4 research outputs found

    Dependability Evaluation of COTS Microprocessors via On-Chip debugging facilities

    Get PDF
    Este artículo presenta una herramienta de inyección de fallos y la metodología para la realización de campañas de inyección de Single-Event-Upsets (SEUs) en microprocesadores Commercial-off-the-shelf (COTS). Este método utiliza las ventajas que ofrecen las infraestructuras de depuración de los microprocesadores actuales, además del depurador estándar de GNU (GDB) para la ejecución y depuración de los programas de pruebas. Los experimentos desarrollados sobre microprocesadores reales, así como en las máquinas virtuales, demuestran la viabilidad y la flexibilidad de la propuesta como una solución de bajo costo para evaluar la fiabilidad de los microprocesadores COTS.This paper presents a fault injection tool and methodology for performing Single-Event-Upsets (SEUs) injection campaigns on Commercial-off-the-shelf (COTS) microprocessors. This method takes advantage of the debug facilities of modern microprocessors along with standard GNU Debugger (GDB) for executing and debugging benchmarks. The developed experiments on real boards, as well as on virtual machines, demonstrate the feasibility and flexibility of the proposal as a low-cost solution for assessing the reliability of COTS microprocessors.Este trabajo fue financiado por el Ministerio español de Economía y Competitividad y el Fondo Europeo de Desarrollo Regional con el proyecto "Evaluación Temprana de los Efectos de radiación Mediante simulación y virtualización. Estrategias de mitigación en arquitecturas de microprocesadores Avanzados "(Ref: ESP2015-68245-C4-3-P MINECO / FEDER, UE), y la Universidad Nacional de Colombia con el proyecto "Desarrollo de software Una métrica de Vulnerabilidad de registros en Microprocesadores COTS" (Cod HERMES: 28433)

    Real-time fault injection using enhanced on-chip debug infrastructures

    Get PDF
    The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks to human lives, to the environment or to expensive equipment, significantly increased the need for dependable systems, able to detect, tolerate and eventually correct faults. The verification and validation of such systems is frequently performed via fault injection, using various forms and techniques. However, as electronic devices get smaller and more complex, controllability and observability issues, and sometimes real time constraints, make it harder to apply most conventional fault injection techniques. This paper proposes a fault injection environment and a scalable methodology to assist the execution of real-time fault injection campaigns, providing enhanced performance and capabilities. Our proposed solutions are based on the use of common and customized on-chip debug (OCD) mechanisms, present in many modern electronic devices, with the main objective of enabling the insertion of faults in microprocessor memory elements with minimum delay and intrusiveness. Different configurations were implemented starting from basic Components Off-The-Shelf (COTS) microprocessors, equipped with real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD circuitry that enhance fault injection capabilities and performance. All methodologies and configurations were evaluated and compared concerning performance gain and silicon overhead

    Técnicas de inyección de fallos basadas en FPGAs para la evaluación de la tolerancia a fallos de tipo SEU en circuitos digitales

    Get PDF
    Este trabajo de tesis doctoral presenta nuevas técnicas de inyección de fallos transitorios en elementos de memoria, que permiten la evaluación del comportamiento de los complejos circuitos digitales actuales en presencia de fallos SEU (Single Event Upset). Se han propuesto técnicas de inyección que dan solución a la evaluación de la tolerancia a fallos SEU para distintos componentes de los sistemas digitales actuales, en los que se tiende a integrar distintos tipos de circuitos en un mismo chip, SoCs (System on Chip). El entorno de inyección en las soluciones propuestas en esta tesis se basa en emulación con dispositivos programables, FPGAs, realizándose las tareas relacionadas con la inyección desde la plataforma hardware de emulación. La implementación hardware del sistema de inyección minimiza la comunicación necesaria entre el hardware y un computador, siendo dicha comunicación la mayor limitación en la velocidad del proceso de inyección. En primer lugar, se presenta una técnica de inyección de fallos basada en la emulación de fallos con FPGA, que permite evaluar un circuito digital cuando se dispone de su descripción en un lenguaje de alto nivel, como VHDL. Por otro lado, se propone una solución para la inyección de fallos en circuitos microprocesadores basada en el uso de la infraestructura de depuración integrada en el propio microprocesador (OCD, On-Chip Debugger), para acceder a sus recursos internos (memorias y registros), en un componente comercial o prototipo final del microprocesador. Cuando se dispone de la descripción del circuito, éste se implementa junto con el sistema de inyección en la FPGA y no es necesario establecer una comunicación con el exterior durante el desarrollo de una campaña de inyección, por lo que esta propuesta se ha denominado Emulación Autónoma. Al implementar el sistema completo de inyección en un único dispositivo (la FPGA) se aumentan la observabilidad y controlabilidad de los elementos del circuito. En este trabajo de investigación se han propuesto optimizaciones del proceso de inyección, basadas en la mayor accesibilidad al circuito que proporciona la Emulación Autónoma, para mejorar la eficiencia de las tareas de inyección de fallos y observación del comportamiento del circuito en presencia de fallos. En esta tesis se describen y desarrollan tres implementaciones de técnicas de inyección basadas en Emulación Autónoma, denominadas Time-Multiplexed, State-Scan y Mask-Scan. Cada una de las tres implementaciones ofrece un compromiso distinto entre velocidad del proceso de inyección y recursos necesarios para su aplicación. La técnica Time-Multiplexed incluye el mayor número de optimizaciones y mejoras por lo que es la técnica que mayor velocidad consigue en el proceso de evaluación pero, para ello, requiere una cantidad de recursos también mayor que las otras dos implementaciones. Las otras dos técnicas son simplificaciones de la primera, por lo que utilizan menos recursos hardware en la emulación de fallos. Además, se han desarrollado modelos de memoria que permiten aplicar la técnica Time-Multiplexed a circuitos con memorias empotradas. Los modelos se basan en controlar (para insertar los fallos) y observar (para detectar los errores y sus efectos) el contenido de memoria a través de las señales de control, el bus de datos y el bus de direcciones, evitando recorrer todas las palabras de datos. La inyección de fallos en circuitos con memorias empotradas es un problema de gran interés, puesto que éstas últimas son un componente cada vez más habitual en los diseños actuales. Además no se había propuesto hasta la fecha ninguna solución eficiente para la emulación de fallos en memorias. Esta aportación de la tesis permite inyectar fallos de forma rápida en memorias empotradas resolviendo el problema de su limitada accesibilidad. También para los modelos de memoria, se han propuesto distintas implementaciones en función de las prestaciones conseguidas y recursos hardware necesarios, denominados modelo Básico y modelo ECAM. El modelo Básico requiere menos recursos para su implementación, mientras que el modelo ECAM proporciona una mayor capacidad de análisis de los fallos. Los experimentos realizados, tanto sobre circuitos de prueba como sobre circuitos industriales reales, prueban que la Emulación Autónoma acelera el proceso de inyección con respecto a otras soluciones propuestas, permitiendo inyectar millones de fallos en unos pocos segundos. La aceleración conseguida es de dos órdenes de magnitud, con la técnica Time-Multiplexed, con respecto a otras soluciones basadas en emulación, que a su vez proporcionan una aceleración de cuatro órdenes de magnitud con respecto a técnicas basadas en simulación. Esta notable aceleración en la inyección de fallos permite evaluar circuitos de gran tamaño, como los circuitos actuales, donde los posibles fallos suponen un número elevado, y para obtener una medida significativa de su tolerancia a fallos es necesario inyectar un gran conjunto de fallos en un tiempo razonable. Se ha comprobado experimentalmente la viabilidad de la solución presentada para la inyección de fallos en memoria y las características de los modelos de memoria propuestos, para ello se han realizado campañas de inyección sobre un microprocesador industrial en el que se inyectan fallos tanto en los biestables como en la memoria. Por otro lado, la técnica de inyección que se propone en la tesis orientada a microprocesadores realiza la inyección de fallos y observación de sus efectos en el circuito a través de su OCD. El avance de las capacidades e infraestructuras de depuración en los microprocesadores actuales se debe al auge de SoCs y sistemas empotrados en los que, de otra forma, el acceso para depuración a dicho componente sería inviable o muy costoso. Estas capacidades proporcionan un mecanismo eficaz para acceder a los recursos internos del microprocesador, necesario para realizar la inyección de fallos y observar el comportamiento del circuito. El sistema de inyección propuesto controla el OCD mediante su interfaz JTAG, el más común para acceder a los microprocesadores actuales. Al igual que en el sistema de Emulación Autónoma, todas las tareas de inyección se realizan desde el hardware, una FPGA, que se conecta al microprocesador bajo estudio a través de su interfaz JTAG. Esta solución es aplicable a cualquier microprocesador con OCD e interfaz JTAG, lo que son características habituales en la actualidad. Los experimentos desarrollados sobre microprocesadores comerciales (ARM y PowerPC) demuestran que esta técnica proporciona una solución para la inyección de fallos en componentes microprocesadores comerciales eficiente, de gran generalidad y que alcanza un compromiso entre velocidad y coste. En resumen, se ha propuesto una solución precisa, rápida y de bajo coste para evaluar la tolerancia a fallos de tipo SEU de los circuitos digitales actuales, permitiendo la inyección de fallos en circuitos de gran tamaño con memorias y microprocesadores empotrados. ____________________________________________This PhD thesis presents new transient fault injection techniques to allow evaluating the behaviour of complex digital circuits, as modern circuits, with transient faults in memory elements, i.e., SEU (Single Event Upset) faults. Fault injection techniques have been proposed to solve SEU tolerance evaluation in different components of systems on chip (SoCs). The fault injection environment of the proposed solutions in this thesis is emulation-based with FPGA, performing injection tasks from the emulation hardware platform. The hardware implementation of the injection system minimises the required communication between hardware and host computer that is a bottleneck in speed injection process. First of all, a transient fault emulation technique in FPGA devices aimed at evaluating a circuit, whose description is available in a hardware description language (as VHDL), is presented. Secondly, a fault injection technique aimed at evaluating fault tolerance in microprocessors is proposed. Such proposal is applied on a final prototype or a commercial component and it consists in using the debugger infrastructure integrated in the circuit (OCD, On-Chip Debugger) to access the microprocessor’s internal resources (memory and registers). On the one side, when the circuit description is available, the circuit is implemented in the FPGA together with the injection system and therefore the communication with the host PC is avoided during fault injection campaign. This fault injection technique has been called Autonomous Emulation. The monolithic hardware implementation for the injection system (a unique FPGA) provides better controllability and observability of the circuit under test, than other solutions. Some injection process optimisations are proposed in this research work in order to enhance the efficiency and the speed of the different injection tasks. In this work, three implementations of the Autonomous Emulation system are proposed and developed. They are called Time-Multiplexed, State-Scan and Mask- Scan. Each one provides a different trade-off between area overhead and injection process speed-up. Time-Multiplexed technique includes more optimisations than the other techniques. Therefore, it obtains the highest speed-up in the evaluation process, but it requires more area overhead than the other implementations. State-Scan and vi Mask-Scan techniques are simplified versions of Time-Multiplexed implementation, using less hardware resources to perform the fault emulation. Furthermore, memory models have been developed in order to apply the Time- Multiplexed technique to digital circuits with embedded memories. Such models are based on controlling (to insert faults) and observing (to detect the errors and watch their effects) the memory data by means of the control signals, data bus and memory address bus, instead of accessing every memory word, that is a slow task, specially for large memories. The fault injection in embedded memories is a very interesting problem as they are components more and more usual in current digital designs. Besides, there is not an efficient solution for fault emulation in memories in the literature. This thesis’ contribution allows the fault injection in embedded memories in a fast way, solving the accessibility limitation problem. Different implementations have been also proposed for the memory models, according to the trade-off between performance and hardware resources requirements; they are named basic model and ECAM model. The basic model involves less hardware resources, whilst the ECAM model provides a better performance in the result analysis task. The experiments developed in this thesis consist in performing fault injection campaigns in benchmark circuits as well as in real ones. The experimental results prove that Autonomous Emulation speeds-up the injection process with respect to other existing solutions, making possible the injection of millions of faults in a few seconds. The injection process speed increases around two orders of magnitude using Time- Multiplexed with respect to other emulation-based solutions, what are faster than simulation-based techniques in four orders of magnitude. This notable enhancement in the injection speed allows the evaluation of the fault tolerance in large circuits, as the current ones. In modern circuits, all the possible SEU faults suppose a very high number of faults, and in order to obtain a significant measurement of the fault tolerance, injecting a large set of faults in reasonable time is necessary. The feasibility of the proposed memory models has also been analyzed performing fault campaigns in an industrial microprocessor, injecting faults in flip-flops as well as in memory. On the other side, the fault injection technique, proposed in this PhD thesis, aimed at evaluating microprocessors using the OCD to insert the faults and to observe their effects in the circuit. Nowadays, enhanced debugging capabilities and integrated infrastructures are available in current microprocessors, due to the increasing use of SoCs and embedded systems, where, without an OCD, the debugging process would be infeasible or require a high cost. The OCD provides a mechanism to access microprocessor’s internal resources and so it can be used to inject faults and to observe the circuit behaviour. The proposed fault injection system controls the OCD by means of the JTAG interface, what is the most common interface to access modern microprocessors. As in the Autonomous Emulation System, all the injection tasks are performed in hardware, in an FPGA, that is connected to the microprocessor under test by means of the JTAG interface. This solution could be applicable to any microprocessor circuit with an OCD and a JTAG interface, what are the most common features nowadays. Developed experiments in commercial microprocessors (ARM and PowerPC) show this technique provides an efficient solution to inject faults in microprocessors devices, applicable to a wide range of different processors and offering a trade-off between the injection process speed and its cost. In summary, a fast, accurate and low cost solution to evaluate the SEU fault tolerance in modern digital circuits has been proposed. It allows fault injection in large circuits with embedded memories and microprocessors
    corecore