also results in diffraction effects

along with a static monitor. Our approach can model the diffraction effects due to these dynamic objects

and generate smooth audio rendering effects. We highlight these benefits in the video, by only playing the

diffracted sound with no reflections.

Multi-player Game: We showcase the efficiency of our approach in this multi-player networked game.

In this scenario, two players play against each other in a networked environment and are trying to shoot at

each other. As the players move around, the sound gets diffracted around different objects in the scene. As a

result, simulating object-based diffraction is important to simulate a continuous sound field. We highlight

these benefits in the video, by only playing the diffracted sound with no reflections.

4.6 Analysis

In this section, we analyze the various steps of our pipeline and highlight the approximations and possible

sources of error in the computations. We also compare the accuracy of our precomputation algorithm with a

wave-based solver (BEM) to evaluate the numeric accuracy of the computed sound pressure field. There are
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Scene #Vert. #D PreC(Hr) Runtime(ms)

Concert 10242 11 4 53
City-Block 21746 2 1 101

Parking-Garage 11250 4 7 115
First-Contact 29954 1 2 43

Game 44168 2 6 84

Table 4.3: Runtime Performance Analysis: We highlight the performance of our interactive sound propa-
gation algorithm on a desktop multi-core PC. We highlight the number of diffraction objects (D-objects),
precomputation time (PreC) in hours and the average frame time (ms) on a multi-core desktop CPU. Our
algorithm can perform interactive sound propagation in dynamic scenes with specular and diffuse reflections
and diffraction effects.

three main sources of error in our pipeline: Error in source placement, error introduced by the band-limited

diffraction kernel, and error incurred as a result of Monte-Carlo ray-tracing at runtime.

4.6.1 Source Placement

The source placement algorithm introduces errors due to simplification and metrics used to detect

rotational and reflection symmetry. This error is also governed by the underlying mesh representation and the

initial choice of source positions on the sphere. This could result in changes or errors in the final pressure field

that is computed using BEM using those source cluster positions. This error is more at the higher frequencies,

because the diffracted component of the sound field is a lot more ”focused”, as compared to that at the lower

frequencies, and is sensitive to spatial variation. In our benchmarks, we limit the maximum frequency to

2kHz.

Fig. 4.6 shows the error introduced by our source placement algorithm expressed as mean absolute error

(MAE) in dB. MAE is computed as:

MAE =

∑n
i=1 |P (i)computed − P (i)ref |

n
(4.11)

where Pcomputed is the interpolated field computed by our algorithm at an incoming source direction and

Pref is the reference pressure at the source direction. n is the number of the points on which the scattered

pressure is computed.

As can be seen in Fig. 4.6, the error introduced for complex objects such as human and robot is below 2

dB even at frequencies as high as 1 kHz.
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Figure 4.6: The plot shows the heat map error introduced by our source placement algorithm for three different
objects. The error is computed on a sphere representing all the incoming directions for the diffraction (S).
Given the source positions (RP ) computed by our source placement algorithm, we run BEM at these points
and interpolate the field for the rest of the points in S using reflection and/or rotation. The plots here show
the MAE at each point on S by unwrapping it on to a 2D plane. The horizontal axis represents the latitude
while the vertical represents the longitude. As can been seen, even for complex objects at high frequencies,
the error introduced by our source placement algorithm is < 2 dB.

4.6.2 Diffraction Kernel

Diffraction Kernels represent the BEM pressure computed on a sphere based on a spherical harmonic

basis (Eq. 4.7). Theoretically, spherical harmonics can fully represent a spherical function with Lmax →∞,

but in practice they have to be band-limited for practical reasons. This introduces an error given be εd =

d(y, ω)− d̃(y, ω) in our diffraction kernels (Fig. 4.7). We highlight how this error increases in the diffraction

kernel with increasing spherical harmonic order. In our current implementation, we use 9th order spherical

harmonics and they generate plausible sound effects in our benchmarks.

4.6.3 Monte-Carlo Sampling

We show the plot (Fig. 4.8) of the pressure field generated by a densely sampling of the diffraction kernel

and compare to the pressure field generated by BEM for the human models. This comparison highlights the

numerical accuracy of the sound pressure that is approximated using the diffraction kernels.

We use dense ray sampling to generate this plot for the diffraction field of an object. In this case, each

point on the grid is used to trace a ray backwards from that position towards the object. This ray is filtered

by the diffraction kernel, depending on the angle of incidence y and used to compute the pressure at that
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Figure 4.7: The plot shows the variation of the relative error when trying to represent a diffracted field of a
human in a spherical harmonic basis. As can be seen, the error increases sharply with frequency and low
SH-order but stays close to zero with high order spherical harmonic. High-order spherical harmonics are
more expensive to evaluate and tend to be numerically unstable

position. This process is akin to Monte-Carlo sampling in the limit with a very high sampling density. As

mentioned in Section 4.2, Monte-Carlo path tracing methods converge to the value of the sampled function as

the number of samples approach infinity. As shown in the figure, the diffraction kernels converge to the BEM

computed pressure field for different frequencies. This indicates the accuracy of our diffraction kernel based

method is governed by the underlying sampling criterion used in path tracing.

4.7 Perceptual Evaluation

We performed a user study to evaluate the perceptual efficacy of diffraction-kernel-based sound prop-

agation algorithm. Our study is based on the psycho-acoustic evaluation of numeric and geometric sound

propagation algorithms (Rungta et al., 2016, 2017). In particular, that study compared UTD-based interactive

sound propagation algorithm with a wave-based sound propagation algorithm by evaluating the diffracted
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Figure 4.8: We compare the sound pressure field for an object (human) computed using our modified ray
tracing algorithm (Section 4) vs. BEM (wave-based solver). We perform a dense ray sampling using the
diffraction kernel to compute the pressure field in the left figures. The red arrows indicate the incident
direction of the plane-wave. We use 100 × 100 grid to sample at each point and filter them through the
diffraction kernel to compute the angular variation in the diffracted sound field. The pressure values are in
Pascals and we demonstrate the results for two different frequencies, where diffraction effects are prominent.
These benchmarks show a close match between the sound fields computed using our method vs. BEM.
In practice, our approach can perform these computations at interactive rates, where BEM solver can take
minutes.
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sound field around an obstacle by placing the subjects along a semi-circle. The study (Rungta et al., 2016)

demonstrated that auditory perception improves due to wave-based sound propagation and the computed

diffracted field decays nearly linearly with an increasing diffraction angle. On the other hand, the diffracted

field computed using UTD-based diffraction exhibited an erratic behavior. Given the known benefits of

wave-based sound propagation algorithms, we perform a 2-way comparison between the diffracted sound

fields computed using diffraction kernels and BEM based sound propagation.

4.7.1 Participants

Fourteen subjects participated in this study with informed consent. The ages ranged from 23 to 28 (Mean

= 25.7 with SD = 3.22). The participants were recruited at a university campus. All participants reported

normal hearing.

4.7.2 Apparatus

The setup consisted of a Dell T7600 workstation with the sound delivered through a pair of Beyerdynamic

DT990 PRO headphones. The subjects wore a blindfold.

4.7.3 Stimuli

As in (Rungta et al., 2016), the source was a ringing bell that was low-pass filtered with a cut-off

frequency of 300 Hz, so that the diffraction effects are prominent. The sound source was placed 2m from the

origin. The subjects were placed at 5 equispaced positions along an arc with a radius 3.5m of from the origin

as shown in Fig. 4.9. The resulting sound was prerecorded at each of these 5 positions and two diffraction

methods (diffraction kernel and BEM) and stored. On each trial the subject was randomly placed at one these

5 positions with the diffraction method randomized, too.

4.7.4 Design and Procedure

This was a within-subject study with the subjects wearing a blindfold. The audio was delivered through

headphones and rendered monaurally. Before starting the experiments, the source sound clip was played

to familiarize the subjects with it. A 1.2m × 1m × 4m column served as the diffraction object for the

experiment.
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Figure 4.9: The figure shows the setup used for the user study that compared the psychoacoustic characteristic
of our diffraction kernel based algorithm with BEM-based wave propagation algorithm. We considered 5
equi-spaced points in the shadow region (black) of the obstacle(green). The obstacle is a column and only the
diffracted sounds are audible in the shadow region. We evaluated the auditory perception using diffraction
kernel and BEM-based sound propagation.

The scene was open to make sure no reflections interfere with the experiments. The subjects were placed

in the ‘shadow-zone’ of the diffracting object (Fig. 4.9) which is a region where the source is not in the

line-of-sight and only the diffracted sound can reach the listener.

A total of 14 participants took part in each group. For each of the 5 positions, the subjects were asked

to rate the loudness of the sound heard. The loudness was rated on an arbitrary, non-physical scale ranging

from 1− 20. The scale was explained to the subjects before the start of the experiment: the extrema of our

scale was relative to a verbal standard with 1 corresponding to a very quiet sound such as that of a falling

leaf, while 20 was a loud sound akin to someone shouting in one’s ears. It should be noted that loudness

perception was not the focus of our experiment; rather, the smoothness of change in perceived loudness

across spatial variations as measure of the quality of each diffraction method. The loudness of the sounds

for the two diffraction methods was level-matched by matching the root mean square (rms) of the sounds

generated by the two methods at a reference position in the line-of-sight of the source.
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A block consisted of 10 (5 positions × 2 diffraction methods) trials with three blocks per subject giving a

total of 30 (5 positions × 2 diffraction methods × 3 blocks) readings. The subjects were placed randomly at

one of the 5 positions with the sound played through two diffraction methods which were chosen randomly,

as well. The subjects were allowed to take any many breaks as needed. Subjects took an average of 10− 15

minutes for the entire experiment.

4.7.5 Results

Figure 4.10: Mean subject scores for different positions for the two methods of diffraction.

A two-way, repeated measures ANOVA (factors: diffraction method and listener positions) was performed

on the subject’s ratings which were averaged over the three blocks, normalized by the subject’s mean score

for all listener positions and diffraction methods, and scaled by the grand-mean. The test failed to show

significance for position and diffraction method. Fig. 4.10 shows the mean values of the subject ratings

for the two methods. The results show that our diffraction kernel algorithm performs comparably to the

BEM-based wave propagation algorithm.

4.8 Conclusions, Limitations and Future Work

We present a novel approach to model diffraction effects for ray tracing based plausible sound generation

algorithms. We introduce the notion of diffraction kernels that can capture many wave effects like diffraction,

reflections, scattering, intra-object interference and other interactions using wave-based precomputation.
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These kernels are computed independently for each dynamic object in the scene in a few minutes based on a

novel source placement algorithm. Moreover, we can easily integrate these kernels with ray tracing based

interactive geometric propagation algorithms and have small runtime overhead. We demonstrate the benefits

over prior sound propagation algorithms on complex dynamic scenes. We also performed a user study to

evaluate the perceived smoothness of the diffracted field and observed that the auditory perception using our

approach is comparable to that of a wave-based sound propagation method. To the best of our knowledge,

this is the first practical method to generate diffraction effects from a smooth object in dynamic scenes for

VR applications.

Our approach has some limitations. While our hybrid approach offers many benefits over geometric

acoustic methods, it is less accurate than wave-based propagation methods. Our approach is mainly designed

for scenes with well-separated rigid objects, whose scattering behavior does not change at runtime. The

diffraction kernels only encapsulate the sound interaction behavior of individual objects in the free field and

do not account for phase or inter-object interactions. As a result, they may not work well in certain scenarios.

Our formulation of diffraction kernels only take into account the magnitude and the direction, and not the

phase.

There are many avenues for future work. It would be useful to model other interactions such as first

order surface scattering based on Kirchoff approximation (Tsingos et al., 2007) or wave-based geometric

acoustics (Lam, 2005) to model other wave interactions. It would be useful to design approximate schemes

that can also model phase, as that is needed for certain applications, such as seat-dip effects in concert

halls. The main goal is to estimate the propagation delays for all possible paths. Finally, we would like

to perceptually evaluate our approach in other applications such as social VR and telepresence, where it is

important to simulate diffraction effects and generate smooth sound fields.
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CHAPTER 5: Perceptual Characterization of Early and Late Reflections for Auditory Displays

5.1 Introduction

Sound rendering uses auditory displays to communicate information to a user. Harnessing a user’s sense

of hearing enhances the user’s experience and provides a natural and intuitive human-computer interface.

Studies have shown a positive correlation between the accuracy or fidelity of sound effects and the sense

of presence or immersion in virtual reality (Larsson et al., 2002a; Dubois et al., 2009; Rungta et al., 2016).

Sound is also an important cue for perceiving distance (Zahorik et al., 2005) and orientating oneself in an

environment (Wilson et al., 2007).

The sound emitted from a source and reaching the listener can be broken down into three components,

described in more detail below: direct sound, early reflections, and late reflections or reverberation (Fig.

5.1). All three components of the sound field have perceptual relevance and have been extensively studied

in psychoacoustics. Direct sound gives us an estimate of the loudness and the distance to the sound

source (Zahorik and Wightman, 2001). Early reflections (ERs) arrive later than the direct sound, often in a

range from 5 to 80 milliseconds. Late reflections or reverberation (LRs) are generated when the sound signal

undergoes a large number of reflections and then decays as it is absorbed by the objects in the scene.

Because of the importance of different components of sound fields, there has been considerable work on

simulating these effects and incorporating them into auditory displays. Some of the commonly used methods

approximate the sound field using artificial reverberation filters, which use reverberation time (RT60) to tune

parametric digital filters (Valimaki et al., 2012). These filters tend to have low computational requirements

and are widely

used for interactive auditory displays (Kleiner et al., 1993). However, finding the right parameters for

reverberation filters can be time-consuming and current methods do not provide sufficient fidelity. Geometric

sound propagation methods work under the assumption that sound travels in straight lines and can be modeled

using ray tracing (Krokstad et al., 1968a).
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This allows resulting algorithms to model sound’s interaction with the environment as it undergoes

reflection and scattering. Many techniques have been proposed to accelerate ray tracing, and current methods

can generate early reflections (ERs) and late reflections (LRs) at interactive rates in dynamic scenes using

high-order ray tracing (e.g., more than 100 orders of reflections) (Schissler and Manocha, 2017). In practice,

high-order ray tracing can be expensive and current interactive systems use multiple CPU cores on desktop

workstations. The most accurate methods for sound rendering are based on wave-based acoustics, which

directly solve the acoustic wave equation using numerical methods. However, their precomputation and

storage overheads are very high and current methods are only practical for lower frequencies (Mehra et al.,

2012, 2013; Raghuvanshi et al., 2010).

Many applications, including games, virtual environments, and multi-modal interfaces require an inter-

active sound rendering capability, i.e., 20fps or more. Furthermore, these systems are increasingly used on

game consoles or mobile platforms where computational resources are limited. As a result, we need faster

techniques to generate ERs and LRs in dynamic scenes for high-fidelity sound rendering. In particular, LR

computation can be a major bottleneck.

Main Results: We present a novel, perceptually derived metric called P − Reverb that relates the

ERs to the LRs in the scene. Our approach is based on the relationship between the mean-free path (µ)

and reverberation (Eq. 5.3), and we use early reflections to numerically estimate the mean-free path of the

environment. We conduct two extensive user evaluations that establish the just-noticeable difference (JND)

of sound rendered using early reflections and late reflections in terms of the mean-free path. We derive our

perceptually-based P −Reverb metric by expressing the JNDs of early and late reflections in terms of the

mean-free path. Moreover, our metric is used to efficiently estimate the late reverberation parameter (RT60).

We have evaluated the accuracy of our perceptual metrics in terms of computing the mean-free paths and

reverberation time and comparing their performance with prior algorithms based on analytic or high-order

ray tracing formulations. The mean-free path is within 3% and reverberation time is within 4.6%, which are

within the JND values specified by ISO 3382-1 (ISO, 2009).

Overall, we observe significant benefits using our P −Reverb metric for fast evaluation of mean-free

path and reverberation parameters for sound rendering and auditory displays. We have used for sound

propagation and rendering in complex indoor scenes.
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Figure 5.1: We highlight the different components of the sound field. The sound directly reaching the listener
is called the direct sound, the reflections that reach in the first 80 ms are called early reflections (ERs), while
the reflections following the early reflections that show a decaying exponential trend are called late reflections
or reverberation (LRs). Our P − Reverb metric presents a new perceptual relationship between ERs and
LRs and we use it for fast sound rendering.

5.2 Related Work

In this section, we give an overview of prior work in sound propagation, psychoacoustic characteristics,

and related areas.

5.2.1 Reverberation

Reverberation forms the late sound field and is generated by successive reflections as they diminish in in-

tensity. Reverberation is regarded as a critical component of the sound field. Many acoustic parameters such as

the reverberation time (RT60) and clarity index (C50 and C80) are used to characterize reverberation (Kuttruff,

2016).

5.2.1.1 Reverberation Time (RT60):

RT60 is defined as the time for the sound field to decay by 60dB. A well-known expression used to

compute the reverberation time is given by Sabine’s formula, which gives the relationship between the RT60

of a room in terms of its volume, surface area, and the total absorption coefficients of the materials used:

RT60 ≈ 0.1611sm−1
V

Sa
, (5.1)
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where V is the total volume of the room in m3, S is total surface area in m2, a is the average absorption

coefficient of the room surfaces, and Sa is the total absorption in sabins. In this paper, we use RT60 as the

main reverberation parameter and use our P −Reverb metric for fast computation in complex scenes.

5.2.1.2 Mean-Free Path

The mean-free path (MFP) of a point in the environment is defined as the average distance a sound ray

travels in between collisions with the environment and is directly related to the RT60 (Kuttruff, 2016):

RT60 = k
µ

log(1− α)
, (5.2)

where k is the constant of proportionality, µ is the mean-free path, and α is the average surface absorption

coefficient. A closed form expression (Bate and Pillow, 1947) for computing the mean-free path is given by:

µ =
4V

S
, (5.3)

where V is the volume of the environment and S is the surface area. The mean-free path can be computed to

a reasonable degree of accuracy by only considering the specular reflection paths in the scene (Vorländer,

2000). We use our P −Reverb metric for fast computation of µ using only ER in complex scenes.

5.2.2 Sound Propagation and Acoustic Modeling

Artificial reverberators provide a simple mechanism to add reverberation to “dry” audio, which has led

to their widespread adoption in the music industry, virtual acoustics, computer games, and user interfaces.

One widely used artificial reverberator was introduced by Schroeder (Schroeder and Logan, 1961) and it

uses digital nested all-pass filters in combination with a parallel bank of comb filters to produce a series of

decaying echoes. These filters require parameters such as reverberation time (RT60) to tune the all-pass and

comb filters. Geometric methods work on the underlying assumption of the rectilinear propagation of sound

and use ray tracing to model the acoustics of the environment (Krokstad et al., 1968a). Other geometric

methods include beam tracing (Funkhouser et al., 1998b) and frustum tracing (Chandak et al., 2008). In

practice, ray tracing remains the most popular because of its relative simplicity and generality and because

it can be accelerated on current multi-core processors. Over the years, research in ray tracing-based sound
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propagation has led to efficient methods to compute specular and diffuse reflections (Schissler et al., 2014a)

for a large number of sound sources (Schissler and Manocha, 2017).

5.2.3 Early & Late Reflections: Psychoacoustics

Early reflections (ERs) have been shown to have a positive correlation with the perception of auditory

spaciousness and are very important in concert halls. (Barron, 1971; Blauert and Lindemann, 1986) showed

that adding early reflections generated the effect of “spatial impression” in subjects. Early reflections are

also known to improve speech clarity in rooms. (Bradley et al., 2003) showed that adding early reflections

increased the signal-to-noise ratio and speech intelligibility scores for both impaired and non-impaired

listeners. (Hartmann, 1983) showed that early reflections that come from the same direction as the direct

sound reinforce localization, while those coming from the lateral directions tend to de-localize the sources.

Late reflections or reverberation (LRs) provide many perceptual cues. Source localization ability

deteriorates in reverberant conditions, with localization accuracy decreasing in a reflecting room compared

to the same absorbing room (Hartmann, 1983). Reverberation has a negative impact on speech clarity

and (Knudsen, 1932) showed the reduction in the number of sounds heard correctly in the presence of

reverberation.

Although reverberation decreases localization accuracy and speech intelligibility, it is known to have

positive effects with respect to the perceived distance to a sound source in the absence of vision (Zahorik

et al., 2005).

While there is considerable work on separately characterizing the perceptual effects of ERs or LRs, we

are not aware of any work that establishes any relationship between ERs and LRs. P −Reverb is a metric

that establishes the relationship between the respective JNDs and uses them for interactive sound rendering.

5.2.4 Estimating Reverberation Parameters

Given the importance of reverberation to the overall sound field, multiple methods have been established

to measure the reverberation parameters over the years. (RT60), in particular, is considered to be the most

important parameter in estimating reverberation and has been referred as the ‘The mother of all room acoustic

parameters’ (Skålevik, 2010). The most commonly used method to estimate reverberation time was given

by Schroeder, and uses a backward time integration approach. (Ratnam et al., 2003) presents a method for

blind estimation of RT60 that does not require previous knowledge of sound sources or room geometry by
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modeling reverberation as an exponentially damped Gaussian white noise process. (Löllmann and Vary,

2008) describes a method to estimate reverberation time using maximum likelihood estimator from noisy

observations. (Vorländer and Bietz, 1994) presents a comparison of different methods for estimating RT60.

5.3 Perceptual Evaluations and P-Reverb

In this section, we describe two user evaluations that establish the just-noticeable difference (JND) for

early and late reflections in terms of the mean-free path. Further, we show the relationship between the two

JND values, thereby establishing our P −Reverb metric.

5.3.1 Experiment I - Just-noticeable difference of ERs

In this experiment, we seek to establish the just-noticeable difference (JNDer) of sound rendered using

only direct and early reflections. In Experiment II, we establish the relationship between JNDer and sound

rendered using the full simulation (direct + early + late reverberation) JNDlr.

Participants: 106 participants took part in this web-based, online study. The subjects were recruited using a

crowd-sourcing service. All subjects were either native English speakers or had professional proficiency in

the language.

Apparatus: The online survey was set up in Qualtrics. The impulse responses were generated using an

in-house, realtime, geometric sound propagation engine written in C++, while the convolutions to generate

the final sounds were computed using MATLAB.

Stimuli: The stimuli were sound clips derived from 7 cube-shaped rooms with increasing edge lengths

such that their MFPs (Eq. 5.3) varied from 2 − 2.2m in increments of 0.033m. The range of lengths was

chosen with the experimental goal in mind, namely, to extract a psychophysical function showing a gradient

in perceived sound similarity relative to edge-length difference. The walls of the rooms had reflectivity

similar to that of an everyday room. The source was a sound of clapping, which was chosen because it

represents a broadband signal. The clips were filtered in 4 logarithmically spaced frequency bands (0−176Hz,

176− 775Hz, 775− 3408Hz, and 3408− 22050Hz) to evaluate the effects of frequency on JNDer. Each of

these 4 filtered clapping sounds was convolved with the early impulse responses of the 7 rooms. The final

sound clip was around 4 seconds long and contained 3 distinct parts: 1.5 seconds of the clapping sound in

Room 1 (µ = 2m), 1 second of silence, and another 1.5 seconds of clapping in a second room drawn from
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1− 7 (µ = [2to2.2]m). All sounds were recorded assuming that the listener and the source were located at

the origin (0, 0, 0). Given this symmetry, the sounds were rendered in mono with both speakers playing the

same sound.

Design & Procedure: To estimate the JND, our experiment used the method of constant stimuli (Gescheider,

2013) with a within-subject design. A stimulus comprised a sound clip containing Room 1 and one of the 7

possible comparison rooms (including Room 1). For each clip the subjects heard, they were asked to identify

if the first clapping sound seemed to be different from the second clapping sound by selecting yes or no. Note

this is a similarity judgment, not a discrimination. A block of judgments consisted of 28 clips (4 frequencies

x 7 comparison rooms paired with Room 1). A block was repeated 5 times, giving a total of 140 clips (4

frequencies x 7 possible rooms paired with Room 1 x 5 blocks). The ordering of the clips was randomized

within a block. Each subject judged all 140 stimuli. Before starting the experiments, subjects listened to a

sample clip for familiarization. The subjects were required to have a pair of ear-buds/headphones to take part

in the study, which took an average of 25 minutes to complete.

Results & Analysis: Fig. 5.2 shows the proportion of responses in which rooms were judged as sounding

different, over all participants, as a function of the comparison level of µ. The first data point corresponds to

rooms that were objectively identical, providing a baseline. The data essentially increases linearly with a

larger µ, showing greater discrimination up to Room 6 (µ = 2.17), after which (µ = 2.2) the discriminatory

ability seems to taper off. The standard errors are low and consistent, indicating the robustness of the results.

An interesting observation is the near-invariance of subjects’ ability to discriminate across the frequency

bands. This was verified by an ANOVA analysis with factors of edge length (or µ) and frequency. The analysis

showed significant main effects for both factors of edge length F (6, 180) = 61.78, p < 0.05, η2p = 0.673 and

frequency F (3, 90) = 2.95, p = 0.037, η2p = 0.09. The interaction between edge length and frequency was

also significant F (18, 540) = 1.66, p = 0.04, η2p = 0.052, reflecting that the performance decrement at the

largest edge length is slightly greater for frequency band 4. However, the η2p values are very low for effects

involving frequency. Thus, while the effects of frequency show statistical significance, they are small in effect

size and do not reflect consistent variation in frequency across edge length (or µ). Therefore, for the purposes

of constructing an overall rule, using data averaged over the frequencies is a valid simplification, particularly

if the largest value of edge length is excluded. Fig. 5.3 shows the results averaged over the frequency for
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Rooms 1− 6. As shown in the figure, the data fits a linear function well, with R2 = 0.98. Given our linear fit:

δ = 3.89µ− 7.5, (5.4)

we can easily estimate the JNDer by considering the MFP values (µJND) where the subjects successfully

discriminated the sounds 50% of the time given by µJND = µ50%− µroom1 = 2.06− 2 = 0.06m. This tells

us that a change in µ greater than 0.06m would result in perceptually differentiable sounds when using early

impulse responses, but it doesn’t necessarily indicate if the relationship holds if the sounds were rendered

using the full impulse response (LR). This led us to conduct the next experiment to establish the relationship

between the JND of early reflections (JNDer) and the JND of full impulse response or late reverberation

(JNDlr).

Figure 5.2: The psychometric function for sound rendered using the early reflections for the 4 frequency
bands. The Y-axis shows the proportion of responses indicating the sounds were different. We see a clear,
linear trend between increasing µ and the probability of responding different, until the last room µ = 2.2,
where the responses seem to flatten out.
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Figure 5.3: The average JND over the frequency bands. The Y-axis shows the proportion of responses
indicating that a difference was judged. The psychophysical function is essentially linear, showing that the
probability of judging the sounds as different increases linearly with the increasing mean-free paths of the
rooms.

5.3.2 Experiment II - Relationship between JNDer & JNDlr

Once we have established the perceptibility threshold or JNDer of ERs, we need to relate this to the

JNDlr of LRs. Our goal is to use these relationships to cluster points p ∈ P with similar reverberation

characteristics. We conducted another user study based on the results of the first study, described above.

Participants 31 participants took part in this online, web-based study. The subjects were recruited using the

same crowd-sourcing service as in the previous experiment. All subjects were either native English speakers

or had professional proficiency in the language.

Apparatus The apparatus was the same as in Experiment I. The full impulse responses were generated using

our in-house, realtime, geometric sound propagation engine written in C++, with the convolutions being

computed using MATLAB.

Stimuli The sound source used was the same as in the previous experiment, filtered for the same logarithmically-

spaced frequency bands. Given our goal of establishing the relationship between JNDer and JNDlr, we

use our previously computed psychometric function (Eq. 5.4), to compute the 6µ values corresponding to
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detection rates ranging from 0.2 to 0.7. This gives us 6 µ values that can then be used to compute the cube

rooms’ edge lengths using Eq. 5.3. These 6 rooms and Room 1 from the previous experiment serve as the

environments in which the full impulse responses are computed. The material properties of the rooms were

the same as in the previous experiment. Each sound clip in this case was about 6 seconds because of the

increased length of full impulse response, with 2.5 seconds of clapping in Room 1, followed by a second of

silence, followed by 2.5 seconds of clapping in Rooms 2− 7. The total number of sound clips was 140, as

before (4 frequency bands x 7 rooms x 5 blocks). The ordering of the sound clips was randomized within

each block.

Design & Procedure The study design was the same as in the ER study. Before starting the study, the

subjects were asked to listen to a sample sound clip from the 28 clips computed above for familiarization.

The source and listener locations in the rooms were located at (0, 0, 0). The sound was rendered in mono.

The subjects took an average of 30 minutes to complete the study.

Figure 5.4: The psychometric function for sound rendered using the full impulse response (LR) for the 4
frequency bands. The Y-axis shows the proportion of responses indicating sounds were judged to be different.
In this case, we observe more variability for the different frequency bands, which could be attributed to the
greater sensitivity of human hearing to a more accurate signal (compared to the less accurate ER signal).
Overall, however, the responses can be modeled as a linear function with reasonable accuracy.

Results & Analysis Fig. 5.4 shows the proportion of responses judging the sounds as different, as a function

of increasing µ or edge-length. As before, we performed an ANOVA to assess the effect of edge length and

frequency. The analysis showed significant main effects for edge length F (6, 180) = 61.78, p < 0.05, η2p =
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0.673 and frequency F (3, 90) = 2.95, p = 0.037, η2p = 0.09. The interaction between edge length and

frequency was also significant F (18, 540) = 1.66, p = 0.04, η2p = 0.052. Again, the effect size for terms

involving frequency was low, allowing us to average the responses for the frequency bands. Fig. 5.5 shows

the values averaged for the 4 frequency bands.

Figure 5.5: The average JND over the frequency bands for the full impulse response signal.The Y-axis
shows the proportion of responses indicating a judgment of difference. The psychophysical function is not as
linear as the early reflection signal, but a linear function approximates the subject responses reasonably well
(R2 = 0.87), accounting for most of the variability.

5.3.3 P −Reverb Metric

Fig. 5.6 shows the relationship between the sounds rendered using only the early responses and the

sounds rendered using the full impulse response. Note that the first point for both functions corresponds to

two identical stimuli, and no difference is expected. However, beginning at the smallest edge lengths where

objectively different stimuli were presented, the figure shows that the subjects were more likely to differentiate

between sounds rendered with the full impulse response than they were with sounds rendered using only the

early reflections. A difference in difference judgments is expected, because the full impulse response conveys

more information about the space and is supposed to enable better perceptual differentiation than the early

impulse response, thus giving a lower JND for the full impulse response, i.e., JNDlr < JNDer .

100



Figure 5.6: This plot shows the overlaid psychometric functions for signals rendered using the early reflections
(blue) and full impulse response (orange). Note that the first data point corresponds to differences being
reported when the stimuli are objectively identical. Although the full impulse data shows a greater departure
from a linear relationship beyond that point, the results are similar to the early reflection function, offset by a
constant, allowing us to establish a simple, linear relationship between JNDer and JNDlr in terms of the
mean-free path.

To establish a mathematical relationship between the two JNDs, we consider the ratio of the mean-free

paths in both cases. The resulting figure is shown in Fig. 5.7. The linear fits are almost coincident after

adding a constant offset of 0.02, i.e.

µJNDlr

µ1
+ 0.02 =

µJNDer

µ1
, (5.5)

which gives a simple relationship between the two JND values:

µJNDlr
= µJNDer − 0.02µ1, (5.6)

where µ1 is the mean-free path in Room 1 = 2m. Hence µJNDlr
= µJNDer−0.04 is the simple mathematical

relationship or P −Reverb for the JND values of the two signals. Given µJNDer = 0.06m as derived above,

we can easily compute the value of µJNDlr
as being 0.02m for a reference room (Room 1) µ = 2m, giving

us the percentage change (µJNDer
µRoom1

= 1%) in the mean-free path values that constitute the JND for late

reverberation, when using early reflections.
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It turns out that Eq. 5.6 can be interpreted as a “first-order” approximation to a function that expresses

the mathematical relationship between two multi-dimensional perceptual phenomena that are dependent on

frequency, edge length, method of rendering, material parameters, etc. However, any function that accounted

for the small frequency dependencies in the observed psychometric data and accommodated the effects

of more complex environments and material parameters would have to be substantially more complicated

than the linear relationship that we derive here. The value of the present formulation lies in its reasonable

approximation of the observed effects with only one derived parameter.

Figure 5.7: The psychometric function with a constant offset adjustment. We consider the ratio of the
mean-free path for the different rooms to the mean-free path of Room 1. The resulting linear fits for the two
cases (early reflections and full impulse response) coincide once a constant offset of 0.02 is added to the ratio
for the full impulse response. This highlights the accuracy of our model.

We would also like to note that, although psychometric functions are usually fitted using sigmoid

functions, our design did not require us to do so. A sigmoid function approach would have been suitable had

we started with a value somewhere in the middle and taken a range of values above and below. This would

have yielded two end-cases with the non-standard stimulus being judged smaller 100 % of the time; similarly,

the larger non-standard stimulus would be judged as such 100 % of the time. In our approach, however, we

never tested anything smaller than the standard, which led us to values that rose to the ceiling. Consequently,

a linear fit to this function accounted for most of the variance (93%). A better fit could be achieved using

a quadratic fit (accounting for 99% of the variance), but at the expense of adding a parameter. A sigmoid
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function, too, would add another parameter without yielding much gain. Therefore given the fact that our

linear fit accounts for most of the variability, we chose to not use a sigmoid fit.

5.4 Results & Evaluation

Our approach consists of two primary numerical steps: computing the mean-free path (µ) using early

reflections (ERs), and predicting RT60 using our perceptually established P − Reverb metric. We first

validate the use of early reflections (ERs) to compute the mean-free path (µ) in various environments. Next,

we highlight the validation of the P −Reverb metric in terms of its accuracy in predicting RT60.

Figure 5.8: Room with Pillars: We illustrate the room with 8 pillars and use this benchmark to estimate the
effectiveness of our mean-free path computation in complex environments with obstacles. We observe less
than 3% error using our early reflection based method.
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5.4.1 Mean-Free Path Computation

Our P −Reverb metric depends on the numerically computed mean-free values that are computed using

early reflections. The mean-free path is the average distance a sound ray would travel between collisions

and we use ERs to estimate this distance. As mentioned, Eq. (5.3) can be used to compute mean-free path

values in terms of the volume (V ) and surface area (S). Table 5.1 highlights the accuracy of our computed

mean-free path values (µer) as compared to the analytical values given by Eq. 5.3. We use 500 rays and 20

bounces for each ray to compute our µer value as:

µer =

∑
di

n× b
, (5.7)

where di is the distance traveled by a sound ray on the ith bounce, n is the total number of rays, and b is

number of bounces per ray.

Shape Dim.(m) µer(m) µan(m) %error

Cube 5 3.3 3.33 1
Rect. Prism (2,3,4) 1.87 1.85 1.3

Sq. Pyramid (2.8, 3) (b, h) 1.16 1.18 1.7
Room with Pillars (5,6,12) 3.14 3.04 3

Table 5.1: Mean-free path Computation: We show the accuracy of computing µer using early reflections
for differently shaped rooms. The closed-form expression in Eq 5.3 gives us the analytical value for the
mean-free paths in each of the rooms µan. We observe that ERs can closely approximate the analytically
obtained µan. The Room with Pillars is shown in Fig. 5.8. Even for a scene with multiple obstacles, our
method computes the mean-free path while inducing a maximum error of only 3%.

5.4.2 RT60 using P −Reverb Computation

The P − Reverb metric predicts regions in a scene where the late reverberation is likely to vary

imperceptibly. Conversely, it can estimate regions where the late reverberation would vary in a perceptually

noticeable manner. We demonstrate the effectiveness of the P −Reverb metric in finding regions of similar

reverberation characteristics by considering a scene shown in Fig. 5.9. The scene is composed of different

interconnected rooms of varying shapes and volumes. Since reverberation is a function of the volume and

shape of the room, it is likely to vary as one moves from one room to another. We consider a path that

traverses three different connected rooms and compute the mean-free path along the path using ERs. Fig.
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Figure 5.9: We highlight the application of P − Reverb metric to predict variations in RT60 in a scene
composed of interconnected rooms of different shapes and volumes: (a) shows the variation in µ along a
path that goes through three rooms with volumes 135 m3, 256m3, and 125 m3 from left to right; (b) shows
three regions (1, 2, 3) along the path roughly corresponding to the three rooms, where µ changes within the
JND specified by the P −Reverb metric. This indicates that the reverberation in these regions would vary
imperceptibly, as is indicated by the uniformity of the µ values; (c) shows rapidly varying µ values as one
approaches the apertures between the connected rooms, indicating that RT60 would also vary rapidly. This is
expected because the geometry varies rapidly in these regions and validates the accuracy of our perceptual
metric P −Reverb.

5.9(a) shows the variation in µ as we move along the path. We group the regions along the path where µ

varies within the JND threshold computed using our P −Reverb metric (as shown in Fig. 5.9(b)), as Regions

1, 2, and 3. Based on the P −Reverb metric, each such region is likely to have an imperceptible sound in

terms of RT60. We illustrate this in Table 5.2. The µmean corresponds to the average mean-free path value for

the entire region and Diff.µmax corresponds to the maximum difference from the µmean for all the points in

that region (i.e., a measure of variance). The RTmean60 represents the average value of the reverberation times

for the region, while Diff.RT60max corresponds to the maximum difference from RTmean60 . For regions where µ

varies within the JND specified by the P −Reverb metric, the RT60 values vary within 5% of the RTmean60 .

This is within established JND values for RT60, as specified in ISO 3382-1 (ISO, 2009) and correspond to

imperceptible changes in late reverberation.

Fig. 5.9(c) shows rapidly varying µ values, as one moves from one room to another. This indicates

that the reverberation or RT60 would vary rapidly in these regions. Since none of these values falls within

the JND specified by P −Reverb, they cannot be grouped to create regions where reverberation would be

imperceptible. This is expected because coupling of spaces is known to affect the sound energy flow and the

change of RT60 close to the coupling aperture (Jing and Xiang, 2008).
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Region µmean(m) Diff .µmax RTmean
60 (s) Diff .RT60

max

1 2.45 1.1 % 0.65 4.6 %
2 3.64 0.5 % 1.27 2.4 %
3 3.11 1.1 % 1.03 3.6 %

Table 5.2: Mean-Free Path and Reverberation Time Computation: We show the average values computed
using high-order ray tracing for the three different regions shown in Fig. 5.9 and the differences from the
average values. Each of these rooms corresponds to imperceptible regions based on our P −Reverb metric.
The numerical value shows a maximum variation of 5%, which is within JND values of RT60. The exact
RT60 was computed using high-order ray tracing with 300 bounces.

Figure 5.10: The figure shows how the P − Reverb metric can be used to estimate regions where RT60
would vary imperceptibly in a scene. The left figure shows a typical listener path in a scene. At each point
along this path, we compute the mean-free path µ using the early reflection based method described. Then
using the P − Reverb metric, we cluster the points based on the JND to give us clusters along the path
where RT60 would vary imperceptibly as shown in the right figure.

5.5 Interactive Sound Propagation

In this section we describe how the P −Reverb metric can be used for interactive sound propagation.

As described in Sections 1. & 2., the sound reaching the listener from a source has three components: direct

sound, early reflections, and late reverberation as shown in Fig. 5.1. Geometric sound propagation algorithms

use methods such as ray tracing to compute the ERs and LRs in the scene. Although early reflections can be

computed cheaply, late reverberation computation remains a major bottleneck as it requires very high-order

ray bounces in the scene for accuracy making these methods resource heavy. This prevents the use of

these methods in interactive environments such as games, which tend to use cheap filter-based approaches

(digital reverberation filters) to simulate late reverberation. Reverberation filters require parameters such as

RT60 to approximate late reverberation in an environment. One way in which reverberation filters can be

parameterized accurately is to precompute theRT60s along the listener’s path in the scene using a high-fidelity

geometric sound propagation algorithm such as (Schissler et al., 2014a), and then use these precomputed
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RT60 values at runtime in the filter. This would avoid costly high-order ray tracing to simulate reverberation

at runtime, but can incur a high precomputation cost requiring us to run high-order ray tracing for every point

along the listener’s path. We now describe how using our P −Reverb metric can reduce the precomputation

cost of computing RT60 values in the scene.

5.5.1 Sound Propagation using P −Reverb

Figure 5.11: The figure shows the schematic of a typical Schroeder-type filter used in our implementation.
The input is processed through a parallel bank of comb filters that create the delayed version of the input
signal. The output of this parallel bank goes through a series connection of allpass filters. These filters require
parameters like RT60 to approximate the late reverberation in a scene.

5.5.1.1 Precomputation

We use our P −Reverb metric to accelerate the pre-computation of late reverberation for an interactive

sound propagation system using a Schroeder-type reverb filter to simulate late reverberation (Fig 5.11). We

sample a given scene at multiple points along the listener’s path and use a geometric sound propagation

method (Schissler et al., 2014a) to compute early reflections by placing an omni-directional sound source

tracing 20 orders of specular reflections at each of these points. Next, using Eq. 5.3 we compute the mean-free

paths at each of these points. Using the P −Reverb metric, we clusters points on the path where µ varies

within its JND, indicating that these regions will have perceptibly similar RT60 values (Fig. 5.10). Finally,

using (Schissler et al., 2014a), we compute the RT60 values once for each computed region using high-order
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(300 bounces) reflections to get a high quality estimate. Table 5.3 shows the speed-up obtained using the

P −Reverb metric in precomputation stage. The results were obtained on a multi-core desktop using single

thread for the computations.

5.5.1.2 Runtime

At runtime, the direct sound computation is done through visibility testing; if a source is visible to the

listener, its distance to the listener is used to attenuate the sound pressure according to the inverse distance

law. The late reverberation computation is performed using the precomputed RT60 values in the previous

stage. Given the listener position, a look-up is performed to ascertain the cluster (precomputed in the previous

step) the listener position belongs to. Since, an RT60 value is associated with each cluster, this is now used as

a parameter into the reverberation filter. As long as the listener in within this cluster, P −Reverb metric tells

us that RT60 value would vary imperceptibly.

5.5.2 Benchmarks

Sun Temple This scene consists of spatially varying reverberation effects. As the listener moves throughout

the scene, the reverberation characteristics vary from being almost dry in the semi-outdoor part of the temple

to being reverberant in the inner sanctum.

Shooter Game This scene showcases the ability of our method to handle very large scenes. It shows an

archetypal video game with multiple levels. As the listener moves from part of the scene to another, it shows

our method’s ability to handle highly varying, large, virtual environments.

Tuscany This scene has two different structures, a house and a cathedral, separated by an outdoor garden.

The two structures have very different reverberant characteristics owing to their different geometries, and as

the listener moves from the house to the cathedral going through the outdoor garden, the reverberant varies

accordingly.

5.6 Conclusion, Limitations and Future Work

We present a novel perceptual metric that highlights the relationship between the JNDs of early reflections

and late reverberation. Our metric is based on two user studies and can be used for fast computation of

mean-free-paths and reverberation time in complex environments without high-order ray tracing. Our metric
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Scene #Vert. #P TER(ms) TLR(ms) #P Speed− up

Sun Temple 215k 2301 40.2 124.2 53 3x
Tuscany 135k 1945 47.5 150.7 110 3x

Shooter Game 49k 3235 16.7 68.4 43 4x

Table 5.3: Precomputation Performance Analysis: We highlight the speed-up in precomputation stage
using the P −Reverb metric. #P is the number of points along the listener path, TER is the avg. time taken
at each point using ERs,TLR is the average time taken at each point using LRs, and #P is the number of
clusters found using our P −Reverb metric.

can be used to predict regions in an environment where the reverberation time is likely to vary within its JND

value. We evaluate the accuracy of these perceptual metrics and find their accuracy within 5% of the actual

values on our benchmarks.

Our approach has some limitations. Our P −Reverb metric computation may not work in totally open

environments since the mean-free path computation depends on the presence of collisions with the obstacles in

the scene. Our P−Reverbmetric can be regarded as an approximation to a complex function that corresponds

to a multi-dimensional perceptual phenomenon dependent on source frequency, scene dimensions, method of

sound rendering, material parameters, etc. As a result, we need to perform more evaluations that take other

parameters into account. While we observe high accuracy in our current benchmarks, the accuracy could

vary in more complex scenes. Further, our metric tends to be conservative and overestimates the number of

regions with similar RT60 resulting in running more full simulations than optimal. That being said, it still

significantly reduces the number of full simulations as shown in Table 5.3. Our experimental work also has

limitations, including the restricted range of room sizes (motivated by the psychophysical goal), the fixed

listener, and the restriction to mono rendering. As part of future work, we would like to overcome these

limitations and further evaluate our approach on complex scenes and use them for multi-modal rendering.
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CHAPTER 6: SUMMARY AND CONCLUSIONS

6.1 Summary of Results

In this dissertation, we have presented user-studies of interactive sound propagation algorithms to compare

their perceptual effectiveness in simulating complex acoustic phenomena such as diffraction and reverberation.

Our results show that accurate sound propagation methods result in better perceptual differentiation. Based on

the results of these studies, we further present novel methods for interactive sound propagation that incorporate

modal sounds, diffraction, and reverberation. In contrast to prior methods for modal sound propagation, our

method incorporates the dynamic directivities of each mode of a vibrating rigid body and propagates them

into the environment rather than just free space. Further, we propose a perceptually-driven approximation

of computationally expensive Hankel functions that makes our method interactive for multiple sources in

complex environments. Secondly, we have proposed a diffraction method that can be easily integrated into

existing geometric sound propagation methods significantly enhancing their diffraction handling capabilities.

Our method can handle complex, highly-tessellated objects that were not possible using prior geometric

acoustics system. Further, we also propose a novel source placement algorithm that significantly reduces the

precomputation time for evaluating the diffraction kernels. Our method has been integrated with the Unreal

game engine and is able to generate diffraction effects for complex objects interactively. Finally, we present a

novel metric that perceptually characterizes the early and late reflections. Our novel metric (P −Reverb)

relates the just-noticeable differnce (JND) of early reflections with the JND of late rerverberation in terms

of the mean free path (µ) of the scene. We conduct two extensive, online user evaluations that establish the

JNDs of early reflections and late reverberation in terms of mean-free path. We then relate the two JNDs to

give us the P −Reverb metric. The use of the metric shows significant speed up in the precomputation of

late reverberation parameter such as (RT60).
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6.2 Limitations

In this section, we discuss the limitations of the proposed techniques. Our psychoacoustic evaluations

of sound propagation algorithms were done in simple virtual environments. The choice of using simple

virtual environments was made so that the approximate methods could work to their full potential. Since most

virtual environments are significantly more complex, our results provide more of a baseline value for the

approximate methods. The actual performance of the approximate methods in more complex environments

is likely to be worse than what we observed. Our implementation of mode-aware sound propagation is

limited to rigid objects and modal sounds. Moreover, the time complexity tends to increase with the mode

frequency as higher-order basis functions are required to represent high-frequency radiation patterns. Further,

the precomputation time required for the evaluating the basis functions is high and requires running high-

frequency wave-based simulation. Our diffraction kernels framework, while offering many benefits over

existing geometric acoustic methods, is less accurate than purely wave-based propagation methods. This

approach is mainly designed for scenes with well-separated rigid objects, whose scattering behavior does not

change at runtime. Further this framework does not take into account the inter-object interactions in the scene

which might result in the approach not working well in certain scenarios. Also, our current formulation of

diffraction kernels only considers the magnitude of the scattered field but ignores the phase. Our P −Reverb

metric may not work in totally open environments since the mean-free path computation is dependent on

collisions in the environment. Further the metric is an approximation to a multi-dimensional complex function

of source frequency, scene dimensions, material parameters, etc. and might reduce accuracy in complicated

environments.

6.3 Future Work

There are many avenues of future work. The user evaluations can be extended in multiple ways. It would

be interesting to vary the spectral content of the source in the diffraction experiment, since diffraction is a

frequency dependent phenomenon and evaluate the subjects responses. The subjects distance from the source

can also be varied and evaluated. The reverberation experiment could be verified by constructing real world

rooms and using an actual sound source to verify the logarithmic relation of subjects responses to changing

room size. Further, it would interesting to observe the effect of visuals on the diffraction experiment. The
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reverberation experiments too can be augmented with visuals to study the combined effect of sound and

vision in assessing visual depth in virtual environments.

In order to accelerate the precomputation of our mode-aware sound propagation, we can integrate

acceleration techniques such as mode compression and mode culling. It would also be useful to consider

the radiation efficiency of each mode which might allow to further accelerate the precomputation and the

runtime stages. It would be interesting to integrate non-rigid synthesized sounds, e.g., liquid and soft-body

sounds into our framework. Further, it would interesting to integrate the method into a wave-based sound

propagation system and evaluate the results.

The diffraction kernel framework can be improved by modeling other interactions such as first order

surface scattering based on Kirchoff approximation or wave-based geometric acoustics to model inter-object

wave interactions. The precomputation stage can be accelerated further by considering progressive mesh

simplifications on the side not facing the sound source. We could also consider multiple concentric spheres

around the object to represent different distances hence capturing the near and far-field scattering effects

rather than just the far-field characteristics. It would be also useful to design approximate schemes that can

also model phase, as that is needed for certain applications, such as seat-dip effects in concert halls. We

would also like to perceptually evaluate our diffraction kernel approach in other applications such as social

VR and telepresence, where it is important to simulate diffraction effects and generate smooth sound fields.

Finally, the P −Reverb metric can benefit from more evaluations that take the multi-dimensional nature

of the psychometric function (i.e., source frequency, scene dimension, material parameters, etc.) into account.

We could also improve our user study design by including a broader range of room sizes, having a moving

listener, and rendering the sound using spatialization. We would also like to incorporate the P − Reverb

metric in game engines to automatically evaluate the reverb zones in the scene.
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