81 research outputs found

    Design and implementation of NoC routers and their application to Prdt-based NoC\u27s

    Full text link
    With a communication-centric design style, Networks-on-Chips (NoCs) emerges as a new paradigm of Systems-on-Chips (SoCs) to overcome the limitations of bus-based communication infrastructure. An important problem in the design of NoCs is the router design, which has great impact on the cost and performance of a NoC system. This thesis is focused on the design and implementation of an optimized parameterized router which can be applied in mesh/torus-based and Perfect Recursive Diagonal Torus (PRDT)-based NoCs; In specific, the router design includes the design and implementation of two routing algorithms (vector routing and circular coded vector routing), the wormhole switching scheme, the scheduling scheme, buffering strategy, and flow control scheme. Correspondingly, the following components are designed and implemented: input controller, output controller, crossbar switch, and scheduler. Verilog HDL codes are generated and synthesized on ASIC platforms. Most components are designed in parameterized way. Performance evaluation of each component of the router in terms of timing, area, and power consumption is conducted. The efficiency of the two routing algorithms and tradeoff between computational time (tsetup) and area are analyzed; To reduce the area cost of the router design, the two major components, the crossbar switch and the scheduler, are optimized. Particularly, for crossbar switch, a comparative study of two crossbar designs is performed with the aid of Magic Layout editor, Synopsys CosmosSE and Awaves; Based on the router design, the PRDT network composed of 4x4 routers is designed and synthesized on ASIC platforms

    Architecture and network-on-chip implementation of a new hierarchical interconnection network

    Get PDF
    A Midimew-connected Mesh Network (MMN) is a minimal distance mesh with wrap-around links network of multiple basic modules (BMs), in which the BMs are 2D-mesh networks that are hierarchically interconnected for higher-level networks. In this paper, we present the architecture of the MMN, addressing of node, routing of message, and evaluate the static network performance of MMN, TESH, mesh and torus networks. In addition, we propose the network-on-chip (NoC) implementation of MMN. With innovative combination of diagonal and hierarchical structure, the MMN possesses several attractive features, including constant degree, small diameter, low cost, small average distance, moderate bisection width and high fault tolerant performance than that of other conventional and hierarchical interconnection networks. The simple architecture of MMN is also highly suitable for NoC implementation. To implement all the links of level-3 MMN, only four layers are needed which is feasible with current and future VLSI technologies

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    Optical network-on-chip architectures and designs

    Full text link
    As indicated in the latest version of ITRS roadmap, optical wiring is a viable interconnection technology for future SoC/SiC/SiP designs that can provide broad band data transfer rates unmatchable by the existing metal/low-k dielectric interconnects. In this dissertation study, a set of different optical interconnection architectures are presented for future on-chip optical micro-networks. Three Optical Network-on-Chip (ONoC) architectures, i.e., Wavelength Routing Optical Network-on-Chip (WRON), Redundant Wavelength Routed Optical Network (RDWRON) and Recursive Wavelength Routed Optical Network (RCWRON) are proposed. They are fully connected networks designed based on passive switching Microring Resonator (MRR) optical switches. Given enough different routing optical wavelengths, between any two nodes in the system a bi-directional communication channel can be built. WRON, RDWRON and RCWRON share the similar network structure with different specialties that fit to different applications. A new topology of packet switching NoC architecture, i.e., Quartered Recursive Diagonal Torus (QRDT) is proposed. It is designed by overlaying diagonal torus. Due to its small diameter and rich routing recourses, QRDT leads to highly scalable NoCs. By combining WRON\u27s interconnection property and QRDT\u27s network topology, a group of 2D-Torus based Packet Switching ONoC (TON) architectures is proposed. The TON is further refined to a generalized open-topology ONoC architecture, called Generalized 2D-Torus-based Optical Network-on-Chip (GTON). The communication protocol in TON is packet switching. The advantages of GTON stem from Wavelength Division Multiplexing (WDM), Direct Optical Channel (DOC) and MRR passive switching. As result, GTON architecture is highly scalable, has an ultra-high bandwidth, consumes a low power, and supports fault-tolerant routing. The work includes other issues such as channel design, analyses of the transmission power loss and the buffer

    Performance evaluation of network-on-chip interconnect architectures

    Full text link
    With a communication design style, Network-on-Chips (NoCs) have been proposed as a new Multi-Processor System-on-Chip paradigm. Simulation and functional validation are essential to assess the correctness and performance of the NoC design. In this thesis, a cycle-accurate NoC simulation system in Verilog HDL is developed to evaluate the performance of various NoC architectures. First, a library of NoC components is developed based on an existing design. Each NoC architecture to be evaluated is constructed from the library according to the topology description which specifies the network topology, network size, and routing algorithm. The network performance of four NoC architectures under uniform and three non-uniform traffic patterns is tested on ModelSim 6.4. The developed NoC simulation system provides useful resources for the future development of the FPGA-based NoC emulation system

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    Planificación consciente de la contención y gestión de recursos en arquitecturas multicore emergentes

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 14-12-2021Chip multicore processors (CMPs) currently constitute the architecture of choice for mosto general-pùrpose computing systems, and they will likely continue to be dominant in the near future. Advances in technology have enabled to pack an increasing number of cores and bigger caches on the same chip. Nevertheless, contention on shared resources on CMPs -present since the advent of these architectures- still poses a big challenge. Cores in a CMP typically share a last-level cache (LLC) and other memory-related resources with the remaining cores, such as a DRAM controller and an interconnection network. This causes that co-running applications may intensively compete with each other for these shared resources, leading to substantial and uneven performance degradation...Los procesadores multinúcleo o CMPs (Chip Multicore Processors) son actualmente la arquitectura más usada por la mayoría de sistemas de computación de propósito general, y muy probablemente se mantendrían en esa posición dominante en el futuro cercano. Los avances tecnológicos han permitido integrar progresivamente en el mismo chip más cores y aumentar los tamaños de los distintos niveles de cache. No obstante, la contención de recursos compartidos en CMPs {presente desde la aparición de estas arquitecturas{ todavía representa un reto importante que afrontar. Los cores en un CMP comparten en la mayor parte de los diseños una cache de último nivel o LLC (Last-Level Cache) y otros recursos, como el controlador de DRAM o una red de interconexión. La existencia de dichos recursos compartidos provoca en ocasiones que cuando se ejecutan dos o más aplicaciones simultáneamente en el sistema, se produzca una degradación sustancial y potencialmente desigual del rendimiento entre aplicaciones...Fac. de InformáticaTRUEunpu

    Handshake and Circulation Flow Control in Nanaphotonic Interconnects

    Get PDF
    Nanophotonics has been proposed to design low latency and high bandwidth Network-On-Chip (NOC) for future Chip Multi-Processors (CMPs). Recent nanophotonic NOC designs adopt the token-based arbitration coupled with credit-based flow control, which leads to low bandwidth utilization. This thesis proposes two handshake schemes for nanophotonic interconnects in CMPs, Global Handshake (GHS) and Distributed Handshake (DHS), which get rid of the traditional credit-based flow control, reduce the average token waiting time, and finally improve the network throughput. Furthermore, we enhance the basic handshake schemes with setaside buffer and circulation techniques to overcome the Head-Of-Line (HOL) blocking. The evaluations show that the proposed handshake schemes improve network throughput by up to 11x under synthetic workloads. With the extracted trace traffic from real applications, the handshake schemes can reduce the communication delay by up to 55%. The basic handshake schemes add only 0.4% hardware overhead for optical components and negligible power consumption. In addition, the performance of the handshake schemes is independent of on-chip buffer space, which makes them feasible in a large scale nanophotonic interconnect design
    corecore