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ABSTRACT  

 
 

The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks to human lives, to the environment or to 

expensive equipment, significantly increased the need for dependable systems, able to detect, tolerate and eventually correct faults. The verification and  

validation of such systems is frequently performed via fault injection, using various forms and techniques. However, as electronic devices get smaller and 

more complex, controllability and observability issues, and some- times real time constraints, make it harder to apply most conventional fault injection 

techniques. This paper proposes a fault injection environment and a scalable methodology to assist the execution of real-time fault injection campaigns, 

providing enhanced performance and capabilities. Our proposed solutions are based on the use of common and customized on-chip debug (OCD) 

mechanisms, present    in many modern electronic devices, with the main objective of enabling the insertion of faults in micro- processor memory 

elements with minimum delay and intrusiveness. Different configurations were implemented starting from basic Components Off-The-Shelf (COTS) 

microprocessors, equipped with real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD circuitry that 

enhance fault injection capabilities and performance. All methodologies and configurations were evaluated and compared concern ing performance gain 

and silicon   overhead. 
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1. Introduction 

 
Most of today’s safety–critical applications require some type of 

computer-based device, broadening the application range of 

microprocessor systems. As electronic systems increase in com- 

plexity and decrease in size, their correct behavior is becoming 

harder to guarantee [1]. The higher sensitiveness to noise  and 

other factors increases the probability of errors, even for devices 

used in non-hostile environments. The most frequent hazard 

affecting microprocessor systems is usually referred as a Single 

Event Upset (SEU) and consists of a change of state of a flip-flop, 

induced by an ionizing particle such as a cosmic ray or proton. This 

event may change the logical value of memory elements, such as 

registers or memory cells   [2]. 

The verification and validation of dependable systems requires 

the study of failures and errors in order to evaluate their probabil- 

ity of occurrence and subsequent effects. The possibly destructive 

nature of a failure and the long error latencies make it difficult to 

identify their causes in the operational environment, and recom- 

mend the organization of experiments under precisely controlled 

conditions. Depending on the system function and   architecture, 

 

hardware [3] and software [4] fault tolerance techniques can be 

used to minimize the effects of SEUs, enabling the system to pro- 

vide acceptable service in their presence. All vulnerable critical 

systems should be verified to ensure operation within acceptable 

limits in the presence of such events, and validated to check if they 

accomplish their intended objectives. Fault injection can be used 

both to evaluate fault tolerance implementations and to estimate 

fault consequences on non-tolerant systems. 

When dealing with microprocessors, the main limitations im- 

posed on fault injection are control, internal access, intrusiveness 

and performance. Ideally a fault injection methodology should al- 

low precise control of fault insertion, both in time and space, com- 

plete replicability of experiments, and access to all microprocessor 

resources. Simultaneously it should require no modifications to the 

target software or hardware, and should execute in real time. As 

this is not technically feasible, all fault injection environments 

are based on acceptable (or possible) trade-offs. Access to the area 

where faults are to be inserted is a major problem, often requiring 

either ad hoc [5], intrusive [6], or low-controllability [7] ap- 

proaches. The first and second solutions require special hardware 

or modifications to running software, offer restricted coverage, 

and may be difficult to execute in real-time. The third solution is 

usually based on contactless fault injection techniques, making 

fault synchronization and replication hard or impossible to guaran- 

tee. OCD infrastructures have been used as an efficient alternative 
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to handle such problems [8] and the addition of circuitry to evalu- 

ate the vulnerability to SEU effects is increasingly accepted at the 

design stage [9]. 

This paper proposes a set of fault injection solutions enabled by 

debug features that are now present in recent microprocessor de- 

vices. The proposed fault injection environment was designed to be 

non-intrusive and to allow real time emulation of SEU effects in the 

microprocessor memory. Real time operation requirements may 

indeed justify the use of modified OCD infrastructures in order to 

provide better fault injection  capabilities  and/or  performance.  

The rationale behind the proposed solutions is that microprocessor 

systems dependability would benefit from enhancements aimed at 

improving fault injection operations, making them viable  from  

both economical and technical viewpoints. The modified OCDs pro- 

posed in this paper are based on the use of wider data link with an 

external debugger, or on the use of a dedicated fault injection mod- 

ule, with low overhead and higher autonomy. More intrusive fault 

modules were also considered as a way to increase fault  coverage 

on safety–critical devices, enabling the insertion of precisely con- 

trolled faults on internal registers or protected    memory. 

The next section summarizes the state of the art and prelimin- 

ary research. Section 3 presents our proposed solutions, including 

the experimental environment and application methodology. Sec- 

tion 4 presents the experimental results obtained during  the  

course of this work. Finally, Section 5 presents the main conclu- 

sions, and suggests directions for future   research. 

 
 

2. State of the art 

 
2.1. Real-time fault injection in  microprocessors 

 
Real time usually designates systems that must provide ade- 

quate response within a specified time window. In this case, 

dependability is harder to implement and more troublesome to 

evaluate. The correctness of the results must be checked and accu- 

rate meeting of deadlines is mandatory, without modifying or 

stopping the target system. 

Real-time fault injection must be executed with the target sys- 

tem running at full speed, with minimum intrusiveness and delays. 

Most traditional fault injection approaches cannot be adequately 

used under these constraints. Simulation  based  fault  injection  

can be useful on early stages of development, but it is often time-

consuming and intrinsically dependent on the quality of the 

available model [10,11]. Additionally, it is very difficult to imple- 

ment a model that accurately represents all the delays and other 

timing aspects, and a different technique must be used once a pro- 

totype (or production model) is available. Software fault injection 

adds fault insertion routines, causing extra delays and limiting   

the fault targets to those areas accessible by the application code. 

Although work on this area has shown that it can be used for some 

real-time systems [12], it presents considerable limitations in  

terms of intrusiveness and coverage.  The need to slow down or  

stop the running application also makes it inconvenient to apply 

most contact fault injection techniques, since they degrade system 

performance. Most technical solutions to this problem rely on con- 

tactless fault injection [7] or on special dedicated infrastructures 

[13], both of which are complex and expensive. Contactless tech- 

niques present controllability and replicability problems, concern- 

ing precise control of the instant and location of a fault. Dedicated 

fault injection infrastructures come together with silicon overhead 

and often require special prototype versions of the target system, 

hardly or even not adaptable to the final product. Additionally, ac- 

cess to internal blocks where faults are more probable, generally 

the memory elements and communication buses, is also problem- 

atic, particularly without disturbing the running   applications. 

Recent approaches to real-time fault injection include improved 

software techniques [14], halting the target with minimal delay for 

near real-time fault injection [15] or taking advantage of recent 

FPGA capabilities [16,17]. As many of today’s microprocessors 

incorporate dedicated OCD circuitry, designed to operate indepen- 

dently of the target system resources, their use for fault injection 

purposes is becoming increasingly popular. 

 
 

2.2. Fault injection via OCD 

 
The OCD implementations present in different families of 

microprocessors share common characteristics that form a core 

feature set, usually including run control, breakpoint support, 

and memory and register access. Some devices offer more ad- 

vanced features such as watchpoints, program trace and real time 

debug capabilities. In general terms, an OCD is a combination of 

hardware and software embedded onto the microprocessor chip, 

accessible through an interface port, and usually requiring an 

external debugger. 

OCD infrastructures provide access to internal resources during 

system operation, being an excellent mechanism for modifying 

register and/or memory values, i.e. for inserting faults, and subse- 

quently retrieving the data necessary to assess the effect of those 

faults. In most cases, OCD fault injection techniques rely on halting 

the processor, via control signals or breakpoints    [18]. 

The major problem of on-chip debugging is the lack of a consis- 

tent set of capabilities and a standard communication interface 

across processor architectures. Standard ports (RS232, JTAG) are 

commonly used for the physical connection [19,20], but their capa- 

bilities vary widely. Several standardization efforts for OCD infra- 

structures and interfaces were initiated on recent years [21–23]. 

IEEE-ISTO 5001, The Nexus 5001 Forum Standard for a Global Embed- 

ded Processor  Debug  Interface  [24], was the first of these efforts and  

is  currently  well  documented and stable. 

To better evaluate the advantages and limitations of real-time 

fault injection on NEXUS compliant microprocessors, preliminary 

work was performed using COTS devices. This approach was simi- 

lar to other research works [8,25], and used a commercial target 

microprocessor and a debugger. 

The obtained results confirmed most of the expected benefits 

and simultaneously identified some shortcomings, both in fault 

triggering and performance. It proved that it is possible to insert 

faults in memory without affecting the running application and 

to use the trace information as an effective means of analyzing 

the program flow, before and after fault activation. However, as 

the fault injection campaigns must be run on the host machine, 

the operating system (Windows or Unix) and physical connection 

to the NEXUS compliant debugger (Ethernet or USB) lead to long 

and non-deterministic memory access times. The consequence is 

the occurrence of experiments with inconclusive results, since in 

such cases the fault actually inserted does not emulate a single 

bit-flip as intended. Depending on the targeted memory area, the 

actual percentage of inconclusive fault insertions could be as high 

as 50%, requiring additional debugging and result analysis for val- 

idating each experiment. 

The triggering source represents an additional source of prob- 

lems. The use of trace data proved unreliable due to variable com- 

munication delays, making it necessary to use an external trigger 

signal. As a consequence, it was impossible to synchronize the fault 

insertion and the events of the running   application. 

To overcome the identified problems, three solutions were 

developed to enhance real-time fault injection capabilities: (1) a 

debugger customized for fault injection, (2) higher bandwidth be- 

tween the debugger and the OCD, and (3) the migration of some 

capabilities into the OCD infrastructure itself. 



 

 

3. Proposed solutions 

 
3.1. Target system 

 
The CPU cores used on the target system were created using the 

cpugenerator building tool [26], which produces a  customizable  

VHDL model of generic RISC cores, allowing configuration of all 

buses, interrupt handling, indirect addressing, data and instruction 

latency timings, and definition of custom instructions. Three appli- 

cations were used as workload: (1) a matrix adder (MAdder), (2) a 

vector sorter (VSorter) and (3) a generic LUT-based control algo- 

rithm (XControl). All algorithms are memory intensive, can be 

adapted to different bus sizes and memory areas, and are relatively 

simple to debug. Only XControl requires external stimuli genera- 

tion and I/O capabilities on the target. Each application was devel- 

oped in two versions: normal and fault tolerant. Fault tolerance  

was implemented by duplicating data in memory and performing 

each arithmetic operation twice. The comparison of the results ob- 

tained from each arithmetic operation provides a limited degree of 

fault detection, with some overhead in execution time and mem-  

ory requirements. This approach was selected as it can be easily 

implemented in  most COTS components. 

The OCD infrastructure developed for our case study was de- 

signed from scratch to be NEXUS compliant. As there is no manda- 

tory implementation, we based it on the infrastructure present on 

the MPC565 microcontroller, which is a well-documented device. 

The version implemented on our target system is NEXUS Class 2 

compliant with real-time memory access capability (sometimes 

designated as Class 2+ compliant). The OCD interface uses an 

AUX port, which provides two message data buses (MDI and 

MDO) for OCD data input and output, along with independent 

clock and control signals (MCKO, MCKI, MSEI and MSEO). The 

OCD infrastructure is divided in three main modules and two bus 

access modules as seen on Fig. 1. The thinner arrows represent 

the control and status signals and the thicker arrows represent 

data and trace information. The FI module represented is not in- 

cluded in the original OCD – it is part of the OCD-FI version ex- 

plained ahead in Section 3.2.3. 

The Bus Snooper and Bus Master modules are responsible for 

interfacing with the microprocessor buses. Their implementation 

depends on bus configuration and collision management strate- 

gies, and should be customized according to the selected configu- 

ration architecture. 

The Message Queuing and Management (MQM) module imple- 

ments the NEXUS message handler and the OCD controller. It 

translates all debugging operations into messages and vice versa, 

manages the message queues and provides the necessary control 

signals to the other modules. 

The Read and Write Access (RWA) module is used to access both 

OCD registers and CPU resources (memory and registers), and ac- 

cess inputs and outputs as directed mapped addresses, as the 

microprocessor does. 

The Run Control and Trace (RCT) module is responsible for CPU 

run control and OCD management. It receives commands from the 

MQM and RWA modules and outputs trace data and watchpoint hit 

signals. 

The complete OCD infrastructure provides a common set of 

debugging features and interface options that can be adapted to 

different target systems, and upgraded to support additional fea- 

tures or functional  blocks. 

 
3.2. Fault injection 

 
3.2.1. Environment 

Our proposed fault injection solutions were designed to achieve 

the following objectives: 

 
Precise control over the fault location and injection instant 

Full observability of fault  effects. 

The possibility of replicating experiments. 

Unintrusive to the target  application. 

Real time operation (i.e. without stopping the  target 

application). 

 
The experimental environment was designed to implement and 

evaluate the various fault injection alternatives, maintaining a 

common architecture and reusing most components with mini- 

mum modifications, as presented in Fig. 2. 

The Input/Output (I/O) module is required only by applications 

using external inputs or outputs (e.g. XControl) and the FI module is 

implemented only on the OCD-FI configuration. All environment 

variants use the same debugger and 32-bit CPU target, differing 

only in terms of OCD configuration, namely on the MDI bus band- 

width and on the presence/absence of a FI module. 

The fault model consists of bit-flip faults, which are inserted at 

specific moments during program execution, in  order to emulate 

the SEU effects. Faults can be injected in all  resources accessible 

by the OCD, including memory, internal registers and IO registers. 

Better performance can be achieved by determining beforehand the 

value that will be present on the target memory cell at the fault 

insertion  instant  (herein  referred  as  predetermination),  but     this 

requires: 

 
Complete knowledge of the program flow up to the fault injec- 

tion instant. 

• Full observability of external  inputs. 

• Precise control of the fault injection instant and location. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. The OCD infrastructure. Fig. 2.  Fault injection environment. 
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If predetermination cannot be guaranteed, it is necessary  to 

read the target memory cell data immediately before the fault 

injection instant, in order to  determine  which faulty value  shall  

be inserted to emulate an SEU. Each scenario offers various alterna- 

tives for this purpose, depending on relevant performance 

requirements. 

Table 1 presents the experimental scenarios that were used 

during our fault injection experiments. The name of each scenario 

indicates the specific options selected, e.g. (B) basic OCD configura- 

tion, (E)  extended OCD  configuration,  (OF)  offline fault injection, 

(RT) real-time fault injection, (+) no faulty value predetermination 

required and (FI) fault injection module   present. 

The FI Method column specifies if faults are injected with the 

microprocessor halted (offline) or operating at full speed (real- 

time). The Set-Up delay column indicates the time required for 

downloading to the OCD all data necessary to each fault experi- 

ment. Set-Up can be performed while the target application is run- 

ning, but it must be concluded prior to the occurrence of the 

triggering condition. The (fault) insertion delay  column  indicates 

the time interval between the occurrence of the triggering condi- 

 
 

Table 1 

Fault injection scenarios. 

Scenario Bandwidth Predetermination of the faulty value Fault injection method Delays (CLK cycles) 

 Set-Up Insertion  
1 BOF MDI = 2, MDO = 8 YES Offline 22 35  
2 BOF+  NO  22 44  
3 EOF MDI = 8, MDO = 8 YES  6 9  
4 EOF+  NO  6 18  
5 BRT MDI = 2, MDO = 8 YES Real time 22 35  
6 BRT+  NO  22 44  
7 ERT MDI = 8, MDO = 8 YES  6 9  
8 ERT+  NO  6 18  
9 OCD-FI MDI = 2, MDO = 8 YES  57 2  
10 OCD-FI+  NO  57 4  

 

 

 
Table 2 

Offline fault injection (BOF and EOF). 
 

# Step Description 

1 Set-Up The microprocessor is reset and the target application runs from the start 

A fault injection script is downloaded into the  debugger 

A breakpoint is set on the target (on the OCD) 

2 Fault triggering The triggering condition is one of the following: 

 

 
3 Fault activation 

(predetermination) 

3+ Fault activation (no 

predetermination) 

– an external halt signal received by the debugger 

– a breakpoint hit signaled by the OCD (to the debugger) 

Upon the occurrence of the triggering condition the debugger activates a memory write operation using preset  values 

 
Upon the occurrence of the triggering condition the debugger uses a preset target memory cell address to retrieve its contents 

(via the OCD) 

The debugger applies a data mask to determine the faulty data value to be written into  memory 

4 Fault insertion The debugger transmits to the   OCD: 

– the target memory cell address 

– the data value to be written 

5 Resume The debugger instructs the target microprocessor to resume execution (via OCD) 

 
 

Table 3 

Real time fault injection (BRT and ERT). 
 

# Step Description 

1 Set-Up The microprocessor is reset and the target application runs from the start 

A fault injection script is downloaded to the  debugger 

A watchpoint is set on the target (on the OCD) 

2 Fault triggering The triggering condition is one of the following: 

– an external signal received by the debugger 

 
3 Fault activation 

(predetermination) 

3+ Fault activation (no 

predetermination) 

– a watchpoint hit signaled by the OCD (to the debugger) 

Upon the occurrence of the triggering condition the debugger activates a memory write operation using preset  values 

 
Upon the occurrence of the triggering condition the debugger uses a preset target memory cell address to retrieve its contents 

(via the OCD) 

The debugger applies a data mask to determine the faulty data value to be written into  memory 

4 Fault insertion The debugger transmits to the   OCD: 

– the target memory cell address 

– the data value to be written 



 

 

tion and the actual insertion of the faulty value (see Tables 2 and 3 

for further details). 

The proposed solutions were designed to handle real-time fault 

injection in memory elements, as this is mandatory to reach high 

values of fault coverage, with maximum compatibility and mini- 

mum intrusiveness. However, it is possible to further enhance 

the OCD-FI infrastructure to support architecture-specific issues 

and provisions for extending the basic design were considered. 

Two such extensions were developed for situations where depend- 

ability requirements would demand higher coverage, even if 

degrading performance. Specifically, the OCD-FI (RTREG) extension 

adds real time access to internal registers, and the OCD-FI (EDAC) 

extension enables fault injection on memories protected by hard- 

ware fault tolerance mechanisms. The two OCD-FI scenarios specif- 

ically adapted to evaluate these extensions are presented in 

Section 3.2.4. 

 
3.2.2. Customized debugger 

The customized debugger consists of one controller core and 

two memory banks for data input and output, as represented in 

Fig. 3. It provides full support for the execution of scripted com- 

mands and automatically reacts  to  messages  or  signals  from  the  

OCD. This is an important feature lacking in most debuggers, as it 

is not required for common debug operations. 

The host machine uploads scripts (fault injection campaigns) to 

the debugger input memory and later downloads the trace data, 

taking no part in the fault injection process itself. Direct control 

is possible through specific signals, which may replace the input 

or output memories (or both), as source of commands and destina- 

tion of data. 

The output memory can be used to store not only trace data, but 

also OCD responses and error messages. The input memory size de- 

fines the number of fault experiments that can be executed on a 

single script (campaign), and the output memory size defines the 

amount of trace data that can be stored. The stored data and the 

knowledge of the running application code, enable the exact recon- 

struction of program flow. A communications manager is included 

in the controller core to translate commands into messages, man- 

age the AUX port and store the messages received from the OCD. 

The width of the data buses defines the transmission delay re- 

quired by each message. There are also debugger specific com- 

mands that make it possible to insert delays, react to messages 

from the OCD and autonomously execute bit-flip operations on 

data words. The execution steps required for each fault injection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Customized debugger. 

experiment are listed in Tables 2 and 3, for the offline and real- 

time scenarios. 

The choice between steps 3 and 3+ depends on the possibility of 

predetermining the contents of the target memory cell prior to 

fault insertion, and is made by the fault injection script used. 

 
3.2.3. OCD-FI 

Improving the fault injection performance can also be accom- 

plished by enhancing the functionality of the OCD. The OCD infra- 

structure with fault injection support (OCD-FI) was presented in 

[27,28], and proposes a workbench that is similar to the custom- 

ized debugger described in the previous section. As the debugger 

and target CPU core are identical, the main difference is the pres- 

ence of an extra fault injection (FI) hardware module embedded 

into the OCD circuitry. 

Apart from the setup of fault insertion data (triggering and loca- 

tion) and external analysis of the results, the autonomous OCD-FI 

solution enables full control of fault activation and insertion, with- 

out the need for external signals. Fig. 4 presents a simplified view  

of the full OCD and FI module, including the control signals, data 

paths and registers used during the fault injection   process. 

The thick black arrows represent data exchange with external 

components (bus management modules are not  represented  for  

the sake of simplicity). The thick white  arrows  represent  the  

main OCD-FI internal data paths used; SD represents the setup 

data, TD the trace data and FID the fault injection data. The 

Trigger control signal is used to confirm the occurrence of a 

watchpoint, RW is used for reading and updating the RWA reg- 

isters and Exec for requesting the insertion of the faulty value    

into  memory. 

As our fault model is limited to bit-flip fault insertions, it only 

requires the execution of an XOR operation, between the data read 

by the RWA module immediately before the fault triggering in- 

stant, and the data mask preloaded on the FI module, which defines 

the bit(s) to flip. Due to performance requirements, the data link 

between the FI and RWA modules must be implemented via a ded- 

icated bidirectional bus (FID). 

The FI module reuses the OCD event detection (RCT) and mem- 

ory writing (RWA) capabilities to automatically activate fault 

insertion upon the occurrence of a watchpoint. Once enabled, the    

FI module takes control of the entire OCD-FI infrastructure until 

the fault is inserted. Trace data generation is not affected during 

the entire process, continuing to operate as if a real SEU had 

occurred. 

The FI module was designed to be adaptable to OCD infrastruc- 

tures in general and NEXUS compliant devices in particular. It 

requires the OCD to implement (1) Watchpoint support; (2) Real- 

time memory access and (3) Memory read/write preloading 

capability. 

If the required operations are available, the FI module imple- 

mentation requires no substantial modifications to the OCD infra- 

structure, and is able to read the target memory and modify its 

contents. Using the OCD-FI for autonomous fault injection requires 

preloading  of the target address (memory or register), and     either 

(1) the data to be inserted or (2) a data mask defining the bit(s)       

to flip. If not predetermined, the faulty value can be  generated  

upon the occurrence of the triggering condition. The faulty value    

is subsequently written back to the target cell. The sequence of 

steps to inject a fault is described in Table   4. 

Steps 3 or 3+ are once again chosen by the fault injection script 

that configures the OCD-FI according to the intended scenario, en- 

abling or disabling the predetermination capability. Inserting faults 

into internal registers requires the watchpoint to be replaced by a 

breakpoint, and the FI module to request that normal operation be 

resumed after fault insertion (this signal is ignored when inserting 

faults in real time). 



 

 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  OCD and FI  module. 

 

Table 4 

Fault injection steps using the OCD-FI. 

# Step Description 
 

1 Set-Up The microprocessor is reset and the target application runs from the start 

A fault injection script is downloaded to the  debugger 

A watchpoint is set on the target (on the OCD) 

The OCD-FI fault injection mode is enabled and preloaded with the required data 

2 Fault triggering The  triggering  condition is: 

A watchpoint hit signaled internally by the   OCD-FI 

3 Fault activation (predetermination) Upon the occurrence of the triggering condition the OCD-FI activates a memory write operation using preset values 

3+ Fault activation (no 

predetermination) 

Upon the occurrence of the triggering condition the OCD-FI uses a preset target memory cell address to retrieve its 

contents 

The OCD-FI applies a data mask to determine the faulty data value to be written into memory 

4 Fault insertion The OCD-FI directly inserts the faulty data in the previously addressed memory position 

 

3.2.4. Extensions 

The fault injection environment and methodology described so 

far were designed to handle real-time fault injection on NEXUS 

compliant devices, targeting either unmodified COTS devices or 

those requiring only minor modifications, incurring on minimum 

silicon overhead and no performance penalties. If additional fault 

injection capabilities are required for dependability evaluation, 

the OCD-FI infrastructure can be extended to add extra features, 

or to interface with additional components. In general, such exten- 

sions are adapted to each specific problem, and may degrade per- 

formance and eventually require additional modifications to the 

target CPU or OCD. Two scenarios where such extensions may be 

required are (1) targets equipped with hardware fault tolerance 

mechanisms, and (2) situations where real-time fault injection in 

internal registers is critical. 

 
3.2.4.1. Error detection and correction (EDAC). In many critical sys- 

tems, hardware fault tolerance is implemented by adding EDAC 

mechanisms between microprocessor and memory. Such solutions 

add extra bits to protected memories using special error correcting 

codes (e.g. Hamming codes). EDAC mechanisms generate the extra 

bits on write operations and check them on read operations. 

Depending on the number of extra bits, it is possible to detect 

and correct a variable number of errors [29]. 

To accurately evaluate EDAC-based fault tolerance features, it 

must be possible to emulate SEU effects by inserting single   bit-flip 

errors into memory without affecting any other data or EDAC bits. 

As OCD infrastructures usually access memory through the EDAC 

mechanism, fault injection as envisaged is not possible, since single 

bit-flip errors are automatically corrected. The extension to the 

OCD-FI requires the ability to generate both the data to be written 

into memory and the codes used for error detection and correction. 

Fig. 5 presents the common OCD and CPU memory access buses 

and the alternate configuration required by the OCD-FI (EDAC). 

This extension requires the OCD-FI to be able to use both config- 

urations, operating as a common OCD when being used for debug 

purposes, or when faults target non-protected areas. The OCD-FI 

(EDAC) extension is enabled and configured when the fault injec- 

tion experiment is Set-Up, and should be used whenever the fault 

targets EDAC protected memory areas. 

 
3.2.4.2. Real time register access (RTREG). The problem of real-time 

fault injection on internal registers is more complex and requires 

modification of the microprocessor register file to allow simulta- 

neous read and write operations. The RTREG extension requires 

additional collision control logic and predetermination of the 

faulty value to be inserted, as illustrated in Fig. 6. 

The collision manager must ensure that the fault is injected only 

when the target register is not already being accessed for writing, 

and that the outputs are immediately updated if being accessed for 

reading. Once the triggering signal is received, the OCD-FI (RTREG) 

waits for an opportunity to insert the faulty value into the target 



 

 

 

 

 

 

 

 

 

 
Fig. 5.  Typical and OCD-FI (EDAC) interfaces. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.  Modified register file. 

 
 

register, signaled by the collision manager. This procedure may 

cause problems with some combinations of triggering instants 

and target registers, which may prevent the faulty value insertion 

before the microprocessor accesses the relevant register. Since 

delaying a microprocessor action is undesirable under real time 

operation, the application code must be previously analyzed to ex- 

clude fault experiments that would cause such collisions. This 

mechanism has additional limitations, as it adversely affects the 

microprocessor dynamic performance (i.e. maximum operating 

frequency), and it is not possible to access intensively used regis- 

ters (i.e. program counter). It can however be useful in situations 

where real-time fault injection in internal registers is more impor- 

tant than performance, and where the coverage limitations are 

acceptable. 

 

 
4. Experimental results 

 
4.1. Basic, extended and OCD-FI scenarios 

 
4.1.1. Fault injection campaign execution 

All modules were implemented in VHDL and synthesized using 

Xilinx’s ISE version 7 [30]. All simulations were run on post place- 

and-route models using Modelsim 6 [31]. Synthesis was executed 

identically for all components using balanced area versus perfor- 

mance settings. 

Due to debugger memory limitations, each fault injection cam- 

paign consisted of 10 experiments, injecting one bit-flip fault that 

emulates a single SEU. One hundred campaigns were executed on 

each scenario using our three target applications (MAdder, VSorter, 

XControl) in their normal and fault tolerant versions. Each cam- 

paign required 2 KB of input memory and 256 KB of output mem- 

ory  on  the debugger. 

Tables 5 and 6 present the results of the fault injection cam- 

paigns, classified by scenario and target application. All the scenar- 

ios that use offline fault injection (BOF, BOF+, EOF, EOF+) returned 

exactly the same results, which are presented on the first line of 

Table 5 (OFF row). Fault effects were classified into the following 

categories: 

 
• UERR: undetected error – an erroneous final result not detected 

by the (eventual) fault tolerance routine (all errors will be UERR 

if there is no fault tolerance routine) 

DERR: detected error – the fault tolerance routine detected an 

error during execution. The application ended with an error 

detection signal. 

NERR: no error – the application ended correctly. This result 

includes both the errors that are still present in memory when 

the experiment ended and those overwritten by the running 

application. 

 
Fault classification was performed after campaign execution, 

analyzing the contents of the debugger output memory. Trace 

information and the results of each application were  compared 

with expected values to identify the occurrence of errors and their 

detection. 

The execution of all experiments listed above and the results 

obtained led to the following conclusions, relative to the controlla- 

bility and observability of our proposed solutions: 

 
The instant when the fault is inserted depends upon the delay 

between the occurrence of the trigger condition and the actual 

fault insertion operation. As this delay is constant and known 

for each configuration, it is possible to achieve precise control    

of fault insertion. 

 
Table 5 

Fault injection results (in.%). 
 

Scenario MAdder       VSorter       XControl    
 Non-FT   SW-FT    Non-FT   SW-FT    Non-FT  SW-FT 

 UERR NERR  DERR UERR NERR  UERR NERR  DERR UERR NERR  UERR NERR  DERR UERR NERR  
OFF 19 81  28 13.9 58.1  98 2  97 2 1  Not possible

a
      

BRT 19.4 80.6  28.3 13.8 57.9  98.1 1.9  96.8 2 1.2        
ERT 19.2 80.8  28.1 13.9 58  98 2  96.9 2 1.1        
OCD-FI 19 81  28 13.9 58.1  98 2  97 2 1        
BRT+ 19.5 80.5  28.4 13.8 57.8  98.2 1.8  96.7 1.9 1.4  29.3 70.7  29.1 1.5 69.4  
ERT+ 19.3 80.7  28.2 13.8 58  98.1 1.9  96.8 1.9 1.3  29.6 70.4  28.9 1.2 69.9  
OCD-FI+ 19.1 80.9  28.1 13.9 58  98 2  96.9 1.9 1.2  29.8 70.2  28.8 1.1 70.1  

a 
As the XControl application requires the use of external I/Os, predetermination is not practical, making fault injection campaigns impossible for the indicated scenarios. 

• 

• 

• 



 

 

Table 6 

Occurrence of INC results (in.%). 

classified as inconclusive (INC), and represent the cases where 

the fault injection process was corrupted due to a microprocessor 

write access to the target cell during fault injection. INC results oc- 

cur in all three categories that were previously referred (UERR, DERR 

and NERR). Table 6 presents the percentage of inconclusive results 

found in each scenario. 

help us to understand the  limitations 

 
 

 

 

All experiments can be repeated on similar scenarios (i.e. using 

the same target application), on exactly the same conditions, 

and replicated as often as  necessary. 

It is possible to use the trace information generated by the OCD 

to reconstruct program flow. Fault effect classification can be 

executed via the OCD using trace data and memory   reads. 

 
Overall, our proposed real time methodology allows a high de- 

gree of controllability over the fault injection process and adequate 

observability for fault classification, even when operating in real 

time. 

 
4.1.2. Analysis of fault injection results 

The analysis of the fault injection results leads to some interest- 

ing conclusions relative to software fault tolerance efficiency, and 

to the effects of real-time fault injection. The following conclusions 

are worth of mention: 

 
When faults are injected while the target is halted (offline), the 

fault classification results are identical for all scenarios and 

when using real-time fault injection (with or without the FI 

module), the fault classifications results are only marginally dif- 

ferent from  one  scenario  to another. 

The effects of the injected faults are strongly dependent on the 

target application, and undetected errors are much higher for 

the VSorter application, due to its more intensive use  of  

memory. 

The use of software fault tolerance substantially reduces the 

occurrence of undetected errors, namely for the VSorter (98% 

reduction) and XControl (96% reduction) applications. This 

reductions is less important in the case of MAdder (28% reduc- 

tion), due to the lower refresh rate of the    results. 

The percentage of correct results actually decreases when soft- 

ware fault tolerance is used, due to the larger memory area 

required and subsequent higher vulnerability to memory faults. 

However the percentage of undetected errors decreases 

significantly. 

 
In conclusion, our software fault tolerance provides adequate 

error detection capabilities, but also reduces the probability of cor- 

rect service, if used alone. Its effectiveness would benefit from the 

adoption of fault removal capabilities, possibly by forcing the 

application to restart upon error detection. 

 
4.1.3. Real-time fault injection limitations 

To evaluate the discrepancies between real-time fault injection 

scenarios, additional experiments were carried out, and those 

returning different results were replicated using extra debug oper- 

ations, for this specific purpose. Each experiment was  repeated 

with added data trace or, if necessary, with breakpoints immedi- 

ately after fault insertion. Although this approach would be time- 

consuming for fault classification, it enables  a  finer  analysis  of 

the  fault  injection  methodology.  Erroneous  fault  insertions were 

The OFF configurations always produce the most reliable  

results, as fault injection is performed when the target system   

is halted. 

In some cases the CPU overwrites the target memory cell before 

the fault injection operation is complete. This leads to an erro- 

neous fault injection and these experiments should be dis- 

carded (as an inconclusive result) for dependability evaluation 

purposes. 

INC results become more probable as the delay between fault 

triggering and fault insertion increases, and as such vary within 

the scenarios and configurations that were considered. The use 

of an OCD-FI configuration and predetermination of the faulty 

value significantly reduces the occurrence of this type of results, 

particularly if used  together. 

 
The results obtained confirmed that our proposed solutions are 

an efficient alternative for injecting faults in memory, both in real 

time and offline scenarios. The best configuration depends on the 

target characteristics and dependability requirements. Offline fault 

injection is preferable for simpler scenarios (i.e. MAdder), and real 

time capabilities may be required for scenarios where external I/O 

must be included in the fault injection process (i.e. XControl). 

The minor fault classification inaccuracies caused by real-time 

fault injection should be taken into account when analyzing 

dependability results. The importance of such inaccuracies will  

vary according to the target application and fault classification 

requirements. Overall, the OCD-FI configuration offers consider- 

ably better performance, and predetermination of faulty values 

should also be used, whenever   possible. 

 
 

4.2. Extensions (EDAC, RTREG) to the OCD-FI scenario 

 
4.2.1. OCD-FI (EDAC) 

The target system used for this scenario included the hardware 

EDAC mechanism between CPU and memory. The implementation 

of the OCD-FI (EDAC) extension required modifications to the OCD 

and to its interface. The EDAC mechanism itself requires additional 

logic and memory resources, and the CPU dynamic performance1 is 

slightly degraded. Table 7 presents the results obtained with the 

OCD-FI (EDAC) extension, using only the non-fault-tolerant versions 

of the target applications. 

The execution of fault campaigns using the EDAC extension pro- 

vided the following conclusions: 

 
The OCD-FI (EDAC) extension can be used to automatically 

inject faults into memory blocks protected by hardware fault 

tolerance  mechanisms. 

The use of an EDAC fault tolerance mechanism effectively elim- 

inates the effects of single bit-flip errors on the target system, 

since they are all detected and corrected. 

 
Hardware fault tolerance mechanisms like EDAC are increas- 

ingly used  and  must be adequately tested. The ability  to   directly 

 

1 Dynamic performance refers to the maximum operating frequency, as indicated by 

the VHDL synthesis tool. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Scenario MAdder   VSorter   XControl   
 No FT SW-FT  No FT SW-FT  No FT SW-FT 

OFF 0         
BRT 3.1 4 0.9 2.2 Not possible 

 ERT 1.4 2.3 0.6 1.1 The results shown  above 

OCD-FI 0.2 0.2 0.1 0.2 of real-time fault injection: 

 BRT+ 3 4.8 1.2 2.8 2.1 3.2 

ERT+ 2 3.7 0.8 2.1 1.5 2.4 

OCD-FI+ 0.4 1.7 0.2 1.2 0.3 1.3 

 



 

 

Table 7 

FI results for a target equipped with EDAC    (in.%). 
 

Predet. MAdder     VSorter     XControl  
 DERR UERR NERR INC  DERR UERR NERR INC  DERR UERR NERR INC  

NO 39.6 0 58.8 1.6  98.3 0 0.8 0.9  29.9 0 69.1 1  
YES 39.7 0 59.5 0.8  99 0 0.7 0.3  30 0 69.5 0.5  

 

 

Table 8 

FI results using the OCD-FI (RTREG) extension  (in.%). 
 

Scenario MAdder       VSorter     
 No FT   SW-FT    No FT   SW-FT 

 UERR NERR  DERR UERR NERR  UERR NERR  DERR UERR NERR  
OCD-FI (RTREG) 89 11  62 22 16  60 40  46 14 40  

 

insert faults into memory without disabling its protection is re- 

quired for adequately classifying fault effects. Our proposed solu- 

tion enables to  access the memory via the EDAC mechanism or    

to bypass it, which is useful not only for fault injection, but also    

for debug  and classification. 

 
4.2.2. OCD-FI (RTREG) 

Current OCD implementations do not allow the injection of reg- 

ister faults in real time while the microprocessor is running, but it 

is possible to minimize the time interval during which the micro- 

processor needs to be halted. For real-time fault injection on inter- 

nal registers, the OCD-FI (RTREG) infrastructure can be 

implemented on the target device. One hundred customized fault 

campaigns were selected from a larger set that was designed and 

executed using this infrastructure. All faults were defined to target 

the accumulator register for two reasons: its contents are easier to 

predict using program code knowledge, and it makes a good exam- 

ple, as it is the most intensively used register. All fault insertions 

were manually generated to ensure adequate synchronization. This 

procedure requires a prior study of the target application, in order 

to determine the instruction addresses that can be used as fault 

triggers. A given address will qualify if no change to the target reg- 

ister occurs during the fault insertion. Table 8 presents the results 

obtained using the OCD-FI (RTREG) extension. 

The following conclusions are worth of mention: 

 
When targeting CPU internal registers in real time, triggering 

must be adjusted to ensure that faults can be inserted before 

the running application attempts to write on the target register. 

The instruction addresses that can be used as fault triggers 

depend on the target microprocessor, the running application, 

and the target register. The selection requires precise knowl- 

edge of the application code and instruction delays. For the 

accumulator register, using our workload applications, an aver- 

age of 45% of the code space used qualifies for triggering. 

The use of the RTREG extension shows that the injection of 

faults in internal registers is an important and complex problem. 

Registers are very sensitive to errors, and in critical systems it   

may be necessary to add extra hardware to protect them, and/or     

to more effectively test their sensitivity to faults. In some critical 

systems, adding  on-chip support for  register fault injection may   

be useful and justify the added intrusiveness and performance 

degradation. 

 
4.3. Performance and overhead 

 
4.3.1. Overhead 

A Virtex-2 FPGA was used for experimental analysis due to the 

high implantation of this FPGA family for microprocessor-based 

systems, and the silicon overhead and the maximum operating fre- 

quency achieved are summarized in Table 9. The use of more re- 

cent and/or higher performance FPGAs causes an general increase 

in performance and small variations of the synthesis results, but 

has no effect on the fault injection process and the relative merits 

of each fault injection solution are fundamentally the same on all 

FPGAs. The reference scenario (shadowed line in the table) is the 

case where only the CPU core and basic OCD infrastructure are 

implemented, since this is the typical COTS situation. 

The figures presented in Table 9 refer to a target CPU that is a 

based on a RISC architecture using a limited instruction set. The 

use of more complex microprocessors would lower the OCD over- 

head, since the area required is mostly dependent on the debug 

features implemented, and on target bus widths (that should re- 

main constant). 

In comparative terms, the extra overhead required for enhanced 

input bandwidth on the OCD (ERT) is fairly large (over 6%). Since 

the OCD-FI configuration presents much better results (less than 

0.5%), it is preferable for real-time fault injection purposes. As 

would be expected, the inclusion of an EDAC mechanism slightly 

increases the microprocessor area, and also reduces its maximum 

 

Table 9 

Silicon overhead and  dynamic. 
 

CPU core OCD OCD-FI EDAC RTREG Logic area 

Eq. gates 

Overhead (%) Max f (MHz) 

X     53,926 75.4 37 

X   X  55,018 76.9 32 

X BOF/BRT    71,527 100.0 36 

X BOF/BRT  X  72,619 101.5 32 

X EOF/ERT    76,127 106.4 36 

X  X   71,842 100.4 36 

X  With EDAC ext X  73,184 102.3 32 

X  With RTREG ext  X 76,392 106.8 27 

X  With both ext X X 77,484 108.3 25 

• 

• 



 

 

operating frequency. The degradation of these parameters, im- 

posed by the EDAC and the RTREG versions of the OCD-FI infra- 

structure, are however within acceptable limits, considering that 

they are intended for safety–critical   applications. 

 
4.3.2. Comparison with other fault injection  environments 

For the fault model and the real-time requirements that were 

considered, the most frequently used fault  injection  techniques  

are either software or radiation based, although for our specific tar- 

get system (available as a VHDL model), simulation based tech- 

niques would also be possible. A comparison between these 

approaches and  our proposed  solutions may  be  made  as follows: 

 
Our solutions can be used either in simulation, in a programma- 

ble device (FPGA) or in an integrated circuit (ASIC), fitting the 

technology scenarios that cover the whole product  develop-  

ment cycle. 

Most hardware based real-time fault injection methodologies 

would be more complex and expensive to implement, and 

sometimes require a customized hardware version. Some of 

our proposed solutions require modifications to the target hard- 

ware, but their low overhead facilitates market acceptance. 

Relative to radiation based fault injection or other contactless 

techniques, our proposed solutions have significant advantages 

in terms of experiment controllability and replicability. Precise 

control of fault location and injection instant is possible, facili- 

tating experiment replication and deterministic results. 

Software based techniques are more intrusive, present similar 

fault injection delays,  and offer  more  limited coverage. 

The need to handle erroneous fault classification results is com- 

mon to all fault injection techniques, and more so when operat- 

ing in real time. As in other approaches, problems can be 

minimized using statistical techniques or extra classification 

operations,  whenever possible. 

 
Quantitative comparison of fault injection methodologies is al- 

ways complex, due the specific nature of each  methodology  and  

the considerable differences between target architectures and fault 

injection techniques. As an indicative example, Table 10 presents a 

list of measurable parameters for four fault injection techniques 

that can be used on our target system, considering similarly sized 

fault campaigns, but with unavoidable variations in terms of fault 

model, triggering and results. 

The fault injection scenarios considered were derived from 

those presented on Section 4, adapted to each fault injection tech- 

nique, with the target system being the same for all experiments. 

Execution time represents the total duration of all experiments, 

including setup and data collection, but not data analysis which 

is performed separately in all techniques. Fault coverage repre- 

sents the percentage of memory elements where fault injection  

is possible and controllability represents the minimal element 

where faults can be inserted with precision. Costs were estimated 

for the execution of all experiments, considering the OCD-FI as a 

reference, and including manpower, software and hardware costs. 

It is important to note that the presented values may vary consid- 

erably  for  other  fault  injection  environments  or  targets.  For 

 

Table 10 

Fault injection techniques  comparison. 

instance, fault coverage for SWIFI is lower than normal in our 

example due to memory protection issues and simulation execu- 

tion time and coverage can also vary a lot depending on the soft- 

ware and/or target model   used. 

 
4.3.3. Real time features 

The proposed solutions were designed for real time operation, 

and are particularly advantageous when the fault injection exper- 

iments are designed in such a way, either to increase representa- 

tivity or due to technical   constraints. 

 
As the proposed solutions require no modification to the target 

applications or hardware, all workloads execute exactly as they 

would if not performing fault injections. The OCD infrastruc- 

tures are not used during normal execution, and their use for 

fault injection adds no overheads or   delays. 

Most traditional fault injection techniques are often unable to 

cope with real-time requirements, which are supported by our 

proposed solutions. Simulation based techniques or those 

requiring halts to the  target system are particularly hard  to  

use  on  real-time systems. 

Software based fault injection has been used in some scenarios, 

mainly when it is possible to use the timing characteristics of 

the operating system for near real-time fault injection. How- 

ever, as task scheduling becomes tighter it becomes much  

harder to insert faults without imposing a small delay, with 

consequent loss of performance and    representativity. 

Contactless techniques are non-intrusive by nature, and gener- 

ally won’t affect target performance. However, the experiment 

setup times are much higher due to the complexity of the fault 

injection equipment. The main issue when using these tech- 

niques is usually controllability, being impossible to target spe- 

cific memory cells or adhere to precise fault injection timings. 

The use of OCD for real-time fault injection obviously requires 

these capabilities to be available, but these are becoming 

increasingly popular on modern devices, mainly microproces- 

sor-based  systems. 

When compared with similar NEXUS-based real-time fault 

injection techniques [8], our proposed solutions offer enhanced 

performance, with the subsequent minimization of inconclusive 

experiments. 

 
In short, we presented the reasons why we believe that our pro- 

posed solution has the potential to be the best choice for fault 

injection on critical real-time systems, particularly if included early 

on the system design   process. 

 
5. Conclusions 

 
OCD infrastructures offer a non-intrusive means of accessing 

internal microprocessor resources, and provide a useful mecha- 

nism for triggering and injecting faults, and for subsequently ana- 

lyzing their effects. Performance becomes a fundamental issue  

when dealing with real-time systems, demanding enhanced capa- 

bilities from the debugging tools. Our proposed solutions and 

experimental work brought into evidence that  it  is  possible  to  

use OCD infrastructures for efficient real-time fault injection in 

memory space and internal registers. Our work has shown that it  

is  possible  to  achieve  precise  control  over  the  fault  target, both 

Technique Execution 

time 

Fault 

coverage (%) 

Controllability Cost estimate in time and space. Reusing already available OCD infrastructures  

is  an  added-value  in  terms  of  performance,  development    costs 

OCD-FI 17 min 92 Individual bit 100 

SWIFI 22 min 55 Individual bit 85 

Simulation 1 h52 min 100 Flip-flop 215 

Radiation 3 h30 min 100 Memory block 3000 

and required resources. Execution is generally  fast,  minimizing 

the probability of inconclusive experiments, and enabling high 

fault/second rates, when mass injection of faults is required. Intru- 

siveness is minimal, as neither the target microprocessor nor the 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



 

 

running application are modified, and modification of the OCD is 

offered as an option. As an extra advantage, this solution allows 

the entire fault injection scenario, including environment, fault 

injector and target system, to be implemented on a single FPGA. 

Although other solutions may provide better performance [17], 

they usually require special resources or imply much larger silicon 

overhead. The best configuration depends on dependability 

requirements and on the target architecture – larger bandwidth 

for debug messaging can considerably improve fault injection per- 

formance, and the inclusion of on-chip fault injection capabilities 

can further improve reaction time. The OCD-FI infrastructure can 

be easily extended to cope with target-specific requirements. As 

in many other situations, the best solution calls for a compromise 

between required capabilities and acceptable overhead. 

Some limitations are still present in our proposed solutions – 

coverage is limited to the resources accessible by the OCD, but 

these locations represent a high percentage of the area affected     

by SEUs. The lack of an accepted standard may impose a consider- 

able tuning effort to adapt the debugger and the FI module to each 

particular case, but the trend towards OCD standardization will 

facilitate this effort. Presently, NEXUS [24] is used in commercial 

devices and already provides useful features for fault injection pur- 

poses. However, different technologies may be adopted in the fu- 

ture [21–23]. Assuming that watchpoints and data preloading are 

available, our proposed solutions are flexible enough to be adapted 

to different OCD infrastructures, and are adequate to support real- 

time fault injection in current and future OCD-equipped micropro- 

cessors. Ongoing research is focused on broadening our application 

scope to different architectures and on improving fault coverage 

issues. 
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