108 research outputs found

    LOW-POWER FREQUENCY SYNTHESIS BASED ON INJECTION LOCKING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ULTRA-LOW-JITTER, MMW-BAND FREQUENCY SYNTHESIZERS BASED ON A CASCADED ARCHITECTURE

    Get PDF
    Department of Electrical EngineeringThis thesis presents an ultra-low-jitter, mmW-band frequency synthesizers based on a cascaded architecture. First, the mmW-band frequency synthesizer based on a CP PLL is presented. At the first stage, the CP PLL operating at GHz-band frequencies generated low-jitter output signals due to a high-Q VCO. At the second stage, an ILFM operating at mmW-band frequencies has a wide injection bandwidth, so that the jitter performance of the mmW-band output signals is determined by the GHz-range PLL. The proposed ultra-low-jitter, mmW-band frequency synthesizer based on a CP PLL, fabricated in a 65-nm CMOS technology, generated output signals from GHz-band frequencies to mmW-band frequencies, achieving an RMS jitter of 206 fs and an IPN of ???31 dBc. The active silicon area and the total power consumption were 0.32 mm2 and 42 mW, respectively. However, due to a large in-band phase noise contribution of a PFD and a CP in the CP PLL, this first stage was difficult to achieve an ultra-low in-band phase noise. Second, to improve the in-band phase noise further, the mmW-band frequency synthesizer based on a digital SSPLL is presented. At the first stage, the digital SSPLL operating at GHz-band frequencies generated ultra-low-jitter output signals due to its sub-sampling operation and a high-Q GHz VCO. To minimize the quantization noise of the voltage quantizer in the digital SSPLL, this thesis presents an OSVC as a voltage quantizer while a small amount of power was consumed. The proposed ultra-low-jitter, mmW-band frequency synthesizer fabricated in a 65-nm CMOS technology, generated output signals from GHz-band frequencies to mmW-band frequencies, achieving an RMS jitter of 77 fs and an IPN of ???40 dBc. The active silicon area and the total power consumption were 0.32 mm2 and 42 mW, respectively.clos

    ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ๋ฅผ ์œ„ํ•œ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this dissertation, major concerns in the clocking of modern serial links are discussed. As sub-rate, multi-standard architectures are becoming predominant, the conventional clocking methodology seems to necessitate innovation in terms of low-cost implementation. Frequency synthesis with active, inductor-less oscillators replacing LC counterparts are reviewed, and solutions for two major drawbacks are proposed. Each solution is verified by prototype chip design, giving a possibility that the inductor-less oscillator may become a proper candidate for future high-speed serial links. To mitigate the high flicker noise of a high-frequency ring oscillator (RO), a reference multiplication technique that effectively extends the bandwidth of the following all-digital phase-locked loop (ADPLL) is proposed. The technique avoids any jitter accumulation, generating a clean mid-frequency clock, overall achieving high jitter performance in conjunction with the ADPLL. Timing constraint for the proper reference multiplication is first analyzed to determine the calibration points that may correct the existent phase errors. The weight for each calibration point is updated by the proposed a priori probability-based least-mean-square (LMS) algorithm. To minimize the time required for the calibration, each gain for the weight update is adaptively varied by deducing a posteriori which error source dominates the others. The prototype chip is fabricated in a 40-nm CMOS technology, and its measurement results verify the low-jitter, high-frequency clock generation with fast calibration settling. The presented work achieves an rms jitter of 177/223 fs at 8/16-GHz output, consuming 12.1/17-mW power. As the second embodiment, an RO-based ADPLL with an analog technique that addresses the high supply sensitivity of the RO is presented. Unlike prior arts, the circuit for the proposed technique does not extort the RO voltage headroom, allowing high-frequency oscillation. Further, the performance given from the technique is robust over process, voltage, and temperature (PVT) variations, avoiding the use of additional calibration hardware. Lastly, a comprehensive analysis of phase noise contribution is conducted for the overall ADPLL, followed by circuit optimizations, to retain the low-jitter output. Implemented in a 40-nm CMOS technology, the frequency synthesizer achieves an rms jitter of 289 fs at 8 GHz output without any injected supply noise. Under a 20-mVrms white supply noise, the ADPLL suppresses supply-noise-induced jitter by -23.8 dB.๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ๊ด€์—ฌ๋˜๋Š” ์ฃผ์š”ํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ํ•œ๋‹ค. ์ค€์†๋„, ๋‹ค์ค‘ ํ‘œ์ค€ ๊ตฌ์กฐ๋“ค์ด ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ํด๋ผํ‚น ๋ฐฉ๋ฒ•์€ ๋‚ฎ์€ ๋น„์šฉ์˜ ๊ตฌํ˜„์˜ ๊ด€์ ์—์„œ ์ƒˆ๋กœ์šด ํ˜์‹ ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. LC ๊ณต์ง„๊ธฐ๋ฅผ ๋Œ€์‹ ํ•˜์—ฌ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด๊ณ , ์ด์— ๋ฐœ์ƒํ•˜๋Š” ๋‘๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ์ ๊ณผ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ฐ ์ œ์•ˆ ๋ฐฉ๋ฒ•์„ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์„ ํ†ตํ•ด ๊ทธ ํšจ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ด์–ด์„œ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๊ฐ€ ๋ฏธ๋ž˜์˜ ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ์‚ฌ์šฉ๋  ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ์ฃผํŒŒ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ํ”Œ๋ฆฌ์ปค ์žก์Œ์„ ์™„ํ™”์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ๋ฐฐ์ˆ˜ํ™”ํ•˜์—ฌ ๋’ท๋‹จ์˜ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์˜ ๋Œ€์—ญํญ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋Œ€ํ™” ์‹œํ‚ค๋Š” ํšŒ๋กœ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๊ธฐ์ˆ ์€ ์ง€ํ„ฐ๋ฅผ ๋ˆ„์  ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉฐ ๋”ฐ๋ผ์„œ ๊นจ๋—ํ•œ ์ค‘๊ฐ„ ์ฃผํŒŒ์ˆ˜ ํด๋ฝ์„ ์ƒ์„ฑ์‹œ์ผœ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์™€ ํ•จ๊ป˜ ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ํ•ฉ์„ฑํ•œ๋‹ค. ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋ฐฐ์ˆ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํƒ€์ด๋ฐ ์กฐ๊ฑด๋“ค์„ ๋จผ์ € ๋ถ„์„ํ•˜์—ฌ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํŒŒ์•…ํ•œ๋‹ค. ๊ฐ ๊ต์ • ์ค‘๋Ÿ‰์€ ์—ฐ์—ญ์  ํ™•๋ฅ ์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ LMS ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๊ฐฑ์‹ ๋˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๊ต์ •์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐ ๊ต์ • ์ด๋“์€ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜ ๊ทผ์›๋“ค์˜ ํฌ๊ธฐ๋ฅผ ๊ท€๋‚ฉ์ ์œผ๋กœ ์ถ”๋ก ํ•œ ๊ฐ’์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง€์†์ ์œผ๋กœ ์ œ์–ด๋œ๋‹ค. 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์˜ ์ธก์ •์„ ํ†ตํ•ด ์ €์†Œ์Œ, ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ๋น ๋ฅธ ๊ต์ • ์‹œ๊ฐ„์•ˆ์— ํ•ฉ์„ฑํ•ด ๋ƒ„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” 177/223 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8/16 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ์ „์› ๋…ธ์ด์ฆˆ ์˜์กด์„ฑ์„ ์™„ํ™”์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด ํฌํ•จ๋œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ๊ฐ€ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ์ „์•• ํ—ค๋“œ๋ฃธ์„ ๋ณด์กดํ•จ์œผ๋กœ์„œ ๊ณ ์ฃผํŒŒ ๋ฐœ์ง„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋‚˜์•„๊ฐ€, ์ „์› ๋…ธ์ด์ฆˆ ๊ฐ์†Œ ์„ฑ๋Šฅ์€ ๊ณต์ •, ์ „์••, ์˜จ๋„ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ๋ฏผ๊ฐํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ ์ถ”๊ฐ€์ ์ธ ๊ต์ • ํšŒ๋กœ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์œ„์ƒ ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ํฌ๊ด„์  ๋ถ„์„๊ณผ ํšŒ๋กœ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ์˜ ์ €์žก์Œ ์ถœ๋ ฅ์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ 289 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋˜ํ•œ, 20 mVrms์˜ ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์—ˆ์„ ๋•Œ์— ์œ ๋„๋˜๋Š” ์ง€ํ„ฐ์˜ ์–‘์„ -23.8 dB ๋งŒํผ ์ค„์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivation 3 1.1.1 Clocking in High-Speed Serial Links 4 1.1.2 Multi-Phase, High-Frequency Clock Conversion 8 1.2 Dissertation Objectives 10 2 RO-Based High-Frequency Synthesis 12 2.1 Phase-Locked Loop Fundamentals 12 2.2 Toward All-Digital Regime 15 2.3 RO Design Challenges 21 2.3.1 Oscillator Phase Noise 21 2.3.2 Challenge 1: High Flicker Noise 23 2.3.3 Challenge 2: High Supply Noise Sensitivity 26 3 Filtering RO Noise 28 3.1 Introduction 28 3.2 Proposed Reference Octupler 34 3.2.1 Delay Constraint 34 3.2.2 Phase Error Calibration 38 3.2.3 Circuit Implementation 51 3.3 IL-ADPLL Implementation 55 3.4 Measurement Results 59 3.5 Summary 63 4 RO Supply Noise Compensation 69 4.1 Introduction 69 4.2 Proposed Analog Closed Loop for Supply Noise Compensation 72 4.2.1 Circuit Implementation 73 4.2.2 Frequency-Domain Analysis 76 4.2.3 Circuit Optimization 81 4.3 ADPLL Implementation 87 4.4 Measurement Results 90 4.5 Summary 98 5 Conclusions 99 A Notes on the 8REF 102 B Notes on the ACSC 105๋ฐ•

    Frequency Synthesizer Architectures for UWB MB-OFDM Alliance Application

    Get PDF

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ฮ”ฮฃ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ฮ”ฮฃ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ฮ”ฮฃ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    A high-frequency quad-modulus prescaler for fractional-N frequency synthesizer

    Get PDF
    Master'sMASTER OF ENGINEERIN

    A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL)

    Get PDF
    Frequency synthesizers have become a crucial building block in the evolution of modern communication systems and consumer electronics. The spectral purity performance of frequency synthesizers limits the achievable data-rate and presents a noise-power tradeoff. For communication standards such as LTE where the channel spacing is a few kHz, the synthesizers must provide high frequencies with sufficiently wide frequency tuning range and fine frequency resolutions. Such stringent performance must be met with a limited power and small chip area. In this thesis a wideband fractional-N frequency synthesizer based on a subsampling phase locked loop (SSPLL) is presented. The proposed synthesizer which has a frequency resolution less than 100Hz employs a digital fractional controller (DFC) and a 10-bit digital-to-time converter (DTC) to delay the rising edges of the reference clock to achieve fractional phase lock. For fast convergence of the delay calibration, a novel two-step delay correlation loop (DCL) is employed. Furthermore, to provide optimum settling and jitter performance, the loop transfer characteristics during frequency acquisition and phase-lock are decoupled using a dual input loop filter (DILF). The fractional-N sub-sampling PLL (FNSSPLL) is implemented in a TSMC 40nm CMOS technology and occupies a total active area of 0.41mm^2. The PLL operates over frequency range of 2.8 GHz to 4.3 GHz (42% tuning range) while consuming 9.18mW from a 1.1V supply. The integrated jitter performance is better than 390 fs across all fractional frequency channel. The worst case fractional spur of -48.3 dBc occurs at a 650 kHz offset for a 3.75GHz fractional channel. The in-band phase noise measured at a 200 kHz offset is -112.5 dBc/Hz

    Oscillator Architectures and Enhanced Frequency Synthesizer

    Get PDF
    A voltage controlled oscillator (VCO), that generates a periodic signal whose frequency is tuned by a voltage, is a key building block in any integrated circuit systems. A sine wave oscillator can be used for a built-in self testing where high linearity is required. A bandpass filter (BPF) based oscillator is a preferred solution, and high quality factor (Q-factor) is needed to improve the linearity. However, a stringent linearity specification may require very high Q-factor, not practical to implement. To address this problem, a frequency harmonic shaping technique is proposed. It utilizes a finite impulse response filter improving the linearity by rejecting certain harmonics. A prototype SC BPF oscillator with an oscillating frequency of 10 MHz is designed and measurement results show that linearity is improved by 20 dB over a conventional oscillator. In radio frequency area, preferred oscillator structures are an LC oscillator and a ring oscillator. An LC oscillator exhibits good phase noise but an expensive cost of an inductor is disadvantageous. A ring oscillator can be built in standard CMOS process, but suffers due to a poor phase noise and is sensitive to supply noise. A RC BPF oscillator is proposed to compromise the above difficulties. A RC BPF oscillator at 2.5 GHz is designed and measured performance is better than ring oscillators when compared using a figure of merit. In particular, the frequency tuning range of the proposed oscillator is superior to the ring oscillator. VCO is normally incorporated with a frequency synthesizer (FS) for an accurate frequency control. In an integer-N FS, reference spur is one of the design concerns in communication systems since it degrades a signal to noise ratio. Reference spurs can be rejected more by either the lower loop bandwidth or the higher loop filter. But the former increases a settling time and the latter decreases phase margin. An adaptive lowpass filtering technique is proposed. The loop filter order is adaptively increased after the loop is locked. A 5.8 GHz integer-N FS is designed and measurement results show that reference spur rejection is improved by 20 dB over a conventional FS without degrading the settling time. A new pulse interleaving technique is proposed and several design modifications are suggested as a future work

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m
    • โ€ฆ
    corecore