54 research outputs found

    A Proxy Voting Scheme Ensuring Participation Privacy and Receipt-Freeness

    Get PDF
    Proxy voting is a form of voting meant to support the voters who want to delegate their voting right to a trusted entity, the so-called proxy. Depending on the form of proxy voting, the proxy is either authorized to cast a ballot for the voting option that the voter chooses, or to vote according to her own wishes, if the voter is not sure how to vote and wants to delegate the decision making in the election. While the first form of proxy voting has been applied to traditional elections in order to support the voters who are unable to physically get to a polling station, the second form has been a topic of research in Internet voting. Recently, an Internet voting scheme has been proposed, that extends the well-known Helios scheme towards the functionality of proxy voting. This scheme, however, also has the drawbacks of Helios regarding participation privacy and receipt-freeness. As such, the information whether any voter participated in the election either by casting a direct vote or delegating their vote can be deduced from the published information. The scheme furthermore allows both the voters and the proxies to create receipts that prove casting a ballot for a specific candidate, as well as allows the voters to create receipts that prove delegating to a specific proxy. In this work we use the idea of dummy ballots, proposed in another extension of Helios to extend the proxy voting scheme towards participation privacy and receipt-freeness

    Extending the Helios Internet Voting Scheme Towards New Election Settings

    Get PDF
    Internet voting has long been a topic both of public discussion and also of scientific research. While the introduction of Internet voting may bring many advantages, it is further important to ensure an adequate level of security of the systems and underlying schemes that are used for casting and tallying the votes in order to encourage faith and acceptance for this relatively new way of voting. A number of cryptographic schemes have been proposed, that enable secure Internet voting. One of the most established and well-researched solutions is the Helios scheme, which is also implemented as an open-source system. Both its implementation and the scheme behind it has been extensively studied in the literature, and the Helios system has been used for numerous elections in practice, such as the IACR elections. However, there are election settings for which Helios is currently not appropriate, either due to infrastructure demands, required functionality for the voters or assurance of the security requirements. These kinds of election settings could benefit from the advantages that secure Internet voting provides. In this thesis we identify the election settings not currently supported by Helios, propose our extensions for each one of these settings and evaluate their security. Hence, this work describes four Internet voting schemes that are build upon Helios, with each scheme developed towards a specific setting. The first scheme presented here enables elections within the so-called boardroom voting setting. This setting is characterized by its decentralization, whereby all the tasks within the election are distributively performed by the voters themselves, without the support of a centralized infrastructure. The election in the boardroom voting setting are further conducted in an ad-hoc manner, so that limited time is available for preparation beforehand. We propose an extension of Helios that distributes the tasks of the voting system components in Helios among the voters. For this, we use cryptographic primitives such as decentralized key exchange with short authentication strings, distributed secret sharing and distributed decryption and Byzantine agreement. The second scheme extends Helios with proxy voting functionality. Proxy voting, as a newly emerged form of voting, enables the voter to delegate her voting right in the election to a trusted third-party, the so-called proxy, who is authorized to vote on the voter's behalf. This extension facilitates such delegation while assuring the security for delegating voters and for the proxies and preserves the security guarantees provided by Helios for the voters who vote directly (instead of delegating). For ensuring the security of our extension, we introduce the so-called delegation credentials that are assigned to the voters and are used to compute anonymized delegation tokens sent to the proxies to enable delegation. We further use cryptographic primitives such as proofs of knowledge and signatures of knowledge. The third scheme combines the first two settings to extend Helios towards the proxy boardroom voting setting, namely, a setting in which the elections are performed in a decentralized way as in boardroom voting, yet the voters who cannot participate in the election themselves are allowed to delegate their voting right to a trusted proxy before the election. The security of our extension is assured with threshold secret sharing and Pedersen commitments. The fourth scheme extends Helios by improving its security. As such, it introduces participation privacy, meaning that the voting system does not reveal which voters have participated in the election, while supporting verification that only the eligible voters have cast their ballots in the election. The extension furthermore introduces receipt-freeness, ensuring that the voter cannot create a receipt that proves to a third party how she voted, thus preventing vote selling. To ensure the security of the extension, a new kind of entity is introduced, the posting trustee, and a new kind of ballot, the so-called dummy ballot that is indistinguishable from a normal ballot cast by the voter, but does not modify the election result. We furthermore use disjunctive zero-knowledge proofs and proofs of signature knowledge to prove, that a sender of a particular ballot knows the private signature key of an eligible voter, or that the ballot is a dummy ballot. For each one of the extensions, the security model is provided, which describes the security requirements and the assumptions that are necessary for ensuring the security requirements (i.e. vote privacy or vote integrity), is provided. For the first three extensions, the security model is used as a base for the informal security evaluation, in which an informal argument is used to show, that the security requirements hold under the described assumptions. Conducting a formal security evaluation for these extensions is considered an important part of the future work, in which new formal definitions have to be developed. For the fourth extension, we provide a formal security analysis that relies on the formal definitions for the security requirements of vote privacy, vote integrity and eligibility, available in the literature. We furthermore introduce new formal definitions for participation privacy, receipt-freeness and fairness, which we also use for the formal proofs of our extension

    Extending Helios Towards Private Eligibility Verifiability

    Get PDF
    We show how to extend the Helios voting system to provide eligibility verifiability without revealing who voted which we call private eligibility verifiability. The main idea is that real votes are hidden in a crowd of null votes that are cast by others but are indistinguishable from those of the eligible voter. This extended Helios scheme also improves Helios towards receipt-freeness

    PeaceFounder: centralised E2E verifiable evoting via pseudonym braiding and history trees

    Get PDF
    PeaceFounder is a centralised E2E verifiable e-voting system that leverages pseudonym braiding and history trees. The immutability of the bulletin board is maintained replication-free by voter’s client devices with locally stored consistency-proof chains. Meanwhile, pseudonym braiding done via an exponentiation mix before the vote allows anonymisation to be transactional with a single braider at a time. In contrast to existing E2E verifiable e-voting systems, it is much easier to deploy as the system is fully centralised, free from threshold decryption ceremonies, trusted setup phases and bulletin board replication. Furthermore, the body of a vote is signed with a braided pseudonym, enabling unlimited ballot types

    Guess my vote : a study of opacity and information flow in voting systems

    Get PDF
    With an overall theme of information flow, this thesis has two main strands. In the first part of the thesis, I review existing information flow properties, highlighting a recent definition known as opacity [25]. Intuitively, a predicate cP is opaque if for every run in which cP is true, there exists an indistinguishable run in which it is false, where a run can be regarded as a sequence of events. Hence, the observer is never able to establish the truth of cPo The predicate cP can be defined according to requirements of the system, giving opacity a great deal of flexibility and versatility. Opacity is then studied in relation to several well-known definitions for information flow. As will be shown, several of these properties can be cast as variations of opacity, while others have a relationship by implication with the opacity property [139]. This demonstrates the flexibility of opacity, at the same time establishing its distinct character. In the second part of the thesis, I investigate information flow in voting systems. Pret a Voter [36] is the main exemplar, and is compared to other schemes in the case study. I first analyse information flow in Pret a Voter and the FOO scheme [59], concentrating on the core protocols. The aim is to investigate the security requirements of each scheme, and the extent to which they can be captured using opacity. I then discuss a systems-based analysis of Pret a Voter [163], which adapts and extends an earlier analysis of the Chaum [35] and Neff [131]' [132]' [133] schemes in [92]. Although this analysis has identified several potential vulnerabilities, it cannot be regarded as systematic, and a more rigorous approach may be necessary. It is possible that a combination of the information flow and systems- based analyses might be the answer. The analysis of coercion-resistance, which is performed on Pret a Voter and the FOO scheme, may exemplify this more systematic approach. Receipt-freeness usually means that the voter is unable to construct a proof of her vote. Coercion-resistance is a stronger property in that it accounts for the possibility of interaction between the coercer and the voter during protocol execution. It appears that the opacity property is ideally suited to expressing the requirements for coercion-resistance in each scheme. A formal definition of receipt-freeness cast as a variation of opacity is proposed [138], together with suggestions on how it might be reinforced to capture coercion-resistance. In total, the thesis demonstrates the remarkable flexibility of opacity, both in expressing differing security requirements and as a tool for security analysis. This work lays the groundwork for future enhancement of the opacity framework.EThOS - Electronic Theses Online ServiceDSTL : EPSRCGBUnited Kingdo

    A Framework for QKD-based Electronic Voting

    Get PDF
    This paper deals with the security aspect of electronic voting (e-voting) by introducing quantum key distribution (QKD) to the e-voting process. This can offer an extremely high level of security that can be very beneficial for some significant e-voting tasks. Moreover, a framework for the integration of the QKD with the e-voting system is proposed. The Helios voting system, which is considered as one of the open-source and major voting systems, has been chosen for this integration. Investigation of the main design aspects of building a QKD-based e-voting system has been done. Thus, the expected advantages and limitations of the proposal are discussed and analyzed

    Matters of Coercion-Resistance in Cryptographic Voting Schemes

    Get PDF
    This work addresses coercion-resistance in cryptographic voting schemes. It focuses on three particularly challenging cases: write-in candidates, internet elections and delegated voting. Furthermore, this work presents a taxonomy for analyzing and comparing a huge variety of voting schemes, and presents practical experiences with the voting scheme Bingo Voting
    corecore