

Real-time fault injection using enhanced on-chip debug

infrastructures

André V. Fidalgo, Manuel G. Gericota, Gustavo R. Alves, José M. Ferreira

ABSTRACT

The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks to human lives, to the environment or to

expensive equipment, significantly increased the need for dependable systems, able to detect, tolerate and eventually correct faults. The verification and

validation of such systems is frequently performed via fault injection, using various forms and techniques. However, as electronic devices get smaller and

more complex, controllability and observability issues, and some- times real time constraints, make it harder to apply most conventional fault injection

techniques. This paper proposes a fault injection environment and a scalable methodology to assist the execution of real-time fault injection campaigns,

providing enhanced performance and capabilities. Our proposed solutions are based on the use of common and customized on-chip debug (OCD)

mechanisms, present in many modern electronic devices, with the main objective of enabling the insertion of faults in micro- processor memory

elements with minimum delay and intrusiveness. Different configurations were implemented starting from basic Components Off-The-Shelf (COTS)

microprocessors, equipped with real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD circuitry that

enhance fault injection capabilities and performance. All methodologies and configurations were evaluated and compared concern ing performance gain

and silicon overhead.

Keywords

Dependability, Fault injection, On-chip debug, Real-time systems, Microprocessors

1. Introduction

Most of today’s safety–critical applications require some type of

computer-based device, broadening the application range of

microprocessor systems. As electronic systems increase in com-

plexity and decrease in size, their correct behavior is becoming

harder to guarantee [1]. The higher sensitiveness to noise and

other factors increases the probability of errors, even for devices

used in non-hostile environments. The most frequent hazard

affecting microprocessor systems is usually referred as a Single

Event Upset (SEU) and consists of a change of state of a flip-flop,

induced by an ionizing particle such as a cosmic ray or proton. This

event may change the logical value of memory elements, such as

registers or memory cells [2].

The verification and validation of dependable systems requires

the study of failures and errors in order to evaluate their probabil-

ity of occurrence and subsequent effects. The possibly destructive

nature of a failure and the long error latencies make it difficult to

identify their causes in the operational environment, and recom-

mend the organization of experiments under precisely controlled

conditions. Depending on the system function and architecture,

hardware [3] and software [4] fault tolerance techniques can be

used to minimize the effects of SEUs, enabling the system to pro-

vide acceptable service in their presence. All vulnerable critical

systems should be verified to ensure operation within acceptable

limits in the presence of such events, and validated to check if they

accomplish their intended objectives. Fault injection can be used

both to evaluate fault tolerance implementations and to estimate

fault consequences on non-tolerant systems.

When dealing with microprocessors, the main limitations im-

posed on fault injection are control, internal access, intrusiveness

and performance. Ideally a fault injection methodology should al-

low precise control of fault insertion, both in time and space, com-

plete replicability of experiments, and access to all microprocessor

resources. Simultaneously it should require no modifications to the

target software or hardware, and should execute in real time. As

this is not technically feasible, all fault injection environments

are based on acceptable (or possible) trade-offs. Access to the area

where faults are to be inserted is a major problem, often requiring

either ad hoc [5], intrusive [6], or low-controllability [7] ap-

proaches. The first and second solutions require special hardware

or modifications to running software, offer restricted coverage,

and may be difficult to execute in real-time. The third solution is

usually based on contactless fault injection techniques, making

fault synchronization and replication hard or impossible to guaran-

tee. OCD infrastructures have been used as an efficient alternative

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47139302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to handle such problems [8] and the addition of circuitry to evalu-

ate the vulnerability to SEU effects is increasingly accepted at the

design stage [9].

This paper proposes a set of fault injection solutions enabled by

debug features that are now present in recent microprocessor de-

vices. The proposed fault injection environment was designed to be

non-intrusive and to allow real time emulation of SEU effects in the

microprocessor memory. Real time operation requirements may

indeed justify the use of modified OCD infrastructures in order to

provide better fault injection capabilities and/or performance.

The rationale behind the proposed solutions is that microprocessor

systems dependability would benefit from enhancements aimed at

improving fault injection operations, making them viable from

both economical and technical viewpoints. The modified OCDs pro-

posed in this paper are based on the use of wider data link with an

external debugger, or on the use of a dedicated fault injection mod-

ule, with low overhead and higher autonomy. More intrusive fault

modules were also considered as a way to increase fault coverage

on safety–critical devices, enabling the insertion of precisely con-

trolled faults on internal registers or protected memory.

The next section summarizes the state of the art and prelimin-

ary research. Section 3 presents our proposed solutions, including

the experimental environment and application methodology. Sec-

tion 4 presents the experimental results obtained during the

course of this work. Finally, Section 5 presents the main conclu-

sions, and suggests directions for future research.

2. State of the art

2.1. Real-time fault injection in microprocessors

Real time usually designates systems that must provide ade-

quate response within a specified time window. In this case,

dependability is harder to implement and more troublesome to

evaluate. The correctness of the results must be checked and accu-

rate meeting of deadlines is mandatory, without modifying or

stopping the target system.

Real-time fault injection must be executed with the target sys-

tem running at full speed, with minimum intrusiveness and delays.

Most traditional fault injection approaches cannot be adequately

used under these constraints. Simulation based fault injection

can be useful on early stages of development, but it is often time-

consuming and intrinsically dependent on the quality of the

available model [10,11]. Additionally, it is very difficult to imple-

ment a model that accurately represents all the delays and other

timing aspects, and a different technique must be used once a pro-

totype (or production model) is available. Software fault injection

adds fault insertion routines, causing extra delays and limiting

the fault targets to those areas accessible by the application code.

Although work on this area has shown that it can be used for some

real-time systems [12], it presents considerable limitations in

terms of intrusiveness and coverage. The need to slow down or

stop the running application also makes it inconvenient to apply

most contact fault injection techniques, since they degrade system

performance. Most technical solutions to this problem rely on con-

tactless fault injection [7] or on special dedicated infrastructures

[13], both of which are complex and expensive. Contactless tech-

niques present controllability and replicability problems, concern-

ing precise control of the instant and location of a fault. Dedicated

fault injection infrastructures come together with silicon overhead

and often require special prototype versions of the target system,

hardly or even not adaptable to the final product. Additionally, ac-

cess to internal blocks where faults are more probable, generally

the memory elements and communication buses, is also problem-

atic, particularly without disturbing the running applications.

Recent approaches to real-time fault injection include improved

software techniques [14], halting the target with minimal delay for

near real-time fault injection [15] or taking advantage of recent

FPGA capabilities [16,17]. As many of today’s microprocessors

incorporate dedicated OCD circuitry, designed to operate indepen-

dently of the target system resources, their use for fault injection

purposes is becoming increasingly popular.

2.2. Fault injection via OCD

The OCD implementations present in different families of

microprocessors share common characteristics that form a core

feature set, usually including run control, breakpoint support,

and memory and register access. Some devices offer more ad-

vanced features such as watchpoints, program trace and real time

debug capabilities. In general terms, an OCD is a combination of

hardware and software embedded onto the microprocessor chip,

accessible through an interface port, and usually requiring an

external debugger.

OCD infrastructures provide access to internal resources during

system operation, being an excellent mechanism for modifying

register and/or memory values, i.e. for inserting faults, and subse-

quently retrieving the data necessary to assess the effect of those

faults. In most cases, OCD fault injection techniques rely on halting

the processor, via control signals or breakpoints [18].

The major problem of on-chip debugging is the lack of a consis-

tent set of capabilities and a standard communication interface

across processor architectures. Standard ports (RS232, JTAG) are

commonly used for the physical connection [19,20], but their capa-

bilities vary widely. Several standardization efforts for OCD infra-

structures and interfaces were initiated on recent years [21–23].

IEEE-ISTO 5001, The Nexus 5001 Forum Standard for a Global Embed-

ded Processor Debug Interface [24], was the first of these efforts and

is currently well documented and stable.

To better evaluate the advantages and limitations of real-time

fault injection on NEXUS compliant microprocessors, preliminary

work was performed using COTS devices. This approach was simi-

lar to other research works [8,25], and used a commercial target

microprocessor and a debugger.

The obtained results confirmed most of the expected benefits

and simultaneously identified some shortcomings, both in fault

triggering and performance. It proved that it is possible to insert

faults in memory without affecting the running application and

to use the trace information as an effective means of analyzing

the program flow, before and after fault activation. However, as

the fault injection campaigns must be run on the host machine,

the operating system (Windows or Unix) and physical connection

to the NEXUS compliant debugger (Ethernet or USB) lead to long

and non-deterministic memory access times. The consequence is

the occurrence of experiments with inconclusive results, since in

such cases the fault actually inserted does not emulate a single

bit-flip as intended. Depending on the targeted memory area, the

actual percentage of inconclusive fault insertions could be as high

as 50%, requiring additional debugging and result analysis for val-

idating each experiment.

The triggering source represents an additional source of prob-

lems. The use of trace data proved unreliable due to variable com-

munication delays, making it necessary to use an external trigger

signal. As a consequence, it was impossible to synchronize the fault

insertion and the events of the running application.

To overcome the identified problems, three solutions were

developed to enhance real-time fault injection capabilities: (1) a

debugger customized for fault injection, (2) higher bandwidth be-

tween the debugger and the OCD, and (3) the migration of some

capabilities into the OCD infrastructure itself.

3. Proposed solutions

3.1. Target system

The CPU cores used on the target system were created using the

cpugenerator building tool [26], which produces a customizable

VHDL model of generic RISC cores, allowing configuration of all

buses, interrupt handling, indirect addressing, data and instruction

latency timings, and definition of custom instructions. Three appli-

cations were used as workload: (1) a matrix adder (MAdder), (2) a

vector sorter (VSorter) and (3) a generic LUT-based control algo-

rithm (XControl). All algorithms are memory intensive, can be

adapted to different bus sizes and memory areas, and are relatively

simple to debug. Only XControl requires external stimuli genera-

tion and I/O capabilities on the target. Each application was devel-

oped in two versions: normal and fault tolerant. Fault tolerance

was implemented by duplicating data in memory and performing

each arithmetic operation twice. The comparison of the results ob-

tained from each arithmetic operation provides a limited degree of

fault detection, with some overhead in execution time and mem-

ory requirements. This approach was selected as it can be easily

implemented in most COTS components.

The OCD infrastructure developed for our case study was de-

signed from scratch to be NEXUS compliant. As there is no manda-

tory implementation, we based it on the infrastructure present on

the MPC565 microcontroller, which is a well-documented device.

The version implemented on our target system is NEXUS Class 2

compliant with real-time memory access capability (sometimes

designated as Class 2+ compliant). The OCD interface uses an

AUX port, which provides two message data buses (MDI and

MDO) for OCD data input and output, along with independent

clock and control signals (MCKO, MCKI, MSEI and MSEO). The

OCD infrastructure is divided in three main modules and two bus

access modules as seen on Fig. 1. The thinner arrows represent

the control and status signals and the thicker arrows represent

data and trace information. The FI module represented is not in-

cluded in the original OCD – it is part of the OCD-FI version ex-

plained ahead in Section 3.2.3.

The Bus Snooper and Bus Master modules are responsible for

interfacing with the microprocessor buses. Their implementation

depends on bus configuration and collision management strate-

gies, and should be customized according to the selected configu-

ration architecture.

The Message Queuing and Management (MQM) module imple-

ments the NEXUS message handler and the OCD controller. It

translates all debugging operations into messages and vice versa,

manages the message queues and provides the necessary control

signals to the other modules.

The Read and Write Access (RWA) module is used to access both

OCD registers and CPU resources (memory and registers), and ac-

cess inputs and outputs as directed mapped addresses, as the

microprocessor does.

The Run Control and Trace (RCT) module is responsible for CPU

run control and OCD management. It receives commands from the

MQM and RWA modules and outputs trace data and watchpoint hit

signals.

The complete OCD infrastructure provides a common set of

debugging features and interface options that can be adapted to

different target systems, and upgraded to support additional fea-

tures or functional blocks.

3.2. Fault injection

3.2.1. Environment

Our proposed fault injection solutions were designed to achieve

the following objectives:

Precise control over the fault location and injection instant

Full observability of fault effects.

The possibility of replicating experiments.

Unintrusive to the target application.

Real time operation (i.e. without stopping the target

application).

The experimental environment was designed to implement and

evaluate the various fault injection alternatives, maintaining a

common architecture and reusing most components with mini-

mum modifications, as presented in Fig. 2.

The Input/Output (I/O) module is required only by applications

using external inputs or outputs (e.g. XControl) and the FI module is

implemented only on the OCD-FI configuration. All environment

variants use the same debugger and 32-bit CPU target, differing

only in terms of OCD configuration, namely on the MDI bus band-

width and on the presence/absence of a FI module.

The fault model consists of bit-flip faults, which are inserted at

specific moments during program execution, in order to emulate

the SEU effects. Faults can be injected in all resources accessible

by the OCD, including memory, internal registers and IO registers.

Better performance can be achieved by determining beforehand the

value that will be present on the target memory cell at the fault

insertion instant (herein referred as predetermination), but this

requires:

Complete knowledge of the program flow up to the fault injec-

tion instant.

• Full observability of external inputs.

• Precise control of the fault injection instant and location.

Fig. 1. The OCD infrastructure. Fig. 2. Fault injection environment.

•

•

•

•

•

•

If predetermination cannot be guaranteed, it is necessary to

read the target memory cell data immediately before the fault

injection instant, in order to determine which faulty value shall

be inserted to emulate an SEU. Each scenario offers various alterna-

tives for this purpose, depending on relevant performance

requirements.

Table 1 presents the experimental scenarios that were used

during our fault injection experiments. The name of each scenario

indicates the specific options selected, e.g. (B) basic OCD configura-

tion, (E) extended OCD configuration, (OF) offline fault injection,

(RT) real-time fault injection, (+) no faulty value predetermination

required and (FI) fault injection module present.

The FI Method column specifies if faults are injected with the

microprocessor halted (offline) or operating at full speed (real-

time). The Set-Up delay column indicates the time required for

downloading to the OCD all data necessary to each fault experi-

ment. Set-Up can be performed while the target application is run-

ning, but it must be concluded prior to the occurrence of the

triggering condition. The (fault) insertion delay column indicates

the time interval between the occurrence of the triggering condi-

Table 1

Fault injection scenarios.

Scenario Bandwidth Predetermination of the faulty value Fault injection method Delays (CLK cycles)

 Set-Up Insertion
1 BOF MDI = 2, MDO = 8 YES Offline 22 35
2 BOF+ NO 22 44
3 EOF MDI = 8, MDO = 8 YES 6 9
4 EOF+ NO 6 18
5 BRT MDI = 2, MDO = 8 YES Real time 22 35
6 BRT+ NO 22 44
7 ERT MDI = 8, MDO = 8 YES 6 9
8 ERT+ NO 6 18
9 OCD-FI MDI = 2, MDO = 8 YES 57 2
10 OCD-FI+ NO 57 4

Table 2

Offline fault injection (BOF and EOF).

Step Description

1 Set-Up The microprocessor is reset and the target application runs from the start

A fault injection script is downloaded into the debugger

A breakpoint is set on the target (on the OCD)

2 Fault triggering The triggering condition is one of the following:

3 Fault activation

(predetermination)

3+ Fault activation (no

predetermination)

– an external halt signal received by the debugger

– a breakpoint hit signaled by the OCD (to the debugger)

Upon the occurrence of the triggering condition the debugger activates a memory write operation using preset values

Upon the occurrence of the triggering condition the debugger uses a preset target memory cell address to retrieve its contents

(via the OCD)

The debugger applies a data mask to determine the faulty data value to be written into memory

4 Fault insertion The debugger transmits to the OCD:

– the target memory cell address

– the data value to be written

5 Resume The debugger instructs the target microprocessor to resume execution (via OCD)

Table 3

Real time fault injection (BRT and ERT).

Step Description

1 Set-Up The microprocessor is reset and the target application runs from the start

A fault injection script is downloaded to the debugger

A watchpoint is set on the target (on the OCD)

2 Fault triggering The triggering condition is one of the following:

– an external signal received by the debugger

3 Fault activation

(predetermination)

3+ Fault activation (no

predetermination)

– a watchpoint hit signaled by the OCD (to the debugger)

Upon the occurrence of the triggering condition the debugger activates a memory write operation using preset values

Upon the occurrence of the triggering condition the debugger uses a preset target memory cell address to retrieve its contents

(via the OCD)

The debugger applies a data mask to determine the faulty data value to be written into memory

4 Fault insertion The debugger transmits to the OCD:

– the target memory cell address

– the data value to be written

tion and the actual insertion of the faulty value (see Tables 2 and 3

for further details).

The proposed solutions were designed to handle real-time fault

injection in memory elements, as this is mandatory to reach high

values of fault coverage, with maximum compatibility and mini-

mum intrusiveness. However, it is possible to further enhance

the OCD-FI infrastructure to support architecture-specific issues

and provisions for extending the basic design were considered.

Two such extensions were developed for situations where depend-

ability requirements would demand higher coverage, even if

degrading performance. Specifically, the OCD-FI (RTREG) extension

adds real time access to internal registers, and the OCD-FI (EDAC)

extension enables fault injection on memories protected by hard-

ware fault tolerance mechanisms. The two OCD-FI scenarios specif-

ically adapted to evaluate these extensions are presented in

Section 3.2.4.

3.2.2. Customized debugger

The customized debugger consists of one controller core and

two memory banks for data input and output, as represented in

Fig. 3. It provides full support for the execution of scripted com-

mands and automatically reacts to messages or signals from the

OCD. This is an important feature lacking in most debuggers, as it

is not required for common debug operations.

The host machine uploads scripts (fault injection campaigns) to

the debugger input memory and later downloads the trace data,

taking no part in the fault injection process itself. Direct control

is possible through specific signals, which may replace the input

or output memories (or both), as source of commands and destina-

tion of data.

The output memory can be used to store not only trace data, but

also OCD responses and error messages. The input memory size de-

fines the number of fault experiments that can be executed on a

single script (campaign), and the output memory size defines the

amount of trace data that can be stored. The stored data and the

knowledge of the running application code, enable the exact recon-

struction of program flow. A communications manager is included

in the controller core to translate commands into messages, man-

age the AUX port and store the messages received from the OCD.

The width of the data buses defines the transmission delay re-

quired by each message. There are also debugger specific com-

mands that make it possible to insert delays, react to messages

from the OCD and autonomously execute bit-flip operations on

data words. The execution steps required for each fault injection

Fig. 3. Customized debugger.

experiment are listed in Tables 2 and 3, for the offline and real-

time scenarios.

The choice between steps 3 and 3+ depends on the possibility of

predetermining the contents of the target memory cell prior to

fault insertion, and is made by the fault injection script used.

3.2.3. OCD-FI

Improving the fault injection performance can also be accom-

plished by enhancing the functionality of the OCD. The OCD infra-

structure with fault injection support (OCD-FI) was presented in

[27,28], and proposes a workbench that is similar to the custom-

ized debugger described in the previous section. As the debugger

and target CPU core are identical, the main difference is the pres-

ence of an extra fault injection (FI) hardware module embedded

into the OCD circuitry.

Apart from the setup of fault insertion data (triggering and loca-

tion) and external analysis of the results, the autonomous OCD-FI

solution enables full control of fault activation and insertion, with-

out the need for external signals. Fig. 4 presents a simplified view

of the full OCD and FI module, including the control signals, data

paths and registers used during the fault injection process.

The thick black arrows represent data exchange with external

components (bus management modules are not represented for

the sake of simplicity). The thick white arrows represent the

main OCD-FI internal data paths used; SD represents the setup

data, TD the trace data and FID the fault injection data. The

Trigger control signal is used to confirm the occurrence of a

watchpoint, RW is used for reading and updating the RWA reg-

isters and Exec for requesting the insertion of the faulty value

into memory.

As our fault model is limited to bit-flip fault insertions, it only

requires the execution of an XOR operation, between the data read

by the RWA module immediately before the fault triggering in-

stant, and the data mask preloaded on the FI module, which defines

the bit(s) to flip. Due to performance requirements, the data link

between the FI and RWA modules must be implemented via a ded-

icated bidirectional bus (FID).

The FI module reuses the OCD event detection (RCT) and mem-

ory writing (RWA) capabilities to automatically activate fault

insertion upon the occurrence of a watchpoint. Once enabled, the

FI module takes control of the entire OCD-FI infrastructure until

the fault is inserted. Trace data generation is not affected during

the entire process, continuing to operate as if a real SEU had

occurred.

The FI module was designed to be adaptable to OCD infrastruc-

tures in general and NEXUS compliant devices in particular. It

requires the OCD to implement (1) Watchpoint support; (2) Real-

time memory access and (3) Memory read/write preloading

capability.

If the required operations are available, the FI module imple-

mentation requires no substantial modifications to the OCD infra-

structure, and is able to read the target memory and modify its

contents. Using the OCD-FI for autonomous fault injection requires

preloading of the target address (memory or register), and either

(1) the data to be inserted or (2) a data mask defining the bit(s)

to flip. If not predetermined, the faulty value can be generated

upon the occurrence of the triggering condition. The faulty value

is subsequently written back to the target cell. The sequence of

steps to inject a fault is described in Table 4.

Steps 3 or 3+ are once again chosen by the fault injection script

that configures the OCD-FI according to the intended scenario, en-

abling or disabling the predetermination capability. Inserting faults

into internal registers requires the watchpoint to be replaced by a

breakpoint, and the FI module to request that normal operation be

resumed after fault insertion (this signal is ignored when inserting

faults in real time).

Fig. 4. OCD and FI module.

Table 4

Fault injection steps using the OCD-FI.

Step Description

1 Set-Up The microprocessor is reset and the target application runs from the start

A fault injection script is downloaded to the debugger

A watchpoint is set on the target (on the OCD)

The OCD-FI fault injection mode is enabled and preloaded with the required data

2 Fault triggering The triggering condition is:

A watchpoint hit signaled internally by the OCD-FI

3 Fault activation (predetermination) Upon the occurrence of the triggering condition the OCD-FI activates a memory write operation using preset values

3+ Fault activation (no

predetermination)

Upon the occurrence of the triggering condition the OCD-FI uses a preset target memory cell address to retrieve its

contents

The OCD-FI applies a data mask to determine the faulty data value to be written into memory

4 Fault insertion The OCD-FI directly inserts the faulty data in the previously addressed memory position

3.2.4. Extensions

The fault injection environment and methodology described so

far were designed to handle real-time fault injection on NEXUS

compliant devices, targeting either unmodified COTS devices or

those requiring only minor modifications, incurring on minimum

silicon overhead and no performance penalties. If additional fault

injection capabilities are required for dependability evaluation,

the OCD-FI infrastructure can be extended to add extra features,

or to interface with additional components. In general, such exten-

sions are adapted to each specific problem, and may degrade per-

formance and eventually require additional modifications to the

target CPU or OCD. Two scenarios where such extensions may be

required are (1) targets equipped with hardware fault tolerance

mechanisms, and (2) situations where real-time fault injection in

internal registers is critical.

3.2.4.1. Error detection and correction (EDAC). In many critical sys-

tems, hardware fault tolerance is implemented by adding EDAC

mechanisms between microprocessor and memory. Such solutions

add extra bits to protected memories using special error correcting

codes (e.g. Hamming codes). EDAC mechanisms generate the extra

bits on write operations and check them on read operations.

Depending on the number of extra bits, it is possible to detect

and correct a variable number of errors [29].

To accurately evaluate EDAC-based fault tolerance features, it

must be possible to emulate SEU effects by inserting single bit-flip

errors into memory without affecting any other data or EDAC bits.

As OCD infrastructures usually access memory through the EDAC

mechanism, fault injection as envisaged is not possible, since single

bit-flip errors are automatically corrected. The extension to the

OCD-FI requires the ability to generate both the data to be written

into memory and the codes used for error detection and correction.

Fig. 5 presents the common OCD and CPU memory access buses

and the alternate configuration required by the OCD-FI (EDAC).

This extension requires the OCD-FI to be able to use both config-

urations, operating as a common OCD when being used for debug

purposes, or when faults target non-protected areas. The OCD-FI

(EDAC) extension is enabled and configured when the fault injec-

tion experiment is Set-Up, and should be used whenever the fault

targets EDAC protected memory areas.

3.2.4.2. Real time register access (RTREG). The problem of real-time

fault injection on internal registers is more complex and requires

modification of the microprocessor register file to allow simulta-

neous read and write operations. The RTREG extension requires

additional collision control logic and predetermination of the

faulty value to be inserted, as illustrated in Fig. 6.

The collision manager must ensure that the fault is injected only

when the target register is not already being accessed for writing,

and that the outputs are immediately updated if being accessed for

reading. Once the triggering signal is received, the OCD-FI (RTREG)

waits for an opportunity to insert the faulty value into the target

Fig. 5. Typical and OCD-FI (EDAC) interfaces.

Fig. 6. Modified register file.

register, signaled by the collision manager. This procedure may

cause problems with some combinations of triggering instants

and target registers, which may prevent the faulty value insertion

before the microprocessor accesses the relevant register. Since

delaying a microprocessor action is undesirable under real time

operation, the application code must be previously analyzed to ex-

clude fault experiments that would cause such collisions. This

mechanism has additional limitations, as it adversely affects the

microprocessor dynamic performance (i.e. maximum operating

frequency), and it is not possible to access intensively used regis-

ters (i.e. program counter). It can however be useful in situations

where real-time fault injection in internal registers is more impor-

tant than performance, and where the coverage limitations are

acceptable.

4. Experimental results

4.1. Basic, extended and OCD-FI scenarios

4.1.1. Fault injection campaign execution

All modules were implemented in VHDL and synthesized using

Xilinx’s ISE version 7 [30]. All simulations were run on post place-

and-route models using Modelsim 6 [31]. Synthesis was executed

identically for all components using balanced area versus perfor-

mance settings.

Due to debugger memory limitations, each fault injection cam-

paign consisted of 10 experiments, injecting one bit-flip fault that

emulates a single SEU. One hundred campaigns were executed on

each scenario using our three target applications (MAdder, VSorter,

XControl) in their normal and fault tolerant versions. Each cam-

paign required 2 KB of input memory and 256 KB of output mem-

ory on the debugger.

Tables 5 and 6 present the results of the fault injection cam-

paigns, classified by scenario and target application. All the scenar-

ios that use offline fault injection (BOF, BOF+, EOF, EOF+) returned

exactly the same results, which are presented on the first line of

Table 5 (OFF row). Fault effects were classified into the following

categories:

• UERR: undetected error – an erroneous final result not detected

by the (eventual) fault tolerance routine (all errors will be UERR

if there is no fault tolerance routine)

DERR: detected error – the fault tolerance routine detected an

error during execution. The application ended with an error

detection signal.

NERR: no error – the application ended correctly. This result

includes both the errors that are still present in memory when

the experiment ended and those overwritten by the running

application.

Fault classification was performed after campaign execution,

analyzing the contents of the debugger output memory. Trace

information and the results of each application were compared

with expected values to identify the occurrence of errors and their

detection.

The execution of all experiments listed above and the results

obtained led to the following conclusions, relative to the controlla-

bility and observability of our proposed solutions:

The instant when the fault is inserted depends upon the delay

between the occurrence of the trigger condition and the actual

fault insertion operation. As this delay is constant and known

for each configuration, it is possible to achieve precise control

of fault insertion.

Table 5

Fault injection results (in.%).

Scenario MAdder VSorter XControl
 Non-FT SW-FT Non-FT SW-FT Non-FT SW-FT

 UERR NERR DERR UERR NERR UERR NERR DERR UERR NERR UERR NERR DERR UERR NERR
OFF 19 81 28 13.9 58.1 98 2 97 2 1 Not possible

a

BRT 19.4 80.6 28.3 13.8 57.9 98.1 1.9 96.8 2 1.2
ERT 19.2 80.8 28.1 13.9 58 98 2 96.9 2 1.1
OCD-FI 19 81 28 13.9 58.1 98 2 97 2 1
BRT+ 19.5 80.5 28.4 13.8 57.8 98.2 1.8 96.7 1.9 1.4 29.3 70.7 29.1 1.5 69.4
ERT+ 19.3 80.7 28.2 13.8 58 98.1 1.9 96.8 1.9 1.3 29.6 70.4 28.9 1.2 69.9
OCD-FI+ 19.1 80.9 28.1 13.9 58 98 2 96.9 1.9 1.2 29.8 70.2 28.8 1.1 70.1

a
As the XControl application requires the use of external I/Os, predetermination is not practical, making fault injection campaigns impossible for the indicated scenarios.

•

•

•

Table 6

Occurrence of INC results (in.%).

classified as inconclusive (INC), and represent the cases where

the fault injection process was corrupted due to a microprocessor

write access to the target cell during fault injection. INC results oc-

cur in all three categories that were previously referred (UERR, DERR

and NERR). Table 6 presents the percentage of inconclusive results

found in each scenario.

help us to understand the limitations

All experiments can be repeated on similar scenarios (i.e. using

the same target application), on exactly the same conditions,

and replicated as often as necessary.

It is possible to use the trace information generated by the OCD

to reconstruct program flow. Fault effect classification can be

executed via the OCD using trace data and memory reads.

Overall, our proposed real time methodology allows a high de-

gree of controllability over the fault injection process and adequate

observability for fault classification, even when operating in real

time.

4.1.2. Analysis of fault injection results

The analysis of the fault injection results leads to some interest-

ing conclusions relative to software fault tolerance efficiency, and

to the effects of real-time fault injection. The following conclusions

are worth of mention:

When faults are injected while the target is halted (offline), the

fault classification results are identical for all scenarios and

when using real-time fault injection (with or without the FI

module), the fault classifications results are only marginally dif-

ferent from one scenario to another.

The effects of the injected faults are strongly dependent on the

target application, and undetected errors are much higher for

the VSorter application, due to its more intensive use of

memory.

The use of software fault tolerance substantially reduces the

occurrence of undetected errors, namely for the VSorter (98%

reduction) and XControl (96% reduction) applications. This

reductions is less important in the case of MAdder (28% reduc-

tion), due to the lower refresh rate of the results.

The percentage of correct results actually decreases when soft-

ware fault tolerance is used, due to the larger memory area

required and subsequent higher vulnerability to memory faults.

However the percentage of undetected errors decreases

significantly.

In conclusion, our software fault tolerance provides adequate

error detection capabilities, but also reduces the probability of cor-

rect service, if used alone. Its effectiveness would benefit from the

adoption of fault removal capabilities, possibly by forcing the

application to restart upon error detection.

4.1.3. Real-time fault injection limitations

To evaluate the discrepancies between real-time fault injection

scenarios, additional experiments were carried out, and those

returning different results were replicated using extra debug oper-

ations, for this specific purpose. Each experiment was repeated

with added data trace or, if necessary, with breakpoints immedi-

ately after fault insertion. Although this approach would be time-

consuming for fault classification, it enables a finer analysis of

the fault injection methodology. Erroneous fault insertions were

The OFF configurations always produce the most reliable

results, as fault injection is performed when the target system

is halted.

In some cases the CPU overwrites the target memory cell before

the fault injection operation is complete. This leads to an erro-

neous fault injection and these experiments should be dis-

carded (as an inconclusive result) for dependability evaluation

purposes.

INC results become more probable as the delay between fault

triggering and fault insertion increases, and as such vary within

the scenarios and configurations that were considered. The use

of an OCD-FI configuration and predetermination of the faulty

value significantly reduces the occurrence of this type of results,

particularly if used together.

The results obtained confirmed that our proposed solutions are

an efficient alternative for injecting faults in memory, both in real

time and offline scenarios. The best configuration depends on the

target characteristics and dependability requirements. Offline fault

injection is preferable for simpler scenarios (i.e. MAdder), and real

time capabilities may be required for scenarios where external I/O

must be included in the fault injection process (i.e. XControl).

The minor fault classification inaccuracies caused by real-time

fault injection should be taken into account when analyzing

dependability results. The importance of such inaccuracies will

vary according to the target application and fault classification

requirements. Overall, the OCD-FI configuration offers consider-

ably better performance, and predetermination of faulty values

should also be used, whenever possible.

4.2. Extensions (EDAC, RTREG) to the OCD-FI scenario

4.2.1. OCD-FI (EDAC)

The target system used for this scenario included the hardware

EDAC mechanism between CPU and memory. The implementation

of the OCD-FI (EDAC) extension required modifications to the OCD

and to its interface. The EDAC mechanism itself requires additional

logic and memory resources, and the CPU dynamic performance1 is

slightly degraded. Table 7 presents the results obtained with the

OCD-FI (EDAC) extension, using only the non-fault-tolerant versions

of the target applications.

The execution of fault campaigns using the EDAC extension pro-

vided the following conclusions:

The OCD-FI (EDAC) extension can be used to automatically

inject faults into memory blocks protected by hardware fault

tolerance mechanisms.

The use of an EDAC fault tolerance mechanism effectively elim-

inates the effects of single bit-flip errors on the target system,

since they are all detected and corrected.

Hardware fault tolerance mechanisms like EDAC are increas-

ingly used and must be adequately tested. The ability to directly

1 Dynamic performance refers to the maximum operating frequency, as indicated by

the VHDL synthesis tool.

•

•

•

•

•

•

•

•

•

•

•

Scenario MAdder VSorter XControl
 No FT SW-FT No FT SW-FT No FT SW-FT

OFF 0
BRT 3.1 4 0.9 2.2 Not possible

 ERT 1.4 2.3 0.6 1.1 The results shown above

OCD-FI 0.2 0.2 0.1 0.2 of real-time fault injection:

 BRT+ 3 4.8 1.2 2.8 2.1 3.2

ERT+ 2 3.7 0.8 2.1 1.5 2.4

OCD-FI+ 0.4 1.7 0.2 1.2 0.3 1.3

Table 7

FI results for a target equipped with EDAC (in.%).

Predet. MAdder VSorter XControl
 DERR UERR NERR INC DERR UERR NERR INC DERR UERR NERR INC

NO 39.6 0 58.8 1.6 98.3 0 0.8 0.9 29.9 0 69.1 1
YES 39.7 0 59.5 0.8 99 0 0.7 0.3 30 0 69.5 0.5

Table 8

FI results using the OCD-FI (RTREG) extension (in.%).

Scenario MAdder VSorter
 No FT SW-FT No FT SW-FT

 UERR NERR DERR UERR NERR UERR NERR DERR UERR NERR
OCD-FI (RTREG) 89 11 62 22 16 60 40 46 14 40

insert faults into memory without disabling its protection is re-

quired for adequately classifying fault effects. Our proposed solu-

tion enables to access the memory via the EDAC mechanism or

to bypass it, which is useful not only for fault injection, but also

for debug and classification.

4.2.2. OCD-FI (RTREG)

Current OCD implementations do not allow the injection of reg-

ister faults in real time while the microprocessor is running, but it

is possible to minimize the time interval during which the micro-

processor needs to be halted. For real-time fault injection on inter-

nal registers, the OCD-FI (RTREG) infrastructure can be

implemented on the target device. One hundred customized fault

campaigns were selected from a larger set that was designed and

executed using this infrastructure. All faults were defined to target

the accumulator register for two reasons: its contents are easier to

predict using program code knowledge, and it makes a good exam-

ple, as it is the most intensively used register. All fault insertions

were manually generated to ensure adequate synchronization. This

procedure requires a prior study of the target application, in order

to determine the instruction addresses that can be used as fault

triggers. A given address will qualify if no change to the target reg-

ister occurs during the fault insertion. Table 8 presents the results

obtained using the OCD-FI (RTREG) extension.

The following conclusions are worth of mention:

When targeting CPU internal registers in real time, triggering

must be adjusted to ensure that faults can be inserted before

the running application attempts to write on the target register.

The instruction addresses that can be used as fault triggers

depend on the target microprocessor, the running application,

and the target register. The selection requires precise knowl-

edge of the application code and instruction delays. For the

accumulator register, using our workload applications, an aver-

age of 45% of the code space used qualifies for triggering.

The use of the RTREG extension shows that the injection of

faults in internal registers is an important and complex problem.

Registers are very sensitive to errors, and in critical systems it

may be necessary to add extra hardware to protect them, and/or

to more effectively test their sensitivity to faults. In some critical

systems, adding on-chip support for register fault injection may

be useful and justify the added intrusiveness and performance

degradation.

4.3. Performance and overhead

4.3.1. Overhead

A Virtex-2 FPGA was used for experimental analysis due to the

high implantation of this FPGA family for microprocessor-based

systems, and the silicon overhead and the maximum operating fre-

quency achieved are summarized in Table 9. The use of more re-

cent and/or higher performance FPGAs causes an general increase

in performance and small variations of the synthesis results, but

has no effect on the fault injection process and the relative merits

of each fault injection solution are fundamentally the same on all

FPGAs. The reference scenario (shadowed line in the table) is the

case where only the CPU core and basic OCD infrastructure are

implemented, since this is the typical COTS situation.

The figures presented in Table 9 refer to a target CPU that is a

based on a RISC architecture using a limited instruction set. The

use of more complex microprocessors would lower the OCD over-

head, since the area required is mostly dependent on the debug

features implemented, and on target bus widths (that should re-

main constant).

In comparative terms, the extra overhead required for enhanced

input bandwidth on the OCD (ERT) is fairly large (over 6%). Since

the OCD-FI configuration presents much better results (less than

0.5%), it is preferable for real-time fault injection purposes. As

would be expected, the inclusion of an EDAC mechanism slightly

increases the microprocessor area, and also reduces its maximum

Table 9

Silicon overhead and dynamic.

CPU core OCD OCD-FI EDAC RTREG Logic area

Eq. gates

Overhead (%) Max f (MHz)

X 53,926 75.4 37

X X 55,018 76.9 32

X BOF/BRT 71,527 100.0 36

X BOF/BRT X 72,619 101.5 32

X EOF/ERT 76,127 106.4 36

X X 71,842 100.4 36

X With EDAC ext X 73,184 102.3 32

X With RTREG ext X 76,392 106.8 27

X With both ext X X 77,484 108.3 25

•

•

operating frequency. The degradation of these parameters, im-

posed by the EDAC and the RTREG versions of the OCD-FI infra-

structure, are however within acceptable limits, considering that

they are intended for safety–critical applications.

4.3.2. Comparison with other fault injection environments

For the fault model and the real-time requirements that were

considered, the most frequently used fault injection techniques

are either software or radiation based, although for our specific tar-

get system (available as a VHDL model), simulation based tech-

niques would also be possible. A comparison between these

approaches and our proposed solutions may be made as follows:

Our solutions can be used either in simulation, in a programma-

ble device (FPGA) or in an integrated circuit (ASIC), fitting the

technology scenarios that cover the whole product develop-

ment cycle.

Most hardware based real-time fault injection methodologies

would be more complex and expensive to implement, and

sometimes require a customized hardware version. Some of

our proposed solutions require modifications to the target hard-

ware, but their low overhead facilitates market acceptance.

Relative to radiation based fault injection or other contactless

techniques, our proposed solutions have significant advantages

in terms of experiment controllability and replicability. Precise

control of fault location and injection instant is possible, facili-

tating experiment replication and deterministic results.

Software based techniques are more intrusive, present similar

fault injection delays, and offer more limited coverage.

The need to handle erroneous fault classification results is com-

mon to all fault injection techniques, and more so when operat-

ing in real time. As in other approaches, problems can be

minimized using statistical techniques or extra classification

operations, whenever possible.

Quantitative comparison of fault injection methodologies is al-

ways complex, due the specific nature of each methodology and

the considerable differences between target architectures and fault

injection techniques. As an indicative example, Table 10 presents a

list of measurable parameters for four fault injection techniques

that can be used on our target system, considering similarly sized

fault campaigns, but with unavoidable variations in terms of fault

model, triggering and results.

The fault injection scenarios considered were derived from

those presented on Section 4, adapted to each fault injection tech-

nique, with the target system being the same for all experiments.

Execution time represents the total duration of all experiments,

including setup and data collection, but not data analysis which

is performed separately in all techniques. Fault coverage repre-

sents the percentage of memory elements where fault injection

is possible and controllability represents the minimal element

where faults can be inserted with precision. Costs were estimated

for the execution of all experiments, considering the OCD-FI as a

reference, and including manpower, software and hardware costs.

It is important to note that the presented values may vary consid-

erably for other fault injection environments or targets. For

Table 10

Fault injection techniques comparison.

instance, fault coverage for SWIFI is lower than normal in our

example due to memory protection issues and simulation execu-

tion time and coverage can also vary a lot depending on the soft-

ware and/or target model used.

4.3.3. Real time features

The proposed solutions were designed for real time operation,

and are particularly advantageous when the fault injection exper-

iments are designed in such a way, either to increase representa-

tivity or due to technical constraints.

As the proposed solutions require no modification to the target

applications or hardware, all workloads execute exactly as they

would if not performing fault injections. The OCD infrastruc-

tures are not used during normal execution, and their use for

fault injection adds no overheads or delays.

Most traditional fault injection techniques are often unable to

cope with real-time requirements, which are supported by our

proposed solutions. Simulation based techniques or those

requiring halts to the target system are particularly hard to

use on real-time systems.

Software based fault injection has been used in some scenarios,

mainly when it is possible to use the timing characteristics of

the operating system for near real-time fault injection. How-

ever, as task scheduling becomes tighter it becomes much

harder to insert faults without imposing a small delay, with

consequent loss of performance and representativity.

Contactless techniques are non-intrusive by nature, and gener-

ally won’t affect target performance. However, the experiment

setup times are much higher due to the complexity of the fault

injection equipment. The main issue when using these tech-

niques is usually controllability, being impossible to target spe-

cific memory cells or adhere to precise fault injection timings.

The use of OCD for real-time fault injection obviously requires

these capabilities to be available, but these are becoming

increasingly popular on modern devices, mainly microproces-

sor-based systems.

When compared with similar NEXUS-based real-time fault

injection techniques [8], our proposed solutions offer enhanced

performance, with the subsequent minimization of inconclusive

experiments.

In short, we presented the reasons why we believe that our pro-

posed solution has the potential to be the best choice for fault

injection on critical real-time systems, particularly if included early

on the system design process.

5. Conclusions

OCD infrastructures offer a non-intrusive means of accessing

internal microprocessor resources, and provide a useful mecha-

nism for triggering and injecting faults, and for subsequently ana-

lyzing their effects. Performance becomes a fundamental issue

when dealing with real-time systems, demanding enhanced capa-

bilities from the debugging tools. Our proposed solutions and

experimental work brought into evidence that it is possible to

use OCD infrastructures for efficient real-time fault injection in

memory space and internal registers. Our work has shown that it

is possible to achieve precise control over the fault target, both

Technique Execution

time

Fault

coverage (%)

Controllability Cost estimate in time and space. Reusing already available OCD infrastructures

is an added-value in terms of performance, development costs

OCD-FI 17 min 92 Individual bit 100

SWIFI 22 min 55 Individual bit 85

Simulation 1 h52 min 100 Flip-flop 215

Radiation 3 h30 min 100 Memory block 3000

and required resources. Execution is generally fast, minimizing

the probability of inconclusive experiments, and enabling high

fault/second rates, when mass injection of faults is required. Intru-

siveness is minimal, as neither the target microprocessor nor the

•

•

•

•

•

•

•

•

•

•

•

running application are modified, and modification of the OCD is

offered as an option. As an extra advantage, this solution allows

the entire fault injection scenario, including environment, fault

injector and target system, to be implemented on a single FPGA.

Although other solutions may provide better performance [17],

they usually require special resources or imply much larger silicon

overhead. The best configuration depends on dependability

requirements and on the target architecture – larger bandwidth

for debug messaging can considerably improve fault injection per-

formance, and the inclusion of on-chip fault injection capabilities

can further improve reaction time. The OCD-FI infrastructure can

be easily extended to cope with target-specific requirements. As

in many other situations, the best solution calls for a compromise

between required capabilities and acceptable overhead.

Some limitations are still present in our proposed solutions –

coverage is limited to the resources accessible by the OCD, but

these locations represent a high percentage of the area affected

by SEUs. The lack of an accepted standard may impose a consider-

able tuning effort to adapt the debugger and the FI module to each

particular case, but the trend towards OCD standardization will

facilitate this effort. Presently, NEXUS [24] is used in commercial

devices and already provides useful features for fault injection pur-

poses. However, different technologies may be adopted in the fu-

ture [21–23]. Assuming that watchpoints and data preloading are

available, our proposed solutions are flexible enough to be adapted

to different OCD infrastructures, and are adequate to support real-

time fault injection in current and future OCD-equipped micropro-

cessors. Ongoing research is focused on broadening our application

scope to different architectures and on improving fault coverage

issues.

References

[1] M. Rebaudengo, M.S. Reorda, M. Violante, B. Nicolescu, R. Velazco, Coping with

SEUs/SETs in microprocessors by means of low-cost solutions: a comparison

study, IEEE Trans. Nucl. Sci. 49 (3) (2002).

[2] R. Velazco, F. Franco, Single event effects on digital integrated circuits: origins

and mitigation techniques, in: IEEE International Symposium on Industrial

Electronics, Vigo, Spain, June 2007.

[3] J. Gaisler, A portable and fault-tolerant microprocessor based on the SPARC V8

architecture, in: International Conference on Dependable Systems and

Networks, June 2002.

[4] B. Nicolescu, Y. Savaria, R. Velazco, Software detection mechanisms providing

full coverage against single bit-flip faults, IEEE Trans. Nucl. Sci. 51 (6) (2004)

(December).

[5] M.S. Reorda, L. Sterpone, M. Violante, M. Garcia, C. Ongil, L. Entrena, Fault

Injection-based reliability evaluation of SoPCs, in: 11th IEEE European Test

Symposium, Southampton, UK, May 2006.

[6] C. Ongil, M. Valderas, M. Garcia, L. Entrena, Autonomous fault emulation: a

new FPGA-based acceleration system for hardness evaluation, IEEE Trans. Nucl.

Sci. 54 (1) (2007) (February).

[7] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, G.H. Leber, Comparison of

physical and software-implemented fault injection techniques, IEEE Trans.

Comput. 52 (9) (2003) (September).

[8] P. Yuste, D. de Andrés, L. Lemus, J.J. Serrano and P.J. Gil, ‘‘INERTE: Integrated

NExus-Based Real-Time Fault Injection Tool for Embedded Systems’’, The

International Conference on Dependable Systems and Networks, June 2003.

[9] B. Rahbaran, A. Steininger e T. Handl, ‘‘Built-in fault injection in hardware – the

FIDYCO example’’, Second IEEE International Workshop on Electronic Design,

Test and Applications (Delta’04), pp. 327-332, Perth, Australia, Janeiro 2004.

[10] J. Gracia, J.C. Baraza, D. Gil and P.J. Gil, ‘‘Comparison and application of

different VHDL-based fault injection techniques’’, IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, October 2001.

[11] S. Misera, H.T. Vierhausa, A. Siebera, Simulated fault injections and their

acceleration in SystemC, Microprocess. Microsyst. 32 (5–6) (2008). August.

[12] H. Madeira, R. R. Some, F. Moreira, D. Costa, D. Rennels, Experimental

evaluation of a COTS system for space applications, in: International

Conference on Dependable Systems and Networks, June 2002.

[13] R.J. Martínez, P.J. Gil, G. Martín, C. Pérez, J.J. Serrano, Experimental validation of

high-speed fault-tolerant systems using physical fault injection, in: 7th IFIP

Working Conference on Dependable Computing for Critical Applications,

January 1999.

[14] R. Moraes, J. Duraes, R. Barbosa, E. Martins, H. Madeira, Experimental risk

assessment and comparison using software fault injection, in: 37th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks,

2007, Edinburgh, Scotland, 25–28 June 2007, pp. 512–521.

[15] M.P. García, C.L. Ongil, M.G. Valderas, L. Entrena, A rapid fault injection

approach for measuring SEU sensitivity in complex processors, in: 13th IEEE

International On-Line Testing Symposium (IOLTS 2007), Heraklion, Crete,

Greece, 8–11 July 2007, pp. 101–106.

[16] L. Sterpone, M. Violante, A new partial reconfiguration-based fault-injection

system to evaluate SEU effects in SRAM-based FPGAs, IEEE Trans. Nucl. Sci. 54

(4) (2007) 965–970 (Part 2, August).

[17] M.G. Valderas, P. Peronnard, C.L. Ongil, R. Ecoffet, F. Bezerra, R. Velazco, Two

complementary approaches for studying the effects of SEUs on digital

processors, IEEE Transactions on Nuclear Science 54 (4) (2007) 924–928.

August, Part 2.

[18] J. Vinter, O. Hannius, T. Norlander, P. Folkesson, J. Karlsson, Experimental

dependability evaluation of a fail-bounded jet engine control system for

unmanned aerial vehicles, in: International Conference on Dependable

Systems and Networks, June 2005.

[19] C. MacNamee, B. Heffernan, Emerging on-chip debugging techniques for real-

time embedded systems, Computing and Control Engineering Journal (2000)

(December).

[20] M. Zenha-Rela, J.C. Cunha, L.E. Santos, M. Gameiro, P. Gonçalves, G. Alves, A.

Fidalgo, P. Fortuna, R. Maia, L. Henriques, D. Costa, Exploiting the IEEE 1149.1

standard for software reliability evaluation in space applications, in: European

Safety and Reliability Conference, October 2006.

[21] Enabling innovative IP re-use and design automation at

www.spiritconsortium.org (last visited July 2008).

[22] R. Oshanae, G. Swaboda. Compact JTAG (IEEE P1149.7) overview of cJTAG, a

reduced pin debug access protocol, in: 5th IEEE International Board Test

Workshop (BTW’06), Denver, USA, September 2006.

[23] J. Rearick, B. Eklow, K. Posse, A. Crouche B. Bennetts, IJTAG (Internal JTAG): a

step toward a DFT standard, in: International Test Conference (ITC’05), Austin,

USA, November, 2005.

[24] ‘‘IEEE-ISTO 5001™, 2003, The Nexus 5001™ forum standard for a global

embedded processor debug interface, in: IEEE Industry Standards and

Technology Organization (IEEE-ISTO), 2003.

[25] J.C. Ruiz, J. Pardo, J.C. Campelo, P. Gil, On-chip debugging-based fault

emulation for robustness evaluation of embedded software components, in:

11th Pacific Rim International Symposium on Dependable Computing,

December 2005.

[26] G. Ferrante, 2003. CPUGEN 2.00 <www.opencores.org> (last visited July 2008).

[27] A. Fidalgo, G. Alves, J. Ferreira, A modified debugging infrastructure to assist

real time fault injection campaigns, in: 9th IEEE Workshop on Design &

Diagnostics of Electronic Circuits & Systems, April 2006.

[28] A. Fidalgo, G. Alves, J. Ferreira, OCD-FI: on-chip debug and fault injection, in:

International Conference on Dependable Systems and Networks, June 2006.

[29] U. Kumar, B. Umashankar, Improved Hamming code for error detection and

correction, in: 2nd International symposium on wireless pervasive computing

(ISWPC’07), San Juan, USA, February 2007.

[30] FPGA and CPLD solutions from Xilinx, Inc. <www.xilinx.com> (last visited July

2008).

[31] ModelSim – a comprehensive simulation and debug environment for complex

ASIC and FPGA designs. <www.model.com> (last visited July 2008).

http://www.spiritconsortium.org/
http://www.opencores.org/
http://www.xilinx.com/
http://www.model.com/

